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Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This
study aims tomodify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect.
We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichro-
ism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural mod-
ification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same
treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment,
which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were ob-
served in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme signifi-
cantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have
potential as a new cancer cell killing drug.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The dynamic nature of cancer is one of the major problems for its
treatment, as it can lead to drug resistance, causing the need for higher
treatment doses, which can result in negative side effects in patients [1].
In the last few decades, experimental studies and clinical trials have
aimed to assess alternative anti-tumor therapeutics, among others
based on bacterial and animal products [2–4]. This is the case for
lysozyme (animal and human) and porcine pancreatic enzyme extracts
(PPE), which have been studied as potential cancer treatments [5–7].
Lysozyme is known to hydrolyze specific peptidoglycan linkages in
the cell wall of bacteria, making it a natural antibacterial product.
Lysozyme is produced in the body as a non-specific defensemechanism
associated with the monocyte–macrophage system [8]. Interestingly, it
has also shown potential as anticancer agent, as it can inhibit tumor
formation and growth, and improve the efficiency of chemotherapeutic
treatments [6,7]. Lysozyme is one of the main secretory products of
macrophages and it is an essential mediator for anti-tumor activities
nterface Engineering, Kyushu
[9–11]. It was reported that lysozyme plays a pivotal role in the
human innate immune system [12]. Lysozyme inhibits interleukin-2-
activated human peripheral blood lymphocytes [13] and could modify
glycoprotein receptors in normal and neoplastic cells [14].

Lysozyme expressionwas found in gastric tumors and gastric Paneth
cells [15–17], which suggests it is evoked as part of the defense mecha-
nism against malignant cells [18]. Lysozyme inhibited the growth of
human gastric cell lines like MGC803, MKN28, and MKN45, while it
was not toxic towards normal human lung fibroblasts [19]. Lysozyme
treatment promoted the immunoglobulin production by HB4C5 cells
(human-human hybridoma line) and human peripheral blood lympho-
cytes [20,21]. Zheng et al. functionalized lysozyme on bioactive glass
nanoparticles and showed that specific cytotoxicity was achieved only
on cancer but not normal cells [6], indicating a possible selectivity
towards cancer cells. Similarly, Mahanta et al. synthesized a self-
assembled nanostructured lysozyme that exhibited anticancer activity
against breast cancer cells (MCF-7) but was not toxic to normal cells
[22]. So far, lysozyme has successfully demonstrated anticancer activity
[20–22]. Still, there is significant potential to enhance the activity of ly-
sozyme as cancer cell killing drug.

It is known that the enzymatic activity of proteins can be improved
by modifying their structure using chemical and physical methods
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[23–25]. Atmospheric pressure plasma, a partially ionized gas that de-
livers a variety of reactive oxygen and nitrogen species (RONS), has
proven to effectively modify the structure and function of several pro-
teins. Some examples include the heme degradation of horseradish per-
oxidase [26], structural modification of α-chymotrypsin [27], NADPH
oxidase activator (Noxa 1) [28], myoglobin [29,30], hemoglobin [31],
MTH1880 [32], and bacteriorhodopsin [33]. In addition, plasma treat-
ment has been shown to induce a modest increase in the activity of li-
pase and α-amylase [34,35]. In our previous research we evaluated
the effect of two different plasma sources, i.e., a dielectric barrier dis-
charge (DBD) and an atmospheric pressure plasma jet (APPJ) operating
in N2 and air, on the lysozyme lytic activity, and we observed that the
air-DBD causes a less pronounced drop in lytic activity than a DBD oper-
ating in N2 and the APPJ plasma [36]. In the present study, we are inter-
esting to study in more detail whether plasma, and more specifically
this air-DBD modified lysozyme, can cause cytotoxic effect on cancer
cells, as this would allow the use of lower (non-toxic) concentrations
of lysozyme to kill cancer cells.

This study aims to determine the structural modifications induced
by plasma on lysozyme and assess its cytotoxicity. For this purpose,
we have performed functional experiments and molecular dynamics
simulations to identify the structural changes in lysozyme after plasma
treatment. Overall, our experimental and computational studies suggest
thatmodification at Trp and Tyr residues of lysozyme after plasma treat-
ment enhances its activity, which opens a new avenue for the design of
novel therapeutic approaches against cancer.

2. Materials and methods

2.1. Materials

Lysozyme and other chemicals were supplied by Sigma-Aldrich
Chemical Co. (USA). All chemicals and reagents were used without fur-
ther purification.

2.2. Pulsed DBD plasma device

The pulsed DBD plasma source was developed by Plasma Bioscience
Research Center, Korea, and details are described in our previous article
[28]. Briefly, the DBD plasma source was fabricated in coplanar configu-
ration by using silver electrodes of width = 100 μm and thickness = 5
μmabove a circular glass substrate (SiO2). The diameter and thickness of
the glass substrate were 35 mm and 1.8 mm, respectively. The spacing
between adjacent silver electrodes on each plane was fixed at 2 mm.
The Vrms was 1.17 kV, and Irms was 16 mA. The discharge voltage was
1.08 kV, and the applied power was 3.88 J/s. The plasma on-time was
25 ms, and the off-time was 150 ms.

2.3. Plasma treatment of lysozyme solution for circular dichroism, fluores-
cence, and mass spectrometry analysis

A lysozyme solution at 0.2 mg/mL was used for secondary structure
analysis by circular dichroism (CD). For the tertiary structure analysis by
fluorescence spectroscopy, 0.5 mg/mL lysozyme solution was used,
while formass spectrometry (MS), 0.002mg/mLwas used. All lysozyme
solutions were prepared in 10 mM phosphate buffer at pH 2 and 7. For
plasma treatment, 1 mL solution was treated with the DBD device for 5,
10 and 20 min in a 6-well plate (Greiner) at a distance of 5 mm.

2.4. Circular dichroism (CD) spectroscopy

CD spectra of native and plasma-treated lysozyme were measured
using JASCO J-815 spectropolarimeter (Jasco, Tokyo, Japan). The
0.2 mg/mL lysozyme solutions were pre-equilibrated at 25 °C for 15
min. The secondary structure of lysozyme was monitored using a
1 mm path length cuvette. Each spectrum was taken as the average of
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six spectra. Each sample spectrum was obtained by subtracting the
blank (without lysozyme).

2.5. Temperature stability studies

Preliminary thermodynamic stability studies were performed by
temperature-controlled J-815 spectrophotometry (Jasco, Japan)
equipped with a Peltier system. For each sample, CD spectra were re-
corded at 220 nm as a function of temperature, from 25 to 100 °C. The
sample was placed in a sealed cuvette to prevent water evaporation.
In order to understand the change in protein conformation as a function
of temperature, we studied the change in ellipticity at 220 nm. The
220 nm ellipticity in the spectrum of native lysozyme in buffer at 25
°C was assumed to correspond to 100% folded protein. The ellipticity
at 100 °C was assumed to correspond to the unfolded protein. The
folded fraction was computed as:

Fraction Folded ¼ A220−Au

Af−Au

In this formula, A220 is the absorbance of theprotein at different tem-
peratures between 25 and 100 °C, Au is the absorbance of the unfolded
protein at 100 °C, and Af is the absorbance of the folded protein at 25 °C.

2.6. Fluorescence spectroscopy

A fluorescence assay was performed at 25 °C using an LS55 spectro-
photometer (Perkin Elmer, Waltham, MA). The excitation wavelength
was fixed at 280 nm for the overall fluorescence emission. The slit
widths for excitation and emission were both set at 10 nm. The lyso-
zyme concentration was 0.5 mg/mL, and each spectrum was the aver-
age of six spectra. Each sample spectrum was obtained by subtracting
the blank (without lysozyme).

2.7. Lysozyme activity

Solutions containing 400 units/mL of lysozyme in 10mMphosphate
buffer at pH 2 and 7 were treated with the DBD and the lytic activity of
lysozymewas assessed using spectrophotometry. The principle is based
on the phenomenon of cell wall lysis caused by the enzyme inMicrococ-
cus lysodeicticus Gram-positive bacteria (Sigma-Aldrich). The lysozyme
activity was determined by monitoring the decrease in turbidity of the
bacterial suspension at 450 nm for 3 min.

2.8. Identification of oxidative modifications

Oxidative modifications were detected on the peptide level after di-
gestion with trypsin followed by liquid chromatography–tandem mass
spectrometry (LC-MS/MS), as described previously [37]. Briefly,
RapiGest SF Surfactant (Waters) was added to a final concentration of
0.1% followed by incubation for 5 min at 100 °C. Samples were reduced
(1 h at 55 °C) and alkylated (30 min in the dark) using 200 mM TCEP
and 375 mM 2-iodoacetamide, respectively, before being precipitated
with acetone overnight at −20 °C. The pellet was resuspended in
100mMtriethylammoniumbicarbonate, andMSgrade trypsin protease
(ThermoScientific)was added to a protease-protein ratio of 1:40 (w/w)
for digestion overnight at 37 °C. The digested sample was analyzed on a
nanoAcquity UPLC system (Waters) coupled to an LTQ ion trap mass
spectrometer (Thermo Scientific) applying optimized settings for
peptide separation and fragmentation, as described previously [37].

Peptide identification was performed by Proteome Discoverer (2.1
SP1) software (Thermo Scientific) by searching against the UniProt
reference human database using Sequest and Mascot algorithm
[38,39]. Search parameters were applied as follows: precursor mass
tolerance 500 ppm, fragment mass tolerance 0.5 Da, and trypsin speci-
ficity allowing for up to two missed cleavages. Carbamidomethylation
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of cysteine was defined as fixed modification, and oxidations of the
following residues were set as variable modifications: Methionine
(Met), tyrosine (Tyr), aspartic acid (Asp), phenylalanine (Phe), histidine
(His), tryptophan (Trp), asparagine (Asn), and proline (Pro). The results
were further filtered to only use highly confident peptides with a global
FDR < 5% based on a target-decoy approach [40]. The list of first ranked
oxidized peptides (see Tables S1–S7 in Supporting information) was
checked manually to count the actual number of oxidation sites.

2.9. Molecular dynamics (MD) simulations

The MD simulations were performed in GROMACS 5.1.2 package
[41] using the GROMOS54A7 force field [42]. The lysozyme structure
was taken from the protein data bank (PDB 1DPX). The protein was sol-
vated with water, described by the simple point charge (SPC) explicit
solvent model [43]. Subsequently, the system was neutralized by Na+

or Cl− ions replacing the water molecules. The system was energy
minimized with the steepest descent method. The NPT (i.e., at constant
number of particles (N), pressure (P) and temperature (T)) equilibra-
tion was first carried out for 10 ns at 300 K and 1 bar by applying
positional restraints (force constant of 1000 kJ mol−1 nm−2) on the
heavy atoms of the protein. This was done to keep the system as close
as possible to its crystal structure. We employed V-rescale modified
Berendsen thermostat with a time constant of 0.1 ps [44], Parrinello-
Rahman barostat with a time constant of 2 ps [45], and isothermal
compressibility of 4.5 × 10−5 bar−1 [46]. The cut-off radii of the van
der Waals and Coulomb interactions were 1 nm. Additionally, the PME
(particle mesh Ewald) summation was used to calculate the long-
range electrostatic interactions [47], applying long-range dispersion
corrections for both energy and pressure. After the equilibration, we
performed unrestrained (normal) MD simulations for another 400 ns,
of which the last 10 ns was used to calculate the average values. In all
simulations, a time step of 2 f. was used. Finally, we calculated the
root mean square deviation (RMSD) of the backbone atoms, the root
mean square fluctuations (RMSFs) of the protein residues and the
solvent-accessible surface area (SASA), and we applied principle com-
ponent analysis (PCA).

Besides simulating the native lysozyme structure in water, we
also performed the same simulations for an oxidized form of
lysozyme (oxidation product obtained from mass spectrometry). We
modified the Trp28 and Tyr53 amino acids for lysozyme at pH 7 to 6-
hydroxytryptophan and 3,4-dihydroxyphenylalaine, respectively.
For lysozyme at pH 2, we modified both Phe34 and Phe38 to
tyrosine, and Tyr53 and Asn59 to 3,4-dihydroxyphenylalaine and 3-
hydroxyasparagine, respectively, which are the most probable oxidized
structures after plasma treatment based on literature [48]. For the oxi-
dized amino acids, the GROMOS54A7 force field parameters were ob-
tained from [49,50].

2.10. Cell culture

In this study, we have used two human melanoma (SK-MEL-2 and
G361) and one normal keratinocyte (HACAT) cells. Human SK-MEL-2
were maintained in Minimum Essential Media (MEM; Welgene),
while G361 andHACAT cellsweremaintained in Roswell ParkMemorial
Institute (RPMI-1640; Welgene). All media were supplemented with
10% heat-inactivated fetal bovine serum (FBS) and 100 U/mL penicillin,
100 μg/mL streptomycin. Cell culturesweremaintained at 37 °C, in a hu-
midified 5% CO2 atmosphere.

2.11. Treatment of plasma treated and untreated lysozyme solutions for cell
experiments

Lysozyme solutions were prepared at 1 mg/mL–40 mg/mL concen-
trations in Phosphate Buffered Saline (PBS; Gibco) to determine direct
effect of untreated lysozyme solutions on cancer and normal skin cells.
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Plasma-treated and untreated lysozyme solutions were prepared to
analyze viability of cells. For this study, 1 mL lysozyme solution was
directly exposed to DBD plasma discharge for 10 min at a distance of
5 mm in 6 well plate (SPL, Korea). Further, higher concentration of
plasma-treated lysozyme (80 mg/mL) prepared and serially diluted in
plasma-treated and untreated buffer for comparison between plasma-
treated lysozyme and serially diluted treated lysozyme in treated buffer.

2.12. Cell viability assays

The day before treatment, 40,000 cells per well of SK-MEL-2, G361
melanoma and HACAT skin cells were seeded in a 24-well plate (SPL,
Korea), and fresh medium was added to each well. After 24 h, media
was removed and 200 μL of PBS (control), untreated lysozyme, and
plasma-treated lysozyme solutions were added to each well for all
three cell lines, and incubated for 30 min at 37 °C. Subsequently, 600
μL of fresh cell culture media were added to each well of all cell lines,
and incubated further for 24 h at 37 °C. After 24 h, cells were incubated
with Alamar Blue Cell Viability Reagent (Thermo Scientific, Korea) was
added to each well. The cell viability was measured with a plate reader
using fluorescence at 540 nm (ex.)/600 nm (em.). To check the time-
dependent effect of untreated lysozyme and plasma-treated lysozyme
solutions, cells were incubated until 96 h post-treatment and cell viabil-
ity was recorded. Three biological replicates were used for the cell via-
bility assay. A GraphPad Prism 9 inbuild statistical analysis software
was employed to investigate the statistically significant changes (*p <
0.05, **p < 0.01, ***p < 0.001) between control and treated samples.

2.13. Apoptosis confirmation studies

To determine the fraction of apoptotic cells following 24 h post-
incubation, the cells were collected in polystyrene round-bottom test
tubes (Greiner) and centrifuged for 5 min at 1500 rpm and the
supernatant was discarded. Subsequently, 200 μL Annexin-V buffer
solution (1/100AnnexinV-FITC (BD Bioscience) in AnnVbinding buffer)
was added to each sample. After 20 min incubation, the cells were
immediatelymeasured using FACSVerse (BD, biosciences) and analyzed
with FACS Suite software. Three biological replicates were performed
per condition.

Caspase levels in treated cells were observed using Caspase-Glo 9
and Caspase-Glo 3/7 Assay kits (Promega, Korea) as per manufacturer's
instructions. For morphological analysis, nucleus condensation was
observed in cells exposed with untreated and plasma-treated lysozyme
solutions using Hoechst fluorescent stain solution (Sigma Aldrich,
Korea). Stained cells were photographed using confocal microscope
(Olympus confocal live-cell imaging system). Cells were counted
manually to visualize fragmented nuclei using three independent fields
(1000 cells/field).

3. Results

3.1. Effect of plasma-induced oxidation on conformation and thermal sta-
bility of lysozyme

Lysozyme has 129 amino acid residues that contain three tyrosine
(Tyr), six tryptophan (Trp), and four disulfide bonds [51]. Fig. 1a and b
displays the negative bands in the range from 200 to 250 nm. The signal
intensity at 208 nm was higher than at 222 nm, which is characteristic
of an α + β protein [52]. We observed negative peaks at ≈208 and
≈222 nm in both acidic and neutral pH spectra. This is consistent
with literature that lysozymemaintains its native content of secondary
structure at different pH solutions [53,54]. At pH 2, after 5 min plasma
treatment, we observed a decrease in the negative band at ≈208 nm,
but no change at≈222 nm, in Fig. 1a. However, a broad negative peak
around 230 nm appeared. This abnormality at 230 nm may be partly
due to exciton coupling between the aromatic residues during



Fig. 1. Secondary structure analysis of lysozyme at pH 2 (a) and pH 7 (b). Thermal analysis of lysozyme at pH2 (c), and pH7 (d). CD results are presented as average value of six replicates.
Ellipticity reported in millidegrees (mdeg).
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denaturation of the protein [55,56]. Furthermore, prolonged plasma
treatment for 10 and 20 min results in a lower peak intensity at ≈208
and 222 nm, but a higher intensity at 230 nm at pH 2 (Fig. 1a). These
changes in peaks may be due to the denaturation of lysozyme. On the
other hand, the spectra after 5 and 10 min of plasma treatment at pH
7 show a slightly decreased peak at ≈208 and 222 nm, but no change
in the peak at 230 nm, which shows the lysozyme structure was modi-
fied but not denatured (Fig. 1b). At a prolonged treatment for 20 min, a
red shift at ≈208 nm appeared, but no change in the peak at 230 nm,
which indicates that the lysozyme structure is not denatured even at a
high plasma dose at pH 7.

We used CD spectroscopy to determine the change in melting tem-
perature (Tm) of lysozymeupon plasma treatment. Themelting temper-
ature was analyzed at 220 nm, before and after plasma treatment, as
Table 1
Change in melting temperature of lysozyme at different pH after DBD treatment.

Samples Melting temperature (°C)a

pH 7
Control 80.0 ± 0.1
5 min DBD treatment 79.0 ± 0.1
10 min DBD treatment 76.0 ± 0.7
20 min DBD treatment 75.0 ± 0.7

pH 2
Control 58.0 ± 0.2
5 min DBD treatment 54.0 ± 0.7
10 min DBD treatment 53.0 ± 0.1
20 min DBD treatment 50.0 ± 0.8

a Results are presented as means ± SEM (n = 6).
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shown in Fig. 1c and d, and Table 1. In previous reports, the Tm of lyso-
zyme at pH 2was 54.8± 0.2 °C [57] and in water it was 77.19± 0.01 °C
[58], which are quite similar to our obtained values. We observed a dif-
ference of 22 °C in the Tm when lysozyme was at pH 2 and 7. The Tm of
lysozyme at pH 2 decreased by 4 °C after 5 min of plasma treatment,
whereas plasma did not induce significant changes in the Tm of
lysozyme at pH 7. Longer plasma treatments of 20 min reduced the Tm
of lysozyme at pH 2 by 8 °C and by 5 °C in lysozyme at pH 7. The results
suggest that prolonged plasma treatments affect the thermal stability of
lysozyme independently of the pH,while short plasma treatment signif-
icantly influences the lysozyme melting point at acidic pH.

Based on the CD analysis, we can conclude that structural deforma-
tion after plasma treatment was more substantial at pH 2 than at pH
7. Additionally, the change in Tm of plasma-treated lysozyme (pL)
strongly depends on the pH.

3.2. Tryptophan quenching analysis after plasma treatment

The lysozyme's intrinsic fluorescence spectrum at pH 2 and 7 before
and after plasma treatment is shown in Fig. 2a and b. Lysozyme consists
of 3 tyrosine (Tyr) residues and 6 tryptophan (Trp) residues. The intrin-
sic fluorescence in lysozyme is due to Trp, as it presents high intrinsic
anisotropy. Trp is about one order of magnitude more fluorescent than
Tyr, and two orders of magnitude more fluorescent than Phe [59].
Before plasma treatment, lysozyme at pH 2 and 7 exhibited amaximum
emission spectrum at approx. 344 nm, and the intensity gradually
decreased upon longer plasma treatment time (Fig. 2a and b). At pH 2,
we saw quenching of the maximum emission peak, but no change in
the peak shift was observed. In contrast, at pH 7 we observed a red
shift in the maximum emission for longer plasma treatment compared



Fig. 2. Fluorescence analysis of lysozyme at pH 2 (a) and pH 7 (b). Lysozyme antibacterial activity (c). Fluorescence results are presented as average value of six replicates. Lysozyme lytic
activity results are presented as means ± SD, n = 3.

Table 2
Overview of identified oxidations after plasma treatment. Number of plasma-induced ox-
idations and type of amino acid affected in control and pL at pH 2 and 7. Eight amino acids
(Met, Tyr, Asp, Phe, His, Trp, Asn, and Pro) were chosen as variable oxidation sites for the
analysis with Mascot and Sequest.

Amino acids Control
(pH 2)

Plasma
treatment
(pH 2)

Control
(pH 7)

Plasma
treatment
(pH 7)

Asparagine 0 1 0 0
Phenylalanine 0 2 0 0
Tryptophan 0 0 0 1
Tyrosine 0 1 0 1
Total 0 4 0 2

P. Attri, N.K. Kaushik, N. Kaushik et al. International Journal of Biological Macromolecules 182 (2021) 1724–1736
to the control. The maximum emission peak observed for 5, 10, and
20 min was 346, 354, and 354 nm, respectively. Hence, no change in
maximum emissionwavelengthwas found for 10 and 20min of plasma
treatment, as shown in Fig. 2b. This might be because no further change
in the environment of Trp occurred for treatments of 10 and 20 min at
pH 7.

In summary, quenching of the lysozyme peak was noted after
plasma treatment during fluorescence analysis for lysozyme solutions
at both pH 2 and 7, but a red shift with quenching was observed only
for lysozyme solutions at pH 7, suggesting a modification of the Trp
group andmodified Trp exposure to the solvent. At pH 2, Trp was prob-
ably also modified, but not exposed to the solvent.

3.3. Lysozyme activity before and after plasma treatment

To evaluatewhether the structural changes in lysozyme can affect its
enzymatic activity, we performed an activity test (lytic activity) after
plasma treatment for lysozyme at pH 2 and 7. The lysozyme assay
assesses the ability of lysozyme to degrade the bacterial cell wall of
Micrococcus lysodeicticus. The change in the percentage of lysozyme ac-
tivity was measured at pH 2 and 7. We observed that untreated lyso-
zyme at pH 2 presented an enzymatic activity of <10% compared to
control (data not shown), which was consistent with previous results
[60]. After plasma treatment, a complete loss in activity was observed
(not shown).

pL at pH 7 increased its enzymatic activity to 118% and 125% after 5
and 10 min of plasma treatment, respectively. Longer plasma treat-
ments (20 min) decreased this value to 80% of the untreated (control)
sample (Fig. 2c). Enhancing the lysozyme activity by modification or
by using different solvents is of great interest [61–63]. Cegielska-
Radziejewska et al. showed that chemically modified lysozyme had
higher antibacterial activity than monomeric lysozyme, being more
1728
effective against Gram-negative than to Gram-positive bacteria [64].
At physiological pH, a net positive and negative charge is found on
lysozyme and the bacterial cell wall, respectively, which plays an
essential role during the hydrolysis [65,66]. In addition, the replacement
of Trp62 with Tyr62 residue in hen egg-white lysozyme enhanced its
antibacterial activity [61]. Therefore, it is possible that the improved
antibacterial activity of pL is due to modifications of specific amino
acids in the protein chain. To know which amino acids were modified
after plasma treatment, we performed mass spectrometry analysis.

3.4. Mass spectrometry analysis of lysozyme before and after plasma
treatment

To localize plasma-induced oxidations, we performed LC-MS/MS on
trypsin-digested lysozyme. For this purpose, lysozymewas treatedwith
DBD plasma at both pH 2 and 7 for various time points before being
digested into peptides. This bottom-up fashion not only allows for pro-
tein identification by allocating peptides based on their detected mass



Fig. 3.Oxidative modifications of lysozyme after plasma treatment. In total, four (Phe34, Phe38, Tyr53, and Asn59) and two (Trp28 and Tyr53) amino acid residues exhibit oxidation after
plasma treatment at pH 2 (a) and pH7 (b), respectively. Amino acidswith charged side chains in the surrounding of identifiedmodifications at pH2 are labelled in purple. PDB: 1dpx. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and fragments, but also to localize site-specificmodifications in proteins
by applying appropriate search algorithms [38,39]. As we were solely
interested in plasma-induced oxidations, we screened for oxidative
modifications in eight amino acids (Met, Tyr, Asp, Phe, His, Trp, Asn,
and Pro) during the analysis. Table 2 summarizes identified oxidations
Table 3
Overviewof peptide spectrummatchesw/o oxidations. As can be seen, the fraction of PSM
of oxidized peptides is higher at pH 2, independent of whether the treatment was per-
formed on the globular protein or on peptides only. This finding points to a higher preva-
lence of plasma-induced oxidations at pH 2 than at pH 7.

#PSM total #PSM oxidations

Protein treatment pH 2 8 4
pH 7 13 2

Peptide treatment pH 2 27 13
pH 7 23 7

Fig. 4.MDsimulation of lysozyme for native (control), oxidized acidic lysozyme (Oxi. pH 2) and
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in control and pL at both pH 2 and 7, for 10 min plasma treatment.
This time point was chosen based on the obtained results of lysozyme
activity at pH 7 (see Fig. 2 above). Untreated lysozyme shows no oxida-
tions at both pH,whereas after plasma treatment for 10min at pH 2 and
7, four and two oxidations were identified, respectively.

Fig. 3 highlights the plasma-induced oxidations on the structure of
lysozyme (1dpx.pdb). Although Tyr53 exhibited an oxidation after
plasma treatment at both pH, this residue has not shown reactivity in
literature after iodination of lysozyme, which was explained by its
localization in the pocket formed by the cross-β structure (Ala42-
Gly54) and a hydrogen bond-stabilized coil (Cys64-Pro70) [67].
Trp28, the second amino acid that is oxidized after plasma treatment
at pH 7, is also buried in the inside of the 3D structure of the protein.
In literature, Trp28 reaction with 2-hydroxy-5-nitrobenyzl bromide
was reported [68], but not with ozone [69], N-bromosuccinimide
[70], and iodine [71]. Hence, plasma has proven to also reach chem-
ically inaccessible residues.
oxidized neutral lysozyme (Oxi. pH 7). (a) RMSD, (b) RMSF, (c) SASA and (d) PCA analysis.
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At pH 2, however, plasma-induced oxidations showed a different
pattern. Besides Tyr53, three other amino acids displayed oxidation
after plasma treatment, e.g., Phe34, Phe38, and Asn59 (Fig. 3). Most no-
tably, these residues are in close spatial proximity, surrounded by sev-
eral amino acids with charged side chains. Under acidic conditions,
these amino acids can be considered protonated, which might lead to
repelling forces in this region and consequently favor these residues
for oxidation via •OH. Beside the 3D structure, it is also conceivable
that the proteins' primary structure, i.e., neighbouring amino acids and
their charges, have an influence on plasma and its potential in oxidizing
proteins. Since plasma treatment led to a different oxidation pattern de-
pendingon the pH,we performedMD simulations to investigate the im-
pact of these oxidative modifications on the structure of lysozyme (see
further).

3.5. Mass spectrometry analysis of lysozyme peptides before and after
plasma treatment

To know whether plasma could modify other amino acids besides
the ones mentioned above, independently of their position in the 3D
structure of lysozyme, we trypsin-digested the lysozyme samples and
then treated the resulting peptides with plasma at different pH. More-
over, with this experiment we can also show whether the pH of the so-
lution influences plasma and its tendency to induce oxidations. As
shown in Table 3, the fraction of PSM of oxidized peptides was higher
at pH 2, independent of whether the treatment was performed on the
globular protein or on peptides. These results support our above conclu-
sion that plasma-induced oxidation of lysozyme is more prominent in
acidic than in neutral solution, which is in agreement with a previous
report by Chou et al. [72]. The authors noticed a faster oxidation of
Fig. 5.Viability assay using plasma-treated and untreated lysozyme solutions at pH7, for SK-ME
different concentrations (40 to 1mg/mL) (a,c); to plasma-treated lysozyme (pL) directly prepar
h). C = Untreated control. Results are presented as mean ± SEM (n = 3). Statistically significa
lysozyme and corresponding treated groups. Significance was determined using the student's
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Met696 in the presence of tertiary-butyl hydroperoxide (TBHP) in
10 mM phosphate buffer at pH 2 compared to pH 7 [72]. Another
study shows an increased oxidation rate in cells by changing from neu-
tral to acidic pH [73].

3.6. MD simulation of native and oxidized lysozymes

Based on theMS analysis and thepreviously reported oxidation state
of amino acids by plasma [48], we performed MD simulations to calcu-
late the RMSD, RMSF, SASA, and to perform PCA analysis for both native
and oxidized lysozyme proteins, to evaluate the effect of plasma treat-
ment. As observed in Table 2, several amino acids were modified after
plasma treatment. For oxidized lysozyme at pH 2, we changed Tyr53,
Asn59, Phe34, and Phe38, while at pH 7, we modified Trp28 and
Tyr53, based on the MS information. Asn, Phe, Trp, and Tyr were
modified to 3-hydroxyasparagine, tyrosine, 6-hydroxytryptophan, and
3,4-dihydroxyphenylalanine, respectively, based on reference [48]. We
performed the MD simulation for the native and oxidized lysozymes.
Fig. 4a shows the RMSD of the backbone atoms of both native and oxi-
dized lysozyme in water for 400 ns simulation. The calculated average
RMSD values were 0.22 ± 0.01, 0.32 ± 0.01, and 0.22 ± 0.02 nm for
the native, oxidized acidic lysozyme (at pH 2) and oxidized neutral lyso-
zyme (at pH 7), respectively. This indicates that the flexibility of oxi-
dized acidic lysozyme was higher than for native and oxidized neutral
lysozyme.

Fig. 4b illustrates the RMSF as a function of residue number. The res-
idues between 32 and 44, 65 and 74, and 116 and 124 faced a higher
fluctuation for oxidized acidic lysozyme than for native and oxidized
neutral lysozyme. For oxidized neutral lysozyme, the residues between
18 and 22, 100 and 105, and 127 and 129 show high fluctuation
L2 (a,b,e,f) and G361 (c,d,g,h) cancer cells. Cells were exposed to untreated lysozyme (L) at
ed (b,d); or by serial dilution in untreated buffer (e, g), or in plasma-treated buffer (PTB) (f,
nt differences are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001 between untreated
t-test.
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compared to native andoxidized acidic lysozyme. Among all the studied
systems, the maximum RMSF of 0.48 nm2 was observed for oxidized
acidic lysozyme for the residues between 65 and 74.

Fig. 4c shows the SASA results, which give information about the ly-
sozyme's surface area that is accessible to water. The average SASA
values of the native, oxidized acidic lysozyme and oxidized neutral lyso-
zyme were 72 ± 2, 73 ± 1, and 72 ± 1 nm2, respectively. The SASA re-
sults show a slight increase for the oxidized lysozymes compared to the
control lysozyme, although there was no significant difference between
native and plasma-treated samples. Finally, Fig. 4d shows the PCA re-
sults, which provide information about the total phase space that both
native and oxidized lysozyme can occupy. The sum of eigenvalue was
1.8 nm2 for the native lysozyme, while it was 2.0 nm2 for the oxidized
lysozymes at both pH. PCA analysis revealed that the structure of lyso-
zyme becomes more flexible after oxidation of the amino acids.

3.7. Cancer cell killing effect of the plasma-treated lysozyme solutions

To evaluate the cancer cell killing potential of the pL at pH 7, we
studied its effect on the viability of SK-MEL2, G361, and HACAT cell
lines. To avoid the negative effect of acidic pH on cell viability, we only
used a lysozyme solution at pH7. For this investigation,we added differ-
ent concentrations of lysozyme solutions to cancer (SK-MEL-2 and
G361) and normal skin (HACAT) cells. We observed no significant
change in cancer cell viability with untreated lysozyme addition at all
studied concentrations, regardless of the cell line tested, as shown in
Figs. 5a, c, and 6.

Subsequently, SK-MEL-2 and G361 cancer cells were treated at dif-
ferent pL concentrations, as shown in Fig. 5b and d. Our data show
Fig. 6. Viability assay using plasma-treated and untreated lysozyme solutions at pH 7, for HACA
mg/mL) (a); to plasma-treated lysozyme (pL) directly prepared (b); or by serial dilution in unt
presented asmeans± SEM (n=3). Statistically significant differences are indicated as *p< 0.0
was determined using the student's t-test.
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that pL has a cytotoxic effect against SK-MEL2 cancer cells at 10–40
mg/mL, while 1 mg/mL pL has no effect. For the G361 cancer cells, pL
showed cytotoxic effect only at 20 and 40mg/mL. Notably, pL40 kills ap-
proximately 60% of SK-MEL2 cells, while only 40% of G361 cells. This dif-
ference in pL activity could depend on the mode of action of the cancer
cell lines' target drug and characteristics. When we tested the effect of
pL on normal HACAT cells, it showed around 15–20% cell death only at
higher concentrations (40 and 20 mg/mL). Fig. S1 shows the cell viabil-
ity of the two cancer cell lines and the normal cell line, as a function of
incubation time. The time-dependent study shows that pL has a limited
effect on the viability of HACAT cells after different treatments (pL40
treatment decreased the cell viability to approx. 25%). On the other
hand, a reduction in cell viability was observed for SK-MEL2 cells
upon increasing incubation time with pL10-pL40 (approx. 60% cells
are killed after 96 h incubation with pL20 and pL40 treatments), while
significant cell death for G361 cells was only observed with pL40
(approx. 40% cells are killed after 96 h incubation) (Fig. S1). These re-
sults show that G361 cancer cells exhibit more resistance towards the
pL treatment than SK-MEL2 cells, and that pL40 treatment was more
toxic towards cancer cells than normal cells.

Furthermore, we investigated the combination effect of plasma-
treated buffer (PTB) and pL on the SK-MEL-2 and G361 cells. For this
experiment, 80 mg/mL pL was serially diluted in PTB and untreated
buffer (PBS) up to a concentration of 1 mg/mL. The addition of
plasma-treated or untreated buffer hampered the pL cytotoxic activity.
A small cell viability reduction in both cancer cell lines was observed
after the dilution (Fig. 5e-h).

A similar effect was also observed in HACAT cells when treated with
pL diluted in PTB and untreated buffer (Fig. 6). The cancer cell death
T cells. Cells were exposed to untreated lysozyme (L) at different concentrations (40 to 1
reated buffer (c), or in plasma-treated buffer (PTB) (d). C = Untreated control. Results are
5, **p < 0.01, between untreated lysozyme and corresponding treated groups. Significance



Fig. 7. Apoptosis assays using plasma-treated and untreated lysozyme solutions at pH 7, for SK-MEL2, G361 and HACAT cells. (a–c) The cells were exposed to untreated lysozyme (L) and
plasma-treated lysozyme (pL), both at concentrations of 20 and 40mg/mL. (d–f) The cells were exposed to plasma-treated lysozyme (pL) by serial dilution in plasma-treated buffer (PTB)
or untreated buffer. C = Untreated control. Results are presented as means ± SEM (n = 3). Statistically significant differences are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001
between untreated lysozyme and corresponding treated groups. Significance was determined using the student's t-test.
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effect of pL dilution in PTB is not significantly different from that of pL
dilution in untreated buffer (PBS) (Fig. S2). Additionally, PTB alone
does not show a cytotoxic effect on both normal and cancer cell lines
(Figs. 5f, h and 6d). Therefore, we conclude that the cell death in this
study is mainly due to the pL, with only a small contribution from the
RONS present in the pL solutions.

Next, we evaluated whether our plasma-treated lysozyme (pL)
could induce cell death by apoptosis in the skin cancer cells and normal
cells. For this purpose, we applied fluorescent Annexin-V to SK-MEL2,
G361 and HACAT cells for the detection of early apoptotic cells by flow
cytometry after treatment. The cells were harvested 24 h after incuba-
tion with the individual treatments and stained for the required analy-
sis. Interestingly, the pL solutions induced cellular apoptosis at
concentrations of 20 and 40 mg/mL. Indeed, as shown in Fig. 7, the pL
solutions result in a larger number of apoptotic cells in the cancer cells
than in the normal cells, at concentrations of 20 and 40 mg/mL.

Additionally, as observed earlier, the addition of plasma-treated or
untreated buffer significantly impeded the pL20 and pL40 effect on cel-
lular apoptosis (Fig. 7d–f). The treatment with pL20 and pL40 results in
approx. 45% and 58% apoptosis in SK-MEL2 cells, respectively (Fig. 7a).
This reduces to approx. 40% after dilution with PTB (Fig. 7d). Moreover,
the fraction of apoptotic cells decreased to approx. 25% and 40% when
pL20 and pL40 are diluted with untreated buffer. A similar trend is ob-
served forG361 andHACAT cells. However, the reduction in the number
of apoptosis cells was higher when pL20 was diluted with buffer than
PTB. Hence, it is possible that RONS in PTB play a role in improving
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apoptosis in comparison with untreated buffer. It is important to note
that the number of apoptotic cells decreases after dilution in PTB or
buffer; hence, we believe that plasma-modified lysozyme is the main
player inducing apoptosis in all cell lines.

We also verified the caspase activity in the normal and cancer cell
lines after treatment. Interestingly, we observed that pL increased
caspase-3/7 and caspase-9 activity in both cancer cell lines, but
caspase-9 was less pronounced than caspase-3/7 (Fig. 8a and b). How-
ever, pL did not significantly affect the HACAT cells, as shown in
Fig. 8c. To clarify further, we stained pL-treated SK-MEL-2 with Hoechst
and observed enhanced nuclear condensation and fragmented apopto-
tic bodies. Nuclear fragmentation was more pronounced in the pL-
treated cancer cells than in the normal cells (Fig. 8d, e). These results in-
dicate that pL has the potential to stimulate cancer cell death via apo-
ptosis induction.

4. Discussion

Secondary structure and tertiary structure analysis of lysozyme at
different pH and with varying doses of plasma were recorded by CD
and fluorescence spectroscopy. The changes in lysozyme's secondary
structure were not significant for lower plasma treatment time at pH
7, but the changes were significant at pH 2. The quenching in the Trp
group was observed after plasma treatment at both pH, but the
quenching with red shift was observed for pL at pH 7. It may be due to
the modification of Trp or the Trp environment, which results in Trp



Fig. 8. Plasma-treated lysozyme (pL) induces apoptosis in cancer cells. (a–c) Caspase-3/7 and Caspase-9 assay in SK-MEL-2, G361 cancer and HACAT normal skin cells, treated with pL at
concentrations of 20 and40mg/mL. (d) Fluorescence images of cellular nucleus stainedwithHoechst stain in SK-MEL-2 cancer andHACATnormal skin cells to verify nuclear condensation
andmorphology. (e) Representative graph, showing the quantification of fragmented nuclei, which are shown in panel d. Results are presented as means± SEM (n= 3). Scale= 20 μm.
The statistically significant differences are indicated as **p< 0.01, and ***p< 0.001 betweenuntreated lysozyme and corresponding treated groups. Significancewas determined using the
student's t-test.
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exposure to the solvent, leading to the red shift with quenching [74].
The fluorescence quenching was observed in our previous studies
with different protein systems after plasma treatment [28,32]. The lyso-
zyme activity increased after 5 and 10 min plasma treatment, but later
decreased for prolonged plasma treatment. It was reported that lyso-
zyme shows anticancer and antibacterial behavior even if there was a
decrease in lysozyme lytic activity [22,75]. Vilcacundo et al. noticed
that the lysozyme lytic activity was lost after thermal and chemical
treatments, but the antibacterial effect of denatured lysozyme increased
for Gram-negative bacteria by destroying the cell wall [76]. Mahanta
et al. showed a decreased lysozyme lytic activity by self-assembled
nanostructures but an improved cancer cell killing effect against breast
cancer cells compared to native lysozyme [22].

Furthermore, MS analysis showed 56% amino acids oxidized at pH 2,
and 15% at pH 7 after 10 min plasma treatment. Oxidation of amino
acids is stronger in acidic than in neutral conditions. This is supported
by previouswork [77–79], andmight be due to the stability and produc-
tion of •OH radicals by the Fenton and Haber-Weiss chemistry or
through peroxynitrite, ONOO− favored at acidic pH. Sellak et al. re-
ported that the radicals produced by the Fenton reaction can deactivate
the lysozyme if Fe is bound to the lysozyme [80], and this was also sup-
ported by Tompkins et al. [81]. Additionally, it was mentioned that
amino acids of iron-bound lysozyme might be oxidized, but they keep
their activity [80]. Our MD simulations also support our experimental
results that the oxidized acidic lysozyme structure becomes more un-
stable than when oxidized at pH 7. PCA analysis revealed that oxidized
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acidic lysozyme covered a larger region of phase space along PC1 and
PC2 compared to the native and oxidized neutral lysozyme.

It was earlier reported that lysozyme shows cancer cell killing effect
at high concentration (1–400 mg/mL, depending on the cell line), but
this high concentration also kills healthy cells [7,19]. Therefore, we
wanted to evaluate the cell death by lysozyme on different cell lines.
40 mg/mL lysozyme treatment does not have significant effect on
both normal and cancer cells, although 40 mg/mL pL kills both normal
(approx.10–20%) and cancer cells (approx. 40–60%, depends upon cell
type). At lower concentration of 10mg/mL, pL does not have toxic effect
on normal cells, but it kills 40% of SK-MEL2 cancer cells, whereas it fails
to kill G361 cancer cells. The pL cytotoxic effect decreases during the di-
lution in untreated buffer or in PTB. Additionally, PTB alone did not
show a significant cytotoxic effect on both normal and cancer cell
lines (see Figs. 5, 6 and 7). In our previous work using the kINPen®
IND plasma jet, we shown that PTB treated for 9 min had 1400 μM
H2O2, which evoked a cytotoxic effect in cancer cells [82]. In contrast,
the DBD device used in this study generates 25 μMH2O2 for 5min treat-
ment [28]. We believe that the absence of a cytotoxic effect in the pres-
ent study could be explained by the use pulsed DBD with lower energy
than the previously employed kINPen® IND plasma jet.

Hence, it is possible that there is no combination effect of pLwith PTB.
The small decrease in cytotoxicity of pL upon dilution might be due to
renaturation of lysozyme from the plasma-modified structure that
decreases the cytotoxic effect, although we believe that modification of
the amino acids keeps the cytotoxic property of pL. We observed that
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plasma-induced amino acids oxidation in lysozyme retains up to 1month
at 4 °C, it might hold for long until lysozyme degraded, but we have not
studied that in present work. Earlier studies also reported the refolding
of lysozyme upon dilution [83,84] that might reverse the plasma-
induced structural modification of lysozyme, which results in decreased
cytotoxic effect.

Additionally, increased caspase-3/7 and caspase-9 activities were
observed in both cancer cell lines after pL treatment. Hence, pL has the
potential to stimulate cancer cell death via apoptosis induction. Further,
dilution with PTB or buffer is less effective than direct plasma exposure
to specific protein concentrations. Therefore, we suggest that direct ex-
posure to biomolecules at a specific concentrationwill bemore effective
than further diluting it in PTB or media for future studies.

It is known that the administration of lysozyme to tumor cells results
in cell death by the creation of azurophilic granules in the cytoplasm [85].
FITC-conjugated lysozymewas found on the cell surface, as well as in the
intracellular organelles [21]. This shows that lysozyme can enter the can-
cer cells and form granules, resulting in damage of the cell membrane for
cell cultures. Another group reported that the treatment with nanostruc-
tured lysozyme damaged the cytoplasmic membrane, resulting in an in-
creased ROS production that triggered cell death [22]. Based on our
results, we speculate that the cell death observed in cancer cells is mainly
due to the plasma-treated lysozyme damage to the cell membrane and
not plasma-generated RONS in the solution, although the mechanism is
still not clear. In our system, direct effect of plasma-generated RONS on
the cell death is limited (Figs. 5–7). We believe that short- and long-
lived RONS produced by plasma in pL solutions will mainly interact
with lysozyme and modify its structure. The remaining long-lived RONS
in pL will be significantly less after their interaction with lysozyme,
which will interact with the biomolecules in the cells. Our experiments
with PTB alone (Figs. 5–7) reveal a small amount of toxicity towards
both normal and cancer cells (not statistically significant). These findings
support our assumption that in our treatment, plasma produced RONS
mainly used to modify lysozyme structure.

5. Conclusion

In this study, we investigated the plasma-induced structural
deformation of lysozyme in acidic and neutral pH. The plasma-
induced oxidation was stronger in acidic pH than in neutral pH. The
plasma-induced structuralmodification resulted in significant cytotoxic
effect towards cancer cells, but not towards healthy cells. However,
more investigations are required, e.g., to standardize the treatment con-
ditions, before this could be brought into in-vivo treatments.
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