pubs.acs.org/journal/ascecg

Plasma-Assisted Dry Reforming of CH₄: How Small Amounts of O₂ Addition Can Drastically Enhance the Oxygenate Production—Experiments and Insights from Plasma Chemical Kinetics Modeling

Shangkun Li, Jintao Sun, Yury Gorbanev, Kevin van't Veer, Björn Loenders, Yanhui Yi, Thomas Kenis, Qi Chen, and Annemie Bogaerts*

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM. **KEYWORDS:** *dry reforming of methane, oxygenates, plasma, chemical kinetics modeling*

1. INTRODUCTION

The amounts of two important greenhouse gases, i.e., CO₂ and CH₄, are growing continuously in the atmosphere due to the high production and consumption of fossil fuels to satisfy rapid energy demands. Dry reforming of methane (DRM) with carbon dioxide into value-added chemicals is promising for a carbon-neutral ecosystem and is therefore one of the utmost tasks of sustainable chemistry. Great efforts have been made in the chemical transformation of CO₂ and CH₄ into syngas, the mixture of CO and H₂, which can be commercially converted into bulk chemicals and fuels by the thermocatalytic Fischer-Tropsch (FT) synthesis.^{1,2} However, due to the high bond energy of C=O (5.5 eV, in CO₂) and C-H (4.5 eV, in CH_4), this two-step route generally starts with a highly endothermic process, requiring high temperature (>700 °C) for syngas production, and proceeds at high pressure (tens of atm) in the FT process. These conditions are very energy-demanding and rely heavily on fossil fuels. In order to comply with the decarbonization of the chemical industry, the development of alternative, milder DRM approaches into high-value-added liquid fuels and chemicals is very sought-after.

Nonthermal plasma provides a facile way to activate molecules with energetic electrons instead of heat, triggering

chemical reactions near room temperature.^{3–5} Plasma is a partially ionized gas, consisting of electrons, ions, photons, excited states, atoms, and radicals, besides neutral gas molecules. Plasma-enabled processes have two main advantages: (i) they can be quickly switched on and off, compared to the long-time heating and cooling processes in thermal catalytic systems; and (ii) they can be powered by intermittent renewable electricity (e.g., wind and solar energy) to reduce fossil fuel consumption and greenhouse gas emissions and to comply with the goal of electrification of the chemical industry.

Dielectric barrier discharge (DBD) plasmas are frequently used for DRM.^{5,6} Earlier studies have shown that plasmaassisted DRM can realize the appealing gas-to-liquid (GtL) process, in which major liquid oxygenates include alcohols and acids, by optimizing the reactor geometry, plasma parameters,

Received:July 14, 2023Revised:September 25, 2023Published:October 6, 2023

Figure 1. Schematic overview of the experimental setup. Electrical connections are represented by full black lines, gas and liquid connections by full blue lines, and water-cooling connections by dashed blue lines

and reaction conditions, although the total liquid selectivity was less than 15%.^{7,8} Rahmani et al. investigated the influence of steam on DRM and the distribution of products with specific energy input. The selectivity to liquid hydrocarbons was 3% by weight, with methanol (CH₃OH), ethanol, isopropanol, and acetone as the most abundant liquid oxygenates at room temperature.9 Interestingly, additional oxygen in the CO₂/CH₄ feed gas has positive effects on the yield of CH₃OH, HCHO, and CO and reduces the total consumed energy.¹⁰ Recently, Wang et al. studied the influence of process parameters (i.e., discharge power, reaction temperature, and residence time) on oxygenates production by using a water-cooled DBD reactor, with CH₃OH (43% relative selectivity) being the main liquid product.¹¹ By artificial neural network models, discharge power was identified as the most critical process parameter for plasma-driven DRM to oxygenates.¹¹

The development of chemical processes requires a detailed understanding of the underlying chemical reaction pathways. For this purpose, chemical kinetics modeling has been applied for DRM in DBD reactors.^{12–14} Snoeckx et al. simulated the filamentary behavior of a DBD reactor and the main product was syngas in a H₂/CO ratio of ca. 1.5, with low amounts of CH₃OH and HCHO.¹² De Bie et al. developed a 1D fluid model for a CO₂/CH₄ mixture in a DBD and compared the densities of the various plasma species as a function of residence time and gas mixing ratio.¹³ The density of various plasma species showed different trends as a function of the residence time, indicating that some targeted molecules could be selectively produced by optimizing the residence time (and thus the flow rate).

DBD plasmas are highly nonequilibrium, i.e., the temperature of the electrons is much higher than that of the gas.^{15,16} The low temperature of the gas allows incorporation of a catalyst into the DBD discharge region, which can improve the system efficiency. Various packing materials with both noncatalytic and catalytic properties have been used for plasma-catalytic DRM, including glass beads,¹⁷ metal oxides,¹⁸ supported catalysts with both transition and noble metals,^{19,20} zeolites,²¹ and metal–organic frameworks.²² However, the negative issue of coke deposition due to the fast rate of CH₄ dissociation induced by plasma imposes restrictions on the stability of catalysts and hinders further understanding of the mutual interaction between plasmas and catalysts.²³

Previously, we have studied the selective oxidation of methane to CH_3OH by molecular oxygen (O_2) , and chemical kinetics modeling showed the reaction pathways for the formation of CH_3OH and other oxygenates in the CH_4/O_2 plasma.³ In this work, we elaborate on DBD plasma-DRM studies by introducing oxygen to tackle the problem of the inevitable carbon deposition in an in-house developed temperature-controlled DBD reactor. On one hand, coke deposition might result in unstable plasma discharge and catalyst deactivation in plasma catalysis, which makes it challenging to find cost-effective and stable catalysts for this reaction, thus limiting the use of this process on a commercial scale. On the other hand, O2 addition could improve the concentration of oxygen-rich radicals in CO_2/CH_4 plasma, which might increase oxygenate production.^{3,10} Therefore, we only focus on the catalyst-free process to obtain a fundamental understanding of the CO₂/CH₄ plasma behavior by introducing O₂ in this work. In addition, we investigated the influence of various process parameters, i.e., the CO₂/CH₄ molar ratio, temperature, plasma discharge power, and residence time, on the reaction performance and the optimal O_2 fraction. Finally, to support our experimental results, we performed computational plasma chemical kinetics modeling to unveil the possible chemical pathways for plasma-assisted DRM to oxygenates.

2. EXPERIMENT AND MODELING

2.1. Description of the Experimental Setup. Plasma experiments (Figure 1) were carried out in a temperature-

controlled coaxial DBD reactor with a water electrode (ground electrode) operated at atmospheric pressure. The DBD reactor consists of a pair of coaxial quartz cylinders (inner and outer quartz tubes) in which a stainless-steel (2 mm outer diameter) electrode was placed in the center and circulating water was pumped into the space between the inner and outer cylinder. A tungsten rod was installed in the space between both cylinders to connect this circulating water (flowing between this inner and outer wall) with a ground wire (outside of the reactor wall) so that the circulating water acts as a ground electrode of our DBD. The water flow rate (5 L/min) and temperature (10-85 °C) were controlled by thermostatic baths with a circulation pump and external temperature controller (Huber KISS 104A), which can effectively remove the heat generated by the discharge and maintain a constant reaction temperature. The discharge length is 60 mm (defined by the length of the ground electrode, i.e., region of circulating water), and the inner diameter of the inner quartz cylinder is 10 mm, yielding a discharge gap of 4 mm.

The feed gas flow $(CO_2, CH_4, and O_2)$ was supplied using mass flow controllers (MFC, Bronkhorst) connected to the gas cylinders (both 99.999%, Praxair). The feed gases were mixed using a T-connector and subsequently introduced into the water-cooling DBD plasma reactor. O2 was introduced with concentrations of 0-16%, which was in the safe range at the present experimental conditions. The detailed ternary flammability diagram for CO2-CH4-O2 mixtures is shown in Figure S1 of the Supporting Information (Section S1). A cooling trap was placed at the exit of the DBD reactor to condense the liquid products. The gas flow rate was measured before and after the plasma reaction using a soap-film flow meter, to account for gas expansion or contraction due to the chemical reaction and thus to correctly determine the gas conversion and product selectivity. In this study, the DBD reactor was connected to a high-frequency power supply unit (PSU) AFS G10S-V (AFS GmbH) with a transformer. The electrical characteristics were monitored with a digital oscilloscope (Pico Technology PicoScope 6402D) using a high-voltage probe (Tektronix P6015A) and a current monitor (Pearson Electronics 4100). The PSU was operated at a frequency of 23.5 kHz. An additional low-voltage probe was connected to an external capacitor (10 nF) to obtain the Lissajous figures, which were used to calculate the plasma power and monitor the discharge properties.

2.2. Chromatographic Analysis Methods. Gas samples were analyzed by a micro gas chromatograph (μ GC; Agilent 990) equipped with thermal conductivity detectors to quantify the production of gaseous products in two channels. The first channel was equipped with MoleSieve SA and CP-PoraBOND Q columns used to analyze the permanent gases, including CO, H₂, O₂, N₂, and CH₄, while the second channel with an Al₂O₃/KCI column was used to separate CO₂ and hydrocarbons (C₂-C₄). Samples were injected into the column from the reactor's outlet after passing through the cold trap. The total duration of the analysis was 5 min in the μ GC. Ar and He were used as the carrier gases in channel one and channel two, respectively.

Liquid products condensed by the cold trap were first analyzed by GC (Thermo Focus SSL) with a flame ionization detector and a Restek Stabilwax column, which allowed efficient separation of all liquid products (e.g., CH₃OH, C_2H_3OH , HCOOCH₃). The same sample was also analyzed by HPLC (Waters 2695) containing a Shodex RSpak KC-811 column, a photodiode array 2996 detector, and a refractive index 2414 detector (Figure S2 in Supporting Information, Section S2). The mobile phase was 0.1% HClO₄ in Milli-Q water flowing at 1 mL/min. Formaldehyde (CH₂O), formic acid (HCOOH), and acetic acid could be detected.

In this study, the gas flow rate $(V_{intlet/outlet})$ before and after the reaction was detected by a bubble flow meter to account for gas expansion or contraction due to the reaction, which is crucial for correct determination of the conversion, as mentioned above. The conversion of CO₂, CH₄, and O₂, as well as the selectivity of the main gaseous products [i.e., CO, H₂, hydrocarbons (C_xH_y)] and liquid products $(C_xH_yO_{zy})$ including CH₃OH, HCHO, HCOOH, and other oxygenates), was calculated as shown in Supporting Information, Section S3, eqs S1–S13.

2.3. Description of the Chemical Kinetics Model. A zero-dimensional (0D) plasma kinetic model comprising various atoms, radicals, excited species, neutral molecules, and ions was developed to obtain insights into the underlying mechanism of plasma-assisted CH_4/CO_2 reforming. The plasma kinetics solver ZDPlasKin,²⁴ which incorporates a Boltzmann equation solver BOLSIG+,²⁵ was used to obtain the time evolution of the species densities generated in the reaction chamber. It solves the continuity equations for the various species densities

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = \sum_j \left[(a_{ij}^{\mathrm{R}} - a_{ij}^{\mathrm{L}}) k_j \prod_l n_l^{\mathrm{L}} \right] \tag{1}$$

where n_i stands for the density of species *i*, *a*R *ij* and *a*L *ij* are the stoichiometric coefficients of the species *i* on the right- and left-hand side of the reaction *j*, respectively. n_i is the density of species *l* on the left side of the reaction, and k_j is the rate coefficient of reaction *j*. More information about the model can be found in Section S4.

We developed a detailed kinetic mechanism consisting of electron impact reactions, neutral-neutral, neutral-ion, electron-ion recombination reactions, and reactions involving excited species for atmospheric pressure AC plasma-assisted CH_4/CO_2 reforming. The main body of the chemistry set was adopted from the works of our group PLASMANT for its excellent prediction ability for experimental results under different conditions.^{26,27} Furthermore, other reactions were integrated to describe the formation and consumption pathways of liquid oxygenates and related intermediates from the NIST Chemical Kinetics Database²⁸ and HP-Mech.^{29,30} For electron impact reactions, most of the cross sections were obtained from the online LXCat database³¹ and Wanten et al.²⁶ It is worth noting that three channels were considered regarding the dissociation of CO₂ based on the CO₂ electronic and vibrational levels, $e + CO_2 \rightarrow e + CO + O$, $e + CO_2 \rightarrow e +$ $CO + O(^{1}D)$, and $e + CO_{2} \rightarrow e + CO + O(^{1}S)$.⁴ For the cross sections of the dissociation reaction $e + CO_2 \rightarrow e + CO +$ $O(^1S),$ we used the recommended values by Itikawa. 32 The highly reactive intermediates $O(^{1}D)$ and $O(^{1}S)$ can easily react with hydrocarbon molecules to stimulate the chain branching reactions, and thus accelerate fuel pyrolysis and oxidation.^{33,3} Accordingly, reactions involving $O(^{1}D)$ and $O(^{1}S)$ were added and their corresponding kinetic parameters were available in Sun et al.^{35,36} It is worth noting that the excited species were not detected due to the limitation of experimental measurements in this work. However, Lin et al.³⁷ and Slanger and Black³⁸ have experimentally proven that the dissociation of O₂

and CO₂ can result in the production of excited O atoms, $O(^{1}D)$ and $O(^{1}S)$, respectively. As a result, a total of 1874 reactions with 102 species were described here for plasma-assisted DRM. The species considered in the kinetic mechanism are listed in Table 1, and the reactions are listed in the Supporting Information, Section S9.

3. RESULTS AND DISCUSSION

3.1. Effect of O₂ Addition. First, we compare the performance of DRM in our experimental setup with and without O₂ addition. As shown in Figure 2a,b, there is a negligible liquid formation (4% selectivity, products unidentified) without O_2 addition. After introducing O_2 in the range from 4 to 16% (in percentage of the total feed gas volume) while keeping the CH_4/CO_2 ratio constant (1:1), the liquid selectivity gradually increases and reaches ca. 22%, with HCOOH as the main product for 12% O₂ added. More O₂ (16%) results in less liquid formed, which suggests possible overoxidation of the oxygenates. Therefore, we selected 12% as the optimal O₂ percentage for further DRM experiments. The Lissajous figures (Figure 2c) were collected to better understand the influence of the addition of O2 on the DRM reaction. The effective voltage decreased by adding O_2 (12%), indicating that less energetic electrons were produced in the $CO_2/CH_4/O_2$ plasma at the same applied voltage. Consequently, at the same supplied PSU power (40 W), the power deposited into the plasma reduced from ca. 17 to 15 W (i.e., by ca. 10%) after O₂ addition. Besides this, the total conversion increased substantially, thus significantly reducing the energy cost from 271.9 to 144.9 kJ/L after the addition of 12% O₂ (see eq S11, the weighted average of the conversion for each reactant, weighted over their concentration in the inlet gas mixture). In addition, we estimate the H₂O selectivity based on the hydrogen balance. H₂O selectivity increased from 29.8 to 48.0% after 12% O₂ addition, indicating that more oxygenates can be formed at higher H₂O selectivity after O₂ addition in plasma-assisted DRM reaction.

To reveal the effects of O₂ addition on the plasma-driven DRM reaction, we calculated the outlet contraction factor (cf. eq S10 in Supporting Information) both for the CO₂/CH₄ plasma and the $CO_2/CH_4/O_2$ plasma process. As shown in Figure 2d, the value of the contraction factor is negative in the CO₂/CH₄ plasma, indicating that the plasma ignition results in an increase in the outlet gas volume, while the contraction factor in the outlet of the $CO_2/CH_4/O_2$ plasma shows a reverse trend. This means that O₂ addition shifts the reaction from expansion to contraction-but not directly in the gas phase. When the products of DRM are dominated by syngas $(CH_4 + CO_2 \rightarrow 2CO + 2H_2)$, the gas expands. However, in the presence of O₂, not only does the product distribution shift to oxygenates but also these oxygenates are condensed inside the cold trap, which leads to the observed apparent gas volume contraction. Therefore, the product distribution and reaction pathways clearly change by adding O₂.

3.2. Effect of Temperature and CO₂/CH₄ Ratio. We used circulating water as the ground electrode and for reactor cooling, with temperatures between 10 and 85 °C, controlled by the water temperature. We performed experiments to test the temperature just near the outlet of our DBD reactor. In general, the water temperature and DBD outlet temperature are almost the same in our study. As shown in Figure 3a,b, the conversion of the feed gases $(CO_2 + CH_4 + O_2)$ exhibits an increasing trend by imposing higher temperature, while the

excited species	CO(E1). CO(E2), CO(E3), CO(E4), O ₂ (E1), O ₂ (E2), O ₂ (E3), O(¹ D), O(¹ S)
radicals	0, Н, ОН, НО ₂ , С, СН, СН ₃ , СН ₃ , С, С, Ч, С, Ч, С, Ч, С, Ч, С, Ч, С,
charged species	$ \begin{array}{c} H^{+}_{*}H^{+}_{*}H^{+}_{*},0,0,,0,,0H^{+}_{*}H^{0}_{*},H^{0}_{*},C^{+},CH^{+}_{*},\\ CH^{+}_{*}CH^{+}_{*}CH^{+}_{*}CH^{+}_{*}CH^{+}_{*}CH^{+}_{*}CO^{+}_{*}CO^{+}_{*}C_{*}^{2},C_{*}^{2}H^{+}_{*},\\ C_{*}H^{+}_{*}C_{*}H^{+}_{*}C_{*}H^{+}_{*}C_{*}H^{+}_{*}C_{*}H^{+}_{*}C_{*}O^{+}_{*},C_{*}O^{+}_{*},C_{*}O^{+}_{*},\\ C_{*}O^{+}_{*}H^{-}_{*}O^{-}_{*}O^{-}_{*}O^{-}_{*}O^{-}_{*}O^{-}_{*}O^{-}_{*}O^{-}_{*},CH^{-}_{*},CH^{-}_{*},CH^{-}_{*},CO^{-}_{*},CO^{-}_{*},CO^{-}_{*},\\ e^{-} \end{array}$
neutral molecules	Н" О" О" Ч"О, Н ₃ О, Н4, СО, СН" С, СО" С ₃ Н" С ₃ Н4, С ₃ H ₆ С ₃ H ₆ С, H ₃ O, СН ₃ OH, СН ₃ OH, С ₂ H ₅ OOH, СН ₃ CHO, С ₂ H ₅ OH, НСООН, НОСН ₂ O, СН ₃ COOH

Table 1. Species Taken into Account in the 0D Chemical Kinetics Model

Figure 2. Plasma-driven DRM performance for different O_2 percentages: (a) conversion and energy cost (above) and total selectivity distribution (below), (b) selectivity of various gas and liquid products, (c) Lissajous figures with and without O_2 (12%) addition, and (d). off-gas volume change (V_c) with and without O_2 (12%) detected by using the bubble flow meter. (PSU power 40 W, discharge power 15–17 W, discharge frequency 23.5 kHz, total flow rate 40 mL/min, $CO_2/CH_4 = 1:1$, 35 °C circulating water, 6.78 s residence time, and 1 atm pressure)

total liquid selectivity (21.5%) reaches its peak at the temperature of 35 °C with 12% O₂ addition. At a lower temperature (10 °C), more hydrocarbons C_xH_y (i.e., C_2H_2 , C_2H_4 , C_2H_6 , C_3H_8) are formed, with a total selectivity of 24.4%, which might inhibit the formation of oxygenates in our present reactor.

At a lower temperature (10 °C), more hydrocarbons $C_x H_y$ (i.e., C_2H_2 , C_2H_4 , C_2H_6 , C_3H_8) are formed, with a total selectivity of 24.4%, which might inhibit the formation of oxygenates in our present reactor. Although we would expect a higher selectivity toward liquid oxygenates at a lower temperature, also based on the literature results,¹¹ we did not measure this even in several repeat experiments. A possible reason might be that liquid products condense at the walls inside the reactor and cannot be removed immediately. However, we would need more dedicated experiments to test this hypothesis. By increasing the temperature from 10 to 85 °C, the $C_x H_y$ selectivity gradually decreases, but the CO selectivity increases rapidly from 60 to 87%. Therefore, in order to maximize the oxygenate production, we continue our further experiments based on the optimal empirical temperature (35 °C).

The conversion and product distribution for different CO_2/CH_4 ratios are depicted in Figure 3c,d. When the CO_2/CH_4 ratio in the feed gas is changed from 3:1 to 1:3, the CO_2 and CH_4 conversion both decrease gradually from 5.7 to 2.1% and from 26.5 to 13.6%, respectively. At the same time, the level of

the O₂ conversion increases significantly from 49.3 to 74.7%. This clearly demonstrates that larger CH₄ fractions speed up the O₂ consumption compared to larger CO₂ fractions, which is expected. Besides, the total selectivity of liquid products also increases when changing the CO₂/CH₄ ratio from 3:1 to 1:3, and the selectivity toward hydrocarbons (C_xH_y) follows the same tendency as the liquid products, with a maximum of 14.1% for the CO₂/CH₄ molar ratio of 1:3, while the CO selectivity exhibits the opposite trend, and clearly drops upon higher CH₄ fraction (Figure 3d).

3.3. Effect of Power and Residence Time. Figure 4a,b shows the effect of different discharge powers on the plasmadriven DRM process. The conversion of CH_4 , CO_2 , and O_2 significantly rises by applying higher PSU power in the range of 30-60 W (corresponding to a discharge power range of 9-32 W), while the total liquid selectivity drops from 26.0 to 5.7%. The selectivity of gaseous products, i.e., CO, H_2 , and C_xH_y , increases by 25.7, 65.7, and 41.2% upon raising the power. The selectivity of HCOOH as the major liquid oxygenate drops to 1.9%. These results show that higher power generates more gaseous products and fewer oxygenates, which is consistent with previous work.¹¹

Residence time is one of the crucial operating parameters for CH_4 oxidation to CH_3OH by plasma catalysis.³ We applied different residence times (6.78–0.84 s) by varying the feed gas flow rate (40–320 mL/min). The effect of the different residence times on the plasma-assisted DRM process is shown

Figure 3. Plasma-driven DRM performance for different reaction temperatures: (a) conversion and energy cost (above) and total selectivity distribution (below); (b) selectivity of various gas and liquid products. (PSU power 40 W, discharge power 15–17 W, discharge frequency 23.5 kHz, total flow rate 40 mL/min, 12% O_2 , $CO_2/CH_4 = 1:1$, 6.78 s residence time, 1 atm pressure). Both the reactor outlet temperature (upper *x*-axis) and the water temperature (lower *x*-axis) are given. Plasma-driven DRM performance for different CO_2/CH_4 ratios; (c) conversion and energy cost (above) and total selectivity distribution (below); and (d) selectivity of various gas and liquid products (PSU power 40 W, discharge power 15–17 W, discharge frequency 23.5 kHz, total flow rate 40 mL/min, 12% O_2 , 35 °C circulating water, 6.78 s residence time, and 1 atm pressure).

in Figure 4c,d. By reducing the residence time from 6.78 to 0.84 s, the reactant conversion $(CO_2 + CH_4 + O_2)$ drops rapidly, as expected, while the liquid selectivity gradually rises from 21.5% to as high as 50.0%. The CH₃OH and HCHO selectivity evolves similarly to the total liquid selectivity. Notably, the maximum selectivity of HCOOH (22.7%) was achieved at 0.84 s residence time.

3.4. Plasma Chemical Kinetics Modeling Results. We performed plasma chemical kinetics modeling to obtain insights into how the effect of O₂ addition shifts the formation pathways of syngas $(CO + H_2)$ to oxygenates near room temperature and atmospheric pressure for the plasma-assisted DRM reaction. As shown in Figure 5, we performed model validation by comparing the steady-state experimental results with the predicted values from the model for the reactant conversion and the product selectivity under the exact same conditions, with or without O_2 addition (12%). The detailed plasma parameters are given in Table S1. A good agreement between the model and experiments is reached for the CH4, CO_2 , and O_2 conversion (Figure 5a), indicating that the underlying chemistry of the conversion is well-described in our model. As for the product selectivity, we consider the changes in syngas and hydrocarbons (C_xH_v) after introducing O₂ in the

model, with possible oxygenate production. Evidently, the simulation can effectively predict the decreasing trends of H_2 and C_xH_y selectivity observed in the experiment upon O_2 addition. However, a clear underestimation is observed for the calculated H_2 selectivity without O_2 addition and for the hydrocarbon selectivity with O_2 addition.

As far as oxygenates are concerned, our kinetic model predicts the selectivity toward HCOOH, CH₃OH, CH₃COOH, C₂H₅OH, and total oxygenates with good accuracy upon 12% O2 addition; only for CH2O, there is a large discrepancy between our model and the experiments. Without O_2 addition, our model predicts 2–3% selectivity for various oxygenates, such as HCOOH, CH₃OH, and CH₂O, while the concentration of these species was too small to be detected by GC and HPLC in the experiment. Notably, the total selectivity toward oxygenates rapidly increases with O2 addition, both in our model and in the experiment. Altogether, there are some differences in the calculated and measured product selectivities, but these are not unexpected in view of the large number of chemical reactions that can occur and the fact that the rate coefficients of several of these reactions are subject to large uncertainties. However, we prefer not to "tune" our model to reach a better agreement with the experiments

pubs.acs.org/journal/ascecg

Figure 4. Plasma-driven DRM performance for different powers: (a) conversion and energy cost (above) and total selectivity distribution (below), (b) selectivity of various gas and liquid products. (discharge frequency 23.5 kHz, total flow rate 40 mL/min, 12% O_2 , $CO_2/CH_4 = 1:1$, 6.78 s residence time, and 1 atm pressure) Plasma-driven DRM performance for different residence times, (c) conversion and energy cost (above) and total selectivity distribution (below), and (d) selectivity of various gas and liquid products (PSU power 40 W, discharge power 15–17 W, discharge frequency 23.5 kHz, 12% O_2 , 35 °C circulating water, $CO_2/CH_4 = 1:1$, and 1 atm pressure)

Figure 5. Comparison between steady-state measurements and model predictions with and without O_2 addition (12%) in plasma-assisted DRM: (a) gas conversion and main products selectivity and (b) various oxygenates selectivity at a PSU power of 40 W, residence time of 6.78 s, and temperature of 35 °C (exp: experiment; sim: simulation)

without a real scientific basis. Indeed, now, all assumptions made in our model (e.g., related to the number of microdischarge filaments) are based on logical and plausible physics. Overall, we believe that our model is sufficiently realistic to reveal the underlying plasma chemistry for the improved oxygenate production upon addition of O_2 in the DRM reaction, as described below.

3.5. Reaction Pathway Analysis. The reduced electric field (i.e., the ratio of the electric field over total gas number density, E/N) is one of the most important parameters in

Figure 6. Reaction pathway analysis for HCOOH, COOH, CH₃OH, CH₃O, CH₃O, CH₂O, CH₂OH, and OH for a 1:1 CH₄/CO₂ mixture with 12% O₂ addition at atmospheric pressure, at a PSU power of 40 W, a residence time of 6.78 s, and temperature of 35 °C. Note that for OH, for the sake of clarity, the analysis is split into formation reactions and consumption reactions due to the many reactions taking place

controlling the distribution of the electron energy deposition to different excitation modes and the formation of active species in a nonequilibrium plasma. As shown in Figure S3, we compared the fraction of electron energy deposited into different excitation channels in (a) 1:1 CH_4/CO_2 mixture and (b) 1:1 CH_4/CO_2 mixture with 12% O_2 addition, as a function of E/N. The most efficient mechanism for electron energy loss is the elastic collision with CH_4 and CO_2 molecules and the dissociation of CH_4 at a relatively low reduced electric field (<20 Td) in a 1:1 CH_4/CO_2 mixture. However, the change of mixture ratio upon 12% addition of O_2 dramatically alters the energy branching, and the plasma energy is now primarily transferred to the dissociation modes of CH_4 and O_2 (Figure S3b), indicating that the addition of O_2 to the CH_4/CO_2 mixture promotes the dissociation of O_2 to produce O and $O(^{1}D)$ radicals, which facilitates the oxidation of CH_{4} to oxygenates.

In order to elucidate the formation pathways of oxygenates, including HCOOH, CH_3OH , and CH_2O , we present the reaction pathway analysis for selected species for the 1:1 CH_4/CO_2 mixture with 12% aqueous O_2 in Figure 6. The corresponding analysis for the same mixture but without the addition of O_2 is presented in Figure S4 of the Supporting Information, for comparison. The thickest arrows represent the contribution of reactions to the species formation or consumption in the order of 10^{-6} mol cm⁻³, while the thinnest arrows represent the contribution of reactions less than 10^{-9} mol cm⁻³. Note that these orders of magnitude represent the integral of the reaction rate over the entire residence time. The arrows pointing inward

indicate formation reactions, while the arrows pointing outward represent consumption reactions. The blue arrows indicate reactions that occur both with and without O_2 addition, while the green arrows indicate reactions that are only important upon 12% O_2 addition. The numbers attached to the arrows denote the relative contributions of formation or consumption to the selected species, as calculated using eq 2

$$f_{ij} = \frac{(a_{ij}^{\rm R} - a_{ij}^{\rm L}) \int_0^{t_r} r_j \, \mathrm{d}t}{\sum_j (a_{ij}^{\rm R} - a_{ij}^{\rm L}) \int_0^{t_r} r_j \, \mathrm{d}t}$$
(2)

where f_{ij} stands for the relative contribution of reaction *j* to the formation of species *i*. t_r represents the residence time, and r_j is the reaction rate of reaction *j*. The same formula applies to the relative contribution for consumption.

As shown in Figures 6 and S4, the main oxygenated compound, HCOOH, is primarily formed through the chain termination reaction H + COOH \rightarrow HCOOH, which is responsible for 96.1 and 84.1% of HCOOH formation with or without O₂ addition, respectively. As a primary intermediate, carboxyl radical COOH is critical for the formation of HCOOH. COOH itself is mainly created upon recombination of CO with OH, which contributes 75.6 and 87.8% to COOH formation with or without O_2 addition. At the same time, the main HCOOH formation path (H + COOH \rightarrow HCOOH) plays a significant role in the consumption of COOH without O_2 addition (see Figure S4). Upon O_2 addition, the main formation pathway for COOH does not change, as mentioned above, however, the main consumption pathway is changed from H + COOH \rightarrow HCOOH (without O₂ addition) to $COOH + CO \rightarrow CO_2 + CHO$ (with O_2 addition); cf. Figures 6 and S4. This is because electron impact dissociation $[e + O_2]$ \rightarrow e + O + O/O(¹D)] enhances the formation of O and $O(^{1}D)$, which further promotes the formation of OH and H_2O_2 . Accordingly, the concentration of COOH with 12% of O_2 in the mixture is about 2 orders of magnitude higher than that without the addition of O_2 . Although the reaction H + COOH \rightarrow HCOOH contributes only 12% of COOH consumption in the mixture with 12% O₂, its reaction rate is still 1 order of magnitude higher compared with no O₂ addition.

For the generation of CH₃OH, the dominant pathways without O₂ addition are the reactions of CH₃O with H, CH₃O, HO_{2} , and CHO radicals, accounting for 68.0% of the total CH₃OH formation, as shown in Figure S4. In addition, 16.2 and 10.8% of CH₃OH formation comes from the reactions of CH₃ with OH and OH⁻, as well as from the reaction of CH₂OH with H and HO₂, respectively. However, upon 12% O2 addition, the main pathway for CH3OH formation has become the chain termination reaction, $CH_3O_2 + HO_2 \rightarrow$ $CH_3OH + O_3$ (contribution of 66.5%, see Figure 6). The main precursor, CH₃O₂, is mainly formed through the reaction CH₃ $+ O_2 \rightarrow CH_3O_2$, regardless of whether there is O_2 addition (see Figures 6 and S4). However, the rate of this reaction is 2 orders of magnitude higher upon 12% O2 addition than without O_2 addition, due to the high concentration of O_2 . At the same time, the reaction rate of the major CH_3O_2 consumption reaction $(CH_3O_2 + HO_2 \rightarrow CH_3OH + O_3)$ upon 12% O₂ addition is 2 orders of magnitude higher than that without O₂ addition. This explains the significant increase in CH₃OH formation upon O₂ addition, as observed in our experiments.

CH₂O is dominantly formed upon addition of an O₂ through the reactions CH₂OH + O₂ → CH₂O + HO₂ and CH₃OH + OH → CH₂O + H₂O + H, which are responsible for 45.9 and 31.8% of CH₂O formation, respectively. Without O₂ addition, the dominant pathways for CH₂O formation are the reactions CH₂ + CO₂ → CH₂O + CO, CH₃ + O → CH₂O + H, and CH₃O + H/CH₃ → CH₂O + H₂/CH₄. The significant increase in the O₂ concentration in the discharge mixture upon addition of O₂ can enhance the reaction rates of CH₂OH + O₂ → CH₂O + HO₂ and CH₃O + O₂ → CH₂O + HO₂ to promote the formation of CH₂O. Meanwhile, the dissociation of O₂ strongly enhances the OH formation, significantly promoting the CH₂O formation through the reaction CH₃OH + OH → CH₂O + H₂O + H.

By analyzing the pathway of CH₂OH, as shown in Figure 6, we find that the consumption of CH₃OH to form CH₂OH via the reactions CH₃OH + OH \rightarrow CH₂OH + H₂O and CH₃OH + O \rightarrow CH₂OH + OH is the major source of CH₂OH. In addition, the chain branching reaction stimulated by excited O(¹D), via O(¹D) + CH₄ \rightarrow CH₂OH + H, is also responsible for 15.8% of CH₂OH formation. Obviously, the major consumption pathways of CH₂OH are the reactions with O₂ and O to form CH₂O, which are responsible for 84.8 and 7.3% of CH₂OH consumption, respectively.

As discussed above, OH is an important oxidizer in promoting the formation of oxygenates and their related intermediates. Therefore, we also compare the formation and consumption pathways of OH with and without O₂ addition. The pathways of OH formation and consumption are very complicated, so we have plotted separate maps illustrating the production pathway and consumption pathway, respectively. As shown in Figure S4, the dominant formation pathways without O_2 addition are the reactions $HO_2 + H \rightarrow OH + OH$ and $CH_4 + O(^1D)/O(^1S) \rightarrow CH_3 + OH$, accounting for 31.4 and 25.0% of the total OH formation, respectively. In addition, 9.2 and 8.2% of OH formation come from the reactions $CH_2OH + H \rightarrow CH_3 + OH \text{ and } CH_3 + HO_2 \rightarrow CH_3O + OH,$ respectively. However, upon 12% O2 addition, the dominant pathways for OH formation have become the chain branching reactions, $O_3 + H \rightarrow OH + O_2$ (30.0% contribution), $HO_2 +$ $O \rightarrow OH + O_2$ (29.3% contribution), and $CO + H_2O_2 \rightarrow OH$ + COOH (12.8% contribution), due to the significant rise in O₂ and O concentration, further stimulating the oxygenated components formation. As shown in Figures S4 and 6, upon O₂ addition, the dominant pathways for OH consumption are changed from $OH + CH_2O \rightarrow H_2O + CHO$ and $OH + CH_4$ \rightarrow H₂O + CH₃, to OH + CO \rightarrow COOH, which promotes the formation of HCOOH.

In order to elucidate whether non-negligible competing reactions between CO_2 and O_2 are responsible for the formation of important intermediates or oxygenates in the system, the consumption pathways of CO_2 and O_2 for the 1:1 mixture with or without O_2 addition are listed in Tables R1– R4 in the Supporting Information. The main competing reactions between CO_2 and O_2 for the plasma energy are the electron impact reactions. In addition to the electron impact reactions, there is another competing reaction between CO_2 and O_2 based on the reaction pathway analysis, that is, $CH_2 + CO_2 \rightarrow CH_2O + CO$ and $CH_2 + O_2 \rightarrow CO + H_2O$, $CH_2 + O_2 \rightarrow COOH + H$. However, this competing reaction has negligible influence on the formation of oxygenates.

In summary, our plasma chemical kinetics modeling results show that two types of reactions are responsible for the production enhancement of oxygenated compounds upon O₂ addition. First, the direct promotion effect of O₂ addition on the formation of important intermediates and oxygenates, such as the reactions $CH_3 + O_2 \rightarrow CH_3O_2$ and $CH_2OH + O_2 \rightarrow$ $CH_2O + HO_2$, is responsible for 92.2% of CH_3O_2 formation and 45.9% of CH₂O formation, respectively. Second, the rise in concentration of oxygen-containing radicals, such as O, OH, HO_{2} , due to electron impact dissociation, $e + O_2 \rightarrow e + O + O_2$ $O/O(^{1}D)$, and subsequent reactions of these O atoms into OH and HO₂ will further enhance the formation of HCOOH via the pathways CO + OH \rightarrow COOH and COOH + H \rightarrow HCOOH; the formation of CH_3OH via the pathways CH_3O_2 $+ HO_2 \rightarrow CH_3OH + O_3$ and $CH_3O + HO_2 \rightarrow CH_3OH + O_2$; and the formation of CH₂O via the pathways CH₃OH + OH \rightarrow CH₂O + H₂O + H and CH₃OH + O/OH \rightarrow CH₂OH + OH/H_2O and $CH_2OH + O_2 \rightarrow CH_2O + HO_2$. Additional computational studies may aid in determining ways to increase the oxygenates yield but were outside the scope of this work.

4. CONCLUSIONS

In this paper, we demonstrate for the first time that plasmadriven DRM can be shifted from the production of mainly syngas to the production of significant amounts of oxygenates by introducing moderate amounts of O_2 (12%), even without using catalysts. On the one hand, O2 addition can reduce carbon deposition resulting from the rapid decomposition of CH₄ induced by nonthermal plasma, hence making the plasmabased DRM process more stable and allowing us to operate it at higher CH₄ fractions. This is also relevant when catalysts are introduced in the plasma as catalyst deactivation by carbon deposition would be reduced. On the other hand, oxygencontaining species upon O₂ addition can improve oxygenate production. We evaluated multiple parameters in order to optimize the formation of oxygenates in our experiments. We show that lower power and shorter residence time enhance liquid production, leading to a maximal oxygenate selectivity of 50%.

We also developed a plasma chemical kinetics model to investigate how the effect of O_2 addition shifts the formation pathways of syngas to oxygenates near room temperature and atmospheric pressure for the plasma-assisted DRM reaction. Two types of reactions are responsible for the improvement of the oxygenate production upon O_2 addition. The first is the direct promotion effect of the addition of O_2 on the formation of important intermediates and oxygenates. In addition, the increasing concentration of oxygen-containing radicals, such as O, OH, and HO₂, due to electron impact dissociation, $e + O_2 \rightarrow e + O + O/O(^1D)$ and the subsequent reaction of O atoms into OH and HO₂, can further enhance the formation of oxygenates.

Our results not only yield a better fundamental understanding of the GtL conversion by the plasma-driven DRM process but also provide a novel strategy for reducing carbon deposition to improve the DRM reaction stability.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.3c04352.

Ternary flammability diagram for $CO_2-CH_4-O_2$ mixtures; results of qualitative analysis of liquid products by HPLC; calculation of conversion, selectivity, and the

contraction factor; description of the chemical kinetics model; fraction of electron energy into different excitation channels; reaction pathway analysis for the oxygenates in a 1:1 CO_2/CH_4 mixture; the consumption pathways of CO_2 and O_2 for the 1:1 CH_4/CO_2 mixture with or without O_2 addition; reaction pathway analysis of singlet oxygen $O_2(e1)$; and overview of the reactions included in our model (PDF)

AUTHOR INFORMATION

Corresponding Author

Annemie Bogaerts – Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk 2610, Belgium; orcid.org/0000-0001-9875-6460; Email: annemie.bogaerts@uantwerpen.be

Authors

- Shangkun Li Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk 2610, Belgium; orcid.org/0000-0002-9297-1669
- Jintao Sun Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk 2610, Belgium; School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
- Yury Gorbanev Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk 2610, Belgium;
 orcid.org/0000-0002-8059-4464
- Kevin van't Veer Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk 2610, Belgium
- Björn Loenders Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk 2610, Belgium; orcid.org/0000-0001-7962-4235
- Yanhui Yi State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China; Orcid.org/ 0000-0002-5869-9382
- Thomas Kenis Applied Electrochemistry & Catalysis, Department of Applied Engineering, University of Antwerp, Wilrijk 2610, Belgium
- Qi Chen School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China

Complete contact information is available at: https://pubs.acs.org/10.1021/acssuschemeng.3c04352

Author Contributions

S.L. and J.S. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Shangkun Li: Conceptualization, Validation, Formal analysis, Resources, Data curation, Writing original draft, Writing—review and editing. Jintao Sun: Conceptualization, Validation, Formal analysis, Resources, Data curation, Writing original draft, Writing—review and editing. Yury Gorbanev: Validation, Formal analysis, Data curation, Writing—review and editing. Kevin van 't Veer: Writing—review and editing. Björn Loenders: Writing—review and editing. Yanhui Yi: Writing—review and editing. Thomas Kenis: Products analysis, Data curation, Writing—review and editing. Qi Chen: Writing—review and editing, Supervision. Annemie Bogaerts: Formal analysis, Resources, Data curation, Writing—original draft, Writing—review and editing, Supervision, Funding acquisition.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The China Scholarship Council and National Natural Science Foundation of China (21975018) are gratefully acknowledged. This research was also supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182-SCOPE ERC Synergy project) and the FWO-SBO project PlasMaCatDESIGN (FWO grant ID S001619N).

REFERENCES

(1) Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241.

(2) le Saché, E.; Reina, T. R. Analysis of dry reforming as direct route for gas phase CO_2 conversion. The past, the present and future of catalytic DRM technologies. *Prog. Energy Combust. Sci.* **2022**, *89*, 100970.

(3) Yi, Y.; Li, S.; Cui, Z.; Hao, Y.; Zhang, Y.; Wang, L.; Liu, P.; Tu, X.; Xu, X.; Guo, H.; Bogaerts, A. Selective oxidation of CH_4 to CH_3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling. *Appl. Catal., B* **2021**, *296*, 120384.

(4) Snoeckx, R.; Bogaerts, A. Plasma technology - a novel solution for CO₂ conversion? *Chem. Soc. Rev.* **201**7, *46*, 5805–5863.

(5) Liu, S.; Winter, L. R.; Chen, J. G. Review of plasma-assisted catalysis for selective generation of oxygenates from CO_2 and CH_4 . ACS Catal. **2020**, 10, 2855–2871.

(6) Khoja, A. H.; Tahir, M.; Amin, N. A. S. Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations. *Energy Convers. Manage.* **2017**, *144*, 262–274.

(7) Li, Y.; Liu, C.; Eliasson, B.; Wang, Y. Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-Barrier discharges: product distribution. *Energy Fuels* **2002**, *16*, 864–870.

(8) Zhang, Y.; Li, Y.; Wang, Y.; Liu, C.; Eliasson, B. Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. *Fuel Process. Technol.* **2003**, *83*, 101–109.

(9) Rahmani, A.; Aubert, X.; Fagnon, N.; Nikravech, M. Liquid oxygenated hydrocarbons produced during reforming of CH_4 and CO_2 in a surface dielectric barrier discharge: Effects of steam on conversion and products distribution. *J. Appl. Phys.* **2021**, *129*, 193304.

(10) Kolb, T.; Voigt, J. H.; Gericke, K.-H. Conversion of methane and carbon dioxide in a DBD reactor: influence of oxygen. *Plasma Chem. Plasma Process.* **2013**, 33, 631–646.

(11) Wang, Y.; Chen, Y.; Harding, J.; He, H.; Bogaerts, A.; Tu, X. Catalyst-free single-step plasma reforming of CH_4 and CO_2 to higher value oxygenates under ambient conditions. *Chem. Eng. J.* **2022**, 450, 137860.

(12) Snoeckx, R.; Aerts, R.; Tu, X.; Bogaerts, A. Plasma-Based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. *J. Phys. Chem. C* **2013**, *117*, 4957–4970.

(13) De Bie, C.; van Dijk, J.; Bogaerts, A. The dominant pathways for the conversion of methane into oxygenates and syngas in an atmospheric pressure dielectric barrier discharge. *J. Phys. Chem. C* **2015**, *119*, 22331–22350.

(14) Zhang, L.; Heijkers, S.; Wang, W.; Martini, L. M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A. Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling. *Plasma Sources Sci. Technol.* **2022**, *31*, 055014.

(15) Bogaerts, A.; Tu, X.; Whitehead, J. C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A. B.; Schneider, W. F.; Nozaki, T.; Hicks, J. C.; Rousseau, A.; Thevenet, F.; Khacef, A.; Carreon, M. The 2020 plasma catalysis roadmap. *J. Phys. D: Appl. Phys.* **2020**, *53*, 443001.

(16) Wang, L.; Yi, Y.; Wu, C.; Guo, H.; Tu, X. One-step reforming of CO_2 and CH_4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. *Angew. Chem.* **2017**, *129*, 13867–13871.

(17) Ray, D.; Manoj Kumar Reddy, P.; Challapalli, S. Glass beads packed DBD-plasma assisted dry reforming of methane. *Top. Catal.* **2017**, *60*, 869–878.

(18) Bouchoul, N.; Fourré, E.; Duarte, A.; Tanchoux, N.; Louste, C.; Batiot-Dupeyrat, C. Plasma-metal oxides coupling for CH_4 - CO_2 transformation into syngas and/or hydrocarbons, oxygenates. *Catal. Today* **2021**, *369*, 62–68.

(19) Mei, D.; Sun, M.; Liu, S.; Zhang, P.; Fang, Z.; Tu, X. Plasmaenabled catalytic dry reforming of CH_4 into syngas, hydrocarbons and oxygenates: Insight into the active metals of γ -Al₂O₃ supported catalysts. *J. CO2 Util.* **2023**, *67*, 102307.

(20) Wang, H.; Han, J.; Bo, Z.; Qin, L.; Wang, Y.; Yu, F. Nonthermal plasma enhanced dry reforming of CH_4 with CO_2 over activated carbon supported Ni catalysts. *Mol. Catal.* **2019**, 475, 110486.

(21) Wang, Y.; Fan, L.; Xu, H.; Du, X.; Xiao, H.; Qian, J.; Zhu, Y.; Tu, X.; Wang, L. Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO_2 and CH_4 over copper-based catalysts. *Appl. Catal.*, B **2022**, 315, 121583.

(22) Vakili, R.; Gholami, R.; Stere, C. E.; Chansai, S.; Chen, H.; Holmes, S. M.; Jiao, Y.; Hardacre, C.; Fan, X. Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. *Appl. Catal., B* **2020**, *260*, 118195.

(23) Khoja, A. H.; Tahir, M.; Amin, N. A. S. Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane. *Energy Convers. Manage.* **2019**, *183*, 529–560.

(24) Pancheshnyi, S.; Eismann, B.; Hagelaar, G. J. M.; Pitchford, L. C. *Computer Code ZDPlasKin*; University of Toulouse, LAPLACE, CNRS-UPS-INP: Toulouse, France, 2008. www.zdplaskin.laplace. univ-tlse.fr.

(25) Hagelaar, G. J. M.; Pitchford, L. C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. *Plasma Sources Sci. Technol.* **2005**, *14*, 722–733.

(26) Wanten, B.; Maerivoet, S.; Vantomme, C.; Slaets, J.; Trenchev, G.; Bogaerts, A. Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance. *J. CO2 Util.* **2022**, *56*, 101869.

(27) Biswas, A. N.; Winter, L. R.; Loenders, B.; Xie, Z.; Bogaerts, A.; Chen, J. G. Oxygenate production from plasma-activated reaction of CO_2 and ethane. ACS Energy Lett. **2022**, 7, 236–241.

(28) Manion, J. A.; Huie, R. E.; Levin, R. D.; Brugess, D. R., Jr.; Orkin, V. L. NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09; National Institute of Standards and Technology: Gaithersburg, Maryland, 20899-8320. https://kinetics.nist.gov/.

(29) Shen, X.; Yang, X.; Santner, J.; Sun, J.; Ju, Y. Experimental and kinetic studies of acetylene flames at elevated pressures. *Proc. Combust. Inst.* 2015, 35, 721–728.

(30) Reuter, C. B.; Zhang, R.; Yehia, O. R.; Rezgui, Y.; Ju, Y. Counterflow flame experiments and chemical kinetic modeling of dimethyl ether/methane mixtures. *Combust. Flame* **2018**, *196*, 1–10.

(31) Pitchford, L. C.; Alves, L. L.; Bartschat, K.; Biagi, S. F.; Bordage, M.-C.; Bray, I.; Brion, C. E.; Brunger, M. J.; Campbell, L.; Chachereau, A.; Chaudhury, B.; Christophorou, L. G.; Carbone, E.; Dyatko, N. A.; Franck, C. M.; Fursa, D. V.; Gangwar, R. K.; Guerra, V.; Haefliger, P.; Hagelaar, G. J. M.; Hoesl, A.; Itikawa, Y.; Kochetov, I. V.; McEachran, R. P.; Morgan, W. L.; Napartovich, A. P.; Puech, V.; Rabie, M.; Sharma, L.; Srivastava, R.; Stauffer, A. D.; Tennyson, J.; de Urquijo, J.; van Dijk, J.; Viehland, L. A.; Zammit, M. C.; Zatsarinny, O.; Pancheshnyi, S. LXCat: an open-access, web-based platform for data needed for modeling low temperature plasmas. *Plasma Processes Polym.* 2017, 14, 1600098. (32) Itikawa, Y. Cross sections for electron collisions with carbon dioxide. J. Phys. Chem. Ref. Data 2002, 31, 749–767.

(33) Popov, N. A. Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. *Plasma Sources Sci. Technol.* **2016**, *25*, 043002.

(34) Yang, S.; Najaraja, S.; Yang, V.; Sun, W.; Lefkowitz, J. K.; Ju, Y. Numerical and experimental investigation of nanosecond-pulsed plasma activated $C_2H_4/O_2/Ar$ mixtures in a low temperature flow reactor. In 53rd AIAA Aerospace Science Meeting, Jan. 5–9, Kissimmee Florida, AIAA 2015–1614, 2015.

(35) Sun, J.; Chen, Q.; Zhao, B.; Guo, C.; Liu, J.; Zhang, M.; Li, D. Temperature-dependent ion chemistry in nanosecond discharge plasma-assisted CH_4 oxidation. *J. Phys. D: Appl. Phys.* **2022**, *55*, 135203.

(36) Sun, J.; Chen, Q.; Yang, X.; Koel, B. E. Effects of nonequilibrium excitation on methane oxidation in a low-temperature RF discharge. J. Phys. D: Appl. Phys. **2020**, 53, 064001.

(37) Lin, J. J.; Shu, J.; Lee, Y. T.; Yang, X. Multiple dynamical pathways in the O(1D)+CH4 reaction: A comprehensive crossed beam study 1D)+CH₄ reaction: A comprehensive crossed beam study. J. Chem. Phys. **2000**, 113, 5287–5301.

(38) Slanger, T. G.; Black, G. O(1S) interactions—the product channels¹S) interactions-the product channels. *J. Chem. Phys.* **1978**, 68, 989–997.