Supplementary information

Probing the impact of material properties of core-shell SiO$_2$@TiO$_2$ spheres on the plasma catalytic CO$_2$ dissociation using packed bed DBD plasma reactor

Periyasamy Kaliyappana, Andreas Paulusa,g, Jan D’Haenb, Pieter Samync, Yannick Uytdenhouwenf, Neda Hafezkhiab, Annemie Bogaertsf, Vera Meynend,e, Ken Elena,g, Ann Hardya,g and Marlies K. Van Baela,g,*

a Hasselt University, Institute for Materials Research (imo-imomec and Energyville), Materials Chemistry, DESINe group, Agoralaan Building D, 3590 Diepenbeek, Belgium
b Hasselt University, Institute for Materials Research (imo-imomec), Materials Physics, ELPHYC group, Wetenschapspark 1, 3590 Diepenbeek, Belgium
c Hasselt University, Institute for Materials Research (imo-imomec), Materials Chemistry, ACC group, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
d University of Antwerp, Department of Chemistry, Laboratory of Adsorption & Catalysis (LADCA), Universiteitsplein 1, Wilrijk 2610, Belgium
e Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
f University of Antwerp, Department of Chemistry, Research group PLASMANT, Universiteitplein 1, Wilrijk 2610, Belgium
g IMEC vzw, IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium

* Corresponding author.

E-mail address: marlies.vanbael@uhasselt.be
Raman spectroscopy:

Figure S1. Comparison of SiO₂ Raman modes in as-prepared core-shell spherical particles and bare SiO₂ spherical particles.

Figure S2. Raman spectroscopy of fresh and spent SiO₂@TiO₂ – 0.10M+LUDOX and SiO₂@TiO₂-0.25M+LUDOX materials (AP = After Plasma catalysis).
Scanning electron microscopy:

Figure S3: Scanning electron microscopy of uncalcined SiO$_2$@TiO$_2$ – 0.25M packing material with and without LUDOX
Figure S4: Scanning electron microscopy of SiO$_2$@TiO$_2$ – 0.10M+LUDOX and 0.25M+LUDOX packing materials after multi-point space time measurement.
Gas Hourly Space Velocity (h^{-1}):

$$\text{Gas Hourly Space Velocity} \ (h^{-1}) = \frac{\text{Volume of feed flow gas (ml/h)}}{\text{Volume of catalyst (ml)}}$$

Figure S5. Plasma catalytic CO$_2$ conversion as a function of Gas Hourly Space Velocity (GHSV, h^{-1}) for unpacked and packed reactors
Multi-point space time measurements:

Figure S6. Energy efficiency of plasma catalytic CO$_2$ dissociation as a function of space time. The vertical dashed line corresponds to the single point residence time (14.07 s)