Supporting information

Plasma-driven CO₂ Hydrogenation to CH₃OH over Fe₂O₃/γ-Al₂O₃ Catalyst

Shengyan Meng^a, Liang Wu^b, Miao Liu^a, Zhaolun Cui^c, Qian Chen^a, Shangkun Li^{a,d}, Jiahui Yan^a,

Li Wang^e, Xinkui Wang^a, Ji Qian^a, Hongchen Guo^a, Jinhai Niu^{b*}, Annemie Bogaerts^d and Yanhui

Yi a*

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China.

^b Liaoning Key Lab of Optoelectronic Films and Materials, School of Physics and Materials

Engineering, Dalian Nationalities University, Dalian, 116600 People's Republic of China

^c School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China.

^dResearch group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium.

^e College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026,
Liaoning, P. R. China.

* Corresponding author: Jinhai Niu, Yanhui Yi

E-mail address: niujh@dlnu.edu.cn, yiyanhui@dlut.edu.cn

Table of Contents

- 1. Schematic diagram of experimental setup and catalytic tests
- 2. Measurement of reaction temperature
- 3. Chromatography and 1H NMR results
- 4. Carbon balance calculation
- 5. Influence of the active metal and support on the CH₃OH selectivity and CO₂ conversion
- 6. Reaction results at different plasma catalysis conditions
- 7. Reaction temperature at different residence time
- 8. Plasma catalysis, thermal catalysis and electrocatalysis for CO₂ to CH₃OH
- 9. Reaction performance with different packing
- 10. The average particle size and dispersion
- 11. EDX mapping results
- 12. N₂ physisorption data for the spent catalysts
- 13. XPS results of CuO/γ-Al₂O₃ catalysts
- 14. XRD results of spent catalysts
- 15. Mössbauer parameters of fresh and spent 5 wt.% Fe_2O_3/γ -Al₂O₃ catalysts
- 16. TPR results of Fe_2O_3/γ -Al₂O₃ catalysts
- 17. XPS results of spent catalysts
- 18. HRTEM results of 5 wt.% Fe₂O₃/γ-Al₂O₃ spent catalyst
- 19. The reaction performance and H₂-TPR profiles of reduced catalyst
- 20. UV-Vis spectrum of γ -Al₂O₃ and Fe₂O₃/ γ -Al₂O₃
- 21. In situ DRIFTS reaction cell
- 22. In situ DRIFTS spectra of the linearly adsorbed CO_{ad}
- 23. Possible E-R reactions in plasma-catalytic CO₂ hydrogenation to CH₃OH
- 24. References

1. Schematic diagram of experimental setup and catalytic tests

Figure S1. Schematic diagram of experimental setup

2. Measurement of reaction temperature

Figure S2. Temperature distribution of the DBD reactor during operation obtained by an infrared camera.

3. Chromatography and 1H NMR results

The chromatography results showed that CH_3OH concentration was 487 mg/ml. In 1H NMR, only a chemical shift at 3.33 ppm has been detected (4.79 is caused by standard D_2O solvent), and it is assigned to CH_3OH .

Figure S3. (a) Chromatography and (b) 1H NMR results of the liquid products.

4. Carbon balance calculation

Taking the average value of three times of plasma-catalytic CO₂ hydrogenation experiments as an example (3h reaction time). the amount of converted CO_2 was 0.01706 mol (18*60*3*0.118/22.4*1000). The chromatograph results show that the total amount of generated CO and CH₄ was 0.0073 mol. The volume of collected liquid product was about 0.5 ml (Figure S4a), and the concentration of CH₃OH in the liquid was 487 mg/ml (obtained by GC). That is, $S_{CO} + S_{CH4} +$ $S_{CH3OH} = 87.4$ %, which is indeed lower than 100 %. This may be caused by some liquid residue on the catalysts, cotton and collector walls (Figure S4c), resulting in a smaller volume of collected liquid than the real volume of liquid products. Also, there was negligible carbon deposition (coking). If the fraction of lost liquid product is reduced, then the carbon balance may be closer to 100 %. Therefore, we have calculated the carbon balance for the 20 h continuous experiments. In this case, the amount of converted CO₂ was 0.1157 mol (18*60*20*0.12/22.4*1000), and the total amount of CO and CH₄ produced was 0.0472 mol. We collected approximately 4.2 ml liquid product with a CH₃OH concentration of 495 mg/ml (Figure S4b). That is, $S_{CO} + S_{CH4} + S_{CH3OH} = 96.9$ %, and thus the carbon balance in this plasma-catalytic CO₂ hydrogenation 20 h experiment is close to 100 %. The standard curves of gas (CO₂ and CO) and liquid product (CH₃OH) are shown in Figure S4d, with correlation coefficients (R²) exceeding 99.8 %.

Figure S4. (a-c): The volume of collected liquid product; (d): The standard curves of CO₂, CO and CH₃OH.

5. Influence of the active metal and support on the CH₃OH selectivity and CO₂ conversion

Figure S5. Performance of plasma-catalytic CO₂ hydrogenation to CH₃OH. (a) and (c): Influence of the active metal on the CH₃OH selectivity and CO₂ conversion using γ -Al₂O₃ as support; (b) and (d): Influence of the support on the CH₃OH selectivity and CO₂ conversion using Fe as active metal. (discharge power 18 W, discharge frequency 9 kHz, CO₂/H₂ = 1/3, residence time 3.1 s, 60 °C circulating water, 1 atm pressure);

Residence time (s)	CO ₂ conversion (%)	CH ₃ OH selectivity (%)	CH ₃ OH yield (%)
7	18.8	13.4	2.52
4.7	15.1	17.9	2.70
3.9	14.4	25.8	3.72
3.1	12.5	37.9	4.74
2	5.3	21.0	1.11
CO ₂ /H ₂ ratio	CO ₂ conversion (%)	CH ₃ OH selectivity (%)	CH ₃ OH yield (%)
1:1	9.5	36.9	3.51
1:2	11.5	35.0	4.03
1:3	12.5	37.9	4.74
Discharge power (W)	CO ₂ conversion (%)	CH ₃ OH selectivity (%)	CH ₃ OH yield (%)
18	11.7	57.9	6.77
25	12.5	37.9	4.74
30	13.9	30.3	4.21
35	14.4	21.4	3.08
Cooling temperature (°C)	CO ₂ conversion (%)	CH ₃ OH selectivity (%)	CH ₃ OH yield (%)
15	11.6	54.8	6.36
30	11.6	55.2	6.40
60	11.8	58.7	6.93
80	12.3	52.8	6.49
100	12.7	46.8	5.94

6. Reaction results at different plasma catalysis conditions

Table S1. Reaction results at different plasma catalysis conditions.

7. Reaction temperature at different residence time

Figure S6. Reaction temperature at different residence time. (a) 4.7 s residence time; (b) 7 s residence time.

8. Plasma catalysis, thermal catalysis and electrocatalysis for CO₂ to CH₃OH

Table S2. Summary of plasma catalysis, thermal catalysis and electrocatalysis for CO₂ to CH₃OH.

Catalyst	Conditions	CO ₂ conversion	CH ₃ OH selectivity	Energy consumption
	Conditions	(%)	(%)	(kJ/mmol)
Fe ₂ O ₃ /Al ₂ O ₃	60 °C, 0.1 MPa	11.7	57.9	19.8
CuO/Al ₂ O ₃	60 °C, 0.1 MPa	7.9	37.8	44.9
NiO/Al ₂ O ₃	60 °C, 0.1 MPa	7.2	32.4	57.5
MoO ₃ /Al ₂ O ₃	60 °C, 0.1 MPa	7.5	31.9	56.1
In ₂ O ₃ /Al ₂ O ₃	60 °C, 0.1 MPa	6.8	33.3	59.2
CoO/Al ₂ O ₃	60 °C, 0.1 MPa	7.4	28.1	64.5

Plasma catalysis in this paper

Thermal catalysis

Catalust	Conditions	CO ₂ conversion	CH ₃ OH selectivity	STY
Catalyst	Conditions	(%)	(%)	(g _{меон} kg _{cat} -1 h-1)
Cu/ZnO/Al ₂ O ₃ ¹	260 °C, 36 MPa	22.7	77.3	7729
Cu/Zn/ZrO ₂ ²	260 °C, 36 MPa	12	71.1	N/A
CuNi ₂ /CeO ₂ -NT ³	260 °C, 3 MPa	17.8	78.8	579
Cu ₁ La _{0.2} /SBA-15 ⁴	240 °C, 3 MPa	5.7	81.2	192
CuZnCe/TNTs ⁵	260 °C, 3 MPa	23.3	59.8	298
CnZnZr/SBA-15 ⁶	250 °C, 3 MPa	19.2	30.6	376
CnZnAI@HT(40%) ⁷	250 °C, 3 MPa	6.2	74.7	42
LDH30Ga ⁸	270 °C, 4.5 MPa	19	48	590
CuZnZr-LDH ⁹	250 °C, 3 MPa	4.9	78.3	37
CuZnAI-400 ¹⁰	240 °C, 4 MPa	59.5	73.4	128
$Cu/ZnO/ZrO_2/Ga_2O_3^{11}$	250 °C, 8 MPa	N/A	70	382
Cu/Zn/Ga/SiO ₂ ¹²	270 °C, 2 MPa	5.6	99.5	349
Pd/ZnO-Al ₂ O ₃ ¹³	180 °C, 3 MPa	2.9	79.4	N/A
Pd/Zn/CNTs ¹⁴	250 °C, 3 MPa	6.3	99.6	1187
Pd/Zn ¹⁵	220 °C, 2 MPa	14.1	97.2	166
0.5Ca5Pd5ZnZr ¹⁶	230 °C, 3 MPa	7.2	100	64
Ag@Pd-ZnO ¹⁷	270 °C, 4.5 MPa	18	46	280
CdZrO _x ¹⁸	300 °C, 2 MPa	5.4	80	N/A
CuIn/SiO ₂ ¹⁹	280 °C, 3 MPa	7.7	81.8	135
3La10In/ZrO2 ²⁰	300 °C, 4 MPa	7.7	66	420
Ni ₅ Ga ₃ /SiO ₂ -CP ²¹	200 °C, 0.1 MPa	1.8	96.1	81
Ni5Ga3/SiO2/Al2O3/Al22	210 °C, 0.1 MPa	2.3	86.7	20

Au/ZnO ²³	240 °C, 0.5 MPa	0.3	82	N/A
In ₂ O ₃ /ZrO ₂ ²⁴	300 °C, 5 MPa	5.2	99.8	321
Table S2 (continued)				
MoS ₂ ²⁵	180 °C, 5 MPa	12.5	94.3	N/A
Al/Pd/ZnO ²⁶	250 °C, 3 MPa	14.2	7.3	628
NiO-In ₂ O ₃ ²⁷	250 °C, 3 MPa	2.8	53	256
Cu/C ₃ N ₄ ²⁸	150 °C, 3.2 MPa	N/A	95.5	134
Cu@UiO-66 ²⁹	260 °C, 4.5 MPa	13.1	78.8	796
Au/In ₂ O ₃ ³⁰	275 °C, 5 MPa	7.7	78	470

Electrocatalysis

		Durability	Electrode	Faradaic
Catalyst/electrocatalysts	Electrolyte	test	potential (V)	efficiency (%)
Cu _{1.63} Se(1/3) ³¹	$PF_6/CH_3CN/H_2O$	_	-2.1 V vs. Ag/Ag ⁺	77.6
FeP NA/TM ³²	0.5 M KHCO₃	36 h	-0.2 V vs. RHE	80.2
Pt _x Zn/C ³³	0.1 M NaHCO ₃	16 h	-0.9 V vs. RHE	81.4
V-doped In ₂ O ₃ ³⁴	0.1 M KHCO ₃	_	-0.83V vs. RHE	15.8
RuO ₂ /TiO ₂ ³⁵	0.5 M NaHCO ₃		-0.8 V vs. SCE	60.5
Pd-Cu bimetallic aerogel ³⁶	BF_4 and H_2O	24 h	-2.1 V vs. Ag/Ag+	80
Cu ₂ O _(OL-MH) /Рру ³⁷	0.5 M KHCO₃	15 h	-0.85 V vs. RHE	94.2
2-pyridinethiol@Pt-Au NPs ³⁸	0.1 M KNO3	20 h	-0.2 V vs. Ag/AgCl	39
PD-Zn/Ag 39	0.1 M KHCO ₃	_	-1.4 V vs. RHE	10.5
Cu _{63.9} Au _{36.1} /NCF ⁴⁰	0.5 M KHCO ₃		-1.1 V vs. SCE	15.9
CoPc-NH ₂ /CNT ⁴¹	0.1 M KHCO ₃	12 h	-1.0 V vs. RHE	32
BP NPs ⁴²	0.1 M KHCO ₃	18 h	-0.5 V vs. RHE	92
Cu _{0.8ML} /THH Pd NCs 43	0.1 M NaHCO ₃	—	-0.46 V vs. RHE	19.5
CuSAs/TCNFs ⁴⁴	0.1 M KHCO ₃	50 h	-0.9 V vs. RHE	44

9. Reaction performance with different packing

Figure S7. CO_2 conversion and CO selectivity with no packing and quartz sand packing. (discharge power 18 W, discharge frequency 9 kHz, $CO_2/H_2 = 1/3$, residence time 3.1 s, 60 °C circulating water, 1 atm pressure)

10. The average particle size and dispersion

Fe loading	2θ (degree)	β (rad)	τ (nm)	Average particle size(nm)	Dispersion percentage (%)
	35.7	0.59	13.99		
5 wt.%	54.1	0.50	17.64	15.02	6.39
	64.1	0.69	13.43		
	35.7	0.51	16.18		
10 wt.%	54.1	0.43	20.51	18.95	5.06
	64.1	0.46	20.15		
	24.3	0.32	25.11		
	33.3	0.42	19.52		
	35.7	0.32	25.79		
	40.1	0.32	26.13		4.30
20 0/	49.7	0.46	18.82	22.21	
20 WL.70	54.1	0.44	20.05	22.51	
	62.7	0.42	21.90		
	64.1	0.44	21.07		
	72.3	0.43	22.63		
	75.7	0.45	22.11		
	24.3	0.27	29.76		
	33.3	0.30	27.33		
	35.7	0.26	31.74		
	40.1	0.28	29.87		
25 4 97	49.7	0.32	27.05	27.41	2.5
25 Wt.%	54.1	0.33	26.73	27.41	3.5
	62.7	0.38	24.21		
	64.1	0.40	23.17		
	72.3	0.39	24.95		
	75.7	0.34	29.26		

Table S3. The average particle size and dispersion of Fe₂O₃ on γ -Al₂O₃ with various loadings.

11. EDX mapping results

Figure S8. EDX mapping results of 5 wt.% Fe₂O₃/ γ -Al₂O₃ catalysts.

12. N₂ physisorption data for the spent catalysts

Catalyst	$S_{BET}{}^{a} (m^2 g^{-1})$	$V_{p} (cm^{3} g^{-1})$	D ^c (nm)
γ-Al ₂ O ₃	126.8	0.38	11.3
1 wt.% Fe_2O_3/γ -Al ₂ O ₃	121.4	0.37	11.6
3 wt.% Fe ₂ O ₃ / γ -Al ₂ O ₃	119.9	0.36	11.2
5 wt.% Fe ₂ O ₃ / γ -Al ₂ O ₃	119.1	0.39	12.1
10 wt.% Fe ₂ O ₃ /γ-Al ₂ O ₃	118.2	0.37	11.7
20 wt.% Fe ₂ O ₃ /γ-Al ₂ O ₃	102.9	0.33	11.9
25 wt.% Fe ₂ O ₃ /γ-Al ₂ O ₃	97.0	0.32	11.1
5 wt.% Fe ₂ O ₃ /Al(OH) ₃	180.8	0.28	6.1
5 wt.% Fe ₂ O ₃ /SiO ₂	149.3	0.56	14.6
5 wt.% Fe ₂ O ₃ /TiO ₂	101.5	0.25	8.5
5 wt.% Fe ₂ O ₃ /CeO ₂	49.9	0.10	8.1
5 wt.% Fe ₂ O ₃ /ZrO ₂	32.0	0.15	23.6
5 wt.% Fe ₂ O ₃ /In ₂ O ₃	15.5	0.08	20.7

Table S4. N₂ physisorption data for the spent catalysts.

^a Specific surface area calculated with adsorption branch of nitrogen sorption isotherm using BET method.

 $^{\rm b}$ Total pore volume at P/P_0 = 0.99. $^{\rm c}$ BJH Adsorption average pore diameter.

13. XPS results of CuO/γ -Al₂O₃ catalysts

14. XRD results of spent catalysts

Figure S10. XRD patterns of the spent Fe₂O₃/γ-Al₂O₃ catalysts with various loadings.

15. Mössbauer parameters of fresh and spent 5 wt.% Fe₂O₃/γ-Al₂O₃ catalysts

	Iron Species	IS	QS	Line width	Magnetic filed	Spectra Contribution (%)
fresh	Fe ₂ O ₃ (spm ₁) Fe ₂ O ₃ (spm ₂)	0.33 0.26	0.51 1.07	0.40 0.80		16.38 37.95
catalyst	Fe ₂ O ₃	0.34	-0.23	0.45	50.3	45.67
spent	Fe ₂ O ₃ (spm ₁) Fe ₂ O ₃ (spm ₂)	0.35 0.30	0.53 1.13	0.4 0.85		18.18 37.99
catalyst	Fe ₂ O ₃	0.37	-0.21	0.45	50.3	43.83

Table S5. Mössbauer parameters of fresh and spent 5 wt.% Fe₂O₃/ γ -Al₂O₃ catalysts.

16. TPR results of Fe₂O₃/γ-Al₂O₃ catalysts

Figure S11. (a) H₂-TPR results of spent Fe_2O_3/γ -Al₂O₃ catalysts with various loadings; (b) Compare of H₂-TPR profiles of fresh and spent Fe_2O_3/γ -Al₂O₃ catalyst with 5 wt.% loading.

17. XPS results of spent catalysts

Figure S12. XPS results of spent Fe_2O_3/γ -Al₂O₃ catalysts with 5 wt.% loading: (a) Fe 2p regions; (b, c) O 1s regions; (d) C 1s regions.

18. HRTEM results of 5 wt.% Fe₂O₃/ γ -Al₂O₃ spent catalyst

Figure S13. HRTEM results of 5 wt.% Fe₂O₃/ γ -Al₂O₃ spent catalysts.

19. The reaction performance and H₂-TPR profiles of reduced catalyst

Figure S14. (a) The reaction performance of reduced catalyst; (b) H_2 -TPR profiles of reduced catalyst and spent reduced catalyst.

20. UV-Vis spectrum of γ -Al₂O₃ and Fe₂O₃/ γ -Al₂O₃

Figure S15. UV-Vis spectrum of γ -Al₂O₃ and Fe₂O₃/ γ -Al₂O₃.

21. In situ DRIFTS reaction cell

In situ DRIFTS measurements were carried out using a FTIR spectrometer (Nicolet iS10, Thermo Scientific), equipped with a liquid N₂ cooled mercury-cadmium-telluride (MCT) detector. The catalyst (120 mg) was packed into the reaction cell (**Figure S16**) and pretreated in a CO₂/H₂ mixture (25 vol.% CO₂, 75 vol.% H₂) for 0.5 h before collecting the background. The plasma power was driven at 9.5 kHz with applied discharge voltage of 24 kV. The results were analyzed by the OMNIC software.

Figure S16. Schematic of in situ plasma reaction cell for a DRIFTS study.

22. In situ DRIFTS spectra of the linearly adsorbed CO_{ad}

Figure S17. In situ DRIFTS spectra of surface species on the Fe_2O_3/γ -Al₂O₃ catalyst at the discharge power of 30.4 W. (discharge voltage 44 kV, discharge frequency 9.5 kHz, $CO_2/H_2 = 1/3$, flow rate =40 mL/min)

23. Possible E-R reactions in plasma-catalytic CO₂ hydrogenation to CH₃OH

No	Reaction
1	$H(g) + CO_2^* - HCOO^*$
2	$H(g) + CO_2^* - COOH^*$
3	$H(g) + CO^* - HCO^*$
4	$CO(g) + H^* - HCO^*$
5	H(g) + HCOO* - HCOOH*
6	$H(g) + H_3CO^* - H_3COH^*$
7	$H(g) + H_2COH^* - H_3COH^*$

Table S6. Possible E-R reactions in plasma-catalytic CO₂ hydrogenation to CH₃OH.

(g) denotes species from gas phase

24. References

[1] Bansode A, Urakawa A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products. *J. Catal.* 2014;309:66-70.

[2] Guo XM, Mao DS, Lu GZ, Wang S, Wu GS. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO₂ catalysts for methanol synthesis from CO_2 hydrogenation. *J. Catal.* 2010;271(2):178-185.

[3] Tan QQ, Shi ZS, Wu DF. CO₂ Hydrogenation to Methanol over a Highly Active Cu-Ni/CeO₂-Nanotube Catalyst. Ind. Eng. Chem. Res. 2018;57(31):10148-10158.

[4] Chen K, Fang HH, Wu S, et al. CO₂ hydrogenation to methanol over Cu catalysts supported on
La-modified SBA-15: The crucial role of Cu-LaO_x interfaces. *Appl. Catal. B: Environ.*2019;251:119-129.

[5] Shi ZS, Tan QQ, Wu DF. Enhanced CO₂ hydrogenation to methanol over TiO₂ nanotubes-supported CuO-ZnO-CeO₂ catalyst. *Appl. Catal. A Gen.* 2019;581:58-66.

[6] Mureddu M, Ferrara F, Pettinau A. Highly efficient CuO/ZnO/ZrO₂@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO₂. *Appl. Catal. B: Environ.* 2019;258:117941.

[7] Fang X, Men YH, Wu F, et al. Promoting CO₂ hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite. *Chem. Eng. J.* 2019;378:122052.

[8] Li MMJ, Chen CP, Ayvalı T, et al. CO₂ Hydrogenation to Methanol over Catalysts Derived from Single Cationic Layer CuZnGa LDH Precursors. ACS Catal. 2018;8(5):4390-4401.

[9] Fang X, Men YH, Wu F, et al. Improved methanol yield and selectivity from CO₂ hydrogenation using a novel Cu-ZnO-ZrO₂ catalyst supported on Mg-Al layered double hydroxide (LDH). *J. CO*₂

Util. 2019;29:57-64.

[10] Wu WY, Xie K, Sun DL, Li XH, Fang F. CuO/ZnO/Al₂O₃ Catalyst Prepared by Mechanical-Force-Driven Solid-State Ion Exchange and Its Excellent Catalytic Activity under Internal Cooling Condition. *Ind. Eng. Chem. Res.* 2017;56(29):8216-8223.

[11] Słoczyński J, Grabowski R, Olszewski P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO₂ catalysts in the synthesis of methanol from CO₂ and H₂. *Appl. Catal. A Gen.* 2006;310:127-137.

[12] Toyir J, de la Piscina PR, Fierro JLG, Homs N. Highly effective conversion of CO₂ to methanol over supported and promoted copper-based catalysts: influence of support and promoter. *Appl. Catal. B: Environ.* 2001;29(3):207-215.

[13] Xu JH, Su X, Liu XY, et al. Methanol synthesis from CO₂ and H₂ over Pd/ZnO/Al₂O₃: Catalyst structure dependence of methanol selectivity. *Appl. Catal. A Gen.* 2016;514:51-59.

[14] Liang XL, Dong X, Lin GD, Zhang HB. Carbon nanotube-supported Pd-ZnO catalyst for hydrogenation of CO₂ to methanol. *Appl. Catal. B: Environ.* 2009;88(3-4):315-322.

[15] Ojelade OA, Zaman SF, Daous MA, et al. Optimizing Pd:Zn molar ratio in PdZn/CeO₂ for CO₂ hydrogenation to methanol. *Appl. Catal. A Gen.* 2019;584:117185.

[16] Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA. Selective hydrogenation of CO₂ to CH₃OH and in-depth DRIFT analysis for PdZn/ZrO₂ and CaPdZn/ZrO₂ catalysts. *Catal. Today.* 2020;357:573-582.

[17] Li XL, Zeng ZY, Hu B, Qian LH, Hong XL. Surface-Atom Dependence of ZnO-Supported Ag@Pd Core@Shell Nanocatalysts in CO₂ Hydrogenation to CH₃OH. *ChemCatChem*. 2017;9(6):924-928.

[18] Wang JJ, Tang CZ, Li GN, et al. High-Performance M_aZrO_x ($M_a = Cd$, Ga) Solid-Solution Catalysts for CO₂ Hydrogenation to Methanol. *ACS Catal.* 2019;9(11):10253-10259.

[19] Shi ZS, Tan QQ, Wu DF. A novel Core-Shell structured CuIn@SiO₂ catalyst for CO₂ hydrogenation to methanol. *AIChE J.* 2019;65(3):1047-1058.

[20] Chou CY, Lobo RF. Direct conversion of CO₂ into methanol over promoted indium oxide-based catalysts. *Appl. Catal. A Gen.* 2019;583:117144.

[21] Ahmad K, Upadhyayula S. Conversion of the greenhouse gas CO₂ to methanol over supported intermetallic Ga-Ni catalysts at atmospheric pressure: thermodynamic modeling and experimental study. *Sustain. Energy Fuels.* 2019;3(9):2509-2520.

[22] Chen PJ, Zhao GF, Liu Y, Lu Y. Monolithic Ni₅Ga₃/SiO₂/Al₂O₃/Al-fiber catalyst for CO₂ hydrogenation to methanol at ambient pressure. *Appl. Catal. A Gen.* 2018;562:234-240.

[23] Hartadi Y, Widmann D, Behm RJ. CO₂ Hydrogenation to Methanol on Supported Au Catalysts
 under Moderate Reaction Conditions: Support and Particle Size Effects. *ChemSusChem*.
 2015;8(3):456-465.

[24] Martin O, Martín AJ, Mondelli C, et al. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO₂ Hydrogenation. *Angew. Chem. Int. Ed.* 2016;55(21):6261-6265.

[25] Hu JT, Yu L, Deng J, et al. Sulfur vacancy-rich MoS₂ as a catalyst for the hydrogenation of CO₂
 to methanol. *Nat Catal.* 2021;4(3):242-250.

[26] Song JM, Liu SH, Yang CS, et al. The role of Al doping in Pd/ZnO catalyst for CO₂ hydrogenation to methanol. *Appl. Catal. B: Environ.* 2020;263:118367.

[27] Zhu JD, Cannizzaro F, Liu L, et al. Ni-In Synergy in CO₂ Hydrogenation to Methanol. *ACS Catal.* 2021;11(18):11371-11384.

[28] Yang T, Mao XN, Zhang Y, et al. Coordination tailoring of Cu single sites on C_3N_4 realizes selective CO_2 hydrogenation at low temperature. *Nat. Commun.* 2021;12(1):1-9.

[29] Liu TK, Hong XL, Liu GL. In Situ Generation of the Cu@3D-ZrO_x Framework Catalyst for Selective Methanol Synthesis from CO₂/H₂. *ACS Catal*. 2019;10(1):93-102.

[30] Rui N, Zhang F, Sun KH, et al. Hydrogenation of CO₂ to Methanol on a Au^{$\delta+$}-In₂O_{3-x} Catalyst. *ACS Catal.* 2020;10(19):11307-11317.

[31] Yang DX, Zhu QG, Chen CJ, et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. *Nat. Commun.* 2019;10(1):1-9.

[32] Ji L, Li L, Ji XQ, et al. Highly Selective Electrochemical Reduction of CO₂ to Alcohols on a FeP Nanoarray. *Angew. Chem. Int. Ed.* 2020;132(2):768-772.

[33] Payra S, Shenoy S, Chakraborty C, Tarafder K, Roy S. Structure-Sensitive Electrocatalytic Reduction of CO₂ to Methanol over Carbon-Supported Intermetallic PtZn Nano-Alloys. ACS Appl. Mater. Inter. 2020;12(17):19402-19414.

[34] Kim MG, Jeong J, Choi Y, et al. Synthesis of V-doped In₂O₃ Nanocrystals via Digestive-Ripening Process and Their Electrocatalytic Properties in CO₂ Reduction Reaction. *ACS Appl. Mater. Inter.* 2020;12(10):11890-11897.

[35] Qu JP, Zhang XG, Wang YG, Xie CX. Electrochemical reduction of CO₂ on RuO₂/TiO₂ nanotubes composite modified Pt electrode. *Electrochim. Acta*. 2005;50(16-17):3576-3580.

[36] Lu L, Sun XF, Ma J, et al. Highly Efficient Electroreduction of CO₂ to Methanol on Palladium-Copper Bimetallic Aerogels. *Angew. Chem. Int. Ed.* 2018;130(43):14345-14349.

[37] Periasamy AP, Ravindranath R, Kumar SMS, Wu WP, Jian TR, Chang HT. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient

reduction of carbon dioxide to methanol. Nanoscale. 2018;10(25):11869-11880.

[38] Ensafi AA, Alinajafi HA, Jafari-Asl M, Rezaei B. Self-assembled monolayer of 2-pyridinethiol@Pt-Au nanoparticles, a new electrocatalyst for reducing of CO₂ to methanol. *J. Electroanal. Chem.* 2017;804:29-35.

[39] Low QH, Loo NWX, Calle-Vallejo F, Yeo BS. Enhanced Electroreduction of Carbon Dioxide to Methanol Using Zinc Dendrites Pulse-Deposited on Silver Foam. *Angew. Chem. Int. Ed.* 2019;58(8):2256-2260.

[40] Jia FL, Yu XX, Zhang LZ. Enhanced selectivity for the electrochemical reduction of CO₂ to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst. *J. Power Sources*. 2014;252:85-89.

[41] Wu YS, Jiang Z, Lu X, Liang YY, Wang HL. Domino electroreduction of CO₂ to methanol on a molecular catalyst. *Nature*. 2019;575(7784):639-642.

[42] Mou SY, Wu TW, Xie JF, et al. Boron Phosphide Nanoparticles: A Nonmetal Catalyst forHigh-Selectivity Electrochemical Reduction of CO₂ to CH₃OH. *Adv. Mater.* 2019;31(36):1903499.

[43] Zhang FY, Sheng T, Tian N, et al. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO₂ electroreduction to alcohols. *Chem. Commun.* 2017;53(57):8085-8088.

[44] Yang HP, Wu Y, Li GD, et al. Scalable Production of Efficient Single-Atom Copper Decorated
Carbon Membranes for CO₂ Electroreduction to Methanol. J. Am. Chem. Soc.
2019;141(32):12717-12723.