SF\textsubscript{6} catalytic degradation in a \(\gamma\)-Al\textsubscript{2}O\textsubscript{3} packed bed plasma system: A combined experimental and theoretical study

Zhaojun Cui1,2 | Chang Zhou3 | Amin Jafarzadeh2 | Shengyan Meng4 | Yanhui Yi4 | Yufei Wang3 | Xiaoxing Zhang3 | Yanpeng Hao1 | Licheng Li1 | Annemie Bogaerts2

1School of Electric Power Engineering, South China University of Technology, Guangzhou, China
2Department of Chemistry, Research Group PLANMANT, University of Antwerp, Antwerp, Belgium
3School of Electrical and Electronic Engineering, HuBei University of Technology, Wuhuan, China
4School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China

Correspondence
Xiaoxing Zhang, School of Electrical and Electronic Engineering, HuBei University of Technology, Wuhuan, 430068, China.
Email: xiaoxing.zhang@outlook.com

Associate Editor: Guoming Ma

Abstract
Effective abatement of the greenhouse gas sulphur hexafluoride (SF\textsubscript{6}) waste is of great importance for the environment protection. This work investigates the size effect and the surface properties of \(\gamma\)-Al\textsubscript{2}O\textsubscript{3} pellets on SF\textsubscript{6} degradation in a packed bed dielectric barrier discharge (PB-DBD) system. Experimental results show that decreasing the packing size improves the filamentary discharges and promotes the ignition and the maintenance of plasma, enhancing the degradation performance at low input powers. However, too small packing pellets decrease the gas residence time and reduce the degradation efficiency, especially for the input power beyond 80 W. Besides, lowering the packing size promotes the generation of SO\textsubscript{2} while reduces the yields of S-O-F products, corresponding to a better degradation. After the discharge, the pellet surface becomes smoother with the appearance of S and F elements. Density functional theory calculations show that SF\textsubscript{6} is likely to be adsorbed at the Al\textsubscript{111} site over the \(\gamma\)-Al\textsubscript{2}O\textsubscript{3}(110) surface, and it is much more easily to decompose than in the gas phase. The fluorine gaseous products can decompose and stably adsorb on the pellet surface to change the surface element composition. This work provides a better understanding of SF\textsubscript{6} degradation in a PB-DBD system.

1 | INTRODUCTION

Sulphur hexafluoride (SF\textsubscript{6}) is widely used in the power industry and the semiconductor industry due to its excellent physicochemical properties \cite{1}. However, SF\textsubscript{6} is also known as a greenhouse gas, with a global warming potential (GWP) of 23,500 times that of CO\textsubscript{2}. It's labelled as a restricted emission gas in the Kyoto Protocol \cite{2}. In 2010, the total emission of SF\textsubscript{6} was about 5.32 Gg with an annual growth rate of about 10\%, of which the power industry accounts for about 70\% \cite{3}. This exacerbates the detrimental effect of SF\textsubscript{6} on the environment.

In recent years, in order to mitigate or eliminate the environmental hazards caused by the SF\textsubscript{6} emission, researchers have proposed various methods for SF\textsubscript{6} harmless abatement. The mainstream approaches include thermal degradation \cite{4}, thermal catalysis \cite{5,6}, photocatalysis \cite{7,8}, electrochemical degradation \cite{9} and plasma-assisted degradation \cite{10}. Among them, non-thermal plasma (NTP) holds promise for SF\textsubscript{6} degradation and can achieve both high degradation efficiency and high energy yield, which is suitable for the industrial application \cite{11}.

NTP methods used in SF\textsubscript{6} abatement involve, among others, microwave discharge, radio-frequency discharge, electron beam and dielectric barrier discharge (DBD) \cite{11}. The first three methods have relatively complex equipment and/or generate plasma with temperatures up to thousands of degrees, showing a high-volume processing capability and a relatively low energy efficiency. In contrast, a DBD is a simple device and the plasma (gas) temperature usually remains below 200\(^\circ\)C or even at room temperature. It can easily be combined with a packing material or catalysts. In 2019, we studied the influence of the packing material type on SF\textsubscript{6} degradation in a packed bed DBD (PB-DBD) and found that both glass beads and.
γ-Al$_2$O$_3$ pellets could promote the degradation efficiency. Additionally, γ-Al$_2$O$_3$ packing could change the SF$_6$ degradation pathway and regulate the product selectivity [12].

Apart from that, various studies have proven that PB-DBD plasma reactors, as a plasma-catalysis approach, show good potential in other fields, such as C1 gas conversion and volatile organic compound (VOC) abatement [13]. For instance, Shao’s group investigated the conversion of CO$_2$ and CH$_4$ gases in a packed bed DBD system and found that the power supply conditions as well as the Ni-based catalysts could be important factors for the treatment [14, 15]. Wang et al. carried out plasma-catalysis experiments on CO$_2$ hydrogenation to methanol and achieved high conversion rate and high yield at room temperature and at atmospheric pressure [16]. Jiang et al. systematically studied the abatement of VOC gases and investigated the determining factors such as the reactor parameters and the catalyst combination [17]. Related studies have proven that the processing results are closely related to the surface properties of the packing materials. Besides, in PB-DBD applications, researchers found that the packing size acts as an important factor determining the plasma performance and the gas conversion results. For instance, Kasinathan et al. found that decreasing the MOx (Al$_2$O$_3$) (M = Ti and Mg) catalyst size can promote the conversion of methane [18]. In 2016, Butterworth et al. found that the packing size of packing materials plays an important role in CO$_2$ reduction and significantly impacts the discharge characteristics [19]. In 2021, Wang et al. demonstrated that increasing the size of ceria zirconia Ni-based catalysts leads to higher CO$_2$ conversion and better plasma homogeneity [20]. Nevertheless, there is a lack of investigation for the size effects and surface properties of the packing size on SF$_6$ degradation. The influence and mechanism of γ-Al$_2$O$_3$ packing with different sizes on the degradation efficiency and the product selectivity are unclear.

Therefore, to further investigate the packing effects of γ-Al$_2$O$_3$ on SF$_6$ degradation, we carried out a combined experimental and theoretical study. 1, 2, and 4 mm diameter γ-Al$_2$O$_3$ pellets are tested as the packing material, and their effect is investigated on both the discharge behaviour and degradation efficiency. Characterisation tests are made to study the dependence of SF$_6$ degradation on the surface properties of the pellets. Density functional theory (DFT) calculation is applied to analyse how SF$_6$ absorbs and decomposes on the γ-Al$_2$O$_3$ pellet surface and the formation of surface fluorine species. Overall, these findings contribute in several ways to our understanding of the effects of the packing material size and surface properties on SF$_6$ degradation, thus providing a basis for the SF$_6$ harmless abatement by a PB-DBD plasma.

2 METHODS

2.1 Experimental setup and degradation parameters

The experimental setup has been described in our previous study [12] and is shown in Figure 1. In this experiment, the discharge frequency is maintained at 8.5–9.0 kHz and input power is controlled within 100 W. We selected argon (Ar) as the background gas for SF$_6$ dilution due to its promotion effects on the discharge and SF$_6$ degradation [21]. The standard gases of Ar and SF$_6$ are in high purity of 99.99%, and they are mixed to a certain proportion by a gas sample compounding. The discharge voltage and current signals are recorded by the oscilloscope (Tektronix MSO44). Other discharge parameters such as the capacitance of the dielectric C$_{dielectric}$, total capacitance of the reactor C$_{total}$, effective capacitance of the dielectric during the discharge C$_{dielectric}$ and discharge-off coefficient alpha (α) are obtained and calculated from the Q-V plot [22, 23].

After the degradation, the SF$_6$ concentration is detected by a gas chromatograph (GC) (Kejie GC8900) and the gas products are qualitatively analysed by Fourier transform infrared spectroscopy (FTIR) (Thermo iS50). All the peak characteristics and diagnosis of SF$_6$ products are based on the work of Kurte et al. [24]. Subsequently, four stable products, that is, SOF$_4$, SOF$_3$, SO$_2$F$_2$ and SO$_2$, are quantitatively detected by gas chromatography–mass spectrometry (GCMS) (Shimadzu QP2020-NX).

There are three main factors to determine the degradation performance: destruction and removal efficiency (DRE), energy yield (EY) and product selectivity.

The DRE can be calculated by equation (1):

$$DRE = \frac{C_{in} - C_{out}}{C_{in}} \times 100\%$$

where C_{in} and C_{out} are the initial and final concentrations of SF$_6$, respectively.

The EY at a certain condition is calculated using equation (2):

$$EY = \frac{M_{SF_6}}{P_{in} \times t}$$

where M_{SF_6} is the mass of degraded SF$_6$ in units of gram (g), P_{in} is the input power in units of watt (W), t is the degradation time. The unit of EY is g/kWh.
After the degradation, S_X, the selectivity of four stable products (SOF$_4$, SOF$_2$, SO$_2$F$_2$ and SO$_2$) can be calculated by equation (3):

$$S_X = \frac{C_x}{C_{sum}} \times 100\%$$

where C_x and C_{sum} are the concentrations of product x and the total concentration of these four gases.

2.2 Catalyst characterisation

X-ray diffraction (XRD) patterns of catalysts are recorded using a Rigaku D-Max 2400 diffractometer with Cu Kα radiation. Nitrogen physisorption is conducted on a Micromeritics ASAP 3020 instrument (Micromeritics, Atlanta, USA) at ~196$^\circ$C to obtain textural information. Before the measurement, the samples (0.15 g) are degassed at 350°C for 4 h. The surface area is determined based on the Brunauer–Emmett–Teller (BET) method, and the pore volume is calculated by the t-plot method at a $P/P_0 = 0.99$. (P and P_0 are the absolute pressure and the saturated vapor pressure, respectively.) X-ray photoelectron spectroscopy (XPS) is carried out using a VG ESCALAB MK2 spectrometer to reveal the chemical environment of the elements in the catalysts. SEM images are taken on a FlexSEM-1000 instrument (Hitachi). Before the characterisation, the spent Al$_2$O$_3$ pellets samples are treated for 3 h.

2.3 Computational details

To study the surface catalytic properties of the γ-Al$_2$O$_3$ pellets, we carried out DFT calculations using the CP2K Quickstep package [25]. The Gaussian and plane wave method (GPW) is applied with the Goedecker–Teter–Hutter (GTH) pseudopotentials [26]. The cutoff value for the plane wave methods is 600 Ry. The generalized-gradient approximation by Perdew-Burke-Emzerhof functional methods is chosen to describe the exchange correlation functional with the DFT-D3 method for the dispersion correction [27, 28]. The geometry optimisation is calculated by Broyden–Fletcher–Goldfarb–Shanno (BFGS) strategy and the transition state (TS) of the S–F bond-breaking reaction is carried out by the climbing image nudged elastic band (CI-NEB) method [29, 30]. In this study, the γ-Al$_2$O$_3$(110) is selected as the typical pellet surface [31]. We built the γ-Al$_2$O$_3$(110) model by a 2 × 2 supercell, with the XYZ dimensions of 16.1439 × 16.7874 × 40.0000 Å3.

The adsorption energy E_{ad} for the surface molecules is calculated by equation (4):

$$E_{ad} = E_{gas+slab} - E_{gas} - E_{slab}$$

where E_{gas} and E_{slab} are the energy of gas molecules and of the slab, respectively, and $E_{gas+slab}$ is the total energy of the system after the adsorption.

3 RESULTS AND DISCUSSION

3.1 Discharge parameters

Figure 2 shows the size effect of the packing on the discharge voltage and current at 80 W input power. The voltage and current amplitudes are similar in the three systems, with maxima around 14 kV and 30 mA, respectively. The 1 mm system has the most abundant filaments in its current signal and the number of filaments decreases with increasing packing size. In the 4 mm system, the filaments are even not clear. The discharge images are shown in Figure S1, where the 1 mm packing system shows the most intense discharges. This result demonstrates that a smaller size packing has a more typical packed bed effect, which is attributed to the sharper edges and contact points in the gap [32]. The abundant micro-discharges in the smaller pellet packing reactor could facilitate the formation of plasma species, resulting in a more efficient degradation of SF$_6$. Besides, we summarised the discharge voltage and the discharge power along with the input power in Figure 3. In Figure 3a, at 50–80 W input powers, the voltage distributions in the three systems are very close. When the input power exceeds 80 W, the voltage in the 4 mm system grows less significantly than in the other two systems as a function of power. This indicates that the large size may have a negative effect of the discharge voltage. In Figure 3b, the discharge power distributes similarly in each system, lying in the order of 2 mm > 1 mm > 4 mm.

Typical Q-V plots of the three packing systems at 80 W are shown in Figure 4. Varying the packing size affects the shape of the Q-V plots. It is clear that the slopes of the AB and DC lines, as well as the charge peak-peak value Q_{pk-pk} increase with decreasing packing size. This indicates that the small size packing increases the effective dielectric capacitance ζ$_{d}$ and enhances the charge transfer process. Moreover, the changes of the effective dielectric capacitance ζ$_{d}$ and the α values along with the input power are shown in Figure 5. However, in Figure 5a, the ζ$_{d}$ values decrease with increasing packing size, especially for the 4 mm system. In general, the size change has a limited effect on discharge power but a significant impact on the ζ$_{d}$ distribution. In Figure 5b, the α coefficient in the 4 mm system is obviously larger than the other two systems, corresponding to a larger discharge-off proportion in one DBD cycle. It means that decreasing the packing size yields a more fully discharge and slightly increases the discharge power, which improves the ignition and the maintenance of the plasma.

3.2 Degradation performance

3.2.1 DRE and energy yield

As shown in Figure 6, the values of DRE and EY in the three packing systems are plotted against the input power. In Figure 6a, DRE increases rapidly with the input power in the
Among the three sizes, the 2 mm system shows the highest DRE distribution at the range of 60–100 W. The DRE of 1 mm is higher than the 4 mm packing at a low power range (50–80 W) and is lower at 90 and 100 W. The gas residence time in the discharge region for a packing of 1, 2 and 4 mm is 3.31, 4.59 and 6.96 s, respectively. It could be speculated that when the input power is high enough, all three packing systems have an intensive discharge for SF₆ degradation, and then the gas residence time could be a main factor to determine the DRE. Therefore, the DRE in the 4 mm system is higher than that in the 1 mm system and reaches close to the 2 mm system. In Figure 6b, the EY values first increase and then decrease with the input power increasing. The 80 W is the turning point because the DRE barely increases beyond this power. Likewise, the 2 mm system shows the highest EY distribution, that is, 13.45 g/kWh at 80 W and gradually drops to 11.31 g/kWh at 100 W. The better performance of the 2 mm packing system could be attributed to a proper balance among the residence time, the contact area and the discharge intensity.
To further evaluate the degradation performance, we studied the DRE and EY as a function of the gas flow rate, as shown in Figure 7. In Figure 7a, the input power is fixed at 80 W and the DRE decreases with the increasing flow rate. The 2 mm system has the highest DRE distribution, which decreases from 93.15% at 100 mL/min to 79.13% at 300 mL/min. The DRE values of 1 and 4 mm are very close, and they drop from about 90% at 100 mL/min to about 50% at 30 mL/min. In Figure 7b, the EY increases with the flow rate. The EY values and the growth rate of the 2 mm system are obviously larger than that in the other two systems, which increases from 13.45 g/kWh at 100 mL/min to 34.82 g/kWh at 300 mL/min. It is clear that increasing the flow rate makes more SF$_6$ molecules pass through the plasma region to have a decomposition per unit time, eventually resulting in a higher EY. Besides, the EY values of 1 and 4 mm show a saturation with the increasing flow rate, but this is not observed in the 2 mm system, indicating a potential for the 2 mm system to treat higher flow rates or higher concentrations of SF$_6$ gas.

3.2.2 | Product analysis

The FTIR results of the three packing systems are summarised in Figure S2. The main products are SOF$_4$, SOF$_2$, SO$_2$F$_2$, SO$_2$, SiF$_4$, SF$_4$, and S$_2$F$_{10}$, which are typical DBD degradation products, as shown in a previous study [11]. Among them, SiF$_4$ is generated by the reaction between F atoms and SiO$_2$ from the quartz tube surface. SF$_4$ and S$_2$F$_{10}$ are primary degradation products generated from the S-F bond-breaking and SF$_4$ combinations. They are unstable and can further decompose or react with other species [33]. SOF$_4$, SOF$_2$, SO$_2$F$_2$ and SO$_2$ are stable products in the tail gas. In this study, there is no obvious SOF$_4$ peak in either 1 or 2 mm systems, which may be caused by its further decomposition. Moreover, the 1 mm system shows the highest SO$_2$ peak and the lowest peaks of SOF$_2$ and SO$_2$F$_2$, which means the product selectivity is affected by the size variation. Therefore, we present the distribution of the selectivity of the four stable products as a function of the packing size as well as the input power, as shown in Figure 8.

In Figure 8a, it is clear that increasing the packing size reduces the SO$_2$ selectivity, while it promotes the yields of the other three gases. In the 1 mm system, SO$_2$ is the most abundant product with a concentration and selectivity of 5319 ppm (part per million, volume fraction) and 68.29%, respectively. The concentrations and the selectivity of SO$_2$F$_2$ and SOF$_2$ are 2125 and 343 ppm, and 27.28% and 4.40%, respectively. In the 2 and 4 mm systems, the SO$_2$F$_2$ yield is the highest, and the concentration and selectivity are 4610 and 5758 ppm, 54.71% and 77.33%, respectively, while the SO$_2$ selectivity decreases to 40.56% and 10.89%, respectively. The SOF$_2$ selectivity is similar in the 1 and 2 mm systems, at around 4.7%, while it increases to 11.11% in the 4 mm system. There is almost no SOF$_4$ in the
1 mm or the 2 mm systems, and SOF$_4$ exists at a very low selectivity of 0.67% in the 4 mm system. Zhong et al. found that SO$_2$ is a final product generated by some further reactions of the S-O-F products during SF$_6$ degradation [34]. Therefore, it could be speculated that SOF$_4$ in this study acts as an intermediate, which is subject to further degradation.

In Figure 8b, we selected the 2 mm system to study the effects of the input power on the product selectivity. The selectivity of SOF$_2$ and SO$_2$F$_2$ decreases, while the SO$_2$ selectivity increases with the input power. Interestingly, SO$_2$F$_2$ has the highest selectivity at a low power range from 50 W up to 80 W, while the SO$_2$ selectivity is the highest at 90 and 100 W. In detail, the SO$_2$F$_2$ concentration and selectivity change from 3858 ppm to 87.94% at 50 W, to 4609 ppm and 54.71% at 80 W, and eventually drops to 3114 ppm and 33.06% at 100 W. In contrast, the SO$_2$ concentration and selectivity are only 282 ppm and 6.43% at 50 W, and they finally increase to 6154 ppm and 65.31% at 100 W. Besides, in Figure 6b, the DRE hardly changes in the 2 mm system beyond 80 W, but the product distribution changes obviously from 80 to 90 W in Figure 8b. This indicates that a further conversion of SO$_2$F$_2$ occurs with increasing input power.

In general, a more intensive discharge and a large contact area of the pellets account for more efficient decomposition of SF$_6$, resulting in a larger selectivity of SO$_2$. It should be noted that the percentage of the four stable S-containing gases in decomposed SF$_6$ decreases with the input power, from about 49% to 36%. Apart from the primary products such as SF$_4$, the other S-based and F-based products may be in solid form on the pellet surface. This is indeed proven by XPS shown in section 3.3.

FIGURE 6 The DRE and energy yield (EY) distributions in three packing systems as a function of the input power (3% SF$_6$–97% Ar, 100 mL/min). (a) DRE and (b) EY

FIGURE 7 The DRE and energy yield (EY) distributions in the three packing systems as a function of the flow rate (3% SF$_6$–97% Ar, 80 W). (a) DRE and (b) EY
It should be noted that most of the plasma degradation products are toxic and can be effectively adsorbed by an alkaline solution except SO$_3$F$_2$ [11]. SO$_3$F$_2$ has a relatively strong stability and has a solubility of 0.2% in water. Multiple methods and specific adsorbents are needed to treat this gas. Therefore, lowering the selectivity of SO$_3$F$_2$ is beneficial to the SF$_6$ tail gas recycle in terms of process and economics. This study proves that utilising small size pellets and high input power can both reduce the SO$_3$F$_2$ production and increase the SO$_2$ yield.

3.3 Characterisation of the γ-Al$_2$O$_3$

The isotherms of γ-Al$_2$O$_3$ show type IV characteristics in Figure S3, indicating that the samples have a mesoporous structure. The BET specific surface area, pore volume and pore diameter of the γ-Al$_2$O$_3$ pellets are shown in Table 1. S_{BET} is the specific surface area of the solid particle and the V_{total} is the total pore volume per unit mass of the solid particle. All three size pellets have similar surface area and pore diameter. The slight decrease in the BET surface area and pore volume of the γ-Al$_2$O$_3$ pellets after plasma treatment may be attributed to the modification of the surface by S and F.

After 3 h degradation, the 2 mm Al$_2$O$_3$ pellets were characterised by XRD and XPS tests, as shown in Figures S4 and S5. In Figure S4, the diffraction peaks of Al$_2$O$_3$ did not change obviously before and after reaction, indicating that the structure of the samples remains stable under plasma condition. The element distribution is calculated from Figure S5 and is shown in Table 2. After the degradation process, 3.16% F and 0.49% S appear at the 2 mm sample surface, indicating that the pellet surface participates in the reactions. The appearance of 29.12% C is caused by the detection method [35]. Figure 9 shows the SEM images of the fresh and spent Al$_2$O$_3$ pellets. After the discharge, the Al$_2$O$_3$ pellets become smoother and this could be one reason for the reduction of the surface area.

Overall, the catalyst characterisations prove that the discharge and degradation process affect the Al$_2$O$_3$ pellets. The surface area and appearance changed after the discharge. The degradation products could interact with the surface atoms to form some surface species, especially for the F element. In other studies, gases such as H$_2$O vapour and O$_2$ are often added to promote the degradation, which could also have impact on the pellet surface [11]. Therefore, the surface stability should be carefully evaluated at different conditions before a long-term use. This is beyond the scope and is not discussed in this work.

3.4 SF$_6$ adsorption and initial bond-breaking over γ-Al$_2$O$_3$ (110) surfaces

Figure S6 shows the typical sites on a perfect γ-Al$_2$O$_3$[110] surface. As we use the 2×2 supercell, the adsorption sites are mainly selected in the centre of the model for a better

TABLE 1 BET results of the Al$_2$O$_3$ pellets before and after the discharge

<table>
<thead>
<tr>
<th>Samples</th>
<th>S_{BET} (m2g$^{-1}$)</th>
<th>V_{total} (cm3g$^{-1}$)</th>
<th>Pore diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm fresh</td>
<td>295.1</td>
<td>0.41</td>
<td>5.9</td>
</tr>
<tr>
<td>1 mm spent</td>
<td>277.9</td>
<td>0.38</td>
<td>5.7</td>
</tr>
<tr>
<td>2 mm fresh</td>
<td>293.1</td>
<td>0.41</td>
<td>5.6</td>
</tr>
<tr>
<td>2 mm spent</td>
<td>273.2</td>
<td>0.39</td>
<td>5.6</td>
</tr>
<tr>
<td>4 mm fresh</td>
<td>293.3</td>
<td>0.44</td>
<td>6.1</td>
</tr>
<tr>
<td>4 mm spent</td>
<td>278.6</td>
<td>0.43</td>
<td>6.2</td>
</tr>
</tbody>
</table>

TABLE 2 Surface element components (except C) of the spent Al$_2$O$_3$ pellets by X-ray photoelectron spectroscopy (XPS) tests

<table>
<thead>
<tr>
<th>Element</th>
<th>Al</th>
<th>O</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component rate (%)</td>
<td>33.42</td>
<td>62.93</td>
<td>3.16</td>
<td>0.49</td>
</tr>
</tbody>
</table>

FIGURE 8 Distribution of the selectivity of the four main products. (a) With three packing sizes (3% SF$_6$–97% Ar, 80 W, 100 mL/min) and (b) as a function of the input power (3% SF$_6$–97% Ar, 80 W, 2 mm packing)
FIGURE 9 SEM images of the packed bed Al₂O₃ pellets. (a) 2 mm fresh Al₂O₃ and (b) 2 mm spent Al₂O₃.

TABLE 3 Adsorption energies (E_{ad}) for the two configurations of an SF₆ molecule on different sites of the γ-Al₂O₃ (110) surface

<table>
<thead>
<tr>
<th>Site</th>
<th>E_{ad} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1</td>
</tr>
<tr>
<td>1</td>
<td>−0.12</td>
</tr>
<tr>
<td>2</td>
<td>−0.05</td>
</tr>
<tr>
<td>3</td>
<td>−0.41</td>
</tr>
<tr>
<td>4</td>
<td>−0.24</td>
</tr>
<tr>
<td>5</td>
<td>−0.08</td>
</tr>
<tr>
<td>6</td>
<td>−0.03</td>
</tr>
<tr>
<td>7</td>
<td>−0.09</td>
</tr>
<tr>
<td>8</td>
<td>−0.12</td>
</tr>
</tbody>
</table>

Visualisation. We studied two initial SF₆ configurations. In the first one, the F–S–F bond is in a straight line perpendicular to the γ-Al₂O₃ surface, which is denoted as M1 type. In the other one, the bottom 2 F atoms are parallel to the γ-Al₂O₃ surface, which is denoted as M2 type. The calculated adsorption energy E_{ad} for the two configurations at different sites are listed in Table 3.

As shown in Table 3, the values of E_{ad} of the SF₆ molecule on the γ-Al₂O₃ (110) surface are relatively low. Both M1 and M2 types have the most stable adsorption at site ‘3’, with E_{ad} of −0.41 eV and −0.28 eV, respectively. This site is Al₁, corresponding to the Lewis acidic site, which is a typical active site on the surface of γ-Al₂O₃ [36]. The configurations before and after adsorption are shown in Figure 10. The E_{ad} values in the other sites are smaller, less than −0.24 eV in M1 and −0.16 eV in M2.

As shown in Figure 10, at the Al₁ site, the SF₆ molecule has no obvious deformation after the adsorption, without a bond-breaking phenomenon. In the M1-3 configuration, the bottom F atom is close to the Al₁ site, and a weak bonding process occurs. However, this is not the case for the M2 configuration. In addition, after the adsorption, the bottom S–F bond length increases from 1.613 Å to 1.695 Å in the M1 configuration and to 1.629 Å in the M2 configuration. We can conclude that Al₁ is the most stable site, at which SF₆ has a weakly chemical bonding process. While at other sites, SF₆ only has physisorption without an obvious bonding phenomenon. Figure 11 shows the differential charge distribution of SF₆ on the γ-Al₂O₃(110) surface before the bond-breaking, where the yellow and cyan regions indicate an increase and decrease in charge density, respectively. At the surface Al₁ site, changes in the charge density prove that the electron transfer occurs between the surface atoms and the adsorbed species, which could be the main reason for stretching of the S–F bond and the activation of SF₆.

To see the degradation reaction characteristics of SF₆ over the γ-Al₂O₃ surface, we calculated the initial bond-breaking processes of SF₆ on the perfect γ-Al₂O₃ surfaces, as well as in the gas phase. The initial, TS and final configurations of the SF₆ decomposition are shown in Figure 12. The reaction occurs as follows:

\[
\text{SF}_6 \rightarrow \text{SF}_3 + \text{F}
\]

(5)

The direct S–F bond-breaking in the gas phase needs a reaction heat of 4.20 eV [37]. However, the activation energy E_a of S–F bond-breaking on the γ-Al₂O₃ surface is only 1.80 eV and it is exothermic with a reaction heat of −1.29 eV. In Figure 12, the bottom F atom decomposes from the SF₆ and binds with the Al₁ site. The SF₃⁺ species bind with a
surface O atom. This result shows that the bottom S–F bond is activated at the Al$_{III}$ site and breaks much more easily than in the gas phase, indicating the catalytic effect of the γ-Al$_2$O$_3$ surface on SF$_6$ degradation. Therefore, the effective contact area of the packing is of importance for SF$_6$ degradation.

During the discharge, fluorine gas products such as HF, OF$_2$ and F$_2$ are generated in the plasma region and may participate in the surface reactions or be removed through the gas flow. To investigate their reaction potential, we calculated their adsorption configurations on the γ-Al$_2$O$_3$ surface, as shown in Figure 13. The E_{ad} of HF, OF$_2$ and F$_2$ are -2.54, -3.94 and -1.85 eV, respectively, all of which have obvious bonding phenomena, corresponding to the chemical adsorption. All three molecules decompose during the adsorption and form stable adsorption structures on the surface. This indicates that the fluorine gas products are reactive and are likely to react with the γ-Al$_2$O$_3$ surface to form the adsorbed F-containing species, which could be a main reason for the F element appearance of the pellet surface.

Overall, the packing size determines the gas residence time, active contact area and the discharge properties, which jointly affect the degradation behaviour. For the reactor (gap distance = 6 mm) in this study, 2 mm diameter and 1/3 of the gap distance are the optimal γ-Al$_2$O$_3$ pellet size and ratio for DRE and EY. However, due to the variation of reactor structure, packing material type and input parameters, this empirical conclusion may not suit in other DBD systems. However, the experimental results in this paper can give a qualitative reference on choosing the packing size, for both the discharge properties and the SF$_6$ degradation performance.

As for the product selectivity, lowering the packing size and increasing the input power promote the discharge intensity, leading to a more efficient SF$_6$ degradation so that the SO$_2$ production increases and the S-O-F gas production decreases. Our XPS test and DFT calculation reveal that the γ-Al$_2$O$_3$ surface has the catalytic effect for SF$_6$ activation and
decomposition. Meanwhile, part of the pellets is involved in the degradation reactions, leading to a change in the surface properties. From Figure 8 we may tell that the packing method alone cannot thoroughly eliminate the S-O-F production. Reactive gases such as H₂O, O₂ and H₂ as well as the metal loading (M/γ-Al₂O₃) should be taken into consideration for the regulation of the SF₆ degradation pathway. In this case, the synergistic effects of reactive gases and packing materials should be investigated, to see how the additional gases impact the packing surface and how they jointly change the degradation reactions.

4 | CONCLUSIONS

In this study, effects of the γ-Al₂O₃ packing size and the surface properties on SF₆ degradation in a PB-DBD system are investigated by both experimental and theoretical methods. 1, 2 and 4 mm diameter γ-Al₂O₃ pellets are tested for the discharge properties and degradation performance. The results show that decreasing the packing size enhances the micro-discharges and promotes the plasma generation, leading to higher DRE and EY at a low power range of 50–80 W. However, the gas residence time becomes dominant for DRE and EY when the input power exceeds 80 W. In this system, the 2 mm pellet is the optimal size to gain the highest DRE and EY distribution, reaching a maximum EY of 34.82 g/kWh at 300 mL/min. Lowering the packing size could promote the generation of SO₂ while reducing the production of S-O-F gases, which is attributed to the improvements in the active contact area and the intensity of plasma species. At 80 W input power, the 1 mm packing system shows the highest SO₂ selectivity among the three packing systems, yielding a value of 68.29%.

BET, XPS and SEM tests of the pellet samples prove that the surface structure and properties of the γ-Al₂O₃ are affected by the discharge and degradation process. The surface area is slightly reduced and becomes smoother after the discharge, while 3.16% F and 0.49% S appear at the 2 mm sample surface after 3 h degradation. DFT results show that the SF₆ molecule can be adsorbed at the AlIII site over the γ-Al₂O₃ (110) surface with the bottom S–F bond elongation from 1.613 Å to 1.695 Å. The activation barrier of S–F bond-breaking is 1.80 eV over the γ-Al₂O₃ (110) surface and it is much lower than for direct decomposition in the gas phase, which has a reaction heat of 4.20 eV. F-containing gases such as HF, OF₂ and F₂ can decompose without a barrier and become stably adsorbed on the γ-Al₂O₃ surface, which could be a main reason for the surface regulation of the pellets.

In general, γ-Al₂O₃ pellets are a potential packing material for DBD treatment of SF₆ waste gases. Its surface has a catalytic effect for SF₆ activation and decomposition. The size of γ-Al₂O₃ pellets is an important factor in determining the degradation parameters, in terms of DRE, EY and product selectivity. This study gives a qualitative reference and theoretical support for the use of γ-Al₂O₃ pellets and determination of its size when considering both discharge behaviour and degradation performance.

ACKNOWLEDGEMENTS

The computational resources and services used in this work were provided by the HPC core facility CaleUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Centre), funded by the Research Foundation - Flanders (FWO) and the Flemish Government.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research study reported.
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

ORCID
Zhaolin Cui https://orcid.org/0000-0002-1027-1563

REFERENCES
15. Li, J., et al.: Revealing the active sites of the structured Ni-based catalysts for one-step CO₂/CH₄ conversion into oxygenates by plasma-catalysis. J. CO2 Util. 52, 101675 (2021)

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.