Theoretical study of SF₆ adsorption and decomposition over the MgO (001) and (111) surfaces

Zhaolun Cui^{a,b}, Yanpeng Hao ^{a*}, Amin Jafarzade ^b, Shangkun L ^b, Annemie Bogaerts ^b, Licheng Li ^a

^aSchool of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China

^bResearch group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium

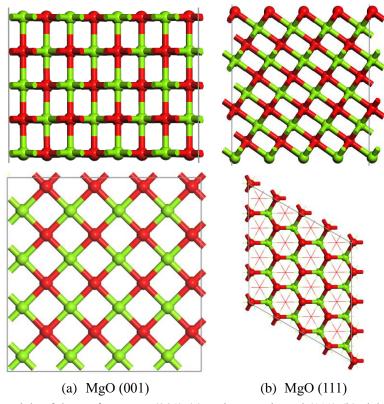


Fig.S1 Bulk models of the perfect MgO (001) (a) and O-terminated (111) (b) slabs, in side view (upper panels) and top view (lower panels). Green and red balls are Mg and O atoms, respectively.

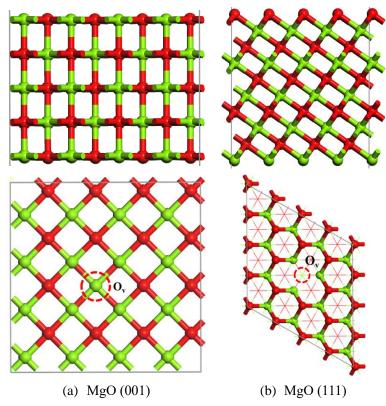


Fig.S2 Bulk models of the MgO (001) (a) and O-terminated (111) slabs (b) with one O vacancy (O_v), in side view (upper panels) and top view (lower panels). Green and red balls are Mg and O atoms, respectively.

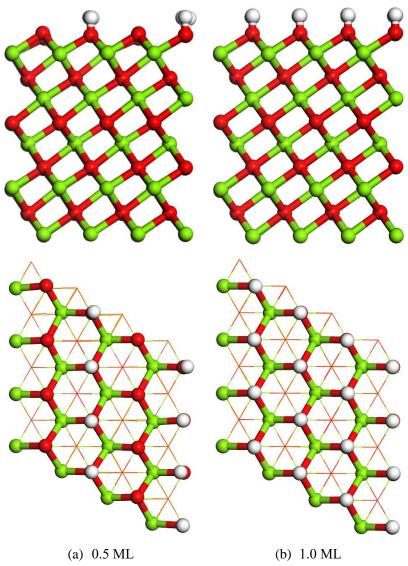


Fig.S3 Bulk models of the O-terminated (111) slabs with 0.5 (a) and 1.0 ML (b) H-coverage, in side view (upper panels) and top view (lower panels). Green, red and white balls are Mg, O and H atoms, respectively.