SUPPORTING INFORMATION ## Modeling Plasma-Induced Modifications in Alginate Biopolymers at the Atomic Scale Maksudbek Yusupov^{a,b,c,1,*}, Francesco Tampieri^{d,e,f,1,*}, Shakhrizoda Matnazarova^g, Nosir Matyakubov^h, Cristina Canal^{d,e,f}, Annemie Bogaerts^c - ^a Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan - b Department of Information Technologies, Tashkent International University of Education, Tashkent 100207, Uzbekistan - Research group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium - Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Institute for Research and Innovation in Health (IRIS), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona 08019, Spain - ^e Barcelona Research Centre in Multiscale Science and Engineering (CCEM), UPC, Barcelona 08019, Spain - ^f Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain - ^g Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan - b Department of Physics, Urgench State University, Urgench 220100, Uzbekistan - * Corresponding author. - Shared first author. e-mails: maksudbek.yusupov@uantwerpen.be (M. Yusupov), francesco.tampieri@upc.edu (F. Tampieri) (a) (b) 330 -3699.5 -3700.0 **Figure S1.** Time evolution of the temperature and total energy of the alginic acid model system, demonstrating that the equilibration time of 1200 ps was sufficient for obtaining a well-thermalized structure. **Table S1.** Overview of all reaction mechanisms observed in the DFTB-MD simulations following the interaction of O atoms with the alginic acid tetramer. The numbering of the C atoms corresponds to Figure 1 in the main text. Note that most of the reactions are initiated by H-abstraction from different C or O atoms (1-75) and the last ones (76-85) are initiated by O addition. Color code: green = events that happen with frequency higher than 2.5%; yellow = events that happen with frequency between 2.5 and 1.5% (values included); white = events that happen with frequency lower than 1.5%. | No. | H-
abstraction | Number of events | Description | Structure | % | |-----|-------------------|------------------|---|--|-----| | 1 | C ₂ H | 5 | C ₂ -OH is formed α-hydroxy acid C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 2.5 | | 2 | C ₂ ·H | 4 | C _{2′} -OH is formed α-hydroxy acid C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 2.0 | | 3 | C ₈ H | 1 | C ₈ -OH is formed α-hydroxy acid C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 0.5 | | 4 | $\mathrm{C}_{8'}\mathrm{H}$ | 2 | C _{8′} -OH is formed α-hydroxy acid C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH OH OH HO | 1.0 | |---|-----------------------------|---|---|---|-----| | 5 | С₃∙Н | 2 | C _{3'} -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 1.0 | | 6 | С₀Н | 4 | C ₆ -OH is formed geminal diol $C_{24}H_{34}O_{26} (738 Da)$ | OH O | 2.0 | | 7 | С ₆ ·Н | 2 | C _{6′} -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 1.0 | | 8 | СуН | 1 | C ₉ -OH is formed geminal diol $C_{24}H_{34}O_{26} (738 Da)$ | OH O | 0.5 | |----|-------------------|---|--|--|-----| | 9 | C ₁₂ H | 4 | C ₁₂ -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 2.0 | | 10 | С₃Н | 6 | C ₃ -OH is formed geminal diol $C_{24}H_{34}O_{26} (738 Da)$ | OH O | 3.0 | | 11 | C ₄ H | 6 | C ₄ -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 3.0 | | 12 | С₅Н | 3 | C ₅ -OH is formed geminal diol $C_{24}H_{34}O_{26} (738 Da)$ | HO OH O | 1.5 | |----|-------------------|---|--|---|-----| | 13 | C4 [,] H | 5 | C ₄ -OH is formed geminal diol $C_{24}H_{34}O_{26} (738 Da)$ | OH O | 2.5 | | 14 | C₅'H | 8 | C _{5'} -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH OH OH HO | 4.0 | | 15 | C ₁₀ H | 4 | C ₁₀ -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 2.0 | | 16 | $ m C_{10}H$ | 7 | C _{10′} -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 3.5 | |----|--------------------|---|---|--|-----| | 17 | C ₁₁ H | 2 | C ₁₁ -OH is formed geminal diol $C_{24}H_{34}O_{26} (738 Da)$ | OH O | 1.0 | | 18 | C _{11'} H | 4 | C _{11′} -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 2.0 | | 19 | C _{12'} H | 7 | C _{12'} -OH is formed geminal diol C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 3.5 | | 20 | C ₁ OH | 1 | C ₁ O-OH is formed peroxyacid C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 0.5 | |----|-------------------|---|---|---|-----| | 21 | С₃ОН | 8 | C ₃ O-OH is formed hydroperoxide C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 4.0 | | 22 | С4ОН | 9 | C ₄ O-OH is formed hydroperoxide C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 4.5 | | 23 | С₅ОН | 2 | C ₅ O-OH is formed hydroperoxide C ₂₄ H ₃₄ O ₂₆ (738 Da) | OOH OH OH HO O OH OH HO | 1.0 | | 24 | С7ОН | 1 | C ₇ O-OH is formed peroxyacid C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH OOH OH OO OOH OOH OO OOH OOH OOH OO OO | 0.5 | |----|---------------------|---|--|---|-----| | 25 | C ₁₀ OH | 1 | C ₁₀ O-OH is formed hydroperoxide C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 0.5 | | 26 | C ₁₀ ·OH | 2 | C ₁₀ O-OH is formed hydroperoxide C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 1.0 | | 27 | C ₁₁ OH | 2 | C ₁₁ O-OH is formed hydroperoxide C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 1.0 | | 28 | С ₁₂ ОН | 1 | C _{12′} O-OH is formed
hydroperoxide
C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 0.5 | |----|---|---|--|--|-----| | 29 | C₃H and
C₃OH | 1 | H_2O and C_3 =O is formed ketone group $C_{24}H_{32}O_{25} (720 \ Da) + H_2O \ (18 \ Da)$ | OH O | 0.5 | | 30 | C ₄ H and
C ₄ OH | 1 | H ₂ O and C ₄ =O is formed ketone group C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | | 31 | C _{4'} H and
C _{4'} OH | 1 | H ₂ O and C ₄ =O is formed ketone group C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | | 32 | C₃H and
C₅OH | 1 | H ₂ O and C ₅ =O is
ketone group
C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | O OH OH HO O
HO 5 O 9 8 HO 5 O 8 O O
HO 10 12 OH OH OH OH OO OH | 0.5 | |----|---|---|---|---|-----| | 33 | C₅'H and
C₅'OH | 3 | H ₂ O and C ₅ ≔O is formed ketone group C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH OOH HOOO | 1.5 | | 34 | $ m C_{10}H$ and $ m C_{10}OH$ | 1 | H_2O and C_{10} =O is formed ketone group $C_{24}H_{32}O_{25} (720 Da) + H_2O (18 Da)$ | OH O | 0.5 | | 35 | C _{10'} H and
C _{10'} OH | 1 | H ₂ O and C ₁₀ =O is formed ketone group C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | | 36 | C ₁₁ H and
C ₁₁ OH | 1 | H ₂ O and C ₁₁ =O is formed ketone group C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | |----|---|---|---|--|-----| | 37 | C _{12'} H and
C _{12'} OH | 2 | H ₂ O and C ₁₂ =O is formed ketone group C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 1.0 | | 38 | C₃OH and
C₄OH | 2 | C ₃ -C ₄ bond is broken, H ₂ O, C ₃ =O and C ₄ =O are formed 2 aldehyde groups, ring 1 opening C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH OH OH HO O
OH OH OH HO O
3 2 HO 11 O 2' HO 11' OH HO OH HO OH | 1.0 | | 39 | C₄OH and
C₅OH | 8 | C ₄ -C ₅ bond is broken, H ₂ O, C ₄ =O and C ₅ =O are formed 2 aldehyde groups, ring 1 opening $C_{24}H_{32}O_{25} (720 Da) + H_2O (18 Da)$ | O OH OH HO O
O OH OH HO O
O OH OH HO OH HO OH HO OH HO OH HO OH OH | 4.0 | | 40 | C4'H and
C5'OH | 3 | C _{4'} -C _{5'} bond is broken, H ₂ O, C _{4'} =O and C ₅ :=O are formed 2 aldehyde groups, ring 3 opening C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH OH HO O OH HO O OH HO | 1.5 | |----|---|---|---|--|-----| | 41 | C ₁₀ OH and
C ₁₁ OH | 3 | C ₁₀ -C ₁₁ bond is broken, H ₂ O, C ₁₀ =O and C ₁₁ =O are formed 2 aldehyde groups, ring 2 opening $C_{24}H_{32}O_{25} (720 Da) + H_2O (18 Da)$ | OH OH OH HO O
HO 5 O 9 8 HO 5 O 8 O O
HO 10 OH OH OH OH OH OH OH OH | 1.5 | | 42 | $C_{10'}H$ and $C_{11'}OH$ | 3 | C_{10} - C_{11} bond is broken, H_2O , C_{10} =O and C_{11} =O are formed 2 aldehyde groups, ring 4 opening $C_{24}H_{32}O_{25}$ (720 Da) + H_2O (18 Da) | OH O | 1.5 | | 43 | C _{11'} H and
C _{12'} OH | 5 | $C_{11'}$ - $C_{12'}$ bond is broken, H_2O , $C_{11'}$ = O and $C_{12'}$ = O are formed 2 aldehyde groups, ring 4 opening $C_{24}H_{32}O_{25}$ (720 Da) + H_2O (18 Da) | OH O | 2.5 | | 44 | C ₂ H and
C ₄ OH | 1 | H ₂ O is formed, C ₃ -C ₄ bond is broken,
C ₂ =C ₃ is formed
aldehyde group, ring 1 opening
C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | |----|---|---|--|--|-----| | 45 | C₃H and
C₄OH | 1 | H ₂ O is formed, C ₃ -C ₄ bond is broken aldehyde and carbene C ₂ -(:C ₃)-O formation, ring 1 opening C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | | 46 | C₄OH and
C₅H | 1 | H ₂ O is formed, C ₄ -C ₅ bond is broken aldehyde and carbene C ₆ -(:C ₅)-O formation, ring 1 opening C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | | 47 | C₂H and
C₅OH | 1 | H ₂ O is formed, C ₅ -C ₆ bond is broken,
C ₅ =O, •C ₂ and •C ₆ are formed
aldehyde group, ring 1 opening
C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH HO OH O | 0.5 | | 48 | C _{12′} OH | 3 | C _{8'} O-C _{12'} bond is broken, C _{8'} O-OH is formed aldehyde and hydroperoxide groups, ring 4 opening C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH OH OH OH HO OOH O | 1.5 | |----|------------------------------|---|--|--|-----| | 49 | C₅OH and
later on
C₄OH | 1 | C ₅ -C ₆ bond is broken, ring 1 opening, H ₂ O is formed, C ₄ O-C ₆ is formed aldehyde and ether group C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | O OH OH HO O
TO OH OH HO O
TO OH OH HO OH HO OH HO OH HO OH | 0.5 | | 50 | C₅OH and
later on
C₄OH | 1 | C ₅ -C ₆ bond is broken (aldehyde formation), ring 1 opening, C ₅ O-C ₆ and C ₄ O-C ₅ are formed $C_{24}H_{32}O_{25} (720 Da) + H_2O (18 Da)$ | O OH OH HO O
TO OH OH HO OH TO OH HO OH HO OH HO OH HO OH HO OH OH HO OH | 0.5 | | 51 | C_1OH and C_2H | 2 | H ₂ O formation and CO ₂ liberation,
carbene C ₃ =C ₂ formation $C_{23}H_{32}O_{23} (676 Da) + H_2O (18 Da) + CO_2$ (44 Da) | OH O | 1.0 | | 52 | C ₁ OH and
C ₆ H | 1 | CO ₂ liberation, H ₂ O formation, •C ₂ and •C ₆ formation C ₂₃ H ₃₂ O ₂₃ (676 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 0.5 | |----|---|---|---|--|-----| | 53 | C_1OH and later on $C_{10}OH$ | 2 | H-abs. from C ₁ OH: CO ₂ liberation, C ₂ O-C ₆ bond breaking, ring 1 opening (aldehyde) H-abs. from C ₁₀ OH: H ₂ O formation, C ₉ -C ₁₀ bond breaking, ring 2 opening (aldehyde form.), C ₅ =C ₆ and C ₈ =C ₉ formation, C ₄ -C ₅ and C ₈ -OC ₁₂ bonds breaking, H-transfer from C ₄ OH to C ₁₂ O• (aldehyde form.) C ₁₅ H ₂₂ O ₁₆ (458 Da) + C ₅ H ₆ O ₄ (130 Da) + C ₃ H ₄ O ₃ (88 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 1.0 | | 54 | C ₁ OH and
C ₁₀ OH | 1 | H ₂ O formation, C ₁₀ -C ₁₁ bond breaking (ring 2 opening and aldehyde formation), C ₁ O-C ₁₁ bond formation (larger ring) C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | HO HO OH O | 0.5 | | 55 | C ₁ OH and
C ₃ OH | 1 | H ₂ O formation, CO ₂ liberation, C ₃ -C ₄ bond breaking and C ₂ -C ₄ bond formation (aldehyde and small ring formation) C ₂₃ H ₃₂ O ₂₃ (676 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | HO 7 OH OH HO O O OH OH HO O O OH OH OH OH O | 0.5 | | 56 | C ₃ OH and later on C ₆ H | 1 | H-abs. from C ₃ OH: C ₃ -C ₄ bond breaking (aldehyde formation), C ₄ =C ₅ double bond formation, C ₅ -C ₆ bond breaking, H-abs. from C ₆ H: H ₂ O formation, 1,2-ethenediol formation, O-(:C ₆)-O formation C ₂₂ H ₂₈ O ₂₃ (660 Da) + C ₂ H ₄ O ₂ (60 Da) + H ₂ O (18 Da) | OH
HO 5
HO 10
11
12
HO 10
11
12
HO 10
HO 0
HO 0 | 0.5 | |----|---|---|--|---|-----| | 57 | ${ m C_{3'}H}$ and ${ m C_{12}H}$ | 1 | H_2O formation, 2 C radicals formation $C_{24}H_{32}O_{25} (720 \ Da) + H_2O \ (18 \ Da)$ | OH O | 0.5 | | 58 | C ₇ OH and
later on
C ₄ ·OH | 5 | H-abs. from C ₄ ·OH: C ₃ ·-C ₄ · bond breaking (aldehyde formation and ring 3 opening) H-abs. from C ₇ OH: CO ₂ liberation, H ₂ O formation, C ₈ O-C ₁₂ bond breaking (ring 2 opening and aldehyde formation), C ₂₃ H ₃₂ O ₂₃ (676 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 2.5 | | 59 | C₅OH and
later on
C₄OH | 1 | C ₇ OH bond formation, H-abstraction from C ₄ OH by C ₇ O, C ₄ -C ₅ bond breaking, (ring 1 opening, aldehyde and triol formation) C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH HO 7 OH OH OH 7 OH | 0.5 | | 60 | C₅OH and
C₁₀H | 1 | H ₂ O formation, C ₅ -O-C ₁₀ formation (extra ring formation) $C_{24}H_{32}O_{25} (720 Da) + H_2O (18 Da)$ | OH O | 0.5 | |----|---|---|--|--|-----| | 61 | C ₅ ·OH and
C ₁₀ ·OH | 1 | H ₂ O formation, C _{5'} -C _{6'} bond breaking (ring 3 opening, aldehyde formation), C _{6'} -O-C _{10'} formation (small ring formation) C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O OH | 0.5 | | 62 | C ₇ ·OH and
C ₁₁ ·OH | 2 | H ₂ O formation, CO ₂ liberation, C ₁₁ '-C ₁₂ ' bond breaking (ring 4 opening and aldehyde formation), ${}^{\bullet}$ C ₈ ' and ${}^{\bullet}$ C ₁₂ ' formation C ₂₃ H ₃₂ O ₂₃ (676 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 1.0 | | 63 | C_7OH and later on $C_{12}H$ | 2 | CO ₂ liberation, C ₈ O-C ₁₂ bond breaking (ring 2 opening and aldehyde formation), H ₂ O formation, :C ₁₂ formation C ₂₃ H ₃₂ O ₂₃ (676 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 1.0 | | 64 | C ₇ ·OH and
C ₁₂ ·OH | 1 | H ₂ O formation, CO ₂ liberation, C ₈ ·O-C ₁₂ · bond breaking (ring 4 opening and aldehyde formation) C ₂₃ H ₃₂ O ₂₃ (676 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 0.5 | |----|---|---|--|--|-----| | 65 | C ₁₂ ·OH and
later on
C ₇ ·OH | 1 | C _{11'} -C _{12'} bond breaking (ring 4 opening and aldehyde formation), H ₂ O formation, CO ₂ liberation, C _{8'} =C _{9'} double bond formation and C _{9'} =C _{10'} breaking (1,2-ethenediol formation) C ₂₁ H ₂₈ O ₂₁ (616 Da) + C ₂ H ₄ O ₂ (60 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 0.5 | | 66 | C ₄ OH and
later on
C ₁₂ OH | 1 | C ₃ -C ₄ bond breaking (ring 1 opening and aldehyde formation), H ₂ O formation, C ₈ ·O-C _{12'} bond breaking (ring 4 opening and aldehyde formation), H-transfer from C ₇ ·OH to C ₈ ·O (CO ₂ liberation), C _{8'} -C _{12'} bond formation, •C ₃ formation C ₂₃ H ₃₂ O ₂₃ (676 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 0.5 | | 67 | C ₇ OH and later on C ₁ OH | 2 | Binding to C ₆ -O(= O)-C ₉ , H-abstraction from C ₇ OH (hydroperoxyl group formation), C ₆ -OC ₉ glycosidic bond cleavage, H-transfer from C ₁ OH to C ₇ O* (CO ₂ liberation), *C ₂ and *C ₆ formation C ₁₈ H ₂₆ O ₂₀ (562 Da) + C ₅ H ₈ O ₄ (132 Da) + CO ₂ (44 Da) | OH HO 7 OH OH HO 7 OH OH HO 7 OH OH HO OH | 1.0 | | 68 | C ₁ ·OH and
C ₇ ·OH | 1 | H ₂ O formation, 2 CO ₂ liberation, C ₂ :=C ₃ · double bond formation, C ₁₂ O-C ₃ · glycosidic bond cleavage, C ₁₂ O• and •C ₈ · formation C ₁₂ H ₁₇ O ₁₃ (369 Da) + C ₁₀ H ₁₅ O ₈ (263 Da) + H ₂ O (18 Da) + 2CO ₂ (2·44 Da) | OH O | 0.5 | |----|--|---|--|--|-----| | 69 | C ₁₀ OH and later on C ₁ OH | 1 | C ₉ -C ₁₀ bond breaking (ring 2 opening and aldehyde formation), C ₆ -OC ₉ glycosidic bond cleavage, H-abstraction from C ₁ OH (H ₂ O formation and CO ₂ liberation), •C ₂ and •C ₆ formation C ₁₈ H ₂₄ O ₁₉ (544 Da) + C ₅ H ₈ O ₄ (132 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH O | 0.5 | | 70 | C ₄ ·OH and later on C ₅ ·OH | 1 | C _{3'} -C _{4'} bond breaking (ring 3 opening and aldehyde formation), H-abstraction from C _{5'} OH (H ₂ O formation), C ₁₂ -OC _{3'} glycosidic bond cleavage (aldehyde formation) C ₁₂ H ₁₅ O ₁₃ (367 Da) + C ₁₂ H ₁₇ O ₁₂ (353 Da) + H ₂ O (18 Da) | OH O | 0.5 | | 71 | C ₄ ·OH and
C ₇ OH | 4 | H-abs. from C ₄ ·OH: C ₃ ·-C ₄ · bond breaking (ring 3 opening and aldehyde formation), H-abs. from C ₇ OH: CO ₂ liberation, H ₂ O formation, C ₈ O-C ₁₂ bond breaking (ring 2 opening and aldehyde formation), C ₂ :=C ₃ · bond formation, C ₂ ·-OC ₆ · and C ₆ ·-OC ₉ · bonds breaking, glycosidic bond cleavage C ₁₄ H ₁₉ O ₁₃ (395 Da) + C ₆ H ₉ O ₇ (193 Da) + C ₃ H ₄ O ₃ (88 Da) + H ₂ O (18 Da) + CO ₂ (44 Da) | OH HO 5' O HO 7' OH HO O | 2.0 | | 73 | 72 | C ₅ OH and
C ₂ H | 1 | H ₂ O formation, C ₅ -C ₆ bond breaking (ring 1 opening and aldehyde formation), •C ₂ and •C ₆ formation C ₂₄ H ₃₂ O ₂₅ (720 Da) + H ₂ O (18 Da) | OH O | 0.5 | |--|----|---|---|---|---|-----| | aldehyde formation), H-abstraction from $C_{1l'}OH$ (H ₂ O formation), C ₆ O-C ₉ bond breaking, C ₉ =C _{10'} double bond formation and C _{10'} -C _{11'} bond breaking (glycosidic bond cleavage, ring 4 opening and aldehyde formation) $C_{18}H_{24}O_{19} (544 Da) + C_{6}H_{8}O_{6} (176 Da) + H_{2}O (18 Da)$ 1 $C_{6}O-C_{9'}$ glycosidic bond cleavage, C_{8} =C _{9'} formation, $C_{6}O-OH$ formation $C_{18}H_{26}O_{20} (562 Da) + C_{6}H_{8}O_{6} (176 Da)$ 1 $C_{18}H_{26}O_{20} (562 Da) + C_{6}H_{8}O_{6} (176 Da)$ 1 $C_{18}H_{26}O_{20} (562 Da) + C_{6}H_{8}O_{6} (176 Da)$ 1 2 3 3 4 4 5 6 6 6 7 6 6 7 7 7 7 8 8 8 9 9 10 11 11 01 04 07 07 07 08 09 09 09 09 09 09 00 00 00 | 73 | | 1 | aldehyde formation), H-abstraction from C ₉ H (H ₂ O formation), C ₆ O-C ₉ glycosidic bond cleavage C ₁₈ H ₂₄ O ₁₈ (528 Da) + C ₆ H ₈ O ₇ (192 Da) + | HO 4 5 C: 0 4 OH OH OH OH OH OH OH | 0.5 | | 75 $C_{8'}H$ 1 $C_{6'}O-C_{9'}$ glycosidic bond cleavage, $C_{8'}=C_{9'}$ formation, $C_{6'}O-OH$ formation $C_{18}H_{26}O_{20}$ (562 Da) $+$ $C_{6}H_{8}O_{6}$ (176 Da) $C_{18}H_{26}O_{20}$ (562 Da) $+$ $C_{6}H_{8}O_{6}$ (176 Da) $C_{18}H_{26}O_{20}$ (562 Da) $+$ $C_{18}H_{26}$ | 74 | later on | 1 | aldehyde formation), H-abstraction from C ₁₁ ·OH (H ₂ O formation), C ₆ ·O-C ₉ · bond breaking, C ₉ =C ₁₀ · double bond formation and C ₁₀ ·-C ₁₁ · bond breaking (glycosidic bond cleavage, ring 4 opening and aldehyde formation) C ₁₈ H ₂₄ O ₁₉ (544 Da) + C ₆ H ₈ O ₆ (176 Da) + | OH 7 0H 0 10 10 10 10 10 10 10 10 10 10 10 10 1 | 0.5 | | | 75 | C _{8′} H | 1 | C ₆ ·O-C _{9′} glycosidic bond cleavage, C ₈ =C _{9′} formation, C ₆ ·O-OH formation | OH 7 OH 77 OH 9' 8' 7' OH 10' 12' OH OH 11' OH OH | 0.5 | | No. | Binding of
O atom | Number of events | Description | Structure | % | |-----|---|------------------|--|--|-----| | 76 | C ₆ - O -C ₉ | 1 | Binding at C ₆ - O -C ₉ C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH OO OH OH HO OO TO OH OH HO OO | 0.5 | | 77 | C ₂ - O -C ₆ | 1 | Binding at C ₂ - O -C ₆ C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 0.5 | | 78 | C ₁ -C ₂ | 1 | C_1 - C_2 breaking, C_1 - \mathbf{O} - C_2 formation $C_{24}H_{34}O_{26} (738 \text{ Da})$ | OH OH OH OH HO OH HO TO TO THE TOTAL | 0.5 | | 79 | C _{1'} -C _{2'} | 1 | C ₁ -C ₂ breaking, C ₁ - O -C ₂ formation C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH OH OH OH HO O OH OH HO OH HO OH HO OH HO OH HO OH OH | 0.5 | | 80 | C _{7′} -C _{8′} | 1 | C _{7'} -C _{8'} breaking, C _{7'} - O -C _{8'} formation C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 0.5 | |----|----------------------------------|---|--|--|-----| | 81 | $C_{1'}\mathbf{O}$ | 2 | C ₁ ·O -O formation C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 1.0 | | 82 | $\mathrm{C}_{7}\mathbf{O}$ | 3 | C ₇ ·O -O formation C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 1.5 | | 83 | С₃ О Н | 2 | C ₃ O(-O)H formation C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH O | 1.0 | | 84 | С₃ОН | 1 | C ₃ O- O -C ₁ formation, H-transfer from C ₃ OH to C ₁ O (diol formation), C ₁ -C ₂ and C ₁ O-OC ₃ bonds breaking (H ₂ CO ₃ formation), C ₃ -C ₄ bond breaking and C ₂ -C ₄ bond formation (aldehyde and small ring formation) C ₂₃ H ₃₂ O ₂₃ (676 Da) + CH ₂ O ₃ (62 Da) | OOH OH HOOO | 0.5 | |----|----------------------------|-----|--|--|-----| | 85 | C ₁₀ O H | 1 | C ₁₀ O(-O)H formation C ₂₄ H ₃₄ O ₂₆ (738 Da) | OH OH HO | 0.5 | | | Total | 200 | | | 100 |