Supplementary information

Probing the impact of material properties of core-shell SiO₂@TiO₂ spheres on the plasma catalytic CO₂ dissociation using packed bed DBD plasma reactor

Periyasamy Kaliyappan^a, Andreas Paulus^{a,g}, Jan D'Haen^b, Pieter Samyn^c, Yannick Uytdenhouwen^f, Neda Hafezkhiabani^f, Annemie Bogaerts^f, Vera Meynen^{d,e}, Ken Elen^{a,g}, An Hardy^{a,g} and Marlies K. Van Bael^{a,g,*}

- ^a Hasselt University, Institute for Materials Research (imo-imomec and Energyville), Materials Chemistry, DESINe group, Agoralaan Building D, 3590 Diepenbeek, Belgium
- ^b Hasselt University, Institute for Materials Research (imo-imomec), Materials Physics,
- ELPHYC group, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- ^c Hasselt University, Institute for Materials Research (imo-imomec), Materials Chemistry, ACC group, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- ^d University of Antwerp, Department of Chemistry, Laboratory of Adsorption & Catalysis (LADCA), Universiteitsplein 1, Wilrijk 2610, Belgium
- ^e Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- ^f University of Antwerp, Department of Chemistry, Research group PLASMANT,
- Universiteitplein 1, Wilrijk 2610, Belgium
- ^g IMEC vzw, IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- * Corresponding author.
- E-mail address: marlies.vanbael@uhasselt.be

Raman spectroscopy:

Figure S1. Comparison of SiO₂ Raman modes in as-prepared core-shell spherical particles and bare SiO₂ spherical particles

Figure S2. Raman spectroscopy of fresh and spent $SiO_2@TiO_2 - 0.10M+LUDOX$ and $SiO_2@TiO_2-0.25M+LUDOX$ materials (AP = After Plasma catalysis).

Scanning electron microscopy:

Figure S3: Scanning electron microscopy of uncalcined SiO_2 @TiO₂ – 0.25M packing material with and without LUDOX

Figure S4: Scanning electron microscopy of $SiO_2@TiO_2 - 0.10M+LUDOX$ and 0.25M+LUDOX packing materials after multi-point space time measurement.

Gas Hourly Space Velocity (h⁻¹):

Figure S5. Plasma catalytic CO_2 conversion as a function of Gas Hourly Space Velocity (GHSV, h^{-1}) for unpacked and packed reactors

Multi-point space time measurements:

Figure S6. Energy efficiency of plasma catalytic CO_2 dissociation as a function of space time. The vertical dashed line corresponds to the single point residence time (14.07 s)