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A B S T R A C T

We developed an innovative machine learning (ML) model, including a supervised learning (SL) and rein-
forcement learning (RL) model, to predict and optimize the plasma-catalytic dry reformation of methane (DRM) 
over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) reactor based upon experimental data. To tackle 
its intricate and non-linear characteristics, the SL model uses artificial neural networks (ANN) to accurately 
predict the performance, achieving excellent consistency with the experimental results. The RL model subse-
quently investigates the optimal optimization policy, namely starting with a coarse tuning of the more influential 
parameters, followed by fine-tuning of the less important parameters, to obtain the best performance. The 
optimal results show that a discharge power at lowest bond (i.e., 20 W) but CO2/CH4 ratio at highest bond (i.e., 
1.5) result in the minimum energy cost (21 eV/molec), validated by our SL model and experimental data. 
Furthermore, we also investigated the simultaneous optimization of total conversion and energy cost, resulting in 
a maximum total conversion of 36 %, combined with a minimum energy cost of 34 eV/molec, at a Ni loading of 
9.5 wt%, discharge power of 60 W, and total flow rate of 74 mL/min. Our ML model showcases an impressive 
capacity to derive advantageous insights from existing datasets, thereby advancing and optimizing plasma- 
catalytic chemical processes.

1. Introduction

Carbon dioxide (CO2) and methane (CH4) are the two major green-
house gasses that significantly contribute to climate change [1]. 
Currently, there is an urgent need for their conversion into value-added 
chemicals [2,3]. Dry reforming of methane (DRM) presents an emerging 
method for the concurrent conversion of both CO2 and CH4, yielding 
valuable syngas (i.e., CO and H2), as shown in Eq. (1). The syngas can 
serve as a hydrogen source or to further process to produce higher-value 
chemicals, e.g., methanol and formaldehyde [4,5]. 

CH4 +CO2→2CO+2H2,ΔH0 = 247.3 kJ/mol (1) 

Non-thermal plasma (NTP), a cutting-edge technology, enables this 
reaction operating at mild temperatures and ambient pressure [6–8], 
providing a valuable approach to traditional methods. Indeed, a recent 
techno-economic analysis, applied to a pilot plant producing 100 tCO/ 
day, revealed that the energy cost of plasma-based CO2 conversion is 43 

% less than for electrolysis and conventional CO2 conversion methods, 
and that using a post-plasma carbon bed is crucial for this cost- 
effectiveness, to facilitate additional CO production from O2 and 
enhancing the CO2 conversion [9].

Plasma is a partially (or fully) ionized gas, containing charged spe-
cies, radicals and exited species that exhibit collective behavior. The 
presence of radicals and highly energetic electrons enables reaction 
pathways that would otherwise be impossible, making plasma reactors 
valuable for converting thermodynamically stable molecules like CO2 
and CH4. The catalyst can further promote the selective syngas pro-
duction, while combining it with plasma holds significant promise for 
generating a synergistic effect that boosts overall efficiency, although 
synergy is not always reached and more insight is needed in the un-
derlying mechanisms [10,11]. Furthermore, plasma is generated with 
electricity, and can be rapidly switched on and off, thus facilitating its 
integration with the fluctuating nature of renewable energy sources 
[12].
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Over the past few decades, a wide range of plasma reactors have been 
thoroughly tested for plasma-based DRM applications, such as glow 
discharge [13], corona discharge [14], gliding arc [15], microwave 
discharge (MW) [16] and dielectric barrier discharge (DBD) [17–20]. 
Because of its simple design and user-friendly nature, especially when 
combined with packing materials, most plasma catalysis research so far 
has utilized DBDs, within a coaxial reactor [7]. In general, the reaction 
performance and cost-effectiveness of plasma reactors are considered for 
evaluation, both of which are very important. Although the total con-
version for DBD reactors can be quite high, the energy cost is often 
excessively high [21,22]. On the other hand, it is complicated to select 
for optimal performance as the input parameters also requires balancing 
chemical performance and cost-effectiveness [7]. Therefore, combining 
high conversions with relatively low energy costs is really challenging 
due to the many interacting parameters in complex plasma-catalytic 
systems [10,11].

To address these challenges, machine learning (ML) methods offer a 
novel pathway for exploring intricate scientific phenomena, and they 
are receiving growing attention for plasma processes, such as in plasma 
medicine [23–25], for the synthesis of chemicals [26,27] and in pollu-
tion control [28]. In general, ML methods can be broadly divided into 
two categories: (a) supervised learning (SL), which uses both input 
(predictors) and output (predicted variables) data, to effectively learn a 
mapping between them, but it requires large amounts of data; and (b) 
unsupervised learning, which relies solely on input data to learn patterns 
or correlations for finding hidden patterns or structures in input data, 
but the results are often harder to interpret and validate. In plasma 
catalysis, previous studies have primarily utilized SL (referred to as ML 
in many papers) models, typically by artificial neural network (ANN) 
algorism, for chemical performance prediction. For example, Liu et al. 
[29] successfully predicted the reaction performance in plasma-based 
CH4 conversion to hydrocarbons. Similarly, Zhu et al. [30] elucidated 
the relationships between operation parameters and performance of 
CH3OH oxidation. Wang et al. [31] revealed that both higher gas con-
version and energy efficiencies were favor at optimal conditions of 
10–20 W and 5–20 ◦C. Recently, Cai et al. [32] found the optimal con-
dition led to the maximum energy yield in plasma-catalytic DRM by a 
hybrid SL model. Despite the promise of ML in catalysis, the optimiza-
tion of plasma-catalytic DRM by ML is however still in its infancy.

The complex plasma–catalyst interactions can be divided into two 
categories: the effects of plasma on the catalyst, and the effects of the 
catalyst on the plasma. Hence, changing one of the effects may have 
unpredictable influence on the other effects. In addition, the optimiza-
tion process for the operating conditions likely leads to trade-offs among 
conflicting objectives (e.g., higher conversion and product yields, or 
higher energy efficiency), and the SL approach is not always accurate 
and robust enough for solving such multi-target problems. To achieve a 
cost-effective plasma-catalytic system with good reaction performance, 
it is crucial to obtain a thorough understanding on how the inter-
connected operating parameters can be optimized [13]. However, no 
studies consider the optimization of both total conversion and energy 
cost in plasma-catalytic DRM. Considering traditional trial-and-error 
efforts in experiments have reached their limit, and the simultaneous 
multi-objectives optimization, based on many interacting parameters, is 
challenging.

Reinforcement learning (RL), another major subset of ML, is a goal- 
direct approach, which involves how to maximize the outcome by 
mapping actions, to steer future experimental work [33]. The RL agents 
can learn to achieve specific goals by actively interacting with the 
environment, bypassing the necessity to a priori develop an accurate 
mathematical physico-chemical model [34]. This approach leverages 
RL’s two strengths − obtaining performance via experience and pre-
venting reliance on exact models, are especially beneficial for complex 
plasma-surface reactions, where it is not yet feasible to construct a 
precise dynamic model based on first principles, and the dynamic 
characteristics are highly variable [35]. However, the quality and 

quantity of training dataset matter most in the performance of RL 
models. In previous work, Cai et al., [32], carried out a comprehensive 
investigation, involving 100 distinct reaction conditions, to ensure the 
robustness and relevance for further RL model development.

In this work, we designed a very first RL model to simultaneously 
maximize the total conversion and minimize the energy cost in plasma- 
catalytic DRM, in an attempt to develop an artificial intelligence (AI) 
method for plasma catalysis. Firstly, we developed the prediction model 
for reaction performance (CO2 and CH4 conversion, H2 and CO yield, 
total conversion) and cost-effectiveness (energy cost) by the ANN al-
gorithm. Subsequently, we designed RL controllers (agents) by using the 
prediction model as simulation environment for learning interactions. 
Finally, the output from the RL model is compared with the actions 
chosen from four operating parameters, including Ni loading, total gas 
flow rate, CO2/CH4 ratio and discharge power. Therefore, by mapping 
these operating parameters, the RL model can determine the fine-tuning 
steps that achieve cost-effectiveness as well as good reaction perfor-
mance in plasma-catalytic DRM.

2. Methodology

In this work, we used two ML methods, i.e., SL and RL, to develop the 
model describing the plasma-catalytic DRM process, as schematically 
illustrated in Fig. 1, and detailly elaborated in the subsequent sections.

2.1. Data collection and processing

Fig. S1 shows the experimental setup for DRM, which is detailly 
described in Ref. [20]. The total conversion χtotal is of great importance, 
and obviously more complicated for optimization, which is defined by 
the summing of the effective CO2 and CH4 conversions [36]: 

χtotal =
∑

i
χeff

i =χabs
CO2

⋅yin
CO2

+ χabs
CH4

⋅yin
CH4

(2) 

where the absolute CO2 conversion χabs
CO2 

times the inlet CO2 fraction yin
CO2 

and the absolute CH4 conversion χabs
CH4 

times the inlet CH4 fraction yin
CH4

. 
The energy cost (EC in unit eV/molec) is defined as [7]: 

EC(eV/molec) =
SEI(eV/molec)

χtotal

=
Power (kW)⋅60s/min⋅

(
24.05 L/mol*6.24*1021eV/kJ

)

Total gas flow rate (L/min)⋅χtotal ⋅6.02*1023 molec/mol
(3) 

By varying the above-mentioned process parameters, the actual re-
action performance and EC were collected as the dataset, which can be 
found in the Supplementary Material (Table S2, S3). Before model 
development, all datasets were pre-process by a Min-Max normalization 
method [37]. The normalized data is confined to the same interval, 
which accelerates the convergence of the network and avoids the satu-
ration of neurons, as shown in Eq. S1 and Eq. S2 in Supplementary In-
formation (SI). The complete dataset was divided into 70 % training 
subset and 30 % testing subset. If the ratio between training and test set 
would be reduced, the ML prediction capability and quality will be 
lower, as less data will be used for training and more data will be used 
for testing. The ML model may fail to learn the underlying structure of 
the data, leading to underfitting and poor generalization ability. Also, if 
the ratio would be increased, the ML prediction capability and quality 
will be also lower. Although more data is used for training to identify 
learning patterns, there will be less test data, which may affect the 
reliability and stability of the evaluation results, as a smaller test set may 
not fully represent the diversity of the overall dataset.

J. Li et al.                                                                                                                                                                                                                                         Chemical Engineering Journal 507 (2025) 159897 

2 



2.2. Description of the artificial neural network

The artificial neural network (ANN), a conventional SL algorithm, 
was utilized to estimate the performance of plasma-based DRM under 
various operating conditions, as it exhibits remarkable predictive ac-
curacy to solve the nonlinear problems. The network contains numerous 
artificial neurons inside, with connection weights between them, serving 
as learnable parameters. Typically, an ANN model comprises multiple 
layers, each of which consists of numerous nodes. Each node corre-
sponds to one dimension of input and output data. In this work, each 
layer is fully connected to the previous and subsequent layers. The four 
above-mentioned operating parameters are used as inputs, while six 
above-mentioned performances are selected as the targets for 
prediction.

We used the backpropagation (BP) algorithm to optimize the 
network parameters by gradient descent [38]. To address the nonlinear 
problem and mitigate the gradient disappearance issue, we used the 
tanh function as the model’s activation function. To enhance the 
gradient descent algorithm’s efficiency, we used the mean square error 
(MSE) as loss function, which ensures faster convergence and performs 
well in solving regression tasks. Meanwhile, MSE and coefficient of 
determination (R2) as evaluation metrics to measure the performance of 
the ANN model, respectively [39]: 

MSE =
1
n
∑n

i=1
(yi − ŷi)

2 (4) 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5) 

where yi denotes the actual value, ŷi denotes the predicted value and y 
indicates the average of the actual value. Generally, higher R2 and lower 
MSE are desirable to enhance the model accuracy [40]. Furthermore, we 
employed the grid search method to fine-tune the hyperparameters for 
the ANN algorithm, as it effectively processes intricate models with 
multiple parameters [41]. After the optimization (see MSE plotted in 
Fig. S2), we listed the parameters of the ANN model in Table 1.

2.3. Methods of significance analysis

The Pearson’s Correlation Coefficient (PCC) was utilized to access 

Fig. 1. Overview of the ML model for plasma-catalytic DRM. A SL model predicts the output variable y by mapping input variables x through a function f(x); A RL 
optimization model involves how to map states to actions based on policy (π).

Table 1 
Detailed parameters of the ANN model.

Parameter ANN model

Number of input layers 4
Number of hidden layer 1 15
Number of hidden layer 2 10
Number of output layers 4
Activation function tanh
Optimizer lbfgs
Loss function MSE
Evaluation indicator MSE and R2
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the linear dependency between different input variables, which is given 
by [42,43]: 

ρxy =

∑
(xi − xmean)(yi − ymean)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − xmean)
2 ∑

(yi − ymean)
2

√ (6) 

where ρxy represents PCC value between the input feature and output 
target ranging from − 1 (negative) to +1 (positive). The xmean denote the 
averages of input feature x and ymean denotes the averages of output 
target y. According to the absolute values of the PCC, we can evaluate 
the relative importance of four operating parameter for all reactor per-
formance, as shown in Fig. S3.

2.4. Description of the RL model

SL models are designed to predict patterns, but they do not involve 
decision-making process. In contrast, RL models develops the optimal 
decision policy by interacting with the environment [34]. Since the RL 
system’s actions will impact its future inputs, it can be treated as a 
feedback control system based on rewards. The learner, so-called agents 
developed by RL, is not guided on specific actions, rather it must explore 

which actions maximize the rewards. A reward signal determines the 
goal in an RL problem, which is affected by the agent’s current action 
and the current state of the environment, and in turn, the agent can 
directly influence on reward, or indirectly influence through changing 
the environment’s state. Accordingly, a policy is used to guide the agent 
on the appropriate action to take in those states, to maximize the return 
(the expected accumulated discounted reward over the course of an 
episode). It is the job of the algorithm to automatically figure out how to 
choose good actions.

As shown in Fig. 1, RL typically involves four essential steps to train 
an agent. More details on the RL agent are described in Fig. S4. Our goal 
is to design such RL agents that determine the four above-mentioned 
operating parameters to explore the maximum reaction performance 
and minimum EC both within and outside the investigated range. In this 
work, the agent was trained by the Proximal Policy Optimization (PPO) 
algorithm built on the Actor-Critic (AC) framework (see Fig. S5 and S6 in 
SI), which has good performance within the continuous data space [44]. 
By observing the agent’s behavior, one can conclude the optimal policy 
of reaction performance and cost-effectiveness based on its decision 
process. The detailed parameters of the RL model are listed in Table S4.

Fig. 2. Predicted data versus experimental results (R2 plot). (a) CO2 conversion; (b) CH4 conversion; (c) CO yield; (d) H2 yield; (e) total conversion and (f) en-
ergy cost.
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3. Results

3.1. ANN model evaluation

We assess the ANN model’s performance by comparing its prediction 
values and actual values for reaction performance and cost- 
effectiveness, as shown in Fig. 2 and Fig. S7. This ANN prediction 
model exhibits impressive accuracy through the complete dataset, 
achieving an R2 consistently near 1 and an MSE of only 0.000026. This 
highlights the ANN model has exceptional ability in forecasting the 
plasma-catalytic DRM process, providing a robust basis for developing 
the RL model. To further evaluate the model’s generalizability, we 
conducted additional experiments using new operating parameters 
within the investigated ranges. As presented in Fig. S8, the model’s 
predictions on unseen data aligned well with the actual data, thereby 
confirming its reliability.

3.2. Significance and trend analysis of parameters

The relative significance of each factor and the trend between input 
operating parameters and output performance parameters are demon-
strated in Table 2. The most important factor is total flow rate for CO2 
conversion (56.6 %), CH4 conversion (43.5 %), CO yield (49.5 %) and H2 
yield (51.0 %), as well as for total conversion (57.3 %). Additionally, the 
discharge power has a considerable positive influence (>20 %) on all 
these reaction performances. For the EC, the relative significance of total 
flow rate (43.1 %) and discharge power (39.1 %) are very close to each 
other. The CO2/CH4 ratio and discharge power exerts similar influences 
on gas conversion and product yield. It should be noted that Ni loading 
has minimal influence on overall process performance indicators (less 
than 7 %), indicating that the plasma characteristic plays a more critical 
role.

3.3. RL model evaluation

The investigated range of the four input parameters is as follows: Ni 
loading (5–15 wt%), CO2/CH4 ratio (0.5–1.5), discharge power (20–60 
W) and total flow rate (25–125 mL/min). It would be interesting to first 

discover the theoretically (or potentially) maximum performance RL 
agents could reach without any physical limitation of input parameters 
(i.e. outside the investigated range). We will now establish the RL 
models, based on input parameters first outside and then within the 
investigated range.

3.3.1. Input parameters outside the investigated range
Fig. 3 shows the testing curve of the RL models of total conversion 

and EC with its corresponding actions, respectively. The total conversion 
(Fig. 3(a) and (b)) can reach a maximum of 55 %, while the agent first 
optimized the total flow rate until it converges to a negative value. Next, 
the agent optimized the discharge power, followed by the CO2/CH4 
ratio, which converge to positive values. The Ni loading parameter also 
converges at a negative value, but it has low impact (<7 %) on the 
outputs compared with the other input parameters. Fig. 3 (c) shows that 
the minimum value of EC can reach almost 12 eV/molec, while the agent 
first optimized the discharge power to converge at a negative value, 
followed by the CO2/CH4 ratio. Fig. 3(d) shows the Ni loading and total 
flow rate already had their optimal value (i.e., not converged to the 
boundary of the operating range), while the CO2/CH4 ratio reached 1.9, 
which exceeds the current operating range (0.5–1.5). We notice that the 
actions on Ni loading and total flow rate are in line with the trend on EC 
shown in Table 2. Their trends are first decreasing and then increasing, 

Table 2 
Relative significance of different input parameters on various output 
parameters.

Output 
Parameter

1st IF 2nd IF 3rd IF 4th IF

CO2 conversion Flow (56.6 
%) 
(− )

Power (22.8 
%) 
(+)

Ratio (17.2 
%) 
(− )

Loading (3.3 
%) 
(↗↘)

CH4 conversion Flow (43.5 
%) 
(− )

Ratio (26.6 
%) 
(+)

Power (23.5 
%) 
(+)

Loading (6.4 
%) 
(↗↘)

CO yield Flow (49.5 
%) 
(− )

Ratio (25.6 
%) 
(+)

Power (21.0 
%) 
(+)

Loading (3.9 
%) 
(↗↘)

H2 yield Flow (51.0 
%) 
(− )

Ratio (23.5 
%) 
(+)

Power (21.6 
%) 
(+)

Loading (3.8 
%) 
(↗↘)

Total 
conversion

Flow (57.3 
%) 
(− )

Power (27.9 
%) 
(+)

Ratio (9.1 %) 
(↗↘)

Loading (5.8 
%) 
(↗↘)

Energy cost Flow (43.1 
%) 
(↘↗)

Power (39.1 
%) 
(+)

Ratio (14.6 
%) 
(− )

Loading (3.2 
%) 
(↘↗)

List of the abbreviations included in the table: Important factor (IF), Total flow 
rate (Flow), Discharge power (Power) and CO2 /CH4 ratio (Ratio). Positive 
factor and negative factor are represented by (+) and (− ), respectively. Some 
output parameters first increased and then decreased with rising input param-
eters, indicated as (↗↘), while other output parameters first decreased and then 
increased with rising parameter, indicated as (↘↗).

Fig. 3. Testing curve of the RL models of (a) total conversion and (c) energy 
cost, by plotting them as a function of time step, as well as the corresponding 
actions (b) and (d), outside the investigated range. The y-axis representing the 
input parameters (for (b) and (d)) shows the normalized values.
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so the actions of the agent fluctuated to find its optimal value. Since the 
EC decreases with increasing CO2/CH4 ratio, the action on CO2/CH4 
ratio increases and even exceeds the current operating range to obtain 
the minimum EC. It should be noted that the actions of total flow rate for 
the total conversion and of discharge power for the EC are not physical, 
as their value should be higher than 0 in reality.

We can also see that the discharge power converges to positive and 
negative values for total conversion and EC, respectively. Even though 
the input parameters are not restricted within their boundary, the 
positively and negatively correlated parameters reach their boundary 
value, as the dataset in the training process has upper and lower bounds 
as the time step progresses.

In real application of plasma-catalytic DRM, both total conversion 
and EC should be considered, and they are often affected in different 
ways by the input parameters (cf. also Table 2 above), so the best trade- 
offs should be determined. We simulate three cases, setting different 
weights between total conversion and EC, i.e., 1 (total conversion and 
EC are equally important), 2 (total conversion is twice as important), 
and 0.5 (EC is twice as important). The weighted superposition of total 
conversion and EC with its corresponding actions is shown in Fig. 4. The 
CO2/CH4 ratio is still proportional to the weighted superposition of total 
conversion and EC, since it monotonically converges to a positive value, 
even changing the weight (Fig. 4(b), (d) and (f)). A similar pattern can 
also be seen for the discharge power in Fig. 4(b) and (d). However, when 
the weight is 0.5, the power shows inverse effect on the weighted su-
perposition of total conversion and EC. Moreover, the actions of flow 
rate and Ni loading present little difference, which means changing the 
flow rate and Ni loading is not effective for both total conversion and EC 
optimization.

3.3.2. Input parameters within the investigated range
To avoid the actions of agents reaching non-physical conditions, we 

now limit the input parameters within the investigated range of the 
training dataset (the reason will be further discussed in section 4.1). 
Fig. 5 shows the testing curve of the RL models of CO2 conversion and 
CH4 conversion, including their corresponding actions within the range 
of input parameters. Fig. 5(a) and (b) present that the CO2 conversion 
can reach its maximum value of 42 % when the total flow rate first 
reaches its lower boundary (i.e. 25 mL/min), and then the discharge 
power reaches its upper boundary (i.e. 60 W), followed by the CO2/CH4 
ratio reaching its lower boundary (i.e. 0.5). Nevertheless, the CH4 con-
version can reach its maximum value of 68 % when the total flow rate 
first reaches its lower boundary (i.e. 25 mL/min), followed by the CO2/ 
CH4 ratio and discharge power reaching their upper boundary (i.e. 1.5 
and 60 W). Furthermore, the actions of discharge power coincide very 
closely with the trajectory of CO2 conversion and CH4 conversion, 
indicating a fine-tuning step. As shown from the relative significance in 
Table 2, the most significant factor is the total flow rate for gas con-
version, so the agent first optimized the total flow rate. While the 
discharge power is the second important factor for the CO2 conversion, 
the agent optimized it as the second parameter. Moreover, the Ni 
loading keeps fluctuating within its range to seek its optimal value for 
both the CO2 and CH4 conversion, in line with the trend in Table 2
above, because of its low impact.

A similar regulation policy can be found in Fig. 6, which presents the 
time step-dependence of the CO yield and H2 yield, with the corre-
sponding actions, within the range of input parameters. Fig. 6(a) and (c) 
show that the CO yield can reach its maximum value of 28 % and the H2 
yield can reach its maximum value of 26 % when the total flow rate first 
reaches its lower boundary (i.e. 25 mL/min), followed by the CO2/CH4 
ratio and the discharge power reaching their upper boundary (i.e. 1.5 
and 60 W) (Fig. 6(b) and Fig. 6(d)), respectively. On the other hand, the 
Ni loading keeps fluctuating within its range to seek its optimal value for 
both the CO and H2 yield, in line with the trend in Table 2 above, again 
because of its low impact.

The testing curve of the RL models for the total conversion and EC, 

with the corresponding actions within the investigated range, is pre-
sented in Fig. 7. From Fig. 7(a) and (b), we can see that the total con-
version can reach its maximum value of 47 % when the total flow rate 
first reaches its lower boundary (i.e. 25 mL/min), followed by the 
discharge power reaching its upper boundary (i.e. 60 W), while the Ni 

Fig. 4. Superposition of total conversion and energy cost, showing the best 
trade-offs (a,c,e), as well as the corresponding actions of the four input pa-
rameters outside the investigated range (b,d,f), for different weights, i.e., 
weight = 1: (a) and (b), weight = 2: (c) and (d), weight = 0.5: (e) and (f).
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loading and CO2/CH4 ratio have their optimal value at around 7.5 wt% 
and 1.3, respectively. The EC can reach its minimum value of 21 eV/ 
molec when the power first reaches its lower boundary (i.e. 20 W), 
followed by the CO2/CH4 ratio reaching its upper boundary (i.e. 1.5). It 
is worth to point out that the discharge power yields a trade-off between 
total conversion and EC. Notably, eq. (3) suggests there is an inversely 
linear dependence between the total flow rate and the EC, but the total 
flow rate does not reach the upper boundary. The reason will be further 
clarified in Section 4.2.

In addition to separately investigating the total conversion and EC, 
we need a comprehensive understanding of the effect of all operating 
parameters for optimizing both performance metrics of the plasma- 
catalytic DRM process. Similar as in Section 3.3.1, we present in Fig. 8
the superposition of total conversion and EC for different weights, with 
the corresponding actions. When the total conversion is more or equally 
important than the EC, the discharge power is a positive factor and is 
near-linearly proportional to the weighted superposition. Especially 
when the total conversion is equally important to the EC, the total 
conversion reaches 36 %, while the EC reaches 34 eV/molec, when the 
discharge power reaches its upper boundary (i.e. 60 W), the Ni loading is 
9.5 % and total flow rate is 74 mL/min. When the EC is more important 
than the total conversion, the power is a negative factor and is near- 

linearly but inversely proportional to the weighted superposition. 
Furthermore, the CO2/CH4 ratio has a positive correlation with the 
weighted superposition and fluctuates within the range to seek its 
optimal value, while the total flow rate and Ni loading seems at their 
fixed value.

4. Discussion

4.1. Effect of investigated range on the RL model

The investigated range of the training dataset has a noticeable effect 
on the RL model’s performance. By comparing the two RL models of 
total conversion and energy cost outside and within the range in Fig. 3
and Fig. 7 (b and d), the total flow rate and discharge power converge to 
negative values and reach their lower boundary for total conversion and 
energy cost, respectively. We notice that the actions of agents reach 
negative values (i.e., − 50 mL/min of total flow rate and − 20 W of 
power), which is not in line with scientific knowledge, and impossible to 
implement as their value should be higher than 0 in reality. This phe-
nomenon can be explained as follows: the total flow rate and discharge 
power are the negative factors and exhibit a near-linear decrease with 
total conversion and EC within the investigated range. The RL agent is 

Fig. 5. Testing curve of the RL models of (a) CO2 conversion and (c) CH4 
conversion, by plotting them against time step, as well as the corresponding 
actions (b) and (d), within the investigated range. The y-axis representing the 
input parameters (for (b) and (d)) shows the normalized values.

Fig. 6. Testing curve of the RL models of (a) CO yield and (c) H2 yield, by 
plotting them as a function of time step, as well as the corresponding actions (b) 
and (d), within the investigated range. The y-axis representing the input pa-
rameters (for (b) and (d)) shows the normalized values.
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trained on the current dataset and learned such near-linear patterns 
within the investigated range. However, it is not trained by the dataset 
outside the investigated range. When this very same model is subjected 
to predictions outside the investigated range, the patterns learned 
within the investigated range are not effective, which induces an inac-
curate RL model. Thus, the agent decreases the negative factor as much 
as possible, even to a negative value, to obtain the maximum return. This 
result demonstrates that the RL model can only be effective on patterns 
prediction and policy optimization within the investigated range.

A similar optimization policy can also be applied to the positive 
factors. In Fig. 5 and Fig. 6(b and d), the power is the positive factor for 
the gas conversion and product yield, and the actions of agent are to 
reach their upper boundary, i.e. at the maximum value of the investi-
gated range. Although the actions of agent are not to reach negative 
value this time, the maximum value of input parameters depends on the 
capability of the equipment (e.g. the power supply). Specifically, the RL 
model might predict that a discharge power of 1 MW is super-efficient 
for the conversion, but it is impossible to implement. In addition, the 
safety boundary to implement in experiments should also be considered 
(e.g. explosion limit when considering CO2/CH4/O2 gas mixture for 
future study). This means that the RL model can only optimize the input 
parameters within the range of experimental capability.

4.2. Optimal policy developed by the RL model

Comparing the relative significance of the input parameters in 
Table 2, we can summarize two regulation policies in Table 3: 1) the 

Fig. 7. Testing curve of the RL models of (a) total conversion and (c) energy 
cost, by plotting them as a function of time step, as well as the corresponding 
actions (b) and (d), within the investigated range. The y-axis representing the 
input parameters (for (b) and (d)) shows the normalized values.

Fig. 8. Superposition of total conversion and energy cost, showing the best 
trade-offs (a,c,e), as well as the corresponding actions of the four input pa-
rameters within the investigated range (b,d,f), for different weights, i.e., weight 
= 1: (a) and (b), weight = 2: (c) and (d), weight = 0.5: (e) and (f).
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agent’s actions on the input parameters are in line with the concluded 
trend toward the output parameters. To maximize the reaction perfor-
mance, the positive factors should reach upper bounds and the negative 
factors should reach lower bounds. When the factors first increase 
(decrease) and then decrease (increase), they would have an optimal 
value. To minimize the EC, the power should reach lower bounds and 
the CO2/CH4 ratio should reach upper bounds, since the EC decreases 
with decreasing power and increasing CO2/CH4 ratio. 2) To build the 
bridge between the agent’s actions on the operating parameters and the 
reaction performance within the investigated range, the optimal 
sequence can be concluded as follows: the agent ideally starts with a 
coarse tuning of the more influential parameters, followed by fine- 
tuning of the less important parameters, to obtain the maximum re-
wards. In other words, the regulation sequence exhibits good agreement 
with the predicted significance results. This indicates that the RL agent 
mimics human experience in the decision-making process. However, the 
optimization sequence on EC (alone or in combination with total con-
version) seems different from the summarized policy, due to the limited 
training dataset. The most important factor, i.e., total flow rate, which is 
inversely proportional to energy cost, is not effective, as it is fixed at 75 
mL/min in the training dataset near the optimal value for energy cost. If 
more data could be used for training with different flow rates, the agent 
can learn a more comprehensive regulation in the current dataset, which 
is interesting for further investigation.

4.3. Comparison between SL model and RL model

To make a clear comparison between the SL and RL models in terms 
of performance and application, we list here the advantages and dis-
advantages of these two approaches: 

1) Training efficiency: Training a SL model can be relatively efficient, 
especially with large datasets and powerful computing resources, 
while training a RL model is generally less efficient, due to the need 
for exploration and the potentially long sequences of actions 
required to learn an optimal policy.

2) Interactivity and adaptability: SL models are generally static, 
meaning they do not adapt to changes in the environment after 
training, while RL models are inherently interactive and adaptive, as 
they learn from the consequences of their actions, so they are well- 
suited for dynamic environments.

In conclusion, SL models are suitable for tasks that require high 

precision and accuracy in predictions from static data, while RL models 
are more appropriate for tasks that involve complex sequences of actions 
and interactions with a dynamic environment. In many real-world sce-
narios, a hybrid approach, combining elements of both SL and RL, may 
offer the best performance and adaptability. Hence, it is interesting to 
compare the predictions of the SL model (static) with those of the RL 
model (dynamic) when combining SL and RL models in this work.

To evaluate the RL model’s effectiveness, we firstly compare the 
minimum value of the EC obtained by our RL model with the real 
experimental dataset, considering that the EC is the most important 
factor for industrial-scale DRM [45]. According to our RL model, the EC 
can reach values as low as 21 eV/molec when the discharge power is 20 
W and the CO2/CH4 ratio is 1.5. This outcome aligns with prior work on 
the optimal energy yield (EY), which was predicted at same conditions 
by SL model, and also consistent with the experimental result on EC, 
reaching 21.3 eV/molec at the same conditions [32].

Similarly, our RL model reveals that the total conversion reaches 36 
%, while the EC reaches 34 eV/molec, when the discharge power rea-
ches its upper boundary (i.e. 60 W), the Ni loading is 9.5 wt% and the 
total flow rate is 74 mL/min. This result is also validated by the exper-
imental dataset on total conversion of 34.0 % and EC of 35.2 eV/molec, 
at a near same conditions [32]. Therefore, the final results of the actions 
by the agent and the desired outcome (both maximum total conversion 
and minimum EC) are in line with the real experimental dataset.

4.4. DBD reactor used for DRM

The Ni loading, the only non-linear factor among these input pa-
rameters, has an optimal value at approximately 7.5 % for the perfor-
mance of plasma-catalytic DRM. This is because the catalyst’s specific 
surface area is larger at lower Ni loading [46], but it can be reduced at 
higher Ni loading, which in turn diminishes the performance [47], as 
indicated by studies based on similar preparation method in literature 
[46,48]. Despite its significant effect, Ni loading is not the dominant 
factor on the performance, indicated by the relative significance analysis 
in our work.

Besides Ni loading, the other three factors have much impact on the 
performance, particularly affecting the reaction kinetics, thermody-
namics, and mechanisms, as revealed from literature [7]. As indicated in 
Figs. 5 to 7, the reaction performance and EC exhibit a near-linear in-
crease with discharge power. In general, higher discharge power leads to 
more micro-discharges, thereby producing more reaction channels and 
reactive species, which play an active role in both catalytic surface and 
gas-phase reactions to boost the CO and H2 yield [49]. On the contrary, 
only the EC (alone or in combination with total conversion when the EC 
weights more than total conversion) hope to reach lower discharge 
power as the conversion rises less than linearly with rising power, as can 
be deduced from eq. (3) above [50].

The CO2/CH4 ratio positively influences the (absolute) CH4 conver-
sion and product yield, but it reduces the CO2 conversion because there 
are less CHx radicals that can contribute to the CO2 conversion, as 
indicated in Table 2 [50,51]. With higher CO2 contents, more oxygen 
atoms generated by CO2 dissociation can efficiently react with the H 
atoms produced from CH4 dissociation through electron impact, thus 
limiting the backward reaction, CH3 + H → CH4, enabling higher CH4 
conversion [51]. In the meanwhile, the total conversion reaches its 
maximum for a CO2/CH4 ratio of around 1.3. Indeed, the CH4 conver-
sion is typically higher than the CO2 conversion (cf. Fig. 5(a) and (c)), 
suggesting that a CO2/CH4 ratio below 1 would be beneficial for the total 
conversion, but on the other hand, prior works have also demonstrated 
that CO2/CH4 ratios below 1 lead to carbon deposition and catalyst 
deactivation [52]. By integrating these findings with our model pre-
dictions, it is suggested to set a CO2/CH4 ratio between 1 and 1.5 for 
plasma-catalytic DRM applications and it also corresponds with the 
common composition of biogas [53].

In our work, the EC can reach a minimum value of 12 eV/molec 

Table 3 
Regulation sequence of various input parameters within their range.

Objectives 1st 
order

2nd order 3rd 
order

4th order

CO2 conversion ↑ Flow (↓) Power (↑) Ratio 
(↓)

Loading 
(optimal)

CH4 conversion ↑ Flow (↓) Ratio (↑) Power 
(↑)

Loading 
(optimal)

CO yield ↑ Flow (↓) Ratio (↑) Power 
(↑)

Loading 
(optimal)

H2 yield ↑ Flow (↓) Ratio (↑) Power 
(↑)

Loading 
(optimal)

Total conversion ↑ Flow (↓) Power (↑) Ratio (optimal); Loading 
(optimal)

Energy cost ↓ Power 
(↓)

Ratio (↑) Flow (optimal); Loading 
(optimal)

Total conversion + energy 
cost (1 + 1) ↑

Power 
(↑)

Ratio 
(optimal)

Flow (near stable) 
Loading (near stable)

List of the abbreviations included in the table: Total flow rate (Flow), Discharge 
power (Power), CO2 /CH4 ratio (Ratio) and Ni loading (Loading). When the 
factors reach their upper and lower bounds, it is represented by (↑) and (↓), 
respectively. The expected objective is to maximize the reaction performance 
and minimize the energy cost, which is represented by (↑) and (↓), respectively.
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without any limitation (i.e., when we vary the parameters outside the 
investigated range) and 21 eV/molec when the parameters are kept 
within the investigated range. These values are however much higher 
than the EC target, i.e. 4.3 eV/molecule defined by Snoeckx and 
Bogaerts [7], to be contentious with traditional DRM, and other prom-
ising technologies. The same conclusion about too high energy cost for 
DBD plasmas was also made in [7], and is generally found in literature 
(see details in [6]). It should be noted that the task of RL is to aid sci-
entists to optimize the energy cost based on the patterns learned within 
the investigated range, but they cannot lead to a breakthrough of the 
physical limitation in DBD reactors. Therefore, we should consider other 
plasma reactors to enhance the cost-effectiveness of DRM, i.e., warm 
plasmas like gliding arc, microwave, spark discharge and atmospheric 
pressure glow discharge (APGD). Indeed, these plasmas can combine 
energy costs below this target of 4.3 eV/molec with relatively high 
conversions. For instance, a recent paper from PLASMANT shows that a 
confined APGD (cAPGD) reactor can reach an EC of 3.5 eV/molec, for a 
total conversion of 62 % (and at other conditions, an EC of 4.2 eV/molec, 
for a total conversion of 74 %) [13], while O2 addition could even reach 
a lower EC of 1.98 eV/molec for a total conversion of 67 % [54]. These 
values are clearly lower than the EC target of 4.3 eV/molecule, showing 
the superior performance of an APGD, and other warm plasmas (yielding 
similar performance) for DRM. On the other hand, although a DBD 
reactor cannot reach such excellent performance, it is the most suitable 
reactor to apply ML, due to the much larger dataset available, because of 
the much more extensive literature. That is the reason why we applied 
our ML model to the DBD results. In the future, we also plan to inves-
tigate the performance of ML for the other plasma reactor types.

4.5. ML applied to plasma catalysis

ML is crucial in advancing plasma applications that require an ac-
curate description and control of complex plasma-surface interactions, 
e.g., plasma catalysis [10]. While our data-driven ML model shines at 
prediction, it cannot explain the fundamental reaction mechanisms, 
where plasma chemical kinetics models is required, e.g., in Ref. [11] and 
the specific role of the catalyst for the synergy effect was not considered. 
Moreover, the results of ML models are mostly validated based on their 
effectiveness by the experimental dataset and they cannot optimize the 
reactor performance exceeding its potential [55]. This suggests that the 
interpretability and potential of ML model can be limited, emphasizing 
the necessity of prior knowledge in evaluating ML results.

Nevertheless, our ML model demonstrates significant potential for 
predicting and optimizing other chemical processes, for instance, ther-
mal catalytic DRM. Since catalyst compositions and reactor operation in 
thermal catalysis have been well-explored through various modeling 
approaches, our ML methods offer beneficial insights from existing 
experimental data, achieving enhanced reliability and consistency, to 
further optimize industrial-scale DRM process.

5. Conclusion

We developed a ML (SL and RL) model to both predict and optimize 
the plasma-catalytic DRM process, respectively. The SL model utilizes a 
typical ANN algorithm for reaction performance and cost-effectiveness 
prediction with a strong connection to the experimental data, indi-
cated by R2 values close to 1 for all output. However, we go one step 
further, by also developing a RL model for process optimization. For 
optimal regulation policy on single output revealed by our RL model, the 
agent starts with a coarse tuning of the more influential parameters, 
followed by fine-tuning of the less important parameters. Furthermore, 
our RL model effectively pinpointed the ideal conditions for achieving 
the lowest energy cost of 21 eV/molec at lowest bond of discharge power 
(i.e., 20 W) but highest bond of CO2/CH4 ratio (i.e., 1.5), which is in line 
with our SL prediction and the experimental dataset. For the combined 
optimization of total conversion and energy cost, our RL model reveals 

that the discharge power yields a trade-off between both performance 
metrics. However, an optimal discharge power of 60 W, Ni loading of 
9.5 wt% and total flow rate of 74 mL/min resulted in both maximum 
total conversion and minimum energy cost. Overall, our ML model ex-
cels at deriving new insights to facilitate the optimization of intricate 
nonlinear and dynamic systems, like in plasma-based gas conversion 
process.
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