SUPPORTING INFORMATION

Al₂O₃-supported transition metals for plasmacatalytic NH₃ synthesis in a DBD plasma: Metal activity and insights into mechanisms

Yury Gorbanev ^{1,*}, Yannick Engelmann ¹, Kevin van 't Veer ^{1,2}, Evgenii Vlasov ³, Callie Ndayirinde ¹, Yanhui Yi ⁴, Sara Bals ³ and Annemie Bogaerts ¹

¹ Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; yury.gorbanev@uantwerpen.be; yannick.engelmann@uantwerpen.be; kevin.vantveer@uantwerpen.be; callie.ndayirinde@uantwerpen.be; annemie.bogaerts@uantwerpen.be

² Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculty of Sciences, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50, 1050 Brussels, Belgium

³ Research group EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Ant-werp, Belgium; evgenii.vlasov@uantwerpen.be; sara.bals@uantwerpen.be

⁴State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China; yiyanhui@dlut.edu.cn

* Correspondence: yury.gorbanev@uantwerpen.be; Tel.: +32 32652343

Figure S1. XRPD diffractograms of the catalysts used in our work. (**a**) Fe₂O₃/Al₂O₃ (after calcination, before reduction); (**b**) Co₃O₄/Al₂O₃ (after calcination, before reduction); (**c**) Ru/Al₂O₃ (after calcination, after reduction).

Table S1. Measured active surface area (SBET) and pore volume (V) for the 10 wt% Co/Al₂O₃ catalyst before (fresh) and after (spent) the plasma-catalytic NH₃ synthesis experiments, showing no difference before and after the plasma experiments. The other catalysts showed similar behaviour.

Material	Sвет (m²/g)	V (cm³/g)
10 wt% Co/Al ₂ O ₃ (fresh)	175	0.37
10 wt% Co/Al2O3 (spent)	177	0.37

Figure S2. Typical SEM-EDX images of the catalysts, for the example of 10 wt% Co and Cu/Al₂O₃ catalysts with EDX maps applied for visualisation of the respective metals. (a) SEM image of the 10 wt% Co/Al₂O₃; (b) SEM EDX map of Co on the surface of the 10 wt% Co/Al₂O₃; (c) SEM image of the 10 wt% Cu/Al₂O₃; (d) SEM EDX map of Cu on the surface of the 10 wt% Cu/Al₂O₃. Green and cyan colours indicate the particles of the respective metal on the surface of Al₂O₃.

Figure S3. Current and voltage waveforms for the plasma-catalytic NH₃ synthesis experiments with different Al₂O₃-supported catalysts and pristine Al₂O₃, at different H₂:N₂ ratios in the feed gas. (**a**) Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**b**) 10 wt% Fe/Al₂O at the 1:1 H₂/N₂ gas ratio; (**c**) 10 wt% Ru/Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**d**) 10 wt% Co/Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**e**) 10 wt% Cu/Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**f**) 10 wt% Co/Al₂O₃ at the 1:3 H₂/N₂ gas ratio; (**g**) 10 wt% Co/Al₂O₃ at the 3:1 H₂/N₂ gas ratio.

Figure S4. Lissajous figures for the plasma-catalytic NH₃ synthesis experiments with different Al₂O₃-supported catalyst and pristine Al₂O₃, at the different H₂:N₂ ratios in the feed gas. (**a**) Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**b**) 10 wt% Fe/Al₂O at the 1:1 H₂/N₂ gas ratio; (**c**) 10 wt% Ru/Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**d**) 10 wt% Co/Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**e**) 10 wt% Cu/Al₂O₃ at the 1:1 H₂/N₂ gas ratio; (**f**) 10 wt% Co/Al₂O₃ at the 1:3 H₂/N₂ gas ratio; (**g**) 10 wt% Co/Al₂O₃ at the 3:1 H₂/N₂ gas ratio.

	Catalyst amount (g)	NH ³ production rate	
Reference in the main text		mg/h	mg/(h × g _{cat})
[35]	17	119	6.9
[36]	173	32	0.2
[39]	3.6	76	21
[42]	100	17	0.2
[46]	0.5	25	50
this work	12	42	3.5

Table S2. The amount of the used catalyst, and the production rate of NH_3 (in $mg/(h \times g_{cat})$ in our work compared to literature reports.