Supporting information

SF₆ degradation in a γ -Al₂O₃ packed DBD system: Effects of hydration, reactive gases and plasma-induced surface charges

Zhaolun Cui^{a,b, 1}, Chang Zhou^{c, 1}, Amin Jafarzadeh^b, Xiaoxing Zhang^c, Yanpeng Hao^a, Licheng Li^a, Annemie Bogaerts^b

^a School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China

^bResearch group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium

^c School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China

 \perp : Z.C. and C.Z. contributed equally to this paper

Fig. S1 1-hour temporal evolution of the voltage ampitude in the Ar discharge. (80 W, 2mm hydrated γ -Al₂O₃ packing)

Fig. S2 U-I signals during 1-hour temporal discharge test. (80 W, 2mm hydrated γ-Al₂O₃ packing)

(c) 4 mm hydrated (d) 4 mm dry Fig. S3 Discharge voltage and current signals of two packing systems before and after the hydration (3% SF₆-97% Ar, input power: 100W)

Fig. S4 Q-V plots of the γ -Al₂O₃ packing systems before and after the hydration process (3% SF₆ - 97% Ar, 100 mL/min, 100 W)

Fig. S5 FTIR results of the gas mixture after the DBD abatement with hydrated γ -Al₂O₃ packing (4 mm beads, 3% SF₆ - 97% Ar, 100 mL/min, 80 W)

Fig. S6 Discharge voltage and current signals of the packed bed system with H_2O or O_2 additions (80 W, 200 mL/min, 3% SF₆, 4 mm γ -Al₂O₃ packing)

Fig. S7 Q-V plots for the packed bed systems with and without additional gases (80 W, 200 mL/min, 3% SF₆, 4 mm γ -Al₂O₃ packing)

Fig. S8 SF₆ adsorption on three surfaces with the Al_{III} site occupied by pre-adsorbed species

Fig.S9 SF₆ adsorption on H_2O or O_2 pre-adsorbed surface with SF₆ adsorbed at the Al_{III} site

(a) O₂ pre-adsorbed

(b) Hydrated surface

Fig. S10 TS process of SF $_6$ initial bond breaking on the O $_2$ pre-adsorbed and hydrated surfaces

Fig. S11 The differential charge distribution of SF_6 on H_2O pre-adsorbed γ -Al₂O surface. The yellow region indicates an increase in charge density and the cyan region indicates a decrease.

Fig. S12 The differential charge distribution of SF₆ adsorbed on the two surfaces with 1.00|e| induced surface charges. The yellow region indicates an increase in charge density and the cyan region indicates a decrease.

Fig. S13 Aggregated surface partial charge of the perfect γ -Al₂O₃ slab as a function of the electric field

strength

(a) 0.50V/ Å of \downarrow electric field

(b) 0.80V/ Å of \downarrow electric field

(c) 0.50V/ Å of \uparrow electric field

(d) 1.00V/ Å of ↑ electric field

Fig. S14 Differential charge distributions for SF_6 adsorption configurations on the perfect γ -Al₂O₃ surface under different electric field strengths. The yellow region indicates an increase in charge density and the cyan region indicates a decrease.