# Plasma-catalytic ammonia synthesis: Packed catalysts act as plasma modifiers

Callie Ndayirinde<sup>a\*</sup>, Yury Gorbanev<sup>a</sup>, Radu-George Ciocarlan<sup>b</sup>, Robin De Meyer<sup>a,c</sup>, Alessandro

Smets<sup>a,b</sup>, Evgenii Vlasov<sup>c</sup>, Sara Bals<sup>c</sup>, Pegie Cool<sup>b</sup>, Annemie Bogaerts<sup>a</sup>

<sup>a</sup>Research group PLASMANT, Department of Chemistry, University of Antwerp,

Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium.

<sup>b</sup>Research group LADCA, Department of Chemistry, University of Antwerp, Universiteitsplein

1, B-2610 Wilrijk-Antwerp, Belgium.

<sup>c</sup>Research group EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan

171, 2020 Antwerp, Belgium

## **Supporting information**

Pages: 16

Figures: 9

Tables: 4

<sup>&</sup>lt;sup>\*</sup> Corresponding author e-mail address: callie.ndayirinde@uantwerpen.be

### Table of contents

| Table S1: Summary of the State-of-the-         |    |
|------------------------------------------------|----|
| art                                            | 3  |
| S1 Non-dispersive infrared sensor (NDIR)       | 4  |
| S2 Capacitances obtained from Lissajous figure | 4  |
| S3 Raman spectroscopy                          | 5  |
| S4 SEM – EDX                                   | 8  |
| S5 N <sub>2</sub> sorption                     | 12 |
| S6 NH3-TPD                                     | 13 |
| S7 Plasma-catalytic performance                | 15 |
| References                                     | 18 |

**Table S1**: A summary of studies on  $NH_3$  production from  $N_2$  and  $H_2$  in dielectric barrier discharge (DBD) plasma reactors, as well as comparison with our work. The catalysts, experimental details, and the calculated values of  $NH_3$  yield and production rate correspond to the lowest energy consumption (EC) reported in the respective publications. This table was adapted from [1].

| Ref  | Catalyst                                         | T (°C) | Plasma<br>power<br>(W) | H2:N2<br>ratio | EC<br>(MJ/mol) | NH3<br>yield<br>(%) | NH3<br>production<br>rate (mg/h) |
|------|--------------------------------------------------|--------|------------------------|----------------|----------------|---------------------|----------------------------------|
| [2]  | Ru/Al <sub>2</sub> O <sub>3</sub>                | 20     | 127                    | 3:1            | 244            | 2.4                 | 16                               |
| [3]  | Cu                                               | n/a†   | n/a                    | 1:1            | 19             | 1.4                 | 71                               |
| [4]  | DLC-<br>coated<br>Al <sub>2</sub> O <sub>3</sub> | 160    | 70                     | 3:1            | 350            | n/a                 | 12                               |
| [5]  | PZT                                              | 60     | n/a                    | 3:1            | 94             | 7                   | 34                               |
| [6]  | Ru-Cs-K-<br>Ba/<br>/Si-MCM-<br>41                | 150    | n/a                    | 1:1            | 36             | <0.1                | n/a                              |
| [7]  | RuO-<br>MgO/Al <sub>2</sub> O <sub>3</sub>       | 300    | 4                      | 1:4            | 2              | <0.1                | 113                              |
| [8]  | Ni/SiO <sub>2</sub><br>+ BaTiO <sub>3</sub>      | 140    | 87                     | 3:1            | 81             | 12.0                | 32                               |
| [9]  | Au                                               | n/a    | 100                    | 1:1            | 79             | 2.5                 | 77                               |
| [10] | Co/Al <sub>2</sub> O <sub>3</sub>                | 200    | 10                     | 2:1            | 36             | 1.0                 | 17                               |
| [11] | Ni/Al <sub>2</sub> O <sub>3</sub>                | 35     | 10                     | 2:1            | 56             | 0.7                 | 10                               |
| [12] | Co/Al <sub>2</sub> O <sub>3</sub>                | 200    | 10                     | 1:3            | 102            | 0.1                 | 6                                |
| [13] | Ru/Al <sub>2</sub> O <sub>3</sub>                | 118    | 38                     | 1:2            | 32             | 1.1                 | 76                               |
| [14] | Ru/MgO                                           | 200    | 26                     | 1:2            | 47             | 0.1                 | 25                               |
| [15] | alkaline<br>Al <sub>2</sub> O <sub>3</sub>       | >105   | 24                     | 3:1            | 9              | <0.1                | 159                              |

<sup>&</sup>lt;sup>+</sup> Not available: the data were missing, and the absence of the needed experimental data did not allow us to calculate the numerical values.

| [16]         | Rh/Al <sub>2</sub> O <sub>3</sub>        | 300  | n/a | 1:2 | 65 | 1.1 | 29 |
|--------------|------------------------------------------|------|-----|-----|----|-----|----|
| [17]         | Ru/AC                                    | n/a  | 13  | 3:1 | 85 | 0.5 | 10 |
| [18]         | Ru-K/MgO                                 | 390  | 4   | 1:1 | 46 | 0.6 | 5  |
| [1]          | Co/Al <sub>2</sub> O <sub>3</sub>        | <120 | 67  | 1:1 | 99 | 1.0 | 42 |
| [19]         | Co-<br>Ni/Al <sub>2</sub> O <sub>3</sub> | 200  | 31  | 1:1 | 37 | 0.6 | 51 |
| [20]         | Ru/AC                                    | 110  | 9   | 1:1 | 96 | 0.3 | 6  |
| [21]         | Zeolite 4A                               | 57   | 6.4 | 1:2 | 27 | 2.6 | 15 |
| [22]         | Ni/MCM-<br>41                            | 35   | 40  | 3:1 | 51 | 5.3 | 48 |
| This<br>work | CoLa/Al <sub>2</sub> O <sub>3</sub>      | <120 | 51  | 1:1 | 77 | 0.9 | 41 |

#### Non-dispersive infrared sensor (NDIR)

In this study a non-dispersive infrared sensor is used to determine the NH<sub>3</sub> concentration at the outlet of the DBD reactor. The NDIR was calibrated by measuring various concentrations of NH<sub>3</sub> diluted with helium. Plotting these values (Figure S1) generates the calibration equation:

 $2.10^{\text{-}10}\,{\rm C_{shown}}^3 - 3.10^{\text{-}6}\,{\rm C_{shown}}^2 + 0.9033\,\,{\rm C_{shown}} = {\rm C_{real}}$ 



Figure S1: Measured  $NH_3$  concentration versus the actual  $NH_3$  concentration during the NDIR calibration.

#### S2 Capacitances obtained from Lissajous figure

Various information can be obtained from Lissajous figures but in this section we focus on capacitances. Figure S2 shows an ideal Lissajous figure with characteristic parallelogram shape. Line AB and DC represent the two "plasma off" phases. During the plasma off phase no plasma is formed and the DBD reactor behaves as two capacitors in series namely the dielectric layer ( $C_{diel}$ ) and the discharge gap ( $C_{gap}$ ).[23]  $C_{diel}$  and  $C_{gap}$  are related to the overall DBD cell capacitance ( $C_{cell}$ ) in the following way:

$$\frac{1}{C_{cell}} = \frac{1}{C_{diel}} + \frac{1}{C_{gap}}$$

**S1** 

On the other hand, lines BC and DA represent the "plasma on" phase when the plasma is formed inside the discharge gap. The slope indicates the effective capacity ( $C_{eff}$ ) of the DBD reactor.[24] In a plane-parallel DBD plasma reactor, the discharge gap is uniformly spaced and therefore the ignition voltage across the gap will be roughly constant. In this case  $C_{eff}$  is equal to  $C_{diel}$ . However, when the discharge gap is filled with catalysts, the plasma ignites over a range of gap voltages and as a result lines BC and DA will not be



Figure S2: The ideal Lissajous figure with parallelogram shape.

a straight lines anymore, as shown in Figure 5. In this case C<sub>eff</sub> is only equal to C<sub>diel</sub> at the maximum observed slope.[23]

#### S3 Raman spectroscopy

The Raman spectra were recorded on a Horiba XploRA Plus Raman spectrometer equipped with a diodepumped solid-state laser of 532 nm and a power of 25 mW. The samples were measured with an acquisition time of 10 s, 10 accumulations and in a spectral range of 100-2000 cm<sup>-1</sup>. The spectra were acquired in two different spots on two different beads, in order to verify the homogeneity of the catalysts.



Figure S3: Raman spectra of the fresh Co/Al<sub>2</sub>O<sub>3</sub>, CoCe/Al<sub>2</sub>O<sub>3</sub>, CoCeLa/Al<sub>2</sub>O<sub>3</sub> and CoLa/Al<sub>2</sub>O<sub>3</sub> catalysts.

All samples show Raman modes around similar shifts: ~190, ~477, ~520, ~622 and ~685 cm<sup>-1</sup>. These modes are in good agreement with the values of pure Co<sub>3</sub>O<sub>4</sub> spinel structure. For pure Co<sub>3</sub>O<sub>4</sub> spinel structure with Co<sup>2+</sup> and Co<sup>3+</sup> located in the tetrahedral and octahedral sites, the space group theory predicts five Raman-active modes: A<sub>1g</sub>, E<sub>g</sub> and three F<sub>2g</sub> modes.[25, 26] The A<sub>1g</sub> band (~685 cm<sup>-1</sup>) can be attributed to characteristics of the octahedral sites.[25-27] In addition, there is a general agreement that the E<sub>g</sub> (~477 cm<sup>-1</sup>) and F<sub>2g</sub> (~190, ~520 and ~622 cm<sup>-1</sup>) modes are related to the combined vibrations of the tetrahedral site and octahedral oxygen motions.[25, 27, 28] . Further, spent CoCeMg/Al<sub>2</sub>O<sub>3</sub> and fresh and spent CoCeLa/Al<sub>2</sub>O<sub>3</sub> all show a shoulder at ca. ~440 cm<sup>-1</sup>, which could be attributed to the cubic fluorite structure of ceria (CeO<sub>2</sub>) and/or to La<sub>2</sub>O<sub>3</sub> in case of CoCeLa/Al<sub>2</sub>O<sub>3</sub>. The F<sub>2g</sub> symmetry is the only Raman active mode of CeO<sub>2</sub>[29] and is related to symmetrical stretch vibrations in the [CeO<sub>8</sub>] cubic subunit of the CeO<sub>2</sub> structure.[30] In addition, fresh and spent CoLa/Al<sub>2</sub>O<sub>3</sub> both show a shoulder around 445 cm<sup>-1</sup> which could be assigned to La<sub>2</sub>O<sub>3</sub>. The E<sub>g</sub> mode of La<sub>2</sub>O<sub>3</sub> is correlated to the La-O stretching vibration, while the A<sub>1g</sub> mode of La<sub>2</sub>O<sub>3</sub> is ascribed to the La-O bending vibration.[31]

| Sample                                |     | F <sub>2g</sub><br>(Co <sub>3</sub> O <sub>4</sub><br>(cm <sup>-1</sup> ) | ı)  | Eg<br>(C03O4)<br>cm <sup>-1</sup> | A <sub>1g</sub><br>(Co <sub>3</sub> O <sub>4</sub> )<br>(cm <sup>-1</sup> ) | F <sub>2g</sub><br>(CeO <sub>2</sub> )<br>(cm <sup>-1</sup> ) | E <sub>g</sub><br>(La <sub>2</sub> O <sub>3</sub> )<br>(cm <sup>-1</sup> ) | A <sub>1g</sub><br>(La <sub>2</sub> O <sub>3</sub> )<br>(cm <sup>-1</sup> ) |
|---------------------------------------|-----|---------------------------------------------------------------------------|-----|-----------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Co/Al <sub>2</sub> O <sub>3</sub>     | 202 | 523                                                                       | 637 | 489                               | 703                                                                         | -                                                             | -                                                                          | -                                                                           |
| CoCe/Al <sub>2</sub> O <sub>3</sub>   | 180 | 523                                                                       | 605 | 480                               | 680                                                                         | -                                                             | -                                                                          | -                                                                           |
| CoCeLa/Al <sub>2</sub> O <sub>3</sub> | 193 | 523                                                                       | 616 | 474                               | 698                                                                         | 447                                                           | 459                                                                        | 193                                                                         |
| CoLa/Al <sub>2</sub> O <sub>3</sub>   | 196 | 523                                                                       | 604 | 444                               | 665                                                                         | -                                                             | 447                                                                        | 196                                                                         |
| CoCeMg/Al <sub>2</sub> O <sub>3</sub> | 184 | 511                                                                       | 604 | 459                               | 664                                                                         | 432                                                           | -                                                                          | -                                                                           |

 $\label{eq:constraint} \textbf{Table S2:} Peak values of the Raman spectra of fresh Co/Al_2O_3, CoCe/Al_2O_3, CoLa/Al_2O_3, CoCeLa/Al_2O_3 and CoCeMg/Al_2O_3.$ 

S4 SEM – EDX



**Figure S4:** SEM image of (A) Co/Al<sub>2</sub>O<sub>3</sub>, (B) CoCe/Al<sub>2</sub>O<sub>3</sub>, (C) CoCeMg/Al<sub>2</sub>O<sub>3</sub>, (D) CoCeLa/Al<sub>2</sub>O<sub>3</sub> and (E) CoLa/Al<sub>2</sub>O<sub>3</sub>. (F) Shows the elemental EDX map for Co on top of image (A). The brighter pixels indicate a higher Co concentration. As is confirmed by the radial distribution, the Co sample displays a Co-rich area at the edge of the bead. As indicated in (F), a circle is fitted to the edge of the bead, so the distance from the center can be determined for every pixel, as indicated by the red arrow. This results in the radial distribution for the various elements. The images were acquired in backscattered electron mode which is sensitive to local variations in the composition (average atomic number).



**Figure S5:** Metal content as a function of distance from the center of the bead for (A)  $Co/Al_2O_3$ , (B)  $CoCe/Al_2O_3$ , (C)  $CoCeMg/Al_2O_3$ , (D)  $CoCeLa/Al_2O_3$  and (E)  $CoLa/Al_2O_3$ . From this plot it is clear that most of the metals are present on the outermost micrometers of the bead (except for  $CoCeLa/Al_2O_3$ ), which is beneficial for the plasma-catalytic synthesis of NH<sub>3</sub>, as more active sites will be exposed to the plasma. Furthermore, this can alter the conductivity of the packing material, which affects the plasma discharge.



Figure S6: EDX map of the cross-section of a Co/Al<sub>2</sub>O<sub>3</sub> bead.



Figure S7: EDX map of the cross-section of a  $CoCe/Al_2O_3$  bead.



Figure S8: EDX map of the cross-section of a CoCeMg/Al<sub>2</sub>O<sub>3</sub> bead.



Figure S9: EDX map of the cross-section of a CoCeLa/Al<sub>2</sub>O<sub>3</sub> bead.



Figure S10: EDX map of the cross-section of a CoLa/Al<sub>2</sub>O<sub>3</sub> bead.

#### S5 N<sub>2</sub> sorption

All the isotherms can be classified as type IV(a) in the IUPAC classification of physisorption isotherms, which are typical for mesoporous materials.[32]



Figure S11: Physisorption isotherms of fresh and/or spent catalysts and pristine Al<sub>2</sub>O<sub>3</sub>.

#### S6 NH<sub>3</sub>-TPD

The NH<sub>3</sub>-TPD revealed information on the acidity of spent Al<sub>2</sub>O<sub>3</sub>, Co/Al<sub>2</sub>O<sub>3</sub> and CoLa/Al<sub>2</sub>O<sub>3</sub>. These three samples were chosen because  $Al_2O_3$  is used as a support for all catalysts, and out of all catalysts CoLa/Al<sub>2</sub>O<sub>3</sub> showed the best results, while Co/Al<sub>2</sub>O<sub>3</sub> performed in-between the two, see Figure 4 and Figure S15. In the weak acid site region (120-300°C)[11, 33], Al<sub>2</sub>O<sub>3</sub> shows a desorption peak at 236 °C, while Co/Al<sub>2</sub>O<sub>3</sub> and CoLa/Al<sub>2</sub>O<sub>3</sub> both show a desorption peak at 222 °C, shown in Figure S12. Interestingly, the temperature of desorption decreased for the transition metal catalysts compared to Al<sub>2</sub>O<sub>3</sub>, indicating that the strength of the acid sites reduced. Weak acid sites, as opposed to medium or strong acid sites, can facilitate the desorption of the end product, which is beneficial for the production rate of the catalyst.[34] Moreover, in the medium/strong acid region[11, 33], Al<sub>2</sub>O<sub>3</sub> and CoLa/Al<sub>2</sub>O<sub>3</sub> show a desorption peak at 576 °C and 526 °C, respectively. The mass spectrometer however revealed that these peaks are not due to the desorption of NH<sub>3</sub> (m/z= 17), but due to water evolution (m/z=18), see Figure S13. It is possible that hydroxyl groups on the surface of the catalyst desorb in the form of water. Indeed, a slight increase in the signal of m/z=16 is visible at the same time of the water evolution, which could be attributed to the desorption of hydroxyl groups. A similar phenomenon with Al<sub>2</sub>O<sub>3</sub>-supported catalysts was observed by Lin et al. [35] Lastly, the amount of ammonia adsorbed on the acid sites, shown in Table S3, demonstrates that impregnating the support with metals reduces the number of available acid sites.[11] Taken together with the data in Table S3, we can conclude both catalysts show similar affinity for ammonia.



Figure S12: NH<sub>3</sub>-TPD profiles of spent Al<sub>2</sub>O<sub>3</sub>, Co/Al<sub>2</sub>O<sub>3</sub> and CoLa/Al<sub>2</sub>O<sub>3</sub>.



Figure S13: The MS Signal a function of time during the NH<sub>3</sub> TPD analysis of (a) Al<sub>2</sub>O<sub>3</sub> and (b) CoLa/Al<sub>2</sub>O<sub>3</sub>.

| Catalyst                            | Amount of adorsbed NH₃ on the<br>acid sites<br>(μmol/g) |
|-------------------------------------|---------------------------------------------------------|
| Al <sub>2</sub> O <sub>3</sub>      | 257                                                     |
| Co/Al <sub>2</sub> O <sub>3</sub>   | 158                                                     |
| CoLa/Al <sub>2</sub> O <sub>3</sub> | 150                                                     |

| Table | S3: | Surface | acidity | of Al <sub>2</sub> O <sub>3</sub> , | Co/ | Al <sub>2</sub> O <sub>3</sub> and | CoLa Al <sub>2</sub> O <sub>3</sub> . |
|-------|-----|---------|---------|-------------------------------------|-----|------------------------------------|---------------------------------------|
|-------|-----|---------|---------|-------------------------------------|-----|------------------------------------|---------------------------------------|



**S7** Plasma-catalytic performance

Figure S14: (A)  $NH_3$  concentration, (B) production rate, (C) energy consumption and (D) specific energy input, as a function of the gas flow rate for an empty reactor and a reactor packed with  $Al_2O_3$  and the Co-based catalysts at a 1:1  $H_2:N_2$  ratio.



**Figure S15:** (A) NH<sub>3</sub> concentration and power, and (B) energy consumption and production rate, for an empty DBD reactor, and a DBD reactor packed with Al<sub>2</sub>O<sub>3</sub>, Co/Al<sub>2</sub>O<sub>3</sub>, CoCe/Al<sub>2</sub>O<sub>3</sub>, CoCe/Al<sub>2</sub>O<sub>3</sub>, CoCe/Al<sub>2</sub>O<sub>3</sub>, CoCe/Al<sub>2</sub>O<sub>3</sub>, and CoLa/Al<sub>2</sub>O<sub>3</sub> and CoLa/Al<sub>2</sub>O<sub>3</sub> catalysts, operating at 200 mL/min and at three different H<sub>2</sub>:N<sub>2</sub> ratios. The empty reactor was used with two different feed gas flow rates: 400 and 200 mL/min, to obtain the same residence time and same mass flow rate, respectively, as the packed reactor.



Figure S16: NH<sub>3</sub> concentration as a function of time for the reaction using CoLa/Al<sub>2</sub>O<sub>3</sub> as packed catalysts. The



**Figure S17:** NH<sub>3</sub> concentration normalized over the surface area for a DBD reactor packed with Al<sub>2</sub>O<sub>3</sub>, Co/Al<sub>2</sub>O<sub>3</sub>, Co/Ce/Al<sub>2</sub>O<sub>3</sub>, Co/

#### References

[1] Y. Gorbanev, Y. Engelmann, K. van't Veer, E. Vlasov, C. Ndayirinde, Y. Yi, S. Bals, A. Bogaerts, Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms, Catalysts, 11 (2021).

[2] T. Mizushima, K. Matsumoto, J.-i. Sugoh, H. Ohkita, N. Kakuta, Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis, Appl. Catal., 265 (2004) 53-59.

[3] K. Aihara, M. Akiyama, T. Deguchi, M. Tanaka, R. Hagiwara, M. Iwamoto, Remarkable catalysis of a wool-like copper electrode for NH 3 synthesis from N 2 and H 2 in non-thermal atmospheric plasma, Chem. Commun., 52 (2016) 13560-13563.

[4] J. Hong, M. Aramesh, O. Shimoni, D.H. Seo, S. Yick, A. Greig, C. Charles, S. Prawer, A.B. Murphy, Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge, Plasma Chem. Plasma Process., 36 (2016) 917-940.

[5] A. Gómez-Ramírez, A.M. Montoro-Damas, J. Cotrino, R.M. Lambert, A.R. González-Elipe, About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor, Plasma Process Polym, 14 (2017) 1600081.

[6] P. Peng, Y. Cheng, R. Hatzenbeller, M. Addy, N. Zhou, C. Schiappacasse, D. Chen, Y. Zhang, E. Anderson, Y. Liu, Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia, Int. J. Hydrogen Energy, 42 (2017) 19056-19066.

[7] H.H. Kim, Y. Teramoto, A. Ogata, H. Takagi, T. Nanba, Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts, Plasma Process Polym, 14 (2017) 1600157.

[8] G. Akay, K. Zhang, Process intensification in ammonia synthesis using novel coassembled supported microporous catalysts promoted by nonthermal plasma, Ind. Eng. Chem. Res., 56 (2017) 457-468.
[9] M. Iwamoto, M. Akiyama, K. Aihara, T. Deguchi, Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2, ACS Catal., 7 (2017) 6924-6929.

[10] P. Mehta, P. Barboun, F.A. Herrera, J. Kim, P. Rumbach, D.B. Go, J.C. Hicks, W.F. Schneider, Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis, Nat. Catal., 1 (2018) 269-275.

[11] Y. Wang, M. Craven, X. Yu, J. Ding, P. Bryant, J. Huang, X. Tu, Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al2O3 Catalyst at Near-Room Temperature: Insights into the Importance of the Catalyst Surface on the Reaction Mechanism, ACS Catalysis, 9 (2019) 10780-10793.

[12] P. Barboun, P. Mehta, F.A. Herrera, D.B. Go, W.F. Schneider, J.C. Hicks, Distinguishing Plasma Contributions to Catalyst Performance in Plasma-Assisted Ammonia Synthesis, ACS Sustain. Chem. Eng., 7 (2019) 8621-8630.

[13] S. Li, T. van Raak, F. Gallucci, Investigating the operation parameters for ammonia synthesis in dielectric barrier discharge reactors, J. Phys. D: Appl. Phys., 53 (2020).

[14] Q. Xie, S. Zhuge, X. Song, M. Lu, F. Yu, R. Ruan, Y. Nie, Non-thermal atmospheric plasma synthesis of ammonia in a DBD reactor packed with various catalysts, J. Phys. D: Appl. Phys., 53 (2019) 064002.
[15] X. Zhu, X. Hu, X. Wu, Y. Cai, H. Zhang, X. Tu, Ammonia synthesis over γ-Al2O3 pellets in a packed-bed dielectric barrier discharge reactor, J. Phys. D: Appl. Phys., 53 (2020) 164002.

[16] B.S. Patil, N. Cherkasov, N.V. Srinath, J. Lang, A.O. Ibhadon, Q. Wang, V. Hessel, The role of heterogeneous catalysts in the plasma-catalytic ammonia synthesis, Catal. Today, 362 (2021) 2-10.
[17] X. Hu, X. Zhu, X. Wu, Y. Cai, X. Tu, Plasma-enhanced NH3 synthesis over activated carbon-based catalysts: Effect of active metal phase, Plasma Process Polym, 17 (2020) 2000072.

[18] K.H. Rouwenhorst, H.G. Burbach, D.W. Vogel, J.N. Paulí, B. Geerdink, L. Lefferts, Plasma-catalytic ammonia synthesis beyond thermal equilibrium on Ru-based catalysts in non-thermal plasma, Catal. Sci. Technol., (2021).

[19] Y. Liu, C.-W. Wang, X.-F. Xu, B.-W. Liu, G.-M. Zhang, Z.-W. Liu, Q. Chen, H.-B. Zhang, Synergistic Effect of Co–Ni Bimetal on Plasma Catalytic Ammonia Synthesis, Plasma Chem. Plasma Process., (2022) 1-16.

[20] X. Zhu, J. Liu, X. Hu, Z. Zhou, X. Li, W. Wang, R. Wu, X. Tu, Plasma-catalytic synthesis of ammonia over Ru-based catalysts: Insights into the support effect, Journal of the Energy Institute, (2022).
[21] K.H. Rouwenhorst, S. Mani, L. Lefferts, Improving the energy yield of plasma-based ammonia synthesis with in situ adsorption, ACS Sustain. Chem. Eng., 10 (2022) 1994-2000.

[22] Y. Wang, W. Yang, S. Xu, S. Zhao, G. Chen, A. Weidenkaff, C. Hardacre, X. Fan, J. Huang, X. Tu, Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis, Journal of the American Chemical Society, (2022).

[23] F. Peeters, T. Butterworth, Electrical diagnostics of dielectric barrier discharges, in: A. Nikiforov, Z. Chen (Eds.) Atmospheric Pressure Plasma-from Diagnostics to Applications, BoD – Books on Demand2019, pp. 144.

[24] M. Ramakers, I. Michielsen, R. Aerts, V. Meynen, A. Bogaerts, Effect of Argon or Helium on the CO2Conversion in a Dielectric Barrier Discharge, Plasma Process Polym, 12 (2015) 755-763.

[25] M. Rashad, M. Rüsing, G. Berth, K. Lischka, A. Pawlis, CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy, Journal of Nanomaterials, 2013 (2013).

[26] S. Deng, N. Chen, D. Deng, Y. Li, X. Xing, Y. Wang, Meso-and macroporous coral-like Co3O4 for VOCs gas sensor, Ceram. Int., 41 (2015) 11004-11012.

[27] A. Diallo, A. Beye, T.B. Doyle, E. Park, M. Maaza, Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties, Green Chemistry Letters and Reviews, 8 (2015) 30-36.

[28] B. Rivas-Murias, V. Salgueiriño, Thermodynamic CoO–Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals, Journal of Raman Spectroscopy, 48 (2017) 837-841.

[29] V.V. Pushkarev, V.I. Kovalchuk, J.L. d'Itri, Probing defect sites on the CeO2 surface with dioxygen, The Journal of Physical Chemistry B, 108 (2004) 5341-5348.

[30] S. Loridant, Raman spectroscopy as a powerful tool to characterize ceria-based catalysts, Catal. Today, (2020).

[31] N. Wang, J. Liu, W. Gu, Y. Song, F. Wang, Toward synergy of carbon and La2O3 in their hybrid as an efficient catalyst for the oxygen reduction reaction, RSC Advances, 6 (2016) 77786-77795.

[32] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.

[33] W. Xu, B. Chen, X. Jiang, F. Xu, X. Chen, L. Chen, J. Wu, M. Fu, D. Ye, Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5 : Acidity/basicity, catalytic activity and reaction mechanism, Journal of Hazardous Materials, 387 (2020).

[34] S. Li, Y. Shao, H. Chen, X. Fan, Nonthermal Plasma Catalytic Ammonia Synthesis over a Ni Catalyst Supported on MgO/SBA-15, Industrial & Engineering Chemistry Research, 61 (2022) 3292-3302.

[35] B. Lin, L. Heng, H. Yin, B. Fang, J. Ni, X. Wang, J. Lin, L. Jiang, Effects of Using Carbon-Coated Alumina as Support for Ba-Promoted Ru Catalyst in Ammonia Synthesis, Industrial & Engineering Chemistry Research, 58 (2019) 10285-10295.