Supporting Information

Flowing atmospheric pressure afterglow for ambient ionization: Reaction pathways revealed by modeling

Maryam Aghaei and Annemie Bogaerts

Research group PLASMANT, Chemistry Department, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium

Maryam.Aghaei@uantwerpen.be; Annemie.Bogaerts@uantwerpen.be

Table of Contents

a. Input parameters in the model:

Table S1: Geometrical and operating condition

- b. Description of the 2D fluid dynamic model
- c. Description of the 0D plasma chemical kinetics model
- d. Chemistry set used in the 0D kinetic model:

Table S2: Plasma species included in the model

Table S3: List of reactions included in the model

- e. Results
 - Species densities

Figure S1: Number densities along the symmetry axis of the FAPA source of the most important species Table S4: List of excited species number densities

- Role of electrons
- Reaction rates
- Absence of He_2^+ in the chemistry set

a. Input parameters in the model

The geometrical and operating conditions which are used in the kinetic model and fluid dynamics model are presented in Table S1.

Table S1	Geometrical	and	operating	conditions
----------	-------------	-----	-----------	------------

	Calculation area (length x width)	50 mm x 12 mm
	Distance from cathode to anode	7.5 mm
	Anode orifice diameter	1.6 mm
Discharge	Gas Temperature	750 K
	Initial He flow rate	1.5 L/min
	DC power	11.25 W
		(450 V, 25 mA)
	Air impurity	$N_2 = 7 \text{ ppm}$
		$O_2 = 2 \text{ ppm}$
		$H_2O = 1 \text{ ppm}$
	Calculation area (length x width)	12 mm x 60 mm
	Distance from anode to sampler	12 mm
	Sampler orifice diameter	1 mm
Afterglow	Gas Temperature	500 K
	Relative humidity	50%

b. Description of the 2D fluid dynamics model

We developed a simplified 2D fluid dynamics model by means of COMSOL CFD software to describe the gas flow dynamics. A schematic illustration of the FAPA source, considered in the 2D model, is presented in Figure 1 in the main paper. The gas

flow dynamics are calculated assuming laminar flow conditions, by solving conservation equations for mass and momentum (i.e., Navier-Stokes equation) for the gas flow for the given geometry, flux and boundary condition. Only the neutral background gas molecules, i.e., He in the discharge region and He and humid air for the afterglow region are considered, and the electric field in the plasma is assumed to have no influence on the flow field calculation. Note that we assume a laminar flow to simplify the solution process and to be able to apply the benefits of a quasi-1D kinetic model, i.e., reasonable calculation time. One can improve this model by considering turbulence in the flow, which would require a 2D kinetic model and therefore a much higher computational cost. FAPA source consists of a pin and a disk electrode placed 7.5 mm apart in a cylindrically symmetric discharge cell. There is a small (1.6 mm in diameter) orifice in the center of the disk electrode (anode), through which the helium gas can flow out from the discharge cell. The afterglow region has a length of 1.5 cm which ends by the interface to the mass spectrometer, so-called sampler. In this region the humid air mixes with the helium stream exiting from the discharge region. The sampler has an orifice of 1 mm in diameter.

The calculations are made for a two-dimensional axisymmetric geometry. For conservation of momentum, the Navier-Stokes equation has the following general form:

$$\rho\left(\frac{\partial v}{\partial t} + (\vec{v}.\nabla)\vec{v}\right) = -\nabla p + \nabla.\vec{t} + F \tag{1}$$

where ρ is the mass density (in kg m⁻³), v is the velocity (in m s⁻¹), p is the pressure, $\vec{\tau}$ is the stress tensor and F is the body force (all in N m⁻³). The left hand side of the equation describes acceleration, and is composed of time dependent and convective effects. The right hand side of the equation denotes the divergence of stress (i.e., pressure and shear stress, first and second terms respectively) and the summation of body forces (third term). Here ∇p is called the pressure gradient and originates mainly from the difference between inlet and outlet pressures and partially from the electron distribution. $\nabla \cdot \vec{\tau}$ conventionally describes viscous forces and for incompressible flow, this is only a shear effect. As the FAPA source has only one inlet for the gas flow (in contrast for instance to ICP torches with three different inlets), and since for the 0D kinetic model, we could only use the velocity profile on the central axis, in one dimension, this term is not taken into account in this study. We also assumed that the electric field have no influence on the flow field calculation. Therefore, the term F which can be represented by the external electric force is also neglected.

The equation for conservation of mass (also called continuity equation for mass-flow) can be written as follows:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = S_{mass} \tag{2}$$

which reduces for steady flow conditions to:

$$\nabla \cdot (\rho \overset{\mathsf{u}}{\mathcal{V}}) = S_{mass} \tag{3}$$

The source S_{mass} is the mass added to the continuous phase (gas) from a second dispersed phase (e.g., due to vaporization of liquid droplets). In the current study it is set to zero as the flow only has a continuous gas phase.

c. Description of the 0D plasma chemical kinetics model

The Zero-Dimensional Plasma Kinetics (ZDPlasKin) solver [1,2] is a model to describe the plasma chemistry by solving the conservation equations for all individual species. The number density (in m⁻³) of every species changes when different plasma reactions occur, leading to species production (formation term) and consumption (loss term). The evolution of the species densities over time is calculated by solving Equation (4) for every species, in which n_x is the density of species x (in m⁻³), j is the total number of reactions in which that particular species is produced or consumed, $a_{x,i}^L$ and $a_{x,i}^R$ are the stoichiometric coefficients at the left hand side and right hand side of a particular reaction equation, corresponding to formation and loss term, respectively. R_i is the rate of that reaction (in m⁻³s⁻¹) and is calculated from the reaction rate constant (k_i) multiplied with the densities of the reacting species j, using Equation (5).

$$\frac{\partial n_x}{\partial t} = \sum_{i=1}^{j} \left[\left(a_{x,i}^R - a_{x,i}^L \right) R_i \right]$$
(4)

$$R_i = k_i \prod_s n_s^{a_{s,i}} \tag{5}$$

The reaction rate constant (k_i) in cm³ s⁻¹ or cm⁶ s⁻¹ for two-body or three-body reactions, respectively, is given in a different form depending on the type of reaction. For reactions between heavy particles (neutrals, ions, radicals), the rate constant is either a constant value or a function of the gas temperature, taken from literature³⁻⁵ and references therein. The rate constants

for electron impact reactions, on the other hand, depend on the electron temperature T_e (or the reduced electric field $E'/_N$, i.e., the electric field E divided by the number density of all neutral species N, usually expressed in $Td = 10^{-21} \frac{V}{m^2}$), and they are calculated using the Boltzmann solver, BOLSIG+, built into ZDPlasKin.² This Boltzmann subroutine in the code calculates the Boltzmann equation for the electrons in a fixed reduced electric field and provides the rate coefficients of the electron impact reactions from the corresponding energy-dependent cross sections and the electron energy distribution function, using Equation (6).

$$k_i = \int_{\varepsilon_{th}}^{\infty} \sigma_i(\varepsilon) v(\varepsilon) f(\varepsilon) d\varepsilon$$
(6)

 ε is the electron energy (e.g., in J), ε_{th} is the minimum threshold energy needed to induce the reaction, $v(\varepsilon)$ the velocity of the electrons (in m s⁻¹), $\sigma_i(\varepsilon)$ is the collision cross section of collision *i* (in m²), and $f(\varepsilon)$ is the electron energy distribution function. The collision cross sections were taken from an online database⁶ and literature^{3-5,7,8} and references therein. The electron velocity is calculated with Equation (7), in which m_e is the electron mass (9.10938 x10⁻³¹ kg).

$$v(\varepsilon) = \sqrt{\frac{2\varepsilon}{m_e}} \tag{7}$$

The plasma power obtained from typical FAPA sources (corresponding to 450 V and 25 mA) is used as input for the 0D model to calculate the electric field (*E*) (in V m⁻¹) with Equation (8):

$$E = \sqrt{\frac{\overline{P}}{\sigma}} \tag{8}$$

P is the input power density (in W m⁻³) and σ is the plasma conductivity (in A V⁻¹ m⁻¹). The plasma conductivity is calculated using Equation (9), with e the elementary charge (1.60217662 x10⁻¹⁹ C), n_e the electron density (in m⁻³), and μ_e the electron mobility (in m² V⁻¹ s⁻¹).

$$\sigma = e n_e \mu_e$$

d. Chemistry set used in the 0D kinetic model

Table S2	Plasma	species	included	in	the	model

Neutral species	Ions/Electrons	Radicals	Excited species
	electrons		
He	$\mathrm{He^{+},He^{+}_{2}}$, $\mathrm{HeH^{+}}$		He^* , $\mathrm{He_2}^*$
N ₂	$\mathrm{N}^{\scriptscriptstyle +},\mathrm{N}^{\scriptscriptstyle +}_2$, $\mathrm{N}^{\scriptscriptstyle +}_3$, $\mathrm{N}_4^{\scriptscriptstyle +}$	Ν	$\begin{array}{l} N_2(R),N_2(V_{1\text{-}4}),\\ N_2(A)^aN_2(A')^a,\\ N(^2P),N(^2D) \end{array}$
O ₂ , O ₃	O ⁺ , O ⁺ ₂ , O ⁺ ₄ , O ⁻ , O ⁻ ₂ , O ⁻ ₃	0	$\begin{array}{l} O_2(^1D) \;, O_2(^1S) \;, \\ O_2(R), O_2(V_{1\text{-}5}) \;, \\ O(^1D) \;, O(^1S) \end{array}$
N_2O , N_2O_3 , N_2O_4 , N_2O_5	NO ⁺ , NO ₂ ⁺ , NO ₂ ⁻ , N ₂ O ⁻ NO ₃ ⁻	NO , NO_2 , NO_3	

(9)

H ₂ , H ₂ O , H ₂ O ₂	$\begin{array}{l} H^{+}, H_{2}^{+}, H_{3}^{+}, OH^{+}, \\ H_{2}O^{+}, H_{3}O^{+}, H^{-}, OH^{-} \\ Heavy cluster ions: \\ O_{2}H_{2}O^{-}, O_{2}H_{2}O^{+} \\ (H_{2}O)_{2}^{+}, (H_{2}O)_{2}H^{+} \\ (H_{2}O)_{3}H^{+}, (H_{2}O)_{4}H^{+} \\ (H_{2}O)_{5}H^{+}, (H_{2}O)_{6}H^{+} \\ (H_{2}O)_{7}H^{+} \\ NO_{3}H_{2}O^{-}, NO_{2}H_{2}O^{-} \end{array}$	H , HO ₂ , OH	$\begin{array}{l} H_2(V_1),H_2(R_{02}) \\ H_2(b),H_2(c), \\ H_2(R_{13})H(E_2), \\ H(E_3),OH(A) \end{array}$
HNO, HNO ₂ , HNO ₃ , HNO ₄		NH	

Table S3 List of reactions included in the model

	Reaction	Reaction rate coefficient ^a	ref
_	Electron impact reactions with He		5 6 9 3
1	$e + He \rightarrow He^* + e$	σ (ε) ^b	[6-8]
2	$e + He \rightarrow He^+ + e + e$	σ (ε)	[6-8]
3	$e + He^* \rightarrow He^+ + e + e$	$\sigma(\varepsilon)$	[6-8]
4	$e + He^* \rightarrow He + e$	$7 \times 10^{-10} (T_e/T_{gas})^{(0.5)}$	[4,5]
5	$e + He_2^* \rightarrow He + He + e$	4x10-9	[4]
6	$e + He_2^* \rightarrow He_2^+ + e + e$	$9.75 \times 10^{-10} (T_e/11600)^{(-0.71)}$	[4,5]
		$\exp(-3.4*11600/T_{e})$	
7	$e + He + O \rightarrow He + O^{-}$	10-31	[4]
8	$e + He + O_2 \rightarrow He + O_2^-$	$3.6 \times 10^{-31} (T_{gas}/300)^{(-0.5)}$	[4]
9	$e + He + O_3 \rightarrow He + O_3^-$	10 ⁻³¹	[4]
	Electron-ion recombination with He		
10	$e + He^+ \rightarrow He^*$	$6.76 \times 10^{-13} (T_{2}/11600)^{(-0.5)}$	[4.5]
11	$e + He^+ \rightarrow He$	$2x10^{-12}$	[4]
12	$e + He_2^+ \rightarrow He + He$	10-8	[4]
13	$e + He_2^+ \rightarrow He_2^*$	1.5×10^{-16}	[4]
14	$e + He_2^+ \rightarrow He + He^*$	$8.9 \times 10^{-9} (T_e/T_{gas})^{(-1.5)}$	[4]
15	$e + He^+ + He^+ \rightarrow He^+ + He^*$	10 ⁻²⁷	[4]
16	$e + He + He_2^+ \rightarrow He + He + He^*$	$5 \times 10^{-27} (T_e/T_{gas})^{(-1)}$	[4]
17	$e + He + He_2^+ \rightarrow He + He_2^*$	1.5×10^{-27}	[4]
18	$e + He + He_2^+ \rightarrow He + He + He$	$2x10^{-27} (T_e/T_{gas})^{(-2.5)}$	[4]
19	$e + e + He^+ \rightarrow He^* + e$	$6x10^{-20} (T_e/T_{gas})^{(-4)}$	[4]
20	$e + e + He^+ \rightarrow He + e$	$7 \times 10^{-20} (T_e/T_{gas})^{(-4.5)}$	[4]
21	$e + e + He_2^+ \rightarrow He + He^* + e$	$10^{-20} (T_e/T_{gas})^{(-4)}$	[4]
22	$e + e + He_2^+ \rightarrow He_2^* + e$	$3 \times 10^{-20} (T_e/T_{gas})^{(-4)}$	[4]
23	$e + e + He_2^+ \rightarrow He + He + e$	$7 \times 10^{-20} (T_e/T_{gas})^{(-4.5)}$	[4]
24	$e + HeH^+ \rightarrow H + He$	$1.1 \times 10^{-9} (T_e / 11600)^{(0.6)}$	[5]
25	$e + He + N^+ \rightarrow He + N$	$2x10^{-27}$ (T _e /T _{gas})(-2.5)	[4]
26	$e + He + O^+ \rightarrow He + O$	$6 \times 10^{-27} (T_e/T_{gas})^{(-2.5)}$	[4]
	Ion-ion recombination with He		
27	$He^+ + H^- \rightarrow He + H$	$2.3 \times 10^{-7} (T_{ras}/300)^{(-1)}$	[5]
28	$He^+ + O^- \rightarrow He + O$	$2x10^{-7} (T_{gas}/300)^{(-1)}$	[4]
29	$\mathrm{He^{+}} + \mathrm{O_{2^{-}}} \rightarrow \mathrm{He} + \mathrm{O_{2}}$	$2x10^{-7} (T_{gas}/300)^{(-1)}$	[4]

30	$\text{He}^+ + \text{O}_3^- \rightarrow \text{He} + \text{O}_3$	$2x10^{-7} (T_{gas}/300)^{(-1)}$	[4]
31	$He_{2}^{+} + H^{-} \rightarrow He + He + H$	10-7	[5]
32	$He_{a}^{+} + \Omega^{-} \rightarrow He + He + \Omega$	10-7	[4 5]
32	$H_{0}^{+} + O^{-}$ $H_{0}^{+} + H_{0}^{+} + O^{-}$	10-7	[4,5]
33	$He_2 + O_2 \rightarrow He + He + O_2$	10 7	[4,3]
34	$\operatorname{He}_2^+ + \operatorname{O}_2^- \rightarrow \operatorname{He} + \operatorname{He} + \operatorname{O} + \operatorname{O}$	10-7	[2]
35	$\text{He}_2^+ + \text{O}_3^- \rightarrow \text{He} + \text{He} + \text{O}_3$	10-7	[4,5]
36	$\text{He}_2^+ + \text{NO}_2^- \rightarrow \text{He} + \text{He} + \text{NO}_2$	10-7	[5]°
37	$\text{He}_2^+ + \text{NO}_2^- \rightarrow \text{He} + \text{He} + \text{NO} + \text{O}$	10-7	[5]°
38	$He_2^+ + NO_3^- \rightarrow He + He + NO_3$	10-7	[5]°
39	$He_2^+ + NO_2^- \rightarrow He_2^- + He_2^- + NO_2^- + O_2^-$	10-7	[5]0
40	$H_{0,+}^{+} + OH \longrightarrow H_{0,+}^{-} + H_{0,+}^{-} + OH$	10-7	[2]
40	$He_2^+ \to He^+ He^+ He^+ He^-$	10-7	[4,5]
41	$He_2 + OH \rightarrow He + He + H + O$	10 7	[4]
42	$HeH^+ + O^- \rightarrow OH^- + He$	10-7	[5]
43	$\text{HeH}^+ + \text{H}^- \rightarrow \text{H}_2 + \text{He}$	10-7	[5]
44	$\text{HeH}^+ + \text{O}_2^- \rightarrow \text{HO}_2 + \text{He}$	10-7	[5]
45	$\text{HeH}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{He}$	10-7	[5]
46	$He^+ + O^- + He \rightarrow He + He + O$	$2x10^{-25} (T_{gas}/300)^{(2.5)}$	[4]
47	$He^+ + O^- + O_2 \rightarrow He + O + O_2$	$2x10^{-25} (T_{gas}/300)^{(2.5)}$	[4]
48	$He^+ + \Omega^- + N_2 \rightarrow He + \Omega + N_2$	$2x10^{-25} (T /300)^{(2.5)}$	[4]
49	$He^+ + O^- + M \rightarrow He^+ O^- + M$	$2x10^{-25}$ (T /300)(-2.5)	[5]
۳۶ 50	$H_0^+ + O^- + M \rightarrow H_0^+ + O^- + M$	$2 \times 10^{-25} (T / 200)^{(-2.5)}$	[5]
50	$He^{+} + O_{2}^{-} + M \rightarrow He^{+} + O_{2}^{-} + M$	$2 \times 10^{-5} (T_{gas}/300)^{(-10)}$	[3]
51	$He^{+} + OH^{-} + M \rightarrow He^{+} OH^{+} M$	$2 \times 10^{-25} (T_{gas}/300)^{(-2.5)}$	[5]
52	$He^+ + NO_2^- + M \rightarrow He + NO_2 + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[5] ^c
53	$\mathrm{He^{+} + NO_{3}^{-} + M \rightarrow He + NO_{3} + M}$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[5]°
54	$\text{He}_2^+ + \text{O}^- + \text{M} \rightarrow \text{He} + \text{He} + \text{O} + \text{M}$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[5]
55	$\text{He}_2^+ + \text{OH}^- + \text{M} \rightarrow \text{He} + \text{He} + \text{OH} + \text{M}$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[5]
56	$He_2^+ + O^- + He \rightarrow He + He + He + O$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
57	$He_2^+ + O^- + O_2 \rightarrow He + He + O + O_2$	$2x10^{-25} (T_{aaa}/300)^{(-2.5)}$	[4]
58	$He_2^+ + O_2^- + He \rightarrow He + He + He + O_2$	$2x10^{-25} (T /300)(-2.5)$	[4]
50	$H_{2}^{+} + O_{2}^{-} + H_{2}^{-} + H_{2}^{+} + H_{2}^{+} + O_{2}^{-} + O_{2}^{-}$	$2x10^{-1} (1gas' 500)$ $2x10^{-25} (T /200)(-2.5)$	['] [/]
55	$He^{+} + O_{2}^{-} + O_{2}^{-} \rightarrow He^{+} He^{+} + O_{2}^{-} + O_{2}^{-}$	$2x10^{-1} (1_{gas}/300)^{-2}$	[4]
00	$He_2^+ + O_3^- + He \rightarrow He + He + He + O_3$	$2 \times 10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
61	$\operatorname{He}_{2^{+}} + \operatorname{O}_{3^{-}} + \operatorname{O}_{2} \rightarrow \operatorname{He} + \operatorname{He} + \operatorname{O}_{2} + \operatorname{O}_{3}$	$2x10^{-23} (1_{gas}/300)^{(-2.3)}$	[4]
62	$HeH^+ + O^- + M \rightarrow He + O + H + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4] ^a
63	$\text{HeH}^+ + \text{O}_2^- + \text{M} \rightarrow \text{He} + \text{O}_2 + \text{H} + \text{M}$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4] ^d
64	$\text{HeH}^+ + \text{O}_3^- + \text{M} \rightarrow \text{He} + \text{O}_3 + \text{H} + \text{M}$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4] ^d
65	$O^+ + O^- + He \rightarrow He + O + O$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
66	$O^+ + O_2^- + He \rightarrow He + O + O_2$	$2x10^{-25}$ (T _{gas} /300) ^(-2.5)	[4]
67	$O^+ + O_2^- + He \rightarrow He + O + O_2^-$	$2x10^{-25} (T_{aaa}/300)^{(-2.5)}$	[4]
68	$O_2^+ + O_2^- + He \rightarrow He + O + O_2$	$2x10^{-25}$ (T /300)(-2.5)	[4]
60	$O_2^+ + O_2^- + He \rightarrow He + O_2^- + O_2^-$	$2 \times 10^{-25} (T / 300)^{(-2.5)}$	['] [/]
70	$O_2^+ + O_2^- + H_2 \rightarrow H_2^+ + O_2^- + O_2^-$	$2x10^{-25}$ (T /200)(-25)	[4]
/0	$O_2^+ + O_3^- + He \rightarrow He + O_2^- + O_3^-$	$2 \times 10^{25} (T_{gas}/300)^{(2.5)}$	[4]
71	$O_2^+ + O_2H_2O^- + He \rightarrow He + O_2 + O_2 + H_2O$	$10^{-2.5} (1_{gas}/300)^{(-2.5)}$	[4]
72	$O_4^+ + O^- + He \rightarrow He + O + O_2 + O_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
73	$O_4^+ + O_2^- + He \rightarrow He + O_2 + O_2 + O_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
74	$O_4^+ + O_3^- + He \rightarrow He + O_2 + O_2 + O_3$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
75	$NO^+ + O_3^- + He \rightarrow He + O_3 + NO$	$10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
	Negative ion-neutral reactions with He		
76	$He + O^- \rightarrow He + O + e$	2. $5 \times 10^{-18} (T_{}/300)^{(0.6)}$	[4 5]
77	$He + O_{2} \rightarrow He + O_{2} + e$	$3.9 \times 10^{-10} \exp(-7/100/T)$	[4 5]
79	$H_0 + O_2 \rightarrow H_0 + O_2 + C$ $H_0 + O_2 \rightarrow H_0 + O_2 + c$	$3.710 \text{ CAP}(-7400/1_{\text{gas}})$	[+,J] [/]
70	$H_{0} + O_{3} \rightarrow H_{0} + O_{2} + O + \varepsilon$ $H_{0} + O_{1} + O_{1} + O_{2} + O_{1} + \varepsilon$	$20.0 e^{-\pi}(24020/T)$	[+] [4]
/9	$ne + OH \rightarrow He + OH + e$	$2.0-9 \exp(-24030/1_{gas})$	[3]
80	$He + NO^{-} \rightarrow He + NO + e$	2.4×10^{-13}	[5]
81	$\mathrm{He} + \mathrm{H_2^+} \to \mathrm{He^+} + \mathrm{H_2}$	2.2×10^{-10}	[4]
82	$\text{He} + \text{NO}_2\text{H}_2\text{O}^- \rightarrow \text{He} + \text{H}_2\text{O} + \text{NO}_2^-$	5.6x10 ⁻¹⁶	[4]
83	$He + NO_3^- + H_2O \rightarrow He + NO_3H_2O^-$	$7.5 \times 10^{-29} (T_{ras}/300)^{(-1)}$	[4]

84	$\text{He} + \text{O}^- + \text{O}_2 \rightarrow \text{He} + \text{O}_3^-$	$1.1 x 10^{-30} (T_{gas}/300)^{(-1)}$	[4]
85	$\text{He} + \text{NO}_2^- + \text{H}_2\text{O} \rightarrow \text{He} + \text{NO}_2\text{H}_2\text{O}^-$	1.6×10^{-28}	[4]
86	$\mathrm{He}^* + \mathrm{O}^- \rightarrow \mathrm{He} + \mathrm{O} + \mathrm{e}$	3x10 ⁻¹⁰	[4]
87	$\mathrm{He}^* + \mathrm{O}_2^- \rightarrow \mathrm{He} + \mathrm{O}_2 + \mathrm{e}$	3x10 ⁻¹⁰	[4]
88	$\mathrm{He}^* + \mathrm{O}_3^- \rightarrow \mathrm{He} + \mathrm{O}_3 + \mathrm{e}$	3x10 ⁻¹⁰	[4]
89	$\mathrm{He}^* + \mathrm{O}_2\mathrm{H}_2\mathrm{O}^- \rightarrow \mathrm{He} + \mathrm{O}_2 + \mathrm{H}_2\mathrm{O} + \mathrm{e}$	3x10 ⁻¹¹	[4]
90	$\text{He}_2^* + \text{O}^- \rightarrow \text{He} + \text{He} + \text{O} + \text{e}$	3x10 ⁻¹⁰	[4]
91	$\text{He}_2^* + \text{O}_2^- \rightarrow \text{He} + \text{He} + \text{O}_2 + \text{e}$	3x10 ⁻¹⁰	[4]
92	$\operatorname{He}_{2}^{*} + \operatorname{O}_{3}^{-} \rightarrow \operatorname{He} + \operatorname{He} + \operatorname{O} + \operatorname{O}_{2} + \operatorname{e}$	3x10 ⁻¹⁰	[4]
	Desitive ion nontrol was tions with He		
02	Positive ion-neutral reactions with He $H_0^+ + H_0^- + H_0^-$	$1 4x 10^{-31} (T / 200)(-0.6)$	[5]
93 04	$He^+ + O \rightarrow He^+ + O^+$	$5_{\rm r} 10^{-11} (T_{\rm gas}/500)^{(0.5)}$	[3]
94 05	$He^+ + O(1D) \rightarrow He^+ + O^+$	$5 \times 10^{-11} (T / 200)(0.5)$	[4,3] [4,5]
95	$He^{+} + O(D) \rightarrow He^{+} + O^{+}$	$5 \times 10^{-11} (T / 200)(0.5)$	[4,3] [4,5]
90 97	$He^{+} + O \longrightarrow He^{+} + O^{+} + O$	$1.07 \times 10^{-9} (T / (200))^{(0.5)}$	[4,3] [4,5]
08	$He^{+} + O_{2} \rightarrow He^{+} + O_{1}^{+}$	$(1_{gas}/300)^{(1)}$	[4 ,5] [4,5]
90	$He^{+} + O_{2} \rightarrow He^{+} + O_{2}$	$1.07 \times 10^{-9} (T / (200))^{(0.5)}$	[4,3]
100	$He^{+} + O_{2}(D) \rightarrow He^{+} + O_{2}^{+}$	$(1_{gas}/300)^{(1)}$	[4] [4]
100	$He^+ + O_2(D) \rightarrow He^+ + O_2$	$1.07 \times 10^{-9} (T / (300))^{(0.5)}$	[+] [/ 5]
101	$He^{+} + NO \longrightarrow He^{+} O + N^{+}$	1.07×10^{-9}	[4]
102	$He^+ + NO \rightarrow He + NO^+$	1.25X10 1.6x10-9	[+] [4]
103	$He^+ + N_c \rightarrow He + N + N^+$	6x10-10	[+] [/]
104	$He^+ + N_2 \rightarrow He + N_1^+$	6x10	[4]
105	$He^+ + \Omega H \longrightarrow He^+ + H^+ \Omega^+$	1 1x10-9	[+] [/ 5]
100	$He^+ + OH(\Lambda) \rightarrow He^+ + H^+ O^+$	1.1x10 1.1x10-9	[5]
107	$H_{e^+} + H_{e^-} \longrightarrow H_{e^+} + H_{e^-} \cap O^+$	5.6×10^{-10}	[3]
100	$He^+ + H \rightarrow He + H^+$	1.9×10^{-15}	[4,5]
110	$He^+ + H_2 \longrightarrow He + H^+ + H$	$3.7 \times 10^{-14} \exp(-35/T)$	[5]
110	$He^+ + H_2 \rightarrow He + H_2^+$	7.2×10^{-15}	[5]
112	$He^+ + H \rightarrow HeH^+$	$1.58 \times 10^{-15} (T / 300)(-0.3)$	[5]
112	$He^+ + H_2O \rightarrow HeH^+ + OH$	$3x10^{-10}$	[5]
114	$He_{2}^{+} + He^{*} \rightarrow He + He + He^{+}$	10-10	[4]
115	$He_2^+ + \Omega \rightarrow He + He + \Omega^+$	$10^{-9} (T / 300)^{(0.5)}$	[1] [4]5]
116	$He_2^+ + O(^1D) \rightarrow He + He + O^+$	$10^{-9} (T / 300)^{(0.5)}$	[4,5]
117	$He_2^+ + O(1S) \rightarrow He + He + O^+$	$10^{-9} (T / 300)^{(0.5)}$	[4,5]
118	$He_2^+ + O_2 \rightarrow He + He + O + O^+$	1.05×10^{-9}	[4]
119	$\operatorname{He}_2^+ + \operatorname{O}_2 \longrightarrow \operatorname{He}_2^+ + \operatorname{He}_2^+ + \operatorname{O}_2^+$	$10^{-9} (T_{acc}/300)^{(0.5)}$	[4 5]
120	$\operatorname{He}_2^+ + \operatorname{O}_2^{(1)} \longrightarrow \operatorname{He}_2^+ + \operatorname{He}_2^+ + \operatorname{O}_2^+$	$10^{-9} (T_{acc}/300)^{(0.5)}$	[4]
121	$\operatorname{He}_2^+ + \operatorname{O}_2({}^{1}\mathrm{S}) \rightarrow \operatorname{He}_2^+ + \operatorname{He}_2^+$	$10^{-9} (T_{acc}/300)^{(0.5)}$	[4]
122	$\operatorname{He}_2^+ + \operatorname{O}_2 \longrightarrow \operatorname{He}_2^+ + \operatorname{He}_2^+ + \operatorname{O}_2^+ + \operatorname{O}_2^+$	$10^{-9} (T_{gas}/300)^{(0.5)}$	[4,5]
123	$\operatorname{He}_2^+ + \operatorname{O}_3 \longrightarrow \operatorname{He}_2^+ + \operatorname{He}_2^+ + \operatorname{O}_2^+ + \operatorname{O}_2^+$	$5x10^{-9}$	[4]
124	$He_2^+ + OH \rightarrow He + He + OH^+$	1.2×10^{-9}	[5]
125	$He_2^+ + OH(A) \rightarrow He + He + OH^+$	1.2×10^{-9}	[5]
126	$He_2^+ + NO \rightarrow He + He + NO^+$	1.3x10 ⁻⁹	[4]
127	$He_2^+ + N_2 \rightarrow He + He + N_2^+$	1.2×10^{-9}	[4]
128	$He_2^+ + N_2 \rightarrow He_2^* + N_2^+$	1.4x10 ⁻⁹	[4]
129	$He_2^+ + NO_2 \rightarrow He + He + NO_2^+$	1.38×10^{-10}	[4]
130	$He_2^+ + H \rightarrow He + He + H^+$	3.5x10 ⁻¹⁰	[5]
131	$He_2^+ + H_2 \rightarrow He + He + H_2^+$	3.5x10 ⁻¹⁰	[5]
132	$He_2^+ + H_2^- \rightarrow HeH^+ + H + He$	1.76×10^{-10}	[5]
133	$He_2^+ + H_2O \rightarrow He + He + H_2O^+$	1.6x10 ⁻⁹	[5]
134	$He_2^+ + H_2O \rightarrow HeH^+ + He + OH(A)$	1.3×10^{-10}	[5]
135	$He_2^+ + H_2O \rightarrow HeH^+ + He + OH$	2.1x10 ⁻¹⁰	[5]
136	$HeH^+ + H \rightarrow H_2^+ + He$	9.1x10 ⁻¹⁰	[5]
137	$\text{HeH}^+ + \text{H}_2 \rightarrow \tilde{\text{H}_3}^+ + \text{He}$	1.5x10 ⁻⁹	[5]

138	$HeH^+ + H_2O \rightarrow H_3O^+ + He$	4.3x10 ⁻¹⁰	[5]
139	$He + \Omega_4^+ \rightarrow He + \Omega_2 + \Omega_2^+$	$3x10^{-17}$	[4]
140	$H_{e} + H^{+} \rightarrow H_{e}H^{+}$	$8 \text{Av} 10^{-19} (\text{T} / 300)(-4.5)$	[5]
140	$H_{0} + H_{+} \rightarrow H_{0}H_{+} + H_{-}$	1.2×10^{-10}	[5]
141	$\Pi C + \Pi_2 \longrightarrow \Pi C \Pi + \Pi$	1.5X10	[3]
142	$He + H_3 \rightarrow HeH^2 + H_2$	10^{11}	[3]
143	$\text{He} + \text{O}^+ + \text{O} \rightarrow \text{He} + \text{O}_2^+$	$10^{-29} (1_{gas}/300)^{(0.5)}$	[4]
144	$\text{He} + \text{O}^+ + \text{N}_2 \rightarrow \text{He} + \text{N} + \text{NO}^+$	$6x10^{-29} (T_{gas}/300)^{(2)}$	[4]
145	$\text{He} + \text{O}_2^+ + \text{O}_2 \rightarrow \text{He} + \text{O}_4^+$	$3.9 \times 10^{-30} (T_{gas}/300)^{(3.2)}$	[4]
146	$\text{He} + \text{O}_2^+ + \text{H}_2\text{O} \rightarrow \text{He} + \text{H}_2\text{O}_3^+$	$2.8 \times 10^{-28} (T_{gas}/300)^{(2)}$	[4]
147	$\text{He} + \text{N}^+ + \text{O} \rightarrow \text{He} + \text{NO}^+$	10-29	[4]
148	$\text{He} + \text{N}_2^+ + \text{N}_2 \rightarrow \text{He} + \text{N}_4^+$	$5 \times 10^{-29} (T_{aas}/300)$	[4]
149	$He + H^+ + H_2 \rightarrow He + H_2^+$	1.5×10^{-29}	[5]
150	$He + H_2 \Omega^+ + H_2 \Omega \rightarrow He + (H_2 \Omega)_2 H^+$	6.65×10^{-28}	[2]
150	$H_{2}^{*} + \Omega^{+} \rightarrow H_{2} + \Omega^{+} \Omega^{+}$	10-20	[⁻] [/]
151	$He^* + O_2 \rightarrow He^+ + O_1 + O_2$	10-10	[4]
152	$He^{+} + O_4^{+} \rightarrow He^{+} + O_2^{+} + O_2^{+}$		[4]
153	$He^+ + NO^+ \rightarrow He + O + N^+$	5x10-11	[4]
154	$He^+ + NO^+ \rightarrow He + N + O^+$	5x10-11	[4]
155	$\mathrm{He}^* + \mathrm{N_2^+} \rightarrow \mathrm{He} + \mathrm{N} + \mathrm{N^+}$	10-20	[4]
156	$\mathrm{He}^* + \mathrm{N_4^+} \longrightarrow \mathrm{He} + \mathrm{N_2} + \mathrm{N_2^+}$	10-10	[4]
157	$\mathrm{He}^* + \mathrm{H}_2\mathrm{O}^+ \longrightarrow \mathrm{He} + \mathrm{H} + \mathrm{O}^+ + \mathrm{H}$	10-20	[4]
158	$\text{He}^* + \text{H}_3\text{O}^+ \rightarrow \text{He} + \text{H} + \text{H}_2\text{O}^+$	10-10	[4]
159	$He^* + H_4O_2^+ \rightarrow He + OH + H_3O^+$	10-10	[4]
160	$He^* + (H_2O)_2H^+ \rightarrow He + H_2O + H_2O^+$	10-10	[4]
161	$He^* + H_2 O_2^+ \rightarrow He + H_2 O_2^+ O_2^+$	10-10	[1]
167	$He^{+}H_{2}O_{3}^{+}$, $He^{+}H_{2}O^{+}O_{2}^{+}$	10-10	[⁻] [/]
162	$Hc_2 + O_2 \rightarrow Hc + Hc + O + O$ $Hc_3 * + O + O + O + O + O^+$	10-10	[4]
103	$He_2 + O_4^* \rightarrow He + He + O + O_2 + O^*$	10 10	[4]
	Neutral/Excited species reactions with He		
164	$\mathrm{He}^* + \mathrm{He} + \mathrm{He} \rightarrow \mathrm{He} + \mathrm{He}_2^*$	1.5×10^{-34}	[4,5]
165	$\mathrm{He}^* + \mathrm{He}^* \longrightarrow \mathrm{He} + \mathrm{He}^+ + \mathrm{e}$	$8.7 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4,5]
166	$\mathrm{He}^* + \mathrm{He}^* \longrightarrow \mathrm{He}_2^+ + \mathrm{e}$	$2.03 \times 10^{-9} (T_{gas}/300)^{(0.5)}$	[4,5]
167	$\text{He}^* + \text{He}_2^* \rightarrow \text{He} + \text{He} + \text{He}^+ + \text{e}$	5x10 ⁻¹⁰	[4,5]
168	$He^* + He_2^* \rightarrow He + He_2^+ + e$	2x10 ⁻⁹	[4.5]
169	$He_2^* + He_2^* \rightarrow He + He + He + He^+ + e$	$3x10^{-10}$	[4 5]
170	$He_2^* + He_2^* \rightarrow He + He + He_2^+ + e$	1 2x10 -9	[4,5]
170	$He_2 + He_2 \rightarrow He + He + He_2 + e$	1.2X10 1 0x10-16	[4]
1/1	$He_2 + He \rightarrow He + He + He$	4.7810	[4]
1/2	$He + O(D) \rightarrow He + O$	10^{13}	[4,3]
173	$\text{He} + \text{O}_2(^1\text{D}) \rightarrow \text{He} + \text{O}_2$	$8 \times 10^{-21} (T_{gas}/300)^{(0.5)}$	[4]
174	$\text{He} + \text{O}_2(^1\text{S}) \rightarrow \text{He} + \text{O}_2(^1\text{D})$	$10^{-17} (T_{gas}/300)^{(0.5)}$	[4]
175	$\text{He} + \text{O}_2(\text{V}_1) \rightarrow \text{He} + \text{O}_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$	[4]
176	$\text{He} + \text{O}_2(\text{V}_2) \rightarrow \text{He} + \text{O}_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$	[4]
177	$\text{He} + \text{O}_2(\text{V}_3) \rightarrow \text{He} + \text{O}_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$	[4]
178	$\text{He} + \text{O}_2(\text{V}_4) \rightarrow \text{He} + \text{O}_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$	[4]
179	$He + O_2(R) \rightarrow O_2 + He$	10 ⁻¹³	[4]
180	$He + O_2 \rightarrow He + O + O_2$	$1.56 \times 10^{-9} \exp(-11400/T_{em})$	[4]
181	$He + OH(A) \rightarrow He + OH$	1.5×10^{-14}	[5]
187	$He + N_{c}(R) \rightarrow N_{c} + He$	10-13	[2]
102	$H_2 + N_2(\mathbf{X}) \rightarrow N_2 + H_2$	10-13	[7]
103	$11C + 1N_2(V_1) \rightarrow 1N_2 \top \Pi C$ $11c + N_1(V_1) \rightarrow N_1 + 11_2$	10-13	[4] [4]
184	$He^{+1N_2}(V_2) \rightarrow N_2^{+}He$	10^{-13}	[4]
185	$He+N_2(V_3) \rightarrow N_2+He$	10-13	[4]
186	$He+N_2(V_4) \rightarrow N_2+He$	10-13	[4]
187	$He+H(E_2) \rightarrow H+He$	10-13	[4] ^e
188	$He+H(E_3) \rightarrow H+He$	10-13	[4] ^e
189	$\text{He} + \text{H}_2(\text{V}_1) \rightarrow \text{H}_2 + \text{He}$	10-13	[4]e
190	$He+H_2(R_{02}) \rightarrow H_2+He$	10-13	[4] ^e
191	$He+H_2(R_{13}) \rightarrow H_2+He$	10-13	[4] ^e

192	$He+H_2(b) \rightarrow H_2+He$	10-13	[4] ^e
193	$He+H_2(c) \rightarrow H_2+He$	10-13	[4] ^e
194	$He^* + H \rightarrow He + H^+ + e$	1.1×10^{-9}	เร <u>ี</u> ่
195	$He^* + H_a \rightarrow He + H_a^+ + e$	2.9×10^{-11}	[5]
106	$He^{+}H_{2}^{-}$, $He^{+}H_{2}^{-}$, $He^{+}H_{2}^{-}$	1.4×10^{-11}	[J] [4 5]
170	$\Pi c + \Pi_2 \rightarrow \Pi c + \Pi (\Pi_2) + \Pi$ $\Pi c^* + \Omega \rightarrow \Pi c + \Omega^+ + c$	1.4×10^{-10} (T $(200)(0.17)$	[4,3]
19/	$He^{+} + O \rightarrow He^{+} O^{+} + e^{-}$	$3.96 \times 10^{-10} (T_{gas}/300)^{(0.17)}$	[4,5]
198	$He^{+} + O(^{+}D) \rightarrow He^{+}O^{+} + e^{-}$	$3.96 \times 10^{-10} (T_{gas}/300)^{(0.17)}$	[4,5]
199	$\mathrm{He}^* + \mathrm{O}(^1\mathrm{S}) \rightarrow \mathrm{He} + \mathrm{O}^+ + \mathrm{e}$	$3.96 \times 10^{-10} (T_{gas}/300)^{(0.17)}$	[4,5]
200	$\mathrm{He}^* + \mathrm{O}_2 \rightarrow \mathrm{He} + \mathrm{O}_2^+ + \mathrm{e}$	$2.54 ext{x} 10^{-10} (ext{T}_{ ext{gas}}/300)^{(0.5)}$	[4,5]
201	$\mathrm{He}^* + \mathrm{O}_2(^1\mathrm{D}) \longrightarrow \mathrm{He} + \mathrm{O}_2^+ + \mathrm{e}$	$2.54 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
202	$\text{He}^* + \text{O}_2(^1\text{S}) \rightarrow \text{He} + \text{O}_2^+ + \text{e}$	$2.54 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
203	$He^* + O_3 \rightarrow He + O_2^+ + O + e$	$2.54 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[5]
204	$He^* + OH \rightarrow He + OH^+ + e$	7.8×10^{-10}	[5]
205	$He^* + OH(\Lambda) \rightarrow He + OH^+ + e$	7.8×10^{-10}	[4 5]
203	$He^* + N \rightarrow He + N^+ + N + e$	$2.54 \times 10^{-10} (T / (200))(0.5)$	[7,2]
200	$\Pi \mathbf{C} + \Pi_2 \rightarrow \Pi \mathbf{C} + \Pi + \Pi + \mathbf{C}$ $\Pi \mathbf{C}^* + \mathbf{N} \rightarrow \Pi \mathbf{C} + \mathbf{N}^+ + \mathbf{C}$	2.34×10^{-10} (1 gas/ 300)	[4] [4 5]
207	$He^{+}H_{2} \rightarrow He^{+}H_{2}^{+} + e^{-}$	10^{10}	[4,3]
208	$He^{+} + H_2O \rightarrow He^{+} + H_2O^{+} + e^{-}$	6.6x10-10	[5]
209	$He^+ + H_2 \rightarrow HeH^+ + H + e$	3x10 ⁻¹²	[5]
210	$He^* + H_2O \rightarrow HeH^+ + OH + e$	8.5x10 ⁻¹²	[5]
211	$\text{He}_2^* + \text{H} \rightarrow \text{He} + \text{He} + \text{H}^+ + \text{e}$	2.2×10^{-10}	[5]
212	$\text{He}_2^* + \text{H}_2 \rightarrow \text{He} + \text{He} + \text{H}_2^+ + \text{e}$	2.2x10 ⁻¹⁰	[5]
213	$\text{He}_2^* + \text{O} \rightarrow \text{He} + \text{He} + \text{O}^+ + \text{e}$	10-10	[5]
214	$He_2^* + O(^1D) \rightarrow He + He + O^+ + e$	10-10	[5]
215	$He_2^* + O(^1S) \rightarrow He + He + O^+ + e$	10-10	[5]
216	$He_2^* + O_2 \rightarrow He + He + O_2^+ + e$	10-10	[5]
210	$He_2 + O_2 \rightarrow He + He + O_2 + C$	10-10	[5]
217	$He_2 + O_3 \rightarrow He + He + O + O_2 + e$	210-11	[3]
218	$He_2 + N_2 \rightarrow He + He + N_2 + e$	3X10 ¹¹	[4]
219	$He_2 + O_2 \rightarrow He + He + O + O$	4.0×10^{-11}	[5]
220	$He_2^+ + O_3 \rightarrow He + He + O_2 + O_3$	2.1×10^{-10}	[5]
221	$\operatorname{He}_{2}^{*} + \operatorname{N}_{2} \rightarrow \operatorname{He} + \operatorname{He} + \operatorname{N}_{2}(\operatorname{A})$	1.2×10^{-11}	[4]
222	$\text{He}_2^* + \text{NO} \rightarrow \text{He} + \text{He} + \text{N} + \text{O}$	3.1×10^{-10}	[4]
223	$\text{He}_2^* + \text{NO}_2 \rightarrow \text{He} + \text{He} + \text{NO} + \text{O}$	8.44x10 ⁻¹⁰	[4]
224	$\text{He}_2^* + \text{N}_2\text{O} \rightarrow \text{He} + \text{He} + \text{N}_2 + \text{O}$	5.5x10 ⁻¹⁰	[4]
225	$\text{He}_2^* + \text{OH} \rightarrow \text{He} + \text{He} + \text{OH}^+ + \text{e}$	6x10 ⁻¹⁰	[5]
226	$He_{2}^{*} + OH(A) \rightarrow He + He + OH^{+} + e$	6x10 ⁻¹⁰	[5]
227	$He_2^* + H_2O \rightarrow He + He + H_2O^+ + e$	6.6×10^{-10}	[5]
229	$He_2^* + H_2O_2 \rightarrow He + He + OH^+ + OH + e$	6.6×10^{-10}	[5]
220	$He_2 + H_2O_2$, $He + He + OH + OH + C$ $He_3 + HO_2 + He_2 + OH + H$	10-10	[5]
229	$He_2 + H_2 \cup \rightarrow He + He + OH + H$	10 ⁻¹⁵	[5]
230	$He_2 + M \rightarrow He + He + M$	1.3×10^{10}	[3]
231	$He + H + O_2 \rightarrow HO_2 + He$	$6.09 \times 10^{-32} (T_{gas}/300)^{(-0.8)}$	[5]
232	$He + H + H \rightarrow H_2 + He$	$2 \times 10^{-32} (T_{gas}/300)^{(-1)}$	[5]
233	$He + OH + NO \rightarrow HNO_2 + He$	$7.4 \times 10^{-31} (T_{gas}/300)^{(-2.4)}$	[4]
234	$He + OH + NO_2 \rightarrow HNO_3 + He$	$4.6 \times 10^{-29} (T_{gas}/300)^{(-5.49)} \exp(-$	[4]
		$1180/T_{gas}$)	
235	$He + OH + OH \rightarrow H_2O_2 + He$	$8 \times 10^{-31} (T_{gas}/300)^{(-0.8)}$	[4]
236	$He + HO_2 + NO \rightarrow HNO_3 + He$	5.6×10^{-33}	[4]
237	$He + O + NO_2 \rightarrow NO_2 + He$	$9 \times 10^{-32} (T_{exc}/300)^{(-2)}$	[4]
238	$He + NO_2 + NO_2 \rightarrow N_2O_4 + He$	$1.4 \times 10^{-33} (T_{}/300)^{(-3.8)}$	[4]
239	$He + NO_2 + NO_2 \rightarrow N_2O_2 + He$	$2 8 \times 10^{-30} (T /300)(-3.5)$	[·] [4]
237	$H_0 + H_1 + N_1 \rightarrow NH_1 + H_0$	$5_{\rm w} 10^{-32}$	[] [/]
24U 241	$\Pi C + \Pi + \Pi \rightarrow \Pi \Pi + \Pi C$ $\Pi_{0} \pm \Pi \pm \Pi O \rightarrow \Pi \Pi O \pm \Pi_{0}$	$1.22 \times 10^{-31} (T / 200)(-1.17)$	[+] [/]
241	$\Pi e + \Pi + INO \rightarrow \Pi INO + He$	$1.22 \times 10^{-1} (1_{gas}/300)^{(117)}$	[4]
		$exp(-212/1_{gas})$	F 47
242	$He + He^+ + O \rightarrow He + He + O^+ + e$	1.6x10 ⁻⁵¹	[4]
243	$He + He^{*} + O(^{1}D) \rightarrow He + He + O^{+} + e$	1.6x10 ⁻³¹	[4]
244	$\text{He} + \text{He}^* + \text{O}_2 \rightarrow \text{He} + \text{He} + \text{O}_2^+ + \text{e}$	1.6×10^{-31}	[4]
245	$\text{He} + \text{He}^* + \text{O}_2(^1\text{D}) \rightarrow \text{He} + \text{He} + \text{O}_2^+ + \text{e}$	1.6x10 ⁻³¹	[4]

246	$He + He^* + O_2(^1S) \rightarrow He + He + O_2^+ + e$	1.6×10^{-31}	[4]
247	$He + He^* + O_2 \rightarrow He + He + O + O_2^+ + e$	1.6×10^{-31}	[4]
249	$H_0 + O + O \rightarrow H_0 + O$	10-33	[1]
240	$He + O + O \rightarrow He + O_2$	10^{-10}	[4]
249	$\text{He} + \text{O} + \text{O} \rightarrow \text{He} + \text{O}_2(^{1}\text{D})$	9.88x10-33	[4]
250	$\text{He} + \text{O} + \text{O}_2 \rightarrow \text{He} + \text{O}_3$	$3.4 \times 10^{-34} (T_{gas}/300)^{(1.2)}$	[4]
251	$He + O + O_2(^1D) \rightarrow He + O + O_2$	10-32	[4]
252	$H_{e} + O + N \rightarrow H_{e} + NO$	$1.76 \times 10^{-31} (T_{-})(-0.5)$	[/]
252	$H_{0} + O + NO \rightarrow H_{0} + NO$	10-31	[]]
255	$He + O + NO \rightarrow He + NO_2$	10^{31}	[4]
254	$He + O + H \rightarrow He + OH$	$3.2 \times 10^{-55} (T_{gas}/300)$	[4]
255	$He + N + N \rightarrow He + N_2$	$7.6 \times 10^{-34} \exp(500/T_{gas})$	[4]
256	$He + H + OH \rightarrow He + H_2O$	$1.56 \times 10^{-31} (T_{gas}/300)^{(2.6)}$	[4]
	Electron impact reactions		
257	$e + O(^{1}D) \rightarrow O + e$	σ (ε)	[2 3 6]
257	a + 0 $b + 0 + 0 + a$	$\sigma(c)$	[2,3,6]
250	$c + O_2 \rightarrow O + O_7$		[2,3,0]
259	$e + O_2 \rightarrow O + O$	σ(ε)	[2,3,0]
260	$e + O_2(^1D) \rightarrow O + O + e$	σ (ε)	[2,3,6]
261	$e + O_2(^1D) \rightarrow O + O^-$	$\sigma(\epsilon)$	[2,3,6]
262	$e + O_2(^1D) \rightarrow O_2 + e$	σ (ε)	[2,3,6]
263	$e + O_2(1S) \rightarrow O + O + e$	$\sigma(\hat{s})$	[236]
264	$e^+ O_2(S) \rightarrow O^+ O^-$	$\sigma(\mathbf{c})$	[2,2,6]
204	$c + O_2(S) \rightarrow O + O$	(3) 0	[2,3,0]
265	$e + O_2(^1S) \rightarrow O_2 + e$	$\sigma(\varepsilon)$	[2,3,6]
266	$e + O_3 \rightarrow O + O_2 + e$	10-8	[3]
267	$e + O_3 \rightarrow O + O_2^-$	σ (ε)	[3,6]
268	$e + O_3 \rightarrow O_2 + O^-$	σ (ε)	[3,6]
269	$e + \Omega^2 \rightarrow \Omega^2 + e + e$	$5 47 \times 10^{-8} (T_{-}/11600)^{(0.324)}$	[3]
-07		avp(2.08*11600/T)	[2]
270	$A + NO \rightarrow O + N + A$	$7.4 \times 10^{-9} \times 1000/T_{e}$	F 4 3
270	$e + NO \rightarrow O + N + e$	$7.4 \times 10^{-9} \exp(-6.5 \times 11600/1_{e})$	[4]
271	$e + NO_2 \rightarrow O + NO + e$	$5.6 \times 10^{-9} \exp(-3.11*11600/T_{e})$	[4]
272	$e + NO_2 \rightarrow NO + O^-$	3x10 ⁻¹¹	[4]
273	$e + NO_2 \rightarrow NO_2^-$	3x10 ⁻¹¹	[4]
274	$e + N_2 \rightarrow N + N + e$	$10^{-8} (T / 11600)^{(0.5)} exp(-$	[4]
		16.0*11600/T)	Γ.]
275		$1.4 \times 10^{-9} \times 1.(1.7 \times 11.00)/T_{e}$	F 4 3
215	$e + N_2 O \rightarrow O + N_2 + e$	$1.4 \times 10^{-9} \exp(-1.0/(1000/1_e))$	[4]
276	$e + N_2 O \rightarrow N + NO + e$	$10^{-10} \exp(-4.93*11600/T_{e})$	[4]
277	$e + OH \rightarrow O + H + e$	$2.08 \times 10^{-7} (T_e / 11600)^{(-0.76)}$	[4]
		$exp(-6.9*11600/T_{e})$	
278	$e + H_2O \rightarrow H + OH + e$	$\sigma(a)$	[2,3,6]
279	$e + \Omega_1 \rightarrow \Omega_1(\mathbf{R}) + e$	$\sigma(\mathbf{s})$	[2,3,6]
277	$e + O_2 \rightarrow O_2(\mathbf{R}) + e$	$\overline{\mathbf{O}}$	[2, 3, 0]
200	$e + O_2 \rightarrow O_2(V_5) + e$		[2,5,0]
281	$e + N_2 \rightarrow e + N_2(R)$	σ (ε)	[2,3,6]
282	$e + N_2 \rightarrow N_2(A) + e$	σ (ε)	[2,3,6]
283	$e + N_2 \rightarrow N_2(a') + e$	σ (ε)	[2,3,6]
284	$e + N_2(V_1) \rightarrow N_2(A) + e$	$\sigma(\epsilon)$	[2.3.6]
285	$e + N_2(V_2) \rightarrow N_2(A) + e$	$\sigma(s)$	[2,3,6]
205	$a + N(V) \rightarrow N(A) + a$	$\sigma(\mathbf{c})$	[2,3,0]
200	$e + N_2(V_3) \rightarrow N_2(A) + e$		[2,3,0]
28/	$e + N_2(V_4) \rightarrow N_2(A) + e$	σ (E)	[2,3,6]
288	$e + NO \rightarrow N + O^{-}$	σ (ε)	[2,3,6]
289	$e + H \rightarrow H(E_2) + e$	σ (ε)	[2,3,6]
290	$e + H \rightarrow H(E_3) + e$	σ (ε)	[2.3.6]
291	$e + H \rightarrow H^+ + e + e$	$\sigma(\vec{s})$	[2,3,6]
202	$a + H(F) \rightarrow H^+ + a + a$	$\sigma(\mathbf{c})$	[2, 2, 0]
272	$C + \Pi(E_2) \rightarrow \Pi + C + C$		[2,3,0]
293	$e + \Pi(E_3) \rightarrow \Pi^+ + e + e$	σ(ε)	[2,3,6]
294	$e + H^- \rightarrow H + e + e$	σ (ε)	[2,3,6]
295	$e + H_2 \rightarrow H_2(R_{02}) + e$	1.84×10^{-16}	[3]
296	$e + H_2 \rightarrow H_2(R_{13}) + e$	1.07×10^{-16}	[3]

297	$e + H_2 \rightarrow H_2(V_1) + e$	0.5x10 ⁻¹⁶	[3]
298	$e + H_2 \rightarrow H_2(b) + e$	0.28x10 ⁻¹⁶	[3]
299	$e + H_2 \rightarrow H_2(c) + e$	0.56x10 ⁻¹⁶	[3]
300	$e + H_2 \rightarrow e + e + H_2^+$	9 1x10 ⁻⁹ (T./11600) ^(0.5) exp(-	[5]
000		15 /*11600/T)	[0]
201		$1.9 \times 10^{-9} (T / (11 (00))(0.5)) = 0.00 (0.5)$	F <i>E</i> 1
301	$e + H_2 \rightarrow e + e + H^+ + H$	$1.8 \times 10^{-9} (1_{e}/11600)^{(0.5)} \exp(-1000)^{(0.5)}$	[5]
		$18.1*11600/1_{e}$	
302	$e + H_2 \rightarrow e + H + H$	$8.73 \times 10^{-8} (T_e/11600)^{(0.5)} \exp(-1000)^{(0.5)}$	[5]
		11.7*11600/T _e)	
303	$e + H_2 \rightarrow e + H(E_2) + H$	$2.52 \times 10^{-9} (T_{2}/11600)^{(0.36)}$	[5]
		exp(-15.3*11600/T)	[-]
304	$a \pm H$ $a \pm H(E) \pm H$	$2 050 \times 10^{-11} (T / 11600)(1.5)$	[5]
304	$e + \Pi_2 \rightarrow e + \Pi(L_3) + \Pi$	$(17*11000)^{(3)}$	[3]
		$exp(-1/11600/1_e)$	
305	$e + H_2 \rightarrow H + H^-$	$5.69 \times 10^{-13} (T_e/11600)^{(0.5)}$	[5]
		$exp(-5.5*11600/T_{e})$	
306	$e + H_2(b) \rightarrow e + e + H_2^+$	$\sigma(\varepsilon)$	[3,6]
307	$e + H_2(c) \rightarrow e + e + H_2^+$	$\sigma(\tilde{s})$	[3 6]
308	$e + OH \rightarrow e + OH(A)$	$1.52 \times 10^{-6} (T / (300))^{(0.52)} \exp(-$	[3,6]
500	$c + OH \rightarrow c + OH(A)$	$1.52 \times 10^{-1} (1_{gas}/500)^{-1} (2.95/T_{c})$	[5,0]
200		$3.83/1_{\text{gas}}$	[0]
309	$e + OH \rightarrow e + e + OH^+$	$1.16 \times 10^{-1} \times 1_{gas}^{(1.78)} \exp(-1.16 \times 10^{-1})$	[3]
		$160267.1/T_{gas}$)	
310	$e + OH(A) \rightarrow e + e + OH^+$	$3.02 \times 10^{-11} (T_{gas}/300)^{(2.61)} \exp(-$	[3]
		$10.58/T_{ras}$)	
311	$e + OH(A) \rightarrow e + O + H$	$1.54 \times 10^{-7} (T_{}/300)^{(-0.75)} \exp(-1.54 \times 10^{-7})$	[3]
•11		3 0/T	[2]
213		$(3.)/1_{\text{gas}}$	[2 6]
312	$e + H_2O \rightarrow O + H_2$	σ (3)	[3,0]
313	$e + H_2O \rightarrow H^2 + OH$	$\sigma(\varepsilon)$	[3,6]
314	$e + H_2O_2 \rightarrow H_2O + O^-$	σ (ε)	[3,6]
315	$e + H_2O_2 \rightarrow OH + OH^-$	σ (ε)	[3,6]
316	$e + O + O_2 \rightarrow O + O_2^-$	10-31	[4]
317	$e + O + O_2 \rightarrow O_2 + O_2$	10-31	[4]
318	$e + O + N_2 \rightarrow N_2 + O^2$	10-31	[4]
210	$a + 0 + 0 \rightarrow 0 + 0$	$2.6 \times 10^{-31} (T / 11600)(-0.5)$	['] [/]
319	$e + O_2 + O_2 \rightarrow O_2 + O_2$	$3.0010^{-1} (1_e/11000)^{-10}$	[4]
320	$e + O_2 + O_2(^1D) \rightarrow O_2 + O_2^2$	σ(ε)	[3,6]
321	$e + O_2 + O_2(V_1) \rightarrow O_2 + O_2^{-1}$	σ (ε)	[3,6]
322	$e + O_2 + O_2(V_2) \rightarrow O_2 + O_2^-$	σ (ε)	[3,6]
323	$e + O_2 + O_2(V_3) \rightarrow O_2 + O_2^-$	σ (ε)	[3,6]
324	$e + O_2 + O_2(V_4) \rightarrow O_2 + O_2^-$	$\sigma(\hat{s})$	[3.6]
325	$e + O_2 + O_2 \rightarrow O_2 + O_2^-$	10-31	[4]
326	$e + \Omega_1 + N\Omega \rightarrow \Omega_2 + N\Omega^2$	10-30	[/]
220	$C + O_2 + NO \rightarrow O_2 + NO$	10 1.2410-31 (T /200)(-0.5)	[+]
327	$e + O_2 + N_2 \rightarrow N_2 + O_2$	$1.24 \times 10^{-51} (1_{gas}/300)^{(-0.5)}$	[4]
328	$e + O_2 + H_2O \rightarrow H_2O + O_2^-$	1.4x10 ⁻²⁹	[4]
329	$e + N_2 + NO \rightarrow N_2 + NO^2$	10-30	[4]
330	$e + O \rightarrow O^+ + e + e$	σ (ε)	[2,3,6]
331	$e + O \rightarrow O(^{1}D) + e$	σ (ε)	[2,3,6]
332	$e + O \rightarrow O(1S) + e$	$\sigma(\tilde{s})$	[236]
333	$e + O(1D) \rightarrow O^+ + e + e$	$\sigma(s)$	[236]
224	$c + O(1S) \rightarrow O^+ + c + c$	$\mathbf{\sigma}(\mathbf{c})$	[2, 3, 0]
334 225	$e + O(-S) \rightarrow O^+ + e^+ e^-$		[2,3,0]
335	$e + O_2 \rightarrow O + O^+ + e + e$	$5.4 \times 10^{-10} (1_e/11600)^{(0.5)} \exp(-10^{-10})^{(0.5)} \exp(-10^{-10})^{$	[4]
		17.0*11600/T _e)	
336	$e + O_2 \rightarrow O^+ + O^- + e$	$7.1 \times 10^{-11} (T_e/11600)^{(0.5)} \exp(-10^{-10})^{(0.5)} \exp(-10^{-10})^{$	[4]
		17.0*11600/T_)	
337	$e + O_2 \rightarrow O + O(^1D) + e$	$5 \times 10^{-8} \exp(-8.40 \times 11600/T)$	[4]
220	$e + O_2 \rightarrow O + O(1S) + e$	$5 \times 10^{-8} \exp(-9.10^{-11000/1} e)$	L'J [/]
220	$a \pm 0 \rightarrow 0(D) \pm 0(D) \pm 0$	$1 05_{\rm T} 10.10 (T / 11200) (0.22)$	["] [/]
339	$e + O_2 \rightarrow O(\cdot D) + O(\cdot D) + e$	$(12.62 \pm 11.600)^{(0.22)}$	[4]
		$exp(-12.62*11600/T_e)$	

340	$e + O_2 \rightarrow O_2^+ + e + e$	σ (ε)	[2,3,6]
341	$\mathbf{e} + \mathbf{O}_2 \to \mathbf{O}_2(^1\mathbf{D}) + \mathbf{e}$	σ (ε)	[2,3,6]
342	$\mathbf{e} + \mathbf{O}_2 \to \mathbf{O}_2(^1\mathbf{S}) + \mathbf{e}$	σ (ε)	[2,3,6]
343	$e + O_2 \rightarrow O_2(V_1) + e$	σ (ε)	[2,3,6]
344	$e + O_2 \rightarrow O_2(V_2) + e$	σ (ε)	[2,3,6]
345	$e + O_2 \rightarrow O_2(V_3) + e$	σ (ε)	[2,3,6]
346	$e + O_2 \rightarrow O_2(V_4) + e$	σ (ε)	[2,3,6]
347	$e + O_2(^1D) \rightarrow O + O^+ + e + e$	σ (ε)	[2,3,6]
348	$e + O_2(^1D) \rightarrow O + O(^1D) + e$	σ (ε)	[2,3,6]
349	$e + O_2(^1D) \rightarrow O(^1D) + O^-$	$9.93 \times 10^{-9} (T_e / 11600)^{(-1.437)}$	[4]
		$exp(-7.44*11600/T_{e})$	
350	$e + O_2(^1D) \rightarrow O_2^+ + e + e$	σ (ε)	[2,3,6]
351	$\mathbf{e} + \mathbf{O}_2(^1\mathbf{D}) \to \mathbf{O}_2(^1\mathbf{S}) + \mathbf{e}$	$3.24 \times 10^{-10} \exp(-$	[2,3,6]
		1.57*11600/T _e)	
352	$e + O_2(^1S) \rightarrow O + O^+ + e + e$	σ (ε)	[2,3,6]
353	$e + O_2(^1S) \rightarrow O + O(^1D) + e$	σ (ε)	[2,3,6]
354	$e + O_2(^1S) \longrightarrow O_2^+ + e + e$	σ (ε)	[2,3,6]
355	$e + O_2(V_1) \rightarrow O_2 + e$	σ (ε)	[2,3,6]
356	$e + O_2(V_1) \rightarrow O_2(^1D) + e$	σ (ε)	[2,3,6]
357	$e + O_2(V_1) \rightarrow O_2(^1S) + e$	σ (ε)	[2,3,6]
358	$e + O_2(V_2) \rightarrow O_2 + e$	σ (ε)	[2,3,6]
359	$e + O_2(V_2) \rightarrow O_2(^1D) + e$	σ (ε)	[2,3,6]
360	$e + O_2(V_2) \rightarrow O_2(^1S) + e$	σ (ε)	[2,3,6]
361	$e + O_2(V_3) \rightarrow O_2 + e$	σ (ε)	[2,3,6]
362	$e + O_2(V_3) \rightarrow O_2(^1D) + e$	σ (ε)	[2,3,6]
363	$e + O_2(V_3) \rightarrow O_2(^1S) + e$	σ (ε)	[2,3,6]
364	$e + O_2(V_4) \rightarrow O_2 + e$	σ (ε)	[2,3,6]
365	$e + O_2(V_4) \rightarrow O_2(^1D) + e$	σ (ε)	[2,3,6]
366	$e + O_2(V_4) \rightarrow O_2(^1S) + e$	σ (ε)	[2,3,6]
367	$e + N \rightarrow N^+ + e + e$	σ (ε)	[2,3,6]
368	$e + N \rightarrow N(^{2}D) + e$	σ (ε)	[2,3,6]
369	$e + N \rightarrow N(^{2}P) + e$	σ (ε)	[2,3,6]
370	$e + N(^2D) \rightarrow N + e$	$10^{-8} (T_e/11600)^{(-0.36)} \exp(-$	[4]
		0.83*11600/T _e)	
371	$e + N(^{2}P) \rightarrow N + e$	$5.45 \times 10^{-9} (T_e / 11600)^{(-0.41)}$	[4]
		$exp(-1.05*11600/T_e)$	
372	$e + N(^{2}P) \rightarrow N(^{2}D) + e$	$1.63 \times 10^{-8} (T_e / 11600)^{(-0.17)}$	[4]
		$exp(-2.69*11600/T_e)$	
373	$e + N_2 \rightarrow N + N^+ + e + e$	σ (ε)	[2,3]
374	$e + N_2 \rightarrow N + N(^2D) + e$	6.53x10 ⁻⁸ exp(-	[4]
		14.2*11600/T _e)	
375	$e + N_2 \rightarrow N + N(^2P) + e$	6.53x10 ⁻⁸ exp(-	[4]
		14.2*11600/T _e)	
376	$e + N_2 \rightarrow N_2^+ + e + e$	$\sigma(\epsilon)$	[2,3,6]
377	$e + N_2 \rightarrow N_2(V_1) + e$	$\sigma(\epsilon)$	[2,3,6]
378	$e + N_2 \rightarrow N_2(V_2) + e$	σ (ε)	[2,3,6]
379	$e + N_2 \rightarrow N_2(V_3) + e$	$\sigma(\epsilon)$	[2,3,6]
380	$e + N_2 \rightarrow N_2(V_4) + e$	$\sigma(\epsilon)$	[2,3,6]
381	$e + N_2(V_1) \rightarrow N_2 + e$	$\sigma(\epsilon)$	[2,3,6]
382	$e + N_2(V_1) \rightarrow N_2(V_2) + e$	$(\exp(-0.7*1.0)/(1+0.05*1.0))$	[4,6]
		σ (ε)	
383	$e + N_2(V_2) \rightarrow N_2 + e$	σ (ε)	[2,3,6]
384	$e + N_2(V_2) \rightarrow N_2(V_1) + e$	(exp(-0.7*(-	[4,6]
		1.0))/(1+0.05*2.0))σ (ε)	
385	$e + N_2(V_1) \rightarrow N_2(V_3) + e$	$(\exp(-0.7*2.0)/(1+0.05*1.0))\sigma$	[4,6]
		(3)	

386	$e + N_2(V_3) \rightarrow N_2 + e$	σ (ε)	[2,3,6]
387	$e + N_2(V_3) \rightarrow N_2(V_1) + e$	(exp(-0.7*(-	[4,6]
	2(3) 2(1)	$2 0))/(1+0.05*3.0)) \sigma(\epsilon)$	L / J
388	$e + N_2(V_1) \rightarrow N_2(V_1) + e$	$(\exp(-0.7*3.0)/(1+0.05*1.0))$	[4 6]
200	$c + 1 c_2 (v_1) + 1 c_2 (v_4) + c_3$	(exp(0.7 5.0)/(1+0.05 1.0))	[1,0]
200	$- + \mathbf{N} (\mathbf{X}) \rightarrow \mathbf{N} + -$	(3) 0	[2 2 (1
389	$e + N_2(V_4) \rightarrow N_2 + e$	$\sigma(\varepsilon)$	[2,3,6]
390	$e + N_2(V_4) \rightarrow N_2(V_1) + e$	$(\exp(-0.7)^{*}(-$	[4,6]
		3.0))/(1+0.05*4.0) σ (ε)	
391	$e + NO \rightarrow O + N^+ + e + e$	$2.4 \times 10^{-9} (T_e/11600)^{(0.5)} \exp(-$	[4]
		23.0*11600/T _e)	
392	$e + NO \rightarrow N + O^+ + e + e$	$2.4 \times 10^{-9} (T_{\circ}/11600)^{(0.5)} \exp(-10^{-5})$	[4]
•		23.0*11600/T)	Γ.]
303	$a + NO \longrightarrow NO^+ + a + a$	$9x10^{-9}$ (T /11600)(0.5) exp([4]
393	$e + 100 \rightarrow 100 + e + e$	$9 \times 10^{-1} (1_{e}^{-11000})^{-12} \exp(-12.1 \times 11(000/T))$	[4]
• • •		$12.1^{+}11600/1_{e}$	F 43
394	$e + NO_2 \rightarrow O + NO^+ + e + e$	$8.1 \times 10^{-9} (T_e / 11600)^{(0.5)} \exp(-1000)^{(0.5)}$	[4]
		12.9*11600/T _e)	
395	$e + N_2O \rightarrow O(^1D) + N_2 + e$	$1.2 \times 10^{-9} \exp(-3.46 \times 11600 / T_e)$	[4]
	_ 、 , _		
	Electron-ion recomination		
396	$e + O^+ \rightarrow O(^1D)$	5 3x10 ⁻¹³ (T /11600)(-0.5)	[4]
307	$a + \Omega_{c}^{+} \rightarrow \Omega(D) + \Omega(D)$	$6 87 \times 10^{-9} (T / 11600)(-0.7)$	L T J [//]
371	$c + O_2 \rightarrow O(D) + O(D)$	$(0.0 / X10^{\circ} (1_{e} / 11000)^{(0.0)})$	[4]
398	$e + OH^+ \rightarrow O + H$	$6.03 \times 10^{-9} (1_{gas}/300)^{(-0.5)}$	[3]
399	$e + H_2^+ \rightarrow e + H + H^+$	10-21	[3]
400	$e + NO^+ \rightarrow O + N(^2D)$	$3 \times 10^{-7} (T_e/T_{gas})^{(-1)}$	[4]
401	$e + N_2^+ \rightarrow N + N(^2D)$	$2 \times 10^{-7} (T_e/T_{gas})^{(-0.5)}$	[4]
402	$e + e + O^+ \rightarrow O(^1D) + e$	$5.12 \times 10^{-27} (T_e/11600)^{(-4.5)}$	[4]
403	$e + NO_2^+ \rightarrow NO + O(^1D)$	$2 \times 10^{-7} (T_{res}/300)^{(-0.5)}$	[3]
404	$e^+ \Omega^+ \rightarrow \Omega$	$4x10^{-12}$	[4]
101	$e^+ O^+ \rightarrow O^+ O^+$	2 1×10^{-7} (T /T)(-0.63)	['] [/]
403	$e + O_2 \rightarrow O + O$	$2.1 \times 10^{-1} (1_{e}/1_{gas})^{-10}$	[4]
400	$e + O_2^+ \rightarrow O_2^-$	4×10^{-12}	[4]
407	$e + O_4^+ \rightarrow O + O + O_2$	$2 \times 10^{-6} (1_e / 1_{gas})^{(-1)}$	[4]
408	$e^+ O_4^+ \rightarrow O_2 + O_2$	$2.25 \times 10^{-7} (T_e/11600)^{(-0.5)}$	[4]
409	$e+N^+ \rightarrow N$	3.5x10 ⁻¹²	[4]
410	$e+ NO^+ \rightarrow O + N$	$4 x 10^{-7} (T_e/T_{gas})^{(-0.4)}$	[4]
411	$e+ NO^+ \rightarrow NO$	4x10 ⁻¹²	[4]
412	$e + NO_2^+ \rightarrow O + NO$	$2 \times 10^{-7} (0.026 \times 11600 / T_{\odot})^{(0.5)}$	[4]
413	$e^+ N_e^+ \rightarrow N + N$	$2 8 \times 10^{-7} (T /T)^{(-0.5)}$	[4]
413	$2 + N_2 \rightarrow N + N$	$4.9 \times 10^{-7} (T / T) (-0.5)$	["] [4]
414	$C + IN_2 \rightarrow IN_2$	$(1_e/1_{gas})^{(1)}$	[4]
413		$3.13 \times 10^{-1} (1_{e}^{-1} \times 1000)^{(-0.71)}$	[4] [4]
416	$e^+ N_4^+ \rightarrow N_2 + N_2$	$2 \times 10^{-6} (T_e/T_{gas})^{(-0.5)}$	[4]
417	$e + O^+ + e \rightarrow O + e$	$7 \times 10^{-20} (T_e/T_{gas})^{(-4.5)}$	[4]
418	$e + O^+ + O_2 \rightarrow O + O_2$	$6 x 10^{-27} (T_e/T_{gas})^{(-2.5)}$	[4]
419	$e+O^++N_2 \rightarrow O+N_2$	$6 x 10^{-27} (T_e/T_{gas})^{(-1.5)}$	[4]
420	$e + O_2^+ + e \rightarrow O_2 + e$	$7 \times 10^{-20} (T_e/T_{gas})^{(-4.5)}$	[4]
421	$e + O_2^+ + O_2 \rightarrow O_2 + O_2$	2.49×10^{-29} (T/11600) ^(-1.5)	[4]
422	$e + \Omega_2^+ + N_2 \rightarrow \Omega_2 + N_2$	$6 \times 10^{-27} (T_{-7}/T_{-1})^{(-1.5)}$	[4]
423	$e^+ \Omega_1^+ + e \rightarrow \Omega_2 + \Omega_2 + e^-$	$7_{x}10^{-20} (T /T)^{(-4.5)}$	[4]
123	$a + N^+ + a \rightarrow N^+ + a$	$7_{x}10^{-20} (T/T)^{-45}$	["] [/]
424	$ \begin{array}{c} \bullet IN \top \bullet \bullet IN \top \bullet \\ \bullet \bullet N^{+} \bullet \bullet \bullet O \bullet N^{+} \\ \end{array} $	$(X_1 U^{-2} (1_e/1_{gas})^{(1_e)})$	[4] [4]
425	$e+N+O_2 \rightarrow O_2+N$	$6 \times 10^{-27} (1_{e}/1_{gas})^{(-1.3)}$	[4]
426	$e+ N^+ + N_2 \rightarrow N + N_2$	$6 \times 10^{-27} (T_e/T_{gas})^{(-2.5)}$	[4]
427	$e + NO^+ + e \rightarrow NO + e$	$7x10^{-20} (T_e/T_{gas})^{(-4.5)}$	[4]
428	$e + NO^+ + O_2 \rightarrow O_2 + NO$	$6 \times 10^{-27} (T_e/T_{gas})^{(-1.5)}$	[4]
429	$e + NO^+ + N_2 \rightarrow N_2 + NO$	$6 \times 10^{-27} (T_e/T_{gas})^{(-1.5)}$	[4]
430	$e + N_2^+ + e \rightarrow N_2 + e$	$7 \times 10^{-20} (T_{\gamma}/T_{acc})^{(-4.5)}$	[4]
431	$e + N_2^+ + O_2 \rightarrow O_2 + N_2$	$6x10^{-27}$ (T/T)(-1.5)	[4]
432	$e + N_1^+ + N_2 \longrightarrow N_2 + N_2$	$6\mathbf{v} \cdot 10^{-27} (\mathbf{T} / \mathbf{T})^{(-1.5)}$	د ۲ [/]
734	$v_{1} n_{2} + n_{2} - n_{2} + n_{2}$	$UAIU = (I_e/I_{gas})^{-1}$	141

422	A + NI + A + NI + NI + A	7 - 10 - 20 (T /T)(-45)	F / 1
433	$e + N_4' + e \rightarrow N_2 + N_2 + e$	$/X10^{-20} (1_{e}/1_{gas})^{(-4.5)}$	[4]
424	Electron-ion recombination (water clusters) $a + H O^{+} \rightarrow O + H$	1.9(-10-8)(T.(11(00))(-0.5))	[2 5]
434	$e + \Pi_2 O^+ \rightarrow O + \Pi_2$	$1.80 \times 10^{\circ} (1_{e}/11000)^{(0.0)}$	[3,3]
435	$e^+ H_2 O^+ \rightarrow O^+ H^+ H$	$2.32 \times 10^{-6} (T_e/11600)^{(0.5)}$	[3,4,3]
430	$e^+ H_2 O^+ \rightarrow H^+ OH$	$5.1 \times 10^{-6} (1_{e}/11600)^{(-6.5)}$	[3,4,5]
437	$e^+ H_3O^+ \rightarrow H^+ H^+ OH$	$1.05 \times 10^{-7} (1_{e}/11600)^{(-0.5)}$	[3,5]
438	$e^+ H_3O^+ \rightarrow H^+ H_2O^-$	$5.63 \times 10^{-3} (1_e/11600)^{(-0.5)}$	[3,4,5]
439	$e^+ H_2 O_3^+ \rightarrow O_2 + H_2 O$	$7.22 \times 10^{-7} (T_e/11600)^{(-0.2)}$	[4,5]
440	$e + H_2O_3^+ + e \rightarrow O_2 + H_2O + e$	$5 \times 10^{-27} (T_e/11600)^{(-4.3)}$	[4,5]
441	$e^+ H_4 O_2^+ \rightarrow H + OH + H_2 O$	$9.6 \times 10^{-7} (T_e/11600)^{(-0.2)}$	[3,4,5]
442	$e + H_4O_2^+ + e \rightarrow H + OH + H_2O + e$	$5 \times 10^{-27} (T_e / 11600)^{(-4.5)}$	[4,5]
443	$e^+ (H_2O)_2H^+ \rightarrow H + H_2O + H_2O$	$1.62 \times 10^{-6} (T_e / 11600)^{(-0.15)}$	[3,4,5]
444	$e^+ (H_2O)_2H^+ + e \rightarrow H + H_2O + H_2O + e$	$5 \times 10^{-27} (T_e / 11600)^{(-4.5)}$	[4,5]
445	$e^+ (H_2O)_3H^+ \rightarrow H + H_2O + H_2O + H_2O$	2.24x10 ⁻⁶ (T _e /11600) ^(-0.08)	[5]
446	$e^+ (H_2O)_4H^+ \rightarrow H + H_2O + H_2O + H_2O + H_2O$	3.6x10 ⁻⁶	[5]
447	$e^+ (H_2O)_5H^+ \rightarrow H + H_2O +$	4x10 ⁻⁶	[5]
	H ₂ O		
448	$e^+ (H_2O)_6H^+ \rightarrow H + H_2O +$	4x10 ⁻⁶	[5]
	$H_2O + H_2O$		
449	e^+ (H ₂ O) ₇ H ⁺ \rightarrow H + H ₂ O + H ₂ O + H ₂ O + H ₂ O +	4x10 ⁻⁶	[5]
	$H_2O + H_2O + H_2O$		
	Ion-ion reactions (two-body)		
450	$O^+ + O^- \rightarrow O + O$	2.7x10 ⁻⁷ (T _{gas} /300) ^(-0.5)	[4]
451	$O^+ + O^- \rightarrow O + O(^1D)$	$4.9 \times 10^{-10} (T_{gas}/300)^{(-0.5)}$	[4]
452	$O^+ + O_2^- \rightarrow O + O_2$	$2x10^{-7} (T_{gas}/300)^{(-1)}$	[4]
453	$O^+ + O_3^- \rightarrow O + O_3$	$2x10^{-7} (T_{gas}/300)^{(-1)}$	[4]
454	$O^+ + NO^- \rightarrow O + NO$	$2.7 \times 10^{-7} (T_{gas}/300)^{(-0.5)}$	[4]
455	$O^+ + NO_2^- \rightarrow O + NO_2$	$2.7 \times 10^{-7} (T_{gas}/300)^{(-0.5)}$	[4]
456	$O^+ + NO_3^- \rightarrow O + NO_3^-$	$2.7 \times 10^{-7} (T_{gas}/300)^{(-0.5)}$	[4]
457	$O_2^+ + O^- \rightarrow O + O + O$	10 ⁻⁷	[4]
458	$O_2^+ + O^- \rightarrow O + O_2$	$10^{-7} (T_{ras}/300)^{(-0.5)}$	[4]
459	$O_2^+ + O_2^- \rightarrow O + O + O_2$	10 ⁻⁷	[4]
460	$O_2^+ + O_2^- \rightarrow O_2^- + O_2^-$	$4.2 \times 10^{-7} (T_{ass}/300)^{(-0.5)}$	[4]
461	$O_2^+ + O_2^- \rightarrow O + O + O_2$	10 ⁻⁷	[4]
462	$O_2^+ + O_2^- \rightarrow O_2^- + O_2$	$2x10^{-7} (T_{}/300)^{(-1)}$	[4]
463	$O_2^+ + NO^- \rightarrow O + O + NO$	10 ⁻⁷	[4]
464	$O_2^+ + NO^- \rightarrow O_2 + NO$	$2.7 \times 10^{-7} (T_{7}/300)^{(-0.5)}$	[4]
465	$O_2^+ + NO_2^- \rightarrow O + O + NO_2$	10 ⁻⁷	[4]
466	$O_2^+ + NO_2^- \rightarrow O_2^- + NO_2^-$	$4 1 \times 10^{-7} (T / 300)(-0.5)$	['] [4]
467	$O_2^+ + NO_2^- \rightarrow O_2^+ + NO_2^-$	10-7	[⁺] [/]
468	$O_2^+ + NO_3^- \rightarrow O_1^- + NO_3^-$	$1.3 \times 10^{-7} (T / (300))(-0.5)$	[] [/]
460	$O_2^+ + NO_3^- \rightarrow O_2^- + NO_3^- + H_2O_3^-$	$10^{-7} (T / (300))^{-0.5}$	[⁺] [/]
40)	$O_2^+ + O_3 O_1^- \rightarrow O_2^+ + O_3^- + O_2^- \rightarrow O_2^- + O_3^- + O_2^- \rightarrow O_2^- \rightarrow O_2^- + O_2^- \rightarrow $	10-7	[] [/]
470	$O_4^+ + O_2^- \rightarrow O_1^+ + O_2^-$	10 ⁺ 4x10-7	[4]
4/1 472	$O_4 + O \rightarrow O_2 + O_3$ $O_2 + O_2 + O_3 + O_2 + O_3$	$4X10^{-1}$	[4] [4]
4/2	$O_4^+ + O_2^- \rightarrow O_1^+ + O_2^- + O_2^-$	2X10 ° 10-7	[4] [4]
4/3	$O_4 + O_2 \rightarrow O_2 + O_2 + O_2$	10-7	[4] [4]
4/4 <i>175</i>	$O_4 + O_3 \rightarrow O + O_2 + O_2 + O_2$	10 · 10-7	[4] [4]
4/3	$O_4^+ + O_3 \rightarrow O_2^+ + O_2^+ + O_3^-$	10 ' 10-7	[4] [4]
4/0	$O_4^+ + NO \rightarrow O_2^+ + O_2^+ + NO$	10 '	[4]
4//	$O_4^+ + NO_2^- \rightarrow O_2^+ + O_2^- + NO_2^-$	10 ⁻⁷	[4]
478	$O_4^+ + NO_3^- \rightarrow O_2^+ + O_2^- + NO_3^-$	10^{-7}	[4]
4/9	$O_4^+ + NO_3H_2O^- \rightarrow O_2 + O_2 + NO_3 + H_2O^-$	$10^{-7} (1_{gas}/300)^{(-0.5)}$	[4]
480	$N^{+} + O^{-} \rightarrow O + N$	$2.6 \times 10^{-7} (1_{\text{gas}}/300)^{(-0.3)}$	[4]
481	$N^{-} + O_2^{-} \rightarrow O_2 + N$	4x10 ⁻⁷	[4]

482	$N^+ + O_3^- \rightarrow O_3 + N$	$2.7 \times 10^{-7} (T_{gas}/300)^{(-0.5)}$	[4]
483	$N^+ + NO^- \rightarrow N + NO$	$2.7 \times 10^{-7} (T_{gas}/300)^{(-0.5)}$	[4]
48 4	$N^+ + NO_2^- \rightarrow N + NO_2$	$2.7 \times 10^{-7} (T_{gas}/300)^{(-0.5)}$	[4]
485	$N^+ + NO_3^- \rightarrow N + NO_3$	$2.7 \times 10^{-7} (T_{gas}/300)^{(-0.5)}$	[4]
486	$NO^+ + O^- \rightarrow O + O + N$	10 ⁻⁷	[4]
487	$NO^+ + O^- \rightarrow O + NO$	$4.9 \times 10^{-7} (T_{ras}/300)^{(-0.5)}$	[4]
488	$NO^+ + O_2^- \rightarrow O + O_2 + N$	10 ⁻⁷	[4]
489	$NO^+ + O_2^- \rightarrow O_2 + NO$	$6 \times 10^{-7} (T_{7}/300)^{(-0.5)}$	[4]
490	$NO^+ + O_2^- \rightarrow O + O_2 + N$	10 ⁻⁷	[4]
491	$NO^+ + O_2^- \rightarrow O_2 + NO$	$2 7 \times 10^{-7} (T_{7}/300)^{(-0.5)}$	[4]
492	$NO^+ + NO^- \rightarrow O + N + NO$	10 ⁻⁷	[4]
493	$NO^+ + NO^- \rightarrow NO + NO$	$2.7 \times 10^{-7} (T / (300))^{(-0.5)}$	[1] [4]
494	$NO^+ + NO^- \rightarrow O + N + NO^-$	10^{-7}	['] [4]
495	$NO^+ + NO_2^- \rightarrow NO + NO_2$	$10^{-7} (T / 300)(-0.5)$	['] [4]
496	$NO^+ + NO_2^- \rightarrow O + N + NO_2^-$	10^{-7}	[+] [/]
497	$NO^+ + NO_3^- \rightarrow NO + NO_3$	$9x10^{-8}$ (T /300)(-0.5)	[+] [4]
498	$NO^+ + NO_2H_2O^- \rightarrow NO + NO_2 + H_2O_2$	$10^{-7} (T / 300)(-0.5)$	['] [4]
499	$N_2^+ + \Omega^- \rightarrow \Omega + N + N$	10^{-7}	[7]
500	$N_2^+ + O^- \rightarrow O^+ N_2$	$2.7 \times 10^{-7} (T / (300))(-0.5)$	[+] [/]
501	$N_2^+ + O_2^- \rightarrow O_2 + N + N$	10^{-7}	[7]
502	$N_2^+ + \Omega_2^- \rightarrow \Omega_2 + N_2$	$27 \times 10^{-7} (T / (300))^{(-0.5)}$	[4]
502	$N_2^+ + O_2^- \rightarrow O_2 + N + N$	10 ⁻⁷	['] [4]
504	$N_2^+ + \Omega_2^- \rightarrow \Omega_2 + N_2$	$27 \times 10^{-7} (T / (300))^{(-0.5)}$	[4]
505	$N_2^+ + NO^- \rightarrow N + N + NO$	10 ⁻⁷	[4]
506	$N_2^+ + NO^- \rightarrow N_2 + NO$	$2.7 \times 10^{-7} (T_{7}/300)^{(-0.5)}$	[1]
507	$N_2^+ + NO_2^- \rightarrow N + N + NO_2$	10 ⁻⁷	[1]
508	$N_2^+ + NO_2^- \rightarrow N_2 + NO_2$	$2.7 \times 10^{-7} (T_{7}/300)^{(-0.5)}$	[1]
509	$N_2^+ + NO_2^- \rightarrow N + N + NO_2$	10 ⁻⁷	[4]
510	$N_2^+ + NO_2^- \rightarrow N_2 + NO_2$	$2.7 \times 10^{-7} (T_{acc}/300)^{(-0.5)}$	[4]
511	$N_4^+ + \Omega^- \rightarrow \Omega + N_2 + N_2$	10 ⁻⁷	[4]
512	$N_4^+ + \Omega_2^- \rightarrow \Omega_2 + N_2 + N_2$	10-7	[4]
513	$N_4^+ + \Omega_2^- \rightarrow \Omega_2 + N_2 + N_2$	10-7	[4]
514	$N_4^+ + NO^- \rightarrow N_2 + N_2 + NO$	10-7	[4]
515	$N_4^+ + NO_2^- \rightarrow N_2 + N_2 + NO_2$	10-7	[4]
516	$N_4^+ + NO_3^- \rightarrow N_2 + N_2 + NO_3$	10-7	[4]
517	$H_2O^+ + O^- \rightarrow O^+ H_2O$	4x10 ⁻⁷	[4]
518	$H_2O^+ + O_2^- \rightarrow O_2 + H_2O$	4x10 ⁻⁷	[4]
519	$O_2^+ + O_3^- \rightarrow O_2 + O + O_2$	10-7	[3]
520	$O_2^+ + O_3^- \rightarrow O_2^- + O + O + O$	10-7	[3]
521	$O_2^+ + NO_2^- \rightarrow NO + O + O_2$	10-7	[3]
522	$O_2^+ + NO_2^- \rightarrow NO + O + O + O$	10-7	[3]
523	$O_2^+ + NO_3^- \rightarrow NO_2 + O + O_2$	10-7	[3]
524	$O_2^+ + NO_3^- \rightarrow NO_2^- + O + O + O$	10-7	[3]
525	$O_2^- + NO_2^+ \rightarrow O_2^- + NO_2^-$	2x10 ⁻⁷ (T _{eas} /300) ^(-0.5)	[3]
526	$NO^+ + NO_3^- \rightarrow NO_2 + O + N + O$	10 ⁻⁷	[3]
527	$H_2O^+ + O_3^- \rightarrow H_2O + O_3$	2x10 ⁻⁷ (T _{gas} /300) ^(-0.5)	[3]
528	$H_3O^+ + O^- \rightarrow H_2O + H + O$	10-7	[3]
529	$H_3O^+ + O_2^- \rightarrow H_2O + H + O_2$	10-7	[3]
530	$H_3O^+ + O_2^- \rightarrow H_2O + H + O + O$	10-7	[3]
5 34	Ion-ion reactions (three-body)	0 10.25 (The (2003) (25)	F 43
531	$O^+ + O^- + O_2 \rightarrow O + O + O_2$	$2x10^{-2.5}$ (T _{gas} /300)(-2.5)	[4]
532	$O^+ + O^- + O_2 \rightarrow O_2 + O_2$	$2x10^{-25}$ (T _{gas} /300)(-2.5)	[4]
533	$O^+ + O^- + N_2 \rightarrow O + O + N_2$	$2x10^{-25}$ (T _{gas} /300)(-2.5)	[4]
534	$O' + O' + N_2 \rightarrow O_2 + N_2$	$2 \times 10^{-2.5} (T_{gas}/300)^{(-2.5)}$	[4]
535	$O' + O_2^- + O_2 \rightarrow O + O_2 + O_2$	$2 \times 10^{-23} (T_{aas}/300)^{(-2.3)}$	141

536	$O^+ + O_2^- + O_2 \rightarrow O_2 + O_3$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
537	$\Omega^+ + \Omega_2^- + N_2 \rightarrow \Omega + \Omega_2 + N_2$	$2x10^{-25}$ (T ⁵⁴³ /300)(-2.5)	[4]
529	$O^+ + O^- + N \rightarrow O^- + N$	$2_{\rm M}$ 10-25 (T /200)(-2.5)	['] [/]
530	$O^+ + O_2^- + N_2^- \rightarrow O_3^- + N_2^-$	$2 \times 10^{-5} (T_{gas}/300)^{(-10)}$	[4]
539	$0^{+} + 0_{3}^{-} + 0_{2} \rightarrow 0 + 0_{2} + 0_{3}$	$2 \times 10^{-23} (1_{gas}/300)^{(-2.3)}$	[4]
540	$O_2^+ + O^- + O_2 \rightarrow O + O_2 + O_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
541	$O_2^+ + O_2^- + O_2 \rightarrow O_2^- + O_3^-$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
542	$O_2^+ + O^- + N_2 \rightarrow O_2 + O + N_2$	$2 \times 10^{-25} (T_{avg}/300)^{(-2.5)}$	[4]
5/3	$O_2^+ + O_2^- + N \rightarrow O_2^- + N$	$2 \times 10^{-25} (T / 300)(-2.5)$	[/]
544	$O_2 + O_2 + O_3 + IV_2$	$2_{\rm x10}^{-10}$ $(T_{\rm gas}/500)^{-2}$	[7]
544	$O_2^+ + O_2^- + O_2^- \rightarrow O_2^+ + O_2^- + O_2^-$	$2 \times 10^{25} (T_{gas}/300)^{(2.5)}$	[4]
545	$O_2^+ + O_2^- + N_2 \rightarrow O_2 + O_2 + N_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
546	$O_2^+ + O_3^- + O_2 \rightarrow O_2 + O_2 + O_3$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
547	$O_2^+ + O_3^- + N_2 \rightarrow O + O_2 + O_2 + N_2$	$10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
548	$O_2^+ + O_2H_2O^- + N_2 \rightarrow O_2^- + O_2^- + N_2^- + H_2O^-$	$10^{-25} (T_{aas}^{-300}/300)^{(-2.5)}$	[4]
540	$O_2^+ + O_2^- + O_2^- \rightarrow O_2^+ + O_2^- + O_2^- + O_2^-$	$2 \times 10^{-25} (T / (300))^{(-2.5)}$	[/]
549	$O_4 + O_2 \rightarrow O_1 + O_2 + O_2 + O_2$	$2 \times 10^{-1} (1_{gas}/300)^{-10}$	[4]
220	$O_4^+ + O_2^+ + N_2 \rightarrow O_2^+ + O_2^- + N_2^-$	$10^{-2.5} (1_{gas}/300)^{(-2.5)}$	[4]
551	$O_4^+ + O_2^- + O_2 \rightarrow O_2 + O_2 + O_2 + O_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
552	$O_4^+ + O_2^- + N_2 \rightarrow O_2 + O_2 + O_2 + N_2$	$10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
553	$O_4^+ + O_3^- + O_2 \rightarrow O_2 + O_2 + O_2 + O_3$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
554	$O_4^+ + O_2^- + N_2 \rightarrow O_2^- + O_2^- + O_2^- + N_2^-$	$10^{-25} (T_{aa}/300)^{(-2.5)}$	[4]
555	$N^+ + \Omega^- + \Omega_2 \rightarrow \Omega + \Omega_2 + N$	$2 \times 10^{-25} (T / 300)(-2.5)$	[4]
555	$N^+ + O^- + O^- + O^- + NO^-$	$2_{\rm x10}^{-25}$ (T /200)(-25)	[7]
330	$N + O + O_2 \rightarrow O_2 + NO$	$2 \times 10^{-5} (T_{gas}/300)^{(-10)}$	[4]
557	$N^+ + O^- + N_2 \rightarrow O + N_2 + N_2$	$2 \times 10^{-23} (T_{gas}/300)^{(-2.3)}$	[4]
558	$N^+ + O^- + N_2 \rightarrow N_2 + NO$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
559	$N^+ + O_2^- + O_2 \rightarrow O_2 + O_2 + N$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
560	$N^+ + O_2^- + O_2 \rightarrow O_2 + NO_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
561	$N^+ + \Omega_2^- + N_2 \rightarrow \Omega_2 + N_2 + N_2$	$2x10^{-25}$ (T /300)(-2.5)	[4]
562	$N^+ + O_2^- + N_2^- \rightarrow O_2^- + N_2^- + N_0^-$	$2 \times 10^{-25} (T / (200))^{-2.5}$	['] [/]
502	$N + O_2 + N_2 \rightarrow N_2 + NO_2$	$2x10^{-1} (T_{gas}/300)(-25)$	[4]
202	$NO^{+} + O^{+} + O_{2} \rightarrow O^{+} + O_{2}^{+} + NO$	$2 \times 10^{25} (T_{gas}/300)^{(2.5)}$	[4]
564	$NO^+ + O^- + O_2 \rightarrow O_2 + NO_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
565	$NO^+ + O^- + N_2 \rightarrow O + N_2 + NO$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
566	$NO^+ + O^- + N_2 \rightarrow N_2 + NO_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
567	$NO^+ + O_2^- + O_2 \rightarrow O_2 + O_2 + NO$	$2x10^{-25} (T_{av}/300)^{(-2.5)}$	[4]
568	$NO^+ + O_2^- + O_2 \rightarrow O_2 + NO_2$	$2x10^{-25} (T^{3})^{(-2.5)}$	[4]
560	$NO^+ + O_2^- + N_1 \rightarrow O_2^- + N_2 \rightarrow NO^+$	$2 \times 10^{-25} (T / (200))^{-2.5}$	['] [/]
507	$NO^+ + O_2^- + N_2^- \rightarrow O_2^- + N_2^- + NO^-$	$2 \times 10^{-5} (T_{gas}/300)^{(-5)}$	[4]
5/0	$NO' + O_2' + N_2 \rightarrow N_2 + NO_3$	$2 \times 10^{-2.5}$ (1 _{gas} /300)(-2.5)	[4]
571	$NO^+ + O_3^- + N_2 \rightarrow O + O_2 + N_2 + NO$	$10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
572	$O_2H_2O^- + NO^+ + He \rightarrow He + O_2 + NO + H_2O$	$10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
573	$NO^+ + O_2H_2O^- + N_2 \rightarrow O_2 + N_2 + NO + H_2O$	$10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
574	$N_2^+ + O^- + O_2 \rightarrow O + O_2 + N_2$	$2x10^{-25}$ (T _{gas} /300) ^(-2.5)	[4]
575	$N_2^+ + \Omega^- + \Omega_2^- \rightarrow \Omega_2 + N_2\Omega^-$	$2 \times 10^{-25} (T_{}^{gas}/300)^{(-2.5)}$	[4]
576	$N_2^+ + \Omega^- + N_2 \rightarrow \Omega^- + N_2 + N_2$	$2 \times 10^{-25} (T / 300)^{(-2.5)}$	[/]
570	$\mathbf{N}_2^+ + \mathbf{O}_2^- + \mathbf{N}_2^- \rightarrow \mathbf{O}_1^- + \mathbf{N}_2^- + \mathbf{N}_2^-$	$2x10^{-25}$ (T $_{gas}/300)^{(-25)}$	[4]
5//	$N_2^+ + O^+ + N_2 \rightarrow N_2 + N_2O$	$2 \times 10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
578	$N_2^+ + O_2^- + O_2 \rightarrow O_2 + O_2 + N_2$	$2 \times 10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
579	$N_2^+ + O_2^- + N_2 \rightarrow O_2 + N_2 + N_2$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[4]
580	$O^+ + O^- + M \rightarrow O + O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
581	$O^+ + O_2^- + M \rightarrow O + O_2 + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
582	$O^+ + O_2^- + M \rightarrow O_2 + M$	$2 \times 10^{-25} (T_{aug}/300)^{(-2.5)}$	[3]
583	$O^+ + O^- + M \rightarrow O^- + O + M$	$2 \times 10^{-25} (T / 300)^{(-2.5)}$	[3]
505	$O + O_3 + W \rightarrow O_3 + O + W$	$2x10^{-25}$ (T _{gas} /300)(-25)	[2]
3 ð4	$\mathbf{O} + \mathbf{O}_2^+ + \mathbf{M} \rightarrow \mathbf{O} + \mathbf{O}_2^- + \mathbf{M}$	$2 \times 10^{25} (1_{gas}/300)^{(-2.5)}$	[3]
585	$O^- + O_4^- + M \rightarrow O + O_2 + O_2 + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
586	$O_2^+ + O_2^- + M \rightarrow O_2 + O_2 + M$	$10-24 (T_{gas}/300)^{(-2.5)}$	[3]
587	$O_2^+ + O_3^- + M \rightarrow O_3 + O_2 + M$	$2x10^{-25} (\bar{T}_{gas}/300)^{(-2.5)}$	[3]
588	$O_2^- + O_4^+ + M \rightarrow O_2^- + O_2^- + O_2^- + M$	$2x10^{-25}$ (T _{ass} /300)(-2.5)	[3]
580	$O^+ + NO_2^- + M \rightarrow NO_2^- + O + M$	$2x10^{-25}$ (T /300)(-2.5)	[2]
500	$O^+ + NO^- + M = NO^- + O^+ M$	$2 \times 10^{-25} (T / 200)(-2.5)$	[2]
370	$O + INO_3 + IVI \rightarrow INO_3 + O + IVI$	$2_{\text{A10}} = (1_{\text{gas}}/300)^{(2.5)}$	[2]
591	$O^{-} + N^{+} + M \rightarrow NO + M$	$2X10^{-2.5}$ (1 _{gas} /300) ^(-2.5)	[3]

592	$O^- + N^+ + M \longrightarrow N + O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
593	$O^- + N_2^+ + M \rightarrow N_2 + O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
594	$O^- + N_2^+ + M \rightarrow N_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
595	$O^- + NO^+ + M \rightarrow O + NO + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
596	$O^- + NO^+ + M \rightarrow NO_2 + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
597	$O^- + NO_2^+ + M \rightarrow O + NO_2 + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
598	$O^- + NO_2^+ + M \rightarrow NO_3 + M$	$2x10^{-25}$ (T _{gas} /300) ^(-2.5)	[3]
599	$O_2^+ + NO_2^- + M \rightarrow NO_2 + O_2 + M$	$2x10^{-25} (T_{coc}/300)^{(-2.5)}$	[3]
600	$O_2^+ + NO_2^- + M \rightarrow NO_2 + O_2 + M$	$2x10^{-25} (T_{-27}/300)^{(-2.5)}$	[3]
601	$O_2^- + N^+ + M \rightarrow O_2 + N + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
602	$O_2^- + N^+ + M \rightarrow NO_2 + M$	$2x10^{-25}$ (T _{2x2} /300) ^(-2.5)	[3]
603	$O_2^- + NO^+ + M \rightarrow NO_2 + M$	$2x10^{-25}$ (T /300)(-2.5)	[3]
604	$O_2^- + NO^+ + M \rightarrow O_2 + NO + M$	$2x10^{-25}$ (T _{2x2} /300) ^(-2.5)	[3]
605	$O_2^- + NO_2^+ + M \rightarrow O_2^- + NO_2^- + M$	$2x10^{-25}$ (T /300)(-2.5)	[3]
606	$O_2^- + N^+ + M \rightarrow O_2^- + N + M$	$2x10^{-25}$ (T /300)(-2.5)	[3]
607	$O_{3}^{-} + N_{2}^{+} + M \rightarrow O_{3} + N_{2} + M$	$2x10^{-25}$ (T /300)(-2.5)	[3]
608	$O_3^- + NO^+ + M \rightarrow O_3^- + NO^- + M$	$2x10^{-25}$ (T /200)(-2.5)	[3]
600	$O_{3}^{-} + NO_{2}^{+} + M \rightarrow O_{2}^{-} + NO_{2}^{-} + M$	$2x10^{-25}$ (T /200)(-2.5)	[3]
610	$O_3^+ + NO_2^- + M \rightarrow NO_2^- + O_2^- + M$	$2x10^{-25}$ (T /200)(-2.5)	[3]
611	$O_4^+ + NO_2^- + M \rightarrow NO_2^+ + O_2^- + O_2^- + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
612	$V_4 + NO_3 + M \rightarrow NO_3 + V_2 + V_2 + M$ $N^+ + NO^- + M \rightarrow NO^- + N + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
612	$M + MO_2 + M \rightarrow MO_2 + M + M$	$2x10^{-2}(T_{gas}/300)^{(-2.5)}$	[3]
614	$N + NO_3 + M \rightarrow NO_3 + N + M$ $N + NO_3 + M \rightarrow NO_4 + N + M$	$2x10^{-25} (T_{gas}/500)^{(-10)}$	[3]
014 615	$N_2 + NO_2 + NI \rightarrow NO_2 + N_2 + NI$ $N + NO_2 + M \rightarrow NO_2 + N_2 + M$	$2x10^{-2}$ $(T_{gas}/500)^{(-10)}$ $2x10^{-25}$ $(T_{gas}/200)^{(-2.5)}$	[3]
015	$N_2 + NO_3 + NI \rightarrow NO_3 + N_2 + NI$ $NO^+ + NO^- + M \rightarrow NO^- + NO^- + M$	$2x10^{-25} (T_{gas}/500)^{(-10)}$	[3]
010 617	$NO + NO_2 + M \rightarrow NO + NO_2 + M$ $NO^+ + NO_2 + M \rightarrow NO_2 + M$	$2x10^{-2}$ $(T_{gas}/500)^{(-10)}$	[3]
01/	$NO^+ + NO_3^- + M \rightarrow NO^- + NO_3^- + M$	$2x10^{-25} (T_{gas}/500)^{(-2.5)}$	[3]
010 610	$NO_2 + NO_2 + M \rightarrow NO_2 + NO_2 + M$ $NO_1 + NO_2 + M \rightarrow NO_2 + NO_2 + M$	$2x10^{-2}$ $(T_{gas}/500)^{(-10)}$ $2x10^{-25}$ $(T_{gas}/200)^{(-2.5)}$	[3]
620	$HO_2^+ + HO_3^- + M \rightarrow HO_2^+ + HO_3^- + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
621	$H_2O^+ + O^- + M \rightarrow H_2O^+ + O^- + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
622	$H_2O^+ + O^- + M \rightarrow H_2O_2^- + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
623	$H_2O^+ + NO^- + M \longrightarrow H_2O^+ + NO^- + M$	$2x10^{-25}$ (T /200)(-2.5)	[3]
624	$H_2O^+ + NO_2^- + M \rightarrow H_2O^+ + NO_2^- + M$ $H_2O^+ + NO_2^- + M \rightarrow H_2O^- + NO_2^- + M$	$2x10^{-25}$ (T /200)(-2.5)	[3]
625	$H_2O + HO_3 + M \rightarrow HO_2 + MO_3 + M$	$2x10^{-25}$ (T /200)(-2.5)	[3]
626	$H^{-} + NO^{+} + M \longrightarrow HNO + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
627	$H^{-} + NO^{+} + M \longrightarrow HNO^{-} + M$	$2x10^{-25}$ (T /200)(-2.5)	[3]
628	$H^+ + NO_2^- + M \rightarrow HNO_2^- + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
620	$\Pi + \Pi O_3 + \Pi \to \Pi \Pi O_3 + \Pi O_3$	$2x10^{-2}(T_{gas}/300)^{(-2.5)}$	[3]
630	$OH^+ + OH^- + M \rightarrow HO + M$	1.6×10^{-9}	[3]
631	$OH^- + OH^+ + M \rightarrow HO^- + M$	$2_{\rm x} 10^{-25} ({\rm T} / 200)(-2.5)$	[3]
632	$OH + O + M \rightarrow HO_2 + M$ $OH + O + M \rightarrow OH + O + M$	$2x10^{-2}(T_{gas}/300)^{(-2.5)}$	[3]
632	$OH + O_2 + M \rightarrow OH + O_2 + M$ $OH + NO^+ + M \rightarrow UNO + M$	$2x10^{-2}$ $(T_{gas}/500)^{(-10)}$	[3]
033	$OH + NO + M \rightarrow HNO_2 + M$	$2x10^{-25} (T_{gas}/500)^{(-2.5)}$	[3]
034	$OH + NO_2^+ + M \rightarrow HNO_3 + M$	$2x10^{-25} (T_{gas}/500)^{(2.5)}$	[3]
035	$OH + H_2O^+ + M \rightarrow OH + H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
030	$O_3 + O_4 + M \rightarrow O_2 + O_2 + O_2 + O + M$	$2 \times 10^{-25} (T_{gas}/300)^{(2.5)}$	[3]
03/	$NO_2^+ + NO_3^- + M \rightarrow N_2O_5 + M$	$2 \times 10^{-2.5} (1_{\text{gas}}/300)^{(-0.5)}$	[3]
	Ion-ion reactions (water clusters)		
638	$H_2O_3^+ + O^- \rightarrow O_2 + O + H_2O$	10-7	[3]
639	$H_2O_3^+ + O^- + M \rightarrow O_2 + O + H_2O + M$	$2x10^{-25} (T_{acc}/300)^{(-2.5)}$	[3.4.5]
640	$H_2O_3^+ + O_2^- \rightarrow O_2 + O_2 + H_2O$	10 ⁻⁷	[3]
641	$H_2O_3^+ + O_2^- \rightarrow O_2^- + O_2^- + O_2^- + O_2^-$	10-7	[3]
642	$H_2O_3^+ + O_2^- + M \rightarrow O_2 + O_2 + H_2O + M$	2x10 ⁻²⁵ (T _{gae} /300) ^(-2.5)	[3.4.5]
643	$H_2O_3^+ + O_3^- \rightarrow O_3 + O_2 + H_2O_3^-$	10 ⁻⁷	[3]
644	$H_2O_3^+ + O_3^- \rightarrow O_2^- + O_2^- + O_2^- + H_2O_3^-$	10-7	[3]
645	$H_2O_2^+ + O_2^- + M \rightarrow O_2^- + O_2^- + H_2O^- + M$	$2x10^{-25} (T_{aco}/300)^{(-2.5)}$	[3]

		10.7	[2]
646	$H_2O_3^+ + NO_2^- \rightarrow NO_2 + O_2 + H_2O_2^-$	10-7	[3]
647	$H_2O_3^+ + NO_2^- \rightarrow NO + O + O_2 + H_2O$	10-7	[3]
648	$H_2O_3^+ + NO_2^- + M \rightarrow NO_2 + O_2 + H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
649	$H_2O_3^+ + NO_3^- \rightarrow NO_3 + O_2 + H_2O_3^-$	10-7	[3]
650	$H_2O_2^+ + NO_2^- \rightarrow NO_2^- + O_2^- + O_2^- + H_2O_2^-$	10-7	[3]
651	$H_2O_3^+ + NO_3^- + M \rightarrow NO_3^- + O_2^- + H_2O_3^- + M$	$2x 10^{-25} (T / 300)(-2.5)$	[2]
(5)	$H_2O_3^+ + H_2^- + H_1^- + H_2O_1^+ + H_2O_1^- + H_2O_2^- + H_2O$	10^{-7}	[2]
052	$\Pi_2 O_3^+ + \Pi \rightarrow O_2^- + \Pi + \Pi_2 O_2^-$	10^{7}	[3]
653	$H_2O_3^+ + H^- + M \rightarrow O_2^- + H^- + H_2O^- + M$	$2x10^{-23} (1_{gas}/300)^{(-2.3)}$	[3]
654	$H_2O_3^+ + OH^- \rightarrow OH + O_2 + H_2O$	10-7	[3]
655	$H_2O_3^+ + OH^- \rightarrow O_2 + O + H + H_2O$	10-7	[3]
656	$H_2O_3^+ + OH^- + M \rightarrow OH + O_2 + H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
657	$H_2O_2^+ + O_2H_2O^- \rightarrow O_2 + O_2 + 2H_2O$	10 ⁻⁷	[3]
658	$H_2O_2^+ + O_2H_2O_2^- + M \rightarrow O_2 + O_2 + 2H_2O_2 + M$	$2x 10^{-25} (T / 300)(-2.5)$	[3]
650	$H_{2}O_{3}^{+} + O_{2}H_{2}O^{+} + M^{-} + O_{2}^{-} + O_{2}^{-}$	10-7	[2]
039	$\Pi_4 O_2^+ + O \rightarrow O + 2\Pi_2 O$	10^{-7}	[3]
660	$H_4O_2^+ + O^- + M \rightarrow O + 2H_2O + M$	$2x10^{-23} (1_{gas}/300)^{(-2.3)}$	[3]
661	$\mathrm{H}_{4}\mathrm{O}_{2}^{+} + \mathrm{O}_{2}^{-} \rightarrow \mathrm{O}_{2} + 2\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
662	$H_4O_2^+ + O_2^- \rightarrow O + O + 2H_2O$	10-7	[3]
663	$H_4O_2^+ + O_2^- + M \rightarrow O_2 + 2H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
664	$H_4O_2^+ + O_3^- \rightarrow O_3 + 2H_2O_3$	10-7	[3]
665	$H_4O_2^+ + O_2^- \rightarrow O_2^- + O_2^- + 2H_2O_2^-$	10-7	[3]
666	$H_4O_2^+ + O_3^- + M \rightarrow O_2^+ + 2H_2O_2^- + M_1$	$2 \times 10^{-25} (T / 300)(-2.5)$	[2]
667	$H_4O_2^+ + NO_3^- + NO_3^+ + 2H_2O_3^- + M_1^-$	10^{-7}	[2]
007	$H_4O_2^+ + NO_2^- \rightarrow NO_2^+ + 2H_2O_1^-$	10 7	[3]
668	$H_4O_2' + NO_2' \rightarrow NO + O + 2H_2O$	10^{-7}	[3]
669	$H_4O_2^+ + NO_2^- + M \rightarrow NO_2^- + 2H_2O + M$	$2 \times 10^{-23} (T_{gas}/300)^{(-2.3)}$	[3]
670	$H_4O_2^+ + NO_3^- \rightarrow NO_3 + 2H_2O$	10-7	[3]
671	$H_4O_2^+ + NO_3^- \rightarrow NO_2 + O + 2H_2O$	10-7	[3]
672	$H_4O_2^+ + NO_3^- + M \rightarrow NO_3 + 2H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
673	$H_4O_2^+ + H^- \rightarrow H + 2H_2O$	10-7	[3]
674	$H_4Q_2^+ + H^- + M \rightarrow H^+ 2H_2Q + M$	$2x10^{-25} (T_{as}/300)^{(-2.5)}$	[3]
675	$H_4O_2^+ + OH^- \rightarrow OH + 2H_2O$	10-7	[3]
676	$H_4O_2^+ + OH^- \rightarrow O + H + 2H_2O$	10-7	[3]
677	$H_4O_2^+ + OH^- + M \rightarrow OH^+ 2H_2O^+ M$	$2_{\rm w} 10^{-25} ({\rm T} / 200)(-2.5)$	[2]
0//	$\Pi_4 O_2 + O\Pi + M \rightarrow O\Pi + 2\Pi_2 O + M$	$2 \times 10^{-10} (T_{gas}/500)^{(-10)}$	[3]
0/8	$(H_2O)_2H^+ + O^- \rightarrow O^+ H^+ 2H_2O$	10^{-7}	[3]
679	$(H_2O)_2H^+ + O^- + M \rightarrow O^- + H^- + 2H_2O^- + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
680	$(H_2O)_2H^+ + O_2^- \rightarrow O_2 + H + 2H_2O$	10-7	[3]
681	$(\mathrm{H}_{2}\mathrm{O})_{2}\mathrm{H}^{+} + \mathrm{O}_{2}^{-} \rightarrow \mathrm{O} + \mathrm{O} + \mathrm{H} + 2\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
682	$(H_2O)_2H^+ + O_2^- + M \rightarrow O_2 + H + 2H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
683	$(H_2O)_2H^+ + O_3^- \rightarrow O_3 + H + 2H_2O$	10-7	[3]
684	$(H_2O)_2H^+ + O_3^- \rightarrow O_2 + O + H + 2H_2O$	10-7	[3]
685	$(H_2O)_2H^+ + O_2^- + M \rightarrow O_2^- + H^+ 2H_2O^- + M$	$2x10^{-25} (T_{}/300)^{(-2.5)}$	[3]
686	$(H_2O)_2H^+ + NO_2 \rightarrow NO_2 + H + 2H_2O$	10-7	[2]
697	$(H_1 \cap O_2) + H_1 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + H_1 + 2H_2 \cap O_2 = (H_1 \cap O_2) + (H_$	10-7	[2]
007	$(\Pi_2 \cup)_{2\Pi} + \Pi_2 \to \Pi_2 \cup \Pi_1 + 2\Pi_2 \cup \Pi_2 \cup I_2 \cup $	10^{-1} $2 \times 10^{-25} (T - (200)(-2.5))$	[2]
000	$(\Pi_2 O)_2 \Pi^+ + NO_2^- + M \rightarrow NO_2^- + \Pi + 2\Pi_2 O + M$	$2 \times 10^{25} (T_{gas}/300)^{(2.5)}$	[3]
689	$(H_2O)_2H^+ + NO_3^- \rightarrow NO_3 + H + 2H_2O$	10-7	[3]
690	$(H_2O)_2H^+ + NO_3^- \rightarrow NO_2 + O + H + 2H_2O$	10-7	[3]
691	$(H_2O)_2H^+ + NO_3^- + M \rightarrow NO_3 + H + 2H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
692	$(H_2O)_2H^+ + H^- \rightarrow H + H + 2H_2O$	10-7	[3]
693	$(H_2O)_2H^+ + H^- + M \rightarrow H + H + 2H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
694	$(H_2O)_2H^+ + OH^- \rightarrow OH + H + 2H_2O$	10-7	[3]
695	$(H_2O)_2H^+ + OH^- \rightarrow O + H + H + 2H_2O$	10-7	[3]
696	$(H_2O)_2H^+ + OH^- + M \rightarrow OH^- + H^+ 2H_2O + M$	$2 \times 10^{-25} (T / (300))(-2.5)$	[2]
607	$(\mathbf{H}_{2} \cup \mathbf{J}_{2}^{\mathbf{H}_{1}} \cup \mathbf{O}^{\mathbf{H}_{1}} \cup \mathbf{H}_{2}^{\mathbf{H}_{2}} \cup \mathbf{O}^{\mathbf{H}_{1}} \cup \mathbf{H}_{2}^{\mathbf{H}_{2}} \cup \mathbf{O}^{\mathbf{H}_{2}} \cup \mathbf{O}$	10-7	[2]
07/	$(\Pi_2 \cup J_2 \Pi + \cup J_1 I_2 \cup \longrightarrow \cup \top \cup \Pi + \Im \Pi_2 \cup (\Pi_2 \cup J_2 \cup I_2 \cup J_2 \cup I_2 \cup J_2 $	10^{-2} 2 - 10 - 25 (T - /200)(25)	[2]
098	$(H_2 U)_2 H^+ + U_2 H_2 U^- + M \rightarrow U + U H + 3 H_2 U + M$	$2 \times 10^{-2.5} (1_{\text{gas}}/300)^{(-2.5)}$	[3]
699	$(H_2O)_3H^+ + O^- \rightarrow O^+ H^+ 3H_2O$	10-7	[3]
700	$(H_2O)_3H^+ + O^- + M \rightarrow O + H + 3H_2O + M$	$2 \times 10^{-23} (T_{gas}/300)^{(-2.5)}$	[3]
701	$(H_2O)_3H^+ + O_2^- \rightarrow O_2 + H + 3H_2O$	10-7	[3]

702	$(H_2O)_3H^+ + O_2^- \rightarrow O + O + H + 3H_2O$	10-7	[3]
703	$(H_2O)_3H^+ + O_2^- + M \rightarrow O_2 + H + 3H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
704	$(\mathrm{H}_{2}\mathrm{O})_{3}\mathrm{H}^{+} + \mathrm{O}_{3}^{-} \rightarrow \mathrm{O}_{3} + \mathrm{H} + 3\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
705	$(H_2O)_3H^+ + O_3^- \rightarrow O_2 + O + H + 3H_2O$	10-7	[3]
706	$(H_2O)_3H^+ + O_3^- + M \rightarrow O_3 + H + 3H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
707	$(H_2O)_3H^+ + NO_2^- \rightarrow NO_2 + H + 3H_2O$	10-7	[3]
708	$(H_2O)_3H^+ + NO_2^- \rightarrow NO + O + H + 3H_2O$	10-7	[3]
709	$(H_2O)_3H^+ + NO_2^- + M \rightarrow NO_2 + H + 3H_2O + M$	$2x10^{-25} (T_{aas}/300)^{(-2.5)}$	[3]
710	$(H_2O)_2H^+ + NO_2^- \rightarrow NO_2 + H + 3H_2O$	10 ⁻⁷	[3]
711	$(H_2O)_2H^+ + NO_2^- \rightarrow NO_2 + O + H + 3H_2O$	10-7	[3]
712	$(H_2O)_3H^+ + NO_3^- + M \rightarrow NO_2 + H + 3H_2O + M$	$2x10^{-25}$ (T /300)(-2.5)	[3]
713	$(H_2O)_3H^+ + H^- \rightarrow H + H + 3H_2O$	10 ⁻⁷	[3]
714	$(H_2O)_3H^+ + H^- + M \rightarrow H + H + 3H_2O + M$	$2x10^{-25}$ (T /300)(-2.5)	[3]
715	$(H_2O)_3H^+ + OH^- \rightarrow OH + H + 3H_2O + W$	10^{-7}	[3]
716	$(H_2O)_3H^+ + OH^- \rightarrow O + H + H + 3H_2O$	10-7	[3]
710	$(\Pi_2 \bigcirc)_{3\Pi} + \bigcirc\Pi \rightarrow \bigcirc + \Pi + \Pi + \Im\Pi_2 \bigcirc$ $(\Pi \bigcirc) \Pi^+ + \bigcirc\Pi^- + M \rightarrow \bigcirc\Pi + \Pi + \Im\Pi_2 \bigcirc$	$2_{\rm x} 10^{-25} ({\rm T} / 200)(-2.5)$	[3]
710	$(\Pi_2 O)_3 \Pi^+ + O\Pi^- + M^- \rightarrow O\Pi^+ \Pi^+ 3\Pi_2 O^+ M^-$	10^{-7}	[3]
/10 710	$(\Pi_2 \bigcirc)_{3\Pi} + \bigcirc_{2\Pi_2 \bigcirc} \longrightarrow \bigcirc + \bigcirc \Pi + 4\Pi_2 \bigcirc$	10^{-7} $2_{\rm w} 10^{-25} (\rm T = /200)(-2.5)$	[3]
719	$(\Pi_2 O)_3 \Pi^+ + O_2 \Pi_2 O^- + M^- \rightarrow O^+ + O^- + 4\Pi_2 O^- + M^-$	$2X10^{-20} (1_{gas}/300)^{(2.0)}$	[3]
720	$(H_2O)_4H^+ + O^- \rightarrow O^- + H^- + 4H_2O^-$	10^{-7} 210-25 (T /200)(-25)	[3]
/21	$(H_2O)_4H^+ + O^- + M \rightarrow O^- + H^- + 4H_2O^- + M$	$2X10^{-2.5}$ (1 _{gas} /300)(-2.5)	[3]
722	$(H_2O)_4H^+ + O_2^- \rightarrow O_2 + H + 4H_2O$	107	[3]
723	$(H_2O)_4H^+ + O_2^- \rightarrow O + O + H + 4H_2O$	10-7	[3]
724	$(H_2O)_4H^+ + O_2^- + M \rightarrow O_2 + H + 4H_2O + M$	$2x10^{-25}$ (T _{gas} /300) ^(-2.5)	[3]
725	$(H_2O)_4H^+ + O_3^- \rightarrow O_3 + H + 4H_2O$	10-7	[3]
726	$(H_2O)_4H^+ + O_3^- \rightarrow O_2 + O + H + 4H_2O$	10-7	[3]
727	$(H_2O)_4H^+ + O_3^- + M \rightarrow O_3 + H + 4H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
728	$(H_2O)_4H^+ + NO_2^- \rightarrow NO_2 + H + 4H_2O$	10-7	[3]
729	$(H_2O)_4H^+ + NO_2^- \rightarrow NO + O + H + 4H_2O$	10-7	[3]
730	$(H_2O)_4H^+ + NO_2^- + M \rightarrow NO_2 + H + 4H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
731	$(H_2O)_4H^+ + NO_3^- \rightarrow NO_3 + H + 4H_2O$	10-7	[3]
732	$(\mathrm{H}_{2}\mathrm{O})_{4}\mathrm{H}^{+} + \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2} + \mathrm{O} + \mathrm{H} + 4\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
733	$(H_2O)_4H^+ + NO_3^- + M \rightarrow NO_3 + H + 4H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
734	$(H_2O)_4H^+ + H^- \rightarrow H + H + 4H_2O$	10-7	[3]
735	$(H_2O)_4H^+ + H^- + M \rightarrow H + H + 4H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
736	$(H_2O)_4H^+ + OH^- \rightarrow OH + H + 4H_2O$	10-7	[3]
737	$(H_2O)_4H^+ + OH^- \rightarrow O + H + H + 4H_2O$	10-7	[3]
738	$(H_2O)_4H^+ + OH^- + M \rightarrow OH + H + 4H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
739	$(H_2O)_4H^+ + O_2H_2O^- \rightarrow O + OH + 5H_2O$	10-7	[3]
740	$(H_2O)_4H^+ + O_2H_2O^- + M \rightarrow O + OH + 5H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
741	$(H_2O)_5H^+ + O^- \rightarrow O + H + 5H_2O$	10-7	[3]
742	$(H_2O)_5H^+ + O^- + M \rightarrow O + H + 5H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
743	$(H_2O)_5H^+ + O_2^- \rightarrow O_2 + H + 5H_2O$	10-7	[3]
744	$(H_2O)_5H^+ + O_2^- \rightarrow O + O + H + 5H_2O$	10-7	[3]
745	$(H_2O)_5H^+ + O_2^- + M \rightarrow O_2 + H + 5H_2O + M$	$2x10^{-25} (T_{aag}/300)^{(-2.5)}$	[3]
746	$(H_2O)_5H^+ + O_3^- \rightarrow O_3 + H + 5H_2O$	10 ⁻⁷	[3]
747	$(H_2O)_5H^+ + O_2^- \rightarrow O_2 + O_2 + H_2 + 5H_2O_2$	10-7	[3]
748	$(H_2O)_{\mathcal{E}}H^+ + O_2^- + M \rightarrow O_2^- + H + 5H_2O + M$	$2x10^{-25} (T_{}/300)^{(-2.5)}$	[3]
749	$(H_2O)_{c}H^+ + NO_{a}^- \rightarrow NO_{a} + H + 5H_2O$	10 ⁻⁷	[3]
750	$(H_2O)_{c}H^+ + NO_{2}^- \rightarrow NO + O + H + 5H_2O$	10-7	[3]
751	$(H_2 \bigcirc J_3 H^+ + N \bigcirc J_2 \rightarrow N \bigcirc H^+ \rightarrow N \bigcirc H^+ \rightarrow H_2 \bigcirc H^+ \rightarrow M \bigcirc H^+ \rightarrow H^- \rightarrow M \bigcirc H^+ \rightarrow H^- \rightarrow M \bigcirc H^+ \rightarrow H^- \rightarrow H$	$2 \times 10^{-25} (T / 300)(-2.5)$	[3]
757	$(H_2O)_2H^+ + NO_2^- \rightarrow NO_2 + H + 5H_2O + M$	10-7	[2]
752	$(H_{-}O)_{-}H^{+} + NO_{-} \longrightarrow NO_{-} + O + H + 5H_{-}O$	10-7	[2]
753	$(H_2 \bigcirc J_5 \Pi + \Pi \bigcirc J_3 \rightarrow \Pi \bigcirc 2 + \bigcirc + \Pi + J \Pi_2 \bigcirc$ $(H_4 \bigcirc H^+ + N \bigcirc - + M \rightarrow N \bigcirc + \amalg + 5 \amalg \bigcirc + M$	$2 \times 10^{-25} (T / 200)(-2.5)$	[J] [2]
134 755	$(\Pi_2 \bigcirc J_5 \Pi^+ + \Pi \bigcirc 3^+ + \Pi \square \rightarrow \Pi \bigcirc 3^+ \Pi^+ \supset \Pi_2 \bigcirc \uparrow^+ \Pi \square$	$2x10^{-1}$ (1 _{gas} /500) ⁽⁾	[2]
133 764	$(\Pi_2 \cup)_{5}\Pi^{-} \top \Pi^{-} \Pi^{-} \Pi^{-} \Pi^{-} J\Pi_2 \cup U$	10^{-1} 2x 10-25 (T / 200)(-2.5)	[3] [2]
/30	$(\Pi_2 \cup)_5 \Pi^+ + \Pi^- + \Pi^+ \Pi^+ + \Pi^+ \to \Pi_2 \cup + \mathbb{M}$	$2 \times 10^{-2} (1_{gas}/300)^{(-2.5)}$	[3]
157	$(H_2O)_5H^+ + OH^- \rightarrow OH + H + 5H_2O$	10-7	[3]

758	$(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{H}^{+} + \mathrm{O}\mathrm{H}^{-} \rightarrow \mathrm{O} + \mathrm{H} + \mathrm{H} + 5\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
759	$(H_2O)_5H^+ + OH^- + M \rightarrow OH + H + 5H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
760	$(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{H}^{+} + \mathrm{O}_{2}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{O} + \mathrm{O}\mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
761	$(H_2O)_5H^+ + O_2H_2O^- + M \rightarrow O + OH + 6H_2O + M$	$2x10^{-25} (T_{gas}/300)^{(-2.5)}$	[3]
762	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{O}^{-} \rightarrow \mathrm{O} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
763	$(H_2O)_6H^+ + O^- + M \rightarrow O + H + 6H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
764	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{O}_{2}^{-} \rightarrow \mathrm{O}_{2} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
765	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{O}_{2}^{-} \rightarrow \mathrm{O} + \mathrm{O} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
766	$(H_2O)_6H^+ + O_2^- + M \rightarrow O_2 + H + 6H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
767	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{O}_{3}^{-} \rightarrow \mathrm{O}_{3} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
768	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{O}_{3}^{-} \rightarrow \mathrm{O}_{2} + \mathrm{O} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
769	$(H_2O)_6H^+ + O_3^- + M \rightarrow O_3 + H + 6H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
770	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{2} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
771	$(H_2O)_6H^+ + NO_2^- \rightarrow NO + O + H + 6H_2O$	10-7	[3]
772	$(H_2O)_6H^+ + NO_2^- + M \rightarrow NO_2 + H + 6H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
773	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
774	$(H_2O)_6H^+ + NO_3^- \rightarrow NO_2 + O + H + 6H_2O$	10-7	[3]
775	$(H_2O)_6H^+ + NO_3^- + M \rightarrow NO_3 + H + 6H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
776	$(H_2O)_6H^+ + H^- \rightarrow H + H + 6H_2O$	10-7	[3]
777	$(H_2O)_6H^+ + H^- + M \rightarrow H + H + 6H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
778	$(H_2O)_6H^+ + OH^- \rightarrow OH + H + 6H_2O$	10-7	[3]
779	$(H_2O)_6H^+ + OH^- \rightarrow O + H + H + 6H_2O$	10-7	[3]
780	$(H_2O)_6H^+ + OH^- + M \rightarrow OH + H + 6H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
781	$(H_2O)_6H^+ + O_2H_2O^- \rightarrow O + OH + 7H_2O$	10-7	[3]
782	$(H_2O)_6H^+ + O_2H_2O^- + M \rightarrow O + OH + 7H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
783	$(H_2O)_7H^+ + O^- \rightarrow O + H + 7H_2O$	10-7	[3]
784	$(H_2O)_7H^+ + O^- + M \rightarrow O + H + 7H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
785	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{O}_{2}^{-} \rightarrow \mathrm{O}_{2} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
786	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{O}_{2}^{-} \rightarrow \mathrm{O} + \mathrm{O} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
787	$(H_2O)_7H^+ + O_2^- + M \rightarrow O_2 + H + 7H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
788	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{O}_{3}^{-} \rightarrow \mathrm{O}_{3} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
789	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{O}_{3}^{-} \rightarrow \mathrm{O}_{2} + \mathrm{O} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
790	$(H_2O)_7H^+ + O_3^- + M \rightarrow O_3 + H + 7H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
791	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{2} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
792	$(H_2O)_7H^+ + NO_2^- \rightarrow NO + O + H + 7H_2O$	10-7	[3]
793	$(H_2O)_7H^+ + NO_2^- + M \rightarrow NO_2 + H + 7H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
794	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
795	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2} + \mathrm{O} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
796	$(H_2O)_7H^+ + NO_3^- + M \rightarrow NO_3 + H + 7H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
797	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{H}^{-} \rightarrow \mathrm{H} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
798	$(\mathrm{H_2O})_7\mathrm{H^+} + \mathrm{H^-} + \mathrm{M} \rightarrow \mathrm{H} + \mathrm{H} + 7\mathrm{H_2O} + \mathrm{M}$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
799	$(H_2O)_7H^+ + OH^- \rightarrow OH + H + 7H_2O$	10-7	[3]
800	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{O}\mathrm{H}^{-} \rightarrow \mathrm{O} + \mathrm{H} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
801	$(H_2O)_7H^+ + OH^- + M \rightarrow OH + H + 7H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
802	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{O}_{2}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{O} + \mathrm{O}\mathrm{H} + 8\mathrm{H}_{2}\mathrm{O}$	10-7	[3]
803	$(H_2O)_7H^+ + O_2H_2O^- + M \rightarrow O + OH + 8H_2O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
804	$\mathrm{H}_{2}\mathrm{O}_{3}^{+} + \mathrm{NO}_{3}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{O}_{2} + \mathrm{NO}_{3} + 2\mathrm{H}_{2}\mathrm{O}$	10 ⁻⁷ (T _{gas} /300) ^(-0.5)	[3]
805	$\mathrm{H_4O_2^+} + \mathrm{NO_3H_2O^-} \rightarrow \mathrm{NO_3} + \mathrm{3H_2O}$	$10^{-7} (T_{gas}/300)^{(-0.5)}$	[3]
806	$\mathrm{H_4O_2^+} + \mathrm{NO_3H_2O^-} \rightarrow \mathrm{NO_3} + 2\mathrm{H_2O} + \mathrm{OH} + \mathrm{H}$	$10^{-7} (T_{gas}/300)^{(-0.5)}$	[3]
807	$(\mathrm{H}_{2}\mathrm{O})_{2}\mathrm{H}^{+} + \mathrm{NO}_{3}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 3\mathrm{H}_{2}\mathrm{O}$	10 ⁻⁷ (T _{gas} /300) ^(-0.5)	[3]
808	$(\mathrm{H}_{2}\mathrm{O})_{3}\mathrm{H}^{+} + \mathrm{NO}_{3}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 4\mathrm{H}_{2}\mathrm{O}$	$10^{-7} (T_{gas}/300)^{(-0.5)}$	[3]
809	$(\mathrm{H}_{2}\mathrm{O})_{4}\mathrm{H}^{+} + \mathrm{NO}_{3}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 5\mathrm{H}_{2}\mathrm{O}$	$10^{-7} (T_{gas}/300)^{(-0.5)}$	[3]
810	$(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{H}^{+} + \mathrm{NO}_{3}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 6\mathrm{H}_{2}\mathrm{O}$	10 ⁻⁷ (T _{gas} /300) ^(-0.5)	[3]
811	$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{H}^{+} + \mathrm{NO}_{3}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 7\mathrm{H}_{2}\mathrm{O}$	$10^{-7} (T_{gas}/300)^{(-0.5)}$	[3]
812	$(\mathrm{H}_{2}\mathrm{O})_{7}\mathrm{H}^{+} + \mathrm{NO}_{3}\mathrm{H}_{2}\mathrm{O}^{-} \rightarrow \mathrm{NO}_{3} + \mathrm{H} + 8\mathrm{H}_{2}\mathrm{O}$	$10^{-7} (T_{gas}/300)^{(-0.5)}$	[3]

813 O ⁺ O → O ₂ + e 2x1 814 O ⁺ O(¹ D) → O + O + e 10 ⁻¹ 815 O ⁺ O ₂ → O + O ₂ 1.55 817 O ⁺ O ₂ → O + O ₂ 1.55 817 O ⁺ O ₂ → O + O ₂ 3x1 819 O ⁺ O ₂ (D) → O + O ₂ 3x1 810 O ⁺ O ₂ (D) → O + O ₂ 8x1 820 O ⁺ O ₂ (D) → O + O ₂ 8.00 821 O ⁺ O → O + O ₂ 8.00 822 O ⁺ N → NO + e 2.01 823 O ⁺ N → NO + e 10 ⁻¹ 825 O ⁺ N N(² D) → O + N + e 10 ⁻¹ 826 O ⁺ NO ₂ → O + NO ₂ 10 ⁰ 827 O ⁺ NO ₂ → O + NO ₂ 10 ⁰ 828 O ⁺ NO ₂ → O + NO ₂ 10 ⁰ 829 O ⁺ N ₂ → N ₂ O ⁺ e 10 ⁻¹ 830 O ⁺ N ₂ O → NO + NO 2x1 831 O ⁺ H → OH + e 5x1 832 O ₂ ⁺ O → O ₂ + O 1.55 833 O ₂ ⁺ O + O ₂ + O 1.55 834 O ₂ ⁺ O(D) → O + O + O 10 ⁻¹ 835 O ₂	-		Negative ion-neutral reactions	
814 $O + O(^{1}D) \rightarrow O + O + e$ 10 ⁴ 815 $O + O(^{1}S) \rightarrow O + O_{2}$ 155 817 $O + O_{2} \rightarrow O_{3} + e$ 5x1 818 $O + O_{2}(D) \rightarrow O + O_{2}$ 3x1 819 $O + O_{2}(D) \rightarrow O + O_{2} + e$ 6.93 820 $O + O_{2}(D) \rightarrow O + O_{2} + e$ 3.01 823 $O + O_{3}(O) \rightarrow O + O_{2} + e$ 3.01 823 $O + N_{3} \rightarrow O + O_{3}$ 1.99 821 $O + N_{3} \rightarrow O + O_{3} + e$ 1.01 823 $O + N_{3} \rightarrow O + N_{4} + e$ 10 ⁴ 825 $O + N_{3} \rightarrow O + N_{2} - e$ 1.07 826 $O + N_{3} \rightarrow O + N_{3} - N_{3} + e$ 1.01 826 $O + N_{3} \rightarrow O + N_{3} - N_{3} - N_{3} + N_{3} - N$		813	$O^- + O \rightarrow O_2 + e$	2x1
815 $O + O(^1S) \rightarrow O + O + e$ 10^{-1} 816 $O + O_2 \rightarrow O + O_2^ 1.55$ 817 $O + O_2(^1D) \rightarrow O + O_2^ 3x1$ 819 $O + O_2(^1D) \rightarrow O_3 + e$ $3x1$ 819 $O + O_2(^1D) \rightarrow O_3 + e$ $3x1$ 820 $O + O_3(^1D) \rightarrow O_3 + e$ $3x1$ 821 $O + O_3 \rightarrow O + O_3^ 1.99$ 822 $O + O_3 \rightarrow O_2 + O_2 + e$ 3.01 823 $O + N \rightarrow NO + e$ 2.66 824 $O + N(^2P) \rightarrow O + N + e$ 10^{-1} 825 $O + NO \rightarrow NO_2 + e$ 10^{-1} 826 $O + NO \rightarrow NO_2 + e$ 10^{-1} 827 $O + NO \rightarrow O_2 + 0 + NO_3^ 10^{-1}$ 828 $O + NO_2 \rightarrow O + NO_3^ 5x1$ 829 $O + N_2 \rightarrow N_2O + e$ 10^{-1} 831 $O + H \rightarrow OH + e$ $5x1$ 832 $O_2^+ + O \rightarrow O_2 + O$ 1.55 833 $O_2^+ + O \rightarrow O_2 + O$ 1.55 833 $O_2^+ + O \rightarrow O_2 + O$ 10^{-1} 835 $O_2^+ + O_1^+ O_2 + O_2 + e$ 10^{-1} 836 $O_2^+ + O_1$		814	$O^- + O(^1D) \rightarrow O + O + e$	10-1
816 $0 + 0_2 \rightarrow 0 + 0_2^{-1}$ 1.55 817 $0 + 0_2(0) \rightarrow 0 + 0_2^{-1}$ 3x1 818 $0 + 0_2(0) \rightarrow 0 + 0_2^{-1}$ 3x1 820 $0 + 0_2(0) \rightarrow 0 + 0_2^{-1} e$ 3x1 820 $0 + 0_2(0) \rightarrow 0 + 0_2^{-1} e$ 3x1 820 $0 + 0_2(0) \rightarrow 0 + 0_2^{-1} e$ 3x1 821 $0 + 0_3 \rightarrow 0 + 0_3^{-1} e$ 3x0 823 $0 + N \rightarrow N0 + e$ 10 ¹¹ 825 $0 + N \rightarrow N0 + e$ 10 ¹² 826 $0 + N(2) \rightarrow 0 + N + e$ 10 ¹⁴ 826 $0 + N_0 \rightarrow 0 + N0_2^{-1}$ 10 ¹⁹ 827 $0 + N_0 \rightarrow 0 + N0_2^{-1}$ 10 ¹⁴ 828 $0 + N_2 \rightarrow 0 \rightarrow 0 + N0^{-1}$ 10 ¹⁴ 830 $0 + N_2 \rightarrow N0 + N0^{-1}$ 10 ¹⁴ 831 $0 + H \rightarrow OH + e$ 5x1 832 $0_2 + 0 - 0_2 + 0^{-1}$ 1.55 833 $0_2 + 0 - 0_2 + 0^{-1}$ 1.55 834 $0_2 + 0(1D) \rightarrow 0 + 0 + 0^{-1}$ 10 ¹⁴ 835 $0_2 + 0(1) \rightarrow 0 + 0_2 + e^{-1}$ 10 ¹⁴ 835 $0_2 + 0_2 + 0_2 + e^{-1}$ 559 840 $0_2 + 0$		815	$O^- + O(^1S) \rightarrow O + O + e$	10-1
817 O + O ₂ → O ₃ + e 818 O + O ₂ (¹ D) → O + O ₂ ⁻ 331 819 O + O ₂ (¹ D) → O ₃ + e 320 O + O ₃ (¹ D) → O ₃ + e 321 O + O ₃ → O + O ₃ ⁻ = 322 O + O ₃ → O ₂ + O ₂ + e 323 O + N → NO + e 324 O + N(² D) → O + N + e 325 O + N(² P) → O + N + e 326 O + NO ₂ → O + NO ₂ ⁻ 10 ⁴ 327 O + NO ₂ → O + NO ₃ ⁻ 531 328 O + NO ₃ → O + NO ₃ ⁻ 531 329 O + N ₂ → N ₂ O + e 320 O + N ₂ → N ₂ O + e 321 O + H ₂ → N ₂ O + e 323 O ₂ ⁻ + O → O ₂ + O + NO ⁻ 10 ⁴¹ 333 O ₂ ⁻ + O → O ₃ + e 334 O ₂ ⁻ + O(¹ D) → O + O + O ⁻ 10 ⁴¹ 335 O ₂ ⁻ + O(¹ D) → O + O + O ⁻ 10 ⁴¹ 335 O ₂ ⁻ + O(¹ D) → O + O + O ⁻ 10 ⁴¹ 337 O ₂ ⁻ + O(¹ S) → O + O + O ⁻ 10 ⁴¹ 338 O ₂ ⁻ + O ₂ ⁻ → O ₂ + O ₂ + e 340 O ₂ ⁻ + O(¹ S) → O + O + O ⁻ 10 ⁴¹ 337 O ₂ ⁻ + O(¹ S) → O + O + O ⁻ 10 ⁴¹ 338 O ₂ ⁻ + O ₂ ⁻ → O ₂ + O ₂ + e 340 O ₂ ⁻ + O(¹ S) → O + O + O ⁻ 10 ⁴¹ 343 O ₂ ⁻ + O(¹ C) → O + O + O ⁻ 10 ⁴¹ 344 O ₂ ⁻ + N → NO ₂ + e 345 344 O ₂ ⁻ + O(¹ C) → O + O + O ⁻ 10 ⁴¹ 345 O ₂ ⁻ + O(¹ C) → O + O + O ⁻ 10 ⁴¹ 346 O ₂ ⁻ + N(² P) → O ₂ + O ₂ + e 347 O ₂ ⁻ + N → NO ₂ + e 348 O ₂ ⁻ + N → NO ₂ + e 349 O ₂ ⁻ + N → NO ₂ + e 341 O ₂ ⁻ + N(² P) → O ₂ + N + e 342 O ₂ ⁻ + N(² P) → O ₂ + N + e 343 O ₂ ⁻ + N(² D) → O ₂ + N + e 344 O ₂ ⁻ + N(² D) → O ₂ + N + e 355 O ₃ ⁻ + N(² D) → O ₂ + N + e 356 O ₃ ⁻ + N(² D) → O ₂ + N + e 357 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 255 355 O ₃ ⁻ + O(¹ D) → O + O + O + O ⁻ 255 355 O ₃ ⁻ + O(¹ D) → O + O + O ² → 0 ² + N ² = 351 O ₂ ⁻ + N(² D) → O ₂ + N + e 351 O ₂ ⁻ + N(² D) → O ₂ + N + e 351 O ₃ ⁻ + N(² D) → O ₂ + N + e 351 O ₃ ⁻ + N(² D) → O ₂ + N + e 351 O ₃ ⁻ + N(² D) → O ₂ + N + e 351 O ₃ ⁻ + N(² D) → O + N + O ₂ ⁻ 10 ⁴¹ 356 O ₃ ⁺ + N(¹ D) → O + O + O + O ² → 0 ² + O ² + O = 0 ⁴¹ 366 O ₃ ⁺ + N(¹ D)		816	$O^- + O_2 \rightarrow O + O_2^-$	1.5x
818 $O + O_2(^1D) \rightarrow O + O_2^ 3x1$ 819 $O + O_2(^1D) \rightarrow O_3 + e$ $3x1$ 820 $O + O_2(^1D) \rightarrow O + O_2 + e$ $3x1$ 821 $O + O_3 \rightarrow O + O_2^+$ $9x2$ 822 $O + O_3 \rightarrow O_2 + O_2 + e$ $3x0$ 823 $O + N \rightarrow NO + e$ 10^{41} 824 $O + NO \rightarrow NO_2 + e$ 10^{41} 825 $O + NO \rightarrow NO_2 + e$ 10^{41} 826 $O + NO \rightarrow NO_2 + e$ 10^{41} 826 $O + NO_2 \rightarrow O + NO_3^ 10^{41}$ 827 $O + N_2 \rightarrow N_2 O + e$ 10^{41} 830 $O + N_2 \rightarrow N_2 O + e$ 10^{41} 831 $O + H \rightarrow OH + e$ $5x1$ 832 $O_2^+ + O^+ O_2 + O^ 155$ 833 $O_2^+ + O^+ O_2 + O^ 155$ 833 $O_2^+ + O^+ O_2 + O^ 10^{41}$ 835 $O_2^+ + O_1^+ O_2 + O_2 + O^ 10^{41}$ 836 $O_2^+ + O_2^+ O_2 + O^ 10^{41}$ 837 $O_2 + O_2 + O_2 + O_2 + e$ 275 840 $O_2^- + O_2^+ O_2 + O_2 + O_2 + e$ 275 840		817	$O^- + O_2 \rightarrow O_3 + e$	5x1
819 O + O ₂ (¹ D) → O ₃ + e 311 820 O + O ₂ (¹ S) → O + O ₂ + e 6.99 821 O + O ₃ → O + O ₃ 1.99 822 O + O ₃ → O ₂ + O ₂ + e 3.00 823 O + N → NO + e 2.66 824 O + N(² D) → O + N + e 10 ⁻¹ 825 O + N(² P) → O + N + e 10 ⁻¹ 826 O + NO → NO ₂ + e 2.55 827 O + NO ₂ → O + NO ₃ 5.11 829 O + N ₂ → O + NO ₃ 5.11 829 O + N ₂ → O + NO ₃ 5.11 821 O + H → OH + e 5.11 831 O + H → OH + e 5.11 832 O ₂ + O → O ₂ + O - 10 ⁻¹ 833 O ₂ + O → O ₂ + O - 10 ⁻¹ 834 O ₂ + O(¹ D) → O + O + O - 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O + O - 10 ⁻¹ 836 O ₂ + O(¹ S) → O + O + O - 10 ⁻¹ 837 O ₂ + O(¹ S) → O + O + O - 10 ⁻¹ 838 O ₂ + O ₂ → O ₂ + O ₂ + e 2.75 840 O ₂ - V ₂ (¹ S) → O + O + O - 10 ⁻¹ 837 O ₂ + O ₂ (¹ S) → O + O + O - 10 ⁻¹ 838 O ₂ + O ₂ → O ₂ + O ₂ + e 2.75 840 O ₂ - V ₂ (¹ S) → O + O + O - 10 ⁻¹ 837 O ₂ + O ₁ (² S) → O + O + 2 - e 10 ⁻¹ 841 O ₂ - V ₂ (¹ S) → O + O + 2 - e 2.75 842 O ₂ - V ₂ (¹ S) → O + O + 2 - e 10 ⁻¹ 843 O ₂ + N → NO + O - 10 ⁻¹ 844 O ₂ + N → NO + O - 10 ⁻¹ 845 O ₂ + N(² P) → O ₂ + N + e 10 ⁻¹ 846 O ₂ + N(² P) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₂ → O ₂ + N + e 10 ⁻¹ 848 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₂ → O ₂ + N ₂ + e 1.95 849 O ₂ + N ₂ → O ₂ + N ₂ + e 1.94 850 O ₂ + N ₂ → O ₂ + N ₂ + e 1.94 850 O ₂ + N ₂ → O ₂ + N ₂ + e 1.94 850 O ₂ + N ₂ → O ₂ + N ₂ + e 1.94 850 O ₂ + N ₂ → O ₂ + N ₂ + e 1.94 851 O ₂ + N ₂ O → NO + NO ₂ - 2.55 855 O ₃ + O(¹ D) → O + O + O ₂ - 0.5 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ - 0.5 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ - 0.5 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ - 0.5 10 ⁻¹ 856 O ₃ + O(¹ S) → O + O + O ₂ - 0.5 10 ⁻¹ 856 O ₃ + O(¹ S) → O + O + O ₂ - 0.5 10 ⁻¹ 856 O ₃ + O(¹ S) → O + O + O + O ₂ - 10 ⁻¹ 856 O ₃ + O(¹ S) → O + O + O + O ₂ - 10 ⁻¹ 866 O ₃ + N(¹ C) → O + N + O ₂ - 10 ⁻¹ 866 O ₃ + N(818	$O^- + O_2(^1D) \rightarrow O + O_2^-$	3x1
820 O + O ₂ (¹ S) → O + O ₂ + e 6.99 821 O + O ₃ → O + O ₃ . 1.99 822 O + O ₃ → O ₂ + O ₂ + e 3.00 823 O + N → NO + e 2.66 824 O + N(² D) → O + N + e 10 ⁻¹ 825 O + N(² P) → O + N + e 10 ⁻¹ 826 O + NO → NO ₂ + e 2.55 827 O + NO ₂ → O + NO ₃ . 5x1 829 O + N ₂ → N ₂ O + e 10 ⁻¹ 830 O + N ₂ O → NO + NO 2 2x1 831 O + H → OH + e 5x1 832 O ₂ + O → O ₂ + O 1.55 833 O ₂ + O → O ₃ + e 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O + O · 10 ⁻¹ 836 O ₂ + O(¹ D) → O + O + O · 10 ⁻¹ 837 O ₂ + O(¹ D) → O + O + O · 10 ⁻¹ 838 O ₂ + O(² D) → O + O + O · 10 ⁻¹ 839 O ₂ + O ₂ → O + O · 2 + e 10 ⁻¹ 836 O ₂ - V(¹ S) → O + O + Q + e 10 ⁻¹ 837 O ₂ + O(¹ D) → O + O + Q + e 2.77 840 O ₂ + O ₂ (¹ D) → O + O + Q + e 2.77 841 O ₂ + N → NO + O 10 ⁻¹ 841 O ₂ + N → NO + O 10 ⁻¹ 843 O ₂ + N → NO + O 10 ⁻¹ 844 O ₂ + N → NO + O 10 ⁻¹ 845 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 846 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₂ → O ₂ + N + e 10 ⁻¹ 848 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₂ → O ₂ + N ₂ + e 10 ⁻¹ 848 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 848 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 847 O ₂ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 848 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 850 O ₂ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 851 O ₂ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 852 O ₂ + H ₂ O → N ₂ + O ₃ → O ₂ + N ₂ + e 10 ⁻¹ 853 O ₃ + O → O ₂ + O ₂ + e 3x1 854 O ₃ + O → O ₂ + O ₂ + e 3x1 855 O ₃ + O(¹ D) → O + O + O ₂ · 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ · 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ + 0 · 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ · 0 · 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ + 0 · 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ + 0 · 10 ⁻¹ 866 O ₃ + N(² D) → O + N + O ₂ · 10 ⁻¹ 866 O ₃ + N(² D) → O + N + O ₂ ·		819	$O^- + O_2(^1D) \rightarrow O_3 + e$	3x1
821 O + O ₃ → O + O ₃ . 1.99 822 O + O ₃ → O ₂ + O ₂ + e 3.00 823 O + N → NO + e 2.65 824 O + N(P) → O + N + e 10 ⁻¹ 825 O + N(P) → O + N + e 10 ⁻¹ 826 O + NO → NO ₂ + e 2.55 827 O + NO ₂ → O + NO ₃ . 5.11 829 O + N ₂ → O + O + O · 0.21 830 O + N ₂ O → NO + NO ⁻ 2.11 831 O + H → OH + e 5.11 832 O ₂ + O → O ₂ + O 1.55 833 O ₂ + O → O ₃ + e 1.55 834 O ₂ + O(¹ D) → O + O + O · 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O + O · 10 ⁻¹ 836 O ₂ + O(¹ S) → O + O + O · 10 ⁻¹ 837 O ₂ + O(¹ S) → O + O + O · 10 ⁻¹ 838 O ₂ + O → O ₃ + e 1.55 844 O ₂ + O(¹ D) → O + O + 2 + e 10 ⁻¹ 837 O ₂ + O(¹ S) → O + O + 2 + e 10 ⁻¹ 838 O ₂ - V → O ₂ + O · 0 + O · 10 ⁻¹ 839 O ₂ + O ₂ → O · 0 + O + 2 + e 10 ⁻¹ 838 O ₂ - V → O ₂ + O · 0 + O · 10 ⁻¹ 839 O ₂ - V → O ₂ + O · 0 + O · 10 ⁻¹ 841 O ₂ - V + O(¹ D) → O + 2 + 0 + e 2.17 842 O ₂ + N → NO + O · 10 ⁻¹ 844 O ₂ + N → NO + O · 10 ⁻¹ 845 O ₂ + N(² P) → O ₂ + N + e 10 ⁻¹ 846 O ₂ + N(² P) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 848 O ₂ + NO ₃ → O ₂ + NO ₃ · 10 ⁻¹ 849 O ₂ + N ₂ → O ₂ + NO ₂ · 0.2 ⁻¹ N + e 10 ⁻¹ 846 O ₂ + N(² P) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₂ → O ₂ + NO ₂ · 0.2 ⁻¹ N + e 10 ⁻¹ 848 O ₂ + NO ₂ → O ₂ + NO ₂ · 0.2 ⁻¹ N + e 10 ⁻¹ 849 O ₂ + N ₂ → O ₂ + NO ₂ · 0.2 ⁻¹ N + e 10 ⁻¹ 846 O ₃ + N(¹ D) → O + O + O + O · 10 ⁻¹ 850 O ₃ + N(² D) → O + NO + O · 10 ⁻¹ 851 O ₃ + O → O + O + O · 0.2 ⁻¹ O ⁻¹ 855 O ₃ + O(¹ D) → O + O + O + O · 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O + O · 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O + O · 0.1 ⁻¹ 857 O ₃ + O(¹ D) → O + O + O + O · 0.1 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O + O · 0.1 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O + O · 0.1 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O + O · 0.1 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O + O · 0.1 ⁻¹ 866 O ₃ + O(¹ D) → O + O + O + O · 0.1 ⁻¹ 867 O ₃ + N(² D) → O + N + O · 0.1 ⁻¹ 866		820	$O^- + O_2(^1S) \rightarrow O + O_2 + e$	6.9x
822 O + O ₃ → O ₂ + O ₂ + e 3.0 823 O + N → NO + e 2.6 824 O + N(² D) → O + N + e 10 ⁻¹ 825 O + N(² P) → O + N + e 2.5 827 O + NO ₂ → O + NO ₂ ⁻ 10 ⁻³ 828 O + NO ₃ → O + NO ₃ ⁻ 5x1 829 O + N ₂ → N ₂ O + e 10 ⁻¹ 830 O + N ₂ O → NO + NO ⁻ 2x1 831 O + H → OH + e 5x1 832 O ₂ ⁻ + O → O ₃ + e 1.5 833 O ₂ ⁻ + O → O ₃ + e 1.5 834 O ₂ ⁻ + O(¹ D) → O + O + O ⁻ 10 ⁻¹ 835 O ₂ ⁻ + O(¹ D) → O + O + Q ² + e 10 ⁻¹ 836 O ₂ ⁻ + O(¹ S) → O + O ₂ + e 10 ⁻¹ 837 O ₂ ⁻ + O(¹ S) → O + O ₂ + e 2.7 838 O ₂ ⁻ + O ₂ ⁻ → O ₃ + e 2.5 840 O ₂ ⁻ + O(¹ S) → O + O ₂ + e 2.7 559 840 O ₂ ⁻ + O ₂ ⁻ (D) → O ₂ + O ₂ + e 2.7 559 840 O ₂ ⁻ + O ₂ ⁻ (D) → O ₂ + O ₂ + e 2.7 841 O ₂ ⁻ + O ₂ ⁻ (D) → O ₂ + O ₂ + e 4.1 841 O ₂ ⁻ + O ₂ ⁻ (D) → O ₂ + N ₂ + e 10 ⁻¹ 845 O ₂ ⁻ + N(² D) → O ₂ + N ₂ + e 10 ⁻¹ 846 O ₂ ⁻ + N(² D) → O ₂ + N ₂ + e 10 ⁻¹ 847 O ₂ ⁻ + N(² D) → O ₂ + N ₂ + e 10 ⁻¹ 848 O ₂ ⁻ + N(² D) → O ₂ + N ₂ + e 10 ⁻¹ 849 O ₂ ⁻ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 846 O ₂ ⁻ + N(² D) → O ₂ + N ₂ + e 10 ⁻¹ 847 O ₂ ⁻ + N(² D) → O ₂ + N ₂ + e 10 ⁻¹ 848 O ₂ ⁻ + N(² D) → O ₂ + N ₂ + e 10 ⁻¹ 849 O ₂ ⁻ + N ₂ → O ₂ + N ₂ + e 10 ⁻¹ 850 O ₂ ⁻ + N ₂ O → NO + NO ₂ ⁻ 2.5 850 S ⁻ O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 851 O ₂ ⁻ + N ₂ O → NO + NO ₂ ⁻ 2.5 855 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 856 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 857 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 858 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 858 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 859 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 861 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 862 O ₃ ⁺ + O(¹ D) → O + O + O + O ⁻ 10 ⁻¹ 863 O ₃ ⁺ + N(² D) → O + N + O ⁻ 10 ⁻¹ 864 O ₃ ⁺ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ ⁺ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ ⁺ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ ⁺ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ ⁺ + N(² D) → O + N + O ⁻ 10 ⁻¹ 86		821	$O^- + O_3 \rightarrow O + O_3^-$	1.99
823 O+N→NO+e 2.65 824 O+N(2P)→O+N+e 10 ⁴¹ 825 O+N(2P)→O+N+e 10 ⁴¹ 826 O+NO→NO ₂ +e 2.55 827 O+NO ₂ →O+NO ₂ ⁻ 10 ⁴⁹ 828 O+NO ₃ →O+NO ₃ ⁻ 5x1 829 O+N ₂ →N ₂ O+e 10 ⁴¹ 830 O+N ₂ →NO+NO 2.11 831 O+H→OH+e 5x1 832 O ₂ +O→O ₂ +O ⁻ 1.55 833 O ₂ +O→O ₃ +e 1.55 834 O ₂ +O(D)→O+O+O ⁻ 10 ⁴¹ 836 O ₂ +O(D)→O+O+O ⁻ 10 ⁴¹ 837 O ₂ +O(D)→O+O ₂ +e 10 ⁴¹ 838 O ₂ +O ₂ →O ₂ +O ₂ +e 2.55 840 O ₂ +O ₂ (D)→O ₂ +O ₂ +e 2.55 840 O ₂ +O ₂ (D)→O ₂ +O ₂ +e 2.55 841 O ₂ +O ₂ (D)→O ₂ +O ₂ +e 2.55 842 O ₂ +O ₂ +O ₂ +O ₂ +e 2.55 840 O ₂ +O ₂ (D)→O ₂ +O ₂ +e 4.55 841 O ₂ +O ₂ (D)→O ₂ +O ₂ +e 4.55 842 O ₂ +N→NO+O ⁻ 10 ⁴¹ 843 O ₂ +N→NO+O ⁻ 10 ⁴¹ 844 O ₂ +N→NO ₂ +e 4.41 845 O ₂ +N(2P)→O ₂ +N+e 10 ⁴¹ 846 O ₂ +N(2P)→O ₂ +N+e 10 ⁴¹ 847 O ₂ +N ₂ →O ₂ +N ₂ +e 10 ⁴² 848 O ₂ +N(2P)→O ₂ +N ₂ +e 10 ⁴³ 849 O ₂ +N ₂ →O ₂ +N ₂ +e 10 ⁴³ 841 O ₂ +N ₂ O→N ₂ +O ₃ ⁻ 5.51 849 O ₂ +N ₂ O→N ₂ +O ₃ ⁻ 5.51 849 O ₂ +N ₂ O→N ₂ +O ₃ ⁻ 5.51 849 O ₂ +N ₂ O→N ₂ +O ₃ ⁻ 5.51 849 O ₂ +N ₂ O→N ₂ +O ₃ ⁻ 5.51 850 O ₂ +N ₂ O→N ₂ +O ₃ ⁻ 5.51 851 O ₂ +N ₂ O→N ₂ +O ₃ ⁻ 5.51 852 O ₃ +O(D)→O ₂ +O ₂ +e 5.51 853 O ₃ +O→O ₂ +O ₂ +O ₂ ⁻ 6.51 854 O ₃ +O(D)→O+O+O ⁻ 10 ⁴¹ 855 O ₃ +O(D)→O+O+O ⁻ 10 ⁴¹ 856 O ₃ +O(D)→O+O+O ⁻ 10 ⁴¹ 857 O ₃ +O(D)→O+O+O ⁻ 10 ⁴¹ 858 O ₃ +O(D)→O+O+O ⁻ 10 ⁴¹ 861 O ₃ +O(D)→O+O+O ⁺ 0 ⁻ 10 ⁴¹ 862 O ₃ +N(D)→O+O+O ⁺ 0 ⁺ 0 ⁺ 10 ⁴¹ 864 O ₃ +N(D)→O+N+O ⁻ 10 ⁴¹ 864 O ₃ +N(D)→O+N+O ⁻ 10 ⁴¹ 865 O ₃ +N(D)→O+O+N+O ⁻ 10 ⁴¹ 865		822	$O^- + O_3 \rightarrow O_2 + O_2 + e$	3.01
824 O + N(² D) → O + N + e 10 ⁻¹ 825 O + N(² P) → O + N + e 10 ⁻¹ 826 O + NO ₂ → O + NO ₂ ⁻ 10 ⁻³ 827 O + NO ₂ → O + NO ₂ ⁻ 10 ⁻³ 828 O + NO ₂ → O + NO ₂ ⁻ 10 ⁻¹ 829 O + N ₂ → N ₂ O + e 10 ⁻¹ 830 O + N ₂ O → NO + NO ⁻ 2x1 831 O + H → OH + e 5x1 832 O ₂ + O → O ₂ + O ⁻ 1.55 833 O ₂ + O → O ₂ + O ⁻ 1.55 834 O ₂ + O(¹ D) → O + O + O ⁻ 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O ₂ + e 10 ⁻¹ 836 O ₂ + O ₂ (¹ D) → O + O ₂ + e 10 ⁻¹ 837 O ₂ + O ₂ (¹ D) → O + O ₂ + e 2.77 5839 O ₂ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.71 5840 O ₂ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.74 841 O ₂ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.74 842 O ₂ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.74 842 O ₂ + N → NO + O ⁻ 10 ⁻¹ 843 O ₂ + N → O + O ₂ 10 ⁻¹		823	$O^- + N \rightarrow NO + e$	2.6x
825 O + N(² P) → O + N + e 826 O + NO → NO ₂ + e 827 O + NO ₂ → O + NO ₂ [*] 10 ³ 828 O + NO ₃ → O + NO ₃ [*] 5x1 829 O + N ₂ → N ₂ O + e 10⁴ 830 O + N ₂ O → NO + NO 831 O + H → OH + e 832 O ₂ [*] + O → O ₂ + O 833 O ₂ [*] + O → O ₁ + e 834 O ₂ [*] + O(¹ D) → O + O + O 835 O ₂ [*] + O(¹ D) → O + O + O 836 O ₂ [*] + O(¹ D) → O + O + Q + e 837 O ₂ [*] + O(¹ S) → O + O + Q + e 838 O ₂ [*] + O(¹ S) → O + O + Q + e 840 O ₂ [*] + O ₂ (¹ S) → O + Q + e 841 O ₂ [*] + O ₂ (¹ S) → O + Q + e 842 O ₂ [*] + O ₂ (¹ D) → O + Q + e 843 O ₂ [*] + O ₂ (¹ D) → O + Q + e 844 O ₂ [*] + N → NO + O 845 O ₂ [*] + N(² D) → O + Q + N + e 846 O ₂ [*] + N(² D) → O + N + e 847 O ₂ [*] + N(² D) → O + N + e 848 O ₂ [*] + N(² D) → O + N + e 849 O ₂ [*] + N ₂ → O + NO ₂ [*] 848 O ₂ [*] + N ₂ → O + NO ₂ [*] 849 O ₂ [*] + N ₂ → O + NO ₂ [*] 849 O ₂ [*] + N ₂ → O + NO ₂ [*] 849 O ₂ [*] + N ₂ → O + NO ₂ [*] 841 O ₂ [*] + N ₂ → O + NO ₂ [*] 842 O ₂ [*] + N ₂ → O + NO ₂ [*] 843 O ₂ [*] + N ₂ → O + NO ₂ [*] 844 O ₂ [*] + N ₂ → O + NO ₂ [*] 855 O ₂ [*] + N ₂ O → NO + NO ₂ [*] 856 O ₃ [*] + O (¹ D) → O + O + O + O [*] 857 O ₃ [*] + O (¹ D) → O + O + O + O [*] 859 O ₃ [*] + O (¹ D) → O + O + O + O [*] 859 O ₃ [*] + O (¹ D) → O + O + O + O [*] 850 O ₂ [*] + N ₂ O → NO + NO ₂ [*] 853 O ₃ [*] + O (¹ D) → O + O + O + O [*] 854 O ₃ [*] + O (¹ D) → O + O + O + O [*] 855 O ₃ [*] + O (¹ D) → O + O + O + O [*] 856 O ₃ [*] + O (¹ D) → O + O + O + O [*] 857 O ₃ [*] + O (¹ D) → O + O + O + O [*] 858 O ₃ [*] + O (¹ D) → O + O + O + O [*] 861 O ₃ [*] + O (¹ D) → O + O + O + O [*] 861 O ₃ [*] + O (¹ D) → O + O + O + O [*] 861 O ₃ [*] + O (¹ D) → O + N + O [*] 861 O ₃ [*] + N (² D) → O + N + O [*] 861 O ₃ [*] + N (² D) → O + N + O [*] 862 O ₃ [*] + N (² D) → O + N + N O [*] 864 O ₃ [*] + N (² D) → O + N + N O [*] 865		824	$O^- + N(^2D) \rightarrow O + N + e$	10-1
826 0 + NO → NO ₂ + e 2.55 827 0 + NO ₃ → 0 + NO ₃ ⁻ 10 ⁻³ 828 0 + NO ₃ → 0 + NO ₃ ⁻ 5x1 829 0 + N ₂ → N ₂ O + e 10 ⁻¹ 830 0 + N ₂ → N ₂ O + e 10 ⁻¹ 831 0 + H → OH + e 5x1 832 O ₂ + O → O ₂ + O ⁻ 1.55 834 O ₂ + O(¹ D) → O + O + O ⁻ 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O + O ⁻ 10 ⁻¹ 836 O ₂ + O(¹ D) → O + O + O ⁻ 10 ⁻¹ 837 O ₂ + O(¹ S) → O + O ₂ + e 10 ⁻¹ 836 O ₂ + O ₂ → O + O ₃ ⁻ 3.55 837 O ₂ + O ₂ → O + O ₃ ⁻ 3.55 838 O ₂ + O ₂ → O + O ₃ ⁻ 3.55 839 O ₂ + O ₂ → O + O ₃ ⁻ 3.55 840 O ₂ + O ₂ + O ₂ + O ₂ + e 2.75 841 O ₂ + O ₂ + O ₂ + O ₂ + e 2.74 841 O ₂ + N → NO + O ⁻ 10 ⁻¹ 842 O ₂ + N → NO + O ⁻ 10 ⁻¹ 844 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 845 O ₂ + N(²		825	$O^- + N(^2P) \rightarrow O + N + e$	10-1
827 O + NO ₂ → O + NO ₂ ⁻ 10 ⁻³ 828 O + NO ₃ → O + NO ₃ ⁻ 5x1 829 O + N ₂ → N ₂ O + e 10 ⁻¹ 830 O + N ₂ O → NO + NO ⁻ 2x1 831 O + H → OH + e 5x1 832 O ₂ + O → O ₂ + O 1.55 833 O ₂ + O → O ₃ + e 1.55 834 O ₂ + O(¹ D) → O + O + O 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O + Q + e 10 ⁻¹ 836 O ₂ + O(¹ D) → O + O + Q + e 10 ⁻¹ 837 O ₂ + O(² D) → O + O + Q + e 2.75 839 O ₂ + O ₂ → O + O ₃ + e 2.75 840 O ₂ + O ₂ (¹ D) → O + O + Q + e 2.75 841 O ₂ + O ₂ (¹ D) → O + Q + e 2.75 842 O ₂ + O ₂ (¹ D) → O + Q + Q + e 2.81 841 O ₂ + O ₂ (¹ D) → O + Q + Q + e 2.81 842 O ₂ + N → NO + O 10 ⁻¹ 844 O ₂ + N → NO + C 10 ⁻¹ 845 O ₂ + N(² D) → O + N + e 10 ⁻¹ 846 O ₂ + N(² D) → O + N + e 10 ⁻¹ 847 O ₂ + NO ₃ → O + NO ₃ ⁻ 5.81 849 O ₂ + NO ₃ → O + NO ₃ ⁻ 7.81 848 O ₂ + NO ₃ → O + NO ₃ ⁻ 7.81 848 O ₂ + NO ₃ → O + NO ₂ ⁻ 2.21 851 O ₂ + N ₂ O → NO + NO ₂ ⁻ 2.21 851 O ₂ + N ₂ O → NO + NO ₂ ⁻ 2.21 851 O ₂ + N ₂ O → NO + NO ₂ ⁻ 2.25 855 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 857 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 858 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 858 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 858 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 859 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 850 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 851 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 852 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 853 O ₃ + O(¹ D) → O + O + O + Q ⁻ 10 ⁻¹ 854 O ₃ + O(¹ D) → O + O + Q ⁻ 0 10 ⁻¹ 855 O ₃ + O(¹ D) → O + O + Q ⁻ + O 10 ⁻¹ 866 O ₃ + O(¹ D) → O + O + Q ⁻ + O 10 ⁻¹ 867 O ₃ + O(¹ D) → O + O + Q ⁻ + O 10 ⁻¹ 868 O ₃ + O(¹ D) → O + N + Q ⁻ 10 ⁻¹ 864 O ₃ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ + N(² D)		826	$O^- + NO \rightarrow NO_2 + e$	2.5x
828 O + NO ₃ → O + NO ₃ ⁻ 5x1 829 O + N ₂ → N ₂ O + e 10 ⁻¹ 830 O + N ₂ O → NO + NO ⁻ 2x1 831 O + H → OH + e 5x1 832 O ₂ + O → O ₂ + O ⁻ 1.55 833 O ₂ + O → O ₂ + O ⁻ 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O + O ⁻ 10 ⁻¹ 836 O ₂ + O(¹ D) → O + O + O ⁻ 10 ⁻¹ 837 O ₂ + O(¹ S) → O + O + O ⁻ 10 ⁻¹ 838 O ₂ + O ₂ + O ₂ → O + O ₂ + e 10 ⁻¹ 839 O ₂ + O ₂ + O ₂ → O + O ₂ + e 2.75 840 O ₂ + O ₂ (¹ D) → O + O + Q + e 3.65 842 O ₂ + O ₂ (¹ D) → O + Q + Q + e 3.65 844 O ₂ + O ₃ → O + O ₃ ⁻ 6x1 845 O ₂ + N → NO + O ⁻ 10 ⁻¹ 846 O ₂ + N → NO + O ⁻ 10 ⁻¹ 847 O ₂ + N → NO + P ⁻ 4x1 848 O ₂ + N → NO + Q ⁻ 4x + 10 ⁻¹ 846 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₃ → O ₂ + NO ₃ ⁻ 5x1 849 O ₂ + N ₂ → O ₂ + NO ₂ ⁻ 2x1 849 O ₂ + N ₂ → O ₂ + NO ₂ ⁻ 2x1 851 O ₂ + N ₂ O → NO + NO ₂ ⁻ 2x1 853 O ₃ ⁺ O → O ₂ + O ₂ + e 3x1 854 O ₃ + O → O ₂ + O ₂ + e 3x1 855 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 2x1 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 857 O ₃ ⁺ O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 857 O ₃ ⁺ O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 858 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 859 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 857 O ₃ ⁺ O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 858 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 859 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 850 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 857 O ₃ ⁺ O(¹ D) → O + O + O ₂ + O ⁻ 10 ⁻¹ 858 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ⁻¹ 859 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ⁻¹ 860 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ⁻¹ 861 O ₃ ⁻ + O(² D) → O + N + O ⁻ 10 ⁻¹ 862 O ₃ ⁻ + O(² D) → O + N + O ⁻ 10 ⁻¹ 864 O ₃ ⁻ + N(² D) → O + N + O ⁻ 10 ⁻¹ 865 O ₃ ⁻ + N(² D) → O + N + O ⁻ 10 ⁻¹ 866 O ₃ ⁻ +		827	$O^- + NO_2 \rightarrow O + NO_2^-$	10-9
829 O + N ₂ → N ₂ O + e 10 ⁻¹ 830 O + N ₂ O → NO + NO 221 831 O + H → OH + e 5x1 832 O ₂ + O → O ₂ + O 1.55 833 O ₂ + O → O ₃ + e 1.55 834 O ₂ + O(¹ D) → O + O + O 10 ⁻¹ 835 O ₂ + O(¹ D) → O + O + Q + e 10 ⁻¹ 836 O ₂ + O(¹ S) → O + O + Q + e 10 ⁻¹ 837 O ₂ + O(¹ S) → O + O + Q + e 2.75 839 O ₂ + O ₂ → O + O ₃ 5.55 840 O ₂ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.77 559 840 O ₂ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.78 841 O ₂ + O ₂ (¹ S) → O + Q + e 4.18 842 O ₂ + O ₂ → O ₂ + O ₂ + e 3.65 842 O ₂ + O ₃ → O ₂ + O ₃ * 6.11 843 O ₂ + N → NO + O 10 ⁻¹ 844 O ₂ + N → NO + C 10 ⁻¹ 845 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 846 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₃ → O ₂ + NO ₃ 5.51 849 O ₂ + N ₂ → O ₂ + NO ₂ * 0 4.10 ⁻¹ 845 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 846 O ₂ + N(² D) → O ₂ + N + e 10 ⁻¹ 847 O ₂ + NO ₂ → O ₂ + NO ₃ 5.51 849 O ₂ + N ₂ → O ₂ + NO ₂ * 0.21 851 O ₂ + N ₂ → O ₂ + N ₂ + e 1.93 550 O ₂ + N ₂ O → NO + NO ₂ * 0.21 851 O ₂ + N ₂ O → N ₂ + O ₃ * 0.10 ⁻¹ 852 O ₂ + H ₂ O → O ₂ + N ₂ + e 1.93 853 O ₃ + O → O ₂ + O ₂ + 0 = 0.21 854 O ₃ + O → O ₂ + O ₂ + 0 = 10 ⁻¹ 855 O ₃ + O(¹ D) → O + O + O ₂ * 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ * 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ * 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ * 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ * 10 ⁻¹ 856 O ₃ + O(¹ D) → O + O + O ₂ * 0.21 857 O ₃ + O(¹ D) → O + O + O ₂ * 0.21 859 O ₃ + O(¹ D) → O + O + O ₂ * 10 ⁻¹ 850 O ₃ + O(¹ D) → O + O + O ₂ * 0.21 851 O ₃ + O(¹ D) → O + O + O ₂ * 0.21 852 O ₃ + O(¹ D) → O + O + O ₂ * 0.21 853 O ₃ + O(¹ D) → O + O + O ₂ * 0.21 854 O ₃ * O(¹ D) → O + O + O ₂ * 0.21 855 O ₃ * O(¹ D) → O + O + O ₂ * 0.21 856 O ₃ * O(¹ D) → O + O + O ₂ * 0.21 857 O ₃ * O(¹ D) → O + O + O ₂ * 0.21 859 O ₃ + O(¹ D) → O + O + O ₂ * 0.21 850 O ₃ * O(¹ D) → O + O + O ₂ * 0.21 851 O ₃ * O(¹ D) → O + O + O ₂ * 0.21 852 O ₃ * O(¹ D) → O + O + O ₂ * 0.21		828	$O^- + NO_3 \rightarrow O + NO_3^-$	5x1
830 O ⁺ H ₂ O → NO ⁺ NO ⁻ 2x1 831 O ⁺ H → OH + e 5x1 832 O ₂ ⁺ O → O ₂ + O ⁻ 1.57 833 O ₂ ⁺ O → O ₃ + e 1.57 834 O ₂ ⁺ O(¹ D) → O + O + O ⁻ 10 ⁻¹ 835 O ₂ ⁺ O(¹ D) → O + O + O ⁻ 10 ⁻¹ 836 O ₂ ⁺ + O(¹ S) → O + O + O ⁻ 10 ⁻¹ 837 O ₂ ⁺ + O(¹ S) → O + O + O ⁻ 10 ⁻¹ 838 O ₂ ⁺ + O ₂ → O + O ₂ + e 10 ⁻¹ 839 O ₂ ⁺ + O ₂ → O + O ₂ + 0 + e 2x1 840 O ₂ ⁻ + O ₂ (¹ D) → O ₂ + O ₂ + e 2x1 841 O ₂ ⁻ + O ₂ (¹ S) → O + O ₂ + 0 + e 3.65 842 O ₂ ⁻ + O ₂ (¹ S) → O ₂ + O ₂ + e 4x1 843 O ₂ ⁻ + N → NO + O ⁻ 10 ⁻¹ 844 O ₂ ⁻ + N(² P) → O ₂ + N + e 10 ⁻¹ 845 O ₂ ⁻ + N(² P) → O ₂ + N + e 10 ⁻¹ 846 O ₂ ⁻ + N(² P) → O ₂ + N + e 10 ⁻¹ 847 O ₂ ⁻ + NO ₂ → O ₂ + NO ₃ ⁻ 5x1 849 O ₂ ⁻ + N ₂ O → N + NO + O ⁻ 2x1 851 O ₂ ⁻ + N ₂ O → N + NO ₂ ⁻ 2x1 853 O ₃ ⁻ + O → O ₂ + O ₂ ⁻ + 0 + 0 + 0 + 0 ⁻¹ 854 O ₃ ⁻ + O → O ₂ + O ₂ + e 5x1 855 O ₃ ⁺ + O (¹ D) → O + O + O ₂ ⁻ 2.55 855 O ₃ ⁺ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 857 O ₃ ⁺ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 857 O ₃ ⁺ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 856 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 866 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 866 O ₃ ⁻ + O (¹ D) → O + O + O ₂ ⁻ 10 ⁻¹ 866 O ₃ ⁻ + O (¹ D) → O + O + O + O ₂ ⁻ 10 ⁻¹ 866 O ₃ ⁻ + O (¹ D) → O + O + O + O ₂ ⁻ 10 ⁻¹ 866 O ₃ ⁻ + N (² D) → O + N + O ⁻ 10 ⁻¹ 866 O ₃ ⁻ + N (² D) → O + N + O ⁻ 10 ⁻¹ 866 O ₃		829	$O^2 + N_2 \rightarrow N_2O + e$	10-1
831 O ⁺ H → OH + e 5x1 832 O ₂ ⁺ O → O ₂ + O ⁻ 1.55 833 O ₂ ⁺ O → O ₃ + e 1.55 834 O ₂ ⁺ O(¹ D) → O + O + O ⁻ 10 ¹⁴ 835 O ₂ ⁺ O(¹ D) → O + O ₂ + e 10 ¹⁴ 836 O ₂ ⁺ O(¹ S) → O + O ₂ + e 10 ¹⁴ 837 O ₂ ⁺ O(¹ S) → O + O ₂ + e 2.77 839 O ₂ ⁻ + O ₂ → O ₂ + O ₂ + e 2.77 840 O ₂ ⁻ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.71 841 O ₂ ⁻ + O ₂ (¹ D) → O ₂ + O ₂ + e 3.65 842 O ₂ ⁻ + O ₃ → O ₂ + O ₃ ⁻ 6.81 843 O ₂ ⁻ + N → NO + O ⁻ 10 ¹⁴ 844 O ₂ ⁻ + N → NO + O ⁻ 10 ¹⁴ 845 O ₂ ⁻ + N(² D) → O ₂ + N + e 10 ¹⁴ 846 O ₂ ⁻ + N(² D) → O ₂ + N + e 10 ¹⁴ 847 O ₂ ⁻ + NO ₂ → O ₂ + NO ₃ ⁻ 5.71 848 O ₂ ⁻ + N(² D) → O ₂ + N + e 10 ¹⁴ 849 O ₂ ⁻ + N ₂ → O ₂ + NO ₃ ⁻ 5.71 849 O ₂ ⁻ + N ₂ O → NO + NO ₂ ⁻ 2.73 850 O ₂ ⁻ + N ₂ O → NO + NO ₂ ⁻ 2.25 855 O ₃ ⁻ + O(¹ D) → O + O ₂ + O ₂ + e 3.71 854 O ₃ ⁻ + O → O ₂ + O ₂ ⁻ + O ₂ ⁻ 10 ¹⁴ 855 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ¹⁴ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ¹⁴ 857 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ¹⁴ 858 O ₃ ⁻ + O(¹ D) → O + O + O ₂ ⁻ 10 ¹⁴ 859 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ¹⁴ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ¹⁴ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ¹⁴ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ¹⁴ 856 O ₃ ⁻ + O(¹ D) → O + O + O ₂ + O ⁻ 10 ¹⁴ 856 O ₃ ⁻ + O(¹ D) → O + O + O + O ₂ ⁻ 10 ¹⁴ 856 O ₃ ⁻ + O(¹ D) → O + O + O + O = 10 ¹⁴ 860 O ₃ ⁻ + O(¹ D) → O + O + O + O = 10 ¹⁴ 861 O ₃ ⁻ + O(² D) → O + O + O + O = 10 ¹⁴ 864 O ₃ ⁻ + N(² D) → O + N + O ² = 10 ¹⁴ 864 O ₃ ⁻ + N(² D) → O + N + O ² = 10 ¹⁴ 865 O ₃ ⁺ + O(² D) → O + N + O ² = 10 ¹⁴ 864 O ₃ ⁺ + N(² D) → O + N + O ² = 10 ¹⁴ 865 O ₃ ⁺ + N(² D) → O + N + O ² = 10 ¹⁴ 866 O ₃ ⁺ + N(² D) → O + N + O ² = 10 ¹⁴ 866 O ₃ ⁺ + N(² D) → O + N + O ² = 10 ¹⁴ 866 O ₃ ⁺ + N(² D) → O + N + O ² = 10 ¹⁴ 866 O ₃ ⁺		830	$O^- + N_2 O \rightarrow NO + NO^-$	2x1
832 $O_2 + O → O_2 + O^2$ 1.55 833 $O_2 + O → O_3 + e$ 1.55 834 $O_2 + O(^1D) → O + O + O^2$ 10 ⁻¹ 835 $O_2 + O(^1S) → O + O_2 + e$ 10 ⁻¹ 836 $O_2 + O(^1S) → O + O_2 + e$ 10 ⁻¹ 837 $O_2 + O(^1S) → O + O_2 + e$ 10 ⁻¹ 838 $O_2 + O_2 → O_2 + O_2 + e$ 2.75 840 $O_2 + O_2 + O_2 + O_2 + O_2 + e$ 2.75 840 $O_2 + O_2 (^1D) → O_2 + O_2 + e$ 3.65 842 $O_2 + O_3 → O_2 + O_3 + e$ 3.67 843 $O_2 + N → NO + O^2$ 10 ⁻¹ 844 $O_2 + N → NO + O^2$ 10 ⁻¹ 845 $O_2 + N(^2D) → O_2 + N + e$ 10 ⁻¹ 846 $O_2 + N(^2D) → O_2 + N + e$ 10 ⁻¹ 847 $O_2 + NO_2 → O_2 + NO_3^2$ 78.1 848 $O_2 + NO_3 → O_2 + NO_3^2$ 78.1 849 $O_2 + N_2 → O_2 + NO_2^2$ 78.1 849 $O_2 + N_2 → O_2 + NO_2^2$ 22.1 850 $O_2 + N_2 O → NO + NO_2^2$ 22.1 851 $O_2 + N_2 O → NO + NO_2^2$ 22.1 853 $O_3 + O → O_2 + O_2^2 + e$ 3.1 854 $O_3^2 + O → O_2 + O_2^2 + e$ 3.1 855 $O_3^2 + O + O_2 + O_2^2 + e$ 3.1 856 $O_3^2 + O(^1D) → O + O + O_2^2$ 10 ⁻¹ 857 $O_3^2 + O(^1D) → O + O + O_2^2$ 10 ⁻¹ 858 $O_3^2 + O(^1D) → O + O + O_2^2$ 10 ⁻¹ 859 $O_3^2 + O(^1S) → O + O + O_2^2$ 10 ⁻¹ 850 $O_3^2 + O(^1S) → O + O + O_2^2$ 10 ⁻¹ 856 $O_3^2 + O(^1S) → O + O + O_2^2$ 10 ⁻¹ 857 $O_3^2 + O(^1S) → O + O + O_2^2$ 10 ⁻¹ 858 $O_3^2 + O(^1S) → O + O + O_2^2$ 10 ⁻¹ 859 $O_3^2 + O(^1S) → O + O + O_2 + O^2$ 10 ⁻¹ 860 $O_3^2 + O(^1S) → O + O + O_2 + O^2$ 10 ⁻¹ 861 $O_3^2 + O_2(^1S) → O + O + O_2 + O^2$ 10 ⁻¹ 862 $O_3^2 + O(^1S) \to O + O + O_2 + O^2$ 10 ⁻¹ 864 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 865 $O_3^2 + O(^1S) \to O + O_2 + O^2$ 10 ⁻¹ 866 $O_3^2 + O(^1S) \to O + O_2 + O^2$ 10 ⁻¹ 867 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 864 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 865 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 866 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 866 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 866 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 866 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 867 $O_3^2 + N(^2D) \to O + N + O^2$ 10 ⁻¹ 866 $O_3^2 + N(^2D) \to O + N + O^2$ 1		831	$O^- + H \rightarrow OH + e$	5x1
833 $O_2^+ O \to O_3 + e$ 1.52 834 $O_2^- + O(^1D) \to O + O + O^-$ 10 ⁻¹ 835 $O_2^- + O(^1S) \to O + O_2 + e$ 10 ⁻¹ 836 $O_2^- + O(^1S) \to O + O_2 + e$ 10 ⁻¹ 837 $O_2^- + O(^1S) \to O + O_2 + e$ 10 ⁻¹ 838 $O_2^- + O_2 \to O + O_3^-$ 839 $O_2^- + O_2 \to O_2 + O_2 + e$ 10 ⁻¹ 840 $O_2^- + O_2(^1D) \to O_2 + O_2 + e$ 10 ⁻¹ 841 $O_2^- + O_2(^1S) \to O_2 + O_2 + e$ 10 ⁻¹ 842 $O_2^- + O_3 \to O_2 + O_3^-$ 843 $O_2^- + N \to NO + O^-$ 844 $O_2^- + N \to NO_2 + e$ 845 $O_2^- + N(^2D) \to O_2 + N + e$ 10 ⁻¹ 846 $O_2^- + N(^2P) \to O_2 + N + e$ 10 ⁻¹ 847 $O_2^- + NO_2 \to O_2 + NO_2^-$ 848 $O_2^- + NO_3 \to O_2 + NO_3^-$ 849 $O_2^- + N_2 \to O_2 + NO_2^-$ 849 $O_2^- + N_2 O \to NO + NO_2^-$ 849 $O_2^- + N_2 O \to NO + NO_2^-$ 850 $O_2^- + N_2 O \to NO + NO_2^-$ 851 $O_2^- + N_2 O \to NO + NO_2^-$ 852 $O_2^- + N_2 O \to NO + NO_2^-$ 853 $O_3^+ O \to O_2 + O_2^-$ 855 $O_3^- + O(^1D) \to O + O + O_2^-$ 855 $O_3^- + O(^1D) \to O + O + O_2^-$ 856 $O_3^- + O(^1D) \to O + O + O_2^-$ 857 $O_3^- + O(^1D) \to O + O + O_2^-$ 858 $O_3^- + O(^1S) \to O + O + O_2^-$ 859 $O_3^- + O(^1S) \to O + O + O_2^-$ 859 $O_3^- + O(^1S) \to O + O + O_2^-$ 859 $O_3^- + O(^1S) \to O + O + O_2^-$ 859 $O_3^- + O(^1S) \to O + O + O_2^-$ 850 $O_3^- + O(^1S) \to O + O + O_2^-$ 861 $O_3^- + O(^1S) \to O + O + O_2^- + O^-$ 862 $O_3^- + O(^1S) \to O + O + O + O_2^-$ 863 $O_3^- + O(^2S) \to O + O + O + O - O_2^-$ 864 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 864 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 864 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 864 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 865 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 866 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 867 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 864 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 865 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 866 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 867 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 866 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 866 $O_3^- + N(^2D) \to O + N + O - O_2^-$ 867		832	$O_2^- + O \rightarrow O_2 + O^-$	1.5x
834 $O_2^- + O(^1D) \to O + O + O^-$ 10 ⁻¹ 835 $O_2^- + O(^1D) \to O + O_2 + e$ 10 ⁻¹ 836 $O_2^- + O(^1S) \to O + O + O^-$ 10 ⁻¹ 837 $O_2^- + O(^1S) \to O + O_2 + e$ 10 ⁻¹ 838 $O_2^- + O_2 \to O + O_3^-$ 3.55 839 $O_2^- + O_2 \to O_2 + O_2 + e$ 2.77 840 $O_2^- + O_2(^1D) \to O_2 + O_2 + e$ 2.77 841 $O_2^- + O_2(^1S) \to O_2 + O_2 + e$ 3.67 842 $O_2^- + O_2(^1S) \to O_2 + O_2 + e$ 3.67 843 $O_2^- + N \to NO + O^-$ 10 ⁻¹ 844 $O_2^- + N \to NO + O^-$ 10 ⁻¹ 845 $O_2^- + N(^2D) \to O_2 + N + e$ 10 ⁻¹ 846 $O_2^- + N(^2P) \to O_2 + N + e$ 10 ⁻¹ 847 $O_2^- + NO_2 \to O_2 + NO_2^-$ 7x1 848 $O_2^- + NO_2 \to O_2 + NO_3^-$ 5x1 849 $O_2^- + N_2O \to NO + NO_2^-$ 2x1 851 $O_2^- + N_2O \to NO + NO_2^-$ 2x1 852 $O_2^- + N_2O \to NO + NO_2^-$ 2x1 853 $O_3^- + O \to O_2 + O_2^- + e$ 3x1 854 $O_3^- + O(^1D) \to O + O + O_2^-$ 10 ⁻¹ 855 $O_3^- + O(^1D) \to O + O + O_2^-$ 10 ⁻¹ 856 $O_3^- + O(^1D) \to O + O + O_2^-$ 10 ⁻¹ 857 $O_3^- + O(^1D) \to O + O + O_2^-$ 10 ⁻¹ 858 $O_3^- + O(^1D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(^1D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(^1D) \to O + O + O_2^-$ 10 ⁻¹ 856 $O_3^- + O(^1D) \to O + O_2 + O^-$ 10 ⁻¹ 857 $O_3^- + O(^1D) \to O + O_2 + O^-$ 10 ⁻¹ 858 $O_3^- + O(^1S) \to O + O_2 + O^-$ 10 ⁻¹ 859 $O_3^- + O(^1S) \to O + O_2 + O^-$ 10 ⁻¹ 860 $O_3^- + O(^1S) \to O + O_2 + O^-$ 10 ⁻¹ 860 $O_3^- + O(^1S) \to O + O_2 + O^-$ 10 ⁻¹ 861 $O_3^- + O_2(^1S) \to O + O_2 + O^-$ 10 ⁻¹ 862 $O_3^- + O(^1S) \to O + O_2 + O^-$ 10 ⁻¹ 864 $O_3^- + N(^2D) \to O_2 + O_2 + O^-$ 10 ⁻¹ 865 $O_3^- + N(^2D) \to O_2 + O_2 + O^-$ 10 ⁻¹ 864 $O_3^- + N(^2D) \to O_2 + O_2 + O^-$ 10 ⁻¹ 865 $O_3^- + N(^2D) \to O_2 + O_2 + O^-$ 10 ⁻¹ 864 $O_3^- + N(^2D) \to O_2 + O_2 + O^-$ 10 ⁻¹ 865 $O_3^- + N(^2D) \to O_2 + O_2 + O^-$ 10 ⁻¹ 866 $O_3^- + N(^2D) \to O_2 + O_2 + O^-$ 10 ⁻¹ 867 $O_3^- + N(^2D) \to O_3 + N + O^-$ 10 ⁻¹ 868 $O_3^- + N(^2D) \to O_3 + N + O^-$ 10 ⁻¹ 869 $O_3^- + N(^2D) \to O_3 + N + O^-$ 10 ⁻¹ 860 $O_3^- + N(^2D) \to O_3 + N + O^-$ 10 ⁻¹		833	$O_2^- + O \rightarrow O_3 + e$	1.5x
835 $O_2^- + O(!D) \to O + O_2 + e$ 836 $O_2^- + O(!S) \to O + O + O^-$ 837 $O_2^- + O(!S) \to O + O_2 + e$ 838 $O_2^- + O_2 \to O + O_3^-$ 839 $O_2^- + O_2 \to O_2 + O_2 + e$ 840 $O_2^- + O_2(!D) \to O_2 + O_2 + e$ 841 $O_2^- + O_2(!S) \to O_2 + O_2 + e$ 842 $O_2^- + O_3^- \to O_2^- + O_3^-$ 843 $O_2^- + N \to NO + O^-$ 844 $O_2^- + N \to NO_2 + e$ 845 $O_2^- + N(^2D) \to O_2 + N + e$ 846 $O_2^- + N(^2D) \to O_2 + N + e$ 847 $O_2^- + NO_2 \to O_2 + NO_3^-$ 848 $O_2^- + NO_3 \to O_2 + NO_3^-$ 849 $O_2^- + NO_2 \to O_2 + NO_3^-$ 848 $O_2^- + NO_3 \to O_2 + NO_3^-$ 849 $O_2^- + N_2O \to NO + NO_2^-$ 850 $O_2^- + N_2O \to NO + NO_2^-$ 851 $O_2^- + N_2O \to NO + NO_2^-$ 852 $O_2^- + H_2O \to O_2 + H_2O + e$ 853 $O_3^- + O \to O_2 + O_2^-$ 855 $O_3^- + O(!D) \to O + O + O_2^-$ 855 $O_3^- + O(!D) \to O + O + O_2^-$ 855 $O_3^- + O(!D) \to O + O + O_2^-$ 856 $O_3^- + O(!D) \to O + O + O_2^-$ 857 $O_3^- + O(!D) \to O + O + O_2^-$ 858 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 860 $O_3^- + O(!S) \to O + O + O_2^-$ 861 $O_3^- + O_2(!D) \to O + O_2^- + O^-$ 862 $O_3^- + O_2(!D) \to O + O_2^- + O^-$ 864 $O_3^- + N(^2D) \to O + N + O^-$ 865 $O_3^- + N(^2D) \to O + N + O^-$ 865 $O_3^- + N(^2D) \to O + N + O^-$ 865 $O_3^- + N(^2D) \to O + N + O^-$ 865 $O_3^- + N(^2D) \to O_3^- + N + O^-$ 865 $O_3^- + N(^2D) \to O_3^- + N + O^-$ 865 $O_3^- + N(^2D) \to O_3^- + N + O^-$ 865 $O_3^- + N(^2D) \to O_3^- + N + O^-$ 865 $O_3^- + N(^2D) \to O_3^- + N + O^-$		834	$O_2^- + O(^1D) \rightarrow O + O + O^-$	10-1
836 $O_2^- + O(!S) \to O + O + O^-$ 10 ⁻¹ 837 $O_2^- + O(!S) \to O + O_2 + e$ 10 ⁻¹ 838 $O_2^- + O_2 \to O + O_3^-$ 3.55 839 $O_2^- + O_2 \to O_2 + O_2 + e$ 2.75 840 $O_2^- + O_2(!D) \to O_2 + O_2 + e$ 2.71 841 $O_2^- + O_2(!D) \to O_2 + O_2 + e$ 2.71 842 $O_2^- + O_2(!S) \to O_2 + O_2 + e$ 3.65 842 $O_2^- + O_3 \to O_2 + O_3^-$ 6.71 843 $O_2^- + N \to NO + O^-$ 10 ⁻¹ 844 $O_2^- + N \to NO_2 + e$ 4.71 845 $O_2^- + N(!D) \to O_2 + N + e$ 10 ⁻¹ 846 $O_2^- + N(!P) \to O_2 + N + e$ 10 ⁻¹ 847 $O_2^- + NO_2 \to O_2 + NO_2^-$ 7.71 848 $O_2^- + NO_2 \to O_2 + NO_3^-$ 5.71 849 $O_2^- + N_2 O \to NO + NO_2^-$ 2.71 851 $O_2^- + N_2 O \to NO + NO_2^-$ 2.71 852 $O_2^- + N_2 O \to NO + NO_2^-$ 2.71 853 $O_3^- + O \to O_2 + O_3^-$ 10 ⁻¹ 854 $O_3^- + O \to O_2 + O_2^- + e$ 3.71 855 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 856 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 857 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 858 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!D) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!S) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!S) \to O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(!S) \to O + O + O_2^-$ 10 ⁻¹ 860 $O_3^- + O(!S) \to O + O + O_2^-$ 10 ⁻¹ 861 $O_3^- + O_2(!D) \to O + O_2 + O^-$ 10 ⁻¹ 862 $O_3^- + O_2(!S) \to O + O_2 + O^-$ 10 ⁻¹ 863 $O_3^- + O_2(!S) \to O + O_2 + O^-$ 10 ⁻¹ 864 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 864 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(!D) \to O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(!D) \to O_2 + N + O_2^-$ 10 ⁻		835	$O_2^- + O(^1D) \rightarrow O + O_2 + e$	10-1
837 O ₂ ⁺ + O(¹ S) → O + O ₂ ⁺ e 10 ⁻¹ 838 O ₂ ⁻⁺ + O ₂ → O + O ₃ ⁻ 3.55 839 O ₂ ⁻⁺ + O ₂ → O ₂ + O ₂ + e 2.75 840 O ₂ ⁻⁺ + O ₂ (¹ D) → O ₂ + O ₂ + e 2.71 841 O ₂ ⁻⁺ + O ₂ (¹ D) → O ₂ + O ₂ + e 3.65 842 O ₂ ⁻⁺ + O ₃ → O ₂ + O ₃ 6x1 843 O ₂ ⁻⁺ N → NO + O ⁻ 10 ⁻¹ 844 O ₂ ⁻⁺ N → NO ₂ + e 4x1 845 O ₂ ⁻⁺ N(² D) → O ₂ + N + e 10 ⁻¹ 846 O ₂ ⁻⁺ N(² P) → O ₂ + N + e 10 ⁻¹ 847 O ₂ ⁻⁺ NO ₂ → O ₂ + NO ₂ 7x1 848 O ₂ ⁺ NO ₂ → O ₂ + NO ₂ 7x1 849 O ₂ ⁺ N ₂ O → NO + NO ₂ 2x1 851 O ₂ ⁻⁺ N ₂ O → NO + NO ₂ 2x1 853 O ₃ ⁺⁺ O → O ₂ + O ₂ + e 5x1 853 O ₃ ⁺⁺ O → O ₂ + O ₂ ⁻⁺ e 5x1 854 O ₃ ⁺⁺ O → O ₂ + O ₂ ⁻⁺ e 5x1 855 O ₃ ⁺⁺ O (¹ D) → O + O + O ₂ 10 ⁻¹ 856 O ₃ ⁺⁺ O (¹ D) → O + O + O ₂ 10 ⁻¹ 856 O ₃ ⁺⁺ O (¹ D) → O + O + O ₂ 10 ⁻¹ 856 O ₃ ⁺⁺ O (¹ D) → O + O + O ₂ 10 ⁻¹ 856 O ₃ ⁺⁺ O (¹ D) → O + O + O ₂ ⁺⁻ 0 10 ⁻¹ 856 O ₃ ⁺⁺ O (¹ S) → O + O + O ₂ ⁺⁻ 0 10 ⁻¹ 856 O ₃ ⁺⁺ O (¹ S) → O + O + O ₂ ⁺⁻ 0 10 ⁻¹ 857 O ₃ ⁺⁺ O (¹ S) → O + O + O ₂ ⁺⁻ 0 10 ⁻¹ 858 O ₃ ⁺⁻ + O (¹ S) → O + O + O ₂ ⁺⁻ 0 10 ⁻¹ 859 O ₃ ⁺⁻ + O (¹ S) → O + O + O + O ₂ 10 ⁻¹ 850 O ₃ ⁺⁻ + O (¹ S) → O + O + O + O = 10 ⁻¹ 861 O ₃ ⁺⁻ + O (¹ S) → O + O + O + O = 10 ⁻¹ 863 O ₃ ⁺⁻ + O (¹ S) → O + O + O + O = 10 ⁻¹ 864 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁻¹ 865 O ₃ ⁺⁻⁺ N (² D) → O + N + O = 10 ⁺¹ 865 O ₃ ⁺⁻⁺ N (² D) →		836	$O_2^- + O(^1S) \rightarrow O + O + O^-$	10-1
838 $O_2^{-} + O_2 → O + O_3^{-}$ 839 $O_2^{-} + O_2 → O_2 + O_2 + e$ 559 840 $O_2^{-} + O_2({}^{1}D) → O_2 + O_2 + e$ 841 $O_2^{-} + O_2({}^{1}S) → O_2 + O_2 + e$ 842 $O_2^{-} + O_3 → O_2 + O_3^{-}$ 843 $O_2^{-} + N → NO + O^{-}$ 844 $O_2^{-} + N → NO_2 + e$ 845 $O_2^{-} + N({}^{2}D) → O_2 + N + e$ 846 $O_2^{-} + N({}^{2}D) → O_2 + N + e$ 847 $O_2^{-} + NO_2 → O_2 + NO_3^{-}$ 848 $O_2^{-} + NO_3 → O_2 + NO_3^{-}$ 849 $O_2^{-} + N_2 O → NO + NO_2^{-}$ 850 $O_2^{-} + N_2 O → NO + NO_2^{-}$ 851 $O_2^{-} + N_2 O → NO_2 + O_3^{-}$ 852 $O_2^{-} + H_2 O → O_2 + H_2 O + e$ 853 $O_3^{-} + O → O_2 + O_2^{-}$ 854 $O_3^{-} + O → O_2 + O_2^{-}$ 855 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 855 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 856 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 857 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 858 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 859 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 850 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 851 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 852 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 854 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 855 $O_3^{-} + O({}^{1}D) → O + O + O_2^{-}$ 857 $O_3^{-} + O({}^{1}D) \to O + O + O_2^{-}$ 858 $O_3^{-} + O({}^{1}D) \to O + O + O_2^{-}$ 860 $O_3^{-} + O({}^{1}D) \to O + O_2 + O^{-}$ 861 $O_3^{-} + O({}^{1}D) \to O + O_2 + O^{-}$ 862 $O_3^{-} + O({}^{1}D) \to O + O_2 + O^{-}$ 864 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D) \to O_2 + N_2 + O^{-}$ 865 $O_3^{-} + N({}^{2}D)$		837	$O_2^- + O(^1S) \rightarrow O + O_2 + e$	10-1
839 $O_2^{-1} + O_2 → O_2 + O_2 + e$ 559 840 $O_2^{-1} + O_2({}^{1}D) → O_2 + O_2 + e$ 841 $O_2^{-1} + O_2({}^{1}S) → O_2 + O_2 + e$ 842 $O_2^{-1} + O_3 → O_2 + O_3^{-1}$ 843 $O_2^{-1} + N → NO + O^{-1}$ 844 $O_2^{-1} + N → NO_2 + e$ 845 $O_2^{-1} + N({}^{2}D) → O_2 + N + e$ 846 $O_2^{-1} + N({}^{2}D) → O_2 + N + e$ 847 $O_2^{-1} + NO_2 → O_2 + NO_2^{-1}$ 848 $O_2^{-1} + NO_3 → O_2 + NO_3^{-1}$ 849 $O_2^{-1} + N_2O → NO + NO_2^{-1}$ 849 $O_2^{-1} + N_2O → NO + NO_2^{-1}$ 850 $O_2^{-1} + N_2O → N_2 + O_3^{-1}$ 851 $O_2^{-1} + N_2O → N_2 + O_3^{-1}$ 852 $O_2^{-1} + H_2O → O_2 + H_2O + e$ 853 $O_3^{-1} + O → O_2 + O_2^{-1}$ 854 $O_3^{-1} + O → O_2 + O_2^{-1}$ 855 $O_3^{-1} + O({}^{1}D) → O + O + O_2^{-1}$ 856 $O_3^{-1} + O({}^{1}D) → O + O + O_2^{-1}$ 857 $O_3^{-1} + O({}^{1}D) → O + O + O_2^{-1}$ 858 $O_3^{-1} + O({}^{1}D) → O + O + O_2^{-1}$ 859 $O_3^{-1} + O({}^{1}S) → O + O + O_2^{-1}$ 860 $O_3^{-1} + O({}^{1}S) → O + O + O_2^{-1}$ 861 $O_3^{-1} + O_2({}^{1}S) → O + O_2 + O^{-1}$ 862 $O_3^{-1} + O({}^{1}S) → O + O_2 + O^{-1}$ 863 $O_3^{-1} + O({}^{1}S) → O + O_2 + O^{-1}$ 864 $O_3^{-1} + N({}^{2}D) → O_2^{-1} + O_2^{-1}$ 865 $O_3^{-1} + N({}^{2}D) → O_2^{-1} + N_2^{-1}$ 865 $O_3^{-1} + N({}^{2}D) \to O_2^{-1} + N_2^{-1}$ 865 $O_3^$		838	$O_2^- + O_2 \rightarrow O + O_3^-$	3.5x
840 $O_2^- + O_2(^1D) \rightarrow O_2 + O_2 + e$ 841 $O_2^- + O_2(^1S) \rightarrow O_2 + O_2 + e$ 842 $O_2^- + O_3 \rightarrow O_2 + O_3^-$ 843 $O_2^- + N \rightarrow NO + O^-$ 844 $O_2^- + N \rightarrow NO_2 + e$ 845 $O_2^- + N(^2D) \rightarrow O_2 + N + e$ 846 $O_2^- + N(^2P) \rightarrow O_2 + N + e$ 847 $O_2^- + NO_2 \rightarrow O_2 + NO_2^-$ 848 $O_2^- + NO_3 \rightarrow O_2 + NO_3^-$ 849 $O_2^- + N_2 \rightarrow O_2 + N_2 + e$ 850 $O_2^- + N_2 O \rightarrow NO + NO_2^-$ 851 $O_2^- + N_2 O \rightarrow NO + NO_2^-$ 852 $O_2^- + N_2 O \rightarrow N_2 + O_3^-$ 853 $O_3^- + O \rightarrow O_2 + O_2 + e$ 855 $O_3^- + O(^1D) \rightarrow O + O + O_2^-$ 856 $O_3^- + O(^1D) \rightarrow O + O + O_2^-$ 857 $O_3^- + O(^1D) \rightarrow O + O + O_2^-$ 858 $O_3^- + O(^1D) \rightarrow O + O + O_2^-$ 859 $O_3^- + O(^1S) \rightarrow O + O + O_2^-$ 859 $O_3^- + O(^1S) \rightarrow O + O + O_2^-$ 860 $O_3^- + O(^1S) \rightarrow O + O_2 + O^-$ 861 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^-$ 861 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^-$ 863 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^-$ 864 $O_3^- + N(^2D) \rightarrow O_2 + N + O^-$ 865 $O_3^- + N(^2D) \rightarrow O_2 + N + O^-$		839	$O_2^- + O_2 \rightarrow O_2 + O_2 + e$	2.7x
840 $O_2^- + O_2({}^1D) \rightarrow O_2^- + O_2^- + e$ 841 $O_2^- + O_2({}^1S) \rightarrow O_2^- + O_2^- + e$ 842 $O_2^- + O_3^- \rightarrow O_2^- + O_3^-$ 843 $O_2^- + N \rightarrow NO + O^-$ 844 $O_2^- + N \rightarrow NO_2^- + e$ 845 $O_2^- + N({}^2D) \rightarrow O_2^- + N + e$ 846 $O_2^- + N({}^2P) \rightarrow O_2^- + N + e$ 847 $O_2^- + NO_2^- \rightarrow O_2^- + NO_2^-$ 848 $O_2^- + NO_3^- \rightarrow O_2^- + NO_3^-$ 849 $O_2^- + NO_3^- \rightarrow O_2^- + NO_3^-$ 850 $O_2^- + N_2O \rightarrow NO + NO_2^-$ 851 $O_2^- + N_2O \rightarrow NO + NO_2^-$ 852 $O_2^- + H_2O \rightarrow O_2^- + H_2O^- e$ 853 $O_3^- + O \rightarrow O_2^- + O_2^- + e$ 854 $O_3^- + O \rightarrow O_2^- + O_2^-$ 855 $O_3^- + O({}^1D) \rightarrow O + O + O_2^-$ 856 $O_3^- + O({}^1D) \rightarrow O + O + O_2^-$ 857 $O_3^- + O({}^1D) \rightarrow O + O_2^- + O^-$ 858 $O_3^- + O({}^1D) \rightarrow O + O_2^- + O^-$ 859 $O_3^- + O({}^1S) \rightarrow O + O_2^- + O^-$ 860 $O_3^- + O({}^1S) \rightarrow O + O_2^- + O^-$ 861 $O_3^- + O_2({}^1S) \rightarrow O_2^- + O_2^- + O^-$ 861 $O_3^- + O_2({}^1S) \rightarrow O_2^- + O_2^- + O^-$ 862 $O_3^- + O({}^2D) \rightarrow O_2^- + O_2^- + O^-$ 864 $O_3^- + N({}^2D) \rightarrow O_2^- + N_2^-$ 865 $O_3^- + N({}^2D) \rightarrow O_2^- + N_2^-$ 865 $O_3^- + N({}^2D) \rightarrow O_2^- + N_2^-$ 865 $O_3^- + N({}^2D) \rightarrow O_2^- + O_2^- + O^-$ 865 $O_3^- + N({}^2D) \rightarrow O_2^- + O_2^- + O^-$ 864 $O_3^- + N({}^2D) \rightarrow O_2^- + N_2^-$ 865 $O_3^- + N({}^2D) \rightarrow O_3^- + N_2^-$ 865 $O_3^- + N({}^2D) \rightarrow O_3^- + N_2^-$ 865 $O_3^- + N({}^2D) \rightarrow O_3^- + N_2^-$ 86		0.40		559
841 $O_2^- + O_2({}^1S) \to O_2^+ + O_2^- + e$ 842 $O_2^- + O_3 \to O_2^- + O_3^-$ 843 $O_2^- + N \to NO + O^-$ 844 $O_2^- + N \to NO_2^- + e$ 845 $O_2^- + N({}^2D) \to O_2^- + N + e$ 846 $O_2^- + N({}^2P) \to O_2^- + N + e$ 847 $O_2^- + NO_2^- \to O_2^- + NO_3^-$ 848 $O_2^- + NO_3^- \to O_2^- + NO_3^-$ 849 $O_2^- + N_2^- \to O_2^- + NO_2^-$ 850 $O_2^- + N_2^- O \to NO + NO_2^-$ 851 $O_2^- + N_2^- O \to NO + NO_2^-$ 852 $O_2^- + H_2^- O \to NO + NO_2^-$ 853 $O_3^- + O \to O_2^- + O_2^- + e$ 854 $O_3^- + O \to O_2^- + O_2^- + e$ 855 $O_3^- + O(^1D) \to O + O + O_2^-$ 856 $O_3^- + O(^1D) \to O + O_2^- + O^-$ 857 $O_3^- + O(^1D) \to O + O_2^- + O^-$ 858 $O_3^- + O(^1S) \to O + O + O_2^-$ 859 $O_3^- + O(^1S) \to O + O_2^- + O^-$ 861 $O_3^- + O_2(^1S) \to O_2^- + O_2^- + O^-$ 861 $O_3^- + O_2(^1S) \to O_2^- + O_2^- + O^-$ 863 $O_3^- + O_2(^1S) \to O_2^- + O_2^- + O^-$ 864 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 864 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + N_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + O_2^- + O^-$ 865 $O_3^- + N(^2D) \to O_2^- + N_2^-$ 865 $O_3^- + N(^2D) \to O_2^- + N_2^$		840	$O_2^- + O_2(^1D) \rightarrow O_2 + O_2 + e$	2x1
842 $O_2^{-1} + O_3 \rightarrow O_2 + O_3^{-1}$ 6x1 843 $O_2^{-1} + N \rightarrow NO + O^{-1}$ 10 ⁻¹ 844 $O_2^{-1} + N \rightarrow NO_2 + e$ 4x1 845 $O_2^{-1} + N(^2D) \rightarrow O_2 + N + e$ 10 ⁻¹ 846 $O_2^{-1} + N(^2P) \rightarrow O_2 + N + e$ 10 ⁻¹ 847 $O_2^{-1} + NO_3 \rightarrow O_2 + NO_3^{-1}$ 7x1 848 $O_2^{-1} + NO_3 \rightarrow O_2 + NO_3^{-1}$ 5x1 849 $O_2^{-1} + N_2O \rightarrow NO + NO_2^{-1}$ 2x1 851 $O_2^{-1} + N_2O \rightarrow NO + NO_2^{-1}$ 2x1 852 $O_2^{-1} + H_2O \rightarrow O_2 + H_2O + e$ 5x1 853 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1} e$ 3x1 854 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1} e$ 3x1 855 $O_3^{-1} + O(^1D) \rightarrow O + O + O_2^{-1}$ 10 ⁻¹ 856 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 10 ⁻¹ 857 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 10 ⁻¹ 858 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 10 ⁻¹ 859 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 10 ⁻¹ 860 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 10 ⁻¹ 861 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 10 ⁻¹ 862 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 10 ⁻¹ 864 $O_3^{-1} + O(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 864 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 10 ⁻¹		841	$O_2^- + O_2(^1S) \rightarrow O_2 + O_2 + e$	3.6x
843 $O_2^{-1} + N \rightarrow NO + O^{-1}$ 10^{-1} 844 $O_2^{-1} + N \rightarrow NO_2 + e$ $4x1$ 845 $O_2^{-1} + N(^2D) \rightarrow O_2 + N + e$ 10^{-1} 846 $O_2^{-1} + NO_2 \rightarrow O_2 + N + e$ 10^{-1} 847 $O_2^{-1} + NO_2 \rightarrow O_2 + NO_2^{-1}$ $7x1$ 848 $O_2^{-1} + NO_3 \rightarrow O_2 + NO_3^{-1}$ $5x1$ 849 $O_2^{-1} + N_2 \rightarrow O_2 + N_2 + e$ 192 850 $O_2^{-1} + N_2 O \rightarrow NO + NO_2^{-1}$ $2x1$ 851 $O_2^{-1} + N_2 O \rightarrow N_2 + O_3^{-1}$ 10^{-1} 852 $O_2^{-1} + N_2 O \rightarrow O_2 + H_2 O + e$ $5x1$ 853 $O_3^{-1} + O \rightarrow O_2 + O_2 + H_2 O + e$ $5x1$ 853 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1}$ 2.55 854 $O_3^{-1} + O(^1D) \rightarrow O + O + O_2^{-1}$ 10^{-1} 856 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 10^{-1} 856 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 10^{-1} 857 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 10^{-1} 858 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 10^{-1} 861 $O_3^{-1} + O(^1S) \rightarrow O_2 + O_2 + O^{-1}$ 10^{-1} <td< th=""><th></th><th>842</th><th>$O_2^- + O_3 \rightarrow O_2 + O_3^-$</th><th>6X1</th></td<>		842	$O_2^- + O_3 \rightarrow O_2 + O_3^-$	6X1
844 $O_2^{-1} + N \rightarrow NO_2^{-1} + e$ 845 $O_2^{-1} + N(^2D) \rightarrow O_2 + N + e$ 846 $O_2^{-1} + N(^2P) \rightarrow O_2 + N + e$ 847 $O_2^{-1} + NO_2 \rightarrow O_2 + NO_2^{-1}$ 848 $O_2^{-1} + NO_3 \rightarrow O_2 + NO_3^{-1}$ 849 $O_2^{-1} + N_2 \rightarrow O_2 + N_2 + e$ 499 850 $O_2^{-1} + N_2O \rightarrow NO + NO_2^{-1}$ 851 $O_2^{-1} + N_2O \rightarrow NO + NO_2^{-1}$ 852 $O_2^{-1} + H_2O \rightarrow O_2 + H_2O + e$ 853 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1} + e^{-1}$ 854 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1} + e^{-1}$ 855 $O_3^{-1} + O(^1D) \rightarrow O + O + O_2^{-1}$ 856 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 857 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 858 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 859 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 861 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 861 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 862 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 863 $O_3^{-1} + O(^2D) \rightarrow O_2 + O_2 + O^{-1}$ 864 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_2 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_$		843	$O_2^- + N \rightarrow NO + O^-$	10-1
845 $O_2^{-1} + N(^2D) \rightarrow O_2^{-1} + N + e$ 846 $O_2^{-1} + N(^2P) \rightarrow O_2 + N + e$ 847 $O_2^{-1} + NO_2 \rightarrow O_2 + NO_2^{-1}$ 848 $O_2^{-1} + NO_3 \rightarrow O_2 + NO_3^{-1}$ 849 $O_2^{-1} + N_2 \rightarrow O_2 + N_2 + e$ 499 850 $O_2^{-1} + N_2O \rightarrow NO + NO_2^{-1}$ 851 $O_2^{-1} + N_2O \rightarrow NO + NO_2^{-1}$ 852 $O_2^{-1} + H_2O \rightarrow O_2 + H_2O + e$ 853 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1} + e$ 854 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1}$ 855 $O_3^{-1} + O(^1D) \rightarrow O + O + O_2^{-1}$ 856 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 857 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O^{-1}$ 858 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 859 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 860 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O^{-1}$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O + O_3 + e$ 861 $O_3^{-1} + O_2(^1S) \rightarrow O_2 + O_2 + O^{-1}$ 862 $O_3^{-1} + O_2(^1S) \rightarrow O_2 + O_2 + O^{-1}$ 863 $O_3^{-1} + O_3 \rightarrow O_2 + O_2 + O_2 + e$ 864 $O_3^{-1} + N(^2D) \rightarrow O + N + O_2^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 865 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O_3 + N + O^{-1}$ 867 $O_3^{-1} + N(^2D) \rightarrow O$		844 945	$O_2^2 + N \rightarrow NO_2 + e$	4X1
846 $O_2^{-} + N(^{2}P) \rightarrow O_2 + N + e$ 847 $O_2^{-} + NO_2 \rightarrow O_2 + NO_2^{-}$ 848 $O_2^{-} + NO_3 \rightarrow O_2 + NO_3^{-}$ 849 $O_2^{-} + N_2 \rightarrow O_2 + N_2 + e$ 499 850 $O_2^{-} + N_2O \rightarrow NO + NO_2^{-}$ 851 $O_2^{-} + N_2O \rightarrow N_2 + O_3^{-}$ 852 $O_2^{-} + H_2O \rightarrow O_2 + H_2O + e$ 853 $O_3^{-} + O \rightarrow O_2 + O_2 + e$ 854 $O_3^{-} + O \rightarrow O_2 + O_2^{-}$ 855 $O_3^{-} + O(^{1}D) \rightarrow O + O + O_2^{-}$ 856 $O_3^{-} + O(^{1}D) \rightarrow O + O + O_2^{-}$ 857 $O_3^{-} + O(^{1}D) \rightarrow O + O + O_2^{-}$ 858 $O_3^{-} + O(^{1}S) \rightarrow O + O + O_2^{-}$ 859 $O_3^{-} + O(^{1}S) \rightarrow O + O + O_2^{-}$ 860 $O_3^{-} + O(^{1}S) \rightarrow O + O_2 + O^{-}$ 861 $O_3^{-} + O_2(^{1}S) \rightarrow O + O_2 + O^{-}$ 862 $O_3^{-} + O_2(^{1}S) \rightarrow O_2 + O_2 + O^{-}$ 863 $O_3^{-} + O_2(^{1}S) \rightarrow O_2 + O_2 + O^{-}$ 864 $O_3^{-} + N(^{2}D) \rightarrow O + N + O_2^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O + N + O_2^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O + N + O_2^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 865 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_2 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_3 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_3 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_3 + N + O^{-}$ 867 $O_3^{-} + N(^{2}D) \rightarrow O_3 + N + O^{-}$		845	$O_2^- + N(^2D) \rightarrow O_2 + N + e$	10-1
847 $O_2^{-1} + NO_2 \rightarrow O_2 + NO_2^{-1}$ 7X1 848 $O_2^{-1} + NO_3 \rightarrow O_2 + NO_3^{-1}$ 5x1 849 $O_2^{-1} + N_2 \rightarrow O_2 + N_2 + e$ 1.92 499 850 $O_2^{-1} + N_2 O \rightarrow NO + NO_2^{-1}$ 2x1 851 $O_2^{-1} + N_2 O \rightarrow NO + NO_2^{-1}$ 2x1 851 $O_2^{-1} + N_2 O \rightarrow N_2 + O_3^{-1}$ 10^{-1} 852 $O_2^{-1} + H_2 O \rightarrow O_2 + H_2 O + e$ 5x1 853 $O_3^{-1} + O \rightarrow O_2 + O_2 + e$ 3x1 854 $O_3^{-1} + O \rightarrow O_2 + O_2^{-1}$ 2.55 855 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O_2^{-1}$ 10^{-1} 856 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O_2^{-1}$ 10^{-1} 857 $O_3^{-1} + O(^1D) \rightarrow O + O_2 + O_2^{-1}$ 10^{-1} 858 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O_2^{-1}$ 10^{-1} 859 $O_3^{-1} + O(^1S) \rightarrow O + O_2 + O_2^{-1}$ 10^{-1} 861 $O_3^{-1} + O_2(^1S) \rightarrow O_2 + O_2 + O_2^{-1}$ 10^{-1} 862 $O_3^{-1} + O_2(^1S) \rightarrow O_2 + O_2 + O_2^{-1}$ 10^{-1} 863 $O_3^{-1} + O_2(^1S) \rightarrow O_2 + O_2 + O_2^{-1}$ 10^{-1} 864 $O_3^{-1} + N(^2D) \rightarrow O_2 + N_2 + O_2^{-1}$ 10^		840 047	$O_2^- + N(^2P) \rightarrow O_2^- + N + e$	10 ⁻¹
848 $O_2 + NO_3 \rightarrow O_2 + NO_3$ $3X1$ 849 $O_2^- + N_2 \rightarrow O_2 + N_2 + e$ 1.92 499 850 $O_2^- + N_2O \rightarrow NO + NO_2^ 2x1$ 851 $O_2^- + N_2O \rightarrow N_2 + O_3^ 10^{-1}$ 852 $O_2^- + H_2O \rightarrow O_2 + H_2O + e$ $5x1$ 853 $O_3^- + O \rightarrow O_2 + O_2 + e$ $3x1$ 854 $O_3^- + O \rightarrow O_2 + O_2^ 2.52$ 855 $O_3^- + O(^1D) \rightarrow O + O + O_2^ 10^{-1}$ 856 $O_3^- + O(^1D) \rightarrow O + O_2 + O^ 10^{-1}$ 857 $O_3^- + O(^1D) \rightarrow O + O_3 + e$ 10^{-1} 858 $O_3^- + O(^1S) \rightarrow O + O_2 + O^ 10^{-1}$ 858 $O_3^- + O(^1S) \rightarrow O + O_2 + O^ 10^{-1}$ 860 $O_3^- + O(^1S) \rightarrow O + O_2 + O^ 10^{-1}$ 861 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^ 10^{-1}$ 862 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^ 10^{-1}$ 863 $O_3^- + N(^2D) \rightarrow O_2 + O_2 + O_2 + e$ 10^{-1} 864 $O_3^- + N(^2D) \rightarrow O_2 + N + O^ 10^{-1}$		84/ 040	$O_2^- + NO_2 \rightarrow O_2 + NO_2^-$	/X1 51
849 $O_2 + N_2 \rightarrow O_2 + N_2 + e$ 1.99 850 $O_2^- + N_2O \rightarrow NO + NO_2^-$ 2x1 851 $O_2^- + N_2O \rightarrow N_2 + O_3^-$ 10 ⁻¹ 852 $O_2^- + H_2O \rightarrow O_2 + H_2O + e$ 5x1 853 $O_3^- + O \rightarrow O_2 + O_2 + e$ 3x1 854 $O_3^- + O \rightarrow O_2 + O_2^-$ 2.55 855 $O_3^- + O(^1D) \rightarrow O + O + O_2^-$ 10 ⁻¹ 856 $O_3^- + O(^1D) \rightarrow O + O_2 + O^-$ 10 ⁻¹ 857 $O_3^- + O(^1D) \rightarrow O + O_2 + O^-$ 10 ⁻¹ 858 $O_3^- + O(^1S) \rightarrow O + O + O_2^-$ 10 ⁻¹ 859 $O_3^- + O(^1S) \rightarrow O + O_2 + O^-$ 10 ⁻¹ 861 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^-$ 10 ⁻¹ 862 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^-$ 10 ⁻¹ 863 $O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O^-$ 10 ⁻¹ 864 $O_3^- + N(^2D) \rightarrow O + N + O_2^-$ 10 ⁻¹ 865 $O_3^- + N(^2D) \rightarrow O_2 + N + O^-$ 10 ⁻¹		040 040	$O_2 + NO_3 \rightarrow O_2 + NO_3$	5X1 1 0x
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		049	$O_2 + N_2 \rightarrow O_2 + N_2 + e$	1.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		850	$\Omega_{-}^{-} + N_{-}\Omega \longrightarrow N\Omega + N\Omega_{-}^{-}$	$\frac{499}{2v1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		030 851	$O_2 + N_2 O \rightarrow N_0 + N_0 O_2$ $O_2 + N_2 O \rightarrow N_1 + O_2$	2X1 10-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		852	$O_2 + H_2O \rightarrow D_2 + O_3$ $O_2 + H_2O \rightarrow O_2 + H_2O + e_2$	10 5v1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		853	$O_2 + O_2 $	3x1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		854	$O_3^- + O \rightarrow O_2^- + O_2^-$	25x
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		855	$O_3^- + O(^1D) \rightarrow O + O + O_2^-$	10-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		856	$O_3^- + O(^1D) \rightarrow O + O_2^- + O_2^-$	10-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		857	$O_3^- + O(^1D) \rightarrow O + O_2 + O$	10 ⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		858	$O_2^- + O(^1S) \rightarrow O + O + O_2^-$	10 ⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		859	$O_3^- + O(^1S) \rightarrow O + O_2 + O^-$	10-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		860	$O_2^- + O(^1S) \rightarrow O + O_2^- + e$	10-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		861	$O_3^- + O_2(^1D) \rightarrow O_2 + O_2 + O_2^-$	10 ⁻¹
863 $O_3^- + O_3 \rightarrow O_2 + O_2 + O_2 + e$ 10^{-1} 864 $O_3^- + N(^2D) \rightarrow O + N + O_2^ 10^{-1}$ 865 $O_3^- + N(^2D) \rightarrow O_2 + N + O^ 10^{-1}$		862	$O_3^- + O_2(^1S) \rightarrow O_2 + O_2 + O_2^-$	10-1
864 $O_3^- + N(^2D) \rightarrow O + N + O_2^-$ 865 $O_3^- + N(^2D) \rightarrow O_2 + N + O^-$ 10 ⁻¹ 10 (863	$O_3^- + O_3 \rightarrow O_2 + O_2 + O_2 + e$	10 ⁻¹
865 $O_3^- + N(^2D) \rightarrow O_2 + N + O^-$ 10 ⁻¹		864	$O_3^- + N(^2D) \rightarrow O + N + O_2^-$	10-1
		865	$O_3^- + N(^2D) \rightarrow O_2^- + N + O^-$	10-1

2x10 ⁻¹⁰ (T _{gas} /300) ^(0.5)	[4]
10-10	[4]
10-10	[4]
1.5x10 ⁻¹²	[4]
$5 \times 10^{-15} (T_{gas}/300)^{(0.5)}$	[4]
$3 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
$3x10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
$6.9 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
$1.99 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
$3.01 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
2.6x10 ⁻¹⁰	[4]
10-10	[4]
10-10	[4]
$2.5 \times 10^{-10} (T_{asc}/300)^{(-0.8)}$	[4]
10 ⁻⁹	[4]
5x10 ⁻¹⁰	[4]
10-14	[4]
2×10^{-10}	['] [4]
5×10^{-10}	
$1.5 \times 10^{-10} (T / (300))(0.5)$	[7] [/]
$1.5 \times 10^{-10} (T / (300))^{(0.5)}$	[7] [/]
10^{-10} (1 _{gas} /500)	[+] [4]
10-10	[4] [4]
10-10	[4] [4]
10-10	[4]
10 **	[4]
3.5×10^{-10}	[4]
$2.7 \times 10^{-10} (1_{gas}/300)^{(0.5)} \exp(-10^{-10})$	[4]
$5590/1_{gas}$)	F 4 3
$2 \times 10^{10} (1_{gas}/300)^{(0.5)}$	[4]
$3.6 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
$6x10^{-10} (1_{gas}/300)^{(0.5)}$	[4]
10-10	[4]
4×10^{-10}	[4]
10-10	[4]
	[4]
7x10-10	[4]
5x10-10	[4]
$1.9 \times 10^{-12} (T_{gas}/300)^{(1.5)} \exp(-10^{-12})$	[4]
4990/T _{gas})	
2x10 ⁻¹⁴	[4]
10-12	[4]
$5x10^{-9} \exp(-5000/T_{gas})$	[4]
3x10 ⁻¹⁰	[4]
$2.5 \times 10^{-10} (T_{gas}/300)^{(0.5)}$	[4]
10-10	[4]
10-10	[4]
10-10	[4]
10-10	[4]
10-10	[4]
10-10	[4]
10-10	[4]
10-10	[4]
10-10	[/]
10	141
10-10	[4] [4]
10 ⁻¹⁰ 10 ⁻¹⁰	[4] [4]

866	$O_3^- + N(^2D) \rightarrow O_3 + N + e$	10-10	[4]
867	$O_3^- + N(^2P) \rightarrow O + N + O_2^-$	10-10	[4]
868	$O_3^- + N(^2P) \rightarrow O_2 + N + O^-$	10-10	[4]
869	$O_3^- + N(^2P) \rightarrow O_3 + N + e$	10-10	[4]
870	$O_3^- + NO \rightarrow O + NO_3^-$	10-11	[4]
871	$O_3^- + NO \rightarrow O_2 + NO_2^-$	2.6x10 ⁻¹¹	[4]
872	$O_3^- + NO_2 \rightarrow O_2 + NO_3^-$	2.8x10 ⁻¹⁰	[4]
873	$O_3^- + NO_2 \rightarrow O_3^- + NO_2^-$	2.8×10^{-10}	[4]
874	$O_2^- + NO_2^- \rightarrow O_2^- + NO_2^-$	5x10 ⁻¹⁰	[4]
875	$O_2 + N_2 O \rightarrow O_2 + O_2 + N_2 + e$	$2x10^{-14}$	[4]
876	$O_2^- + N_2O \rightarrow O_2 + N_2 + O_2^-$	$2x10^{-14}$	[4]
877	$O_2^- + N_2O \rightarrow NO + NO_2^-$	$2x10^{-14}$	[4]
878	$NO^- + O_2 \rightarrow NO + O_2^-$	5x10 ⁻¹⁰	[4]
879	$NO^{-} + NO \rightarrow NO + NO + e$	5x10 ⁻¹²	[4]
880	$NO^- + NO_2 \rightarrow NO + NO_2^-$	$7 4 x 10^{-10}$	[4]
881	$NO^{-} + N_2O \rightarrow NO + N_2O + e$	5.1×10^{-12}	[4]
882	$NO^{-} + N_2O \rightarrow N_2 + NO^{-}$	2.8×10^{-14}	[4]
883	$NO_2^- + O \rightarrow NO_2^- + e$	10-12	[4]
884	$NO_2^- + O_2 \rightarrow O_2^- + NO_2^-$	1.2×10^{-10}	[4]
885	$NO_2^- + O_2 \rightarrow NO_2^- + O_2^-$	9x10 ⁻¹¹	[4]
886	$NO_2^- + NO_2 \rightarrow NO_2^- + NO_2^-$	2×10^{-13}	[4]
887	$NO_2 + NO_2 \rightarrow NO_2 + NO_2^-$	5×10^{-10}	[4]
888	$NO_2^- + N_2O \rightarrow N_2 + NO_2^-$	10-12	[4]
889	$NO_2 + O \rightarrow O_2 + NO_2 + e$	10 ⁻¹¹	[4]
890	$NO_2^- + O \rightarrow O_2^- + NO_2^-$	10 ⁻¹¹	[4]
891	$NO_2^- + O \rightarrow NO + O_2^-$	10 ⁻¹¹	[4]
892	$NO_2^- + O \rightarrow NO_2^- + O_2^-$	10 ⁻¹¹	[4]
893	$NO_2^- + O_2 \rightarrow O_2^- + O_2^- + NO_2^-$	10-13	[4]
894	$NO_3^- + NO \rightarrow NO_2 + NO_2^-$	10-12	[4]
895	$NO_3^- + NO_3 \rightarrow O_2 + NO + NO_3^-$	5x10 ⁻¹⁰	[4]
896	$O_2H_2O^2 + O(^1D) \rightarrow O + O_2 + H_2O + e$	10-10	[4]
897	$O_2H_2O^- + O(^1D) \rightarrow O + H_2O + O_2^-$	10-10	[4]
898	$O_2H_2O^- + O(^1S) \rightarrow O + O_2 + H_2O + e$	10-10	[4]
899	$O_2H_2O^- + O(^1S) \rightarrow O + H_2O + O_2^-$	10-10	[4]
900	$O_2H_2O^- + O_2(^1D) \rightarrow O_2 + O_2 + H_2O + e$	10-10	[4]
901	$O_2H_2O^- + O_2(^1D) \rightarrow O_2 + H_2O + O_2^-$	10-10	[4]
902	$O_2H_2O^- + O_2(^1S) \rightarrow O_2 + O_2 + H_2O + e$	10-10	[4]
903	$O_2H_2O^- + O_2(^1S) \rightarrow O_2 + H_2O + O_2^-$	10-10	[4]
904	$O_2H_2O^- + O_3 \rightarrow O_2 + H_2O + O_3^-$	2.3×10^{-10}	[4]
905	$O_2H_2O^2 + N(^2D) \rightarrow O_2 + N + H_2O + e$	10-10	[4]
906	$O_2H_2O^- + N(^2D) \rightarrow N^+ H_2O + O_2^-$	10-10	[4]
907	$O_2H_2O^2 + N(^2P) \rightarrow O_2 + N + H_2O + e$	10-10	[4]
908	$O_2H_2O^2 + N(^2P) \rightarrow N + H_2O + O_2^2$	10-10	[4]
909	$O_2H_2O^- + NO \rightarrow H_2O + NO_3^-$	3.1x10 ⁻¹⁰	[4]
910	$O_2H_2O^- + NO_2 \rightarrow O_2 + H_2O + NO_2^-$	9x10 ⁻¹⁰	[4]
911	$NO_2H_2O^2 + O_2 \rightarrow O_2 + H_2O + NO_2^2$	5x10 ⁻¹⁵	[4]
912	$NO_2H_2O^2 + O_3 \rightarrow O_2 + NO_3H_2O^2$	10-11	[4]
913	$NO_2H_2O^- + O_2 \rightarrow O_2 + H_2O + NO_2^-$	$7.5 \times 10^{-29} (T_{cos}/300)^{(-1)}$	[4]
914	$O^- + O_2 + O_2 \rightarrow O_2 + O_3^-$	$1.1 \times 10^{-30} (T_{ras}/300)^{(-1)}$	[4]
915	$O^- + O_2 + NO \rightarrow O_2 + NO_2^-$	10 ⁻²⁹	[4]
916	$O^- + O_2 + N_2 \rightarrow N_2 + O_3^-$	$10^{-30} (T_{gas}/300)^{(-1)}$	[4]
917	$O^- + NO + N_2 \rightarrow N_2 + NO_2^-$	10 ⁻²⁹	[4]
918	$O_2^- + O_2 + H_2O \rightarrow O_2 + O_2H_2O^-$	$3x10^{-28}$ (T _{gas} /300) (-1)	[4]
919	$NO_2^- + O_2 + H_2O \rightarrow O_2 + NO_2H_2O^-$	1.6×10^{-28}	[4]
920	$NO_2^- + NO + H_2O \rightarrow NO + NO_2H_2O^-$	$1.3 \times 10^{-28} (T_{gas}/300)^{(-1)}$	[4]
921	$NO_2^- + N_2 + H_2O \rightarrow N_2 + NO_2H_2O^-$	1.6x10 ⁻²⁸	[4]
	_ 22		

922	$NO_3^- + O_2 + H_2O \rightarrow O_2 + NO_3H_2O^-$	$7.5 \times 10^{-29} (T_{gas}/300)^{(-1)}$	[4]
923	$NO_2^- + N_2 + H_2O \rightarrow N_2 + NO_2H_2O^-$	$7.5 \times 10^{-29} (T_{avg}/300)^{(-1)}$	[4]
924	$O_{2} + H \rightarrow HO_{2} + e$	7×10^{-10}	[3]
025	$NO - + H \rightarrow HNO + a$	7×10^{-10}	[2]
923	$NO_2 + H \rightarrow HNO_2 + C$	1.66-10-11	[2]
920	$NO_3 + \Pi \rightarrow \Pi NO_3 + e$	1.00X10 ···	[2]
927	$O^2 + H_2 \rightarrow H_2O + e$	$6./2 \times 10^{-10}$	[3]
928	$O^- + HNO_3 \rightarrow HNO_2 + O_2^-$	1.5x10-9	[3]
929	$O_2^- + HNO_3 \rightarrow NO_3^- + HO_2$	2.9x10 ⁻⁹	[3]
930	$NO_2^- + HNO_3 \rightarrow NO_3^- + HNO_2$	1.6x10 ⁻⁹	[3]
931	$O^- + H_2O \rightarrow H_2O_2 + e$	6x10 ⁻¹³	[3]
932	$NO_3^- + N \rightarrow NO_2^- + NO_2^-$	5x10 ⁻¹²	[3]
933	$NO_2^- + H \rightarrow NO_2^- + OH$	1.66×10^{-11}	[3]
934	$O^2 + N_2(A) \rightarrow N_2 + O + e$	2.2×10^{-9}	[3]
035	$O + H_2(H) \rightarrow H_2 + O + C$	1.5×10^{-9}	[2]
933	$O + III O_3 \rightarrow III O_4 + C$	1.3×10*	[2]
930	$H + O_2 \rightarrow HO_2 + e$	1.2×10^{-2}	[2]
937	$H^2 + H_2O \rightarrow OH^2 + H_2$	3.8×10 ⁻⁹	[3]
938	$O_2^- + N_2(A) \rightarrow O_2 + N_2 + e$	2.1x10-9	[3]
939	$NO_2^- + N_2O_5 \rightarrow NO_3^- + NO_3 + NO_3$	$7x10^{-10}$	[3]
940	$H + O_2^- \rightarrow H^- + O_2$	7x10 ⁻¹⁰	[3]
941	$OH^- + H \rightarrow H_2O + e$	1.8x10 ⁻⁹	[3]
942	$O_2^- + H_2 \rightarrow H^- + HO_2$	5x10 ⁻¹³	[3]
943	$O_2^- + OH \rightarrow OH^- + O_2$	10-10	[3]
944	$OH^2 + O \rightarrow HO_2 + e$	$4x10^{-10}$ (T /300)(0.5)	[3]
945	$OH^2 + N \rightarrow HNO + e$	$10^{-11} (T / 300)(-0.5)$	[3]
046	$OH + H \rightarrow HHO + C$ $OH + H \rightarrow O + HO$	1.08×10^{-11}	[2]
940	$OH + O_3 \rightarrow O_2 + HO_2$	$1.00X10^{-2}$ 1.110-9 (T /200)(-0.5)	[2]
947	$OH^{2} + NO_{2} \rightarrow NO_{2}^{2} + OH$	$1.1 \times 10^{-9} (1_{gas}/300)^{(-0.5)}$	[3]
948	$O_2^- + M \rightarrow O_2^- + e + M$	$2./x10^{-10} (T_{gas}/300)^{(-2.3)} \exp(-$	[3]
		5590/T _{gas})	
949	$O^- + NO + M \rightarrow NO_2^- + M$	$2x10^{-29} (T_{gas}/300)^{(-2.5)}$	[3]
950	$O^- + O_2 + M \rightarrow O_3^- + M$	$1.1 \times 10^{-30} (T_{gas}/300)^{(-1)}$	[3]
951	$H^- + M \rightarrow H + e + M$	$2.7 \times 10^{-10} (T_{gas}/300)^{(0.5)} \exp(-10^{-10})$	[3]
		5590/T _{gas})	
	Positive ion-neutral reactions	gasy	
952	$O^+ + O \rightarrow O + O^+$	$10^{-9} (T / 300)(-0.5)$	۲ <u>4</u> 1
953	$O^+ + O_2 \rightarrow O^+ O_2^+$	$2v 10^{-11} (T /300)(-0.4)$	['] [/]
054	$O^+ + O_2^- \rightarrow O^- + O_2^+$	10^{-10} (1 _{gas} /500)	[7]
954	$O^+ + O_3 \rightarrow O_2 + O_2^+$ $O^+ + N(2D) = O_1 + N^+$		[4]
955	$O' + N(^2D) \rightarrow O + N'$	1.3X10 ⁻¹⁰	[4]
956	$O^+ + NO \rightarrow O + NO^+$	2.4×10^{-11}	[4]
957	$O^+ + NO \rightarrow N + O_2^+$	3x10 ⁻¹²	[4]
958	$O^+ + NO_2 \rightarrow O_2 + NO^+$	5x10 ⁻¹⁰	[4]
959	$O^+ + N_2 \rightarrow O + N_2^+$	4.9x10 ⁻⁹	[4]
960	$O^+ + N_2 \rightarrow N + NO^+$	$3x10^{-12} \exp(-0.00311*T_{gas})$	[4]
961	$O^+ + N_2(V_1) \rightarrow N + NO^+$	1.3x10 ⁻¹²	[4]
962	$O^+ + N_2(V_2) \rightarrow N + NO^+$	1.3×10^{-12}	[4]
963	$O^+ + N_2(V_2) \longrightarrow N + NO^+$	1.3×10^{-12}	[/]
964	$O^+ + N(V) \rightarrow N + NO^+$	1.3×10^{-12}	[] [/]
904	$O + IN_2(V_4) \rightarrow IN + INO$ $O^+ + INO \rightarrow INO + INO^+$	2.2×10^{-10}	[4] [4]
903 066	$O + IN_2 O \rightarrow INO + INO^+$	2.3X10 ··· 210-11	[4] [4]
966	$O' + N_2 O \rightarrow N_2 + O_2'$	$2X10^{-11}$	[4]
967	$O^{+} + OH \rightarrow H + O_2^{+}$	3.6x10-10	[4]
968	$O^+ + H_2O \rightarrow O + H_2O^+$	2.3x10 ⁻⁹	[4]
969	$O_2^+ + O(^1D) \rightarrow O_2(^1D) + O^+$	$10^{-12} (T_{gas}/300)^{(-0.5)}$	[4]
970	$O_2^+ + O_2 \rightarrow O_2^+ + O_2^+$	$10^{-9} (T_{gas}/300)^{(-0.5)}$	[4]
971	$O_2^+ + N \rightarrow O + NO^+$	1.2×10^{-10}	[4]
972	$O_2^+ + NO \rightarrow O_2 + NO^+$	$4 4 x 10^{-10}$	[4]
973	$O_2^+ + NO_2 \rightarrow O_2^- + NO^+$	10-11	[4]
974	$O_2^+ + N_2 \rightarrow NO + NO^+$	10-17	[4]
// T		1 V	1 7 1

975	$O_4^+ + O \rightarrow O_3^+ + O_2^+$	3x10 ⁻¹⁰	[4]
976	$O_4^+ + O(^1D) \rightarrow O + O_2 + O_2^+$	10-10	[4]
977	$O_4^+ + O(^1D) \rightarrow O_3 + O_2^+$	3x10 ⁻¹⁰	[4]
978	$O_4^+ + O(^1S) \rightarrow O + O_2 + O_2^+$	10-10	[4]
979	$O_4^+ + O(1S) \rightarrow O_2 + O_2^+$	3x10 ⁻¹⁰	[4]
980	$O_4^+ + O_2 \rightarrow O_2 + O_2 + O_2^+$	$3.3 \times 10^{-16} (T_{gas}/300)^{(-4)} \exp(-5030/T_{gas})$	[4]
981	$O_4^+ + O_2(^1D) \rightarrow O_2 + O_2 + O_2^+$	10 ⁻¹⁰	[4]
982	$O_4^+ + O_2(1S) \rightarrow O_2 + O_2 + O_2^+$	10-10	[4]
983	$O_4^+ + N(^2D) \rightarrow O_2^+ + N + O_2^+$	10-10	[/]
001	$O_4 + N(2D) \rightarrow O_2 + N + O_2$	10-10	[7] [4]
904 095	$O_4 + N(-\Gamma) \rightarrow O_2 + N + O_2$	10-10	[4]
905	$O_4^+ + NO \rightarrow O_2^- + O_2^- + NO^-$	10^{13}	[4]
980	$O_4^{\prime} + N_2 \rightarrow O_2 + N_2 + O_2^{\prime}$	$10^{-3} (T_{gas}/300)^{(-4.2)} \exp(-5400/T_{gas})$	[4]
987	$N^+ + O \rightarrow N + O^+$	10-12	[4]
988	$N^+ + O_2 \rightarrow O + NO^+$	2.8×10^{-10}	[4]
989	$N^+ + O_2 \rightarrow N + O_2^+$	2.8x10 ⁻¹⁰	[4]
990	$N^+ + O_2 \rightarrow NO + O^+$	2.8x10 ⁻¹¹	[4]
991	$N^+ + O_3 \rightarrow O_2 + NO^+$	5x10 ⁻¹⁰	[4]
992	$N^+ + NO \rightarrow O + N_2^+$	3x10 ⁻¹²	[4]
993	$N^+ + NO \rightarrow N + NO^+$	8x10 ⁻¹⁰	[4]
994	$N^+ + NO \rightarrow N_2 + O^+$	10-12	[4]
995	$N^+ + NO_2 \rightarrow NO + NO^+$	5x10 ⁻¹⁰	[4]
996	$N^+ + N_2 \Omega \rightarrow N_2 + N \Omega^+$	5.5×10^{-10}	[4]
997	$N^+ + \Omega H \rightarrow H + N \Omega^+$	3.4×10^{-10}	[4]
998	$N^+ + H_2 \Omega \rightarrow N + H_2 \Omega^+$	2.6×10^{-9}	['] [/]
000	$N_{2}^{+} + \Omega \rightarrow N + N\Omega^{+}$	$1.3 \times 10^{-10} (T / (200))(-0.46)$	[⁺] [/]
1000	$N_2^+ + O \rightarrow N_2^+ + O^+$	$10^{-11} (T / (300))^{-0.2}$	[+] [/]
1000	$N_2 + O \rightarrow N_2 + O$ $N_1 + + O \rightarrow NO + NO^+$	10 (1 _{gas} /500)*	[7] [4]
1001	$N_2 + O_2 \rightarrow NO + NO$	$5_{v}10^{-11}$ (T /200)(-0.8)	[4] [4]
1002	$N_2 + O_2 \rightarrow N_2 + O_2$ $N_1 + O_2 \rightarrow O_2 + N_1 + O_2$	$3 \times 10^{-10} (1_{gas}/300)^{(300)}$	[4] [4]
1005	$N_2 + O_3 \rightarrow O + N_2 + O_2$ $N_1 + + N_1 \rightarrow N_1 + N_1^+$	$2 4_{\rm w} 10^{-15} * {\rm T}$	[4] [4]
1004	$N_2 + N \rightarrow N_2 + N$ $N_1 + NO \rightarrow N_1 + NO^+$	2.4×10^{-10} I gas	[4] [4]
1005	$N_2^+ + NO \rightarrow N_2 + NO^+$	5.5X10 ⁻²⁰	[4]
1000	$N_2^+ + N_2O \rightarrow N + N_2 + NO^+$	4×10^{-10}	[4]
1007	$N_2^+ + H_2O \rightarrow N_2 + H_2O^+$	3×10 ⁻⁹	[4]
1008	$N_4' + O \rightarrow N_2 + N_2 + O'$	2.5X10-10	[4]
1009	$N_4^+ + O(^1S) \rightarrow O + N_2 + N_2^+$		[4]
1010	$N_4^{+} + O(^{+}D) \rightarrow O + N_2 + N_2^{+}$		[4]
	$N_4^{-+} + O_2 \rightarrow O_2 + N_2 + N_2^{-+}$	2.5×10-10	[4]
1012	$N_4^{-+} + O_2 \rightarrow N_2 + N_2 + O_2^{-+}$	4x10-10	[4]
1013	$N_4^+ + O_2(^1D) \rightarrow O_2 + N_2 + N_2^+$		[4]
1014	$N_4^+ + O_2(^1S) \rightarrow O_2 + N_2 + N_2^+$		[4]
1015	$N_4^+ + N \rightarrow N_2^- + N_2^- + N^+$	10-11	[4]
1016	$N_4^+ + N(^2D) \rightarrow N + N_2 + N_2^+$	10-10	[4]
1017	$N_4^+ + N(^2P) \rightarrow N + N_2 + N_2^+$	10-10	[4]
1018	$N_4^+ + NO \rightarrow N_2 + N_2 + NO^+$	$4x10^{-10}$	[4]
1019	$\mathrm{N_4^+} + \mathrm{H_2O} \rightarrow \mathrm{N_2} + \mathrm{N_2} + \mathrm{H_2O^+}$	2.4x10 ⁻⁹	[4]
1020	$\mathrm{O^{+}+O+O_{2} \rightarrow O_{2}+O_{2}^{+}}$	$10^{-29} (T_{gas}/300)^{(0.5)}$	[4]
1021	$O^+ + O + N_2 \rightarrow N_2 + O_2^+$	10 ⁻²⁹	[4]
1022	$O^+ + O_2 + N \rightarrow O_2 + NO^+$	10-29	[4]
1023	$O^+ + O_2 + N_2 \rightarrow O_2 + N + NO^+$	6x10 ⁻²⁹ (T _{gas} /300) ⁽⁻²⁾	[4]
1024	$\mathrm{O^{+}} + \mathrm{N} + \mathrm{N_{2}} \rightarrow \mathrm{N_{2}} + \mathrm{NO^{+}}$	10-29	[4]
1025	$O^+ + N_2 + N_2 \rightarrow N + N_2 + NO^+$	6x10 ⁻²⁹ (T _{gas} /300) ⁽⁻²⁾	[4]
1026	$O_2^+ + O_2 + O_2 \rightarrow O_2 + O_4^+$	$3.9 \times 10^{-30} (T_{gas}/300)^{(-3.2)}$	[4]
1027	$\mathrm{O_2^+} + \mathrm{O_2} + \mathrm{H_2O} \rightarrow \mathrm{O_2} + \mathrm{H_2O_3^+}$	2.9x10 ⁻²⁸	[4]
1028	$O_2^+ + N_2 + H_2 O \rightarrow N_2 + H_2 O_3^+$	2.8x10 ⁻²⁸ (T _{gas} /300) ⁽⁻²⁾	[4]

1029	$O_4^+ + N_2 + H_2O \rightarrow O_2 + N_2 + H_2O_3^+$	$1.5 \times 10^{-28} (T_{gas}/300)^{(-2)}$	[4]
1030	$N^+ + O + O_2 \rightarrow O_2 + NO^+$	10-29	[4]
1031	$N^+ + O + N_2 \rightarrow N_2 + NO^+$	10-29	[4]
1032	$N^+ + O + H_2O \rightarrow H_2O + NO^+$	10-29	[4]
1033	$N^+ + O_2 + N \rightarrow O_2 + N_2^+$	10-29	[4]
1034	$N^+ + N + N_2 \rightarrow N_2 + N_2^+$	10-29	[4]
1035	$N_2^+ + N_2 + N_2 \rightarrow N_2 + N_4^+$	$5 \times 10^{-29} (T_{gas}/300)^{(-1)}$	[4]
1036	$H_2 + NO_2^+ \rightarrow NO^+ + H_2O$	1.5×10^{-10}	[3]
1037	$H_2^- + H_2O^+ \rightarrow H_3O^+ + H_1$	1.4x10 ⁻⁹	[3]
1038	$H_2O^+ + N \rightarrow NO^+ + H_2$	2.8×10^{-11}	[3]
1039	$N^+ + N_2 \rightarrow N + N_2^+$	4.45x10 ⁻¹⁰	[3]
1040	$NO_2^+ + O \rightarrow NO^+ + O_2$	8x10 ⁻¹²	[3]
1041	$O^+ + NO_2 \rightarrow NO_2^+ + O$	1.6x10 ⁻⁹	[3]
1042	$O_2^+ + NO_2 \rightarrow NO_2^+ + O_2$	6.6×10^{-10}	[3]
1043	$NO_2^+ + NO \rightarrow NO_2^- + NO^+$	2.9×10^{-10}	[3]
1044	$NO_2^+ + H \rightarrow OH + NO^+$	1.9×10^{-10}	[3]
1045	$N^+ + H_2O \rightarrow NO^+ + H_2$	$4 \times 10^{-10} (T_{gas}/300)^{(0.52)}$	[3]
1046	$H_2O^+ + NO_2 \rightarrow NO_2^+ + H_2O_2^+$	1.2×10^{-9}	[3]
1047	$H_2^+ + O_2 \rightarrow H_2 + O_2^+$	8x10 ⁻¹⁰	[3]
1048	$H_2^+ + O \rightarrow H_2O^+ + H$	3.6×10^{-10}	[3]
1049	$H_2^+ + O \rightarrow OH^+ + H_2$	$8 4 \times 10^{-10}$	[3]
1050	$H_2^+ + H_2O \rightarrow H_2O^+ + H_2$	5.9×10^{-9}	[3]
1051	$N_2^+ + O_2 \rightarrow NO_2^+ + N_2$	1.5×10^{-11}	[3]
1052	$O_2^+ + N_2O_5 \rightarrow NO_2^+ + NO_2 + O_2$	8.8x10 ⁻¹⁰	[3]
1053	$NO^+ + N_2O_5 \rightarrow NO_2 + NO_2 + NO_2^+$	5.9x10 ⁻¹⁰	[3]
1054	$O^+ + H \rightarrow H^+ + O$	$5.66 \times 10^{-10} (T_{ras}/300)^{(0.36)}$	[3]
		$exp(8.6/T_{ras})$	[-]
1055	$N^+ + H \rightarrow N + H^+$	$2x10^{-9}$	[3]
1056	$H_2^+ + H \rightarrow H_2 + H^+$	6.39x10 ⁻¹⁰	[3]
1057	$H^{+} + O \rightarrow H^{-} + O^{+}$	$3.04 \times 10^{-10} (T_{gas}/300)^{(0.47)}$	[3]
		$exp(11.5/T_{gas})$	
1058	$H^+ + O_2 \rightarrow H + O_2^+$	2x10-9	[3]
1059	$H^+ + OH \rightarrow H + OH^+$	2.1x10 ⁻⁹	[3]
1060	$H^+ + H_2O \rightarrow H + H_2O^+$	6.9x10 ⁻⁹	[3]
1061	$O^+ + H_2 \rightarrow OH^+ + H$	1.62x10 ⁻⁹	[3]
1062	$H_3O^+ + H_2 \rightarrow H_2O + H_3^+$	5x10 ⁻¹⁰	[3]
1063	$N_2{}^+ + OH \longrightarrow OH^+ + N_2$	6.3x10 ⁻¹⁰	[3]
1064	$OH^+ + O \rightarrow O_2^+ + H$	7.1x10 ⁻¹⁰	[3]
1065	$OH^+ + O_2 \rightarrow OH + O_2^+$	3.8x10 ⁻¹⁰	[3]
1066	$OH^+ + N \rightarrow NO^+ + H$	8.9x10 ⁻¹⁰	[3]
1067	$OH^+ + H_2O \rightarrow H_2O^+ + OH$	1.6x10 ⁻⁹	[3]
1068	$OH^+ + H_2O \rightarrow H_3O^+ + O$	1.3x10 ⁻⁹	[3]
1069	$O_2^+ + NH \rightarrow NO_2^+ + H$	3.2×10^{-10}	[3]
1070	$\mathrm{N^{+}} + \mathrm{N} + \mathrm{M} \longrightarrow \mathrm{N_{2}^{+}} + \mathrm{M}$	10-29	[3]
1071	$N^+ + O + M \rightarrow NO^+ + M$	10-29	[3]
1072	$O^+ + N + M \rightarrow NO^+ + M$	10-29	[3]
1073	$O^+ + N_2 + M \rightarrow NO^+ + N + M$	$6 x 10^{-29} (T_{gas}/300)^{(-2)}$	[3]
1074	$O_2^+ + O_2 + M \rightarrow O_4^+ + M$	$2.4 x 10^{-30} (T_{gas}/300)^{(-3.2)}$	[3]
1075	$O_4^+ + M \longrightarrow O_2^+ + O_2 + M$	$3.3 \times 10^{-6} (T_{gas}/300)^{(-2.5)} \exp(-10^{-2.5})$	[3]
		2650/T _{gas})	
1076	$N_2{}^+ + N + M \longrightarrow N_3{}^+ + M$	9x10 ⁻³⁰ (T _{gas} /300)	[3]
		$exp(400/T_{gas})$	
1077	$N_2{}^+ + N_2 + M \longrightarrow N_4{}^+ + M$	6.8x10 ⁻²⁹ (T _{gas} /300) ^(-1.64)	[3]
1078	$\mathrm{N_3^+} + \mathrm{M} \longrightarrow \mathrm{M} + \mathrm{N} + \mathrm{N_2^+}$	6.6x10 ⁻¹¹	[3]
1079	$\mathrm{H}_{2}\mathrm{O}^{+} + \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}^{+}$	$2x10^{-10}$	[4]
1080	$H_2O^+ + NO \rightarrow H_2O + NO^+$	5.9x10 ⁻¹⁰	[4]

1081	$H_2O^+ + H_2O \rightarrow OH + H_3O^+$	1.8x10-9	[4]
1082	$H_3O^+ + NO \rightarrow H + H_2O + NO^+$	1.5×10^{-12}	[4]
1083	$H_2O_3^+ + O(^1D) \rightarrow O + H_2O + O_2^+$	10-10	[4]
1084	$H_2O_2^+ + O(1S) \rightarrow O + H_2O + O_2^+$	10-10	[4]
1085	$H_2O_2^+ + O_2 \rightarrow H_2O + O_4^+$	$2x10^{-10} \exp(-2300/T_{mo})$	[4]
1086	$H_2O_2^+ + O_2(^1D) \rightarrow O_2 + H_2O + O_2^+$	10^{-10}	[4]
1087	$H_2O_3^+ + O_2(D) \rightarrow O_2^+ + H_2O^+ + O_2^+$	10-10	[1]
1007	$H_2O_3^+ + O_2(D) \rightarrow O_2^+ + H_2O^+ + O_2^+$	10-10	[7]
1000	$\Pi_2 O_3 + \Pi(D) \rightarrow \Pi + \Pi_2 O + O_2$ $\Pi + \Pi_2 O + O_2$	10-10	[4]
1089	$H_2O_3^+ + N(^2P) \rightarrow N + H_2O + O_2^+$		[4]
1090	$H_4O_2^+ + O(^1D) \rightarrow O + OH + H_3O^+$		[4]
1091	$H_4O_2^+ + O(^1S) \rightarrow O + OH + H_3O^+$	10-10	[4]
1092	$\mathrm{H}_{4}\mathrm{O}_{2}^{+} + \mathrm{O}_{2}(^{1}\mathrm{D}) \rightarrow \mathrm{O}_{2} + \mathrm{OH} + \mathrm{H}_{3}\mathrm{O}^{+}$	10-10	[4]
1093	$\mathrm{H}_{4}\mathrm{O}_{2}^{+} + \mathrm{O}_{2}(^{1}\mathrm{S}) \rightarrow \mathrm{O}_{2} + \mathrm{OH} + \mathrm{H}_{3}\mathrm{O}^{+}$	10-10	[4]
1094	$\mathrm{H_4O_2^+} + \mathrm{N(^2D)} \rightarrow \mathrm{N} + \mathrm{OH} + \mathrm{H_3O^+}$	10-10	[4]
1095	$\mathrm{H_4O_2^+} + \mathrm{N(^2P)} \rightarrow \mathrm{N} + \mathrm{OH} + \mathrm{H_3O^+}$	10-10	[4]
1096	$(H_2O)_2H^+ + O(^1D) \rightarrow O + H_2O + H_3O^+$	10-10	[4]
1097	$(H_2O)_2H^+ + O(^1S) \rightarrow O + H_2O + H_3O^+$	10-10	[4]
1098	$(H_2O)_2H^+ + O_2(^1S) \rightarrow O_2 + H_2O + H_3O^+$	10-10	[4]
1099	$(H_2O)_2H^+ + N(^2D) \rightarrow N + H_2O + H_3O^+$	10-10	[4]
1100	$(H_2O)_2H^+ + N(^2P) \rightarrow N + H_2O + H_2O^+$	10-10	[4]
1101	$(H_2O)_2H^+ + N_2 \rightarrow N_2 + H_2O + H_2O^+$	7x10-26	[4]
1101	$H_2O^+ + O_2 + H_2O \rightarrow O_2 + (H_2O)_2H^+$	3.7×10^{-27}	[1]
1102	$H_{2}O^{+} + N_{2} + H_{2}O \rightarrow N_{2} + (H_{2}O)_{2}H^{+}$	$3 4 \times 10^{-27} (T / (300))^{(-4)}$	[7]
1103	$H_{0}^{+} + H_{0}^{-} + H_{0}^{-} \rightarrow H_{0}^{-} + (H_{0}^{-}) H^{+}$	$7_{\rm v} 10^{-28}$	[7]
1104	$\Pi_{3}O^{+} + \Pi_{2}O^{+} + \Pi_{2}O^{-} \rightarrow \Pi_{2}O^{+} + (\Pi_{2}O)_{2}\Pi^{-}$	$7 \times 10^{-28} (T / 200)(-4)$	[4]
1105	$O_2^+ + H_2O^+ + M \rightarrow H_2O_3^- + M$	$2.0010^{-3} (1_{gas}/500)^{-3}$	[2]
1100	$U_4^+ + U_2^- U_2^- \to U_2^- U_3^+ + U_2^- U_2^- \to U_2^- U_$	1.7×10^{-5}	[3]
1107	$H_2O_3^+ + M \rightarrow O_2^+ + H_2O + M$	$9./2x10^{-1} (1_{gas})^{-1} exp(-7.10/T)$	[5]
1100		$(610/1_{gas})$	[0]
1108	$H_2O_3^+ + H_2O \rightarrow H_3O^+ + OH + O_2$	3x10-10	[3]
1109	$H_2O_3^+ + H_2O \rightarrow O_2 + H_4O_2^+$	10-9	[3]
1110	$H_2O_3^+ + NO \rightarrow O_2^+ + H_2O^+ + NO^+$	5.3x10 ⁻¹⁰	[3]
1111	$\mathrm{H}_{4}\mathrm{O}_{2}^{+} + \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{OH} + (\mathrm{H}_{2}\mathrm{O})_{2}\mathrm{H}^{+}$	1.4x10 ⁻⁹	[3]
1112	$\mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{H}_{2}\mathrm{O} + \mathrm{M} \rightarrow (\mathrm{H}_{2}\mathrm{O})_{2}\mathrm{H}^{+} + \mathrm{M}$	$3.2 \times 10^{-27} (T_{gas}/300)^{(-4)}$	[5]
1113	$(\mathrm{H}_{2}\mathrm{O})_{2}\mathrm{H}^{+} + \mathrm{M} \rightarrow \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{H}_{2}\mathrm{O} + \mathrm{M}$	$1.05 \times 10^8 (T_{gas})^{(-4)} \exp(-10^{-4})$	[5]
		16430/T _{gas})	
1114	$(H_2O)_2H^+ + H_2O + M \rightarrow (H_2O)_3H^+ + M$	$7.4 \times 10^{-27} (T_{gas}/300)^{(-7.5)}$	[5]
1115	$(H_2O)_3H^+ + M \rightarrow (H_2O)_2H^+ + H_2O + M$	$8 \times 10^{16} (T_{gas})^{(-7.5)} \exp(-$	[5]
		$10030/T_{gas}$)	
1116	$(H_2O)_3H^+ + H_2O + M \rightarrow (H_2O)_4H^+ + M$	$2.5 \times 10^{-27} (T_{gas}/300)^{(-8.1)}$	[5]
1117	$(H_2O)_4H^+ + M \rightarrow (H_2O)_3H^+ + H_2O + M$	$2x10^{18} (T_{gas})^{(-8.1)} \exp(-$	[5]
		8360/T _{gas})	
1118	$(H_2O)_4H^+ + H_2O + M \rightarrow (H_2O)_5H^+ + M$	$3.3 \times 10^{-28} (T_{ras}/300)^{(-14)}$	[5]
1119	$(H_2O)_5H^+ + M \rightarrow (H_2O)_4H^+ + H_2O + M$	$6.3 \times 1030 (T_{acc})^{(-14)} \exp(-$	[5]
	(2 -) (2 -) +2	5750/T)	[-]
1120	$(H_2\Omega)_{\varepsilon}H^+ + H_2\Omega + M \rightarrow (H_2\Omega)_{\varepsilon}H^+ + M$	$4x10^{-29}$ (T /300)(-15.3)	[5]
1120	$(H_2O)_2H^+ + M \rightarrow (H_2O)_2H^+ + H_2O + M$	$2 62 \times 10^{33} (T_{-})^{(-15.3)} \exp(-10^{-15.3})$	[5]
1121	$(1120)_{6}$ $(1120)_{5}$ $(1120)_{5}$ $(1120)_{5}$ $(1120)_{6}$ $(1120)_{6}$	5000/T)	[2]
1122	$(H, O) \cdot H^+ + H_*O + M \rightarrow (H, O) \cdot H^+ + M$	$4.5 \times 10^{-30} (T / (300))^{(-16)}$	[5]
1122	$(H_2O)_6H^+ + M \longrightarrow (H_2O)_2H^+ + H_2O + M$	$(1_{gas}, 500)^{(1)}$	[5]
1143	$(11_2 \bigcirc f/11 + 1_1 1 \rightarrow (11_2 \bigcirc f/611 + 11_2 \bigcirc f/11$	$2x_{10}$ (1gas) $2x_{10}$ (2xp(-	[2]
	Noutral noutral reactions	$5000/1_{\text{gas}}$	
1124		$0.26_{11}0.34$ (T /200)(-1)	F 4 1
1124	$O + O \rightarrow O_2$	$9.20X10^{-1} (1_{gas}/300)^{-1}$	[4] [4]
1125	$0 + O(10) \rightarrow 0 + 0$	$\delta X I U^{-2}$	[4]
1126	$0 + 0(18) \rightarrow 0 + 0(18)$	$3.33 \times 10^{-11} \exp(-300/1_{\text{gas}})$	[4]
1127	$O + O(^{1}S) \rightarrow O + O(^{1}D)$	$1.6 / X 10^{-11} \exp(-300 / 1_{gas})$	[4]
1128	$O + O_2(^{1}D) \rightarrow O + O_2$	$2x10^{-10}$	[4]

1129	$O + O_2(^1S) \rightarrow O + O_2$	$8 \times 10^{-15} (T_{gas}/300)^{(0.5)}$	[4]
1130	$O + O_2(^1S) \rightarrow O + O_2(^1D)$	$7.2 \times 10^{-14} (T_{aug}/300)^{(0.5)}$	[4]
1131	$0 + 0_2(S) \rightarrow 0(^1D) + 0_2(S)$	5.97×10^{-14}	[/]
1121	$O + O_2(S) \to O + O_2$	$10^{-14} (T / (200))(0.5)$	[7]
1132	$0 + O_2(V_1) \rightarrow 0 + O_2$	$10^{-11} (T_{gas}/300)^{(0.5)}$	[4]
1133	$0 + O_2(V_2) \rightarrow 0 + O_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$	[4]
1134	$O + O_2(V_3) \rightarrow O + O_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$	[4]
1135	$O + O_2(V_4) \rightarrow O + O_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$	[4]
1136	$O + O_3 \rightarrow O + O + O_2$	$9.4 \times 10^{-11} \exp(-11400/T_{gas})$	[4]
1137	$O + O_3 \rightarrow O_2 + O_2$	$8 \times 10^{-12} \exp(-2060/T_{gas})$	[4]
1138	$O + N(^{2}D) \rightarrow O(^{1}D) + N$	4x10 ⁻¹³	[4]
1139	$O + N(^2D) \rightarrow NO^+ + e$	10-12	[4]
1140	$O + N(^2P) \rightarrow NO^+ + e$	10-12	[4]
11/1	$O + NO \rightarrow O + N$	$8.93 \times 10^{-13} (T / 300) \exp($	[/]
1171	$0 + 100 \rightarrow 0_2 + 10$	10404.5/T	[ד]
1140	O + NO = O + NO	$19494.3/1_{gas}$	F 4 3
1142	$O + NO_2 \rightarrow O_2 + NO$	$6.5 \times 10^{-12} \exp(120/1_{gas})$	[4]
1143	$O + NO_3 \rightarrow O + O + NO_2$	$3.1 \times 10^{-4} (1_{\text{gas}}/300)^{(-2)} \exp(-10^{-2})$	[4]
		25000/T _{gas})	
1144	$O + NO_3 \rightarrow O + O_2 + NO$	$7.44 \times 10^{-4} (T_{gas}/300)^{(-2)} \exp(-10^{-2})$	[4]
		25000/T _{gas})	
1145	$O + NO_3 \rightarrow O_2 + NO_2$	10-11	[4]
1146	$O + N_2 \rightarrow N + NO$	$1.06 \times 10^{-6*} T_{cos}^{(-1)} \exp(-1)$	[4]
		38400/T)	Γ.]
1147	$O + H \rightarrow OH$	$A = \frac{36 \times 10^{-32}}{200}$ (T $(300)(-1)$	[4]
114/	$0 + \Pi \rightarrow 0\Pi$ $0 + 0 \Pi \rightarrow 0 + \Pi$	$(1_{gas}/500)^{(1)}$	[4]
1140	$0 + 0 \Pi \rightarrow 0_2 + \Pi$	$2.2 \times 10^{-1} \exp(120/T_{gas})$	[4]
1149	$0 + H_2 O \rightarrow OH + OH$	$2.5 \times 10^{-11} rm r_{gas}^{(111)} exp(-100)$	[4]
		$8624.0/1_{gas}$)	
1150	$O(^{1}D) + O_{2} \rightarrow O + O_{2}$	$4.8 \times 10^{-12} \exp(-67.0/T_{gas})$	[4]
1151	$O(^{1}D) + O_{2} \rightarrow O + O_{2}(^{1}D)$	$2.6 \times 10^{-11} \exp(-67.0/T_{gas})$	[4]
1152	$O(^{1}D) + O_{2} \rightarrow O + O_{2}(^{1}S)$	$2.56 \times 10^{-11} \exp(-67.0/T_{gas})$	[4]
1153	$O(^{1}D) + O_{3} \rightarrow O + O + O_{2}$	1.2×10^{-10}	[4]
1154	$O(^{1}D) + O_{3} \rightarrow O + O_{3}$	2.41×10^{-10}	[4]
1155	$O(^{1}D) + O_{2} \rightarrow O_{2} + O_{2}$	1.2×10^{-10}	[4]
1156	$O(1D) + NO \rightarrow O + NO$	1.5×10^{-10}	[4]
1150	$O(D) + NO \rightarrow O + NO$	1.5×10^{-10}	[] [/]
1157	$O(D) + NO \rightarrow O_2 + NO$	1.7×10^{-10}	[4] [4]
1150	$O(D) + NO_2 \rightarrow O_2 + NO$	3×10^{10}	[4]
1159	$O(^{1}D) + N_{2} \rightarrow O + N_{2}$	$1.8 \times 10^{-11} \exp(10/.0/1_{gas})$	[4]
1160	$O(^{1}D) + N_{2}O \rightarrow O + O + N_{2}$	/x10-11	[4]
1161	$O(^{1}D) + N_{2}O \rightarrow O + N_{2}O$	10-12	[4]
1162	$O(^{1}D) + N_{2}O \rightarrow O_{2} + N_{2}$	4.4×10^{-11}	[4]
1163	$O(^{1}D) + N_{2}O \rightarrow NO + NO$	7x10 ⁻¹¹	[4]
1164	$O(^{1}D) + H \rightarrow OH$	$4.36 \times 10^{-32} (T_{gas}/300)^{(-1)}$	[4]
1165	$O(^{1}D) + OH \rightarrow O_{2} + H$	$6x10^{-11} (T_{gas}/300)^{(-0.186)} exp(-$	[4]
		154 0/T)	L . J
1166	$O(^{1}D) + H_{2}O \rightarrow O + H_{2}O$	1.2×10^{-11}	[4]
1167	$O(^{1}D) + H_{2}O \rightarrow OH + OH$	$1.2 \times 10^{-10} \exp(-64.05/T_{\odot})$	L'J [/]
110/	$O(D) + \Pi_2 O \rightarrow O\Pi + O\Pi$	$1.02 \times 10^{-12} \exp(-04.93/1_{gas})$	[4]
1100	$O(1S) + O_2 \rightarrow O + O_2$	$1.0x10 = exp(-850/1_{gas})$	[4] [4]
1109	$O(1S) + O_2 \rightarrow O(1D) + O_2$	$3.2 \times 10^{-12} \exp(-830/1_{gas})$	[4]
1170	$O(^{1}S) + O_{2}(^{1}D) \rightarrow O + O + O$	3.2X10 ⁻¹¹	[4]
1171	$O(^{1}S) + O_{2}(^{1}D) \rightarrow O + O_{2}$	1.1×10^{-10}	[4]
1172	$O(^{1}S) + O_{2}(^{1}D) \rightarrow O + O_{2}(^{1}S)$	1.3×10^{-10}	[4]
1173	$O(^{1}S) + O_{2}(^{1}D) \rightarrow O(^{1}D) + O_{2}$	3.6x10 ⁻¹¹	[4]
1174	$O(^{1}S) + O_{2}(^{1}D) \rightarrow O(^{1}D) + O_{2}(^{1}S)$	2.9x10 ⁻¹¹	[4]
1175	$O(^{1}S) + O_{3} \rightarrow O + O + O_{2}$	10-10	[4]
1176	$O(^1S) + O_2 \rightarrow O + O(^1D) + O_2$	2.9×10^{-10}	[4]
1177	$O(1S) + O_2 \rightarrow O_2 + O_2$	5.8×10^{-10}	[4]
1170	$O(1S) + NO \rightarrow O + NO$	2.0×10^{-10}	נ י ן [1]
11/0	$O(D) + 10 \rightarrow O + 100$	2.JAIU	141

1179	$O(^{1}S) + NO \rightarrow O(^{1}D) + NO$	5×10^{-10}
1190	$O(1S) + NO \rightarrow O + O + NO$	10-10
1100	$O(1S) + N_{2} \rightarrow O + N_{1}$	5
1101	$O(-S) + N_2 \rightarrow O + N_2$	5X10 ⁻⁷
1182	$O(^{1}S) + N_{2}O \rightarrow O + O + N_{2}$	1010
1183	$O(^{1}S) + N_{2}O \rightarrow O + N_{2}O$	9.3x10 ⁻¹²
1184	$O(^{1}S) + N_{2}O \rightarrow O(^{1}D) + N_{2}O$	3.1x10 ⁻¹²
1185	$O(^{1}S) + H \rightarrow OH$	$4.36 \times 10^{-32} (T_{gas}/300)^{(-1)}$
1186	$O(1S) + OH \rightarrow O_2 + H$	$6x10^{-11} (T_{m}/300)^{(-0.186)} exp(-$
		154 0/T
1197	$O(1S) + HO \rightarrow O + HO$	2×10^{-10}
110/	$O(S) + H_2O \rightarrow O + H_2O$	JATO 1.510-10
1188	$O(^{1}S) + H_{2}O \rightarrow O(^{1}D) + H_{2}O$	1.5X10 ⁻¹⁰
1189	$O(^{1}S) + H_{2}O \rightarrow OH + OH$	5x10-10
1190	$O_2 + O_2 \rightarrow O + O + O_2$	$6.6 \times 10^{-9} (T_{gas}/300)^{(-1.5)} \exp(-1.5)$
		59000/T _{gas})
1191	$O_2 + O_2(^1D) \rightarrow O + O_3$	$2.94 \times 10^{-21} (T_{gas}/300)^{(0.5)}$
1192	$O_2 + O_2(^1D) \rightarrow O_2 + O_2$	$3 \times 10^{-18} \exp(-\frac{200}{7} \text{ mm})$
1103	$O_2 + O_2(1S) \rightarrow O_2 + O_2$	$A_{\rm v} 10^{-18} ({\rm T} / (300))(0.5)$
1104	$O_2 + O_2(S) \rightarrow O_2 + O_2$	$-4X10 = (1 g_{as}/500)^{3/2}$
1194	$O_2 + O_2(^1S) \rightarrow O_2 + O_2(^1D)$	$5.0 \times 10^{-17} (1_{gas}/300)^{(0.5)}$
1195	$O_2 + O_2(V_1) \rightarrow O + O + O_2$	$6.6 \times 10^{-9} (T_{gas}/300)^{(-1.3)} \exp(-1.5)$
		56760/T _{gas})
1196	$O_2 + O_2(V_2) \rightarrow O + O + O_2$	$6.6 \times 10^{-9} (T_{gas}/300)^{(-1.5)} \exp(-1.5)$
		54520/T _{gas})
1197	$O_2 + O_2(V_3) \rightarrow O + O + O_2$	$6.6 \times 10^{-9} (T_{as}/300)^{(-1.5)} \exp(-1.5)$
		52281 0/T
1100	$O + O(V) \rightarrow O + O + O$	$6.6 \times 10^{-9} (T / 200)(-1.5) \exp($
1170	$O_2 + O_2(V_4) \rightarrow O + O + O_2$	$0.0x10^{-1}(1_{gas}/500)^{-1}$ exp(-
		$50041.0/1_{gas}$
1199	$O_2 + O_2(V_1) \rightarrow O_2 + O_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$
1200	$O_2 + O_2(V_2) \rightarrow O_2 + O_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$
1201	$O_2 + O_2(V_3) \rightarrow O_2 + O_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$
1202	$O_2 + O_2(V_4) \rightarrow O_2 + O_2$	$10^{-14} (T_{gas}/300)^{(0.5)}$
1203	$O_2 + O_2 \rightarrow O + O_2 + O_2$	$1.6 \times 10^{-9} \exp(-11400/T_{exc})$
1204	$O_2 + N(^2D) \rightarrow O + NO$	$1.5 \times 10^{-12} (T / (300))^{(0.5)}$
1204	$O_2 + N(2D) \rightarrow O(1D) + NO$	$6_{x}10^{-12} (T /200)(0.5)$
1203	$O_2 + N(D) \rightarrow O(D) + NO$	$0 \times 10^{-10} (1_{gas}/500)^{cm/3}$
1206	$O_2 + N(^2P) \rightarrow O + NO$	2.6×10^{-12}
1207	$O_2 + N(^2P) \rightarrow O(^1D) + NO$	2×10^{-12}
1208	$O_2 + N(^2P) \rightarrow O(^1S) + NO$	$2x10^{-12}$
1209	$O_2 + NO_2 \rightarrow O + O_2 + NO$	$5.3 \times 10^{-6} (T_{gas}/300)^{(-2)} \exp(-$
		$36180/T_{gas}$
1210	$O_2 + NO_3 \rightarrow O + O_2 + NO_2$	$3.1 \times 10^{-5} (T_{gas}/300)^{(-2)} \exp(-10^{-5})$
		25000/Tang)
1211	$\Omega_2 + N\Omega_2 \rightarrow \Omega_2 + \Omega_2 + N\Omega_2$	$6.2 \times 10^{-5} (T / (300))^{(-2)} \exp(-10^{-5})$
1411	$O_2 + 1O_3 + O_2 + O_2 + 1O_3$	25000/T
1010	$O + U \rightarrow O + OU$	$25000/1_{gas}$
1212	$O_2 + H \rightarrow O + OH$	$5.7 \times 10^{-10} \exp(-8455.0/1_{gas})$
1213	$O_2(^1D) + O_2(^1D) \rightarrow O_2 + O_2$	$9 \times 10^{-17} \exp(-560/T_{gas})$
1214	$O_2(^1D) + O_2(^1D) \rightarrow O_2 + O_2(^1S)$	$9x10^{-17} \exp(-560/T_{gas})$
1215	$O_2(^1D) + O_3 \rightarrow O + O_2 + O_2$	$5.2 \times 10^{-11} \exp(-2840/T_{gas})$
1216	$O_2(^1D) + N \rightarrow O + NO$	$2x10^{-14} \exp(-600/T_{gas})$
1217	$O_2(^1D) + NO \rightarrow O + NO_2$	4.88×10^{-18}
1218	$O_2(^1D) + N_2 \rightarrow O_2 + N_2$	3x10- ²¹
1210	$O_{2}(D) + H_{2} + O_{2} + H_{2}$ $O_{1}(D) + H_{2} + O_{2} + O_{3}$	$1.82 \times 10^{-13} \times 10^{-13}$
1217	$O_2(D) + \Pi \rightarrow O + U \Omega$	$1.05 \times 10^{-1} \text{ exp}(-1550/1_{\text{gas}})$
1220	$O_2(^{+}D) + H_2O \rightarrow O_2 + H_2O$	1.5X10 ⁻¹⁷
1221	$O_2(^{1}S) + O_2(^{1}S) \rightarrow O_2 + O_2(^{1}D)$	$3.6 \times 10^{-17} (T_{gas}/300)^{(0.5)}$
1222	$O_2(^1S) + O_3 \rightarrow O + O_2 + O_2$	$7.33 \times 10^{-12} (T_{gas}/300)^{(0.5)}$
1223	$O_2(^1S) + O_3 \rightarrow O + O_2(^1D) + O_2(^1D)$	1.8×10^{-11}
1224	$O_2(^1S) + O_3 \rightarrow O_2 + O_3$	$7.33 \times 10^{-12} (T_{max}/300)^{(0.5)}$
1225	$O_2(^1S) + O_3 \rightarrow O_2(^1D) + O_3$	$7.33 \times 10^{-12} (T_{cre}/300)^{(0.5)}$

[4] [4] [4] [4] [4] [4] [4]

[4] [4] [4] [4]

[4] [4] [4] [4] [4]

[4]

[4]

[4]

[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]

[4]

[4]

1226	$O_2(^1S) + NO \rightarrow O_2(^1D) + NO$	4x10 ⁻¹⁴	[4]
1227	$O_2(^1S) + N_2 \rightarrow O_2 + N_2$	2x10 ⁻¹⁵	[4]
1228	$O_2(^1S) + N_2 \rightarrow O_2(^1D) + N_2$	2.1x10 ⁻¹⁵	[4]
1229	$O_2(^1S) + H_2O \rightarrow O_2 + H_2O$	4x10 ⁻¹²	[4]
1230	$O_2(^1S) + H_2O \rightarrow O_2(^1D) + H_2O$	2.3x10 ⁻¹²	[4]
1231	$O_3 + O_3 \rightarrow O + O_2 + O_3$	$1.6 \times 10^{-9} \exp(-11400/T_{gas})$	[4]
1232	$O_3 + N(^2D) \rightarrow O + O_2 + N$	10 ⁻¹⁰	[4]
1233	$O_3 + N(^2D) \rightarrow O_2 + NO$	10-10	[4]
1234	$O_3 + N(^2P) \rightarrow O + O_2 + N$	10-10	[4]
1235	$O_3 + NO \rightarrow O_2 + NO_2$	$2x10^{-12} \exp(-1400/T_{gas})$	[4]
1236	$O_3 + NO_2 \rightarrow O_2 + NO_3$	$1.2 \times 10^{-13} \exp(-2450/T_{gas})$	[4]
1237	$O_3 + N_2 \rightarrow O + O_2 + N_2$	$1.6 \times 10^{-9} \exp(-11400/T_{gas})$	[4]
1238	$O_3 + H \rightarrow O_2 + OH$	$2.71 \times 10^{-11} (T_{gas}/300)^{(0.75)}$	[4]
1239	$O_3 + H_2O \rightarrow O + O_2 + H_2O$	$1.6 \times 10^{-9} \exp(-11400/T_{gas})$	[4]
1240	$N + O_2 \rightarrow O + NO$	$1.5 \times 10^{-11} \exp(-3600/T_{gas})$	[4]
1241	$N + O_3 \rightarrow O_2 + NO$	2x10 ⁻¹⁶	[4]
1242	$N + N(^{2}P) \rightarrow N + N(^{2}D)$	1.8x10 ⁻¹²	[4]
1243	$N + NO \rightarrow O + N_2$	$8.2 \times 10^{-11} \exp(-410/T_{gas})$	[4]
1244	$N + NO_2 \rightarrow O + O + N_2$	9.1x10 ⁻¹³	[4]
1245	$N + NO_2 \rightarrow O + N_2O$	$1.66 \times 10^{-12} \exp(220/T_{gas})$	[4]
1246	$N + NO_2 \rightarrow O_2 + N_2$	7x10 ⁻¹³	[4]
1247	$N + NO_2 \rightarrow NO + NO$	$1.33 \times 10^{-12} \exp(220/T_{gas})$	[4]
1248	$N + NO_3 \rightarrow O + N + NO_2$	$3.1 \times 10^{-4} (T_{gas}/300)^{(-2)} \exp(-$	[4]
		25000/T _{gas})	
1249	$N + NO_3 \rightarrow O_2 + N + NO$	$7.44 \times 10^{-4} (T_{gas}/300)^{(-2)} \exp(-10^{-2})$	[4]
		25000/T _{gas})	
1250	$N + NO_3 \rightarrow NO + NO_2$	3x10 ⁻¹²	[4]
1251	$N + OH \rightarrow NO + H$	4.7x10 ⁻¹¹	[4]
1252	$N(^{2}D) + N(^{2}P) \rightarrow N_{2}^{+} + e$	10-12	[4]
1253	$N(^{2}D) + NO \rightarrow O + N_{2}$	1.8x10 ⁻¹⁰	[4]
1254	$N(^{2}D) + NO \rightarrow O(^{1}D) + N_{2}$	4.5x10-11	[4]
1255	$N(^2D) + NO \rightarrow O(^1S) + N_2$	4.5x10-11	[4]
1256	$N(^2D) + NO \rightarrow N_2O$	6x10-11	[4]
1257	$N(^{2}D) + N_{2} \rightarrow N + N_{2}$	6x10 ⁻¹⁵	[4]
1258	$N(^{2}D) + N_{2}O \rightarrow O + N + N_{2}$	10^{-10}	[4]
1259	$N(^2D) + N_2O \rightarrow N_2 + NO$	3×10^{-12}	[4]
1260	$N(^2P) + NO \rightarrow O + N_2$	3x10-11	[4]
1261	$N(^2P) + NO_2 \rightarrow O + N + NO$	10^{-10}	[4]
1262	$N(^{2}P) + N_{2} \rightarrow N + N_{2}$	2×10^{-10}	[4]
1203	$N(^{2}P) + N_{2} \rightarrow N(^{2}D) + N_{2}$	2X10-10	[4]
1204	$N(^2P) + N_2O \rightarrow O + N + N_2$	10^{10} 5 2.10-5 (T /200)(-2) area([4]
1205	$NO + NO_2 \rightarrow O + NO + NO$	$3.3 \times 10^{-5} (1_{\text{gas}}/300)^{-27} \exp(-26180/T_{-10})$	[4]
1766	$NO + NO \rightarrow O + NO + NO$	$30180/1_{gas}$ 2 1 x 10-5 (T /200)(-2) $axm($	F 4 1
1200	$NO + NO_3 \rightarrow O + NO + NO_2$	$(1_{gas}/500)^{-7} \exp(-25000)^{-7}$	[4]
1267	$NO + NO \rightarrow O + NO + NO$	$(23000/1_{gas})$	F41
1207	$NO + NO_3 \rightarrow O_2 + NO + NO$	$(1_{gas}/500)^{-7} \exp(-25000/T)$	[4]
1268	$NO \pm NO \rightarrow NO \pm NO$	$1.8 \times 10^{-11} \exp(110/T_{\odot})$	F41
1200	$NO_2 + NO_2 \rightarrow O + NO_2 + NO_2$	$1.010 \text{ Cxp}(110/1_{\text{gas}})$ $4x10^{-5} (T / (200))(-2) \text{ cxp}(-2)$	[4] [/]
1407	$10O_2 + 11O_2 \rightarrow O + 11O + 11O_2$	$\frac{1}{36180}$ (1 _{gas} /300) (2 exp(-	[+]
1270	$NO_{2} + NO_{2} \rightarrow O_{2} + NO + NO_{2}$	$2x 10^{-13} exp(-1600/T)$	[4]
1270	$NO_2 + H \rightarrow NO + OH$	$2x_{10} = \exp(-1000/1_{gas})$ $4x_{10}^{-10} \exp(-3A0/T_{-10})$	נדן [<u>1</u>]
1271	$NO_2 + NO_2 \rightarrow O_2 + NO_2 + NO_2$	$\frac{1}{2} \frac{1}{2} \frac{1}$	נדן [<u>1</u>]
1273	$NO_2 + H \rightarrow NO_2 + OH$	$5.8 \times 10^{-10} \exp(-2750/T_{gas})$	[] []
1274	$N_2 + N_2 \rightarrow N + N + N_2$	$3.5 \times 10^{-9} (T / (300))^{(-1.6)} even(-$	[4]
		$113000/T_{exc}$	Γ.1

1275	$N_2 + N_2(V_1) \rightarrow N + N + N_2$	$3.5 \times 10^{-9} (T_{gas}/300)^{(-1.6)} \exp(-100648.0/T_{gas})$	[4]
1276	$N_2 + N_2(V_2) \rightarrow N + N + N_2$	$3.5 \times 10^{-9} (T_{gas}/300)^{(-1.6)} \exp(-106297.0/T_{gas})$	[4]
1277	$N_2 + N_2(V_3) \rightarrow N + N + N_2$	$3.5 \times 10^{-9} (T_{gas}/300)^{(-1.6)} \exp(-102946 0/T_{gas})$	[4]
1278	$N_2 + N_2(V_4) \rightarrow N + N + N_2$	$3.5 \times 10^{-9} (T_{gas}/300)^{(-1.6)} \exp(-99595 0/T_{-0})$	[4]
1279	$N_2 + N_2(V_1) \rightarrow N_2 + N_2$	3.5×10^{-21}	[4]
1280	$N_2 + N_2(V_2) \rightarrow N_2 + N_2(V_1)$	1.5×10^{-20}	[4]
1281	$N_2 + N_2(V_3) \rightarrow N_2 + N_2(V_2)$	1.5×10^{-20}	[4]
1282	$N_2 + N_2(V_4) \rightarrow N_2 + N_2(V_3)$	2.5x10 ⁻²⁰	[4]
1283	$N_2(V_1) + N_2(V_1) \rightarrow N_2 + N_2(V_2)$	3x10 ⁻¹⁴	[4]
1284	$N_2(V_1) + N_2(V_2) \rightarrow N_2 + N_2(V_3)$	$4x10^{-14}$	[4]
1285	$N_2(V_1) + N_2(V_3) \rightarrow N_2 + N_2(V_4)$	5x10 ⁻¹⁴	[4]
1286	$N_2 + NO_2 \rightarrow O + N_2 + NO$	$6.8 \times 10^{-6} (T_{gas}/300)^{(-2)} \exp(-$	[4]
		36180/T _{gas})	
1287	$N_2 + NO_3 \rightarrow O + N_2 + NO_2$	$3.1 \times 10^{-5} (T_{gas}/300)^{(-2)} \exp(-25000/T_{gas})$	[4]
1288	$N_2 + NO_3 \rightarrow O_2 + N_2 + NO$	$6.2 \times 10^{-5} (T_{gas}/300)^{(-2)} \exp(-25000/T_{eas})$	[4]
1289	$H + OH \rightarrow H_2O$	$6.87 \times 10^{-31} (T_{aas}/300)^{(-2)}$	[4]
1290	$OH + OH \rightarrow O + H_2O$	$4.2 \times 10^{-12} \exp(-240/T_{\text{cas}})$	[4]
1291	$0 + 0 + 0 \rightarrow 0 + 0_2$	$9.21 \times 10^{-34} (T_{gas}/300)^{(-0.63)}$	[4]
1292	$O + O + O \rightarrow O + O_2^{(1)}$	$6.93 \times 10^{-35} (T_{gas}/300)^{(-0.63)}$	[4]
1293	$O + O + O_2 \rightarrow O + O_3$	$3.4 \times 10^{-34} (T_{gas}/300)^{(-1.2)}$	[4]
1294	$O + O + O_2 \rightarrow O_2 + O_2$	$2.56 \times 10^{-34} (T_{gas}/300)^{(-0.63)}$	[4]
1295	$O + O + O_2 \rightarrow O_2 + O_2(^1D)$	$1.93 \times 10^{-35} (T_{gas}^{300}/300)^{(-0.63)}$	[4]
1296	$O + O + O_2(^1D) \rightarrow O_2 + O_2(^1D)$	7.4x10 ⁻³³	[4]
1297	$O + O + N \rightarrow O_2 + N$	$3.2 \times 10^{-33} (T_{gas}/300)^{(-0.41)}$	[4]
1298	$O + O + N_2 \rightarrow O_2 + N_2$	$6.49 \times 10^{-35} \exp(1039.0/T_{gas})$	[4]
1299	$O + O + H_2O \rightarrow O_2 + H_2O$	$1.7 \mathrm{x} 10^{-32} (\mathrm{T_{gas}}/300)^{(-1)}$	[4]
1300	$O + O_2 + O_2 \rightarrow O_2 + O_3$	$6x10^{-34} (T_{gas}/300)^{(-2.8)}$	[4]
1301	$O + O_2 + O_2(^1D) \rightarrow O + O_2 + O_2$	10-32	[4]
1302	$O + O_2 + O_3 \rightarrow O_3 + O_3$	$2.3 \times 10^{-35} \exp(-1057.0/T_{gas})$	[4]
1303	$O + O_2 + N \rightarrow O_2 + NO$	$1.76 \times 10^{-31} (T_{gas})^{(-0.5)}$	[4]
1304	$O + O_2 + NO \rightarrow O_2 + NO_2$	$6.34 ext{x} 10^{-32} (ext{T}_{ ext{gas}}/300)^{(-1.8)}$	[4]
1305	$O + O_2 + NO_2 \rightarrow O_2 + NO_3$	$8.08 ext{x} 10^{-33} (1000/ ext{T}_{gas})^{(2.0)}$	[4]
1306	$O + O_2 + N_2 \rightarrow O_3 + N_2$	$6.4 \times 10^{-35} \exp(-663/T_{gas})$	[4]
1307	$O + N + N_2 \rightarrow N_2 + NO$	$1.76 \times 10^{-31} (T_{gas})^{(-0.5)}$	[4]
1308	$O + N + H_2O \rightarrow NO + H_2O$	$1.76 \times 10^{-31} (T_{gas})^{(-0.5)}$	[4]
1309	$O + NO + NO \rightarrow NO + NO_2$	$6.34 \times 10^{-32} (T_{gas}/300)^{(-1.8)}$	[4]
1310	$O + NO + NO_2 \rightarrow NO_2 + NO_2$	$6.34 \times 10^{-32} (T_{gas}/300)^{(-1.8)}$	[4]
1311	$O + NO + N_2O \rightarrow NO_2 + N_2O$	$6.34 \times 10^{-32} (T_{gas}/300)^{(-1.8)}$	[4]
1312	$O + N_2 + NO \rightarrow N_2 + NO_2$	$9 \times 10^{-32} (T_{gas}/300)^{(-1.3)}$	[4]
1313	$O + N_2 + NO_2 \rightarrow N_2 + NO_3$	$9x10^{-32} (T_{gas}/300)^{(-2)}$	[4]
1314	$O + H + H_2O \rightarrow OH + H_2O$	$2./6x10^{-32} (1_{gas}/300)^{(-1)}$	[4]
1315	$O(D) + N_2 + N_2 \rightarrow N_2 + N_2O$	9X10 ⁻³⁷	[4]
1310	$O_2 + O_2(D) + O_2(D) \rightarrow O_3 + O_3$	10^{-1}	[4] [4]
1317	$O_2 + N + N \rightarrow O_2 + N_2$	5.9×10^{-33}	[4]
1318	$O_2 + INO + INO \rightarrow INO_2 + INO_2$	$5.5 \times 10^{-37} \exp(530/1_{gas})$	[4] [4]
1319	$O_2 + \Pi + O\Pi \rightarrow O_2 + H_2O$	$0.88 \times 10^{-27} (1_{gas}/300)^{(-2)}$	[4] [4]
1320	$IN + IN + IN \rightarrow IN + IN_2$ N + N + N \rightarrow N + N	$5.51X10^{-7} (1_{gas}/300)^{(-1.5)}$	[4] [/1]
1321	$\mathbf{N} + \mathbf{N} + \mathbf{N}_2 \rightarrow \mathbf{N}_2 + \mathbf{N}_2$ $\mathbf{N} + \mathbf{N} + \mathbf{H} \mathbf{O} \rightarrow \mathbf{N} + \mathbf{H} \mathbf{O}$	$7.0x10^{-3} \exp(300/1_{gas})$	[4] [/1
1322	$N_1 + H + OH \longrightarrow N_1 + H O$	5.7×10^{-21} 6.88×10-31 (T /200)(-2)	[+] [/]
1545	112 + 11 + 011 + 112 + 1120	$(1_{gas}/300)$	[7]

1324 1325 1326 1327	$\begin{split} H + OH + H_2O &\rightarrow H_2O + H_2O \\ H + O_2 + N_2 &\rightarrow HO_2 + N_2 \\ H + O_2 + O_2 &\rightarrow HO_2 + O_2 \\ H + HO_2 &\rightarrow H_2 + O_2 \end{split}$
1328 1329 1330	$\begin{split} H + HO_2 &\rightarrow OH + OH \\ H + HO_2 &\rightarrow H_2O + O \\ H + HO_2 &\rightarrow H_2O + O(^1D) \end{split}$
1331 1332 1333 1334	$\begin{array}{l} \mathrm{H} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{HO}_{2} + \mathrm{H}_{2} \\ \mathrm{H} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{H}_{2}\mathrm{O} + \mathrm{OH} \\ \mathrm{H} + \mathrm{HNO}_{2} \rightarrow \mathrm{H}_{2} + \mathrm{NO}_{2} \\ \mathrm{H} + \mathrm{HNO}_{3} \rightarrow \mathrm{HNO}_{2} + \mathrm{OH} \end{array}$
1335 1336	$\begin{array}{l} H_2 + O \rightarrow OH + H \\ H_2 + OH \rightarrow H_2O + H \ S1(a) \end{array}$
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350	$\begin{array}{l} OH+O_3 \rightarrow HO_2+O_2\\ OH+N_2O \rightarrow HO_2+N_2\\ OH+NO_3 \rightarrow HO_2+NO_2\\ OH+HO_2 \rightarrow H_2O+O_2\\ OH+H_2O_2 \rightarrow H_2O+HO_2\\ OH+HNO_2 \rightarrow H_2O+NO_2\\ OH+HNO_3 \rightarrow H_2O+NO_3\\ HO_2+O \rightarrow OH+O_2\\ HO_2+O_2(^1D) \rightarrow OH+O_2+O_2\\ HO_2+O_3 \rightarrow OH+O_2+O_2\\ HO_2+N \rightarrow OH+NO\\ OH+NO+N_2 \rightarrow HNO_2+N_2\\ OH+NO+O_2 \rightarrow HNO_2+O_2\\ OH+NO_2+O_2 \rightarrow HNO_3+O_2\end{array}$
1351	$OH + NO_2 + N_2 \rightarrow HNO_3 + N_2$
1352 1353 1354 1355 1356 1357 1358	$\begin{array}{l} OH+OH+N_2\rightarrow H_2O_2+N_2\\ OH+OH+O_2\rightarrow H_2O_2+O_2\\ HO_2+NO+N_2\rightarrow HNO_3+N_2\\ HO_2+NO_2+N_2\rightarrow HNO_2+O_2+N_2\\ HO_2+NO_2+O_2\rightarrow HNO_2+O_2+O_2\\ H_2O+O(^1D)\rightarrow H_2+O_2\\ H_2O_2+O\rightarrow HO_2+OH \end{array}$
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372	$H_2O_2 + O \rightarrow H_2O + O_2$ $H_2O_2 + NO_3 \rightarrow HO_2 + HNO_3$ $HNO_2 + O \rightarrow OH + NO_2$ $HNO_2 + NO_3 \rightarrow NO_2 + HNO_3$ $HNO_3 + O \rightarrow OH + NO_3$ $O_2 + NO_3 \rightarrow NO_2 + O_3$ $O_3 + NO_2 \rightarrow NO + O_2 + O_2$ $N_2 + O_2(V_1) \rightarrow O_2 + N_2$ $N_2 + O_2(V_2) \rightarrow O_2 + N_2$ $N_2 + O_2(V_3) \rightarrow O_2 + N_2$ $N_2 + O_2(V_4) \rightarrow O_2 + N_2$ $N_2 + O_2(V_5) \rightarrow O_2 + N_2$ $N_2 + O_2(R) \rightarrow O_2 + N_2$ $N_2 + N_2(R) \rightarrow O_2 + N_2$ $N_2 + N_2(V_3) \rightarrow N_3 + N_3$

$\begin{array}{ccccc} 6.09x10^{-32} (T_{gas}/300)^{(-0.8)} & [3] \\ 6.09x10^{-32} (T_{gas}/300)^{(-0.8)} & [3] \\ 2.06x10^{-11} (T_{gas}/300)^{(0.84)} exp(- [3] \\ 277/T_{gas}) & [3] \\ 2.06x10^{-11} exp(-866/T_{gas}) & [3] \\ 2.32x10^{-12} (T_{gas}/300)^{(1.55)} & [3] \\ exp(80.85/T_{gas}) & [3] \\ x10^{-11} exp(-4000/T_{gas}) & [3] \\ x10^{-11} exp(-2000/T_{gas}) & [3] \\ x10^{-11} exp(-3700/T_{gas}) & [3] \\ 2x10^{-11} exp(-3700/T_{gas}) & [3] \\ 3.16x10^{-13} (T_{gas}/300)^{(2.3)} exp(- [3] \\ 3512.8/T_{gas}) & [3] \\ 1.6x10^{-13} (T_{gas}/300)^{(2.3)} exp(- [3] \\ 1490/T_{gas}) & [3] \\ 2.5x10^{-12} exp(-941/T_{gas}) & [3] \\ 2.5x10^{-13} exp(-2740/T_{gas}) & [3] \\ 2.5x10^{-12} exp(-284.9/T_{gas}) & [3] \\ 2.5x10^{-12} exp(260/T_{gas}) & [3] \\ 2.7x10^{-12} exp(260/T_{gas}) & [3] \\ 2.5x10^{-13} & [3] \\ 2.7x10^{-12} exp(260/T_{gas}) & [3] \\ 2.5x10^{-13} & [3] \\ 2.2x10^{-11} & [3] \\ 4.6x10^{-29} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.66x10^{-11} & [3] \\ 4.6x10^{-29} (T_{gas}/300)^{(-5.49)} exp(- [3] \\ 1180/T_{gas}) & [3] \\ 4.6x10^{-31} (T_{gas}/300)^{(-3.2)} & [3] \\ 1.8x10^{-31} (T_{gas}/300)^{(-3.2)} & [3] \\ 1.8x10^{-11} exp(-3000/T_{gas}) & [3] \\ 2.2x10^{-12} & [3] \\ 1.99x10^{-13} (T_{gas}/300)^{(-3.2)} & [3] \\ 1.91x10^{-15} & [3] \\ 1.91x10^{-16} & [3] \\ 2x10^{-15} & [3] \\ 1.91x10^{-15} & [3] \\ 1.91x10^{-13} & [3] \\ 10^{-13} & [3$	$2.46 \times 10^{-30} (T_{gas}/300)^{(-2)}$	[4]
$\begin{array}{cccccc} 6.09x10^{-32} (T_{gas}/300)^{(0.8)} exp(- [3] \\ 2.06x10^{-11} (T_{gas}/300)^{(0.84)} exp(- [3] \\ 277/T_{gas}) & [3] \\ 1.66x10^{-10} exp(-413/T_{gas}) & [3] \\ 5x10^{-11} exp(-866/T_{gas}) & [3] \\ 2.32x10^{-12} (T_{gas}/300)^{(1.55)} & [3] \\ exp(80.85/T_{gas}) & [3] \\ x10^{-11} exp(-4000/T_{gas}) & [3] \\ x10^{-11} exp(-2000/T_{gas}) & [3] \\ 2x10^{-11} exp(-3700/T_{gas}) & [3] \\ 2x10^{-11} exp(-3700/T_{gas}) & [3] \\ 9.54x10^{-13} (T_{gas}/300)^{(2.3)} exp(- [3] \\ 1.69x10^{-12} exp(-941/T_{gas}) & [3] \\ 2.69x10^{-12} exp(-941/T_{gas}) & [3] \\ 2.69x10^{-12} exp(-941/T_{gas}) & [3] \\ 2.71x10^{-11} exp(250/T_{gas}) & [3] \\ 2.71x10^{-12} exp(260/T_{gas}) & [3] \\ 2.2x10^{-11} & [3] \\ 4.6x10^{-29} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.66x10^{-29} (T_{gas}/300)^{(-5.49)} exp(- [3] \\ 1180/T_{gas}) & [3] \\ 4.6x10^{-29} (T_{gas}/300)^{(-5.49)} exp(- [3] \\ 1180/T_{gas}) & [3] \\ 2.2x10^{-11} & [3] \\ 1.8x10^{-31} (T_{gas}/300)^{(-3.2)} & [3] \\ 2.2x10^{-12} & [3] \\ 1.8x10^{-31} (T_{gas}/300)^{(-3.2)} & [3] \\ 1.994/T_{gas}) & [3] \\ 1.45x10^{-15} & [3] \\ 1.994/T_{gas}) & [3] \\ 1.0^{-13} & [3] \\ 10^{-13}$	$6.09 ext{x} 10^{-32} (ext{T}_{ ext{gas}} / 300)^{(-0.8)}$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.09x10 ⁻³² (T _{gas} /300) ^(-0.8)	[3]
$\begin{array}{ccccccc} 277/T_{gas} & [3] \\ 1.66x10^{-10} \exp(-413/T_{gas}) & [3] \\ 5x10^{-11} \exp(-866/T_{gas}) & [3] \\ 2.32x10^{-12} (T_{gas}/300)^{(1.55)} & [3] \\ \exp(80.85/T_{gas}) & [3] \\ 8x10^{-11} \exp(-4000/T_{gas}) & [3] \\ 2x10^{-11} \exp(-2000/T_{gas}) & [3] \\ 2x10^{-11} \exp(-3700/T_{gas}) & [3] \\ 3.16x10^{-13} (T_{gas}/300)^{(2.3)} \exp(- & [3] \\ 1.6x10^{-11} \exp(-4570/T_{gas}) & [3] \\ 9.54x10^{-13} (T_{gas}/300)^{(2)} \exp(- & [3] \\ 1490/T_{gas}) & [1.69x10^{-12} \exp(-941/T_{gas}) & [3] \\ 3.69x10^{-13} \exp(-2740/T_{gas}) & [3] \\ 2.54x10^{-13} \exp(-2740/T_{gas}) & [3] \\ 2.54x10^{-13} \exp(-2740/T_{gas}) & [3] \\ 2.512x10^{-11} \exp(250/T_{gas}) & [3] \\ 4.53x10^{-12} \exp(-288.9/T_{gas}) & [3] \\ 2.7x10^{-12} \exp(260/T_{gas}) & [3] \\ 1.5x10^{-13} & [3] \\ 2.7x10^{-12} \exp(260/T_{gas}) & [3] \\ 1.66x10^{-11} & [3] \\ 2.2x10^{-11} & [3] \\ 7.4x10^{-31} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.66x10^{-11} & [3] \\ 7.4x10^{-31} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.80/T_{gas}) & [3] \\ 4.6x10^{-29} (T_{gas}/300)^{(-5.49)} \exp(- & [3] \\ 1180/T_{gas}) & [3] \\ 8x10^{-31} (T_{gas}/300)^{(-3.2)} & [3] \\ 1.8x10^{-31} (T_{gas}/300)^{(-3.2)} & [3] \\ 1.79x10^{-13} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.45x10^{-15} & [3] \\ 2.2x10^{-12} & [3] \\ 1.79x10^{-13} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.67^{-13} & [3] \\ 10^{-13}$	$2.06 \times 10^{-11} (T_{gas}/300)^{(0.84)} \exp(-$	[3]
$ \begin{array}{lllllllllllllllllllllllllllllllllll$	277/T _{gas})	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.66 \times 10^{-10} \exp(-413/T_{gas})$	[3]
$\begin{array}{cccccccc} 2.32 x 10^{-12} (T_{gas}/300)^{(1.55)} & [3] \\ exp(80.85/T_{gas}) & [3] \\ 8x 10^{-11} exp(-4000/T_{gas}) & [3] \\ 2x 10^{-11} exp(-2000/T_{gas}) & [3] \\ 2x 10^{-11} exp(-3700/T_{gas}) & [3] \\ 3.16x 10^{-13} (T_{gas}/300)^{(2.3)} exp(- & [3] \\ 3512.8/T_{gas}) & [3] \\ 1.6x 10^{-11} exp(-4570/T_{gas}) & [3] \\ 9.54x 10^{-13} (T_{gas}/300)^{(2)} exp(- & [3] \\ 1490/T_{gas}) & [3] \\ 2.54x 10^{-12} exp(-941/T_{gas}) & [3] \\ 2.69x 10^{-12} exp(-2740/T_{gas}) & [3] \\ 2.710^{-11} exp(250/T_{gas}) & [3] \\ 4.8x 10^{-11} exp(250/T_{gas}) & [3] \\ 2.7x 10^{-12} exp(-288.9/T_{gas}) & [3] \\ 2.7x 10^{-12} exp(260/T_{gas}) & [3] \\ 1.5x 10^{-13} & [3] \\ 2.71x 10^{-11} exp(224/T_{gas}) & [3] \\ 1.66x 10^{-11} & [3] \\ 1.4x 10^{-14} exp(-600/T_{gas}) & [3] \\ 2.2x 10^{-11} & [3] \\ 7.4x 10^{-31} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.66x 10^{-29} (T_{gas}/300)^{(-2.4)} & [3] \\ 1.80/T_{gas}) & (-5.49) exp(- & [3] \\ 1180/T_{gas}) & (-5.49) exp(- & [3] $	$5 \times 10^{-11} \exp(-866/T_{gas})$	[3]
$\begin{array}{c} \exp(80.85/T_{gas}) & \text{iso} 1 \\ \exp(100,100,10,10,10,10,10,10,10,10,10,10,10$	$2.32 \times 10^{-12} (T_{gas}/300)^{(1.55)}$	[3]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$exp(80.85/T_{gas})$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$8 \times 10^{-11} \exp(-4000/T_{oas})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4x10^{-11} \exp(-2000/T_{gas})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2x10^{-11} \exp(-3700/T_{gas})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3.16 \times 10^{-13} (T_{gg}/300)^{(2.3)} \exp(-10^{-13})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3512 8/T _{ass})	[-]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.6 \times 10^{-11} \exp(-4570/T_{exc})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 54x10 ⁻¹³ (T $/300)^{(2)}$ exp(-	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1490/T)	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.69 \times 10^{-12} \exp(-941/T)$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3.60 \times 10^{-13} \exp(-2740/T_{gas})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2×10^{-11} $CXp(-2740/1gas)$	[2]
4.8x10-exp(2.30, T_{gas})[3]4.53x10-12exp(-288.9/T_{gas})[3]2.7x10-12exp(260/T_{gas})[3]1.5x10[3]1.5x102.71x10-11exp(-288.9/T_{gas})1.66x101.4x101.66x1037.4x107.4x107.4x107.4x107.4x107.4x107.4x107.4x107.4x101.80/T_gas)4.6x108x101.80/T_gas)8x108x101.80/T_gas)8x101.80/T_gas)8x101.80/T_gas)8x101.80/T_gas)1.80/T_gas)1.8x101.8x101.8x101.8x101.9x101.9x101.9x101.	$4.8 \times 10^{-11} \exp(250/T_{\odot})$	[2]
4.53x10 $(2xp(-286.9)/1_{gas})$ [3]2.7x10 $(2xp(260/T_{gas}))$ [3]1.5x10[3]2.71x10 $(2xp(-24)/T_{gas}))$ [3]1.66x10[3]1.4x10 $(2xp(-600/T_{gas})))$ [3]2.2x10[3]7.4x10 $(2xp(-600/T_{gas})))$ [3]7.4x10 $(2xp(-600/T_{gas})))$ [3]7.4x10 $(2xp(-600/T_{gas})))$ [3]7.4x10 $(2xp(-600/T_{gas})))$ [3]7.4x10 $(2xp(-600/T_{gas})))$ [3]4.6x10 $(2yp(-24)))$ [3]1.80/T_{gas}) $(2xp(-24)))$ [3]4.6x10 $(2yp(-24)))$ [3]8x10 $(2yp(-24)))$ [3]1.8x10 $(2yp(-24)))$ [3]1.8x10 $(2yp(-24)))$ [3]1.8x10 $(2yp(-24)))$ [3]1.8x10 $(2yp(-24)))$ [3]1.8x10 $(2yp(-24))))$ [3]1.8x10 $(2yp(-24))))$ [3]1.8x10 $(2yp(-24))))))))))))))))))))))))))))))))))))$	$4.0 \times 10^{-12} \exp(230/T_{gas})$	[2]
2.7x10 ⁻¹² exp(260/1 _{gas}) [3] 1.5x10 ⁻¹³ [3] 2.71x10 ⁻¹¹ exp(224/T _{gas}) [3] 1.4x10 ⁻¹⁴ exp(-600/T _{gas}) [3] 2.2x10 ⁻¹¹ [3] 7.4x10 ⁻³¹ (T _{gas} /300) ^(-2.4) [3] 7.4x10 ⁻³¹ (T _{gas} /300) ^(-2.4) [3] 4.6x10 ⁻²⁹ (T _{gas} /300) ^(-5.49) exp(- [3] 1180/T _{gas}) 4.6x10 ⁻²⁹ (T _{gas} /300) ^(-0.9) [3] 8x10 ⁻³¹ (T _{gas} /300) ^(-0.9) [3] 8x10 ⁻³¹ (T _{gas} /300) ^(-0.9) [3] 5.6x10 ⁻³³ [3] 1.8x10 ⁻³¹ (T _{gas} /300) ^(-3.2) [3] 2.2x10 ⁻¹² [3] 1.79x10 ⁻¹³ (T _{gas} /300) ^(-3.2) [3] 4.1x10 ⁻¹⁶ [3] 2x10 ⁻¹¹ exp(-3000/T _{gas}) [3] 2x10 ⁻¹⁵ [3] 10 ⁻¹³ [3]	$4.35 \times 10^{-2} \exp(-288.9/1_{gas})$	[2]
1.5x10 ⁻¹³ [3]2.71x10 ⁻¹¹ exp(224/T _{gas})[3]1.66x10 ⁻¹¹ [3]1.4x10 ⁻¹⁴ exp(-600/T _{gas})[3]2.2x10 ⁻¹¹ [3]7.4x10 ⁻³¹ (T _{gas} /300) ^(-2.4) [3]7.4x10 ⁻³¹ (T _{gas} /300) ^(-5.49) exp(-[3]1.80/T _{gas})[3]4.6x10 ⁻²⁹ (T _{gas} /300) ^(-5.49) exp(-[3]1.80/T _{gas})[3]8x10 ⁻³¹ (T _{gas} /300) ^(-0.9) [3]8x10 ⁻³¹ (T _{gas} /300) ^(-0.9) [3]5.6x10 ⁻³³ [3]1.8x10 ⁻³¹ (T _{gas} /300) ^(-3.2) [3]2.2x10 ⁻¹² [3]1.79x10 ⁻¹³ (T _{gas} /300) ^(-3.2) [3]1.45x10 ⁻¹⁵ [3]1.45x10 ⁻¹⁵ [3]2.x10 ⁻¹¹ exp(-3000/T _{gas})[3]2x10 ⁻¹⁵ [3]10 ⁻¹³ [3]	$2./x10^{-12} \exp(260/T_{gas})$	[3]
2. $/1 \times 10^{-11} \exp(224/1_{gas})$ [3] 1. 66×10^{-11} [3] 1. $4 \times 10^{-14} \exp(-600/T_{gas})$ [3] 2. 2×10^{-11} [3] 7. $4 \times 10^{-31} (T_{gas}/300)^{(-2.4)}$ [3] 7. $4 \times 10^{-31} (T_{gas}/300)^{(-2.4)}$ [3] 4. $6 \times 10^{-29} (T_{gas}/300)^{(-5.49)} \exp(-$ [3] 1180/ $T_{gas})$ 8 $\times 10^{-31} (T_{gas}/300)^{(-0.9)}$ [3] 8 $\times 10^{-31} (T_{gas}/300)^{(-0.9)}$ [3] 5. 6×10^{-33} [3] 1. $8 \times 10^{-31} (T_{gas}/300)^{(-3.2)}$ [3] 1. $8 \times 10^{-31} (T_{gas}/300)^{(-3.2)}$ [3] 1. $8 \times 10^{-31} (T_{gas}/300)^{(-3.2)}$ [3] 1. 79×10^{-12} [3] 1. 79×10^{-15} [3] 4. 1×10^{-15} [3] 4. 1×10^{-16} [3] 2 $\times 10^{-11} \exp(-3000/T_{gas})$ [3] 2 $\times 10^{-17}$ [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3]	1.5×10^{-13}	[3]
1.66x10 ⁻¹¹ [3] $1.4x10^{-14} \exp(-600/T_{gas})$ [3] $2.2x10^{-11}$ [3] $7.4x10^{-31} (T_{gas}/300)^{(-2.4)}$ [3] $7.4x10^{-31} (T_{gas}/300)^{(-2.4)}$ [3] $4.6x10^{-29} (T_{gas}/300)^{(-5.49)} \exp(-$ [3] $1180/T_{gas})$ $4.6x10^{-29} (T_{gas}/300)^{(-5.49)} \exp(8x10^{-31} (T_{gas}/300)^{(-0.9)}$ [3] $8x10^{-31} (T_{gas}/300)^{(-0.9)}$ [3] $5.6x10^{-33}$ [3] $1.8x10^{-31} (T_{gas}/300)^{(-3.2)}$ [3] $2.2x10^{-12}$ [3] $1.79x10^{-13} (T_{gas}/300)^{(2.92)} \exp(-$ [3] $1.45x10^{-15}$ [3] $4.1x10^{-16}$ [3] $2x10^{-11} \exp(-3000/T_{gas})$ [3] $2x10^{-15}$ [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3] 10^{-13} [3]	$2./1x10^{-11} \exp(224/1_{gas})$	[3]
1.4x10 ⁻¹⁴ exp(-600/T _{gas}) [3] 2.2x10 ⁻¹¹ [3] 7.4x10 ⁻³¹ (T _{gas} /300)(-2.4) [3] 7.4x10 ⁻³¹ (T _{gas} /300)(-5.49) exp(- [3] 4.6x10 ⁻²⁹ (T _{gas} /300)(-5.49) exp(- [3] 1180/T _{gas}) 4.6x10 ⁻²⁹ (T _{gas} /300)(-0.9) exp(- [3] 8x10 ⁻³¹ (T _{gas} /300)(-0.9) [3] 8x10 ⁻³¹ (T _{gas} /300)(-0.9) [3] 5.6x10 ⁻³³ [3] 1.8x10 ⁻³¹ (T _{gas} /300)(-3.2) [3] 2.2x10 ⁻¹² [3] 1.79x10 ⁻¹³ (T _{gas} /300)(-3.2) [3] 1.45x10 ⁻¹⁵ [3] 4.1x10 ⁻¹⁶ [3] 2x10 ⁻¹¹ exp(-3000/T _{gas}) [3] 2x10 ⁻¹⁵ [3] 1.0 ⁻¹⁷ [3] 10 ⁻¹³ [3]	1.66x10 ⁻¹¹	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.4 \times 10^{-14} \exp(-600/T_{gas})$	[3]
7.4x10 ⁻³¹ ($T_{gas}/300$)(-2.4) [3] 7.4x10 ⁻³¹ ($T_{gas}/300$)(-2.4) [3] 4.6x10 ⁻²⁹ ($T_{gas}/300$)(-5.49) exp(- [3] 1180/ T_{gas}) 4.6x10 ⁻²⁹ ($T_{gas}/300$)(-5.49) exp(- [3] 1180/ T_{gas}) 4.6x10 ⁻²⁹ ($T_{gas}/300$)(-0.9) exp(- [3] 1180/ T_{gas}) 8x10 ⁻³¹ ($T_{gas}/300$)(-0.9) [3] 8x10 ⁻³¹ ($T_{gas}/300$)(-0.9) [3] 5.6x10 ⁻³³ [3] 1.8x10 ⁻³¹ ($T_{gas}/300$)(-3.2) [3] 1.8x10 ⁻³¹ ($T_{gas}/300$)(-3.2) [3] 2.2x10 ⁻¹² [3] 1.79x10 ⁻¹³ ($T_{gas}/300$)(-3.2) [3] 1.45x10 ⁻¹⁵ [3] 1.45x10 ⁻¹⁵ [3] 2.x10 ⁻¹² [3] 2.x10 ⁻¹⁵ [3] 2.x10 ⁻¹⁵ [3] 3.x10 ⁻¹⁷ [3] 10 ⁻¹⁸ [3] 10 ⁻¹³ [3] </td <td>2.2×10^{-11}</td> <td>[3]</td>	2.2×10^{-11}	[3]
7.4x10 ⁻³¹ ($T_{gas}/300$)(-2.4) [3] 4.6x10 ⁻²⁹ ($T_{gas}/300$)(-5.49) exp(- [3] 1180/ T_{gas}) 4.6x10 ⁻²⁹ ($T_{gas}/300$)(-5.49) exp(- [3] 1180/ T_{gas}) 8x10 ⁻³¹ ($T_{gas}/300$)(-0.9) [3] 8x10 ⁻³¹ ($T_{gas}/300$)(-0.9) [3] 5.6x10 ⁻³³ [3] 1.8x10 ⁻³¹ ($T_{gas}/300$)(-3.2) [3] 1.8x10 ⁻³¹ ($T_{gas}/300$)(-3.2) [3] 2.2x10 ⁻¹² [3] 1.79x10 ⁻¹³ ($T_{gas}/300$)(-3.2) [3] 1.79x10 ⁻¹³ ($T_{gas}/300$)(-3.2) [3] 1.79x10 ⁻¹³ ($T_{gas}/300$)(-3.2) [3] 1.45x10 ⁻¹⁵ [3] 1.45x10 ⁻¹⁵ [3] 2x10 ⁻¹¹ exp(-3000/ T_{gas}) [3] 2x10 ⁻¹⁵ [3] 10 ⁻¹³ [3]	$7.4 \times 10^{-31} (T_{gas}/300)^{(-2.4)}$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$7.4 \times 10^{-31} (T_{gas}/300)^{(-2.4)}$	[3]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4.6 \times 10^{-29} (T_{gas}/300)^{(-5.49)} \exp(-10^{-5.49})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1180/T _{gas})	
$\begin{array}{ccccccc} 1180/T_{gas}) & & & & \\ 8x10^{-31} (T_{gas}/300)^{(-0.9)} & & & \\ 8x10^{-31} (T_{gas}/300)^{(-0.9)} & & & \\ 3 \\ 5.6x10^{-33} & & & \\ 3 \\ 1.8x10^{-31} (T_{gas}/300)^{(-3.2)} & & \\ 3 \\ 1.8x10^{-31} (T_{gas}/300)^{(-3.2)} & & \\ 3 \\ 2.2x10^{-12} & & \\ 3 \\ 1.79x10^{-13} (T_{gas}/300)^{(2.92)} \exp(- & & \\ 3 \\ 1.394/T_{gas}) & & \\ 1.45x10^{-15} & & \\ 1.45x10^{-15} & & \\ 3 \\ 2x10^{-11} \exp(-3000/T_{gas}) & & \\ 3 \\ 2x10^{-15} & & \\ 3 \\ 10^{-13} & & \\ 1$	$4.6 \times 10^{-29} (T_{gas}/300)^{(-5.49)} \exp(-10^{-5.49})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1180/T _{gas})	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$8x10^{-31} (T_{gas}/300)^{(-0.9)}$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$8x10^{-31} (T_{gas}/300)^{(-0.9)}$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.6x10 ⁻³³	[3]
$\begin{array}{cccccccc} 1.8x10^{-31} (T_{gas}/300)^{(-3.2)} & [3] \\ 2.2x10^{-12} & [3] \\ 1.79x10^{-13} (T_{gas}/300)^{(2.92)} \exp(- & [3] \\ 1394/T_{gas}) & & \\ 1.45x10^{-15} & [3] \\ 4.1x10^{-16} & [3] \\ 2x10^{-11} \exp(-3000/T_{gas}) & [3] \\ 2x10^{-15} & [3] \\ 3x10^{-17} & [3] \\ 10^{-18} & [3] \\ 10^{-13} & [3$	$1.8 \times 10^{-31} (T_{gas}/300)^{(-3.2)}$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.8 \times 10^{-31} (T_{gas}/300)^{(-3.2)}$	[3]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2x10 ⁻¹²	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.79 \times 10^{-13} (T_{gas}/300)^{(2.92)} \exp(-$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1394/T _{gas})	
$\begin{array}{cccccccc} 4.1x10^{-16} & [3] \\ 2x10^{-11} exp(-3000/T_{gas}) & [3] \\ 2x10^{-15} & [3] \\ 3x10^{-17} & [3] \\ 10^{-17} & [3] \\ 10^{-18} & [3] \\ 10^{-13} & [3]$	1.45×10^{-15}	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1x10 ⁻¹⁶	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2x10^{-11} \exp(-3000/T_{gas})$	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2x10 ⁻¹⁵	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3x10 ⁻¹⁷	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-17	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-18	[3]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10-13	[3]
10^{-13} [3]	10-13	[3]
1.271	10-13	[3]

1373	$N_2 + N_2(V_3) \rightarrow N_2 + N_2$	10-13	[3]
1374	$N_2 + N_2(V_4) \rightarrow N_2 + N_2$	10-13	[3]
1375	$N_2(A) + N_2(a') \rightarrow N_4^+ + e$	9x10 ⁻¹²	[3]
1376	$N_2(A) + O \rightarrow N_2 + O$	2.7×10^{-11}	[3]
1377	$N_2(A) + H_2O \rightarrow N_2 + H_2O$	$2 1 \times 10^{-10}$	[3]
1378	$N_2(n) + H_2O \rightarrow N_2 + H_2O$	2.1×10^{-10}	[2]
1370	$N_2(a) + N_2(b) \rightarrow N_2 + N_2(b)$	2.1X10 7x10-12	[2]
13/9	$O + N_2(A) \rightarrow NO + N(2D)$	10-12	[2]
1300	$O + N_2(A) \rightarrow NO + N(^2D)$	10-12	[3]
1381	$0 + N_2(a) \rightarrow NO + N(^2D)$	10^{-12}	[3]
1382	$O_2 + N_2(A) \rightarrow N_2 + O + O$	2.54×10^{-12}	[3]
1383	$O_2 + N_2(A) \rightarrow N_2 + O_2(^1D)$	1.29x10 ⁻¹²	[3]
1384	$O_2 + N_2(A) \rightarrow N_2 + O_2(^1S)$	1.29×10^{-12}	[3]
1385	$O_2 + N_2(A) \rightarrow N_2O + O$	7.8x10 ⁻¹⁴	[3]
1386	$O_2 + N_2(A) \rightarrow N_2O + O(^1D)$	3x10 ⁻¹⁴	[3]
1387	$O_2(^1D) + N_2(A) \rightarrow N_2 + O + O$	2x10 ⁻¹¹	[3]
1388	$O_2(^1S) + N_2(A) \rightarrow N_2 + O + O$	2x10 ⁻¹¹	[3]
1389	$O_3 + N_2(A) \rightarrow N_2 + O_2 + O$	3.36x10 ⁻¹¹	[3]
1390	$N_2(A) + NO_2 \rightarrow N_2 + NO + O$	1.3x10 ⁻¹¹	[3]
1391	$N_2(a') + NO \rightarrow N_2 + N + O$	3.6×10^{-10}	[3]
1392	$NO + NO_2 \rightarrow N_2O_2$	$7.9 \times 10^{-12} (T / 300)^{(1.4)}$	[3]
1393	$NO_2 + NO_2 + N_2O_3$ $NO_4 + NO_2 + N_2 \rightarrow N_2O_4 + N_2$	$1 4 x 10^{-33} (T / 300)(-3.8)$	[3]
130/	$NO_2 + NO_2 + N_2 \rightarrow N_2O_4 + N_2$	$2.8 \times 10^{-30} (T / (300))^{-3.5}$	[2]
1205	$H_2 + H_2 \rightarrow H_2 \rightarrow H_2 \rightarrow H_2$ $H_1 + H_2 \rightarrow H_2 \rightarrow H_2 \rightarrow H_2$	$1.22 \times 10^{-31} (T / 200)(-1.17)$	[2]
1373	$\Pi + \Pi O + \Pi_2 \rightarrow \Pi \Pi O + \Pi_2$	$(1.22 \times 10^{-1} (1_{gas}/300))^{-1.1}$	[3]
1207		$exp(-212/1_{gas})$	[2]
1390	$\Pi + \Pi \Pi \rightarrow \Pi_2 + \Pi$	$1./X10^{-1}$	[3]
139/	$H + HNO \rightarrow H_2 + NO$	$3 \times 10^{-11} \exp(-500/1_{gas})$	[3]
1398	$H + HNO_4 \rightarrow HO_2 + HNO_2$	2.40×10^{-14}	[3]
1399	$N_2 + H(E_2) \rightarrow H + N_2$	10^{-13}	[3]
1400	$N_2 + H(E_3) \rightarrow H + N_2$	10^{-13}	[3]
1401	$H_2(V_1) + N_2 \rightarrow H_2 + N_2$	10-13	[3]
1402	$N_2 + H_2(R_{02}) \rightarrow H_2 + N_2$	10-13	[3]
1403	$N_2 + H_2(R_{13}) \rightarrow H_2 + N_2$	10-13	[3]
1404	$N_2 + H_2(b) \rightarrow H_2 + N_2$	10-13	[3]
1405	$N_2 + H_2(C) \rightarrow H_2 + N_2$	10-13	[3]
1406	$OH + N_2(A) \rightarrow OH(A) + N_2$	10-10	[3]
1407	$OH + N_2(a') \rightarrow OH(A) + N_2$	10-10	[3]
1408	$OH + N_2O \rightarrow HNO + NO$	3.8x10 ⁻¹⁷	[3]
1409	$OH + NH \rightarrow H_2 + NO$	4x10 ⁻¹¹	[3]
1410	$OH + NH \rightarrow HNO + H$	4x10 ⁻¹¹	[3]
1411	$OH + HNO \rightarrow H_2O + NO$	$8 \times 10^{-11} \exp(-500/T_{gas})$	[3]
1412	$OH + HNO_4 \rightarrow H_2O_2 + NO_3$	$1.9 \times 10^{-13} \exp(270/T_{gas})$	[3]
1413	$OH + HNO_4 \rightarrow H_2O + NO_2 + O_2$	$1.71 \times 10^{-12} \exp(270/T_{gas})$	[3]
1414	$OH(A) + H_2O \rightarrow OH + H_2O$	$7.61 \times 10^{-10} (T_{gas}/300)^{(-0.5)}$	[3]
1415	$HO_2 + N \rightarrow NH + O_2$	1.7×10^{-13}	[3]
1416	$HO_2 + NO \rightarrow HNO + O_2$	$9.1 \times 10^{-19} \exp(2819/T_{\text{max}})$	[3]
1417	$H_2O + N(^2D) \rightarrow OH + NH$	2.5×10^{-10}	[3]
1418	$H_2O + N_2O_2 \rightarrow HNO_2 + HNO_2$	$6.29 \times 10^{-11} \exp(-4471/T_{\text{exc}})$	[3]
1419	$NH + O \rightarrow H + NO$	1.16×10^{-10}	[3]
1420	$NH + O \rightarrow OH + N$	1.16×10^{-10}	[3]
1421	$NH + O_2 \rightarrow HNO + O$	$2 3 \times 10^{-13}$	[3]
1477	$H_{2}O_{2} + N_{2}(a') \rightarrow OH + OH + N_{2}$	3x10 ⁻¹⁰	[3]
1473	$NH + N \rightarrow H + N.$	2 5x10 ⁻¹¹	[3]
1474	$HNO + O \rightarrow OH + NO$	6 v 10 ⁻¹¹	[2]
1424	$HNO + O \rightarrow OI + NU$	$2 QA x 10^{-12} (T / 200)(0.5) ava($	[2]
1423	$11100 + 0 \rightarrow 0_2 + 1011$	2.9 + X10 (1 gas/ 300) (1 gas/ 300) (1 gas/ 300)	[2]
1496	$HNO \pm O \rightarrow HO \pm NO$	$5.00/1_{\text{gas}}$	[2]
1420	$11100 + 0_2 \rightarrow 110_2 + 100$	$J_{J} \Delta J_{A} I U = \nabla A U (-1 J I U / 1_{gas})$	1.21

1427	$OH(A) \rightarrow OH$	1.25x10+6	[3]
1428	$O + O + M \rightarrow O_2(^1D) + M$	6.93x10 ⁻³⁵ (T _{gas} /300) ^(-0.63)	[3]
1429	$O + O + M \rightarrow O_2(^1S) + M$	$6.93 \times 10^{-35} (T_{gas}/300)^{(-0.63)}$	[3]
1430	$O + O(^{1}D) + M \rightarrow O_{2} + M$	9.9x10 ⁻³³	[3]
1431	$O + O^+ + M \rightarrow O_2^+ + M$	10-29	[3]
1432	$O(^{1}D) + M \rightarrow O + M$	2x10 ⁻²⁵ (T _{gas} /300) ^(-2.5)	[3]
1433	$N(^{2}D) + M \rightarrow N + M$	2.4x10 ⁻¹⁴	[3]
1434	$N_2O_3 + M \rightarrow NO + NO_2 + M$	$1.91 \times 10^{-7} (T_{gas}/300)^{(-8.7)} \exp(-10^{-7})$	[3]
		4882/T _{gas})	
1435	$N_2O_4 + M \rightarrow NO_2 + NO_2 + M$	$1.3 \times 10^{-5} (T_{gas}/300)^{(-3.5)} \exp(-10^{-5})$	[3]
		$6403/T_{gas}$	
1436	$N_2O_5 + M \rightarrow NO_2 + NO_3 + M$	$1.33 \times 10^{-3} (T_{gas}/300)^{(-3.5)} \exp(-10^{-3})$	[3]
		$11000/T_{gas})$	
1437	$HNO_4 + M \rightarrow HO_2 + NO_2 + M$	$5 \times 10^{-6} \exp(-10000/T_{gas})$	[3]

^a Reaction rate coefficients have units of cm³s⁻¹ for two-body reactions and cm⁶s⁻¹ for three-body reactions. T_e is in eV and T_{gas} in K. ^b When the reaction rate coefficients are calculated by the Boltzmann solver with cross sectional data, this is indicated by σ (ϵ), where

 ϵ is the mean electron energy.

^c Estimated to be the same as O₂-

^d Estimated to be the same as He₂⁺

^e Estimated to be the same as N₂

e. Results

Species densities

In Figure S1 the density profiles of various species in both discharge and afterglow region are compared. For the sake of clarity, the neutral species (M^0) are illustrated in two panels (Figure S1(a) and S1(b)), and the most important positive ions (M^+) and negative ions (M^-) are plotted in Figure S1(c) and S1(d), respectively. The densities of electronically and vibrationally excited species are not shown, to avoid too many data in this figure. The corresponding time scale is also shown on the top axis.

As is clear from Figure S1, most of the species are created as soon as the discharge is turned on, with a rapid increase in density during the first 30 μ s (~10 μ m from the cathode), but some species (being the result of secondary reactions) show up only in the afterglow region, such as N₂O₄ and N₂O₅ (Figure S1(b)), heavy water clusters (Figure S1(c)), and NO₃H₂O⁻ and NO₂H₂O⁻ (Figure S1(d)). In the afterglow region, some species continue to increase, sometimes even by a few orders of magnitude, while others stay almost constant or decrease, depending on their formation and loss reactions (see section (c) in the main paper).

The N, O and H atoms are the dominant species (higher densities compared to the ions as well) in the discharge region, and they reach their highest density at the end of the discharge, followed by a drop in the afterglow, where power density and gas temperature also drop rapidly. More specifically, the N atoms are consumed to form NO, the O atoms associate with O_2 to form O_3 , and the H atoms contribute to form HO_2 and OH, which are indeed the dominant neutrals in the afterglow (cf. Table 1 in the main paper), and their rising density is shown in Figure S1(a) and S1(b). More details about the reaction pathways are given in section (c) in the main paper.

Note that we introduced impurities in the discharge region, to produce species that are also reported in experimental studies. Andrade et al.⁹ presented an emission spectrum from a He APGD in a sealed discharge chamber. In addition to the expected emission lines from He, they also observed atomic emission from oxygen and nitrogen, as well as emission bands of various diatomic species (NO, OH, N₂, and N₂⁺). Likewise, for a DC He APGD similar to that employed in the FAPA, Gielniak et al.¹⁰ also discovered the presence of NH. In both cases, the presence of these species was attributed to impurities in the gas supply or transfer lines.

When we compare the N_2^+ and N^+ densities with the N_2 density, as well as the O_2^+ and O^+ densities with the O_2 density (see Table 1 in the main paper), we can conclude that the ionization degree of N_2 and O_2 in the discharge is significantly higher than the He ionization degree, i.e., in the order of 0.01 % and 2%, respectively (vs 10^{-6} % for He). Hence, in spite of the much lower N_2 and O_2 density in the discharge (i.e., present as impurity of 7 and 2 ppm, respectively), their corresponding ions are more important than the He⁺ ions, and comparable to the He₂⁺ ions. Indeed, the N_2 and O_2 gas molecules are more efficiently ionized, by Penning ionization due to He^{*} and He₂^{*} as well as charge transfer with He₂⁺ ions. This finding is important for analytical applications, because it suggests that the FAPA in He can also in general efficiently ionize gaseous analytes or aerosols for detection with mass spectrometry, which was also demonstrated in previous studies.⁸⁻¹¹⁻¹⁴

Finally, while the electron density is fairly constant in the discharge region, it drops over several orders of magnitude in the first few millimeters of the afterglow, due to the absence of an electric field, and therefore, the electrons are only subject to loss reactions (electron-ion recombination, or electron attachment) and not to formation reactions (electron-impact ionization).

Moreover, the rapid air diffusion into the He stream, and thus the rising density of air components in the afterglow, results in efficient electron attachment to various oxygen, water and NOx species, creating various negative ions (see Figure S1(d)). This also explains the significant drop in electron density (as indicated in "red" in Table 1 in the main paper). The main production and loss processes of the electrons are discussed in the next section.

Although here and in the main paper, we dicuss the density pattern and reaction pathway of the most important species, the information given in Figure S1, Table S3, S4 and Table 1 (in the main paper) allows to obtain a general overview on the journey of the other species from the cathode to the MS interface.

Figure S1 Number densities along the symmetry axis of the FAPA source of the most important species: (a) H, H-O, H-N neutrals, (b) N-O neutrals, (c) positive ions, and (d) negative ions and electrons. The time scale (upper x-axes) and position (lower x-axes) are correlated with the calculated gas velocity profile. The color and type of the lines are just to distinguish the different species. The vertical lines indicate the positions at which the number densities are listed in Table 1. The He atoms are not indicated, for the sake of clarity, but for comparison: they have a density of 2.5×10^{19} cm⁻³ in the discharge region, and 2.1×10^{19} cm⁻³ in the afterglow.

Table S4: List of excited species number densities

Numb	er density of	excited species	s (cm ⁻³)
Disc	harge	After	glow
N(²P)	2.9x10 ¹³	O ₂ (¹ D)	3.9x10 ¹²
N ₂ (A)	2.5x10 ¹³	O ₂ (¹ S)	2.8x10 ⁵
N(² D)	9.4x10 ¹²	N ₂ (R)	1.1x10 ⁵
O ₂ (V ₅)	5.9x10 ¹²	O ₂ (R)	1.1x10 ⁴
O(1S)	5.8x10 ¹²	O(¹ D)	1.5x10 ³
He ₂ *	1.7x10 ¹²	OH(A)	1.2x10 ²
He [*]	1.6x10 ¹²	O ₂ (V ₁)	5.1x10 ¹
O(1D)	3.9x10 ¹¹	$N_2(V_1)$	6.2x10 ⁻¹
N ₂ (R)	2.3x10 ¹¹	N(² D)	1.2x10 ⁻²
N ₂ (A')	7.5x10 ¹⁰	N ₂ (V ₃)	2.8x10 ⁸
OH(A)	1.5x10 ¹⁰	$N_2(V_4)$	1.8x10 ⁸
O ₂ (¹ D)	1.1x10 ¹⁰	O ₂ (V ₂)	1.4x10 ⁸
O ₂ (1S)	5.7x10 ⁹	O ₂ (V ₃)	5.8x10 ⁷
H(E ₂)	2.2x10 ⁹	O ₂ (V ₄)	3.1x10 ⁷
O ₂ (R)	1.5x10 ⁹	H ₂ (R ₀₂)	6.3x10
$N_2(V_1)$	5.0x10 ⁹	H ₂ (R ₁₃)	3.6x10
$N_2(V_2)$	3.1x10 ⁸	H ₂ (C)	1.9x10
O ₂ (V ₁)	1.2x10 ⁸	H ₂ (V ₁)	1.7x10
H(E ₃)	1.2x10 ⁸	H ₂ (B)	9.56

Role of electrons

The behaviour of the various species is strongly correlated with the electron density profile and vice versa. In the discharge region, the electrons are mainly created by electron impact ionization of He^{*} (reaction 3 in Table S3, contribution of 19%) and Penning ionization of H and O atoms, mainly by He^{*} and to some extent by He₂^{*} (reactions 194, 195, 213, and 214; with contributions of 28%, 28%, 6%, and 6%, respectively). Ionization upon collision of two He^{*} atoms to produce either He⁺ or He₂⁺, or upon collision of He^{*} with He₂^{*} to produce He₂⁺, also contribute for 6% to electron formation (reactions 165, 166, and 168). Finally, electron impact ionization of He₂^{*} and ionization upon collision of two He₂^{*} excimer species also contribute for 1.3% each (reaction 6 and 170, respectively). Note that in total, there are 140 reactions in our chemistry set contributing to electron formation, but we only mention here the dominant ones.

The dominant electron consumption in the discharge region is dissociative attachment (with total contribution of 85%), mainly to NO⁺ (forming O and N (44.7%) or N(²D) (4%)) and to O_2^+ (forming 2 O (25.3%) or 2 O (¹D) (4.4%)). Dissociative attachment happens also at lower rates to He₂⁺ (forming 2 He (3.3%) or He and He^{*} (1.2%)) and to N₂⁺ (forming 2 N (2%)). Finally, 12.4% of the electrons are consumed by electron-ion recombination with He₂⁺ into He₂^{*} (reaction 17 in Table S3). In the afterglow, however, these reactions are not important anymore, because of the low electron density. In fact, immediately after the discharge region (at 0.75 cm), the power density goes to zero, and as a result Te quickly drops to room temperature as well. Consequently, there are few electrons left with enough energy for dissociative attachment. In the afterglow region, the dominant electron consumption is electron attachment to O₂, forming O₂⁻, by three-body collisions (reactions 8 and 319, with contributions of 88% and 1.5%). This explains the O₂⁻ peak in the beginning of the afterglow. 7% of the electrons are also consumed upon collision with H₂O₂, forming H₂O and O⁻. Finally, there are 93 other reactions which in total contribute for 3.3% of the electron consumption in the afterglow.

Reaction rates

The reaction rates for the reactions numbered in Table S3 are presented in Table S5 at two positions along the central axis, i.e., near the end of the discharge (0.73 cm) and near the end of the afterglow (at 2 cm, i.e., 0.25 cm upstream the MS sampler). Note that the reaction rates are not constant values, but they are a function of time and position. Note that in Table S5, we only present the values at the end of both regions, which are different from the values at the beginning of each region. Several reactions that are important in the discharge are negligible in the end of the afterglow, reflected by very low reaction rates. Reaction rates below 1 are written as zero.

Table S5 Reaction rates at the end of discharge and afterglow (in cm⁻³ s⁻¹).

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
1	4.3x10 ¹⁷	0.0	51	0.0	0.0	101	8.5x10 ⁶	0.0	151	8.8x10 ³	0.0
2	7.7×10^{12}	0.0	52	8.2x10 ⁸	0.0	102	$2.3x10^{12}$	0.0	152	2.7×10^4	0.0
3	5.4x10 ¹⁶	0.0	53	2.1×10^{3}	0.0	103	$2.9x10^{12}$	0.0	153	1.8×10^{13}	0.0
4	3.8x10 ¹⁶	0.0	54	3.9×10^{13}	0.0	104	8.3x10 ¹¹	0.0	154	1.8×10^{13}	0.0
5	4.1×10^{16}	0.0	55	0.0	0.0	105	8.3x10 ¹¹	0.0	155	1.8×10^{2}	0.0
6	3.7×10^{15}	0.0	56	3.9×10^{13}	0.0	106	2.8x10 ⁹	0.0	156	3.0x10 ⁹	0.0
7	1.5×10^{15}	2.6×10^3	57	6.4×10^4	0.0	107	1.9×10^{10}	0.0	157	0.0	0.0
8	1.4×10^{12}	8.4×10^{8}	58	1.9×10^{10}	0.0	108	7.7×10^{7}	0.0	158	5.9x10 ⁵	0.0
9	6.2×10^{7}	8.8x10 ⁴	59	3.1x10	0.0	109	1.0×10^{8}	0.0	159	0.0	0.0
10	3.1x10 ⁹	0.0	60	$5.4x10^{3}$	0.0	110	6.1x10 ⁶	0.0	160	0.0	0.0
11	1.4×10^{10}	0.0	61	0.0	0.0	111	1.2×10^{6}	0.0	161	1.5×10^{6}	0.0
12	9.6x10 ¹⁵	0.0	62	1.4×10^{12}	0.0	112	6.5x10 ⁷	0.0	162	9.7×10^{13}	0.0
13	1.4×10^{8}	0.0	63	6.7x10 ⁸	0.0	113	4.1×10^{7}	0.0	163	3.0×10^4	0.0
14	4.3×10^{13}	0.0	64	1.9×10^{2}	0.0	114	2.6×10^{13}	0.0	164	1.5×10^{17}	0.0
15	1.7×10^{14}	0.0	65	3.7×10^{14}	0.0	115	2.7×10^{16}	0.0	165	3.5×10^{15}	0.0
16	3.5×10^{15}	0.0	66	1.8×10^{11}	0.0	116	1.0×10^{14}	0.0	166	8.2×10^{15}	0.0
17	3.6×10^{16}	0.0	67	5.1x10 ⁴	0.0	117	1.5×10^{15}	0.0	167	1.4×10^{15}	0.0
18	7.1×10^{12}	0.0	68	1.3×10^{14}	0.0	118	7.1×10^{12}	0.0	168	5.6×10^{15}	0.0
19	1.8x10 ⁹	0.0	69	6.3×10^{10}	0.0	119	1.1×10^{13}	0.0	169	9.2×10^{14}	0.0
20	3.6x10 ⁸	0.0	70	1.8x10 ⁴	0.0	120	2.8×10^{12}	0.0	170	3.7×10^{15}	0.0
21	4.2×10^{10}	0.0	71	0.0	0.0	121	1.5×10^{12}	0.0	171	2.2×10^{16}	0.0
22	1.3×10^{11}	0.0	72	4.0×10^4	0.0	122	1.1x10 ⁹	0.0	172	9.8x10 ¹⁷	3.1x10 ⁹
23	5.0x10 ¹⁰	0.0	73	1.9x10	0.0	123	3.5x10 ⁹	0.0	173	3.4x10 ⁹	6.4x10 ¹¹
24	6.1×10^{13}	0.0	74	0.0	0.0	124	4.2×10^{11}	0.0	174	2.3×10^{12}	7.8x10 ⁷
25	7.9x10 ¹¹	0.0	75	3.7×10^{3}	4.2×10^{2}	125	2.9×10^{12}	0.0	175	1.2×10^{14}	1.4x10 ⁷
26	2.0×10^{14}	0.0	76	5.1x10 ¹⁰	2.0×10^{2}	126	3.3x10 ¹⁴	0.0	176	5.5×10^{13}	2.4×10^{3}
27	1.6x10°	0.0	77	1.1×10^{11}	5.7×10^{3}	127	2.3×10^{14}	0.0	177	2.3×10^{13}	2.3x10
28	4.4×10^{10}	0.0	78	4.9x10 ⁸	1.2x10 ⁹	128	2.7×10^{14}	0.0	178	1.2×10^{13}	1.8
29	2.1x10 ⁷	0.0	79	3.4×10^{9}	1.8×10^{3}	129	3.2×10^{11}	0.0	179	3.7×10^{13}	2.4×10^{10}
30	0.1	0.0	80	6.8×10^{3}	/./X10 ²	130	2.6×10^{13}	0.0	180	4.1×10^{10}	9.4×10^{14}
31	$2.4 \times 10^{\circ}$	0.0	81	2.1×10^{14}	0.0	131	8.4×10^{12}	0.0	181	5.5×10^{13}	3.8X10 ⁷
32	$/./X10^{12}$	0.0	84 92	0.4X10 ⁵	5.0X10 ¹²	132	4.2×10^{12}	0.0	102	3.9×10^{17}	2.4X10 ¹¹
33 24	$3./X10^{2}$ 2.7.109	0.0	83 04	0.0	$8.5 \times 10^{\circ}$	133	3.1×10^{10}	0.0	103	2.0×10^{15} 1.2 × 10 ¹⁵	1.5X10°
34 25	3.7×10^{3}	0.0	04 95	$2.1 \times 10^{\circ}$	2.9×10^{12}	134	2.3×10^{9}	0.0	104	7.1×10^{13}	0.0
36	1.1×10^{-5} 2.2 × 1010	0.0	03 86	0.4×10^{-5}	0.0	135	4.0×10^{3}	0.0	105	7.1×10^{14}	0.0
37	2.2×10^{10}	0.0	87	1.1×10^8	0.0	130	1.3×10^{12}	0.0	187	5.6×10^{15}	0.0
38	5.7×10^4	0.0	88	3.1×10	0.0	137	2.9×10^8	4.8×10^3	188	7.1×10^{14}	0.0
30	5.7×10^4	0.0	89	0.0	0.0	130	1.3×10^5	0.0	180	4.3×10^7	0.0
4 0	0.0	0.0	90	2.5×10^{11}	0.0	140	1.5×10^{12}	0.0	190	1.5×10^8	0.0
41	0.0	0.0	91	1.2×10^8	0.0	141	1.1×10^{14}	0.0	191	9.2×10^7	0.0
42	2.8×10^{11}	0.0	92	$3.4 \times 10^{-1.2 \times 10^$	0.0	142	1.2×10^{14}	4.8×10^3	192	2.4×10^7	0.0
43	8.7×10^{6}	0.0	93	6.0×10^{16}	0.0	143	6.4×10^{16}	0.0	193	4.8×10^7	0.0
44	1.3×10^8	0.0	94	9.6×10^{12}	0.0	144	1.7×10^{16}	0.0	194	8.1×10^{16}	0.0
45	0.0	0.0	95	3.7×10^{10}	0.0	145	$4 1 \times 10^{13}$	0.0	195	6.8×10^{12}	0.0
46	2.7×10^{13}	0.0	96	5.4×10^{11}	0.0	146	2.8×10^{12}	0.0	196	3.3×10^{12}	0.0
47	4.5×10^4	0.0	97	8.2×10^{10}	0.0	147	4.7×10^{14}	0.0	197	7.6x10 ¹⁶	0.0
48	1.3×10^{6}	0.0	98	2.5×10^9	0.0	148	4.2×10^{13}	0.0	198	2.9×10^{14}	0.0
49	2.8×10^{11}	0.0	99	2.2×10^{10}	0.0	149	1.8×10^{14}	0.0	199	4.3×10^{15}	0.0
50	1.4x10 ⁸	0.0	100	6.7x10 ⁸	0.0	150	7.2x10 ³	1.3x10 ¹⁰	200	2.6x10 ¹³	0.0

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
201	7.0x10 ¹²	0.0	251	2.8x10 ¹¹	4.1×10^{12}	301	6.1x10 ¹¹	0.0	351	1.0×10^{13}	0.0
202	3.7x10 ¹²	0.0	252	4.2×10^{15}	8.5x10 ¹¹	302	$5.4x10^{14}$	0.0	352	5.4x10 ⁶	0.0
203	2.7x10 ⁹	0.0	253	3.9x10 ¹⁴	1.2×10^{15}	303	2.7×10^{12}	0.0	353	$3.4x10^{13}$	0.0
204	2.7×10^{12}	0.0	254	9.4×10^{14}	1.9x10 ⁹	304	2.5x10 ¹⁰	0.0	354	3.0x10 ¹¹	0.0
205	1.8x10 ¹³	0.0	255	2.4×10^{15}	2.6x10 ¹⁰	305	5.9x10 ¹⁰	0.0	355	1.0×10^{12}	0.0
206	7.5x10 ¹⁴	0.0	256	$4.2x10^{12}$	$3.0x10^{11}$	306	8.9x10 ³	0.0	356	9.4x10 ¹¹	0.0
207	1.9×10^{14}	0.0	257	8.7×10^{15}	0.0	307	7.5x10 ⁴	0.0	357	2.2x10 ¹¹	0.0
208	$1.2x10^{11}$	0.0	258	2.1×10^{13}	0.0	308	3.1×10^{16}	3.3x10 ⁹	358	$2.3x10^{11}$	0.0
209	7.0x10 ¹¹	0.0	259	5.2×10^{12}	0.0	309	3.0x10-83	0.0	359	$4.4x10^{11}$	0.0
210	1.6x10 ⁹	0.0	260	9.2×10^{12}	0.0	310	2.8×10^{13}	0.0	360	1.0×10^{11}	0.0
211	1.8×10^{16}	0.0	261	1.4×10^{12}	0.0	311	6.6x10 ¹⁵	0.0	361	4.7×10^{10}	0.0
212	5.6x10 ¹³	0.0	262	5.0x10 ¹³	2.0x10 ³	312	2.7x10 ⁹	0.0	362	$1.9x10^{11}$	0.0
213	1.8×10^{16}	0.0	263	6.7×10^{12}	0.0	313	$3.9x10^{10}$	0.0	363	4.6×10^{10}	0.0
214	6.9x10 ¹³	0.0	264	7.2×10^{11}	0.0	314	2.2x10 ⁹	7.1x10 ⁷	364	1.5×10^{10}	0.0
215	1.0×10^{15}	0.0	265	8.1x10 ¹²	0.0	315	6.7x10 ⁵	$1.3x10^{4}$	365	$1.1 x 10^{11}$	0.0
216	7.2×10^{12}	0.0	266	2.5x10 ¹¹	4.1×10^{8}	316	2.5x10 ⁶	9.3x10	366	2.5×10^{10}	0.0
217	7.4x10 ⁸	0.0	267	4.3x10 ⁹	1.5x10 ⁵	317	2.5x10 ⁶	9.3x10	367	1.1×10^{15}	0.0
218	6.2x10 ¹³	0.0	268	1.0×10^{10}	8.3x10 ⁵	318	7.0x10 ⁷	3.5x10 ²	368	5.2×10^{18}	0.0
219	3.3x10 ¹²	0.0	269	5.0x10 ¹³	0.0	319	$2.4x10^{3}$	2.0x10 ⁸	369	$1.1 x 10^{18}$	0.0
220	1.6x10 ⁹	0.0	270	3.5x10 ¹⁵	0.0	320	4.7×10^{3}	3.4x10 ³	370	2.9×10^{17}	0.0
221	2.5×10^{13}	0.0	271	1.1×10^{14}	0.0	321	1.3×10^{2}	0.0	371	4.1×10^{17}	0.0
222	8.4×10^{14}	0.0	272	2.5×10^{12}	$4.2x10^{4}$	322	6.0x10	0.0	372	7.1×10^{17}	0.0
223	2.1×10^{13}	0.0	273	2.5×10^{12}	$4.2x10^{4}$	323	2.5x10	0.0	373	0.0	0.0
224	7.6x10 ¹³	0.0	274	7.0×10^{13}	0.0	324	1.3x10	0.0	374	7.0×10^{14}	0.0
225	2.3×10^{12}	0.0	275	3.0×10^{14}	0.0	325	0.0	$3.2x10^{3}$	375	7.0×10^{14}	0.0
226	1.5×10^{13}	0.0	276	4.9×10^{12}	0.0	326	3.7×10^{5}	$1.2x10^4$	376	2.7×10^{12}	0.0
227	1.3×10^{11}	0.0	277	6.2×10^{13}	0.0	327	$2.2x10^4$	3.9x10 ⁷	377	4.3×10^{16}	1.3×10^{6}
228	1.0×10^{6}	0.0	278	2.9×10^{11}	0.0	328	$3.9x10^{2}$	8.7x10 ⁷	378	2.4×10^{16}	0.0
229	2.0×10^{10}	0.0	279	3.7×10^{15}	2.7×10^{10}	329	1.1x10 ⁷	4.6×10^4	379	1.6×10^{16}	0.0
230	6.6x10 ¹⁶	0.0	280	1.2×10^{14}	0.0	330	1.6×10^{15}	0.0	380	1.1×10^{16}	0.0
231	1.4×10^{12}	1.7×10^{15}	281	5.9×10^{17}	2.4×10^{11}	331	9.5x10 ¹⁷	0.0	381	4.1×10^{13}	0.0
232	4.2×10^{14}	1.7x10 ⁶	282	3.9×10^{13}	0.0	332	3.4×10^{16}	0.0	382	1.8×10^{13}	0.0
233	6.8x10 ⁹	3.7x10 ¹⁵	283	6.7×10^{13}	0.0	333	2.3×10^{13}	0.0	383	1.2×10^{13}	0.0
234	4.8x10 ⁷	3.9x10 ¹⁴	284	4.0×10^{16}	0.0	334	1.4×10^{15}	0.0	384	3.6×10^{13}	0.0
235	4.4x10 ⁷	9.4x10 ¹⁴	285	2.3×10^{16}	0.0	335	8.4x10 ¹⁰	0.0	385	8.7x10 ¹²	0.0
236	1.8x10/	1.1×10^{14}	286	1.5×10^{16}	0.0	336	1.1×10^{10}	0.0	386	5.0×10^{12}	0.0
237	5.3x10 ¹¹	3.5×10^{13}	287	1.1×10^{10}	0.0	337	2.6×10^{14}	0.0	387	4.0×10^{13}	0.0
238	2.2×10^{3}	2.5×10^{11}	288	8.0×10^{15}	1.8x10 ³	338	2.6×10^{14}	0.0	388	4.3×10^{12}	0.0
239	2.1×10^{16}	4.9×10^{12}	289	5.6×10^{13}	0.0	339	1.8X10 ¹¹	0.0	389	2.3×10^{12}	0.0
240	1.5×10^{10}	2.1×10^{3}	290	$/.2 \times 10^{14}$	0.0	340 241	/.5X10 ¹¹	0.0	390	4.9×10^{13}	0.0
241	5.6×10^{13}	2.1x10 ¹¹	291	1.0×10^{13}	0.0	341	1.2×10^{14}	0.0	391	9.2×10^{11}	0.0
242	0.0×10^{14}	0.0	292	1.5×10^{13}	0.0	342	2.8×10^{13}	0.0	392	9.2×10^{11}	0.0
245	2.5×10^{12}	0.0	293	3.5X10 ¹²	0.0	345	1.5X10 ¹⁴	2.9X10/	393	4.9X10 ¹⁴	0.0
244	2.0×10^{11}	0.0	294	8.0X10 ²	0.0	344 245	3.0×10^{13}	4.8X10 ⁻³	394 205	2.9×10^{12} 1 1 10 ¹⁴	0.0
243 214	0.9X10 ¹⁰ 2.6v10 ¹⁰	0.0	293 202	$1.0X10^{\circ}$ 0.2 $\times 10^{7}$	0.0	343 314	2.5×10^{13} 1.2 × 10^{13}	4.0X1U	393 304	1.1×10^{17} 2.2 $\times 10^{12}$	0.0
240 217	$3.0X10^{10}$ 3.7×10^{7}	0.0	290 207	7.2X1U' 1.2x107	0.0	340 347	1.2×10^{13}	J./	370	3.3×10^{12} 1.2 × 1016	0.0
24/ 2/Q	2.7×10^{7} 2.6 × 1.014	0.0 0.2v1011	291	4.5×10^7 2 $A_{\rm V} 107$	0.0	34/ 3/9	7.5×10^{2}	0.0	300	1.5×10^{10} 3 1 x 1013	0.0
240 240	2.0×10^{13}	9.3×10^{10}	470 200	2.4×10^{7}	0.0	340 3/10	6. 9x 10 ¹²	0.0	300	0.0	0.0
250	1.1×10^{11}	6.8×10^{16}	300	1.0×10^{13}	0.0	350	3.9×10^{11}	0.0	400	1.2×10^{16}	2.3×10^5
_ 00	1.1/10	0.0410	200	1.0/110	0.0	000	5.0410	0.0	100	1.4/110	2.JAIU

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
401	2.3×10^{15}	0.0	451	2.3×10^{11}	0.0	501	2.6x10 ⁸	0.0	551	0.0	0.0
402	7.9x10 ⁹	0.0	452	2.8×10^{10}	0.0	502	4.4×10^{8}	0.0	552	0.0	0.0
403	1.1×10^{14}	0.0	453	8.1x10 ³	0.0	503	7.4x10	0.0	553	0.0	0.0
404	3.7×10^{13}	0.0	454	3.0x10 ⁸	0.0	504	1.3×10^{2}	0.0	554	0.0	0.0
405	7.4×10^{16}	0.0	455	3.6x10 ¹¹	0.0	505	1.3×10^{6}	0.0	555	7.1×10^{3}	0.0
406	1.3×10^{13}	0.0	456	9.3x10 ⁵	0.0	506	2.2×10^{6}	0.0	556	7.1×10^{3}	0.0
407	5.8x10 ⁷	0.0	457	2.6×10^{13}	0.0	507	1.6x10 ⁹	0.0	557	2.0×10^5	0.0
408	1.5×10^{8}	0.0	458	1.6×10^{13}	0.0	508	2.7×10^9	0.0	558	2.0×10^{5}	0.0
409	3.7×10^{11}	0.0	459	1.2×10^{10}	0.0	509	4.0×10^{3}	0.0	559	3.4	0.0
410	1.3×10^{17}	2.9×10^{5}	460	3.3×10^{10}	0.0	510	6.8×10^{3}	0.0	560	3.4	0.0
411	5.3×10^{12}	2.7	461	3.6×10^3	0.0	511	8.9x10 ⁸	0.0	561	9.8x10	0.0
412	1.8×10^{13}	0.0	462	2.9×10^{3}	0.0	512	4.3×10^{5}	0.0	562	9.8x10	0.0
413	3.2×10^{15}	0.0	463	6.3x10 ⁷	0.0	513	0.0	0.0	563	8.9x10 ⁴	4.3×10^{2}
414	5.5x10 ¹⁵	0.0	464	1.1x10 ⁸	0.0	514	2.2×10^{3}	0.0	564	8.9x10 ⁴	4.3×10^{2}
415	2.5×10^{13}	0.0	465	7.5x10 ¹⁰	0.0	515	2.6x10 ⁶	0.0	565	2.5x10 ⁶	1.6x10 ³
416	3.8×10^{13}	0.0	466	2.0×10^{11}	0.0	516	6.6	0.0	566	2.5x10 ⁶	1.6x10 ³
417	4.8x10 ¹¹	0.0	467	1.9x10 ⁵	0.0	517	1.7x10 ⁹	0.0	567	4.3x10	2.9x10 ⁴
418	3.3x10 ⁵	0.0	468	1.6x10 ⁵	0.0	518	8.2x10 ⁵	0.0	568	4.3x10	2.9x10 ⁴
419	3.3×10^{8}	0.0	469	0.0	0.0	519	3.6×10^3	0.0	569	1.2×10^{3}	1.1x10 ⁵
420	1.7×10^{11}	0.0	470	8.0x10 ³	0.0	520	3.6×10^3	0.0	570	1.2x10 ³	1.1x10 ⁵
421	1.0x10°	0.0	471	3.2x10 ⁴	0.0	521	7.5×10^{10}	0.0	571	0.0	5.7x10
422	1.1x10°	0.0	472	7.7x10	0.0	522	7.5x10 ¹⁰	0.0	572	0.0	2.8x10 ⁷
423	5.2x10	0.0	473	3.8	0.0	523	1.9x10 ⁵	0.0	573	0.0	3.8x10°
424	5.6x10 ⁹	0.0	474	0.0	0.0	524	1.9x10 ⁵	0.0	574	4.5×10^{3}	0.0
425	1.3x10 ⁵	0.0	475	0.0	0.0	525	4.1x10°	0.0	575	4.5×10^{3}	0.0
426	1.1X10 ⁵	0.0	476	0.0	0.0	526	/.9x10 ⁺	/.3x10 ³	576	1.3×10^{5}	0.0
427	7.0×10^{10}	0.0	477	2.3x10	0.0	527	0.0	0.0	577	1.3×10^{3}	0.0
428	$1.7 \times 10^{\circ}$	3.9X10 ³	4/8	0.0	0.0	528	1./X10 ³	0.0	5/8	2.1	0.0
429	4./x10'	1.4x10 ⁴	4/9	0.0	0.0	529	8.4x10	0.0	579	6.1X10 2.7-1014	0.0
430	5.5X10 ² 9.2-104	0.0	480	1.4×10^{12}	0.0	530	8.4X10	0.0	50U	$3./X10^{11}$	0.0
431	8.3X10 ⁺	0.0	481	1.0×10^{2}	0.0	531	0.1×10^{5}	0.0	501	1.8X10 ¹¹	0.0
432	$2.4 \times 10^{\circ}$	0.0	402	2.0×10^{-2}	0.0	532 522	0.1×10^{2} 1.7 × 107	0.0	502 592	1.6×10^{10}	0.0
433	5.0X10°	0.0	403	$3.3 \times 10^{\circ}$	0.0	535	1.7×10^7	0.0	303 594	3.1×10^{14}	0.0
434	8 3x10 ¹¹	0.0	404	4.2×10^{4}	0.0	535	1.7×10^{2} 2 0x 10 ²	0.0	585	1.5×10^{4}	0.0
435 136	1.8×10^{12}	0.0	486	1.1×10^{13}	1.0×10^3	536	2.9×10^2	0.0	505 586	3.2×10^{11}	0.0
437	1.5×10^9	0.0	487	3.3×10^{13}	3.8×10^3	537	2.5×10^3	0.0	587	1.2×10^4	0.0
438	8.2×10^8	0.0	488	5.5×10^{9}	6.8×10^4	538	8.4×10^3	0.0	588	1.0x10 1.9x10	0.0
439	3.3×10^{10}	0.0	489	2.1×10^{10}	3.2×10^5	539	0.0	0.0	589	1.5×10^{12}	0.0
440	4 6x10	0.0	490	1.5×10^3	7.1×10	540	$2 1 \times 10^5$	0.0	590	2.8×10^{6}	0.0
441	1.1×10^3	0.0	491	2.5×10^3	1.5×10^2	541	2.1×10^{5}	0.0	591	4.3×10^{12}	0.0
442	0.0	0.0	492	2.6×10^7	0.0	542	6.2×10^{6}	0.0	592	4.3×10^{12}	0.0
443	6.2×10^3	5.7×10^4	493	4.4×10^7	0.0	543	6.2×10^6	0.0	593	2.7×10^{12}	0.0
444	0.2.10	0.0	494	3.1×10^{10}	8.4×10^{6}	544	1.0×10^2	0.0	594	2.7×10^{12}	0.0
445	0.0	5.0×10^5	495	2.0×10^{10}	6.5x10 ⁶	545	3.0×10^3	0.0	595	5.4×10^{13}	1.4×10^4
446	0.0	7.3×10^4	496	7.9×10^4	7.3×10^3	546	0.0	0.0	596	5.4×10^{13}	1.4×10^4
447	0.0	8.9x10 ²	497	4.5x10 ⁴	5.1x10 ³	547	0.0	0.0	597	3.4×10^{10}	0.0
448	0.0	1.0	498	0.0	1.3×10^{12}	548	0.0	0.0	598	3.4x10 ¹⁰	0.0
449	0.0	0.0	499	5.4x10 ¹¹	0.0	549	0.0	0.0	599	3.8x10 ¹¹	0.0
450	1.3x10 ¹⁴	0.0	500	9.2x10 ¹¹	0.0	550	0.0	0.0	600	9.8x10 ⁵	0.0

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
601	2.1x10 ⁹	0.0	651	0.0	0.0	701	0.0	$1.7 x 10^4$	751	0.0	3.8x10 ⁴
602	2.1x10 ⁹	0.0	652	1.4x10	0.0	702	0.0	$1.7 x 10^4$	752	0.0	2.4
603	2.6x10 ¹⁰	9.5x10 ⁵	653	6.9x10	0.0	703	0.0	2.4x10 ⁵	753	0.0	2.4
604	2.6x10 ¹⁰	9.5x10 ⁵	654	0.0	0.0	704	0.0	1.8x10	754	0.0	3.3x10
605	1.6x10 ⁷	0.0	655	0.0	0.0	705	0.0	1.8x10	755	0.0	0.0
606	6.0×10^{2}	0.0	656	0.0	0.0	706	0.0	2.5x10 ²	756	0.0	0.0
607	3.8x10 ²	0.0	657	0.0	0.0	707	0.0	2.1×10^{6}	757	0.0	0.0
608	7.5×10^{3}	9.9x10 ²	658	0.0	0.0	708	0.0	2.1×10^{6}	758	0.0	0.0
609	4.7	0.0	659	0.0	0.0	709	0.0	3.0×10^{7}	759	0.0	0.0
610	$1.2x10^{2}$	0.0	660	0.0	0.0	710	0.0	$1.9x10^{3}$	760	0.0	1.6x10 ³
611	0.0	0.0	661	0.0	0.0	711	0.0	$1.9x10^{3}$	761	0.0	$2.2x10^{4}$
612	1.3×10^{10}	0.0	662	0.0	0.0	712	0.0	2.6x10 ⁴	762	0.0	0.0
613	$3.2x10^4$	0.0	663	0.0	0.0	713	0.0	0.0	763	0.0	0.0
614	7.9x10 ⁹	0.0	664	0.0	0.0	714	0.0	0.0	764	0.0	0.0
615	2.0×10^4	0.0	665	0.0	0.0	715	0.0	0.0	765	0.0	0.0
616	1.6×10^{11}	1.2×10^{8}	666	0.0	0.0	716	0.0	0.0	766	0.0	0.0
617	4.0×10^{5}	1.0×10^{5}	667	0.0	0.0	717	0.0	0.0	767	0.0	0.0
618	9.9x10 ⁷	1.0x10	668	0.0	0.0	718	0.0	1.2×10^{6}	768	0.0	0.0
619	2.5×10^2	0.0	669	0.0	0.0	719	0.0	1.7×10^{7}	769	0.0	0.0
620	2.2×10^9	0.0	670	0.0	0.0	720	0.0	3.0x10	770	0.0	3.2
621	2.2x10 ⁹	0.0	671	0.0	0.0	721	0.0	4.2×10^{2}	771	0.0	3.2
622	0.0	0.0	672	0.0	0.0	722	0.0	2.0×10^3	772	0.0	4.5x10
623	6.3x10°	0.0	673	0.0	0.0	723	0.0	2.0×10^{3}	773	0.0	0.0
624	1.6x10	0.0	674	0.0	0.0	724	0.0	2.8x10 ⁴	774	0.0	0.0
625	4.1×10^{9}	0.0	675	0.0	0.0	725	0.0	2.1	775	0.0	0.0
626	1./X10 ⁹	0.0	676	0.0	0.0	726	0.0	2.1	776	0.0	0.0
627	1.1X10°	0.0	677	0.0	0.0	727	0.0	3.0x10	777	0.0	0.0
628	5.8×10^{6}	0.0	678	0.0	3.2x10	728	0.0	2.5×10^{5}	7/8	0.0	0.0
029	2.5×10^{5}	0.0	0/9	0.0	4.5×10^{2}	729	0.0	2.5×10^{6}	790	0.0	0.0
03U 621	5.8X10 ⁵	0.0	000	0.0	2.2×10^3	/30	0.0	$3.5 \times 10^{\circ}$	/80	0.0	0.0
622	0.0	0.0	692	0.0	2.2×10^{3}	731	0.0	2.2×10^2	/01 792	0.0	1.0
622	0.0	0.0	692	0.0	2.0X10 ⁻	732	0.0	2.2×10^{-2}	/04 792	0.0	2.0X10
634	0.0	0.0	00J 684	0.0	2.5	737	0.0	0.0	703 784	0.0	0.0
635	0.0	0.0	685	0.0	2.5 3 2v10	735	0.0	0.0	785	0.0	0.0
636	0.0	0.0	686	0.0	2.2×10^5	736	0.0	0.0	786	0.0	0.0
637	1.6×10^3	0.0	6 87	0.0	2.7×10^5	737	0.0	0.0	787	0.0	0.0
638	4.3×10^5	0.0	688	0.0	3.7×10^6	738	0.0	0.0	788	0.0	0.0
639	2.2×10^6	0.0	689	0.0	2.3×10^2	739	0.0	1.4×10^{5}	789	0.0	0.0
640	2.2×10^2	0.0	690	0.0	2.3×10^2	740	0.0	2.0×10^6	790	0.0	0.0
641	2.1×10^2	0.0	691	0.0	3.3×10^3	741	0.0	0.0	791	0.0	0.0
642	$1 1 \times 10^3$	0.0	692	0.0	0.0	742	0.0	4.6	792	0.0	0.0
643	0.0	0.0	693	0.0	0.0	743	0.0	2.2×10^{-10}	793	0.0	0.0
644	0.0	0.0	694	0.0	0.0	744	0.0	2.2x10	794	0.0	0.0
645	0.0	0.0	695	0.0	0.0	745	0.0	3.1x10 ²	795	0.0	0.0
646	1.3x10 ³	0.0	696	0.0	0.0	746	0.0	0.0	796	0.0	0.0
647	1.3x10 ³	0.0	697	0.0	1.5x10 ⁵	747	0.0	0.0	797	0.0	0.0
648	6.4x10 ³	0.0	698	0.0	2.1x10 ⁶	748	0.0	0.0	798	0.0	0.0
649	0.0	0.0	699	0.0	2.6x10 ²	749	0.0	2.7x10 ³	799	0.0	0.0
650	0.0	0.0	700	0.0	3.6x10 ³	750	0.0	2.7x10 ³	800	0.0	0.0
											0.0

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
801	0.0	0.0	851	1.8×10^4	8.7x10	901	0.0	3.7x10 ⁶	951	9.1x10 ¹⁰	0.0
802	0.0	0.0	852	1.7×10^{2}	1.8×10^{6}	902	0.0	0.0	952	1.0×10^{17}	0.0
803	0.0	0.0	853	$2.0x10^{3}$	3.8x10 ²	903	0.0	0.0	953	8.9x10 ¹¹	0.0
804	0.0	0.0	854	2.6×10^3	4.1×10^{2}	904	0.0	6.6x10 ⁸	954	6.6x10 ⁸	0.0
805	0.0	0.0	855	2.5	0.0	905	0.0	0.0	955	1.9×10^{15}	0.0
806	0.0	0.0	856	2.5	0.0	906	0.0	0.0	956	5.8x10 ¹³	0.0
807	0.0	4.3×10^{10}	857	2.5	0.0	907	0.0	0.0	957	7.2×10^{12}	0.0
808	0.0	3.4×10^{11}	858	3.7x10	0.0	908	0.0	0.0	958	1.1×10^{13}	0.0
809	0.0	4.0×10^{10}	859	3.7x10	0.0	909	0.0	3.5×10^{8}	959	9.0×10^{15}	0.0
810	0.0	4.4×10^{8}	860	3.7x10	0.0	910	0.0	8.8x10 ⁷	960	5.3x10 ¹¹	0.0
811	0.0	5.2×10^{5}	861	0.0	5.5x10	911	0.0	9.7×10^{11}	961	2.1×10^9	0.0
812	0.0	4.9x10	862	0.0	0.0	912	0.0	5.7×10^{11}	962	1.0×10^9	0.0
813	1.5×10^{13}	4.6×10^3	863	0.0	4.3×10^{3}	913	0.0	0.0	963	5.8x10 ⁸	0.0
814	1.8×10^{10}	0.0	864	6.1x10	0.0	914	0.0	1.1×10^{6}	964	3.7×10^{8}	0.0
815	2.7×10^{11}	0.0	865	6.1x10	0.0	915	3.0×10^2	1.8×10^{3}	965	2.8×10^{13}	0.0
816	2.9x10 ⁷	3.1x10 ⁶	866	6.1x10	0.0	916	9.0	3.6x10 ⁶	966	2.5x10 ¹²	0.0
817	1.5x10 ⁵	1.3x10 ⁴	867	1.9x10 ²	0.0	917	8.5x10 ³	6.9x10 ³	967	1.2×10^{12}	0.0
818	2.4×10^{9}	3.0x10 ³	868	1.9x10 ²	0.0	918	0.0	1.1x10 ⁹	968	4.2×10^{11}	0.0
819	2.4×10^{9}	3.0x10 ³	869	1.9x10 ²	0.0	919	0.0	1.2×10^{11}	969	1.4×10^{11}	0.0
820	2.9x10 ⁹	0.0	870	1.0	1.7×10^{2}	920	0.0	6.9x10°	970	1.4×10^{13}	0.0
821	6.3x10 ⁵	1.6x10 ⁵	871	2.6	4.4×10^{2}	921	0.0	4.6x10 ¹¹	971	1.7×10^{16}	0.0
822	9.5x10 ⁵	2.4×10^{5}	872	0.0	4.1×10^{2}	922	0.0	3.0x10 ⁷	972	3.7×10^{14}	0.0
823	3.1x10 ¹³	5.4×10^{2}	873	0.0	4.1x10 ²	923	0.0	1.1x10 ⁸	973	7.9x10 ¹⁰	0.0
824	4.4×10^{11}	0.0	874	0.0	6.1	924	7.3×10^{9}	3.3×10^{2}	974	6.5×10^{6}	0.0
825	1.4×10^{12}	0.0	875	0.0	0.0	925	2.3×10^{10}	2.2x10 ⁴	975	5.2x10°	0.0
826	8.7×10^{10}	4.0×10^4	876	0.0	0.0	926	2.7×10^{3}	0.0	976	6.6×10^3	0.0
827	$6./X10^{9}$	2.1X10 ⁴	8/7	0.0	0.0	927	4.6X10 ¹⁰	1.8×10^{3}	9/7	2.0x10 ⁴	0.0
828	1.2X10 ⁷	8./XIU	8/8	2.3X10 ⁴	5.8x10 ⁺	928	$3.2 \times 10^{\circ}$	$1./X10^{3}$	9/8	9.8x10 ⁺	0.0
829	$5.5 \times 10^{\circ}$	7.8×10^{4}	8/9	$8./X10^3$	0.0	929	3.0×10^3	2.2×10^{3}	9/9	3.0X10 ⁵	0.0
830	/.4X10 ²	2.6X10 ²	88U 991	1.2×10^{-4}	0.0	930	9.9×10^{3}	1.5X10 ⁷	980	0.0	0.0
831 822	1.1×10^{13}	3.3 2.2×1.05	001	4.5X10 ²	0.0	931	5.5×10^{3}	7.2×10^{-1}	901	1.8×10^{2}	0.0
032 022	5.5×10^9	2.5×10^{5}	004 992	2.3	0.0	952	4.5×10^3	/.3X10	902 092	9.7×10^{5}	0.0
83 <i>1</i>	3.3×10^{6}	2.5x10	881	6.9×10^2	6.1×10^8	933	2.7×10^{13}	0.0	905 084	1.0×10^{3}	0.0
0J4 935	0.0×10^{6}	0.0	004 995	5.9×10^2	0.1×10^{4}	035	2.0×10^{-1}	1.7×10^3	204 085	4.9×10^{4}	0.0
836	1.3×10^8	0.0	886	3.2×10^3	4.0x10 3 5x10 ⁴	936	7.2×10^5	3.6×10^2	986	2.0×10^4	0.0
837	1.3×10^8	0.0	887	3.5×10^4	7.3×10^5	937	6.5×10^3	6.6x10	987	1.9×10^{12}	0.0
838	$3.2 \times 10^{-1.5 \times 10^$	4.9×10^5	888	1.1×10^5	1.1×10^4	938	1.2×10^{10}	0.0	988	$2 1 \times 10^{11}$	0.0
839	2.3×10^3	6.9×10^5	889	3.6×10^3	1.1×10^3	939	0.0	5.7×10	989	2.1×10^{11}	0.0
840	7.8×10^5	1.4×10^5	890	3.6×10^3	1.3×10^3	940	7.3×10^9	3.3×10^2	990	2.1×10^{10}	0.0
841	7.3×10^5	0.0	891	3.6×10^3	1.3×10^3	941	0.0	0.0	991	3.9×10^7	0.0
842	9.1×10^2	$3 2 \times 10^7$	892	3.6×10^3	1.3×10^3	942	1.7×10^4	9 3x10	992	8.4×10^{10}	0.0
843	5.8x10 ⁹	1.4×10^4	893	0.0	4.4×10^2	943	4.8×10^4	1.7×10^5	993	2.2×10^{13}	0.0
844	2.3×10^{10}	5.6×10^4	894	5.4	1.7×10^3	944	0.0	0.0	994	2.8×10^{10}	0.0
845	2.1×10^{8}	0.0	895	0.0	6.3x10 ²	945	0.0	0.0	995	1.3x10 ¹¹	0.0
846	6.5x10 ⁸	0.0	896	0.0	0.0	946	0.0	0.0	996	7.9x10 ¹¹	0.0
847	2.3x10 ⁶	9.8x10 ⁵	897	0.0	0.0	947	0.0	0.0	997	1.3x10 ¹⁰	0.0
848	5.7x10 ³	5.9x10 ³	898	0.0	0.0	948	8.9x10 ¹⁰	4.8x10 ⁶	998	5.5x10 ⁹	0.0
849	2.6x10 ³	1.0x10 ⁵	899	0.0	0.0	949	3.7x10 ¹⁰	3.3x10 ⁴	999	$1.0 x 10^{14}$	0.0
850	3.5x10 ²	1.7	900	0.0	3.7x10 ⁶	950	2.1x10 ⁸	3.5x10 ⁷	1000	9.8x10 ¹²	0.0

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
1001	4.7×10^{3}	0.0	1051	1.0×10^{6}	0.0	1101	0.0	2.4x10	1151	3.8x10 ¹¹	2.6x10 ¹⁰
1002	1.1×10^{10}	0.0	1052	1.7	0.0	1102	0.0	2.7x10 ⁹	1152	3.8x10 ¹¹	2.5x10 ¹⁰
1003	4.9x10 ⁶	0.0	1053	0.0	7.9x10 ⁶	1103	0.0	1.2x10 ⁹	1153	2.0×10^{8}	3.9x10 ⁷
1004	5.3x10 ¹²	0.0	1054	5.7x10 ¹⁶	0.0	1104	0.0	2.9x10 ⁷	1154	$4.0x10^{8}$	7.9x10 ⁷
1005	5.8x10 ¹²	0.0	1055	1.7×10^{15}	0.0	1105	1.1×10^{10}	0.0	1155	2.0×10^{8}	3.9x10 ⁷
1006	3.6x10 ¹¹	0.0	1056	1.1x10 ⁹	0.0	1106	3.4x10	0.0	1156	9.0x10 ¹³	1.9x10 ⁷
1007	4.0×10^{9}	0.0	1057	1.6x10 ¹⁷	0.0	1107	2.8x10 ¹²	0.0	1157	1.0×10^{14}	$2.2x10^{7}$
1008	4.9×10^{11}	0.0	1058	2.7×10^{14}	0.0	1108	$3.2x10^{2}$	0.0	1158	1.7×10^{12}	$3.4x10^{6}$
1009	1.1×10^{10}	0.0	1059	1.5×10^{13}	0.0	1109	1.1×10^{3}	0.0	1159	9.5x10 ¹²	9.4×10^{10}
1010	$7.4x10^{8}$	0.0	1060	2.6x10 ¹²	0.0	1110	7.5x10 ⁶	0.0	1160	2.1×10^{12}	$4.9x10^{4}$
1011	$1.9x10^{8}$	0.0	1061	3.7×10^{14}	0.0	1111	0.0	0.0	1161	3.1×10^{10}	6.9x10 ²
1012	3.1x10 ⁸	0.0	1062	2.7×10^{5}	1.1×10^{4}	1112	8.8x10 ²	9.7x10 ⁹	1162	1.4×10^{12}	3.1x10 ⁴
1013	2.1×10^{7}	0.0	1063	1.5×10^{10}	0.0	1113	$1.9x10^{3}$	2.7×10^{10}	1163	2.1×10^{12}	$4.9x10^{4}$
1014	1.1×10^{7}	0.0	1064	1.0×10^{14}	0.0	1114	0.0	2.1×10^{16}	1164	0.0	0.0
1015	4.9×10^{10}	0.0	1065	2.2×10^{10}	0.0	1115	0.0	2.1×10^{16}	1165	3.5x10 ¹⁰	5.3x10 ⁵
1016	1.8×10^{10}	0.0	1066	3.2×10^{14}	0.0	1116	0.0	4.2×10^{16}	1166	5.5x10 ⁸	7.8x10 ⁸
1017	5.5×10^{10}	0.0	1067	2.6×10^{8}	0.0	1117	0.0	4.2×10^{16}	1167	6.8x10 ⁹	9.2x10 ⁹
1018	1.2×10^{10}	0.0	1068	2.1×10^{8}	0.0	1118	0.0	3.2×10^{13}	1168	1.2×10^{11}	0.0
1019	5.3x10 ⁶	0.0	1069	8.4x10 ¹³	0.0	1119	0.0	3.2×10^{13}	1169	2.4×10^{11}	0.0
1020	1.0×10^{8}	0.0	1070	1.2×10^{15}	0.0	1120	0.0	2.2×10^{10}	1170	2.0×10^{12}	0.0
1021	1.9x10 ⁹	0.0	1071	4.7×10^{14}	0.0	1121	0.0	2.2×10^{10}	1171	6.9×10^{12}	0.0
1022	1.6x10 ⁸	0.0	1072	1.0×10^{17}	0.0	1122	0.0	2.0×10^{6}	1172	8.2×10^{12}	0.0
1023	7.2×10^{5}	0.0	1073	4.4×10^{14}	0.0	1123	0.0	2.0×10^{6}	1173	2.3×10^{12}	0.0
1024	4.7×10^{9}	0.0	1074	7.2×10^{10}	0.0	1124	0.0	20.0	1174	1.8×10^{12}	0.0
1025	2.1×10^{7}	0.0	1075	4.2×10^{13}	0.0	1125	3.2×10^{14}	7.7×10^4	1175	2.5×10^9	0.0
1026	1.9×10^{2}	0.0	1076	2.8×10^{15}	0.0	1126	1.3×10^{16}	0.0	1176	7.1x10 ⁹	0.0
1027	7.6×10^2	0.0	1077	5.1x10 ¹²	0.0	1127	6.6x10 ¹⁵	0.0	1177	1.4×10^{10}	0.0
1028	3.4×10^{3}	0.0	1078	2.8x10 ¹⁵	0.0	1128	2.2×10^{8}	3.8x10 ⁹	1178	2.6x10 ¹⁵	0.0
1029	0.0	0.0	1079	7.4x10 ⁷	0.0	1129	7.4×10^{9}	1.9x10 ⁴	1179	4.4×10^{15}	0.0
1030	7.6x10 ⁵	0.0	1080	8.2x10 ⁹	0.0	1130	6.7×10^{10}	1.7x10 ⁵	1180	8.3x10 ¹²	0.0
1031	2.2×10^7	0.0	1081	1.9x10°	0.0	1131	3.5×10^{10}	1.1x10 ⁵	1181	3.4×10^{8}	0.0
1032	2.2×10^{3}	0.0	1082	8.6x10 ³	2.8x10 ³	1132	$5.0 \times 10^{\circ}$	4.4	1182	4.5×10^{13}	0.0
1033	1.9x10°	0.0	1083	3.6×10^{5}	0.0	1133	2.2x10°	0.0	1183	4.2×10^{12}	0.0
1034	5.5X10 ⁷	0.0	1084	5.4×10^{6}	0.0	1134	9.4x10 ⁷	0.0	1184	1.4×10^{12}	0.0
1035	3.1×10^{9}	0.0	1085	3.5×10^{3}	0.0	1135	5.0x10 ⁷	0.0	1185	0.0	0.0
1030	3.1×10^{9}	5.0X10 ⁺	1000	1.0X10 ⁺	0.0	1120	1.0×10^{10}	1.8X10 ⁷	1100	3.1×10^{11}	0.0
103/	1.9×10^{7}	0.0	100/	3.3×10^{5}	0.0	113/	$2.2 \times 10^{\circ}$	1.9X10 ¹¹	110/	2.0×10^{11}	1.5X10 7.5
1030	0.5×10^{10}	0.0	1000	$\frac{6.7 \times 10^{\circ}}{2.7 \times 10^{7}}$	0.0	1130	5.9×10^{11}	0.0	1100	1.0×10^{11}	7.5 2.5-10
1039	9.5×10^{12}	0.0 1.7v104	1009	2.7X10	0.0	1139	9.7×10^{15}	0.0	1107	0.0	2.5X10
1040	1.2×10^{13}	0.0	1090	0.0	0.0	1140	1.8×10^3	0.0	1190	0.0	0.0 8 4×10^9
1041	5.0×10^{12}	0.0	1091	0.0	0.0	1141	1.0×10^{10} 1.1×10^{13}	0.0	1102	2.1	4.5×10^{12}
1042	5.2×10^{10}	0.0 8 5x106	1092	0.0	0.0	1142	8.6×10^2	4.2X10	1192	1.0×10^{3}	4.3×10^{-1}
1043	1.2×10^{12}	1.6×10^2	1075	0.0	0.0	1143	2.1×10^3	0.0	110/	1.3×10^4	1.1×10^7
1044	1.2×10^9	0.0	1094	0.0	0.0	1144	5.2×10^{10}	4.2×10^{12}	1104	0.0	0.0
1045	1.710 1.6x10 ⁸	0.0	1005	0.0	1.7×10^{-10}	1145	0.0	0.0	1106	0.0	8.9x10_41
1040	1.0x10 1.2x10 ⁶	0.0	1097	0.0	0.0	1147	0.0	0.0	1197	0.0	$7.7 \times 10-41$
1048	2.7×10^{10}	0.0	1098	0.0	3.4×10^3	1148	5.0^{-10}	1.7×10^{15}	1198	0.0	00
1049	6.3×10^{10}	0.0	1099	0.0	0.0	1149	5.7×10^6	2.8×10^{11}	1199	2.0×10^5	5.1×10^{5}
1050	5.0x10 ⁵	5.8x10 ³	1100	2.1	0.0	1150	7.0×10^{10}	4.7x10 ⁹	1200	9.0x10 ⁴	8.5x10
-											

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
1201	3.8x10 ⁴	0.0	1251	2.6x10 ¹³	$3.3 x 10^{14}$	1301	4.6×10^2	$1.5 x 10^{11}$	1351	2.2	5.3x10 ¹³
1202	$2.0x10^4$	0.0	1252	2.7×10^{14}	0.0	1302	0.0	3.2x10 ⁹	1352	1.9	$1.2x10^{14}$
1203	7.0x10	3.5x10 ¹³	1253	2.6x10 ¹⁵	$1.9x10^{2}$	1303	6.9x10 ⁶	3.1×10^{10}	1353	0.0	$3.2x10^{13}$
1204	9.2×10^{11}	1.8×10^4	1254	6.5×10^{14}	4.8x10	1304	7.9x10 ⁴	1.1×10^{13}	1354	0.0	1.5×10^{13}
1205	3.7×10^{12}	7.3x10 ⁴	1255	6.5×10^{14}	4.8x10	1305	8.6x10 ²	1.3×10^{12}	1355	0.0	8.0x10 ¹²
1206	3.1×10^{12}	0.0	1256	8.7x10 ¹⁴	6.5x10	1306	1.3×10^{2}	2.5×10^{14}	1356	0.0	2.2×10^{12}
1207	2.4×10^{12}	0.0	1257	6.6x10 ¹⁰	2.1×10^{2}	1307	2.0×10^{8}	1.1×10^{11}	1357	1.0×10^{8}	1.4×10^{8}
1208	2.4×10^{12}	0.0	1258	7.4×10^{13}	0.0	1308	2.0×10^4	1.8x10 ⁹	1358	3.6x10 ⁴	7.3×10^{11}
1209	0.0	0.0	1259	2.2×10^{12}	0.0	1309	3.0×10^{6}	1.3×10^{9}	1359	1.3×10^{2}	2.1×10^{10}
1210	0.0	1.1×10^{2}	1260	1.3×10^{15}	0.0	1310	2.7×10^4	1.1×10^{8}	1360	0.0	5.9×10^{7}
1211	0.0	2.1×10^{2}	1261	4.1×10^{13}	0.0	1311	1.5x10 ⁵	7.0x10 ⁶	1361	9.8x10 ⁹	1.3×10^{12}
1212	8.9x10 ⁹	3.3×10^{10}	1262	6.8x10 ⁷	0.0	1312	4.2×10^{6}	7.0×10^{13}	1362	2.7x10	5.2×10^{8}
1213	5.0×10^{3}	2.4×10^{8}	1263	6.8x10 ⁷	0.0	1313	2.5x10 ⁴	4.7×10^{12}	1363	1.4×10^4	8.2x10 ⁷
1214	5.0×10^{3}	2.4×10^{8}	1264	2.3×10^{14}	0.0	1314	6.0×10^3	1.3x10 ⁷	1364	2.1x10	5.0x10 ¹¹
1215	5.4x10 ⁴	1.2×10^{14}	1265	0.0	0.0	1315	0.0	1.1x10 ⁴	1365	0.0	1.7x10 ⁹
1216	2.5×10^{10}	1.3×10^{10}	1266	1.3	0.0	1316	0.0	6.4x10 ¹¹	1366	3.6x10 ⁷	1.5x10 ⁷
1217	8.1x10 ⁴	1.2×10^9	1267	2.6	0.0	1317	1.1x10/	1.8x10 ⁹	1367	1.6x10/	2.5x10 ³
1218	3.8x10	2.5×10^{10}	1268	1.6x10 ⁹	1.3×10^{14}	1318	0.0	5.7x10/	1368	6.8x10 ⁶	2.4x10
1219	1.2×10^{10}	6.2x10/	1269	0.0	0.0	1319	4.5x10 ²	4.5×10^9	1369	3.6x10°	1.9
1220	1.9x10	1.9x10 ¹²	1270	1.7×10^4	4.0×10^{9}	1320	1.4×10^{16}	7.0×10^{8}	1370	6.9×10^{11}	0.0
1221	1.9x10 ³	0.0	1271	1.7×10^{14}	4.0×10^{12}	1321	1.1x10°	3.5x10 ⁹	1371	1.7x10 ⁸	3.2x10 ⁹
1222	2.8×10^{3}	6.1×10^{8}	1272	8.3x10	2.6×10^{7}	1322	3.0×10^4	1.0×10^{8}	1372	5.8x10 ⁷	0.0
1223	4.4×10^{3}	1.2×10^{9}	1273	5.0×10^{11}	2.2×10^{10}	1323	1.3x10 ⁴	1.7×10^{10}	1373	3.3x10 ⁷	0.0
1224	2.8×10^{5}	$6.1 \times 10^{\circ}$	1274	0.0	9.0x10-/1	1324	4.5	9.3x10°	1374	2.1X10 ⁷	0.0
1225	2.8×10^{3}	6.1x10°	1275	0.0	0.0	1325	6.5×10^4	2.3×10^{14}	1375	1.7×10^{15}	0.0
1220	5.5X10°	1.0×10^{9}	12/0	0.0	0.0	1320	2.3×10^{-3}	6.2×10^{13}	13/0	6.9×10^{10}	0.0
122/	1.3X10 ⁷	1.0X10 ⁷	12//	0.0	0.0	132/	1.2×10^{11}	4.9×10^{11}	13//	0.1X10 ¹¹	0.0
1228	1.4X10 ⁷	$1./X10^{2}$	12/8	0.0	0.0	1328	$5./X10^{11}$	2.0×10^{12}	13/8	1.8X10 ²	0.0
1229	2.7×10^{6}	3.0×10^{10}	12/9	4.2	0.0	1329	0.1×10^{10}	2.4×10^{11}	13/9	1.8×10^{10}	0.0
1230	1.5X10°	2.9×10^{10}	1200	0.0 5.0	0.0	1221	4.2×10^{43}	1.0×10^{11}	1300	2.0×10^{12}	0.0
1231	0.0	1.0×10^{10}	1201	5.0	0.0	1222	1.5×10^{-1}	$1.0 \times 10^{\circ}$	1301	7.7×10^{12}	0.0
1232	4.0×10^9	2.7×10^2	1202	3.3 3.1×10^4	0.0	1332	1.1×10^{9} 1.7 × 10 ⁹	4.5×10^{6} 1 3 × 10 ⁸	1302	2.0×10^{12}	0.0
1233	1.2×10^{10}	2.7X10	1205	2.0×10^4	0.0	1333	5.0×10^{6}	0.8×10^5	1303	1.3×10^{12}	0.0
1234	2.0×10^6	2.4×10^{15}	1204	1.5×10^4	0.0	1335	5.0×10^{11}	1.1×10^{10}	1385	8.0×10^{10}	0.0
1236	2.0×10^2	1.5×10^{12}	1286	0.0	0.0	1336	2.6×10^8	1.1×10^{12}	1386	3.1×10^{10}	0.0
1237	2.0×10^3	1.3×10^{14}	1287	0.0	4.0×10^2	1337	4.4×10^3	5.3×10^{14}	1387	5.1×10^{12}	0.0
1238	1.1×10^{10}	2.3×10^{13}	1288	2.0	8.0×10^2	1338	1.6×10^{6}	6.7×10^9	1388	2.8×10^{12}	0.0
1239	0.0	2.0×10^{12}	1289	0.0	0.0	1339	2.2×10^{6}	1.2×10^{13}	1389	3.6×10^9	0.0
1240	1.3×10^{12}	6.6×10^{15}	1290	1.4×10^{7}	2.2×10^{14}	1340	1.2×10^{7}	7.5×10^{15}	1390	4.6×10^{12}	0.0
1241	2.2×10^{5}	3.5×10^{10}	1291	5.6x10 ⁸	1.9x10 ⁵	1341	5.8	5.2×10^{13}	1391	4.2×10^{13}	0.0
1242	1.3x10 ¹⁶	0.0	1292	4.2×10^{7}	1.4×10^{4}	1342	2.2×10^{6}	$1.7 x 10^{14}$	1392	6.3x10 ¹¹	1.1x10 ¹⁶
1243	1.9x10 ¹⁶	2.4×10^{15}	1293	4.9×10^4	6.2x10 ⁹	1343	1.5x10 ³	5.7x10 ¹¹	1393	0.0	3.4x10 ¹⁰
1244	3.3x10 ¹²	5.3x10 ¹²	1294	6.2x10 ⁴	6.2x10 ⁹	1344	3.2x10 ¹¹	2.9x10 ¹⁵	1394	0.0	6.6x10 ¹¹
1245	8.2x10 ¹²	1.5x10 ¹³	1295	4.7x10 ³	4.7x10 ⁸	1345	1.5x10 ⁷	5.0x10 ¹⁴	1395	2.6x10 ⁶	2.9x10 ¹⁰
1246	2.6x10 ¹²	4.1x10 ¹²	1296	8.4x10 ⁵	9.3x10 ⁵	1346	2.3	9.9x10 ¹²	1396	3.7x10 ¹⁴	3.6x10 ⁵
1247	6.6x10 ¹²	1.2×10^{13}	1297	5.9x10 ⁹	8.7x10 ⁴	1347	4.8x10 ¹¹	1.8x10 ¹⁴	1397	5.8x10 ¹²	3.0x10 ⁵
1248	2.2x10 ³	0.0	1298	3.2x10 ⁶	6.5x10 ¹⁰	1348	3.2x10 ²	5.0x10 ¹⁴	1398	0.0	0.0
1249	5.2x10 ³	0.0	1299	8.3x10 ³	2.0x10 ¹⁰	1349	1.1x10	1.3x10 ¹⁴	1399	2.6x10 ⁸	0.0
1250	3.9x10 ¹⁰	$1.5 x 10^{11}$	1300	7.9	5.6x10 ¹⁴	1350	0.0	$1.4x10^{13}$	1400	3.3x10 ⁷	0.0

no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow	no	Discharge	Afterglow
1401	2.0	0.0	1411	7.2x10 ⁸	2.8x10 ⁹	1421	4.5x10 ⁹	1.5x10 ¹²	1431	4.0x10 ¹⁶	0.0
1402	7.4	0.0	1412	0.0	0.0	1422	2.0x10 ⁴	0.0	1432	2.0x10 ⁵	0.0
1403	4.3	0.0	1413	0.0	0.0	1423	3.0x10 ¹⁵	1.6x10 ⁸	1433	5.7x10 ¹⁸	7.3x10 ³
1404	1.1	0.0	1414	8.2x10 ⁸	3.1x10 ⁹	1424	5.0x10 ¹³	4.2x10 ⁹	1434	6.3x10 ¹¹	1.1×10^{16}
1405	2.2	0.0	1415	3.7x10 ⁹	$1.4x10^{12}$	1425	3.6x10 ¹⁰	2.4x10 ⁵	1435	2.2x10 ⁵	$2.9x10^{11}$
1406	5.4x10 ¹²	0.0	1416	5.1x10 ³	$2.3x10^{11}$	1426	2.3x10 ⁸	2.1×10^{12}	1436	2.1x10 ⁶	5.6x10 ¹²
1407	1.6×10^{10}	0.0	1417	2.7×10^{11}	1.4×10^{5}	1427	1.8×10^{16}	1.5×10^{8}	1437	3.2x10 ⁶	1.7×10^{3}
1408	$6.4x10^{3}$	1.6x10 ⁸	1418	4.8	$1.2x10^{12}$	1428	1.0×10^{13}	5.5x10 ¹⁰			
1409	4.1×10^{10}	3.0x10 ⁹	1419	5.6x10 ¹⁵	6.3x10 ⁹	1429	1.0×10^{13}	5.5×10^{10}			
1410	4.1×10^{10}	3.0x10 ⁹	1420	5.6x10 ¹⁵	6.3x10 ⁹	1430	9.9x10 ¹²	2.4x10 ³			

Absence of He₂⁺ in the chemistry set

In this section, we present the results of a case study without He_2^+ in the chemistry set. For the following reactions, which are responsible for the formation of He_2^+ , we set the rate coefficient to zero.

	He ₂ ⁺ production reactions
6	$e + He_2^* \rightarrow He_2^+ + e + e$
93	$\mathrm{He^{+}} + 2\mathrm{He} \rightarrow \mathrm{He} + \mathrm{He_{2}^{+}}$
166	$\mathrm{He}^* + \mathrm{He}^* \rightarrow \mathrm{He_2}^+ + \mathrm{e}$
168	$\mathrm{He}^* + \mathrm{He_2}^* \longrightarrow \mathrm{He} + \mathrm{He_2}^+ + \mathrm{e}$
170	$\mathrm{He_2}^* + \mathrm{He_2}^* \longrightarrow \mathrm{He} + \mathrm{He} + \mathrm{He_2}^+ + \mathrm{e}$

The reason behind this case study is that we could not find a direct experimental proof for the presence of He_2^+ ions in He plasma discharges, although it is commonly agreed in literature that for pressures above 5 Torr, He_2^+ is formed^{15,16} and other simulation papers also included He_2^+ in their chemistry set.^{4,5,8} Thus, we also included it in our model, but we performed a simulation without this species, as an extreme case, to evaluate the effect of it on the calculation results.

Species densities

Figure S2 shows the species densities along the symmetry axis of the FAPA source for the case study without He_2^+ . Except for He^+ , for all other species, the number density stays very close to the values in Figure S1. In fact, as we do not include the formation of He_2^+ , He^+ is not converted into He_2^+ and its density increases drastically.

Figure S2 Number densities along the symmetry axis of the FAPA source of the most important species: (a) H, H-O, H-N neutrals, (b) N-O neutrals, (c) positive ions, and (d) negative ions and electrons, when neglecting He_2^+ in the model.

Reaction pathways

Figure S3 shows the number density profiles of the He species in the absence of He_2^+ , and their reaction pathways in producing reagent ions inside the discharge region.

Figure S3 Number density profiles of the He species, when assuming no He_2^+ is formed (left), and their reaction pathways in producing reagent ions (right), inside the discharge region. The thickness of the arrow lines indicates the magnitude of the corresponding reaction rate.

Figure S3 should be compared with Figure 3 in the main manuscript. Note that without He_2^+ , the main charge transfer ionization happens by He^+ instead of He_2^+ for O^+ , O_2^+ , N^+ , and N_2^+ . In addition, the formation of H^+ and H_2^+ now occurs upon Penning ionization by He^* . Note that the changes give rise to the same range of reaction rates, and therefore the thickness of the arrows for He^* stays the same as in Figure 3.

The reaction pathways for the discharge and afterglow region stay the same as presented in Figure 4 and Figure 5 in the main manuscript. Note that in Figure 4, where He_2^+ is written on an arrow, it should be replaced by He^+ in case He_2^+ would be neglected. In Figure 4, we can see that among the He species, the main reagent species are He^* and He_2^* and therefore, removing He_2^+ from the chemistry set does not change these reaction pathways.

Conclusion

It is commonly accepted in literature that He_2^+ is formed in helium plasmas for pressures higher than 5 torr.^{15,16} Therefore, this species is included in numerical studies for He plasmas.^{4,5,8} However, we did not find a direct measurement of He_2^+ in literature, and therefore, we also performed calculations without He_2^+ . Our results show that the number density of species, as well as the main formation pathways, stay the same. Only the pathway of ionization from He_2^+ is now replaced by ionization from either He^+ or He^* . This means that the assumption of the formation of He_2^+ in He discharges would require some further experimental proof.

References

- (1) Pancheshnyi, S.; Eismann, B.; Hagelaar, G.J.M.; Pitchford, L.C. Computer code ZDPlasKin, http://www.zdplaskin.laplace.univtlse.fr (University of Toulouse, LAPLACE, CNRS-UPS-INP, Toulouse, France, 2008).
- (2) Hagelaar, G. J. M.; Pitchford, L. C.; Plasma Sources Sci. Technol. 2005, 14, 722-733.
- (3) Van Gaens, W.; Bogaerts, A. J. Phys. D: Appl. Phys. 2013, 46, 275201 (53 pages).
- (4) Murakami, T.; Niemi, K.; Gans, T.; O'Connell, D.; Graham, W. G. Plasma Sources Sci. Technol. 2013, 22 015003 (29pages)
- (5) Liu, D. X.; Bruggeman, P.; Iza, F.; Rong, M. Z.; Kong, M. G. *Plasma Sources Sci. Technol.* 2010, 19 025018 (22pages)
- (6) Online database, www.lxcat.net, retrieved on September 2017.
- (7) Bogaerts, A.; Gijbels, R. J. Appl. Phys. 2002, 92, 6408-6422.
- (8) Martens, T.; Mihailova, D.; van Dijk, J.; Bogaerts, A. Anal. Chem. 2009, 81, 9096-9108.
- (9) Shelley, J. T.; Wiley, J. S.; Hieftje, G. M. Anal. Chem. 2011, 83, 5741-5748.
- (10) Gielniak, B.; Fiedler, T.; Broekaert, J.A.C. Spectrochim Acta Pt. B-Atom. Spectr. 2011, 66, 21-27.
- (11) Shelley, J. T.; Wiley, J. S.; Chan, G. C.; Schilling, G. D.; Ray, S. J.; Hieftje, G. M. J. Am. Soc. Mass Spectrom. 2009, 20, 837-844.
- (12) Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M. Anal. Chem. 2008, 80, 2646–2653.
- (13) Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M. Anal. Chem. 2008, 80, 2654-2663.

(14) Schilling, G. D.; Shelley, J. T.; Broekaert, J. A. C.; Sperline, R. P.; Denton, M. B.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M. J. Anal. At. Spectrom., 2009, 24, 34–40.

- (15) Deloche, R.; Monchicourt, P.; Cheret, M.; Lambert, F. Phys. Rev. A 1976, 13, 1140-1176.
- (16) Gerber, R. A.; Sauter, G. F.; Oskam, H. J. Physica 1966, 32, 2173-2191.