
Journal of Energy Chemistry 96 (2024) 153–163
Contents lists available at ScienceDirect

Journal of Energy Chemistry

journal homepage: www.elsevier .com/ locate / jechem
Machine learning-driven optimization of plasma-catalytic dry reforming
of methane
https://doi.org/10.1016/j.jechem.2024.04.022
2095-4956/� 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding authors.
E-mail addresses: annemie.bogaerts@uantwerpen.be (A. Bogaerts), xin.tu@liver-

pool.ac.uk (X. Tu).
Yuxiang Cai a,b, Danhua Mei c, Yanzhen Chen a, Annemie Bogaerts b,⇑, Xin Tu a,⇑
aDepartment of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
bResearch Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium
cCollege of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, Jiangsu, China

a r t i c l e i n f o
Article history:
Received 28 December 2023
Revised 7 April 2024
Accepted 16 April 2024
Available online 25 April 2024

Keywords:
Plasma catalysis
Machine learning
Process optimization
Dry reforming of methane
Syngas production
a b s t r a c t

This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric
barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is
developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address
the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates
three well-established algorithms: regression trees, support vector regression, and artificial neural
networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm
within the hybrid ML model. The ML model achieved excellent agreement with the experimental data,
demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was sub-
sequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM
performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni load-
ing (7.8 wt%) resulted in the maximum energy yield at a total flow rate of �51 mL/min. Furthermore, we
investigated the relative significance of each operating parameter on the performance of the plasma-
catalytic DRM process. The results show that the total flow rate had the greatest influence on the
conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact
on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract
valuable insights from limited datasets, enabling the development and optimization of more efficient
and selective plasma-catalytic chemical processes.
� 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published
by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://creati-

vecommons.org/licenses/by/4.0/).
1. Introduction

Methane (CH4) and carbon dioxide (CO2) are two of the most
important greenhouse gases (GHGs), contributing significantly to
climate change [1]. There has been an increasing demand to
develop innovative approaches to transform these GHG emissions
into useful products [2,3]. Dry reforming of methane (DRM) is a
promising process to simultaneously reduce both CH4 and CO2

while producing valuable syngas (Eq. (1)), which can be used as
a source of hydrogen or to synthesize higher value chemicals via
the Fischer-Tropsch process [4].

CH4 + CO2 ! 2CO + 2H2, DH0 = 247.3 kJ/mol ð1Þ
The DRM process typically operates at temperatures over 800 �C
in the presence of a catalyst to enhance the reaction kinetics. This
requires substantial energy input, which can be a major cost bar-
rier for commercialization. In recent decades, significant efforts
have been devoted to exploring various catalysts, including noble
[1,5] and transition metal-based catalysts [6–8], to lower the acti-
vation barriers of the reaction. Among these catalysts, nickel cata-
lysts have emerged as a highly attractive alternative due to their
affordability and superior catalytic activity [9–12]. Nevertheless,
the rapid deactivation of nickel-based catalysts under harsh reac-
tion conditions, induced by coking or sintering, represents a signif-
icant challenge to their practical application [13].

Non-thermal plasma (NTP) is a promising alternative to con-
ventional methods for enabling the DRM reaction at low tempera-
tures and ambient pressure. In a typical plasma-catalytic DRM
process, plasma discharge is generated in the presence of a cat-
alytic material. Such discharge provides energy to the reaction,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jechem.2024.04.022
http://creativecommons.org/licenses/by/4.0/
mailto:annemie.bogaerts@uantwerpen.be
mailto:xin.tu@liverpool.ac.uk
mailto:xin.tu@liverpool.ac.uk
https://doi.org/10.1016/j.jechem.2024.04.022
http://www.sciencedirect.com/science/journal/20954956
http://www.elsevier.com/locate/jechem


Y. Cai, D. Mei, Y. Chen et al. Journal of Energy Chemistry 96 (2024) 153–163
facilitating the breakdown of methane and carbon dioxide and pro-
ducing reactive species (e.g., CHx, H, and O) that can participate in
the DRM reaction. The catalytic material stabilizes these species
and promotes the selective formation of syngas. The integration
of plasma and catalyst has the potential to result in a synergistic
effect, leading to enhanced overall efficiency [14,15]. The flexibility
of the plasma-catalytic process for instant start-up and shutdown
makes it a favorable choice for integration with intermittent
renewable energy [16,17]. In recent decades, various types of
NTP have been extensively studied for their potential in plasma-
catalytic DRM, including glow discharge [18], corona discharge
[19], gliding arc [20,21], microwave discharge [22], and dielectric
barrier discharge (DBD) [23–26]. Alongside this research, the selec-
tion of Ni-based catalysts with different promoters [27–29] and
supports [30–32] has also been explored. Despite its tremendous
potential, further research is necessary to fully comprehend the
interactions among the various reaction parameters, as well as
the synergistic effect of plasma and catalytic material. Moreover,
The commercial viability of plasma-catalytic DRM depends on
overcoming its challenges in cost-effectiveness and scalability.

The plasma-catalytic DRM process is complex, with many inter-
acting parameters [33,34]. A reliable model is crucial to qualita-
tively analyze these interactions and to comprehensively
optimize reaction conditions. This can help to improve the overall
efficiency of the process and address the challenges of this emerg-
ing technology [35]. Statistical models, such as the response sur-
face method (RSM), have been used to analyze the effects of
various reaction conditions on the plasma-catalytic DRM reaction
[24] and acetone oxidation [36]. This has allowed researchers to
identify optimal conditions for each reaction. However, the RSM
is not always accurate or robust enough for complex and non-
linear plasma-catalytic systems. Kinetic models, on the other hand,
provide a deeper understanding of the underlying mechanisms and
reaction kinetics in a plasma reaction system [18,37,38]. These
models are constructed using a series of mathematical equations
that describe the time-evolution of all relevant plasma species
based on production and loss rates, defined by chemical reactions.
For example, Wanten et al. [18] developed a quasi-1D kinetics
model to describe plasma-based DRM in an atmospheric pressure
glow discharge reactor. The results of the model agreed well with
experimental data, and the model provided insights into the reac-
tion pathway and the significance of vibrationally excited CO2 and
CH4 in the reactions. While kinetics models provide strong inter-
pretability, their applicability is mainly limited to plasma-based
chemical processes without a catalyst, although recently some
models were developed for the integration of plasma chemistry
and catalyst surface chemistry, for DRM [34]. Furthermore, kinetics
models exhibit limitations in terms of predictability and present
challenges as not all reaction rate coefficients are accurately
known in literature.

To overcome these limitations, machine learning (ML)
approaches have received increasing attention for plasma pro-
cesses, including the synthesis of fuels and chemicals and pollution
control. Prior research has predominantly employed artificial neu-
ral network (ANN) models. For instance, Liu et al. [39] developed a
well-trained ANN model for plasma-based non-oxidative CH4 cou-
pling, while Zhu et al. [40] proposed a three-layer ANN model for
methanol oxidation over Cu-Ce/Al2O3 catalysts in a post-plasma
catalytic system. Similarly, Chang et al. [41] used an ANN model
with non-dominated sorting genetic algorithm II (NSGA-II) to
investigate the post-plasma catalytic removal of toluene. The
model effectively provided a range of viable operating parameters,
demonstrating its capability to achieve optimal reaction condi-
tions. Recently, Pan et al. [42] proposed a deep learning (DL) model
that cooperates with both experiments and kinetics simulations to
optimize the plasma-catalytic CH4 dissociation and ammonia syn-
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thesis. These models effectively elucidated the impact of various
parameters on the reaction performance, predicted the optimal
conditions, and identified the most significant factors. Despite
recent advancements, the application of ML algorithms to optimize
the plasma-catalytic DRM process remains a largely unexplored
area in current research.

Support vector regression (SVR), regression trees (RT), and ANN
algorithms have been extensively used in the field of ML to solve
regression problems. The performance and accuracy of ML models
depend on a substantial set of input data. The quality and quantity
of data used for model training significantly impact the perfor-
mance of the model. However, obtaining a sufficient amount of
accurate experimental data for the plasma-catalytic process to
train ML models is still a critical challenge. The limited sample size
of plasma-catalytic reaction data sets and the intricate interdepen-
dence of operating parameters can easily lead to overfitting when
using a single ML model [43].

To achieve cost-effectiveness plasma-catalytic DRM process, a
thorough understanding and control of interconnected operating
parameters is crucial. However, plasma catalysis is a complex non-
linear system lacking extensive datasets typically available in ther-
mal catalysis and electrocatalysis. Recognizing this challenge
(limited data in complex systems), we designed our model for
small sample learning. This hybrid ML model integrates three algo-
rithms (ANN, RT, and SVR) to address the challenges arising from
system complexity and limited sample size. To enhance the robust-
ness and prediction accuracy of the model, the K-fold cross-
validation strategy was used in model training, and the hyperpa-
rameters of the three algorithms were optimized with a genetic
algorithm (GA). Finally, the model was trained using representative
experimental data from plasma-catalytic DRM and compared with
models using a single algorithm. The well-trained model was then
applied to assess the effects and significance of various operating
parameters, including Ni loading, CO2/CH4 molar ratio, total gas
flow rate, and discharge power, on critical performance indicators
(CO2 and CH4 conversion, H2 and CO yield). Furthermore, by intro-
ducing fuel production efficiency (FPE) and energy yield (EY)
indices, the model can determine the optimal operating parame-
ters that maximize the cost-effectiveness of the plasma-catalytic
DRM process.
2. Experimental and method

2.1. Catalyst preparation

Ni/c-Al2O3 catalysts with varying Ni loadings (5, 7.5, 10, 12.5,
and 15 wt%) were synthesized using the wetness impregnation
method. First, a specific quantity of Ni(NO3)2�6H2O was dissolved
in deionized water and stirred at 60 �C for 15 min to ensure com-
plete dissolution. Subsequently, c-Al2O3 beads (1 mm in diameter)
were introduced into the solution and thoroughly stirred for 12 h.
The resulting mixture was then evaporated at 80 �C for 4 h, fol-
lowed by overnight drying at 110 �C. Finally, the catalyst samples
were calcined under an air atmosphere at 400 �C for a duration
of 4 h.
2.2. Experimental method

Fig. 1 depicts the schematic diagram of the experimental setup
for DRM. The catalyst samples were placed within the discharge
zone of a coaxial DBD reactor, whose structure was in detail
described in our previous work [44]. The DBD reactor was powered
by a high voltage alternating current (AC) source, operating at a
fixed frequency of 10 kHz and a peak voltage range of 0–30 kV.
Electrical signals were sampled using a four-channel digital oscillo-



Fig. 1. Schematic diagram of the experimental setup.
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scope (TDS2014), and the discharge power was calculated based on
the measured Q-U Lissajous figure. Real-time monitoring of the
discharge power was recorded using a custom-built online mea-
surement system. A gas chromatograph (Shimadzu GC-2014)
equipped with dual detectors was employed for product analysis.
To ensure measurement accuracy, all experiments were conducted
three times, showing remarkable reproducibility (with an error
below 5%). The gas flow rate at the exit of the DBD reactor was
measured using a soap-film flow meter to evaluate changes in
the gas flow rate before and after the plasma reaction, i.e., gas
expansion (or contraction), which is crucially important for deter-
mining the reaction performance [33].

The CO2 conversion (XCO2 ) and CH4 conversion (XCH4 ) were
defined as follows

vCO2
ð%Þ ¼ CO2 inlet ðmol=sÞ � CO2 outlet ðmol=sÞ

CO2 inlet ðmol=sÞ � 100% ð2Þ

vCH4
ð%Þ ¼ CH4 inlet ðmol=sÞ � CH4 outlet ðmol=sÞ

CH4 inlet ðmol=sÞ � 100% ð3Þ

The H2 yield (YH2 ) and CO yield (YCO) were determined by

YH2 ð%Þ ¼ 2�H2 outlet ðmol=sÞ
CH4 inlet ðmol=sÞ � 100% ð4Þ
YCOð%Þ ¼ 2� CO outlet ðmol=sÞ
CH4 inlet ðmol=sÞ þ CO2 inlet ðmol=sÞ � 100% ð5Þ

The EY and FPE [44] were calculated by
EY ðmmol=kJÞ ¼ CH4 inlet ðmol=sÞ � CH4 outlet ðmol=sÞ þ CO2 inlet ðm
Discharge power ðkWÞ

FPE ð%Þ ¼
P

Fuel outlet ðmol=sÞ � LHV ðkJ=molÞ
CH4 inlet ðmol=sÞ � LHVCH4 ðkJ=molÞ þ Discharge power ðkW
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The lower heating value (LHV) of fuels is expressed in terms of
the energy content per mole. For CH4, H2, and CO, the LHV values
are 802.3, 241.8, and 283.2 kJ/mol, respectively [44].

For catalytic testing, 0.5 g Ni/Al2O3 pellets were placed within
the discharge region of the DBD reactor, partially filling the dis-
charge gap. Before the plasma-catalytic DRM experiment, the cat-
alysts were reduced in situ with a H2-Ar mixture for 30 min. During
the reduction process, the discharge power was maintained at
40 W, while the total flow rate was fixed at 50 mL/min with a
20% H2 composition. Following catalyst reduction, the plasma-
catalytic DRM process was conducted. A feed gas mixture compris-
ing CO2 and CH4, with CO2/CH4 molar ratios ranging from 0.5 to 1.5,
was continuously supplied at total flow rates between 25 and
150 mL/min. The discharge power varied between 20 and 60 W.
A comprehensive investigation involving 100 distinct reaction con-
ditions was carried out. While the dataset comprised only 100 data
points, these were meticulously collected across a broad range of
testing conditions, ensuring the robustness and relevance of the
model. The collected data, outlined in Tables S1 and S2, will form
the foundation for training the ML model.

2.3. Description of the hybrid ML model

A hybrid model is proposed to comprehensively simulate and
evaluate the plasma-catalytic DRM reaction. This model linearly
combines ANN, SVR, and RT algorithms with individually assigned
weights (W1, W2, and W3), as shown in Eq. (8).

P ¼ W1 � PANN þW2 � PSVR þW3 � PRT 0 � W1;W2;W3 � 1ð Þ ð8Þ
The accuracy of the model is assessed using the mean squared

error (MSE), which quantifies the average squared difference
between the predicted values (Pi) and the corresponding experi-
mental values (Ri).

MSE ¼ 1
n

Xn

i¼1

ðPi � RiÞ2 ð9Þ

To optimize the relative weight for each algorithm, the exhaus-
tive method is employed to minimize the MSE of the model, with a
step length of 0.01.

The developed hybrid model utilizes a framework for optimiza-
tion, evaluation, and prediction based on four key input parame-
ters: Ni loading, total flow rate, CO2/CH4 molar ratio, and
discharge power (Fig. 2). The model predicts the conversion of
the reactants (CO2 and CH4) and the yield of major products (H2

and CO). To ensure compatibility between variables with different
scales, input variables are normalized using the min-max normal-
ization method before training the model. To prevent overfitting
and ensure that the model generalizes well to unseen data (beyond
the training set), we employed 10-fold cross-validation as a pri-
mary approach, given the relatively small dataset size. This method
involves randomly dividing the dataset into ten parts, using nine
for training and one for testing. This process is repeated ten times,
ol=sÞ � CO2 outlet ðmol=sÞ � 1000 ð6Þ

Þ � 100% ð7Þ



Table 1
Hyperparameters and optimized ranges.

ML
algorithm

Hyperparameter GA optimization range Optimized
value

ANN Hidden layer, nlayer [1,2], nlayer 2 N 1
Neurons per layer,
nneuron, i

[2,15], nneuron 2 N 14

Activation function linear, sigmoid, ReLUa,
tanh

tanh

SVR Deviation, e e = 10a, a 2 [�6, 0],
a 2 N

10

Punishment
coefficient, C

C = 10b, b 2 [�4, 2],
b 2 N

10

Kernel function linear, RBFb, sigmoid,
poly

RBF

RT Max depth, ndepth [1,9], ndepth 2 N 7

a Rectified linear unit.
b Radial basis function.

Fig. 2. Logical structure scheme of the framework for optimization, evaluation, and
prediction within the hybrid ML model.
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with each part being used as the testing set once. This approach not
only helps in assessing the performance of the model but also
ensures that it generalizes well across different subsets of the data.

ANN, inspired by the human brain’s learning and decision-
making processes, is widely used in time series prediction and
modeling due to their exceptional predictive accuracy and adapt-
ability to nonlinear and dynamic systems. SVR is an algorithm that
excels in identifying hyperplanes in the feature space, demonstrat-
ing its superiority in nonlinear, small-sample, and high-
dimensional regression tasks. The RT model, another classical
supervised regression algorithm, recursively divides the dataset
based on the most significant feature until a stopping criterion is
met. RT algorithms are renowned for their efficiency and ability
to handle missing data. In this study, a typical binary RT algorithm
with a single root, multiple branches, nodes, and leaves is
employed to further strengthen the robustness of the hybrid
model.

A GA was chosen to optimize the hyperparameters for the three
algorithms within the hybrid ML model due to its effectiveness in
handling complex models with numerous parameters, as encoun-
tered in our study [45]. These parameters include the number of
hidden layers, number of neurons per layer, and activation func-
tion for ANN, deviation (e), punishment coefficient (C), kernel func-
tion for SVR, and max depth for RT. The optimized
hyperparameters and their corresponding ranges are listed in
Table 1; hyperparameters not explicitly mentioned were set to
their default values. After GA optimization (Fig. S1), the hyperpa-
rameters are determined and listed in Table 1.

2.4. Methods of significance analysis

In this particular analysis, the Pearson’s Correlation Coefficient
(PCC) was utilized as a univariate analysis method to evaluate
the strength of the relationship between each parameter and the
performance [46]. The PCC quantifies the linear correlation
between two variables and is bounded within the range of �1 to
1. A PCC of �1 represents the complete negative correlation, which
means that as one variable increases, the other decreases. Con-
versely, a value of +1 signifies a full positive correlation, where
both variables increase or decrease together. A value of 0 indicates
the absence of a linear correlation between the two variables. The
overall PCC between input and output variables is calculated as the
quotient of the covariance and the standard deviation of the two
variables.
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qX;Y ¼ covðX;YÞ
rxry

¼
PðX � lxÞðY � lyÞ

rxry
ð10Þ

where cov(X, Y) represents the covariance between input vari-
able X and output variable Y; while rx and ry correspond to the
standard deviation of X and Y, respectively. After training and vali-
dating the hybrid ML model, we conducted a grid search, evaluating
the model at 10,000 data points generated by selecting 10 values for
each of the four input parameters within their respective ranges.
Using the predicted values for these points, we calculated the PCC
between each input parameter and each output variable (CO2 con-
version, CH4 conversion, H2 yield, and CO yield). To determine the
relative significance of each input parameter (operating parameter)
for each output variable (key performance metric), we calculated
the relative importance scores based on the absolute values of the
PCC.
3. Results and discussion

3.1. Hybrid model training and evaluation

The weights assigned to each algorithm significantly influence
the MSE of the hybrid model, as shown in Fig. 3. When using a sin-
gle algorithm, the MSEs of the ML models were found to be 0.0273
for ANN, 0.0125 for SVR, and 0.0176 for RT, respectively. The per-
formance of the single-algorithm models followed the order
SVR > RT > ANN, with the relatively lower performance of ANN
being possibly attributed to the limited size of the training set. It
is noteworthy that even after individually optimizing each model,
their MSEs were still significantly higher than the minimum value
of 0.0075 achieved by the hybrid model, demonstrating the supe-
riority of the proposed hybrid model. Through an exhaustive opti-
mization process, the optimal weights of ANN, SVR, and RT were
determined to be 0.26, 0.44, and 0.30, respectively. Thus, the
hybrid ML model can be expressed as

PHybrid ¼ 0:26PANN þ 0:44PSVR þ 0:30PRT ð11Þ
The performance of the hybrid model was then evaluated by

comparing the measured and predicted values for gas conversion
and product yield, as presented in Fig. 4. Trained by optimizing
connection weights to minimize MSE, the hybrid model demon-
strated a commendable level of accuracy in predicting experimen-
tal data across the entire dataset. Notably, the measured collection
efficiency was predicted with a confidence exceeding 98% and an
MSE of only 0.0027. This remarkable performance indicates the
effectiveness of the model in accurately predicting the perfor-
mance of the plasma-catalytic DRM process. To further validate



Fig. 3. MSE of the training and optimization process for the hybrid model. The
lowest overall MSE is found when the weights of ANN, SVR, and RT are 0.26, 0.44,
and 0.30, respectively.
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the generalizability of the model, a series of experiments with new
operating parameters within the defined input ranges (Ni
loading = 7.5 wt%, CO2/CH4 = 1:1, discharge power = 30 W, and
total flow rate = 25–125 mL/min) were performed. The prediction
of the model for unseen data exhibited good agreement with
experimental results, as presented in Fig. S2, demonstrating the
reliability of the model.
Fig. 4. Comparison of model predictions with experimental data. (a)
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3.2. Performance prediction

3.2.1. Effect of Ni loading
Fig. 5 shows the correlation between Ni loading and the perfor-

mance of the plasma-catalytic DRM process. Solid scatter points
represent the experimental data, while the lines depict predictions
from the model. The hybrid model demonstrated exceptional accu-
racy in predicting gas conversions and major product yields, as evi-
dent from the excellent agreement between the model predictions
and the experimental data.

The model predicted that the performance (gas conversion and
product yield) of the plasma-catalytic DRM reaction would be
increased with Ni loading up to around 8%, followed by a decrease
at higher loadings. Consistent with this prediction, the experimen-
tal results also showed that the highest conversion of CO2 (22.3%)
and CH4 (29.7%) was achieved using the 7.5 wt% Ni/Al2O3 catalyst,
with other conditions kept constant. This finding aligns with the
established trend of Ni loading impacting catalytic activity for
CO2 and CH4 conversion: 7.5 wt% > 10.0 wt% > 5.0 wt% > 12.5 wt
% > 15.0 wt%. Similar trends were observed for the yield of both
H2 and CO. Likewise, the predictions from the model effectively
illustrate the performance as a function of Ni loading, with the
optimal loading predicted to be around 7.8%. The performance of
the plasma-catalytic DRM process is strongly affected by the phys-
iochemical properties of Ni-based catalysts [27,29]. At lower Ni
loading, the catalyst surface contains fewer active sites but a larger
specific surface area [47], leading to an initial increase in CO2 con-
version with increasing Ni loading. However, excessive Ni loading
can lead to metal particle aggregation, reducing the specific surface
area and weakening metal dispersion, ultimately resulting in a
CO2 conversion; (b) CH4 conversion; (c) CO yield; (d) H2 yield.



Fig. 5. Correlation between model predictions and experimental data for the effect of Ni loading on plasma-catalytic DRM performance. (a) CH4 conversion and CO2

conversion; (b) CO yield and H2 yield (Discharge power = 40 W, CO2/CH4 = 1:1, and total flow rate = 75 mL/min).

Y. Cai, D. Mei, Y. Chen et al. Journal of Energy Chemistry 96 (2024) 153–163
decrease in the gas conversion and product yields [48]. Therefore,
optimal CO2 conversion is achieved at a moderate Ni loading under
specific reaction conditions. This conclusion is supported by simi-
lar findings in literature [14–17]. Note that the discussion above
is based on the characteristics of Ni/c-Al2O3 catalysts prepared
by similar methods in previous studies [47–49]. The hybrid model
does not directly predict the physiochemical properties of the cat-
alysts. This limitation highlights a common challenge with ML
models: while they excel in prediction, their interpretability can
be limited. This fact also underscores the importance of prior
knowledge and empirical observations when discussing the out-
comes of ML.

Despite its noticeable effect, the influence of Ni loading on the
performance of plasma-catalytic DRM reaction cannot be consid-
ered as dominant. As the nickel loading increased from 5 wt% to
15 wt%, the variations in the CO2 and CH4 conversion remained
within 5%, while the changes in the yields of CO and H2 remained
within 2%. In addition, according to PCC analysis, the effect of Ni
loading amount shows very little interaction with the other
parameters.
Fig. 6. Predicted effects of each operating parameter on the performance of plasma-cata
flow rate = 75 mL/min); (b) CO2/CH4 ratio (Discharge power = 40 W, total flow rate = 7
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3.2.2. Effect of each reaction condition
In addition to Ni loading amount, the discharge power, CO2/CH4

ratio, and total flow rate also influence the plasma-catalytic DRM
reaction. These parameters are recognized to have a profound
impact on the reaction kinetics, thermodynamics, and mechanism
[37]. Thus, a comprehensive understanding of these operating
parameters is essential for optimizing the performance of the
plasma-catalytic DRM process. The well-trained hybrid ML model
enables us to study the overarching influence of the parameters
beyond the constraints of limited data. Fig. 6 illustrates the pre-
dicted results for each parameter, while Figs. S3 and S4 present
comparisons between predicted and (available) experimental data,
demonstrating excellent agreement. This is further supported by
the previously mentioned low MSE and high R2 values.

Both CO2 and CH4 conversion exhibited a near-linear increase
with discharge power, as predicted by the hybrid model (Fig. 6a).
When using a 7.5 wt% Ni/Al2O3 catalyst, the highest CO2 conversion
of 20.1% and CH4 conversion of 34.7% were predicted at a discharge
power of 60 W. In this study, the DBD plasma employed for the
DRM process exhibited characteristics of a filamentary discharge
lytic DRM process using 7.5 wt% Ni/Al2O3. (a) Discharge power (CO2/CH4 = 1:1, total
5 mL/min); (c) total flow rate (Discharge power = 40 W, CO2/CH4 = 1:1).
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within the examined discharge power range (20–60 W). The dis-
charge power was modulated by changing applied voltage at a
fixed frequency (10 kHz); however, the increase of the applied
voltage did not modify the breakdown voltage. Consequently, the
average electric field and average electron energy remained con-
stant in the tested range, as demonstrated in our previous work
[50]. Nevertheless, previous studies have also demonstrated that
a higher applied voltage produces more microdischarges and
higher current intensity [51–53]. Increasing the discharge power
in a typical DBD reactor promotes the formation of more microdis-
charges, generating a greater number of reaction channels and
reactive species, including CHx, O, and H radicals. These species
actively participate in both plasma-induced gas-phase and cat-
alytic surface reactions, thereby promoting the production of CO
and H2 [16].

Fig. 6(b) shows the effect of CO2/CH4 ratio on plasma-catalytic
DRM reaction. Increasing the CO2/CH4 ratio enhanced the CH4 con-
version while reducing the CO2 conversion due to chemical equi-
librium. Both CO and H2 yields increased with increasing CO2/
CH4 ratio, but the rate of increase was not the same. At a CO2/
CH4 ratio of 0.5, the CO yield surpassed the H2 yield by 1.5%, but
at a CO2/CH4 ratio of 1.5, the CO yield exceeded the H2 yield by
2.8%. This phenomenon is likely due to the increased occurrence
of the reverse water shift gas (RWGS) reaction at higher CO2/CH4

ratios. This reaction consumes hydrogen but also promotes the
gasification of carbonaceous deposits, which reduces the possibil-
ity of catalyst deactivation. Indeed, previous studies have also
shown that carbon deposition and catalyst deactivation can easily
occur at CO2/CH4 ratios below 1 [54]. By combining these findings
with the predictions from our hybrid model, a CO2/CH4 ratio of 1–
1.5 is recommended. This ratio balances CH4 conversion and H2

selectivity, while also minimizing the possibility of carbon deposi-
tion. This optimal CO2/CH4 ratio aligns with the typical ratio found
in biogas, which favors the application of plasma-catalytic DRM.

Fig. 6(c) illustrates the significant reduction in the conversion of
CO2 and CH4 as the total flow rate increases. Specifically, the CO2

conversion decreased from 30.2% to 9.7%, while the CH4 conversion
declined from 44.5% to 16.0% when increasing the total gas flow
rate from 25 to 125 mL/min. This trend can be attributed to an
80% reduction in the residence time of the reactant gases in the dis-
charge region as the total flow rate increases. The shorter residence
time reduces the likelihood of collisions between the reactants
(CH4 and CO2) and active species, including energetic electrons,
excited species, and radicals (e.g., CHx, O, and H), thereby lowering
the conversion of CO2 and CH4. Consequently, the yields of CO and
H2 decrease by up to 70%.

3.2.3. Comprehensive effect of the parameters
The performance of plasma-catalytic DRM process is not only

affected by individual parameters, such as discharge power, CO2/
CH4 ratio, and total flow rate, but also by the combined effect of
these parameters. The predicted results are shown in Fig. 7 and
the comparison between predicted and (available) experimental
values is presented in Fig. S5.

Fig. 7(a and b) indicates that a discharge power of over 50 W
was required to achieve a CO2 conversion of over 30% in the opti-
mal range of CO2/CH4 ratio (0.5–1) and total flow rate (25–50 mL/
min). The highest achieved CO2 conversion was predicted to be
39.7% at a discharge power of 60 W, with a CO2/CH4 ratio of 0.5
and a total flow rate of 25 mL/min. On the other hand, CH4 conver-
sion of over 50% was achieved when the discharge power exceeded
50 W, within a range of CO2/CH4 ratio from 1.25 to 1.5 and a range
of total flow rates from 25 to 50 mL/min. Notably, the highest CH4

conversion of 58.6% was predicted under the condition of a dis-
charge power of 60 W, a CO2/CH4 ratio of 1.5, and a total flow rate
of 25 mL/min. The trend of CH4 conversion followed a similar pat-
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tern to that of the CO2 conversion with the discharge power and
the total flow rate. Both CO2 and CH4 conversion are predicted to
exhibit higher sensitivity to the CO2/CH4 ratio in the lower regions
of the 3D contour representing total flow rate and discharge power.
As discussed in Section 3.2.2, it is reasonable to maintain the CO2/
CH4 ratio around 1–1.5, which is also a typical range for renewable
biogas feedstock.

Fig. 7(c and d) shows that both the predicted CO yield and H2

yield can exceed 20% in the optimal range of discharge power
(50–60 W), CO2/CH4 ratio (1.25–1.5), and total flow rate (25–
50 mL/min). Remarkably, the highest CO yield of 24.5% and H2

yield of 21.1% were predicted at a discharge power of 60 W, a
CO2/CH4 ratio of 1.5, and a total flow rate of 25 mL/min. Further-
more, the influence of the three parameters on both CO yield and
H2 yield follows a consistent trend. Additionally, the model predic-
tion suggests that at lower total flow rates, increasing the dis-
charge power has a more significant effect on enhancing CO and
H2 yields. Conversely, at higher discharge power, increasing the
total flow rate leads to a more significant decrease in CO and H2

yields. These findings indicate the significant interplay between
total flow rate and discharge power within the investigated range.

To evaluate the cost-effectiveness of the process, the model
employed two metrics: energy yield (EY) and fuel product effi-
ciency (FPE). These two indicators reflect the efficiency of the
plasma DRM process (Fig. 7e and f). Within the investigated range,
the total flow rate emerged as the most significant factor affecting
both indicators, while the effect of CO2/CH4 was relatively minor,
especially at higher discharge power. Both EY and FPE were pre-
dicted to decrease with increasing discharge power, with a sub-
stantial drop observed at lower discharge power (20–40 W). At
higher discharge power, the decline tended to plateau. The optimal
flow rate was predicted to strongly depend on discharge power,
with the optimal total flow rate increasing as discharge power
increases. For instance, at a discharge power of 20 W, the optimal
predicted EY and FPE values were achieved around a total flow rate
of 50 mL/min. Conversely, for a discharge power exceeding 40 W,
the optimal flow rate was predicted around 100 mL/min, further
highlighting the interaction between discharge power and total
flow rate. The optimal EY of 0.398 mmol/kJ was predicted at a dis-
charge power of 20 W, CO2/CH4 ratio of 1.5, and total flow rate of
51.3 mL/min. Similarly, the highest FPE of 13.2% was predicted at a
discharge power of 20 W, CO2/CH4 ratio of 1.5, and total flow rate
of 53.3 mL/min.

These findings also suggest that there is a balance between
reaction efficiency (conversion and yield) and cost-effectiveness
(EY and FPE) for the optimal overall performance under the same
operating parameters. Specifically, a high discharge power pro-
motes CO2 conversion, CH4 conversion, CO yield, and H2 yield when
keeping the other parameters constant; however, the promotion
comes at the cost of lower EY and FPE. Alternatively, a moderate
or high total flow rate can lead to higher EY and FPE, but the cor-
responding reactant conversion and product yield are prohibited
due to the reduction of the residence time.

3.3. Relative significance of different parameters

To understand the relative significance of various factors affect-
ing the plasma-catalytic DRM process, we analyzed the predicted
importance of each input parameter using the hybrid ML model.
In conventional studies, sensitivity analysis is a valuable tool for
understanding how different parameters influence the output of
a process. While this traditional approach is undeniably useful
and can be conducted independently of any model, the hybrid
ML model offers distinct advantages, including computational effi-
ciency, reliability with small sample sizes, the ability to identify
complex parameter interactions, and the ability to directly mea-



Fig. 7. Predicted interaction effects of discharge power, CO2/CH4 ratio, and total flow rate on the performance of plasma-catalytic DRM process using 7.5 wt% Ni/Al2O3. (a) CO2

conversion; (b) CH4 conversion; (c) CO yield; (d) H2 yield; (e) EY; (f) FPE.
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sure feature importance [55]. As proven in Section 3.1, the hybrid
learning model provides robust predictions even in the context of
small datasets, thereby enhancing the reliability of the conclusions
drawn about parameter significance.

Fig. 8 shows that the total flow rate had the highest impact on
CO2 conversion (47.5%) and CH4 conversion (37.6%), as well as CO
yield (40.0%) and H2 yield (47.5%). Additionally, both CO2/CH4
160
ratio and discharge power also had a considerable influence
(>20%) on the yield of CO and H2. In terms of EY, the total flow
rate was again the most influential parameter (48.3%), compared
to the other three process parameters. For the FPE, the discharge
power, CO2/CH4 ratio, and total flow rate exhibited similar influ-
ences, all predicted within the range of 27.5%–34.7%, but the total
flow rate again had the highest significance. Considering both EY



Fig. 8. Relative significance of operating parameters on the performance of plasma-catalytic DRM process.
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and FPE, it is clear that the total flow rate plays a crucial role in
determining the overall cost-effectiveness of the plasma-
catalytic DRM process. As mentioned earlier, the parameters also
involve a trade-off between reaction performance and cost-
effectiveness, making the total flow rate a critical operating
parameter to select for optimal performance. Notably, the signif-
icance of nickel loading amount was less than 10% for all perfor-
mance indicators. These findings suggest that the plasma
parameters and plasma properties exert a more significant influ-
ence within the investigated range, while minor changes in nickel
161
loading amount (5–15 wt%) would not substantially affect the
overall process performance.
4. Conclusions

This study developed a hybrid ML model to predict and opti-
mize the plasma-catalytic DRM process. The model combined
three common supervised learning algorithms (ANN, SVR, and
RT) with GA for hyperparameter optimization, enabling effective



Y. Cai, D. Mei, Y. Chen et al. Journal of Energy Chemistry 96 (2024) 153–163
use of limited experimental data. The predictions of the hybrid
model showed a strong correlation with the experimental data,
with R2 values above 0.98 for each output. A comprehensive anal-
ysis of the operating parameters revealed significant interactive
effects between them, especially between discharge power and
total flow rate. Furthermore, the hybrid ML model successfully
identified the optimal conditions for achieving the highest EY
and FPE within the continuous data space. According to the model,
the highest EY of 0.398 mmol/kJ was achieved at a discharge power
of 20 W, CO2/CH4 ratio of 1.5, and total flow rate of 51.3 mL/min.
Similarly, the highest FPE of 13.2% was predicted at a discharge
power of 20 W, CO2/CH4 ratio of 1.5, and total flow rate of
53.3 mL/min. The significance analysis revealed that total flow rate,
discharge power, and CO2/CH4 ratio are the most significant
parameters affecting the reaction performance, while the Ni load-
ing is relatively less influential. The hybrid model demonstrates
outstanding capability in extracting valuable insights relationships
between input parameters and key performance metrics from lim-
ited datasets, enabling the development and optimization of com-
plex nonlinear systems such as plasma-catalytic chemical
processes within the continuous data space.

This study demonstrates the potential of the hybrid ML model
as an accurate, effective, and fast tool for predicting and optimizing
the plasma-catalytic DRM process, even with a relatively small
training set. Notably, while this ML model shows excellent predic-
tion ability, it cannot provide insights into the underlying reaction
mechanisms, which require detailed plasma chemical kinetics
models, as demonstrated in ref. [34]. Nevertheless, this ML model
holds enormous potential for application in a broad spectrum of
plasma-based chemical processes.

The ML strategy developed in this study also holds potential for
application in predicting the performance of thermal catalytic DRM
processes. While catalyst structure-activity relationships and con-
dition optimization in thermal catalysis have been extensively
investigated, leading to different model focal points (e.g., big data
and meta-analysis with ML algorithm), our hybrid ML model
approach provides valuable insights from limited experimental
data with greater consistency and accuracy, particularly promising
for the optimization of industrial-scale DRM process. This is an
exciting and worthwhile direction for future research, underscor-
ing the broad applicability and relevance of our ML application in
catalysis.
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