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Resumo

Este trabalho se divide em duas partes. Na primeira, a evolução temporal dos pacotes
de ondas em sistemas 2D é analisada pela técnica Split-Operator em três cenários difer-
entes: em multicamadas de fósforo negro, as oscilações transientes dependente do tempo
nos valores médios de posição e momento foram observadas devido a o efeito zitterbe-
wegung e o pacote de ondas se propagam de maneira não uniforme ao longo do espaço,
deformando-se em uma forma elíptica. Esses resultados foram corroborados pelo for-
malismo da função de Green, exceto para maiores valores de momento e após intervalos
maiores de tempo. Em fios quânticos semicondutores 2D com massas efetivas anisotrópi-
cas e diferentes orientações de ângulo em relação ao eixo anisotrópico, mostramos que
quanto maior este ângulo, menor é o espaçamento dos níveis de energia, implicando em
um aumento dos estados eletrônicos acessíveis. Além disso, para o campo magnético
não-nulo, os estados quânticos de Hall edge states são significativamente afetados pela
orientação das bordas. No caso anisotrópico, oscilações amortecidas nos valores médios
de velocidade nas direções x e y foram obtidas. Essas oscilações são originadas pela ge-
ometria do fio quântico, mas também de subpacotes de onda com diferentes orientações de
momento, enquanto que para fios quanticos isotrópicos o pacote de onda se dispersa sem
se dividir; no terceiro cenário, a técnica split-operator foi usada para estudar os níveis
de Landau, as trajetórias do pacote de ondas e as velocidades dos elétrons no grafeno
em regime de baixa energia descrito por uma equação de Dirac modificada onde o op-
erador momentum é escrito em uma forma generalizada como resultado da aplicação do
formalismo do operador de tradução dependente da posição.

Na segunda parte desta tese, as propriedades eletrônicas e de tunelamento das re-
des α − T3 foram estudadas. Os elétrons nessas redes se comportam de forma análoga
aos férmions de Dirac de spin inteiro. A presença de um terceiro sítio atômico na célula
unitária leva a uma banda plana no espectro de energia, fornecendo propriedades eletrôni-
cas e de tunelamento únicas. A presença de um potencial superperiódico e a inclusão de
termos de quebra de simetria resultam em desvios da equivalência atômica entre os sítios
atômicos que afetam os pontos de Dirac e o band-gap no espectro de energia. Pequenos
desvios na equivalência entre os sítios atômicos e o número de barreiras alteram as pro-
priedades de transmissão nessas redes. Além disso, novas regiões de tunelamento são
possíveis ajustando a simetria entre os sítios atômicos e afetando a transmissão total om-
nidirecional chamada super-tunelamento de Klein observada nessas redes. Comparamos
esses resultados com as probabilidades de tunelamento por meio de regiões onde o espectro
de energia muda de linear com uma banda plana do meio para uma dispersão hiperbólica.



Abstract

This piece of work is twofold. First, the time evolution of wave-packets in 2D systems
is analyzed by the Split-Operator technique in three different scenarios: In multilayer
phosphorene, the transient oscillations in the time-dependent average of position and
momentum were observed due to the zitterbewegung effect, and the wave packet propagates
non-uniformly along the space deforming itself into an elliptical shape. These results were
corroborated by the Green’s function formalism except for large values of the wave-vector
and long times; In 2D semiconductor quantum wires (QWs) with anisotropic effective
masses and different angle orientations with respect to the anisotropic axis. We have
shown that the greater this angle, the smaller is the energy levels spacing implying in
an increase of the accessible electronic states. Additionally, for non-null magnetic field,
the quantum Hall edge states are significantly affected by the edge orientation. In the
anisotropic case damped oscillations in the average values of velocity in both x and y

directions where obtained. Theses oscillations are originated by the QW geometry but
also from subwavepackets with different momentum orientations, whereas for isotropic
QWs the wavepacket disperses without splitting; in the third scenario the split-operator
technique was used to study the Landau levels, the wave packet trajectories and velocities
of electrons in graphene at low-energy regime described by a modified Dirac equation
where the momentum-operator is written in a generalized form as result of applying the
position-dependent translation operator formalism (PDTO).

In the second part of this thesis, the electronic and tunneling properties of α − T3

lattices were studied. Electrons in these lattices behave analogous to integer-spin Dirac
Fermions. The presence of a third atomic site in the unit cell leads to a flat band in
the energy spectrum, providing unique electronic and tunneling properties. The presence
of a super-periodic potential and the inclusion of symmetry-breaking terms results in
deviations of the atomic equivalence between the atomic sites affecting the Dirac points
and the band-gap. Small deviations in the equivalence between the atomic sites and the
number of barriers change the transmission properties in these lattices. Additionally,
new tunneling regions are possible by adjusting the symmetry between the atomic sites
and affect the omnidirectional total transmission called super-Klein tunneling observed
in these lattices. We compare those results to the tunneling probabilities through regions
where the energy spectrum changes from linear with a middle flat band to a hyperbolic
dispersion.



Abstract

Dit werkstuk is tweeledig. Eerst wordt de tijdsevolutie van golfpakketten in 2D-
systemen geanalyseerd door de Split-Operator -techniek in drie verschillende scenario’s:
In meerlaags fosforeen werden de tijdelijke oscillaties in het tijdsafhankelijke gemiddelde
van positie en momentum waargenomen als gevolg van het zitterbewegung-effect (ZBW),
en het golfpakket plant zich niet-uniform voort langs de ruimte en vervormt zichzelf tot
een elliptische vorm. Deze resultaten werden bevestigd door het functie formalisme van
Green, behalve voor grote waarden van de golfvector en lange tijden; In 2D halfgeleider
kwantumdraden (QW’s) met anisotrope effectieve massa’s en verschillende hoekoriën-
taties ten opzichte van de anisotrope as. We hebben aangetoond dat hoe groter deze
hoek, hoe kleiner de energieniveaus zijn, wat een toename van de toegankelijke elek-
tronische toestanden impliceert. Bovendien worden voor niet-nul magnetische velden
de quantum Hall-randtoestanden aanzienlijk beïnvloed door de randoriëntatie. In het
anisotrope geval werden gedempte oscillaties in de gemiddelde waarden van snelheid in
zowel x als y richtingen verkregen. Deze oscillaties worden veroorzaakt door de QW-
geometrie, maar ook door subgolfpakketten met verschillende impulsoriëntaties, terwijl
voor isotrope QW’s het golfpakket zich verspreidt zonder te splitsen; in het derde scenario
werd de split-operator -techniek gebruikt om de Landau-niveaus, de golfpakkettrajecten en
snelheden van elektronen in grafeen bij een laag energieregime te bestuderen, beschreven
door een gewijzigde Dirac-vergelijking waarbij de momentum-operator is geschreven in
een gegeneraliseerde vorm als resultaat van het toepassen van het positieafhankelijke ver-
taaloperatorformalisme (PDTO).

In het tweede deel van dit proefschrift werden de elektronische en tunnel eigenschap-
pen van α − T3 roosters bestudeerd. Elektronen in deze roosters gedragen zich analoog
aan integer-spin Dirac Fermions. De aanwezigheid van een derde atomaire plaats in de
eenheidscel leidt tot een vlakke band in het energiespectrum, wat zorgt voor unieke elek-
tronische en tunnel eigenschappen. De aanwezigheid van een superperiodieke potentiaal
en de opname van symmetriebreking termen resulteert in afwijkingen van de atomaire
equivalentie tussen de atomaire locaties die de Dirac-punten en de bandgap beïnvloeden.
Kleine afwijkingen in de equivalentie tussen de atomaire locaties en het aantal barrières
veranderen de transmissie-eigenschappen in deze roosters. Bovendien zijn nieuwe tunnel
gebieden mogelijk door de symmetrie tussen de atomaire locaties aan te passen en de
omnidirectionele totale transmissie genaamd super-Klein-tunneling (SKT) te beïnvloeden
die in deze roosters wordt waargenomen. We vergelijken die resultaten met de tunnelka-
nsen door regio’s waar het energiespectrum verandert van lineair met een middelste platte
band naar een hyperbolische dispersie.
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V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm. . . . . . . . . . . . . . . . . . . 180

10.19Contour plot of transmission probability through a double-barrier in the
(φw, E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6,
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1
Introduction

1.1 Graphene: ‘CERN on one’s desk’

In 2004, researchers at the Manchester University were able to isolate films consisting
of just a few layers of graphite and even a single carbon layer, named graphene, which
boosted the search for new materials. This material, unlike theoretically expected [1, 2],
exhibits high quality and stability even under ambient conditions [3, 4]. Since graphene
has been proving to have very peculiar and interesting properties that could possibly gen-
erate new carbon-based electronic devices, this material has received a lot of attention from
researchers. As a consequence of this "boom" in two-dimensional (2D) (two-dimensional)
materials related research, Andre Geim and Konstantin Novoselov were awarded with
the nobel prize in physics for groundbreaking experiments regarding this special two-
dimensional material.

Graphene is a 2D crystal of carbon atoms arranged in a honeycomb lattice (HCL)
formed by the combination of two trigonal lattices shifted from each other. The atoms
have sp2 hybridization and each one of them is bounded to the other three, by means of
strong σ bonds. Perpendicular to the plane of atoms there is the pure half-filled pz orbitals
left out of the hybridization making weak delocalized π bonds with the neighbors atoms.
Since the pz orbital of a given carbon atom is not bound to a specific neighbor, pz orbital
constantly changes the direction of the superposition around the three neighbors, which
gives rise to the delocalized π bonds. Therefore, unpaired electrons in the pz orbitals
could hop from atom to atom as the π bonds are formed, making these π electrons the
main responsible for the transport properties of graphene [5, 6].

A striking feature of graphene is that its charge carriers are governed by an equation
analogous to the Dirac equation that is used to describe spin 1/2 particles in quantum
electrodynamics [7]. Due to that, electrons in graphene behave like zero-mass relativistic
particles that travel with a Fermi velocity that is equivalent to the speed of light vF =

106m/s (for more details see Chapter 2), exhibiting a gapless conical spectrum at low
energies (E < 1eV ). As a result, some relativistic effects such as Klein-tunneling (KT)
and the phenomenon known as zitterbewegung (ZBW) can be observed in graphene.
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The KT effect emerges when one tries to confine the graphene electrons by means of
electrostatic potentials. However, these electrons can not be trapped by such electrostatic
potentials and they can be totally transmitted through any electrostatic barrier [8]. This
effect is usually called Klein-paradox or KT in graphene, in analogy to the so called
Klein-paradox in quantum electrodynamics. We are going to discuss this effect in detail
in Chapter 2.

Another effect that can be observed in graphene is the trembling motion of its prop-
agating wave-function, this effect is called zitterbewegung [9, 10, 11] (ZBW). ZBW was
theoretically predicted for the first time in 1930 by Schrödinger [12] and, in recent years,
interest in this topic has been renewed. Previous theoretical work has suggested some ways
to observe ZBW experimentally, for example in quantum wells formed by III-V zinc-blende
semiconductors with spin-orbit coupling [13] and, more recently, in monolayers [14] and
bilayers [15] of graphene. One experimental simulation of ZBW for relativistic free elec-
trons in vacuum was made by Gerritsma et al. [16] using trapped ions. This phenomenon,
which has been attributed to an interference between the positive and negative energy
states in the wave-packet, was also analyzed numerically and analytically in Refs. [16, 17].

Because graphene provides the possibility of mimicking relativistic effects in labora-
tory, and from a technological point of view it is a very stable material, perfectly 2D,
which also brings two new degrees of freedom that can be manipulated for electronics:
the valleys [18] and the pseudo-spin. There are many other properties not included here
that can generate new technologies by exploring the physics of graphene.

1.2 Phosphorene: an anisotropic semiconductor

More recently, in 2014, a group of researchers from the University of North Carolina
managed to obtain monolayers of black phosphorus (BP), also known as phosphorene using
the micromechanical cleavage technique [19], the same technique used to obtain graphene.
Unlike graphene, BP has a direct gap and its energy value is adjustable with the number
of layers [19], in addition it has anisotropy [20] and high electronic mobility [20, 21], as
we discuss further.

Phosphorus is a non-metallic element that is highly reactive and oxidizes quickly when
in contact with oxygen in the atmosphere. This chemical element is not found freely in
nature. Phosphorus has many allotropes being BP the most stable one first obtained in
1914 from white phosphorus under high pressure and high temperature [22, 23]. Sim-
ilar to graphite, its a structure is arranged in rough layers bound by van der Waals
interactions [24]. Previous studies showed that this material exhibits a structural phase
transition [25, 26], and is superconducting at high pressures and temperatures above
10K [27, 28]. At low temperatures the conductivity is dominated by holes [23, 25, 29].

Just like graphene, that is an isolated single layer obtained from graphite, phosphorene
is a monolayer of BP [30, 31]. In this structure, the phosphorus atoms are covalently
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bonded to the three neighboring atoms and have sp3 hybridization, unlike graphene where
the C atoms are bound by sp2 hybridization, which explains the rough surface of the
material, as shown in Fig. 1.1. Moreover its bulk form is a semiconductor, whose energy
gap value is about 0.31-0.35 eV, and monolayer BP has a direct energy gap of 1.60 eV [23,
25, 32]. Experimentally it was observed that the energy gap value increases with the
number of layers of the material [31], which was later confirmed by theoretical works [19,
33, 34, 35, 21].

Figure 1.1: Representation of (a) monolayer phosphorene (top view), (b) side view of
phosphorene layers exhibiting its buckled structure [36].

BP also has particularities in its electronic properties. An interesting characteristic
of this material is the difference between the energy gap value between the valence and
conduction bands of its bulk form, which is around 0.33 eV which increased to around 1.01
eV for bilayer [37]. This difference in the energy gap values of bulk and bilayer is larger
than values observed in any other thin film. For graphene, bulk properties are observed
in samples with at least 20 layers [38], while for BP we observe bulk characteristics in
samples with at least 10 layers [39].

Figure 1.2 shows the band structures of BP in its bulk form using first-principles
calculations for two types of functionals: GGA (generalized gradient approximation) and
GW (gradient wave). We can see from Fig. 1.2 that there is a small energy gap between
the valence and the conduction bands in the region close to the Fermi level (Γ point) when
calculation is done within the GW approximation. Although none of these techniques
provide a result of energy gap values consistent with the experimental values, which
are approximately 0.31-0.35eV, the GW technique is the most suitable as it presents
qualitative results similar to the experimental results of the material.

Furthermore, as the number of layers increases, the valence band undergoes a split
close to the Fermi level, which causes a reduction in the energy value of its gap [40] as
noticed in Fig. 1.3. This occurs due to the presence of negative hopping values, called
repulsion hoppings, between layers and between close neighbors both within a layer and
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Figure 1.2: Band structure for bulk BP calculated using (a) DFT-GGA (generalized
gradient approximation) [40, 41], and (b) DFT-GW. [42, 43].

between the sites of one layer and another [40], this interaction being due to the buckled
structure of the material. The dependence of energy gap on the number of layers is more
evident by analyzing the charge mobility in this material [21, 20], which is greater in the
x direction indicating therefore an anisotropy (direction-dependent physical properties)
in BP [20].

Due to some peculiar properties of BP described in this section, this material is very re-
markable for technological applications, such as optical and electronic devices, presenting
excellent performance in batteries [44, 45] and arousing a lot of interest in the develop-
ment of transistors [44, 46, 47, 48, 49]. A major drawback is that this material is not
stable in air.

1.3 Introducing α − T3 lattices: transition from honey-
comb lattice to dice

An analogous lattice to graphene, the T3 or dice lattice, is shown on the right hand
side of Fig. 1.4. The dice lattice is described by the same Dirac Hamiltonian as graphene,
but with an enlarged pseudospin S = 1. In the dice lattice case, the geometry of the
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Figure 1.3: Band structures calculated using DFT-GW for different numbers of layers:
(a) monolayer, (b) bilayer, (c) trilayer, (d) tetralayer of BP [40].

HCL is altered by an additional atom located at the center of each hexagon coupled only
to one of the two topologically nonequivalent atomic sites of the HCL. The dice lattice
can be naturally obtained by growing a trilayer structure of cubic lattices in the (111)

direction [50] (for example SrT iO3 /SrIrO3 /SrT iO3) or by confining cold atoms to
an optical lattice [51]. The properties of general pseudospin S lattices arising from the
generalized Dirac Hamiltonian have been explored recently [52, 53, 54], providing insight
into the understanding of lattices with pseudospin equal or greater than S = 1/2.

From the α − T3 model [56] the HCL and dice (or T3) lattice can be obtained by a
continuous evolution of the parameter α, which is proportional to the strength of the
coupling with the additional atom at the center of the HCL, as observed in Fig. 1.4 where
the limiting cases, the HCL (α = 0) and dice lattice (α = 1) are represented.

The α − T3 model was initially proposed in 2014 paper [56] to investigate cold atom
systems highlighting the diamagnetic [57] (α = 0) to paramagnetic [58, 59] (α = 1)
transition in the orbital magnetic response of the lattice. This behaviour has recently
been linked to the evolution of the Berry phase in this system, which ranges continuously
from π to zero as it evolves from HCL to dice, respectively. Additionally, in the 2D
limit, at critical doping and considering α =

√
1/3 three-dimensional Hg1xCdxTe maps

onto the α − T3 model in the intermediate regime between the dice and HCL [60]. The
α−T3 model has also been extended to include additional terms and variations [61] in its
Hamiltonian.
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Figure 1.4: Some lattices obtained from the α − T3 model assuming α = 0 representing
HCL, on the left. For α = 1 (dice) there is an additional site at the center of each hexagon,
as shown on the right. The general α− T3 lattice is in the bottom [55].

1.4 Outline and goals of this thesis

This thesis has two main objectives: the first one is to develop efficient methods to solve
the time-dependent Schrödinger and Dirac equations, and then apply them to the study
of the transport properties of nanoscale structures in graphene into the PDTO approach
and to anisotropic semiconductors. The second one is to investigate the electronic and
tunneling properties in α−T3 superlattices focusing on the explanation of the appearance
of new Dirac points, band-gap formation and how the omniderectional tunneling is altered
by the inclusion of small deviations in the symmetry of the atomic sites.

First, in order to obtain the Dirac equation which describes charge carriers in graphene
and to understand the main electronic and transport properties of this material, in Chap-
ter 2 we present the tight-binding model applied to graphene and perform the continuum
limit approximation in order to obtain an effective Hamiltonian valid for a low density
of carriers, which allows the analogy with quantum electrodynamics. We also discuss
the electronic and tunneling properties of graphene in the presence of square potential
barriers and superlattices highlighting the appearance of KT and the emergence of new
Dirac points in the energy spectrum.

In Chapter 3 we summarize the electronic properties of phosphorene, from tight-binding
model to effective mass model, discussing the anisotropy of this material.
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The Dirac equation for enlarged pseudospin S which describes the α − T3 lattices
and the discussion of the consequences of it in the tunneling transport are performed in
Chapter 4 where the SKT is presented.

In Chapter 5 we show how to solve the time-dependent Schrödinger and Dirac equa-
tions numerically using the split-operator method, giving details about this method, high-
lighting its efficiency in the analysis of wave packet propagation. In Chapter 6 we calcu-
late the time evolution in BP multilayers and develop the numerical method described in
Chapter 5 for BP multilayers, something not yet reported in the literature, enabling the
investigation of wave packet evolution in this material as well as the understanding of the
relationship between the material’s anisotropy and the aforementioned ZBW effect.

In Chapter 7 we investigate theoretically the electronic properties of 2D semiconductor
quantum wires (QWs) with anisotropic effective masses and different orientations with
respect to the anisotropic axis in the absence of magnetic field and non-null magnetic
field. Moreover we apply the split-operator method to analyze the wave-packet dynamic
in these systems.

In Chapter 8 we apply the method described in Chapter 5 to the modified Dirac
equation of graphene, when the momentum operator is rewritten in a generalized form.
Moreover we obtain analytical expressions for the eigenstates and Landau levels spectrum
in graphene under the presence of a perpendicularly applied magnetic field.

The second objective of this thesis is to analyze the electronic and tunneling properties
of α − T3 superlattices to understand how the inclusion of symmetry-breaking terms
could affect the band-gap morphing and supress the SKT. In Chapter 9 we investigate
the dependency of superlattice mini-bands on the parameter α accounting for different
symmetry-breaking terms and show how it affects band gap formation. In Chapter 10
we show that small deviations in the equivalence between the atomic sites, as well as
the number of barriers can strongly change the transmission properties in these lattices.
Conclusions and perspectives can be found in Chapter 11.



2
Physical properties of graphene

In this chapter we discussed the electronic properties of graphene. We derived the
tight-binding approximation followed by the low-energy Hamiltonian obtained from the
continuum model. We also discuss the electronic properties of charge carriers in the
presence of single- or multiple barriers, where we present the striking effect called KT and
the emergence of new Dirac points when a superlattice is considered in graphene.

2.1 Tight-binding approximation

Figure 2.1: The structure of graphene crystal showing two sublattices A (blue dots) and
B (yellow dots). The primitive vectors that span the lattice are ~a1 and ~a2, while Ri (with
i = 1, 2, 3) localizes the nearest neighbors [62].

Initially, we need to define the crystallographic structure of graphene: a crystal struc-
ture composed by carbon atoms arranged in a 2D-honeycomb lattice. This graphene
structure contains two-sites per unit cell, as shown in Fig. 2.1 This unit cell consists of a
superposition of two triangular sublattices denoted by A and B [63]. The crystal structure
is formed from the primitive vectors ~a1 and ~a2 given by

~a1 =

(
3a

2
,
a
√

3

2

)
, ~a2 =

(
3a

2
,
−a
√

3

2

)
, (2.1)
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where a ≈ 1.42Å corresponds to the distance between the carbon sites. From Eqs. (2.1)
it is possible to get the vectors of reciprocal space ~b1 and ~b2:

~b1 =

(
2π

3a
,
2π
√

3

3a

)
, ~b2 =

(
2π

3a
,
−2π
√

3

3a

)
. (2.2)

Now we have described the crystallographic structure of graphene and we are able to
derive the tight-binding model. In this model it is assumed that wave-functions describing
electrons is peaked at the site, indicating electrons are tightly bound to the atom. We are
going to consider that electrons just hop between the nearest neighbors. Moreover, we
consider π orbitals since the electronic properties of graphene for low-energy excitation
are determined by these π bands.

The tight-binding Hamiltonian that describes electrons in graphene considering only
the hopping between the nearest-neighbors in second quantization formalism is:

H = −
∑
i,j

γ0

(
a†ibj + b†jai

)
, (2.3)

where γ0 = 2.8 eV is the hopping parameter [62]. The operator a†i (ai) creates (annihilates)
electrons on the site i of sublattice A. Similarly, b†j (bj) acts on the j-sites of sublattice
B.

Considering an infinity lattice, we define the Fourier transformation of the creation
and annihilation operators. In order to do that, we assume:

ai =
1√
N

∑
k

ei
~k·~riak , a†i =

1√
N

∑
k

e−i
~k·~ria†k, (2.4a)

bj =
1√
N

∑
k′

ei
~k′·~rjbk′ , b†j =

1√
N

′∑
k

e−i
~k′·~rjb†k′ . (2.4b)

Substituting Eqs. (2.4) into Eq. (2.3) the Hamiltonian is rewritten as:

H = −
∑
i,j

γ0

N

[∑
k,k′

e−i
~k·~rie−i

~k′·~rja†kbk′ +
∑
k,k′

e−i
~k′·~rjei

~k·~riakb
†
k′

]
, (2.5)

which takes the form of:

H = −γ0

N

∑
i,j

∑
k,k′

[
e−i(

~k−~k′)·~rie−i
~k′·(~rj−~ri)a†kbk′ + e−i(

~k′−~k)·~rie−i
~k′·(~rj−~ri)b†k′ak

]
. (2.6)

Considering ~rj −~ri the vectors that localize the three nearest neighbors in relation to site
A with index i (see Fig. 2.1) as ~R1 = (−a, 0), ~R2 = (a/2, a

√
3/2) and ~R3 = (a/2,−a

√
3/2)

we have

H = −γ0

N

∑
i

∑
k,k′

[
e−i(

~k−~k′)·~ria†kbk′

(
e−ik

′
xa + e−ik

′
xa/2e−ik

′
y

√
3a/2 + eik

′
xa/2e−ik

′
y

√
3a/2
)

+e−i(
~k′−~k)·~rib†k′ak

(
e−ik

′
xa + e−ik

′
xa/2e−ik

′
y

√
3a/2 + e−ik

′
xa/2eik

′
y

√
3a/2
) ]
, (2.7)
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which is reduced to

H = −γ0

∑
k

[
f(~k)a†kbk + f ∗(~k)b†kak

]
, (2.8)

where f~(k) consists of the structure factor of the crystal. Since |Ψk〉 = (ak bk)T is the
electronic state for a given ~k, Eq. (2.8) can be written as H = 〈Ψk|Hk |Ψk〉, where Hk is
a 2× 2 matrix representing the Hamiltonian for that ~k:

Hk =

(
0 −γ0f(~k)

−γ0f
∗(~k) 0

)
. (2.9)

We obtain the eigenvalues of Hk as

E±k = ±γ0|f(~k)| = ±γ0

√
3 + g(~k), (2.10)

with g(~k) = 4 cos(3kxa/2) cos(kya
√

3/2) + 2 cos(kya
√

3), and + (−) representing the con-
duction (valence) band. The electronic band structure found from Eq. (2.10) is depicted
in Fig. 2.2(a). We can see that the conduction and valence bands touch at six points
where E(kx, ky) = 0 and the bands are symmetric in relation to this value of energy, which
means that there is electron-hole symmetry. These six points are called Dirac points, and
their coordinates can be found setting E(kx, ky) = 0→ f(~k) = 0. So,

Re[f(kx, ky)] = cos(kxa) + 2 cos(kya
√

3/2) cos(kxa/2) = 0, (2.11a)

Im[f(kx, ky)] = sin(kxa)− 2 cos(kya
√

3/2) sin(kxa/2) = 0, (2.11b)

which leading to

~k1 =

(
0,

4π

3
√

3a

)
, ~k2 =

(
2π

3a
,

2π

3
√

3a

)
, ~k3 =

(
2π

3a
,
−2π

3
√

3a

)
, (2.12a)

~k4 =

(
0,
−4π

3
√

3a

)
, ~k5 =

(
−2π

3a
,
−2π

3
√

3a

)
, ~k6 =

(
−2π

3a
,

2π

3
√

3a

)
. (2.12b)

These points are located at the crystallographic points K and K ′ in the corner of the first
Brillouin zone, as shown in Fig. 2.2(b). Therefore, since the points ~k1, ~k2 and ~k6 (~k3,
~k4 and ~k5) are associated to the K (K ′) points connected by the reciprocal lattice, these
points are equivalents1.

2.2 Continuum model

Expanding the Hamiltonian in Eq. (2.9), i.e. f(kx, ky) around one of the Dirac points,
for example ~k3, and retaining just the first order terms in kx and ky we have

f(δ~k) ≈ f(~k3) +
∂f

∂kx

∣∣∣
~k=~k3

(kx − k3x) +
∂f

∂ky

∣∣∣
~k=~k3

(ky − k3y) +O(δk2). (2.13)

1Due to that, from now on we restrict in this thesis to HK .
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(a) (b)

Figure 2.2: (a) The electronic bands of graphene obtained by the tight-binding approxi-
mation, (b) the contour plot of the conduction band indicating the Dirac points K and
K ′.

After evaluating Eq. (2.13) we obtain:

f(δ~k) ≈ 3a

2
(kx − iky)e−i5π/6, (2.14)

where the complex exponential can be incorporated as a phase into the wave functions,
since its norm is one. Thus, the effective Hamiltonian near the point ~k3(K) is

HK =

(
0 ~vF(kx − iky)

~vF(kx + iky) 0

)
, (2.15)

with ~vF = 3aγ0/2. Note that the Hamiltonian in Eq. (2.15) has the same form as the
Dirac Hamiltonian that describes relativistic particles with a zero mass, but in this case
the light velocity c is replaced by the Fermi velocity vF ≈ 106 m/s [64]. The similarity
between ultra-relativistic particles and electrons in graphene makes it a promising material
to investigate relativistic effects such as KT which will be considered in the next session.
The Hamiltonian in Eq. (2.15) can be rewritten in a succinct way as:

HK = vFσ · p, (2.16)

where σ are the Pauli matrices given by:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 1

)
. (2.17)

In the Dirac approach, which describes relativistic particles without mass, the Pauli matri-
ces are related to the spin degree of freedom [64]. However, in this case the Pauli matrices
arise as a consequence of the crystallographic structure of graphene. This is the reason
why σ is called pseudospin, and the eigenstate of Eq. (2.15) given by |ΨK〉 = (ψA, ψB) is
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called pseudospinor and consists of the components describing the distribution of electrons
in sublattices A and B, so that pseudospin "up"("down") means sublattice A(B). By di-
agonalizing the Hamiltonian in Eq. (2.15) we find a linear energy spectrum E = ±~vFk

and the eigenstates are ∣∣Ψ±K〉 =
1√
2

(
1

±eiθ

)
, (2.18)

with θ = tan−1(ky/kx).
Performing the same approximation of Eq. (2.13) but around the K ′(~k6) point we find

Hk′ = vFσ
∗ · p, (2.19)

with the eigenstates ∣∣Ψ±K′

〉
=

1√
2

(
1

±e−iθ

)
. (2.20)

Thus, the Hamiltonian that describes the low-energy electronic excitation in graphene, i.e
around the points K and K ′ is given by a 2× 2 block matrix:

HK,K′ =

(
vFσ · p 0

0 vFσ
∗ · p

)
, (2.21)

with eigenvalues E = ±~vFk and eigenstates |Ψ〉 = (ΨK ,ΨK′) = (ψA, ψB, ψC , ψD)T . For
the case of ideal graphene the off-diagonal terms scatter electrons from K to K ′ and vice-
versa, which are called valleys, are decoupled and they are said to be valley degenerate.

In summary, we have just demonstrated that, when considering low-energy electrons,
the problem of an electron under the influence of the carbon atoms in an infinite lattice
that make up graphene becomes equivalent to the problem of a massless free quasi-particle
obeying the Dirac equation, and as mentioned previously this results in peculiar effects
such as KT.

2.3 Dirac fermions in graphene and Klein-tunneling

The existence of transmission of a quantum particle even with a tiny probability
through a classically forbidden region is usually obtained from the Schrödinger equa-
tion [65, 66, 64] and known as quantum tunneling. Unlike expected from the point of
view of classical particles dynamics, particles could create a "tunnel" such they could
traverse a potential barrier that is higher than their kinetic energy. In this case, the tun-
neling of a particle can be said to arise due to the coupling of the propagating solutions
of Schrödinger equation at either side of the potential barrier with decaying solutions in
the barrier region, leading to non-zero transmission probability.

Nonetheless, the advent of a covariant relativist version of quantum mechanics de-
veloped by Dirac in 1928 [67] led to several important discoveries such as the prediction
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of particles with negative energies. One consequence of this theory was recognized by
Klein [68], which predicted that regardless of the height and the width of the barrier, for
a certain range of energies, the transmission probability for a single square barrier could
reach 1. This effect has been know as Klein-paradox or KT and it is due to the overlap
between positive and negative energy states outside and inside the barriers [69].

Multiple experiments were made in order to detect KT but since very large fields
are required to detect the tunneling of relativistic particles, many difficulties were faced.
However the development and fabrication of monolayer graphene [70, 71], where a similar
effect, though for 2D massless Dirac electrons, has been predicted [8, 72, 73] and evidences
of its observation were reported [74, 75, 76, 77].

It is important to highlight that the KT observed in graphene, which we will discuss
now, is not a tunnel effect in the usual quantum mechanical sense and there is no paradox
in this case. Indeed we will demonstrate that the unusual tunneling behaviour of massless
Dirac particles in graphene is a consequence of pseudospin conservation [8, 78, 79].

2.3.1 Conservation of pseudospin and the absence of backscatter-
ing

We now demonstrate that the absence of backscattering of massless Dirac fermions
normally incident on a potential V (x)Î, where Î is the unit matrix, is a consequence of
the conservation of their pseudospin σx along the x direction.

Including an external translational invariant potential V (x) = V0 in the y direction in
the Hamiltonian, Eq.(2.15), it reads

Ĥ = kxσx + kyσy + V (x)Î . (2.22)

The velocity operator along the x direction according to Heisenberg equation is

v̂x = −i~[x, Ĥ] =

(
0 1

1 0

)
= σx, (2.23)

where we assume ~ = 1. So, the time evolution of v̂x is

˙̂vx = −i[v̂x, Ĥ] = −i[σx, Ĥ]. (2.24)

Eq. (2.24) can be written as

˙̂vx = −i

(
2iky 0

0 −2iky

)
= 2σzky. (2.25)

Since we consider the translational invariance along the y direction, k̇y = −i[ky, Ĥ] = 0, so
ky(t) = ky(0). If the initial state of the electron |ψ(0)〉 is an eigenstate of zero momentum
in the y direction ky(0) |ψ(0)〉 = 0, i.e. the electron is initially perpendicular to the
potential interface, then at time t > 0 we have

〈ψ(t)| ˙̂vx |ψ(t)〉 = 2 〈ψ(t)|σzky |ψ(t)〉 = 2 〈ψ(0)|σzky |ψ(0)〉 = 0, (2.26)
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which means that v̂x is a constant of the motion. Therefore, the electron normally incident
on a translational invariant potential is perfectly transmitted and its motion is exactly
the same as in the absence of the potential. This has important physical consequences on
the transport properties of massless Dirac electrons, such as the perfect transmission of
charge carriers through barriers at normal incidence [78], as we are going to demonstrate
now.

Let us consider a square potential barrier V (x, y) = V (x) as depicted in Fig. 2.3.
This system consists of three regions: region I: x < 0 (V (x) = 0), region II: 0 < x <

d (V (x) = V0) and region III: x > 0 (V (x) = 0). The waves-function for each region are
determined using Eq. (2.18), and they are

ψI = eikyy
[
eikxx

(
1

eiθw

)
+ re−ikxx

(
1

−e−iθw

)]
, (2.27a)

ψII = eikyy
[
Aeiqxx

(
1

−eiθb

)
+Be−iqxx

(
1

−e−iθb

)]
, (2.27b)

ψIII = teikyyeikxx
(

1

eiθw

)
, (2.27c)

Figure 2.3: Band structure across a square potential barrier with width d and height of
potential V (x) = V0. The wave-vectors inside and outside of the barrier are denoted by ~k
and ~q. Dirac cones are superposed on the potential barrier.

where A and B are determinedby continuity of the wave-function at the potential
edges, the transmission T and reflection R probabilities are obtained from T = |t|2 and
R = |r|2 respectively. The angles θw = tan−1(ky/kw) (θb = tan−1(ky/kw)) correspond to
the angle between the wave vector ~k = (kx, ky) outside (~q = (qx, ky) inside) of barrier and
the x axis (see Fig. 2.3). Moreover, the wave vectors in the x direction outside and inside
of potential are kx = E/~vF − k2

y and qx =
√

(E − V0)2/~2v2
F − k2

y.
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The continuity of wave function is used in x = 0 and x = d leading to the following
system of equations:

1 + r = A+B, (2.28a)

eiθw − re−iθw = −Aeiθb +Be−iθb , (2.28b)

Aeiqxd +Be−iqxd = teikxd, (2.28c)

−Aeiqxdeiθb +Be−iqxde−iθb = teikxdeiθw . (2.28d)

Solving this system by substitution, we get the transmission probability T as [8]:

T =
cos2 θw cos2 θb

cos2 θw cos2 θb cos2(qxd) + sin2(qxd)[1 + sin θb sin θw]2
, (2.29)

where qxd = 2πL
√

1− 2ε+ ε2 cos2 θw with the dimensionless barrier width L = V0d/2π~vF

and dimensionless energy ε = E/V0. In the limit of high barriers |V0| >> E, the expres-
sion for T can be simplified to

T =
cos2 θw

1− cos2(qxd) sin2 θw
. (2.30)

Examples of the angular dependence of transmission probability using Eq. (2.29) is
shown in Fig. 2.4. We note that if the incident angle is zero, the barrier is fully transparent
and the transmission is total. This perfect transmission at normal incidence known as
KT, as discussed previously, is due to the conservation of the pseudospin leading to the
absence of backscattering. Furthermore, for oblique incidences (θw 6= 0) and low energies,
the incoming waves might interfere itself between the two interfaces x = 0 and x = d

originating multiples resonances in the transmission, as observed in Fig. 2.4 [8, 78]2.

2.4 Superlattices in graphene and the emergence of new
Dirac points

Another interesting system to consider is the application of a periodic potential to
graphene, i.e. a superlattice, which under certain conditions leads to the appearance of
extra points where the conduction and valence bands touch each other (zero modes or
Dirac points) in the energy spectrum [80, 81, 82, 83, 84]. Additionally, Ref. [80] discusses

2These multiples resonances in the transmission of Dirac fermions in graphene through square barriers
are called Fabry-Pérot resonances, an effect analogous to the optical system Fabry-Pérot interferometer,
where inside of it oscillating waves are able to interfere between them resulting in resonances.
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Figure 2.4: Polar plot of the transmission coefficient T for the square barrier potential
at fixed energy ε = 0.41519 and width L = 4.85 (blue line), and ε = 0.291038, L =

6.91 (purple line). The petal structure is clearly seen and correspond to Fabry-Pérot
resonances [78].

which conditions lead to the emergence of extra Dirac points and the renormalization of
group velocity around them.

In this section we are going to discuss the electronic properties of charge carriers
in superlattices of graphene from the dispersion relation for an infinite series of square
barriers.

Let us start by considering an infinite number of periodically spaced barriers, as shown
in Fig. 2.5, with the width of unit cell L = Wb +Ww, where Ww and Wb are the width of
well (V (x) = −V0/2) and barrier (V (x) = V0/2) region, respectively. Since the potential
is applied along the x direction, the Hamiltonian that describes the Dirac fermions in this
system is given by Eq. (2.22). The wave-functions Ψ(x, y) = ψj(x)eikyy where j = w(b)

used to denote the wave-function outside (inside) of the barrier are

ψj(x) = Aj

(
1

eiθj

)
eikjx +Bj

(
1

−e−iθj

)
e−ikjx, (2.31)

with the wave-vectors kj = kw and kj = kb representing the wave-vectors in the well and
barrier, respectively. The angle between them and the x direction are θw = tan−1(ky/kw),
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and θb = tan−1(ky/kb).

... ...

Figure 2.5: Schematics of the superlattice potential V (x) = V0 consisting of square barriers
with width Wb and wells with width Ww.

The wave-function of this periodic system is a Bloch function and the transfer matrix
T leads an expression for the dispersion relation. The transfer matrix can be written
as [85]

T = Ωkw(L)Ω−1
kw

(Wb)Ωkb(Wb)Ω
−1
kb

(0), (2.32)

where the terms Ωkj(x) are obtained from the continuity of wave-function in the interface
between well and barrier:

Ωj(x) =

(
eikjx e−ikjx

λje
ikjx −λ∗jeikjx

)
, (2.33)

with λj = (kj + iky)~vF/Ej, where Ej = Ew or Ej = Eb:

Ew = E + V0/2 , Eb = E − V0/2. (2.34)

For simplicity, we introduce the dimensionless variables: ε = EL/~vF, u(x) = u =

V0/L~vF, Wb → WbL, Ww → 1 −Wb/L, kw → kwL, kb → kbL, ky → kyL, Kx → KxL,
where Kx is related to the periodicity of the system. So, the energies in Eq. (2.34)
become:

εw = ε+ uWb , E = ε− uWw. (2.35)

Developing the transfer matrix in Eq. (2.32) and using Bloch’s theorem cos(Kx) =

T11 +T22/2, we obtain the equation that determines the dispersion relation for the super-
lattice in graphene as:

cos(Kx) = cos(kwWw) cos(kbWb) +G sin(kwWw) sin(kbWb), (2.36)

where

G = (εwεb − k2
y)/kwkb, (2.37)
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with kw =
√
ε2w − k2

y and kb =
√
ε2b − k2

y.
The location of Dirac points when Ww = Wb = 1/2 (symmetric case) in the energy

spectrum could be determined assuming ε = 0 (kw = kb) at Kx = 0 in Eq. (2.36), leading
to:

cos2 kw/2 +

[
u2/4 + k2

y

u2/4− k2
y

]
sin2 kw/2 = 1. (2.38)

Note that Eq. (2.38) has real solution when (u2/4 + k2
y)/(u

2/4 − k2
y) = 1, and therefore

when ky = 0, corresponding to the usual Dirac point. The other possibility for a real
solution is when sin2 kw/2 = 0, corresponding to the condition of the emergence of extra
Dirac points, which are located along the ky axis following the relation:

ky,m =

√
u2

4
− 4π2m2. (2.39)

Figure 2.6: (a) Valence and conduction bands of the spectrum of a superlattice assuming
square barriers of width Wb = 1/2 and height u = 10π. (b) Slices of the superlattice
spectrum along ky for fixed Wb = 0.5 and Kx = 0. The solid red, dot-dot-dashed black,
dashed green, and dash-dotted blue curves are for different values of the barrier height
such that u/2 = 2π, 3π, 4π, and 6π, respectively [80].

The energy spectra of a superlattice in graphene at Kx = 0 along ky axis assuming
Wb = Ww = 0.5 and different values of potential u(x) = u = 4π, 6π, 8π, 12π are shown
in Fig. 2.6(a). We can observe that for values of the potential u proportional to 4π new
Dirac points are generated and the dispersion relation around them becomes almost flat
along ky direction, indicating the collimation of electrons [80, 86, 87, 88]. Moreover, unlike
the usual Dirac point at ky = 0, the extra Dirac cones are no longer symmetric and the
slope is renormalized [80], as depicted in Fig. 2.6(b), where we show the conduction and
valence bands of the superlattice when Wb = Ww = 0.5 and u = 6π.

Therefore, the emergence of new Dirac points can be controlled by adjusting the
hight and width of the potential [80, 83, 89, 84]. The presence of extra Dirac points
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in graphene leads to strong consequences in the transport properties in this material
like enhancement of the conductivity [83]. Nonetheless, the appearance of these new
zero modes are robust against the structural disorder in the crystal structure [84]. They
were recent experimentally detected by using the technique of dielectric patterning [90],
where the transport response was measured when a current was applied both parallel and
perpendicular to the superlattice [91]. The appearance of extra Dirac points using this
techinique is represented in Fig. 2.7.

Figure 2.7: Contour plots of the first conduction band showing the main DP (kx = 0) and
the first extra Dirac points (kx 6= 0) for u = 2π, 4π, and 6π [91].



3
Physical properties of phosphorene

In this chapter we obtained the energy spectrum of phosphorene using the tight-binding
approximation, and we found an energy spectrum with four energy bands. We develop the
continuum approximation for the two energy bands closest to the Fermi level (Γ region),
which we verify to be anisotropic around the Γ region by means of the effective mass
approximation.

3.1 Tight-binding approximation

The Hamiltonian which describes particles in a monolayer phosphorene was proposed
in Ref. [40], and given by

H =
∑
i

εini +
∑
i 6=j

tijc
†
icj, (3.1)

where εi is the energy of the site i, ni is the number operator, tij is the integral of hopping
between the sites i and j and the electron state creation and annihilation operators are
respectively represented by c† and c. Phosphorene, unlike graphene, has four sublattices
denoted by A,B,C and D. Taking the sublattice A as the origin of the system and
developing the hopping terms in Eq. (3.1), we have

H =
∑
i

εini +
∑
i 6=j

(
tbijb
†
iaj + tcijc

†
iaj + tdijd

†
iaj

)
+ h · c. (3.2)

The terms b†, c† and d† are, respectively, the creation operators in the sublattices B,C and
D, aj the destruction operator in the sublattice A and the conjugate terms represented
by the product h · c. The terms b†iaj, c

†
iaj, d

†
iaj indicate which electron states are being

respectively annihilated in A and created in B,C and D. In Fig. 3.1 are indicated the
five hopping parameters that are used in the tight-binding approximation.

Assuming that the crystal lattice is periodic and infinite, we can rewrite the creation
and annihilation terms of each site as Fourier transforms

ai =
1√
N

∑
k

eiK·riak, b†i =
1√
N

∑
k′

eiK
′·rib†k′ , (3.3a)
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Figure 3.1: Schematic figure of the crystal structure of phosphorene with the five hopping
parameters [92].

c†i =
1√
N

∑
k

e−iK
′′·ric†k′′ , d†i =

1√
N

∑
k′′′

e−iK
′′′·rid†k′′′ . (3.3b)

Denoting the second sum in the Hamiltonian of Eq. (3.2) as H ′ and using the Fourier
transforms indicated in Eq. (3.3), the term H ′ is rewritten as

H ′ =
1

N

∑
kk′

∑
i,j

tbije
−i(k−k′)·rjeik

′·δjib†k′ak +
1

N

∑
kk′′

∑
i,j

tcije
−i(k−k′′)·rjeik

′′·δjic†k′ak

+
1

N

∑
kk′′′

∑
i,j

tdije
−i(k−k′′′)·rjeik

′′′·δjid†k′′′ak. (3.4)

Using the following definitions to eliminate the sum in j of Eq. (3.4):

δ(k − k′) =
1

N

∑
j

e−i(k−k
′)·rj , (3.5a)

δ(k − k′′) =
1

N

∑
j

e−i(k−k
′′)·rj , (3.5b)

δ(k − k′′′) =
1

N

∑
j

e−i(k−k
′′′)·rj , (3.5c)

we obtain the final expression forH ′ in terms of the five hopping parameters after replacing
Eq. (3.5) into Eq. (3.4)

H ′ =
∑
k

∑
i

(
tbie

ik·δbi b†kak + tcie
ik·δci c†kak + tdi e

ik·δdi d†kak

)
. (3.6)

Figure 3.2 shows the distance and angles between the first neighbors of the A site.
From these parameters we can find expressions for t1 and t3 represented, respectively by
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δb1, δ
b
2 and δb3, δ

b
4 , which consist of the positions from sublattice B, where electrons are

created, in relation to the sublattice A, where electrons are annihilated. Similarly, the
parameters t2 and t5 are represented by δc1 and δc2 which are the positions of sublattice C,
where electrons are created, in relation to the sublattice A. Moreover, t5 is represented
by δd1 , δd2 , δd3 , δd4 corresponding to the position of sublattice D in relation to sublattice A.
Taking into account the considerations made above and based on Fig. 3.2, then we have

Figure 3.2: Representation of the first neighbors in the crystal lattice of phosphorene with
their respective position vectors with respect to atomic site A [93].

δb1 = d1 sin (α1/2)x̂− d1 cos (α1/2)ŷ, (3.7a)

δb2 = −d1 sin (α1/2)x̂− d1 cos (α1/2)ŷ, (3.7b)

δb3 = d1 sin (α1/2)x̂+ (2d2 cos β + d1 cos (α1/2)) ŷ, (3.7c)

δb4 = −d1 sin (α1/2)x̂+ (2d2 cos β + d1 cos(α1/2)) ŷ, (3.7d)

δc1 = d2 cos βŷ + d2 sin βẑ, (3.7e)

δc2 = − [d1 cos (α1/2) + d2 cos β] ŷ + d2 sin βẑ, (3.7f)

δd1 = d1 sin (α1/2)x̂+ (d1 cos (α1/2) + d2 cos β) ŷ + d2 sin βẑ, (3.7g)

δd2 = −d1 sin (α1/2)x̂+ (d1 cos (α1/2) + d2 cos β) ŷ + d2 sin βẑ, (3.7h)

δd3 = d1 sin (α1/2)x̂− (d1 cos (α1/2) + d2 cos β) ŷ + d2 sin βẑ, (3.7i)

δd4 = −d1 sin (α1/2)x̂− (d1 cos (α1/2) + d2 cos β) ŷ + d2 sin βẑ. (3.7j)

Since each term of the integral of hopping are associated to the distances as follow:

t1 → δb1; δb2;

t2 → δc1;

t3 → δb3; δb4;

t4 → δd1 ; δd2 ; δd3 , δ
d
4 ;

t5 → δc2,

(3.8)
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we can replace the relations given by Eq. (3.8) into Eq. (3.6), which leads to∑
i

tbie
ik·δbi = t1

(
eik·δ

b
1 + eik·δ

b
2

)
+ t3

(
eik·δ

b
3 + eik·δ

b
4

)
= UAB, (3.9a)∑

i

tcie
ik·δci = t2e

ik·δc1 + t5e
ik·δc2 = UAC , (3.9b)∑

i

tdi e
ik·δdi = t4

(
eik·δ

d
1 + eik·δ

d
2 + eik·δ

d
3 + eik·δ

d
4

)
= UAD. (3.9c)

Using Eqs. (3.7) in Eqs. (3.9), the terms δji in the z direction cancel each other, due to the
product with ~k = (kx, ky). Making these same procedures but considering the sublattices
C and D as origin of the system1, the Hamiltonian in Eq. (3.2) takes the matrix form

H =


εA UAB UAC UAD
U∗AB εB U∗AC U∗AD
UAD UAC εD UAB
U∗AC UAD U∗AB εC

 , (3.10)

where the terms UAB,UAC and UAD are

UAB = cos (kxd1 sin (α1/2))
[
2t1e

−ikyd1 cos(α1/2) + 2t3e
iky(2d2 cosβ+d1 cos(α1/2))

]
,(3.11a)

UAC = t2e
ikyd2 cosβ + t5e

−iky(2d1 cos(α1/2)+d2 cosβ), (3.11b)

UAD = 4t4 cos (kxd1 sin (α1/2)) [cos ky (d1 cos (α1/2) + d2 cos β)] . (3.11c)

Since all atoms of the crystal are atoms of phosphorus we consider
∑

i εi = ε, and we
obtain the following matrix of tight-binding approximation for phosphorene

H =


ε UAB UAC UAD
U∗AB ε U∗AC U∗AD
UAD UAC ε UAB
U∗AC UAD U∗AB ε

 . (3.12)

In order to obtain the eigenenergies of Eq. (3.12), we reduce the matrix (3.12) into
two 2×2 matrices since the sublattices A and D are symmetric, as depicted in Figure 3.3,
where each term of these two sub-matrices provide a pair of energy bands. To do that,
we start by considering that the eigenstate for the matrix in Eq. (3.12) has the general
form ψ = (φA, φB, φD, φC), and the eigenvalue equation is given by

ε UAB UAC UAD
U∗AB ε U∗AC U∗AD
UAD UAC ε UAB
U∗AC UAD U∗AB ε



φA

φB

φD

φC

 = E


φA

φB

φD

φC

 , (3.13)

1These calculations can be checked in Ref. [93].
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a) b)

Figure 3.3: Representation of crystal structure of phosphorene with the four atomic sites
A,B,C and D. (a) Top view, and (b) lateral view indicating the lattice parameters ~a1

and ~a2 and showing the roughness of the crystal structure [36, 19].

leading to the following system of equations:

εφA + UABφB + UADφD + UACφC = EφA, (3.14a)

U∗ABφA + εφB + U∗ACφD + UADφC = EφB, (3.14b)

UADφA + UACφB + εφD + UABφC = EφD, (3.14c)

U∗ACφA + UADφB + U∗ABφD + εφC = EφC . (3.14d)

Adding Eqs. (3.14a) to (3.14c), and Eqs. (3.14b) to (3.14d) we obtain respectively

(ε+ UAD) (φA + φD) + (UAB + UAC) (φB + φC) = E (φA + φD) , (3.15a)

(U∗AB + U∗AC) (φA + φD) + (ε+ UAD) (φB + φC) = E (φB + φC) , (3.15b)

and subtracting Eqs. (3.14a) and (3.14c), and Eqs. (3.14b) and (3.14d) we have

(ε− UAD) (φA − φD) + (UAB − UAC) (φB − φC) = E (φA − φD) , (3.16a)

(U∗AB − U∗AC) (φA − φD) + (ε− UAD) (φB − φC) = E (φB − φC) . (3.16b)

Using Eqs. (3.15) and (3.16) we obtain the eigenvalues equation as a matrix system
ε+ UAD UAB + UAC 0 0

U∗AB + U∗AC ε+ UAD 0 0

0 0 ε− UAD UAB − UAC
0 0 U∗AB − U∗AC ε− UAD



φA + φD

φB + φC

φA − φC
φB + φC

 = E


φA + φD

φB + φC

φA − φC
φB + φC

 . (3.17)
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From Eq. (3.12) we obtain four energy bands. Two of them are closer to the Fermi level
and given by the upper matrix of Eq. (3.12), in that case the eigenvalue equation is given
by (

ε+ UAD UAB + UAC
U∗AB + U∗AC ε+ UAD

)(
φA + φD

φB + φC

)
= E

(
φA + φD

φB + φC

)
. (3.18)

On the other hand, the eigenvalue equation concerning energy bands further from the
Fermi level is given by the lower matrix of Eq. (3.12)(

ε− UAD UAB − UAC
U∗AB − U∗AC ε− UAD

)(
φA + φD

φB + φC

)
= E

(
φA − φC
φB + φC

)
. (3.19)

From Eqs. (3.18) and (3.19) we determine the expressions of the four energy bands

E(kx, ky) = 2ε+ 8t4 cos (kxa1) cos (kya2)± [4(z1 + z2) cos (kxa1) + 4z3 cos (kya2)]1/2 , (3.20a)

E(kx, ky) = 2ε+ 8t4 cos (kxa1) cos (kya2)± {4(z1 − z2) cos (kxa1)− 4z3 cos (kya2)}1/2 , (3.20b)

where

z1 =
[
t21 + t23 + 2t1t3 cos (2kya2)

]
, (3.21a)

z2 = t3 [t2 cos (kya2) + t5 cos (3kya2)] , (3.21b)

z3 = t1 [t2 + t5] cos (kxa1) , (3.21c)

a1 = d1 sin (α1/2), (3.21d)

a2 = d1 cos (α1/2) + d2 cos β, (3.21e)

and +(-) before the square root in Eq. (3.20a) corresponds to the conduction (valence)
band. The four energy bands obtained from Eqs (3.20a) and (3.20b) are depicted in Fig.
3.4.

3.2 Continuum model

Similar as in the graphene case, where we developed a model which describes the
electrons around K and K ′ points, it is interesting to develop an approximation to the
energy spectrum from the tight-binding model of phosphorene around the point where
there is a band-gap and the electronic and transport properties take place. In that case,
we approximate the terms of the upper matrix in Eq. (3.17), which leads to the energy
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Figure 3.4: Energy spectrum of phosphorene obtained using the tight-binding model.

spectrum closer to the Fermi level, around the point Γ (kx = ky = 0), thus obtaining
the continuum model for the electrons in phosphorene. Developing this approximation in
terms of the matrix in Eq. (3.18) we find

UAD ≈ 4t4 − 2t4 [d1 sin (α1/2)]2 k2
x − 4t4d1 [sin (α1/2) + d2 sin β]2 k2

y, (3.22a)

UAB ≈ 2 (t1 + t3)− (t1 + t3) [d1 sin (α1/2)]2 k2
x

−
{
t1 [d1 cos (α1/2)]2 + t3 [d1 cos (α1/2) + 2d2 cos β]2

}
k2
y

+ i [−2t1 cos (α1/2) + 2t3 (d1 cos (α1/2) + 2d2 cos β)] ky, (3.22b)

UAC ≈ (t2 + t5)−
{
t2 [d2 cos β]2 /2 + t5 [2d1 cos (α1/2) + 2d2 cos β]2 /2

}
k2
y

+ i {t2d2 cos β − t5 [2d1 cos (α1/2) + 2d2 cos β]} ky. (3.22c)

Replacing the expressions given by Eqs. (3.22) in the matrix of (3.18) and setting ε = 0,
we obtain the matrix of the Hamiltonian in the continuum model

H =

(
uo + ηxk

2
x + ηyk

2
y δ + γxk

2
x + γyk

2
y + iχky

δ + γxk
2
x + γyk

2
y − iχky uo + ηxk

2
x + ηyk

2
y

)
, (3.23)
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where

uo = 4t4;

δ = 2 (t1 + t3) + t2 + t5;

γx = − (t1 + t3) (d1 sin (α1/2))2 ;

γy = −t1 (d1 cos (α1/2))2 − t2 (d2 cos β)2 /2− t3 (d1 cos (α1/2) + 2d2 cos β)2

− t5 (2d1 cos (α1/2) + d2 cos β)2 /2;

χ = −2t1d1 cos (α1/2) + t2d2 cos β + 2t3 (d1 cos (α1/2) + 2d2 cos β)

− t5 (2d1 cos (α1/2) + d2 cos β) ;

ηx = −2t4 (d1 sin (α1/2))2 ;

ηy = −2t4 (d1 cos (α1/2) + d2 cos β) .

By diagonalizing Eq. (3.23) we obtain the eigenvalues of the continuum model

E = u0 + ηxk
2
x + ηyk

2
y ±

√(
δ + γxk2

x + γyk2
y

)2
+ χ2k2

y; (3.24)

where +(−) corresponds to the conduction (valence) bands. The hopping parameters,
lattice and continuum parameters and their values are listed in Table 3.2. Using those
values in Eq. (3.24) we plot the energy spectrum shown in Fig. (3.5).

Hoppings Continuum parameters Lattice parameters
t1 = −1.220 u0 = −0.42 eV α1 = 96.5◦

t2 = 3.665 ηx = 0.58 eV.2 α2 = 101.9◦

t3 = −0.205 ηy = 1.01eV.2 d1 = 2.22

t4 = −0.105 δ = 0.76 eV. d2 = 2.24

t5 = −0.055 χ = 5.25 eV.2 cos β = − cos (α2) / cos (α1)

γx = 3.93 eV.2

γy = 3.788 eV.2

Table 3.1: Hoppings, continuum parameters, and lattice parameters of phosphorene [93].

From Fig. 3.5 we note that the continuum model agrees very well with the tight-binding
in the range of energy values between -2.0eV to 1.5 eV, this being exactly the region
close to the band-gap of energy, indicating that the electronic and transport properties
of phosphorene can be investigated efficiently within this continuum approach. It is
important to highlight that the anisotropy in the energy spectrum around the Γ point.
This anisotropy results in interesting electronic and transport properties in phosphorene.
One of the effects of this anisotropy in the energy spectrum on the transport properties
of this material can be observed when analyzing the wave packet dynamics in black
phosphorus multilayers, as we are going to discuss in the Chapter 5.
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Figure 3.5: Comparison between the phosphorene energy spectra obtained from the tight-
binding model close to Γ point (black line) and the continuum model (red line)[93].

To determine the eigenstates of the Hamiltonian in Eq. (3.23), the wave-function can
be written as

Ψ =

(
φ1

φ2

)
, (3.25)

where φ1 and φ2 are superpositions of the wave functions in the four sublattices and given
by (φA + φD)/2 and (φB + φC)/2, respectively. Therefore, the eigenstate equation is(

uo + ηxk
2
x + ηyk

2
y δ + γxk

2
x + γyk

2
y + iχky

δ + γxk
2
x + γyk

2
y − iχky uo + ηxk

2
x + ηyk

2
y

)(
φ1

φ2

)
= E

(
φ1

φ2

)
. (3.26)

Rewriting the terms of the off main-diagonal, we get

δ + γxk
2
x + γyk

2
y ± iχky =

√(
δ + γxk2

x + γyk2
y

)2
+ (χky)

2e±iθk ,

θk = arctan

[
2χky

f+ − f−

]
, (3.27)

where f+ e f− are given by

f± = (uo ± δ) + (ηx ± γx) k2
x + (ηy ± γy) k2

y. (3.28)

We can rewrite the Hamiltonian in Eq. (3.23) in terms of f+ and f−

H =

(
ε1 ε2e

iθk

ε2e
−iθk ε1

)
, (3.29)

where

ε1 =
f+ + f−

2
, ε2 =

√(
f− − f+

2

)2

+ (χky)
2. (3.30)
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Applying (3.29) to (3.25) we determine the eigenstates of the continuum model Hamilto-
nian

Ψλ =
1√
2

(
1

λeiθk

)
, (3.31)

with λ = 1(−1) for electrons (holes) and θ represents the phase angle of the wave functions,
unlike graphene case where the parameter θ represents the angle that the wave-vector
makes with the x axis in the momentum space and gives the propagation direction of the
electron.

3.3 Effective-mass model

Due to the presence of band-gap and non-zero group velocity around the Γ point in
the phosphorene energy spectrum, we can obtain an even simpler model for the electrons
around the point where the anisotropy of the energy bands of phosphorene appears more
directly in the so-called effective mass model.

The effective mass model assumes that the electrons in a crystal lattice under the
action of an external force (an electric field, for example) behaves like a free electron with
a mass given by m∗ which is inversely proportional to the second derivative of energy with
respect to the wave-vector ~k [94]

~m∗ =
~2

∂2E/∂~k2
, (3.32)

from (3.24) we obtain the derivative of second order of the energy in the x direction of
the wave-vector

∂2Ee(h)

∂k2
x

= 2ηx ±

 2γx
(
δ + 3γxk

2
x + γyk

2
y

)
kx√(

δ + γxk2
x + γyk2

y

)2
+ χ2k2

y

+ · · ·

 , (3.33)

Since we are analyzing the region around the Γ point we have that for small values of kx
and ky the effective mass in the x direction is given by

me(h)
x =

~2

2 (ηx ± γx)
, (3.34)

where the positive and negative signs represent the effective mass for electrons and holes,
respectively.

On the other hand, making the same procedure but now for the y direction we obtain

me(h)
y =

~2

2 (ηx ± γx ± χ2/2δ)
, (3.35)

where, again, the positive and negative signs correspond to the values for electrons and
holes respectively. Rewriting the energy expression given in (3.24) in terms of the effective
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masses in the direction x and y given by Eqs. (3.34) and (3.35) we get the following
expression for the energy spectrum

E = (uo ± δ) +
~2

2m
e(h)
x

k2
x +

~2

2m
e(h)
y

k2
y. (3.36)

From (3.36) we can see that the energy levels in moments space are ellipses with their
semi-axes given by the effective masses in the directions x and y. Thus, charge carriers in
phosphorene have direction-dependent electronic properties, as discussed in Chapter 7.



4
The α− T3 lattice

In this chapter we discuss the electronic properties of α − T3 lattices introduced in
Chapter 1 by starting from the Tight-binding approximation and further considering the
low-energy regime where we are going to demonstrate that the charge carriers in these
lattices are described by an equation analogous to the Dirac equation, similar to graphene
but with a enlarged pseudospin though, which provides interesting effects such as super-
Klein tunneling that we are also going to discuss in the last section of this chapter.

4.1 Tight-binding approximation

The α−T3 lattice is depicted in Fig. 4.1(a). The unit cell is formed by three triangular
lattices with three atoms at sites A,B and C where the additional atom at site C placed
at the center of the unit cell and coupled only to the atomic sites B through the parameter
α. The value of the coupling parameter α can be adjusted to obtain a honeycomb lattice
(HCL) analogous to the crystal structure of graphene but with an additional site. The
Bravais lattice vectors for the lattice are shown in Fig. 4.1(b). They can be written as

~a1 =

(
−a
√

3

2
,
3a

2

)
, ~a2 =

(
a
√

3

2
,
3a

2

)
, (4.1)

where a is the atom-atom distance, as indicated in Fig. 4.1(b). In graphene, the carbon-
carbon distance is approximately a = 1.42Å. To determine the reciprocal vectors that
describe the first Brillouin zone we use the following relations

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
, ~b2 = 2π

~a3 × ~a1

~a1 · (~a2 × ~a3)
. (4.2)

Since we are considering a 2D structure, we take ~a3 = (0, 0, 1), so the reciprocal vectors
are

~b1 =

(
− 2π

a
√

3
,
2π

3a

)
, ~b2 =

(
2π

a
√

3
,
2π

3a

)
, (4.3)
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(a) (b)

Figure 4.1: (a) Representation of the α − T3 model lattice with hopping t between the
atoms in the HCL and hopping αt between the atomic sites B (red dots) and C (green
squares). (b) The lattice showing the primitive vectors a1 and a2 and the inter-atomic
distance a = 1.42Å [55]

if we consider the site B at the origin of the coordinate system that describes the infinite
lattice in real space, we can get the binding vectors between sites A-B and B-C. Similar to
graphene lattice, the site B has three nearest neighbors sites A with its vectors of position
in relation to site B denoted by ~δA1 ,

~δA2 ,
~δA3 , and given by

~δA1 = (0,−a), (4.4a)

~δA2 =

(
a
√

3

2
,
a

2

)
, (4.4b)

~δA3 =

(
−a
√

3

2
,
a

2

)
. (4.4c)

Since in the case of the α− T3 lattice there is an additional site C placed at the center of
each hexagon which is only coupled to site B, this site has three nearest neighbors sites
C with the position vectors ~δC1 ,

~δC2 ,
~δC3 and given by

~δC1 = (0, a) = − ~δA1 , (4.5a)

~δC2 =

(
−a
√

3

2
,
−a
2

)
= − ~δA2 , (4.5b)

~δC3 =

(
a
√

3

2
,−a

2

)
= − ~δA3 . (4.5c)
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After discussing the crystallographic properties of the α − T3 lattices we are going
to derive the tight-binding model for these lattices. For the α − T3 lattice, the hopping
parameter between the atomic sites A and B is denoted by t, while between B and C

sites the hopping parameter is denoted by αt. The coupling variable α is unitless, and can
be varied between 0 and 1. For the case α = 0, the atomic site C is uncoupled from the
atomic site B, and we obtain a lattice analogous to the HCL of graphene with an inert
C-sublattice. Assuming α = 1 the hopping parameter between the atomic sites A and B
is identical to the one between the B and C sites, and the dice lattice is recovered.

The Hamiltonian of the α− T3 lattice in the tight-binding model using the first quan-
tization formalism is defined as

Hij = 〈Φi|H|Φj〉 , (4.6)

where Φi(Φj) corresponds to the orbital Bloch wave-functions to site i(j) in the crystal
lattice, so for the α− T3 lattice we have three orbital Bloch wave-functions

ΦA(~k, ~r) =
1√
N

∑
RA

ei
~k· ~RAϕA(~r − ~RA), (4.7a)

ΦB(~k, ~r) =
1√
N

∑
RB

ei
~k· ~RBϕB(~r − ~RB), (4.7b)

ΦC(~k, ~r) =
1√
N

∑
RC

ei
~k· ~RCϕC(~r − ~RC), (4.7c)

where ~RA, ~RB and ~RC corresponds to the position of sites A, B and C in the infinite
crystal lattice respectively.

The next step is to define the terms of the matrix Hij in Eq. (4.6). First, consider the
terms related to site A:

HAB =
1

N

∑
RA,RB

e−i
~k· ~RA .ei

~k· ~RB
〈
ϕA(~r − ~RA)|H|ϕB(~r − ~RB)

〉
, (4.8a)

HAC =
1

N

∑
RA,RC

e−i
~k· ~RA .ei

~k· ~RC
〈
ϕA(~r − ~RC)|H|ϕB(~r − ~RC)

〉
, (4.8b)

HAA =
1

N

∑
RA,RA

e−i
~k· ~RA .ei

~k· ~RA
〈
ϕA(~r − ~RA)|H|ϕB(~r − ~RA)

〉
. (4.8c)

Since the site C is only coupled to site B and we are taking into account only the nearest-
neighbour, we have HAC = 0 and HAA = 0. Therefore, for the term HAB we have

HAB =
1

N

∑
RAB

e−i
~k·( ~RA− ~RB)

〈
ϕA(~r − ~RA)|H|ϕB(~r − ~RB)

〉
. (4.9)
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The expression
〈
ϕi(~r − ~Ri)|H|ϕj(~r − ~Rj)

〉
is associated to the hopping parameter of the

crystal lattice, which is related to the interaction energy between the sites of the unit cell.
Since in the α− T3 lattices the hopping parameter between the sites A and B is given by
t. So, the term HAB becomes

HAB = −t
(
e−i

~k· ~δA1 + e−i
~k· ~δA2 + e−i

~k· ~δA3
)
,

HAB = −t
(
eikya + 2e−ikya/2 cos(kxa

√
3/2)

)
, (4.10)

HAB = f(~k). (4.11)

For the atomic site B we have

HBB = 0, (4.12a)

HBA = −t
∑
RBA

e−i
~k·( ~RB− ~RA) = H∗AB = f ∗(~k), (4.12b)

HBC =
1

N

∑
RBC

e−i
~k·( ~RB− ~RC)

〈
ϕB(~r − ~RB)|H|ϕC(~r − ~RC)

〉
. (4.12c)

Since the hopping parameter between the atomic sites B and C is given by αt, for the
the term HBC we have

HBC = −αt
(
ei
~k· ~δC1 + ei

~k· ~δC2 + ei
~k· ~δC3
)
, (4.13)

HBC = −αt
(
e−i

~k· ~δA1 + e−i
~k· ~δA2 + e−i

~k· ~δA3
)
,

HBC = αf(~k). (4.14)

Similarly, the terms concerning the atomic site C are given by

HCA = 0, (4.15a)

HCC = 0, (4.15b)

HCB = −αt
∑
RCB

e−i
~k·( ~RC− ~RB) = H∗BC = αf ∗(~k). (4.15c)

Thus, we finally obtain the matrix that corresponds to the tight-binding Hamiltonian for
the α− T3 lattices

HTB =

 0 f(~k) 0

f ∗(~k) 0 f(~k) tan θ

0 f ∗(~k) tan θ 0

 , (4.16)
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where we have parametrized α = tan−1 θ. Rescaling the hamiltonian by cos θ gives us the
matrix hamiltonian that was originally utilized to introduce the α− T3 model

HTB =

 0 f(~k) cos θ 0

f ∗(~k) cos θ 0 f(~k) sin θ

0 f ∗(~k) sin θ 0

 . (4.17)

We calculate the eigenvalues of the hamiltonian in order to obtain the energy dispersion
for the α− T3 lattice: ∣∣∣∣∣∣∣∣∣

−E f(~k) cos θ 0

f ∗(~k) cos θ −E f(~k) sin θ

0 f ∗(~k) sin θ −E

∣∣∣∣∣∣∣∣∣ = 0, (4.18)

E
(
E2 − f(~k)f ∗(~k)

)
= 0,

E = 0 , E = ±
∣∣∣f(~k)

∣∣∣ . (4.19)

(a) (b)

Figure 4.2: (a) Electronic band structures of α − T3 model obtained by tight-binding
approximation, and (b) the contour plot of the conduction and valence bands indicating
the Dirac points K and K ′ and vectors of reciprocal space ~b1 and ~b2.

In the terms of the primitive vectors of the unit cell,
∣∣∣f(~k)

∣∣∣ is given by

∣∣∣f(~k)
∣∣∣ = t

√
3 + 2 cos(kxa

√
3) + 4 cos(kxa

√
3) cos(3kya/2). (4.20)

The above energy dispersion is identical to the energy dispersion of the conduction and
valence bands of graphene with the addition of a dispersionless flat band that cuts through
the Dirac points. A schematic of the three bands of the α − T3 lattices can be found in
Fig. 4.2(a). All three bands are present for the full range of α.
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4.2 Continuum model

As is typically done in graphene, we can do a low-energy expansion around the Dirac
point located at K and K’ valleys shown in Fig. 4.2(b). Using Taylor’s series we can
expand the term f(~k) around the K and K ′ points restricting to only the terms of first
order. For K and K ′ points we have

f(δ~k) = f( ~K) +
∂f

∂kx

∣∣∣∣∣
~k= ~K

(kx −Kx) +
∂f

∂ky

∣∣∣∣∣
~k= ~K

(ky −Ky) , (4.21a)

f(δ~k) = f( ~K ′) +
∂f

∂kx

∣∣∣∣∣
~k= ~K′

(
kx −K

′
x

)
+
∂f

∂ky

∣∣∣∣∣
~k= ~K′

(
ky −K ′y

)
, (4.21b)

which can be written in a shorter way as

f(~k) ≈ 3at

2
(ξkx − iky) , (4.22)

where ξ = +1(−1) corresponds to valleyK (K ′). The constant 3at
2

has the unit of Planck’s
constant multiplied by the velocity, so we can write Eq. (4.22) as

f(~k) ≈ ~vc (ξkx − iky) . (4.23)

Replacing Eq. (4.23) into the hamiltonian given by Eq. (4.17) we obtain

HD = ~vc

 0 (ξkx − iky) cos θ 0

(ξkx + iky) cos θ 0 (ξkx − iky) sin θ

0 (ξkx + iky) sin θ 0

 . (4.24)

By diagonalizing the matrix in Eq. (4.24) we get the energy dispersion for α−T3 lattices
in the low-energy regime

E = 0 , E = ±~vc|~k|. (4.25)

Notice that there are three bands: a flat band with energy zero for all momenta, and
two linear bands with energy E = s~vck, with s = ±1 for the conduction and valence
band, respectively. The linear spectrum implies that electrons move at speed vc = vf in
analogy to relativistic massless particles, where vf is substituted for the speed of light.
In graphene, the Fermi velocity is approximately 106 m/s, so from now we are going to
consider vc = vf , similar as done in Chapter 2.

The low-energy hamiltonian given by Eq. (4.24) can be written as

HD = ~kx

ξ
 0 cos θ 0

cos θ 0 sin θ

0 sin θ 0

− iky
 0 cos θ 0

− cos θ 0 sin θ

0 − sin θ 0


 . (4.26)
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When α = 0 → θ = 0, we recover the same Eq. (2.15) for graphene in the low-energy
regime

HK,K′

graphene = ~vf

(
0 (ξkx − iky)

(ξkx + iky) 0

)
. (4.27)

More generally the Dirac-Weyl hamiltonian for general pseudospin S can be written as:

HDW = ~vf ~S · ~k. (4.28)

So, for graphene case, Eq. (4.27) can be written using the general form of Eq. (4.28) as

HK
graphene = ~vf~σ · ~k, (4.29a)

HK′

graphene = ~vf~σ∗ · ~k, (4.29b)

where ~σ corresponds to the Pauli’s matrices. So, the hamiltonian of graphene is a special
case represented of Eq. (4.28) with pseudospin S = 1/2. Now, when we consider the
case of α = 1 → θ = π/4 we recover the hamiltonian for the dice lattice, and Eq (4.26)
becomes

Hdice = ~kx

ξ 1√
2

0 1 0

1 0 1

0 1 0

+ ky
1√
2

0 −i 0

i 0 −i
0 i 0


 . (4.30)

Note that Eq. (4.30) can be written in terms of the pseudospin matrices given by

Sx =
1√
2

0 1 0

1 0 1

0 1 0

 , Sy =
1√
2

0 −i 0

i 0 −i
0 i 0

 . (4.31)

So, the hamiltonian for the dice lattice in the low-energy regime around the Dirac points
located at the K and K ′ valleys are

HK
dice = ~vf ~S · ~k, (4.32a)

HK′

dice = ~vf ~S∗ · ~k. (4.32b)

where in this case S = 1. Since the conduction and valence bands are linear in the energy
spectrum, the particles behave like massless Dirac Fermions, however the hamiltonian
which describes the charge carriers due to the presence of an additional atomic site as in
the dice lattice has wave-functions represented by an enlarged and integer pseudospin.
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4.2.1 Wavefunctions of the α− T3 lattices

We obtain the eigenvectors of the low-energy Hamiltonian given by Eq. (4.26) associ-
ated with each of the three eigenvalues. For the linear bands we obtain

|Ψs〉 =

 eiθk cos θ

s

e−iθk sin θ

 . (4.33)

For the flat band we find

|Ψ0〉 =

 eiθk sin θ

0

e−iθk cos θ

 , (4.34)

where s = ±1 for the conduction and valence band, respectively. Here, θk is the angle
associated with momentum ~k and given by θk = tan−1(ky/kx). In the next session we are
going to use these wave-functions to investigate the unique tunneling properties of α−T3

lattices as a consequence of the enlarged pseudospin of these lattices.

4.3 Klein tunneling in α− T3 lattice

As discussed in Chapter 2, electrons in graphene at low-energy regime are well-
described by the two-dimensional massless Dirac equation with pseudospin S = 1/2,
which makes it a promising material for directly testing ideas of relativistic physics. The
novel materials such as the dice lattice, and the α−T3 lattice provide similar opportunities.

The Klein tunnelling (KT) for both of the two limiting cases of the α − T3 model,
graphene (α = 0) [8, 95, 78]and the dice (α = 1) lattice [96, 97], as well for intermediate
regimes of α [98] has been investigated in the literature. For the dice lattice, the effect is
known as SKT which consists in an all-angle transmission across electrostatic barriers and
was reported for particular values of the incident electron energy [96, 97]. Additionally,
KT into the flat band across a potential step for generalized pseudospin has been dis-
cussed in [52]. In this section we summarize the results discussed in Ref. [55] concerning
the transmission properties across a potential barrier in the α − T3 lattice considering
some values of α, highlighting omnidirectional transmission (SKT) for incident electrons
with energy equal to half the height of the potential barrier for the dice lattice [96, 97].
In Chapter 10 the problem of electrons tunneling through potential barriers and their
tunneling properties in the presence of small deviations in the atomic equivalence in the
α− T3 lattices are discussed, which has not been reported in the literature.

The low-energy Hamiltonian for the α− T3 around the K point in the presence of an
electrostatic potential is

Ĥ = Ĥkin + V (x)Î , (4.35)
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where Ĥkin is given by Eq. (4.24) with ξ = +1, V (x) corresponds to the potential barrier
and Î is the identity matrix.

We are going to consider potential barriers that are smooth on the atomic scale, but
sharp on the length scale of the Fermi wavelength [95, 78, 96]. Consequently, we need
to define the matching conditions required for the wave-functions across such interfaces.
To do that we use the Peierls substitution (~k → ~p) and integrate the eigenvalue equation
~HΨ = EΨ over a small interval x = [ε, ε] [52, 96] and allow the interval to approach zero.
So, by assuming the wave-function written in a general form Ψ(x) = [ψA(x), ψB(x), ψC(x)]

we obtain ~vF( d
dx
− i d

dy
) cos θψB = EψA. Integrating both sides and letting ε → 0 leads

to ψB(−ε)−ψB(ε) = 0, giving one of the three matching conditions. The complete set of
matching conditions is

ψB(−ε) = ψB(ε), (4.36a)

cos θψA(−ε) + sin θψC(−ε) = cos θψA(ε) + sin θψC(ε). (4.36b)

Note that these matching conditions differ from those when pseudospin S = 1/2 graphene
(α = 0) and pseudospin S = 1 dice lattice (α = 1). For graphene, the matching conditions
require the continuity of each component of the two-component wave-function. On the
other hand, the matching conditions of the dice lattice [96] include a sum of the first and
last component of the wave-function indicated in Eq. (4.36b) setting sin θ = cos θ = 1/2.
For the other cases of α − T3 lattices, the matching conditions are of the same form as
those of the dice lattice, but generalized to account for a variable α.

Consider a square potential barrier V (x) in Eq. (4.35) with width d in a system formed
by three zones: x < 0 (V (x) = 0), 0 < x < d (V (x) = V0) and x > 0 (V (x) = 0), as
depicted in Fig. 2.3. The wave-functions in each zone are

|ΨI〉 =
1√
2

 eiθk cos θ

s

e−iθk sin θ

 eikyyeikxx +
r√
2

−e−iθk cos θ

s

−eiθk sin θ

 eikyye−ikxx, (4.37a)

|ΨII〉 =
a√
2

 eiθq cos θ

s′

e−iθq sin θ

 eikyyeiqxx +
b√
2

−e−iθq cos θ

s′

−eiθq sin θ

 eikyye−iqxx, (4.37b)

|ΨIII〉 =
t√
2

 eiθk cos θ

s

e−iθk sin θ

 eikyyeikxx, (4.37c)

where tan θk = ky
kx
, tan θq = ky

qx
, R = |r|2 and T = |t|2 are the reflection and transmission

probabilities of waves, respectively. Using the matching conditions in Eq. (4.36) at x = 0
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and x = d, we obtain the following system of equations for the unknown amplitudes
a, b, r, t

1 + r = ss′(a+ b), (4.38a)

A(θk)− rB(θk) = A(θq)− rB(θq), (4.38b)

as′eiqxd + bs′e−iqxd = tseikxd, (4.38c)

aA(θq)e
iqxd − bB(θq)e

−iqxd = tA(θk)e
ikxd, (4.38d)

with A(x) = cos2 θeix + sin2 θe−ix and B(x) = cos2 θe−ix + sin2 θeix for convenience.
Assuming that the junction in Fig. 2.3 is a pnp junction we consider ss′ = −1 and after
some algebra we find

T =
16 cos2 θq cos2 θk

g2
+ + g2

− − 2g+g− cos(2qxd)
, (4.39)

where g± = 2± 2 cos(θq + θk)− sin2 2θ(sin θq + sin θk)
2.

In Fig. 4.3 the transmission probability for some values of E/V0 ratios considering a
range of α values are shown. Note that there is a general enhancement of the transmission
as α increases. Moreover the ressonances known as Fabry-Pérot resonances take place
when qxd is multiple of π. As α is increased from 0 to 1, the sharp resonances of graphene
become softer and less pronounced, and the broadening of the resonance peaks results in
an increased transmission for angles close to the resonance condition, contributing to the
enhancement of the transmission as α increases. It is important to highlight the "super"
angle transmission, i.e. SKT at E/V0 = 0.5 represented in Fig. 4.3(c), where the sharp
resonances of graphene transform to full transmission in the α = 1 limit.

The unconventional transparency experienced by electrons across interfaces such as
npn junctions, which act like negative index interfaces, presents possibilities for electron
focusing similar to the focusing of light in optics. Therefore to understand other Dirac-like
materials, such α − T3 model could present more possibilities for electron focusing and
electron optics.
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Figure 4.3: Polar plot of the transmission probability for some values of α with (a)
E/V0 = 0.1, (b) E/V0 = 0.25, (c) E/V0 = 0.5 and (d) E/V0 = 0.75. The barrier width is
d = 40V0, taking d0 = ~vF/V0 to normalize the barrier width d. [55].



5
Temporal evolution: The split-operator technique

The analysis of wave-packet dynamics in a given system is useful to obtain information
about its energy spectrum [99] and electrical conductivity [100], for example.

Many computational techniques for analyzing wave-packet dynamics have been devel-
oped. However, to obtain the full description of wave-packet propagation in a system,
for most of the numerical techniques it is necessary to write the initial wave function of
the system in the basis of all eigenstates and their eigenenergies, which for some systems
is infeasible. To work around this problem, some alternative techniques were developed,
and one of them being known as split-operator [99, 101].

The technique Split-operator (SOT) was initially developed by M.D. Feit, J.A. Fleck
and A. Steiger [102] and applied to the study of energy levels of triatomic molecules [103].
Wave packet dynamics methods can also be used in the study of the Aharonov-Bohm
effect [104], in the conductance analysis of an asymmetric quantum ring [105], in the
explanation of the observed effect on Onsanger symmetry breaking in a semiconductor
quantum wire coupled to a metal [106] among others.

In the further chapters of this thesis we discuss the wave-packet dynamics in some
materials with or without external potential using the SOT. This chapter is devoted to
discuss the basic concepts behind this technique that is based on the expansion of the
temporal evolution operator and separates this operator in kinetic and potential terms,
doing that we avoid to write the momentum operator, as we are going to demonstrate in
the next section.

Let us start by considering an initial wave-function Ψ(~r, t0) expanded around the time
t = t0 and assuming a small time-interval ∆t = t− t0.

Ψ(~r, t0 + ∆t) = Ψ(~r, t0) +
∞∑
n=1

1

n!

(
∂nΨ

∂tn

)
t=t0

∆tn. (5.1)

Using the time-dependent Schrödinger’s equation given by

∂Ψ(~r, t)

∂t
= − i

~
HΨ(~r, t), (5.2)



66

in Eq. (5.1), we obtain the equation to determine the wave-function at an arbitrary
posterior time t0 + ∆t

Ψ(~r, t0 + ∆t) =
∞∑
n=0

[
1

n!

(
− i
~
H∆t

)n]
Ψ(~r, t0), (5.3)

which after developing the sum is exactly the expression of exponential series. Therefore,

Ψ(~r, t0 + ∆t) = exp

[
− i
~
H∆t

]
Ψ(~r, t0). (5.4)

Note that the operator defined in Eq. (5.4) can be identified as the time-evolution op-
erator, which "translate" the initial wave-function from initial time t0 to arbitrary time
t = t + ∆t0. Therefore, since we know the hamiltonian which describes the system from
Eq. (5.4) we obtain the time-evolution of an initial wave-packet. Furthermore, rewriting
the wave-function as a spinor and considering the Dirac Hamiltonian, the time-evolution
of the wave-packet can also be determined using Eq. (5.4).

Some works in the literature usually use the so-called "Cayley form" to solve Eq. (5.4),
which consists of an approximation to the exponential in the evolution operator and is
written as

exp

[
− i
~
H∆t

]
Ψ(~r, t) '

1− i
2~H∆t

1 + i
2~H∆t

Ψ(~r, t) = Ψ(~r, t+ ∆t),(
1 +

i

2~
H∆t

)
Ψ(~r, t+ ∆t) =

(
1− i

2~
H∆t

)
Ψ(~r, t). (5.5)

To solve Eq. (5.5), the space and functions that describe the potentials are discretized,
and the wave-function at an instant-time t is also discretized into points i = 1, 2, ...N ,
resulting in a column matrix; the right-hand operation in Eq. (5.5) is done, resulting in
a new column matrix. The operation on the left side is rewritten as a matrix equation,
where the variables to be determined are Ψi at time t+ ∆t. Solving this matrix equation
at successive times, we obtain the wave-function at each instant. The solution of the
above equation for the one-dimensional case can be done easily, but for problems with
more dimensions this technique presents several difficulties. Therefore, it is necessary to
use a technique that overcomes this problem. In this context, the SOT presents itself
as an alternative and facilitating method, since through it we can transform an operator
with any number of variables into a sequence of one-dimensional operators and solving
Eq. (5.5) is reduced to solve a matrix system of equations.

In order to avoid writing derivatives, we rewrite the time-evolution operator such that
the kinetic and potential terms in the Hamiltonian are separated, however we cannot
just assume exp(T + V ) = exp(T ). exp(V ), because T (kinetic energy) and V (potential
energy) are non-commutating operators. To solve this problem Masuo Suzuki proposed
an approximate solution to this problem [107]:

exp

[
ε

q∑
j=1

Â

]
= fm

(
Â1, Â2, · · · , Âq

)
+O(εm+1), (5.6)
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where fm
(
Â1, Â2, · · · , Âq

)
is an approximation term and O(εm+1)) is an error of the order

of (εm+1). We will use the expressions for fm
(
Â1, Â2

)
and m = 2 in order to ensure a

maximum error of the order of ∆t3. Approximations are given by

f2(Â1, Â2) = exp
[ε

2
Â1

]
exp[εÂ2] exp

[ε
2
Â1

]
. (5.7)

The demonstration of terms with other values of m can be seen in Ref. [108]. After this
approximation we can separate the time-evolution operator as follows

exp

[
− i
~
H∆t

]
= exp

[
− i

2~
V∆t

]
exp

[
− i
~
T∆t

]
exp

[
− i

2~
V∆t

]
+O(∆t3), (5.8)

where the terms higher than ∆t3 can be neglected if we consider a small time interval ∆t.
Now we are going to consider an arbitrary wave function Ψ(~r, t) and apply to it the

time-evolution operator given by the approximation of (5.8), so we have

Ψ(~r, t+ ∆t) = exp

[
− i

2~
V∆t

]
exp

[
− i
~
T∆t

]
exp

[
− i

2~
V∆t

]
Ψ(~r, t). (5.9)

5.1 Hamiltonian without spin involved

In order to calculate the wave function at a posterior time t + ∆t it is necessary to
discretize the time, the potential V and the wave-function, so we define ξ as

ξi = exp

[
− i

2~
Vi∆t

]
|Ψi〉t , (5.10)

where Vi,∆t, and |Ψi〉t consist of the potential, time and wave-function discretized re-
spectively. The next step is to multiply ξi in equation (5.10) by the kinetic term, such
product being represented by ηi,1 and to use Cayley’s formula. We obtain

ηi =

[
− i
~
T∆t

]
ξi =

(
1− i

2~T∆t

1 + i
2~T∆t

)
ξi, (5.11)(

1 +
i

2~
T∆t

)
ηi =

(
1− i

2~
T∆t

)
ξi, (5.12)

and the kinetic term in the absence of a magnetic field is

Tn =
~2

2m

d2

dx2
n

, (5.13)

where m represents the mass of the particle and xn is an arbitrary spatial variable. Re-
placing the kinetic term T in Eq. (5.11) and making κ = i~

4m
∆t we obtain a differential

equation for the time-evolution operator as follow

ηi − κ
d2

dx2
n

ηi = ξi + κ
d2

dx2
n

ξi. (5.14)

1This multiplication can be done by taking the Fourier transform of ξi and rewriting it in reciprocal
space and taking the exponential of the kinetic term also in reciprocal space. For convenience we avoided
Fourier transforms and worked only with real space.
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To solve Eq. (5.14) we need to use the finite difference method. We can define the
derivative of a continuous function as

df

dxn
= lim

∆xn→0

f(xn + ∆xn)− f(xn)

∆xn
, (5.15)

and by discretizing the space we can write the derivative of a function

∂f

∂xn
≈ fi+1 − fi−1

∆xn
,
∂2f

∂x2
n

≈ fi+1 − 2fi + fi−1

2∆x2
n

. (5.16)

Applying in Eq. (5.14) we get

ηi − κ
(
κi+1 − 2κi + κi−1

∆x2
n

)
= ξi + κ

(
ξi+1 − 2ξi + ξi−1

∆x2
n

)
, (5.17)

developing the terms above and making λxn = κ
∆x2n

= i~∆t
4m∆x2n

we obtain

−λxnκi−1 + κi(1 + 2λxn)− λxnκi+1 = λxnξi−1 + ξi(1− 2λxn) + λxnξi+1, (5.18)

where λxn =
(

κ
∆x2n

)
= i~∆t

4m∆x2n
. From above equation we obtain a matrix equation sys-

tem [108]:

D1 D2 0 0 · · ·
D2 D1 D2 0 · · ·
0 D2 D1 D2 · · ·
0 0 D2 D1

. . .

0 0 0
. . . . . .





...
ηi−1

ηi

ηi+1

...


=



D′1 D′2 0 0 · · ·
D′2 D′1 D′2 0 · · ·
0 D′2 D′1 D′2 · · ·
0 0 D′2 D′1

. . .

0 0 0
. . . . . .





...
ξi−1

ξi

ξi+1

...


,(5.19)

where the matrix terms are

D2 = −λxn , D1 = 1 + 2λxn , (5.20a)

D′2 = λxn , D′1 = 1− 2λxn . (5.20b)

Using the matrix equation in Eq. (5.19) we can determine the values of ηi through
computational subroutines, such as TRIDAG [109] since we know the values of ξi for all
i points of the grid. Finally, we have the wave-packet at arbitrary time t+ ∆t given by

|Ψi〉t+∆t = exp

[
− i

2~
Vi∆t

]
ηi. (5.21)

As mentioned previously, if the system has more than one spatial variable, we can
repeat the procedure of Eqs. (5.11) to (5.19) for the kinetic energy in each direction,
performing only operations with tridiagonal matrices, one for each dimension, instead of
having to do a matrix operation with a gigantic matrix that involves discretization in all
the spatial variables, which is usually done when the Cayley’s form is used without the
SOT.
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5.2 Hamiltonian depending on the Pauli matrices

There is a special group of Hamiltonians that can be rewritten in terms of the Pauli’s
matrices and the SOT can easily applied to them. In general, Hamiltonians can be
rewritten in terms of Pauli matrices as

~σ = σxî+ σy ĵ + σzk̂, (5.22)

where

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (5.23)

Some examples of Hamiltonians that can be written in this way are that describes the
Zeeman effect and the continuum model of graphene [110].

Let us consider a general Hamiltonian written as

H = ~Σ · ~σ. (5.24)

The time-evolution operator is given by

exp

[
− i
~
H∆t

]
= exp

[
− i
~

∆t~Σ · ~σ
]

= exp
[
−i~S · ~σ

]
, (5.25)

where ~S = ∆t~Σ
~ . We can write exp

[
−i~S · ~σ

]
as

exp[−i~S · ~σ] =
∞∑
n=0

(−i~S · ~σ)n

n!
. (5.26)

For n = 0 Eq. (5.26) reduces to 1, for n = 1 Eq. (5.26) becomes

exp[−i~S · ~σ] = −i~S · ~σ = −i(Sxσx + Syσy + Szσz) = −i

(
Sz Sx − iSy

Sx + iSy −Sz

)
, (5.27)

For n = 2

exp[−i~S · ~σ] = − 1

2!

[(
Sz Sx − iSy

Sx + iSy −Sz

)(
Sz Sx − iSy

Sx + iSy −Sz

)]
= − 1

2!
S2I,(5.28)

with I being I =

(
1 0

0 1

)
. Making the same procedure until n = 4, we can rewrite Eq.

(5.26) as

∞∑
n=0,2,4,...

[
1− 1

2!
S2I +

1

4!
S4I + · · ·

]
− i

∞∑
n=1,3,5,...

[
S0

(
~S · ~σ

1

)
− S2

~S · ~σ
3!

+ · · ·

]
. (5.29)
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By assuming 2k = n, we can arrive at a recurrence formula for the even and odd terms,
and the series above can be rewritten

∞∑
k=0

(~S · ~σ)2k

2k!
− i

∞∑
k=0

(−1)k(~S · ~σ)2k+1

(2k + 1)!

=
∞∑
k=0

(−1)kS2kI

2k!
− i

∞∑
k=0

(−1)kS2k(~S · ~σ)

(2k + 1)!
. (5.30)

From the recurrence formula, Eq. (5.29) can be rewritten in terms of cosine and sine
functions [

1− (S2I)

2!
+

(S2I)2

4!
+ · · ·

]
− i

[
S0(~S · ~σ)− S2(~S · ~σ)

3!
+ · · ·

]
. (5.31)

So the time-evolution operator for Hamiltonians written in terms of Pauli’s matrices can
be written as

exp
[
−i~S · ~σ

]
=

(
cos(S) 0

0 cos(S)

)
− isin(S)

S

(
Sz Sx − iSy

Sx + iSy −Sz

)
, (5.32)

where Si and S are the terms and the module of the vector ~S as defined previously. Thus,
the temporal evolution operation becomes a matrix multiplication. Furthermore, this
matrix form is exact for the temporal evolution operator, without any truncation in the
expansion, that is, considering all terms.

The time-evolution in Eq. (5.32) will be used in further chapters to investigate the
wave-packet dynamics in phosphorene multilayers (Chapter 6), anisotropic semiconductor
quantum-wires (Chapter 7) and in graphene using the position-dependent translation
operator formalism (Chapter 8).



6
Wave-packet dynamics in multilayer phosphorene

In this chapter we investigate the dynamics of Gaussian wave packets in multilayer
black phosphorus (BP). Time-dependent average position and velocity are calculated
analytically and numerically by using a continuum model and a method based on the
split-operator technique, respectively. By analyzing the wave packet trajectories with
non-vanishing initial momentum along armchair direction, we observed transient spatial
oscillations due to the effect known as zitterbewegung (ZBW). We demonstrated that the
trembling motion along the armchair direction at small times is unavoidable even for null
initial momentum. We verified that the ZBW is directly related to the splitting of the
wave packet into two parts moving with opposite velocities, similar to graphene, and the
linear dependence on momentum in the off-diagonal terms in the Hamiltonian. Unique
to BP, the two portions of the propagated wave packets have an asymmetric shape for
unbalanced

(
[1, 0]T

)
and phased different

(
[1, i]T

)
initial pseudospin components, which

also play a determining role in the amplitude, frequency and duration time of the tran-
sient oscillations. As a consequence of the anisotropy on the N -layer BP energy bands,
the wave packet propagates non-uniformly along the different directions and deforms into
an elliptical shape. By comparing our analytical results with those ones obtained by the
split-operator technique, we confirmed quantitative agreement between them, except for
large values of wave vector and after long time steps.

6.1 Motivation

The well-known zitterbewegung (ZBW) phenomenon, a trembling motion caused by
interference between positive and negative energy states, [111, 112] was predicted by
Schrödinger in 1930 for the motion of relativistic electrons in vacuum governed by the
Dirac equation and has been subject of renewed interest over the past decade in various
condensed matter systems. [12, 113] This oscillatory dynamic of the center of a free wave
packet is manifested in the time evolution of the expectation values of some physical
observable, such as position, velocity, current and spin angular momentum. The charac-
teristic frequency of ZBW motion is determined by the gap between the two states with
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positive and negative energies and is of the order of 2m0c
2/~, wherem0 is the bare electron

mass, c is the speed of light, and ~ is the Planck constant, whereas the amplitude of oscil-
lations is of the order of the Compton wavelength, i.e. ~/m0c. This corresponds to large
oscillation frequencies of ≈ 1021 Hz and small oscillation amplitudes of ≈ 10−3 Å, making
its direct experimental observation a really hard task. [113, 114, 115, 116, 117, 9, 17] Al-
though, the ZBW is in principle a relativistic effect, it may arise even for a nonrelativistic
particle moving in crystalline solids if their band structures could be represented by a
two-band model reminiscent of the Dirac equation,[118, 119, 120] or for quasiparticles
governed by the Bogoliubov-de Gennes equations in superconductors,[121, 122] in which
the energy-wavevector dependence is similar to the relativistic relation, or in some semi-
conductor nanostructures with spin-orbit coupling [121, 13, 123, 124, 125, 126, 127, 128].

Two of the pioneering works investigating the ZBW effect in narrow-gap semiconduc-
tors are the theoretical studies of Schliemann [13] and Zawadzki [129] in 2005, which
considered the coupling between the positive-negative energy eigenstates of the quantum
systems using a two energy bands model. Zawadzki [129] demonstrated that semiconduc-
tor electrons experience a ZBW, by arguing the analogy between the band structure of
narrow-gap semiconductors and the Dirac equation for relativistic electrons in vacuum.
The former exhibits more experimentally favorable frequency and amplitude characteris-
tics than electrons in a vacuum. Schliemann et al.~[13, 123] studied the ZBW of electronic
wave packets in III-V zinc-blende semiconductor quantum wells in the presence of spin-
orbit coupling of the Rashba and Dresselhaus type, by using the Hamiltonian of spin
splitting (the Bychkov-Rashba mechanism), which requires structure inversion asymme-
try of the system. These works triggered a strong interest in the theoretical investigations
of wave packet dynamics and ZBW oscillations in other physical systems, as for instance:
2D photonic crystal, [130, 131] 2D sonic crystal, [132] trapped ion, [16, 133] hole Luttinger
systems, [134, 135] ultra-cold atoms, [136, 137] topological insulators, [138] and electro-
magnetic pulses propagating through metamaterials presenting an optical analog ZBW
effect [139]. Experimental observations of ZB phenomenon have been reported in 2008 for
macroscopic sonic crystals, [132] in 2010 for trapped ion systems [16] and for photonic su-
perlattices [131], and in 2013 for spin-orbit-coupled Bose-Einstein condensates [140, 141].

In the last two decades, the production of graphene has led to a significant level of
interest on the physics of layered materials. [3, 70, 62, 142] This interest is not only due to
its possible future technological applications, but also because it provides the possibility
to probe interesting phenomena predicted by quantum field theories not found in conven-
tional semiconductors and metals. One of these exotic properties of low-energy electrons
in single and few-layers graphene, described by the zero mass Dirac equation, is the ex-
istence of ZBW as reported in Refs. [143, 144, 145, 146, 147, 14, 148, 149, 150, 151, 152]
for monolayer and [143, 147, 15] bilayer graphene. Maksimova et al. [144] in 2008 ana-
lyzed the detailed description of wave packet evolution in monolayer graphene, using the
Green’s function representation and the low-energy Dirac equation, and investigated the
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influence on the wave packet dynamics of different pseudospin polarizations for the initial
wave function and the phenomenon of ZBW of the packet center. Similar investigation
was performed numerically by Chaves et al. [110] in 2010 by means the split-operator
technique. Rusin and Zawadzki [147] studied the evolution of the wave packet in bilayer
graphene and found the analytical expressions for the pseudospin components of wave
function and average position operator as well as analytical results for the ZBW oscilla-
tions. They demonstrated that the transient character ZBW in bilayer graphene is related
to the increasing spatial separation of the sub-packets corresponding to the positive and
negative energy states moving in opposite directions, in a similar way to some pseudospin
configurations in monolayer graphene, and not only due to the packet’s slow spreading
which in turn is responsible for the attenuation and decay of ZBW.

Most recently, there is growing interests in Black Phosphorus (BP), also known as
phosphorene. [46, 19, 20, 32, 31, 153] It is a semiconductor with puckered structure due to
its sp3 hybridization and displays a tunable band gap [46, 19, 31, 33, 154, 155, 156, 47, 157,
158, 159, 39, 160, 161] ranging of 1.8 eV for single-layer BP to ≈ 0.4 eV for bulk samples,
which is very relevant for possible technological applications. [46, 19, 162, 163, 164, 165,
166] BP presents a highly anisotropic band structure and consequently a large anisotropic
effective mass. [39] Although previous works have studied wave-packet propagation for
standard semiconductors, [111, 112, 13, 123, 127, 128, 129] monolayer [143, 144, 145,
146, 147, 14, 148, 149, 150, 151, 152] and bilayer [143, 147, 15] graphene, silicene, [167]
and transition metal dichalcogenide, [168] no similar theoretical investigation on wave-
packet propagation in N -layer BP system was reported in the literature, to the best of
our knowledge. Owing the linear terms in momentum in the BP Hamiltonian, strong
coupling between conduction and valence states, and small band gap, it is expected very
pronounced ZBW effects in BP. Therefore, it is also interesting to see whether the results
observed in these cited 2D materials differ or are similar for multilayer phosphorene, and
if the anisotropic character of electronic properties of multilayer phosphorene implies in
any atypical feature in the dynamics of the wave packets.

In this chapter we present the theoretical models used to describe the time evolution
of wave packets in multilayer phosphorene systems, based on the continuum approxima-
tion [39, 93, 169] for low-energy electrons. We use Green’s function formalism and the
split-operator technique [110, 170, 171, 79, 99, 172, 173, 174, 175, 176, 177, 178, 179, 180]
for the expansion of the time-evolution operator. The analytical expressions for some
physical quantities, such as the average values of position operator and the components
of wave function, are found for different configuration of initial pseudospin polarization
and these results are compared with the numerical split-operator ones in order to check
the limit of accuracy of the both models. We also show the probability amplitudes of the
wave packet at different time steps (t > 0) to understand the origin of transient character
of the oscillations on the average positions. An important remark concerning the wave
packet dynamics is about the oscillatory behavior of the velocity as a manifestation of
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Figure 6.1: (Color online) (a) Top view of lattice structure of AB-stacked N -layer BP
system, emphasizing the orientations of the lattice adopted in this work and the four
sublattices: A and B at bottom sublayer (purple symbols), and C and D at top sub-
layer (brown symbols). The x and y coordinates correspond to the zigzag and armchair
directions, respectively, and z-direction is the out-of-plane direction. (b) Left: Lowest
electronic energy band obtained by diagonalizing the Hamiltonian (7.1) with n = N for
monolayer (black solid curve), bilayer (red dashed curve), trilayer (blue dot curve), and
tetralayer (green short-dash curve) phosphorene. Right: Initial wave packet energy for
the corresponding initial wave vector assumed here in the wave packet simulation. θk as
a function of (c) the polar angle β for fixed momentum vector and (d) the momentum
vector for fixed polar angle β. (e) Momentum value for θmax as a function of the polar
angle β, i.e. |k| in which θk has a maximum value as emphasized in the orange dashed
line in panel (d).

zitterbewegung on the wave packet motion. Additionally, we calculate the velocity opera-
tors and their commutators with the continuum Hamiltonian for multilayer phosphorene
in order to verify whether vx and vy are constants of motion or not, and thus check the
consistency of our formalism.

6.2 Continuum approximation for N-layer phosphorene
and the polarization angle

Based on the tight-binding model for multilayer phosphorene reported by Rudenko
et al. [181] involving ten intralayer and four interlayer hopping parameters and with the
layers alignments obeying the AB-stacking (see Fig. 6.1(a)), a simple analytical model was
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Table 6.1: d
erived by the expansion of the structure factor coefficients of the tight-binding model for

multilayer BP.]Hamiltonian parameters of the effective continuum model [Eq. (7.1)]
derived by the expansion of the structure factor coefficients of the tight-binding model

for multilayer BP (see Ref. [39]).

Parameter Value Parameter Value
u0 −0.414 eV δAC′ 0.712 eV
ηx 1.265 eV·Å2 δAD′ -0.132 eV
ηy −1.384 eV·Å2 ηAC′ -0.9765 eV·Å2

δ 0.919 eV ηAD′ 2.699 eV·Å2

γx 2.510 eV·Å2 γAC′ 2.443 eV·Å2

γy 2.035 eV·Å2 γAD′ 0.364 eV·Å2

χ 5.896 eV·Å χAC′ 2.071 eV·Å

recently derived within the long-wavelength approximation to describe low-energy charge
carriers in N -layer BP sheet around Γ point. [39] In this continuum approximation, the
Hamiltonian for the N -layer BP is composed by N blocks of 2 × 2 monolayer-type BP
Hamiltonians where each one of these effective monolayer Hamiltonians is formed by
layer-dependent Hamiltonian coefficients and reads in momentum space as

H=

(
un0 +ηnxk

2
x+ηny k

2
y δn+γnxk

2
x+γny k

2
y+ iχnky

δn+γnxk
2
x+γny k

2
y− iχnky un0 +ηnxk

2
x+ηny k

2
y

)
, (6.1)

where un0 = u0 + λnδAD′ , ηnx = ηx + λnηAD′ , ηny = ηy + λnγAD′ , δn = δ + λnδAC′ ,
γnx = γx + λnηAC′ , γny = γy + λnγAC′ , χn = χ + λnχAC′ , λn = cos [nπ/(N + 1)], N is
the number of BP layers and n ∈ [1, N ]. The lowest electron-hole energy bands are ob-
tained by assuming n = N , being the value we consider here throughout all our analysis
(i.e. n = N = 1, 2, 3, 4 for monolayer, bilayer, trilayer and tetralayer phosphorene,
respectively). The Hamiltonian parameter values are summarized in Table I, being the
same ones used in Ref. [39], where they were obtained by expanding the tight-binding
structure factors for BP system up to second oder in k. These coefficient values of the
Hamiltonian (7.1) include the contribution from the tight-binding hopping energies and
the lattice geometry of the BP sheet, incorporating a direct link between the microscopic
tight-binding description and the continuum approximation. Refs. [39, 93, 169] have
showed that the continuum model for BP system is very suited for describing the physics
of large BP systems, yielding very accurate results within its limit of validation, and it
is less computationally demanding than microscopic models, as for instance tight-binding
model and first-principles calculations.

The eigenstates of H are two-component spinors given by

Ψ =

(
φ1

φ2

)
=

(
φA + φD

φB + φC

)
, (6.2)
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where φA,B,C,D are the probability amplitudes for finding electrons on the atomic sites
A, B, C, and D, respectively, which are related to the four phosphorus atoms that are
contained in the unit cell of a single layer of BP, as shown in Fig. 6.1(a). The Hamiltonian
(7.1) was obtained by taking into account the sublattice symmetry between atomic sites
A/D and B/C in each monolayer BP, due to theD2h group invariance of the BP lattice[39,
93] and, as a consequence, the two-component wave function (6.2) is composed by the
combination of these sublattices in pairs. Rewriting H in a more compact form in polar
notation, in order to highlight the angular dependence, we find

H =

(
ε1 ε2e

iθk

ε2e
−iθk ε1

)
, (6.3)

with

ε1(~p) =
fc + fv

2
, (6.4a)

ε2(~p) =

√(
fc − fv

2

)2

+

(
χnpy
~

)2

, (6.4b)

θk(~p) = arctan

[
2χnpy

~ (fc − fv)

]
, (6.4c)

where fc and fv are associated with the conduction (c) and valence (v) energy dispersion
terms, respectively, being defined as

fc
v

= (un0 ± δn) + (ηnx ± γnx )
p2
x

~2
+
(
ηny ± γny

) p2
y

~2
. (6.5)

By diagonalizing Eq. (7.1) or equivalently Eq. (6.3), we obtain the dispersion relations for
electrons and holes, given by

E~p,s = ε1(~p) + sε2(~p), (6.6)

with s = +1(−1) for electrons (holes), i.e. the plus (minus) sign yields the conduction
(valence) band. Fig. 6.1(b) shows the lowest electronic energy levels for (black solid curve,
N = 1) monolayer, (red dashed curve, N = 2) bilayer, (blue dot curve, N = 3) trilayer,
and (green short-dash curve, N = 4) tetralayer phosphorene. In the wave packet dynam-
ics, we choose the initial wave packet energies for electrons standing on these lower bands,
as shown in the right panel of Fig. 6.1(b) for the three assumed initial wave vectors for a
fixed number of layers. Note that, as seen in Fig. 6.1(b): (i) the band gap is tunable by
the number of BP layers, decreasing as N increases, and (ii) phosphorene band structure
is highly anisotropic, exhibiting for small momentum values an approximately parabolic
dispersion along Γ−X (zigzag) direction and approximately linear dispersion along Γ−Y
(armchair) direction, therefore, behaving similarly as Schrödinger and Dirac particles, re-
spectively. As we will discuss further, the linear dependence on ky in the out-of-diagonal
terms of Eq. (7.1) and this anisotropic feature of the energy levels and, consequently, of
effective masses and group velocities,[39] bring up very interesting consequences in the
wave packet dynamics in phosphorene.
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The corresponding eigenstates of Hamiltonian Eq. (6.3) are

Ψ~p,s =
1√
2

(
1

seiθk(~p)

)
. (6.7)

Note that this expression is similar to the graphene’s eigenstates, [144] but with the fun-
damental difference that for N -layer phosphorene the phase angle θk does not necessarily
correspond to the polar angle β associated with the momentum vector:

θk(|k|, β) = arctan

[
χn|k| sin β

δn +
(
γnx cos2 β + γny sin2 β

)
|k|

]
. (6.8)

This can be seen in Fig. 6.1(c), which shows the phase angle θk as a function of the polar
angle β for three different momentum vectors (whose values are the ones used in the results
for the wave packet simulation in Sec. 6.5). It is a very crucial point concerning the initial
set up to define the direction of the wave packet propagation. For instance, in the cases
of isotropic semiconductors and graphene systems, [144, 110, 170, 171] the phase angle is
exactly the same as the polar angle in the momentum space, i.e. θk = β = arctan (py/px),
making the definition of the initial propagation angle value more direct and intuitive.
Furthermore, it can be noticed by Fig. 6.1(c) that θk exhibits a maximum value at β = π/2

for all momentum values and this critical value θk(β = π/2) = θmaxk is energy-momentum-
dependent. Figures 6.1(d) and 6.1(e) confirm these statements. From Fig. 6.1(d) it is seen
that, as the momentum |k| increases, θk approaches a maximum value (emphasized by the
orange dashed line) and then decays to zero. The momentum value for θmaxk (i.e. |k|max in
which θk has a maximum value) is slightly different for different values of the polar angle β,
as shown in Fig. 6.1(e). According to Fig. 6.1(e) and also by performing the differentiation
of Eq. (6.4c) with respect to |k| at β = π/2, i.e. (∂θk/∂|k|)|β=π/2 = 0, one can find that
|k|max = 0.67201 Å−1 and the critical phase angle is θmaxk = 65.114◦. In summary, the
phase angle can assume values in the threshold range between: −θmaxk ≤ θk ≤ θmaxk , unlike
the polar angle β that can assume any value.

6.3 Green’s function formalism for N-layer phospho-
rene

We now shall follow a similar procedure as reported by Maksimova et al. in Ref. [144],
based on the Green’s function formalism. According to Eq. (7.9a), the time-dependent
eigenfunctions of Hamiltonian Eq. (6.3) are given by

ϕ~p,s(~r, t) =
1

2
√

2π
exp

[
i
~p · ~r
~
− iE~p,st

~

](
1

seiθk(~p)

)
, (6.9)

with E~p,s being the energy eigenvalues given in Eq. (6.6). The initial wave packet Ψ(~r, 0),
at t > 0 acquires a form that can be calculated as

Ψµ(~r, t) =

∫
Gµ,ν(~r, ~r′, t)Ψν(~r′, 0) d~r′, (6.10)
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where G(~r, ~r′, t) is the 2× 2 Green’s function matrix and the matrix indices (µ, ν = 1, 2)

correspond to the two components of the pseudospin eigenfunctions. The matrix elements
of Green’s functions are defined as

Gµ,ν(~r, ~r′, t) =
∑
s=±1

∫
d~pϕ~p,s,µ(~r, t)ϕ∗~p,s,ν(~r

′, 0). (6.11)

Replacing Eq. (7.9b) into Eq. (6.11) and after some straightforward algebra, one finds the
components of Green’s function matrix, such as

G11(~r, ~r′, t) = G22(~r, ~r′, t) =
1

(2π~)2

∫
exp

[
i~p · (~r − ~r′)

~

]
exp

[
−iε1(~p)t

~

]
cos

[
ε2(~p)t

~

]
d~p,

(6.12a)

G12(~r, ~r′, t) =
−i

(2π~)2

∫
e−iθk(~p) exp

[
i~p · (~r − ~r′)

~

]
exp

[
−iε1(~p)t

~

]
sin

[
ε2(~p)t

~

]
d~p,

(6.12b)

G21(~r, ~r′, t) =
−i

(2π~)2

∫
eiθk(~p) exp

[
i~p · (~r − ~r′)

~

]
exp

[
−iε1(~p)t

~

]
sin

[
ε2(~p)t

~

]
d~p. (6.12c)

To describe the time evolution of an arbitrary state, we choose the initial wave function
to be a Gaussian wave packet, for three main reasons: (i) Gaussian wave packets describe
roughly localized quantum states for which the product of the uncertainties in position
and momentum is minimal; (ii) by setting the initial state as Gaussian wave packet,
this situation covers most cases of practical interest, because any wave packet can be
approximated by a superposition of a finite number of Gaussian states; (iii) since the
ZBW is, by nature, not a stationary state but a dynamical phenomenon, it is natural to
study it with the use of wave packets. [111, 129, 147] The assumed initial Gaussian wave
packet, with width d and non-vanishing average momentum along y-direction (p0y = ~k0),
is given by:

Ψ(~r, t) =
f(~r)√
|c1|2 + |c2|2

(
c1

c2

)
, (6.13a)

f(~r) =
1

d
√
π

exp

[
−r2

2d2
+ ik0y

]
. (6.13b)

where c1 and c2 determine the initial pseudospin polarization of the injected wave packet
and are related to the two pseudospin components in Eqs. (6.2) and (7.9a). Now inserting
Eqs. (6.13a) and (6.13b) into Eq. (6.10) and using the expressions of the components of
Green’s function matrix (Eqs. (6.12a)-(6.12c)), one obtains the components of the time
evolved wave packet Ψ(~r, t) at a later time t in the following two-component form:(

Ψ1(~r, t)

Ψ2(~r, t)

)
=

1√
|c1|2 + |c2|2

(
c1Φ1(~r, t) + c2Φ3(~r, t)

c1Φ2(~r, t) + c2Φ4(~r, t)

)
(6.14)
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where

Φ1(~r, t) =

∫
G11(~r, ~r′, t)f(~r)d~r′

=
de−k

2
0d

2/2

2~2
√
π3

∫
exp

[
i~p · ~r
~
− p2d2

2~2
+
pyk0d

2

~
− iε1(~p)t

~

]
cos

(
ε2(~p)t

~

)
d~p, (6.15a)

Φ2(~r, t) =

∫
G21(~r, ~r′, t)f(~r)d~r′

=
−ide−k20d2/2

2~2
√
π3

∫
eiθk(~p) exp

[
i~p · ~r
~
− p2d2

2~2
+
pyk0d

2

~
− iε1(~p)t

~

]
cos

(
ε2(~p)t

~

)
d~p,

(6.15b)

Φ3(~r, t) =

∫
G12(~r, ~r′, t)f(~r)d~r′

=
−ide−k20d2/2

2~2
√
π3

∫
e−iθk(~p) exp

[
i~p · ~r
~
− p2d2

2~2
+
pyk0d

2

~
− iε1(~p)t

~

]
cos

(
ε2(~p)t

~

)
d~p,

(6.15c)

and Φ1(~r, t) = Φ4(~r, t), according to Eq. (6.12a).
The time-dependent expectation value of the position operator can be calculated as

〈~r(t)〉 =
2∑
j=1

∫
d~pΨ∗j(~p, t)i~

dΨj(~p, t)

d~p
, (6.16)

with Ψ in momentum representation. Note that analytical expressions for two components
of wave function were found for N -layer BP (Eqs. (6.14) and (6.15a)-(6.15c)), which allows
us to investigate the ZBW phenomenon of a Gaussian wave packet for different relations
between the initial electron amplitudes on the sublattices, as will be discussed in Sec. 6.5,
by means of the analytical calculation of the time dependent expectation values of the
position (x, y) of the center of the injected wave packet according to Eq. (6.16).

6.4 Split-operator technique for N-layer phosphorene

In this section, we introduce the split-operator technique for wave packet propagation
in N -layer phosphorene, based on the Hamiltonian within the continuum approximation
(Eq. (7.1)). This approach is similar to the one developed by A. Chaves et al. [110,
170, 79] for calculating the dynamics of a wave packet in graphene by taking a Dirac-
Weyl Hamiltonian. It consists in the solution of time-dependent Schrödinger equation by
taking a separation of the time evolution operator in a series of matrices, such that the
propagated wave function after a time step ∆t can be calculated by applying the expanded
exponential time evolution operator on the wave packet at any instant t. [110, 170, 171,
79, 99, 172, 173, 174, 175, 176, 177, 178, 179, 180] The advantage of this technique is due
to its flexibility inasmuch as it can be applied for BP systems under arbitrary external
potentials and magnetic fields. Besides, it allows to track the center of mass trajectories,
which is very important for the understanding of ZBW phenomenon in the current work.
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Let us first find the time evolution operator as a series of matrix multiplications
for the Hamiltonian Eq. (7.1) and then apply it for the time evolution of the wave
packet, following the split-operator method for spin-dependent Hamiltonian as described
in Refs. [110, 170, 79]. The long-wavelength Hamiltonian Eq. (7.1) in the presence of a
external potential V (x, y) can be written in terms of Pauli matrices ~σ = (σx, σy) as

H = Hk +Hr, (6.17a)

Hk = H01 + ~α · ~σ (6.17b)

Hr = V (~x, ~y)1, (6.17c)

where we separated it keeping only the terms which depend on the wave vector in Hk,
and on the real-space coordinates in Hr. 1 denotes the 2× 2 unit matrix, and

H0 = un0 + ηnxk
2
x + ηny k

2
y, (6.18a)

~α = (αx, αy) =
(
δn + γnxk

2
x + γny k

2
y,−χnky

)
. (6.18b)

Following the split-operator method, the time-evolution operator for the Hamiltonian H
[Eq. (6.17a)] can be approximated as

exp

[
−i∆t

~
H
]
≈exp

[
−i∆t

2~
Hr

]
exp

[
−i∆t

~
Hk

]
exp

[
−i∆t

2~
Hr

]
, (6.19)

with an error on the order of O(∆t3), due to the non-commutativity between Hk e Hr.
Since Hk does not explicitly depend on time and [H01, ~α · ~σ] = 0, the momentum-space
term of the Hamiltonian, Eq. (6.17b), is given by

exp

[
−i∆t

~
Hk

]
= exp

[
−i∆t

~
H01

]
exp
[
−i ~A · ~σ

]
, (6.20)

where ~A = ~α∆t/~. Using the properties of the Pauli matrices for the second term in
Eq. (6.20), one finds

MA = exp
[
−i ~A · ~σ

]
=cos(A)1− i sin(A)

A

(
0 Ax − iAy

Ax + iAy 0

)
, (6.21)

where A = | ~A|, whereas the first term of Eq. (6.20) is equivalent to

MH0 = exp [−iH01∆t/~] = 1 exp [−iH0∆t~] . (6.22)

Thus, the time evolution operation is represented by a series of 2 × 2 matrices multipli-
cations.

The time evolution of Ψ(~r, t) can be computed by applying the time evolution operator,
Eq. (6.19), to obtain the propagated wave function after a time step t+ ∆t, such as

Ψ(~r, t+ ∆t) = e−iH∆t/~Ψ(~r, t) =MrMkMrΨ(~r, t), (6.23)
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with Mk = MAMH0 . Since MH0 and MA depend on the wave vectors kx and ky, the
matrix multiplications before (afterwards) of the matrixMk are computed in reciprocal
space by performing a direct (inverse) Fourier transform on the function, in order to
rewrite it in a reciprocal (real) space where the k’s are numbers, instead of derivatives.
Notice that, in the absence of external fields V (x, y) = 0, the separation between the real
and reciprocal space-dependent terms in Eqs. (6.17a) and (6.19) is no longer necessary,
and the resulting matrix will have an exact representation of the time evolution operator,
including all the terms of the expansion of the exponential. In this case, there will be no
error induced by the non-commutativity of the involved operators. Although we developed
this technique in a more general way for an arbitrary potential, we investigated here the
simple case with no external fields.

The initial wave packet is assumed as a circularly symmetric Gaussian distribution,
multiplied by the pseudospinor (Eq. (6.2)) that accounts for the probability distributions
over the two pairs of coupled sublattices of phosphorene (labeled c1 for φA + φD and c2

for φB + φC), and by a plane wave with wave vector ~k = (k0 cos β, k0 sin β), such as

Ψ(~r, 0)=N

(
c1

c2

)
exp

[
−(x−x0)2+(y−y0)2

d2
+i(~k · ~r)

]
,

(6.24)

whereN is a normalization factor, (x0, y0) are the coordinates of the center of the Gaussian
wave packet in the real space, and d is its width. The pseudospin polarization [c1, c2]T

of the wave packet plays an important role in defining the direction of propagation (see
Eq. (7.9a)). It is worth to point out that, for phosphorene, the phase angle θk does not
correspond to the polar angle β associated with the momentum vector (see Eq. (6.8)),
such that the characterization of the pseudospin polarization angle and consequently
the direction of propagation are not directly related, as it is, for example, in graphene,
where we have a wave packet propagating along the y− and x−direction in cases of
the pseudospin [1, i]T and [1, 1]T , respectively. [170, 171, 176, 177, 178] Unless otherwise
explicitly stated in the text, we consider that the wave packet starts at (x0, y0) = (0, 0)

Å and its width is d = 100 Å. In order to compare the results obtained by the method
based on split-operator technique developed in the current section with the ones within
the green’s function formalism (Sec. 6.3), we assume kx0 = 0 in Eq. (8.19) as in Eq. (6.13b).

6.5 Zitterbewegung of gaussian wave-packet for differ-
ent pseudospin polarization

Let us now show results for three different Gaussian distributions along the sub-
alttices: (Sec. 6.5.1) [c1, c2]T = [1, 0]T , (Sec. 6.5.2) [c1, c2]T = [1, 1]T , and (Sec. 6.5.3)
[c1, c2]T = [1, i]T , where we discuss the presence or absence of ZBW along the x and y di-
rections, manifested by oscillations on the average position and average group velocity of
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the Gaussian center of mass of the wave packet, as well as other features of the trembling
motion, such as the oscillation amplitude and frequency.

6.5.1 c1 = 1 and c2 = 0

We first consider the simple case where the lower component of the initial electronic
wave function (6.13a) is zero, i.e. taking c1 = 1 and c2 = 0. This corresponds to the
situation in which the electron probability is initially located only at φ1 = φA + φC , i.e.
at the A and C the sublattices of phosphorene layer. According to Eq. (6.14), the wave
function for t > 0 in this case is:

Ψ(~r, t) =

(
Φ1(~r, t)

Φ2(~r, t)

)
, (6.25)

where Φ1,2 are defined by Eqs. (6.15a) and (6.15b). By using Eq. (6.16) and after some
lengthy but straightforward algebra, we calculate the time dependent expectation value
of position (x, y) of the wave packet center of mass, given by

〈x(t)〉 = −ide
−a2

π

∫ ∞
0

∫ π

−π
e−q

2+2aq sinβ

[
2iχnγnx~4dq3 sin(2β) sin2 (ε2(q, β)t/~)[

δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2
]2
d2(χn)2~4q2 sin2 β

+
2itηnxq

2 cos β

~d2
+ q2 cos β

]
dβdq, (6.26a)

〈y(t)〉 = −ide
−a2

π

∫ ∞
0

∫ π

−π
e−q

2+2aq sinβ

[
q2 sin β − aq +

2itηny q
2 sin β

~d2

−
iqχn~2d

(
d2δn~2 + γnxq

2~2 cos2 β − γny q2~2 sin2 β
)

sin2 (ε2(q, β)t/~)[
δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2

]2
+ d2(χn)2~4q2 sin2 β

]
dβdq,

(6.26b)

in which the average values are written explicitly as a function of the polar angle β ∈
[−π, π] and the dimensionless parameters q = pd/~ and a = k0d, with k0 corresponding
to the initial wave vector. For this, we rewrote ε1 and ε2, given by Eqs. (6.4a) and (6.4b),
respectively, as functions of q and β.

By performing a numerical integration of Eqs. (6.26a) and (6.26b), we obtain the
expectation values as a function of time for different initial central wave vectors and
number of BP layers, as shown in Figs. 6.2(a) and 6.2(b), respectively. The average value
〈x(t)〉 remains constant and does not exhibit any oscillation with time for different k’s
values and number of BP layers. On the other hand, the expectation value of the y position
of the wave packet oscillates, thus indicating the presence of ZBW along the y-direction.
The different curves in Fig. 6.2(a) are the results for k0 = 0.01 Å−1 (black), k0 = 0.05 Å−1

(red) and k0 = 0.1 Å−1 (blue). As mentioned in Sec. 6.1, this oscillatory behavior is due
to the interference between positive and negative energy-momentum states that makes up
the initial Gaussian wave packet and in fact corresponds to the ZBW phenomenon. Note
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Figure 6.2: (Color online) (a, b) Average position and (c, d) expectation value of the
velocity for trajectories of panels (a, b), respectively, of a Gaussian wave packet of width
d = 100 Å as a function of time for the case c1 = 1 and c2 = 0. (a, c) Wave packet
propagating in a monolayer phosphorene sheet (N = 1) with different initial central wave
vectors: k0 = 0.01 Å−1 (black), 0.05 Å−1 (red) and 0.1 Å−1 (blue). (b, d) Wave packet
propagating in multilayer phosphorene (N = 1, 2, 3, 4) for fixed wave vector k0 = 0.1

Å−1. The wave packet starts at (x0, y0) = (0, 0) Å. The inset shows an enlargement
of the physical averages (a, b) for first time steps in order to emphasize the different
oscillation amplitudes and oscillation frequencies, and (d) nearby the time steps in which
the velocities achieve constant values.

in Fig. 6.2(a) that the ZBW of the wave packet propagating in a monolayer BP have a
transient character, i.e. they disappear on a femtosecond time scale. This transient feature
of the ZBW presents different amplitude, frequency and duration time for different initial
wave vector. One verifies in Fig. 6.2(a) that: (i) the duration time and amplitude of the
transient ZBW decays faster as the wave vector increases, and (ii) the larger the initial
wave vector, the smaller the oscillation amplitude, as seen in the inset of panel (a). Both
features are consequences of the effect of wave packet dispersion.

We also analyze the influence of the number of layers on the wave packet propagation.
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Results are shown in Fig. 6.2(b) for N = 1, 2, 3, 4, considering a fixed value k0 = 0.1 Å−1.
One observes that increasing the number of layers causes a reduction (increase) of the
frequency (period) of the transient oscillation. This is related to the fact that multilayer
BP with different numbers of BP layers presents slightly different energy band struc-
tures and consequently different effective masses along x and y directions, as discussed
in Sec. 6.2. It is known that the greater the number of layers, the greater (smaller) will
be the effective mass for electrons along the x (y) direction, i.e. along the zigzag (arm-
chair) directions. [39] That in turn affects the mobility of electrons located on the lowest
conduction band, leading to a phase difference in the oscillation of the average position
〈y(t)〉 for different number of layers N . By comparing Figs. 6.2(a) and 6.2(b), one verifies
that the oscillatory behavior for multilayer BP is qualitatively similar to monolayer case,
except by this phase difference in the ZBW, as emphasized in the inset of Fig. 6.2(b), due
to the different energy band curvatures as the number of layers BP.

Since the oscillatory behavior of the propagation velocity as a function of time is also a
manifestation of the ZBW effect, we show in Figs. 6.2(c) and 6.2(d) the expectation values
of the velocity vy for average position y of panels (a) and (b), respectively, calculated by
taking the time derivative of the 〈y(t)〉 results with respect to time. Note that the average
velocities exhibit clear oscillations that are damped as time evolves, converging to a final
constant value that depends on the initial wave vector k0 and number of considered BP
layers. The velocity wiggles with shorter period and smaller amplitudes for large values of
k0 and fixed number N (see Fig. 6.2(c)), as well as for large number of layer and fixed k0

(see inset in Fig. 6.2(d)). The convergence of the velocities demonstrates that the ZBW
is not a permanent but a transient effect. Notice from the inset in Fig. 6.2(d) that the
converging value of 〈vy〉 has slightly larger module for larger N . This is related to the fact
that the lowest energy band along Γ − Y direction for multilayer BP has approximately
the same curvatures for different number of layers, and consequently the effective masses
for electrons along y-direction are just slightly different for different layers, as can be
seen by the following values: my

1 = 0.19474m0, my
2 = 0.18835m0, my

3 = 0.17088m0, and
my

4 = 0.15648m0, being m0 the mass of a free electron, and thus leading also to a slight
difference in the electronic mobility and group velocity in y-direction. [39]

Figure 6.3 shows the contour plots of the squared modulus of the propagated wave
functions at (a) t = 20 fs, (b) t = 30 fs, (c) t = 40 fs, and (d) t = 50 fs, considering
an initial wave vector k0 = 0.05 Å−1 that corresponds the average position of the elec-
tron wave packet motion displayed by the red curve in Fig. 6.2(a). It is seen that the
time evolution of the electronic wave packet for this case is along the armchair (y-) direc-
tion. Starting with a circularly symmetric shape, the wave packet evolves and becomes
distorted into an elliptic shape. This is due to the strong anisotropy in multilayer phos-
phorene, such that the momentum contributions along the (y) armchair and (x) zigzag
directions to the total momentum are different, thus giving rise to elliptic probability
distribution, as shown in Fig. 6.3(a). For a large enough time, the wave packet splits
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Figure 6.3: (Color online) Time evolution of the electronic wave packet for the case
[c1, c2]T = [1, 0]T with |k| = 0.05 Å−1, corresponding the average position shown by the
red curve in Fig. 6.2(a). Snapshots at (a) t = 20 fs, (b) t = 30 fs, (c) t = 40 fs, and (d)
t = 50 fs.

in two parts at t ≈ 50fs (Fig. 6.3(d)) moving along y axis with opposite velocities so
that the electron probability density is almost symmetrical with respect to y at a fixed
time step: |Ψ(x, y, t)|2 ≈ |Ψ(x,−y, t)|2. It should be noticed that the two subpackets
are definitely not completely symmetric, otherwise we would not have a non-null average
position in the y-direction and a total propagation evolving to negative values of y, as
shown in Fig. 6.2(a) and 6.2(b). The two propagating subpackets with approximately
the same probability densities and widths lead to vanishing oscillations in the average
position and expectation values of velocity, as verified by the red curves in Figs. 6.2(a)
and 6.2(c) after t ≈ 85 fs, which explains the transient behavior of the ZBW and the fact
that the average velocity converges to values close to zero. Although not shown here, it is
easy and intuitive to see that the splitting into two subpackets for the case with greater
wave vector should occur earlier and, therefore, in this situation the average velocity has
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Figure 6.4: (Color online) The same as in Fig. 6.2, but now for the case c1 = 1 and c2 = 1.

a faster decay rate and a shorter transient oscillation time.
In contrast to the results shown in Fig. 6.2 for the given initial polarization [1, 0]T of

wave packet propagating in multilayer BP, the ZBW for monolayer graphene [144, 173]
and bilayer graphene [147] occurs in the direction perpendicular to the initial momen-
tum ky0 , i.e. for initial polarization [1, 0]T the wave packet propagates along x-direction
in which exhibits ZBW effect, whereas 〈y(t)〉 remains constant. This is counterintuitive,
since the initial momentum along x-direction is null as in Eq. (6.13b). However, similar
to Fig. 6.3, in graphene the wave function also is found to split in two subpackets along
the y-direction.[144] This different direction of propagation between the multilayer BP
and those reported for monolayer and bilayer graphene in Refs. [144, 173, 147] can be
understood considering the fact that, since the direction of propagation y is the crys-
tallographic direction in the phosphorene in which electrons have greater (lower) kinetic
energy (effective mass), then electrons have greater mobility along the y-direction, being
its preferred direction of propagation.
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Figure 6.5: (Color online) The same as in Fig. 6.3, but now for the case c1 = 1 and c2 = 1.

6.5.2 c1 = 1 and c2 = 1

We now investigate the case in which the wave function is equally distributed in the
combined sublattices A/C (corresponding to φ1) and B/D (corresponding to φ2), which
is equivalent as choosing c1 = 1 and c2 = 1 in Eq. (6.14), resulting in

Ψ(~r, t) =
1√
2

(
Φ1(~r, t) + Φ3(~r, t)

Φ1(~r, t) + Φ2(~r, t)

)
, (6.27)

where Φ1,2,3 are defined by Eqs. (6.15a)-(6.15c). Note that an initial wave packet in which
the electron probability density occupies equally all subllatices is more realistic experimen-
tally, as an expected configuration when one creates wave packets by illuminating samples
with short laser pulses [182] and also because for an infinite system the initial wave func-
tion should describe electronic bulk states spread over all sites around the center point of
the Gaussian distribution. On the other hand, the simplistic choice [1, 0]T of the initial
wave packet discussed in previous Sec. 6.5.1 is widely used in the literature, [144, 173, 147]
since it is amenable to analytical treatment and gives valuable insight into the relevant
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timescales of the problem. In addition, for the phosphorene case, the initial configuration
[1, 0]T can be seen as the representation of quasi-flat edge states in phosphorene nanorib-
bons with zigzag edges that have non-zero wave function components just in one of the
coupled pairs A/D or B/C. [169] Replacing the wave function Eq. (6.27) into Eq. (6.16),
we find the following expressions for the average positions in x and y directions:

〈x(t)〉 = −ie
−a2

π

∫ ∞
0

∫ π

−π
e−q

2+2aq sinβ

{
iχnγnx~4d2q3 sin(2β) sin (2ε2(q, β)t/~) sin θk(q, β)[

δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2
]2

+ d2(χn)2~4q2 sin2 β

+ dq2 cos β +
2itηnxq

2 cos β

~d
+

[
sin

(
2ε2(q, β)t

~

)
− i cos θk(q, β) cos

(
2ε2(q, β)t

~

)]
×

[
2t[δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2]γnxq

2 cos β

~3d3ε2(q, β)

]}
dβdq, (6.28a)

〈y(t)〉 = −ie
−a2

π

∫ ∞
0

∫ π

−π
e−q

2+2aq sinβ

{
− adq + dq2 sin β +

2itηny q
2 sin β

~d
+ itq2 cos θk(q, β)

−
iqχn~2d2

[
δn~2d2 +

(
γnx cos2 β − γny sin2 β

)
q2~2

]
sin (2ε2(q, β)t/~) sin θk(q, β)[

δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2
]2

+ d2(χn)2~4q2 sin2 β

×

[
2γnx cos β[δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2] + (χn)2~2d2 sin β

~3d3ε2(q, β)

]}
dβdq,

(6.28b)

with θk, ε1,2 written explicitly as a function of the polar angle β and the dimensionless
parameters q (see Eq. (6.8)).

Similarly to the previous Sec. 6.5.1 for the pseudospin [1, 0]T , in the current case the
average value 〈x(t)〉 is also unchanged with time, whereas the expectation value of the y
position oscillates. These results are displayed in Figs. 6.4(a) and 6.4(b) for monolayer BP
with different initial wave vectors and for multilayer BP with the fixed value k0 = 0.1 Å−1,
respectively. By comparing Figs. 6.4(a, b) with Figs. 6.2(a, b), one can notice that the
ZBW for the pseudospin [1, 1]T exhibit a smaller (larger) oscillation frequency (period)
than for the case [1, 0]T (see insets in Figs. 6.4(a, b)), with the total average position 〈y(t)〉
moving faster along the positive y direction than for the case [1, 0]T that moves along the
negative y direction. This statement is confirmed by the time derivative 〈vy(t)〉 = d〈y(t)〉

dt

of the results shown in the panels 6.4(a) and 6.4(b), as demonstrated in Figs. 6.4(c) and
6.4(d), that converges to clearly non-null and larger final values as compared to the ones
obtained in Figs. 6.2(c) and 6.2(d). In general, the main features of the ZBW remain
the same as the previous case: the dependence of the transient character, as well as the
different amplitude, frequency and duration time of the ZBW for different initial wave
vector and number of layers. For the expectation values of the velocities (Figs. 6.4(c,
d)), note that in contrast to Figs. 6.2(c, d), in the current case, the larger k0, it leads to
large oscillation amplitudes of 〈vy(t)〉. Moreover, the oscillatory behavior for multilayer
BP (Figs. 6.4(b, d)) remains qualitatively the same as the one observed in Figs. 6.2(b, d)
as compared to their monolayer BP results, except for the fact that in the [1, 1]T case,
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the difference of the converging final values of 〈vy(t)〉 are more pronounced for different
numbers of layers.

In order to understand the origin of this weak oscillations and also the fast drift
along the y direction for the pseudospin case [1, 1]T , we depict in Fig. 6.5 the spatial time
evolution of the initial wave packet by showing snapshots for t > 0 of the total probability
density. Note that the initial wave packet also splits into two parts propagating along y
in opposite directions as in the [1, 0]T case discussed in Sec. 6.5.1 and shown in Fig. 6.3,
but unlike the previous case, the portions of probability amplitudes and widths of the
two subpackets are noticeably different, such that the electron probability density is not
symmetric with respect to y at a fixed time step: |Ψ(x, y, t)|2 6= |Ψ(x,−y, t)|2. This large
asymmetry in the probability density explains the less evident ZBW effect in the average y
position in Fig. 6.4, so that it becomes clear the reason why 〈vy(t)〉 converges to non-zero
values, which even increase with k0, since a greater portion of the wave packet propagates
to the positive y direction. Another feature of Fig. 6.5 is that the propagating wave
packet does not deform as much as in the previous case, remaining approximately with
the same packet width even after the splitting that originates a small subpacket moving
in the opposite y direction.

6.5.3 c1 = 1 and c2 = i

The last investigated pseudospin polarization case is composed by the pseudospin
components c1 = 1 and c2 = i. That means that all four BP sublattices are filled, but
unlike the case [1, 1]T discussed in the previous Sec. 6.5.2, it has a phase difference between
φ1 and φ2 that couples the pairs of subllatices A/D and B/C, respectively (see Eqs. (6.2)
and (7.9a)). The reason for the study of this choice of pseudospin polarization is based
on the corresponding interest in graphene case, [144, 173] since these two polarizations
represent full-filled sublattice states points into perpendicular directions in monolayer
graphene: [1, 1]T is directed along x axis at t = 0, whereas [1, i]T is directed along y axis
at t = 0. From Eq. (6.14) for c1 = 1 and c2 = i, the wave function is given by

Ψ(~r, t) =
1√
2

(
Φ1(~r, t) + iΦ3(~r, t)

iΦ1(~r, t) + Φ2(~r, t)

)
. (6.29)

Computing the average values for the position x and y using Eqs. (6.16) and (6.29),
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Figure 6.6: (Color online) The same as in Fig. 6.2, but now for the case c1 = 1 and c2 = i.

one obtains

〈x(t)〉 = −ie
−a2

π

∫ ∞
0

∫ π

−π
e−q

2+2aq sinβ

{
dq2 cos β +

2itηnxq
2 cos β

~d

− iχnγnx~4d2q3 sin(2β) sin (2ε2(q, β)t/~) cos θk(q, β)[
δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2

]2
+ d2(χn)2~4q2 sin2 β

+ i sin θk(q, β)

(
2tγxq

2 cos β[δ~2d2 + (γx cos2 β + γy sin2 β)q2~2]

~3d3ε2(q, β)

)}
dβdq, (6.30a)

〈y(t)〉 = −ie
−a2

π

∫ ∞
0

∫ π

−π
e−q

2+2aq sinβ

{
− adq + dq2 sin β +

2itηny q
2 sin β

~d

+
iqχn~2d2

[
δn~2d2 +

(
γnx cos2 β − γny sin2 β

)
q2~2

]
sin (2ε2(q, β)t/~) cos θk(q, β)

2
[
δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2

]2
+ 2d2(χn)2~4q2 sin2 β

− itq2 sin θk(q, β)

(
2γnx cos β[δn~2d2 + (γnx cos2 β + γny sin2 β)q2~2] + (χn)2~2d2 sin β

~3d3ε2(q, β)

)}
dβdq.

(6.30b)
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Figure 6.7: (Color online) The same as in Fig. 6.3, but now for the case c1 = 1 and c2 = i.

As in the previous cases, 〈x(t)〉 is unchanged with time due to initial configuration
kx0 = 0 in Eq. (6.13b). The results for 〈y(t)〉 and 〈vy(t)〉 for different initial wave vectors
and number of BP layers are shown in Figs. 6.6(a, b) and 6.6(c, d), respectively. As seen,
these results also exhibit very pronounced ZBW and are more similar to the results shown
in Fiqs. 6.2(a) and 6.2(b) for the case [1, 0]T concerning the large oscillation amplitudes,
high oscillation frequency and small oscillation period, as compared to the ones shown in
Fiqs. 6.4(a) and 6.4(b) for the [1, 1]T case. The reason for the pronounced ZBW effect
in the cases [1, 0]T and [1, i]T can be linked to the unbalance and/or phase difference of
the different pseudospin components. On the other hand, 〈y(t)〉 is shifted with time to
positive y values, as in case [1, 1]T shown in Fiqs. 6.4(a) and 6.4(b), that suggests that the
overall wave packet is propagating along the positive y direction. It is confirmed by the
contour plots shown in Fig. 6.7 for the time evolution of the squared modulus of the wave
function for different time steps. Similar to the previous cases, as the ZBW disappears,
two separate parts of the initial wave packet are seen to move along the y axis with
opposite velocities. Figure 6.7(d) shows that the two subpackets have different widths



6.5. ZITTERBEWEGUNG OF GAUSSIAN WAVE-PACKET FOR DIFFERENT PSEUDOSPIN
POLARIZATION 92

and thus the total wave packet symmetry in y direction for a fixed time is not preserved,
i.e. |Ψ(x, y, t)|2 6= |Ψ(x,−y, t)|2, similar to the case [1, 1]T . The dominant contribution to
the total wave function is responsible for the positive shift in the average position 〈y(t)〉
and also for the the non-zero values for the converging average velocities at large time
steps.

In order to check the agreement between the results obtained by using the two frame-
works adopted here, namely, Green’s function formalism (Sec. 6.3) and the split-operator
technique (Sec. 6.4), we plot in Fig. 6.8 the comparison between them for two pseudospin
configurations: (a, b) for the case c1 = 1 and c2 = 1, and (c, d) the case c1 = 1 and c2 = i.
We have omitted such comparison for the case c1 = 1 and c2 = 0, since for the time
scale, initial momentum values, and wave packet width investigated in the current work,
no difference at all was observed. It is really clear that both analytical (dashed curves)
and numerical (solid curves) methods give similar qualitative results and illustrate similar
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Figure 6.8: (Color online) Comparison between the results of the average position of a
Gaussian wave packet of width d = 100 Å as a function of time obtained by (solid curves)
the split-operator technique derived in Sec. 6.4 and (dashed curves) analytical calculations
derived in Sec. 6.3, for (a, b) the case c1 = 1 and c2 = 1, and (c, d) the case c1 = 1 and
c2 = i. (a, c) Wave packet propagating in a monolayer phosphorene sheet (N = 1) with
different wave vectors: k0 = 0.01 Å−1 (black), k0 = 0.05 Å−1 (red) and k0 = 0.1 Å−1

(blue). (b, d) Wave packet propagating in multilayer phosphorene (N = 1, 2, 3, 4) for
fixed wave vector k0 = 0.1 Å−1.



6.6. VELOCITY OPERATOR 93

ZBW. They have a good quantitative agreement, exhibiting a small discrepancy, for the
worst case of ≈ 11% at maximum, as shown in the insets, and that occurs, in general, for
much larger values of wave vector, and only after long time steps (see panels (a) and (b)),
as well as fewer numbers of layers (see panels (c) and (d)). The reason for such discrep-
ancy for these two pseudopsin configuration must be related to inaccuracy in numerical
integration to obtain the expectation values of the analytically derived position operators,
since expressions (6.28a), (6.28b), (6.30a) and (6.30b) are more complicated as compared
to the ones (6.26a) and (6.26b) for the case [1, 0]T , in which both methods agree 100%,
giving rise to these small deviations.

6.6 Velocity operator

Let us now obtain the velocities along the x and y directions and verify whether vx
and vy are constants of motion or not, which also indicates the directions where the ZBW
manifests. To understand how this affects the velocity along certain directions, we use the
Hamiltonian Eq. (7.1), or equivalently Eq. (6.3), for electrons in multilayer phosphorene,
and calculate the commutators [H, vx] and [H, vy]. According to the Heisenberg picture,
the velocity operator is given by

~v =
∂H
∂~p

=
1

~
∂H
∂~k

=
1

i~
[~r,H] , (6.31)

with ~v = (vx, vy) and ~r = (x, y), yielding

vx =
2kx
~

(ηnx1 + γnxσx) , (6.32a)

vy =
2ky
~

(
ηny 1 + γny σx −

χn

ky
σz

)
. (6.32b)

Let us now verify whether vx and vy are constants of motion, and if there is any situation
where vx and vy are not affected by the zitterbewegung. Evaluating [H, vi] by making use
of Eqs. (6.3) and (6.32), one obtains

[H, vx] =
4iε2
~
kxγ

n
x sin θk

(
−1 0

0 1

)
, (6.33a)

[H, vy] =
4iε2
~
[
kyγ

n
y sin θk + χn cos θk

](−1 0

0 1

)
. (6.33b)

Equation (6.33a) suggests that [H, vx] = 0 when:

(i) kx = |k| cos β = 0 [that implies either |k| = 0 → kx = ky = 0, i.e zero initial
momentum, or cos β = 0 (sin β = ±1)→ β = ±(2l + 1)π/2, with l ∈ N ],

(ii) sin θk = 0 → θk = ±lπ, with l ∈ N and consequently, by the definition of θk in
Eq. (6.4c), one has ky = |k| sin β = 0 [that implies either |k| = 0→ kx = ky = 0, i.e
zero initial momentum, or sin β = 0 (cos β = ±1)→ β = ±lπ, with l ∈ N ].
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Figure 6.9: (Color online) (a) Average position and (b, c) expectation value of the velocity
along y direction as a function of time for the case [c1, c2]T = [1, 0]T (black), [c1, c2]T =

[1, 1]T (red), and [c1, c2]T = [1, i]T (blue). (c) A magnification of the results in (b) for
large time steps showing the oscillatory behavior of vy. (right panels) Contour plots of
the squared modulus of the wave function at (I) t = 390 fs and (II) t = 391 fs, and a
zoom emphasized by the dahsed curves showing the isosurfaces at the two time steps.

Thus, vx will be a constant of motion if (kx, ky) = (0,±|k|) or (kx, ky) = (±|k|, 0), corre-
sponding to a constant motion along the y and x directions, respectively. On the other
hand, [H, vy] should be null if and only if ky and cos θk are both null, i.e. θk = ±(2l+1)π/2,
with l ∈ N . However, as mentioned in Sec. 6.2 and shown in Figs. 6.1(c)-6.1(e), the phase
angle of the pseudospin varies in the range −θmaxk ≤ θk ≤ θmaxk , where θmaxk corresponds
to the value of θk for kx = 0 and ky = ±1, being equivalent to β = π/2 (see Figs. 6.1(c)-
6.1(e)). Therefore, one concludes that [H, vy] 6= 0, suggesting that: vy is never a constant
of motion, and the trembling motion along the y direction at small times for the wave
packet propagation in phosphorene systems is unavoidable, even for the case where one
assumes kx = ky = 0, which yields

[H, vy] |kx=ky=0 =
4iδnχn

~

(
−1 0

0 1

)
, (6.34)

and, therefore, the wave packet will also move in the y direction. Similar behavior has been
observed in previous works for graphene, where it was demonstrated both numerically[9,
173] and analytically [144] within the Dirac and tight-binding models that even when kx =

ky = 0 the wave packet motion is still observed due to zitterbewegung effects. Considering
the three different pseudospin configurations used here, one observes in Fig. 6.9 that this
also holds for the electron motion in phosphorene for (black curve) [c1, c2]T = [1, 0]T and
(blue curve) [c1, c2]T = [1, i]T , exhibiting oscillations in the [Fig. 6.9(a)] average position
and [Fig. 6.9(b, c)] velocity along y direction, similarly to the ones observed in Figs. 6.2
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and 6.6 for small momentum values, but now with a much higher oscillation frequency
and shorter period, that is clearly a consequence of the reduction of the momentum value.
To understand the nature of such oscillations that counter intuitively appear even for
the case with null initial momentum, we illustrate on the right panels of Fig. 6.9 the
electron probability density (I) at t = 390 fs and (II) at t = 391 fs nearby a valley and
a peak of the average velocity curve, corresponding to points with negative and positive
velocities, respectively, as labeled in Fig. 6.9(c). It can be observed that the dispersion
of the wave packet is just along the y direction, keeping its radius along x direction
practically unchanged from the initial circularly symmetric shape, and thus, for longer
times, it becomes distorted into an elliptical shape. One can see by comparing panels
(I) and (II) that for positive and negative points of the average velocity curve, the wave
packet oscillates along y, such that the symmetry of the probability density concerning
this axis changes over time, i.e. |Ψ(x, y, t)|2 6= |Ψ(x,−y, t)|2. In the right panel, we show
the isosurfaces at these two time steps [orange and green curves represent the states (I)
and (II)], in order to emphasize that in fact the wave packet shakes around y = 0 while
distorting along y direction. On the other hand, for the case [c1, c2]T = [1, 1]T (red curves
in Fig. 6.9) with null initial momentum |k| = 0, both the position and velocity averages
along both x and y directions remain unchanged over time, although the wave packet also
distorts for this case along the y direction, exhibiting an elliptical shape for large time,
but it deforms keeping the symmetry |Ψ(x, y, t)|2 = |Ψ(x,−y, t)|2.

6.7 Conclusions of this chapter

In summary, we have studied the dynamics of free electrons described by an initial
Gaussian wave packet in multilayer phosphorene samples by using the Green’s function
representation [116, 144] and the continuum model [169] for low-energy electrons in N -
layer BP. We performed analytical calculations to investigate the time evolution of some
physical observables and, by considering an arbitrary pseudospin amplitude for the BP
sublattices, we obtained explicit analytical expressions for the two components of wave
function and the expectation values of the x and y position operators. A numerical
method based on the split-operator technique for N -layer BP system was also used, and
its results were compared to the analytical ones. Both analytical and numerical methods
illustrated similar effects, such as the packet splitting and ZBW oscillation, with good
quantitative agreement. The methods exhibited a quantitative discrepancy for the worst
case of ≈ 11% at maximum and it occurs, in general, for large values of wave vector and
after long time steps, as well as fewer numbers of layers. The errors are primarily due to:
(i) inaccuracy in numerical integration to obtain the expectation values of the analytically
derived position operators, and (ii) small numerical errors accumulated over the temporal
evolution in split-operator technique.

The results obtained for monolayer, bilayer, trilayer and tetralayer phosphorene clearly
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demonstrate that the time evolution of wave function is accompanied by ZBW oscillations,
which strongly depend on the initial pseudospin polarization, and decay of the wave packet
amplitude. The trembling motion and transient character of the ZBW were verified in the
average position and average group velocity of the center mass of the propagated wave
packet. The amplitude, frequency and duration time of the transient ZBW are shown
to decay faster with increasing wave vector, due to wave packet dispersion. It was also
found that for the three investigated configurations of initial pseudospin, the oscillation
amplitude of average position is more pronounced for the case [c1, c2]T = [1, 0]T , being
related to the unbalance of the probability amplitude on the BP sublattices. Moreover,
we showed that electrons moving in N -layer phosphorene exhibit qualitatively similar
results as the ones observed in the monolayer BP case, except for the oscillation phase
difference and final group velocity achieved after the transient behavior. This is caused
by the different curvature of the energy bands for the different N -layer phosphorene, and
consequently different effective masses and Hamiltonian parameters in the continuum
model. In addition, the anisotropic character of the N -layer BP energy bands and their
effective masses along the x (zigzag) and y (armchair) directions imply an elliptical shape
for the propagated wave packet, since the group velocity is also consequently anisotropic,
i.e. it is greater in one direction than the other leading to a non-uniform propagation
along the different directions.

In order to understand in more details the nature of the transient character of the ZBW
effect in multilayer BP systems, we investigated numerically also the spatial evolution of
the initial wave packet by showing snapshots for t > 0 of the probability density of the
wave function. We demonstrated the effect of the packet splitting is associated to the
ZBW. This splitting of the wave packets in two parts appears due to the presence of
the electron states with a Gaussian distribution of negative and positive momenta, which
propagate with different group velocity in opposite directions. Furthermore, based on the
Heisenberg picture and by the calculation of the velocity operators, we demonstrated that
the trembling motion along the y direction at small times for the wave packet propagation
in phosphorene systems is unavoidable even for null initial momentum.



7
Electronic and transport properties of anisotropic

semiconductor quantum wires

Within the effective-mass approximation, we theoretically investigated the electronic
and transport properties of 2D semiconductor quantum wires (QWs) with anisotropic ef-
fective masses and different orientations with respect to the anisotropic axis. The energy
levels in the absence and presence of an external magnetic field are analytically calculated,
showing: (i) a strong dependence on the spacing of energy levels related to the alignment
QW angle and the anisotropy axis; and (ii) for non-null magnetic field, the quantum
Hall edge states are significantly affected by the edge orientation. Moreover, by means of
the split-operator technique, we analyzed the time evolution of wavepackets in straight
and V-shaped anisotropic QWs and compared the transmission probabilities with those
of isotropic systems. In the anisotropic case we found damped oscillations in the aver-
age values of velocity in both x and y directions for a symmetric Gaussian wavepacket
propagating along a straight wide QW, with the oscillation being more evident as the
non-collinearity between the group velocity and momentum vectors increases.

7.1 Motivation

In the last two decades, the production of graphene has led to a significant level
of interest on the physics of layered materials [3, 70, 62, 142, 153, 183, 184, 185, 186,
187, 188]. This interest is not only due to its possible future technological applications,
but also because it provides the possibility to probe interesting phenomena predicted by
quantum field theories not found in conventional semiconductors and metals. Along with
the investigation of basic properties of these materials, there has also been a significant
effort to develop devices that can benefit from their two-dimensional (2D) character. In
that respect, the introduction of additional confinement by creating 1D (quantum wires
(QWs)) and 0D (quantum dots) structures becomes relevant [169, 99, 174, 189, 190,
191, 192, 193, 194, 195], since these are known to modify the electronic spectra and the
transport properties of the structure in comparison with the pristine sample.
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Most recently, there is a growing interest in single layers of black phosphorus (BP), also
known as phosphorene [93, 39, 46, 19, 20, 32, 31] which is a semiconductor with a puckered
structure, due to sp3 hybridization and displays a tunable bandgap [46, 19]. In addition,
phosphorene presents a highly anisotropic band structure and thus an anisotropic effective
mass [153, 169, 93, 39, 46, 19, 20, 32, 31]. Another material that has attracted attention
due to its anisotropic properties is single layer Arsenic (arsenene) [196, 197, 198, 199, 200,
201], a semiconductor also with a puckered structure. Due to the highly anisotropic band
structures of such crystals, their electrical conductivity, thermal conductivity and optical
responses are found to be strikingly dependent on the crystallographic directions [20, 32,
156, 47, 157, 158, 160, 161, 164, 165, 166]. In particular, one possible consequence of the
anisotropy may be seen in the electronic confinement caused by the presence of constraints
such as external gates or crystal terminations. In that case, a dependence of the confined
states on the direction of the alignment of the constraint may arise.

In this chapter we investigate the electronic and transport properties of anisotropic
materials in which a 1D confining potential has been imposed. The work proceeds as
follows: Initially we investigate the case of 1D confinement in an anisotropic system
(i.e. a QW) in which the QW orientation may not match the anisotropy axis of the
sample. In order to do that, we employ an effective mass model in which the anisotropy is
encoded in the direction-dependent effective mass. Next, we show results for the spectra
of confined states for different orientation angles of QW edges in the presence of an
external magnetic field. By using the split-operator technique [99, 174, 170, 171, 79, 172,
173, 175, 110, 176, 177, 178, 179, 180, 202, 203, 204], we then present results for the
time-evolution of a Gaussian wavepacket propagating in an anisotropic QW that presents
a “bend”, i.e. the orientation of the QW with regards to the anisotropy axes changes
along the longitudinal direction. We numerically investigate the electronic scattering of
the propagated wavepacket at the bend caused by the mismatch between the electronic
subbands at each QW region, which is an evidence of their dependence on the orientation
angle. In addition, we calculate the average velocity values for the x and y directions of
an initially symmetrical Gaussian wavepacket propagating along a large QW in order to
analyze the non-specular reflections at the QW edges and the combination of effects due
to the anisotropy and system geometry.

Initially we present the analytical model for anisotropic classic systems taking as start-
ing point an effective mass model. We show the spectrum of confined states for QWs
anisotropic systems with different orientation angles with and without an external mag-
netic field. The influence of an anisotropic QW formed by leads with different alignment
angles in the scattering initial Gaussian wavepacket is also studied.
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7.2 Anisotropic classic systems

Let us consider an anisotropic 2D system in which the anisotropy is introduced as
direction-dependent effective masses. Among an extensive list of anisotropic materials,
such as BP [93, 39, 46, 19, 20, 32, 31], arsenene [196, 197, 198, 199, 200, 201], ReS2 [205],
TiS3 [205], and others, the first two are the most prominent ones, and for that reason
why, we henceforth assume parameters suitable for these materials. Similar qualitative
results discussed along this work are expected for any of the above mentioned anisotropic
materials. Effective mass models have been shown to give a reasonable description of the
low-energy spectrum of phosphorene and arsenene. [206, 207] In general, in the theoretical
analysis of such system, it is convenient to chose coordinate axes in such a way that they
match the anisotropy directions (henceforth known as the x and y directions, with mx

and my being the effective masses along each direction, respectively). Table I presents
the values of electron effective masses for both phosphorene and arsenene. However, as
shown below, it is necessary in the present case to consider a more general configuration.
Thus, in general the Hamiltonian is given by

H =
p2
x

2mx

+
p2
y

2my

. (7.1)

A curve of constant energy in momentum space is then an ellipse. A more complicated but
also more interesting case is when the coordinate axes are not parallel to the anisotropy
axes. We can obtain that by rotating the coordinate system in momentum space, such
that the semi-major axis of the elliptical constant energy curve is rotated by an angle α
around the z axis. That give us: px = p′x cosα − p′y sinα and py = p′x sinα + p′y cosα,
where the primed terms correspond to the new, rotated coordinate system. Thus, we can
now obtain the Hamiltonian as

H =
p′2x
2µ1

+
p′2y
2µ2

+
p′xp

′
y

µ3

, (7.2)

Table 7.1: Electron effective masses in the x and y directions for phosphorene and arsenene
in units of free electron mass (m0).[39]

phosphorene arsenene
mx/m0 1.01 0.23

my/m0 0.19 1.22
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with

1

µ1

=
cos2 α

mx

+
sin2 α

my

, (7.3a)

1

µ2

=
sin2 α

mx

+
cos2 α

my

, (7.3b)

1

µ3

=

(
1

my

− 1

mx

)
sinα cosα. (7.3c)

From Eq. (7.2) we find

p′y = ±

√
2µ2E −

(
µ2

µ1

− µ2
2

µ2
3

)
p′2x −

µ2

µ3

p′x. (7.4)

It can be immediately seen that for mx = my (i.e. 1/µ3 = 0) we obtain p′y =
√

2µE − p′2
x ,

with µ1 = µ2 = µ, as expected for the isotropic case. Let us now obtain the components
of the velocity vector. An important feature of anisotropic systems is the fact that the
velocity is usually not collinear with the momentum vector, as shown below by computing
v′i = ∂E/∂p′i for i = x and y. Thus, the velocity components are given by

v′x =
p′x
µ1

+
p′y
µ3

, v′y =
p′y
µ2

+
p′x
µ3

, (7.5)

where it is seen that v′x (v′y) can be non-zero even if p′x (p′y) vanishes.

Figure 7.1: Schematic representation of the rotated QW defined electrostatically by the
1D square-well potential V (y′) = V0 [Θ (−y′) + Θ (y′ − L)] with width L and V0 > 0. α is
the rotation angle with respect to the crystallographic directions (x and y), defining the
new primed coordinates (x′ and y′).
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7.3 Anisotropic quantum wires

7.3.1 In the absence of magnetic field

Let us consider the case of a QW with infinite potential walls (V0 →∞ in V (y′)), for
interfaces aligned along an arbitrary direction, i.e. non-zero 1/µ3 (see Fig. 7.1). Without
loss of generality, we will assume that the walls are parallel to the x′ direction, the assumed
translational symmetry direction of the system, allowing us to write the wavefunction as
Ψ = φ(y′)eik

′
xx

′ . Using the Hamiltonian given by Eq. (7.2) and the substitutions ~p′ = ~~k′

and ~k′ → −i∇′, the resulting time-independent Schrödinger equation for the rotated QW
becomes

− ~2

2µ2

d2φ

dy′2
− i~

2k′x
µ3

dφ

dy′
+

~2k′2x
2µ1

φ = Eφ. (7.6)

We obtain a solution by assuming linear combinations of incident and reflected states
as

Ψ(x′, y′) =
[
A exp(ik′+y y

′) +B exp(ik′−y y
′)
]
eik

′
xx

′
, (7.7)

with

k′±y = ±θ1 − θ2, (7.8a)

θ1 =

√
2µ2E

~2
−
(
µ2

µ1

− µ2
2

µ2
3

)
k′2x , (7.8b)

θ2 =
µ2

µ3

k′x, (7.8c)

where the plus (minus) sign refers to incident (reflected) waves. Now, one has to introduce
the boundary conditions, i.e. the vanishing of φ at the interfaces, for y′ = 0 and y′ = L

in Eq. (7.7). That leads to the conditions B = −A and sin(θ1L) = 0, resulting in the
following quantization condition θ1 = nπ/L with n ∈ Z. Therefore, the wavefunction and
the energy levels are found as

Ψ(x′, y′) = A sin
(nπ
L
y′
)

exp

[
i

(
x′ − µ2

µ3

y′
)
k′x

]
, (7.9a)

E =
~2n2π2

2µ2L2
+
%~2k′2x

2µ1

, (7.9b)

respectively, where % = 1 − µ1µ2
µ23

. It is seen that both the wavefunction, Eq. (7.9a), and
the energy spectrum, Eq. (7.9b), show a striking dependence on the QW orientation α in
relation to the anisotropy axes.

Figure 7.2 depicts the dependence of electronic energy levels of phosphorene and ar-
senene QWs with respect to the QW width L, by using Eq. (7.9b) with k′x = 0 and the
effective masses of Table I. In panel (a) the energy levels for three different QW angles
are shown for monolayer BP material, and in panel (b) we compare the electronic con-
fined states of (solid curves) phosphorene and (dashed curves) arsenene with the fixed
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(a) (b)

Figure 7.2: Energy levels as function of QW width with k′x = 0 in Eq. (7.9b) (a) for
different rotation angle α with respect to the anisotropy axes and taking the effective
masses of monolayer BP, and (b) for a fixed angle α = π/4 and assuming (solid curves)
phosphorene and (dashed curves) arsenene parameters.

angle α = π/4. It is seen that the energy levels decrease quadratically with increasing
QW width, something already expected when we make k′x = 0 in Eq. (7.9b), scaling as
≈ 1/L2 in a similar way as observed for confined states in 1D squared quantum well and
widely presented in quantum mechanic text books. A consequence of the change of QW
alignment, as shown in Fig. 7.2(a), is a shift of the energy levels, together with a change
of level spacing. By comparing the cases of a QW made of arsenene and phosphorene
for a given value of rotation angle, shown in Fig. 7.2(b) it is seen that the behavior of
the electronic levels of the two samples is similar. A difference that is evident in the
dispersion relation in Figs. 7.3(a) and 7.3(b), for QW with width L = 1 nm for BP and
As, respectively, is the fact that the confined states in BP QWs present higher energy
values than those of arsenene. This is caused by the different effective masses of the ma-
terials (see Table I). Moreover, Fig. 7.3 shows that, as α increases the energy levels are
shifted to lower (upper) values for phosphorene (arsenene) and the spacing between them
decreases (increases) too, which in turn increases (decreases) in the number of accessible
electronic states. This result is emphasized in Fig. 7.4, which shows the energy levels as
function of the alignment angle α for (blue solid curves) phosphorene and (dashed red
curves) arsenene QW, maintaining the QW width L = 1 nm and k′x = 0 in Eq. (7.9b).
Note that these behaviors of the confined QW energy levels with respect to the rota-
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tion angle strongly resemble to those for 1D quantum well in Schrödinger equation with
isotropic masses by varying the QW width instead of the alignment angle, i.e. the change
of alignment QW angle with a fixed width L for the anisotropic case works similarly as
the isotropic case by varying the QW width. Phosphorene and arsenene energy levels
exhibit opposite behaviors due to highest effective mass being along opposite directions
in these materials (see Table 7.1). These results suggest that a connection of QWs with
different rotation angles acts similarly to constrictions in quantum point contact systems,
due to the mismatch of the energy levels in the different sections of the QW junction.
Such kind of QW junction system shall be explored latter in Sec. 7.4.

Figure 7.3: Dispersion relation of QW with width L = 1 nm for (a) phosphorene and (b)
arsenene (As), and taking different rotation angle α with respect to the anisotropy axes.

7.3.2 In the presence of magnetic field

Let us now study the effect of an external magnetic field perpendicular to the plane
containing the QW, by considering the substitution ~p′ → ~p′+e ~A in Eq. (7.6). A convenient
choice of gauge is ~A =

(
−By′, B µ2

µ3
y′, 0

)
. In this case, one finds ~∇ · ~A = (µ2/µ3)B. Since

we assume an uniform magnetic field, in this gauge the vector potential corresponds to
an uniform rotation of the vector potential obtained from the Landau gauge by an angle
of arctan(µ2/µ3). It is seen that for the isotropic case (i.e. 1/µ3 = 0), as well as for α = 0

and α = π/2 one recovers the usual vector potential of the Landau gauge. Then, the
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As

BP

Figure 7.4: Energy levels as a function of the rotation angle α with respect to the
anisotropy axes (see Fig. 7.1) for (blue lines curves) phosphorene and (red dashed curves)
arsenene QWs. It was taken L = 1 nm and k′x = 0.

Schrödinger equation for rotated QW in the presence of a perpendicular magnetic field
can be written as

−~2

2µ2

d2Ψ

dy′2
−i~

2k′x
µ3

dΨ

dy′
+

%

2µ1

(eBy′+~k′x)2+(1−%)~
2k′2x
2µ1

=EΨ. (7.10)

Performing the coordinate transformation y∗ = y′ + ~k′x
eB

, defining the cyclotron frequency

for the rotated anisotropic system as w2
c = %

(
eB
µ1

)2

and the new energies as E ′ = E −

(1− %)~
2k′2x
2µ1

, one can rewrite Eq. (7.10) as

−~2

2µ2

d2Ψ

dy∗2
− i~

2k′x
µ3

dΨ

dy∗
+
µ1w

2
cy
∗2

2
Ψ = E ′Ψ. (7.11)

By assuming the following ansatz Ψ(x′, y∗) = exp (−iµ2k
′
xy
∗/µ3)φ(x′, y∗) in order to

eliminate the first derivative in Eq. (7.11), it becomes

−~2

2m∗
d2φ

dy∗2
+
m∗

2
w2
cy
∗2φ =

√
µ2

µ1

Eφ, (7.12)

where m∗ =
√
µ1µ2. Solving Eq. (7.12) numerically we obtain the energy levels for a QW

in the presence of external magnetic field and different system parameters. Figure 7.5
shows the dispersion relation for different alignment angles (black solid curves) α = 0,
(red dashed curves) α = π/4, and (blue short-dashed curves) α = π/2, and fixed QW
width L = 100 nm and external magnetic field B = 5 T. It is seen that similarly to
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Figure 7.5: Dispersion relation of phosphorene QW for different alignment angles α with
respect to the anisotropy axes and fixed QW width L = 100 nm and magnetic field
amplitude B = 5 T. Black solid, red dashed, and blue short-dashed curves correspond to
the spectrum for rotation angles α = 0, α = π/4, and α = π/2, respectively.

an isotropic semiconductor structure with two boundaries, there is a momentum region
around k′x = 0 where the energy levels are flat (i.e. dE/dkx′ = 0). These states correspond
to quantum Hall states, being more dispersive the higher the energy value, owing to the
fact that the lower energy states are more strongly confined by the magnetic field. The
presence of the edges gives rise to propagating states, resulting in the quantum Hall edge
states. These states are related to the dispersive region of the energy spectrum in Fig. 7.5,
i.e. for momentum values away from the plateaus. [208, 209, 210, 211, 212] In addition to
the mentioned features, for the anisotropic QW case: (i) the quantum Hall edge states are
significantly affected by the alignment of the QW, and (ii) as α increases, the energy states
are found to be less dispersive, that is caused by the fact that the wavefunctions become
more localized, as it will be discussed next in Fig. 7.6. Consequently, the group velocities
of the quantum Hall edge states show a striking dependence on the edge alignment.

In order to understand the effects of the rotation angle changes and the magnetic
field on the electronic confined states, we show in Fig. 7.6 the probability density of the
ground state for different rotation angles with and without a magnetic field, taking the
same system parameters as in Fig. 7.5. Since Eq. (7.11) is a quantum harmonic oscillator
type equation, the ground state wavefunction of a rotated anisotropic QW in the presence
of a magnetic field is given by

Ψ(x′, y∗)=

(
m∗ωc
π~

)1/4

exp

(
−m

∗ωcy
∗2

2~
− iµ2

µ3

k′xy
∗
)
. (7.13)
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Figure 7.6: Squared total wavefunction for anisotropic rotated QWs in the presence of an
external magnetic field, B = 5 T, with a fixed QW width L = 100 nm and wave vector
k′x = 0. Black dashed-dot, red dashed, and blue short-dashed curves correspond to the
case for rotation angles α = 0, α = π/4, and α = π/2, respectively. For comparison, |Ψ|2

for B = 0 is shown by green solid curve.

Similar to the case for zero magnetic field (see Eq. (7.9a)), the wavefunction not only
contains plane wave term but depends on the QW alignment in relation to anisotropy
axes, which is contained into y∗ term. One can note that: (i) for a fixed rotation angle,
the total wavefunction is more localized for B 6= 0 than B = 0, as already expected, (ii) for
B 6= 0, as α increases |Ψ|2 becomes more localized, and (iii) for B = 0, the QW rotations
do not affect the wavefunction profile, as shown by the green solid curve in Fig. 7.6 for
α = 0 and α = π/3.

A complementary way to see the magnetic field dependence of the confined states in
anisotropic QWs is shown in Fig. 7.7. The spectra for null and non-null wave vectors
are present in panels (a) and (b), respectively, for three different rotation angles. Note
that, as the magnetic field increases, the magnetic length becomes smaller than the sys-
tem size, so that confinement effects are strongly reduced, and the magnetic levels in the
phosphorene QW converge to the Landau levels of an infinite phosphorene sheet, given by:
E = ~ω (n+ 1/2), with n = 0, 1, 2, . . ., and ω = eB/mg = ωc

√
µ1/µ2 being the cyclotron

frequency calculated with the geometric mean of the masses mg =
√
mxmy. [169, 93]

Moreover, one can realize that the energy levels spacing is strongly affected by the mag-
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Figure 7.7: Energy levels of a phosphorene QW with width L = 100 nm as function of
the magnetic field for wave vector values (a) k′x = 0, and (b) k′x = 0.2 nm−1 for different
rotation angles α with respect to the anisotropy axes.

nitude of the applied magnetic field, and with increasing magnetic field the confinement
effects due to QW rotation discussed in Sec. 7.3.1 are less evident, such that regardless
the wave vector amplitude (see, e.g. panels 7.7(a) and 7.7(b)) and QW rotation angle the
energy levels converge to the Landau levels of an infinite system.

7.4 Wave-packet propagation and scattering in anisotropic
quantum wires

As the previous results have shown, the electronic spectrum of anisotropic QWs is
strongly dependent on the relative orientation of the QW in relation to the anisotropic
axes. Therefore, it can be expected that a change of orientation angle (α) along the
length of the QW may give rise to an energy mismatch, as illustrated in Fig. 7.8(a),
which can in turn lead to electron scattering. In order to investigate that, let us now
calculate the transport properties of a QW in which an abrupt change of α is introduced,
forming a elbow-like feature in an otherwise straight QW. For this purpose, let us now
consider electrons in the (x, y) plane moving from left to right in a region with a V-shaped
QW formed by a straight section with α = 0 and a section with α 6= 0 as illustrated in
Fig. 7.8(b). The electrons are confined by a step like potential, i.e. V (x, y) = 0 inside



7.4. WAVE-PACKET PROPAGATION AND SCATTERING IN ANISOTROPIC QUANTUM WIRES 108

(a)

a

(b)

L

a  0¹a = 0

x

y

Ly

Lx

xi

Ei
m mx yÛ

Figure 7.8: Illustration of (a) the energy bands for each QW section of (b) the V-shaped
anisotropic QW due to an abrupt change of orientation angle α along the QW length.
For x < xi (≥ xi), one has α = 0 (α 6= 0). The two QW sections are made up of a
phosphorene QW with width L. The energy bands for each QW section exhibit different
energy levels spacing and minimum, and consequently leading to an energy mismatch in
the junction. Ei and xi indicate the initial wavepacket energy and the position of the QW
corner. Lx (Ly) is system length along the x (y) direction.

the QW and V (x, y) = V0 otherwise. Moreover, we assume that the electrons are always
in the conduction band and that conduction-to-valence band transitions are negligible,
which is a reasonable approximation when dealing with low-temperature systems and
also once that the conduction-to-valence energy distance, i.e. the energy gap, is large
for phosphorene systems [169, 93, 39]. It was considered QWs with width L = 3 nm
and L = 10 nm, abrupt borders, and made out of phosphorene. For simplicity sake,
throughout this section the effective masses along the x and y directions were exchanged
as the ones referred in Table 7.1.

The injected electrons are described by a combination of a Gaussian function with a
plane wave along the x direction and the ground state wavefunction of the QW in the y
direction φ0(y). Then, at t = 0 the initial wavepacket is defined by

Ψ0(x, y) = exp

[
ikixx−

(x− x0)2

2d2

]
φ0(y), (7.14)

where kix =
√

2mxEi/~2 is the wave vector corresponding to the packet kinetic energy
Ei (see dotted line in Fig. 7.8(a)), d is the initial wavepacket width in the x direction
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that is chosen as the same QW width L, and x0 is the initial postion in the x direction
of the wave packet maximum, set up far from the corner of the bent QW, such as x0 =

−32.5 nm and x0 = −8.6 nm for the QW width cases L = 10 nm and L = 3 nm,
respectively. It is important to stress out that the ground state wavefunction φ0(y) is
given by Eq. (7.9a) which is closely related to the initial QW alignment angle, since it
contains angle-dependent anisotropic effective masses terms.

With the aim of solving the time-dependent Schrödinger equation to obtain the propa-
gating wavepacket through the evolved time steps and thus to get the transport properties
of the analyzed system, one applies the split-operator technique. For this, we follow the
approach described in Refs. [99, 174, 170, 171, 79, 172, 173, 175, 110, 176, 177, 178, 179,
180, 202, 203, 204]. This allows us to separate the exponential of the time evolution
operator (that for the case in which the Hamiltonian does not explicitly depend on time,
this operator can be written as Û(t′, t) = exp

[
− i

~H(t′ − t)
]
) into two parts: one of them

involves only the potential operator V̂ , whereas the other contains only the kinetic oper-
ator T̂ , as well as, enabling to split also the kinetic terms for each direction. Therefore,
the time evolved wavefunction is obtained by successively applying the operation Û such
as

Ψ(~r, t+ ∆t)=e−iV̂∆t/2~e−iT̂x∆t/~e−iT̂y∆t/~e−iV̂∆t/2~Ψ(~r, t), (7.15)

where T̂x(y) is the kinetic-energy operator for x(y) direction and we neglect terms of
order O (∆t3) and higher, being such error a consequence of the noncommutativity of
kinetic and potential terms. This error can be minimized as smaller the time step. We
assume a small time step of ∆ = 0.7 fs. Here, we opted for the split-operator technique,
because it allows us to track the position and velocity of the center of mass trajectories, see
reflection patterns and scattering on the edges, and obtain the transmission and reflection
coefficients (which will be important to the analysis in this section).

To numerically solve this problem, we discretized the (x, y) plane with a square grid,
assuming ∆x = ∆y = 0.4 nm and ∆x = ∆y = 0.12 nm for the cases where L = 3 nm and
L = 10 nm, respectively, and used the finite difference scheme to solve the derivatives in
the kinetic energy terms of the Hamiltonian. In addition, as suggested in Ref. [213] and
successfully used in Refs. [172, 173, 175, 202] we added an absorbing (imaginary) potential
on the boundaries of our computational box in order to avoid spurious reflections and
backscattering when the wavepacket reaches the limits of our system.

For each investigated system configuration, we run the simulation and calculate: (i)
the transmission probability T (t) for each time step by integrating the square modulus of
the normalized wavepacket in the region after the elbow-like QW corner, i.e. for x > xi,
given by

T (t) =

∫ Ly/2

−Ly/2
dy

∫ Lx/2−|xi|

xi

dx |Ψ(x, y, t)|2 , (7.16)
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Figure 7.9: Transmission probabilities as a function of the initial wavepacket energy by
assuming the elbow-like QW with: (a) a fixed rotation angle α = 15◦ and QW widths
L = 3 nm (triangles) and L = 10 nm (circles); and (b) a fixed QW width L = 3 nm and
rotation angles α = 15◦ (triangles) and α = 60◦ (circles). Red (filled) and black (open)
curves (symbols) correspond to the anisotropic and isotropic QW cases.

(ii) the total average position, i.e., the trajectory of the wavepacket center of mass, that
is calculated for each time step by computing

〈x(t)〉 =

∫ Ly/2

−Ly/2
dy

∫ Lx/2

−Lx/2
dx |Ψ(x, y, t)|2 x, (7.17a)

〈y(t)〉 =

∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy |Ψ(x, y, t)|2 y, (7.17b)
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Figure 7.10: (a) Isoenergy curve in momentum space of the electronic band for a non-
rotated anisotropic system, that corresponds to α = 0. θ and φ are the minimum angles
with respect to kx axis that are associated with the orientation of the wave vector ~k and
group velocity vector ~v, respectively. (b) Values of angle φ as a function of angle θ given
by the following equation: tanφ = (tan θ/µ2 − 1/µ3) / (tan θ/µ3 + 1/µ1). (c)-(e) Average
velocities for the (top panels) x′ and (bottom panels) y′ directions by considering (black
solid curve that corresponds to θ = φ = α) the isotropic case, the anisotropic case with
the QW parallel to (blue dashed curve that corresponds to θ = α 6= φ) the wave vector,
and (red dashed-dot curve that corresponds to φ = α 6= θ) to the group velocity vector.
The rotation angle was assumed as (c) α = 0◦, (d) α = 15◦, and (e) α = 45◦.

and (iii) the average velocity, by

〈vx(t)〉 =
d〈x(t)〉
dt

, (7.18a)

〈vy(t)〉 =
d〈y(t)〉
dt

, (7.18b)

where the limits of the computational box are defined by x ∈ [−Lx/2, Lx/2] and y ∈
[−Ly/2, Ly/2]. The reflection probability R is obtained by similar integration as Eq. (7.16)
but for the region before the QW corner (x < xi). For larger t, the value of the transmis-
sion (reflection) probability integral increases (decreases) with time until it converges to
a number. This number is then considered to be the transmission (reflection) probability
of such a system configuration.

Transmission probabilities for the bent QW computed by using the split-operator tech-
nique are presented in Fig. 7.9 as function of the initial wavepacket energy. In Fig. 7.9(a)
the transmission was obtained for a QW rotated by a fixed angle α = 15◦ and QW width
L = 3 nm (triangles) and L = 10 nm (circles) both in isotropic (open symbols) and
anisotropic cases (filled symbols). In Fig. 7.9(b), it was fixed the QW width L = 3 nm
and analyzed two different rotation angles: α = 15◦ (triangles) and α = 60◦ (circles).
From Fig. 7.9(a), one can notice that: (i) since the energy levels become closer for wider
QWs, the wavepacket has a larger transmission probability for wider channels in both
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Figure 7.11: Snapshots of the total evolved wavefunction through the QW rotated by
α = 15◦ at the time steps (i) t = 40 fs, (ii) t = 100 fs, (iii) t = 200 fs, (iv) t = 250 fs, and
(v) t = 300 fs as labeled by roman letters in Fig. 7.10(d) and considering (upper panels)
θ = φ = α, (middle panels) θ = α, and (bottom panels) φ = α.

isotropic and anisotropic systems, as well as, it also explains the rapid convergence of
the transmission to 1 for wider QWs as a consequence of the larger number of accessible
electronic states; (ii) the quantitative difference between anisotropic and isotropic curves
for each fixed QW width case is due to the difference on their subbands energy values.
Note that the energy bands in both straight and rotated sections of the V-shaped QW are
(non-)identical for (an)isotropic case, and thus as a consequence of this energy mismatch
caused by the QW bending one has a greater reflection probability for anisotropic case. In
both isotropic and anisotropic cases, due to the channel geometry the wavepacket is more
reflected when reaches the bend that connects the two leads represented in Fig. 7.8(b),
and as the right-arm of QW is rotated the transmission decreases, as can be seen in
Fig. 7.9(b). The introduction of a bend in the QW can reduce the transmission even in
the isotropic case, due to the fact that it breaks the translational symmetry of the system.
For instance, compare black triangular and circular symbols in Fig. 7.9(b), in which the
transmission for α = 15◦ is larger than the case for α = 60◦ for any initial wavepacket
energy. Although the energy bands for the isotropic case are identical for any rotation
angles, the QW geometry has an important role on the total transmission probability.
Thus, in order to separate this purely geometric effect from the effect of the anisotropy,
all the results in Fig. 7.9 show a comparison between the transmission for isotropic and
anisotropic cases for different values of L (Fig. 7.9a) and α (Fig. 7.9b).

Another aspect of the transport in anisotropic QWs that was investigated was the effect
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of the interaction between the electrons and the QW edges as function of α. A semiclassical
analysis suggests that the non-collinearity of the group velocities and the momentum
vectors (see Eq. (7.5)) may give rise to a group velocity oscillation. In order to investigate
that, we have analyzed the wavepacket dynamics simulating electrons that propagate
through a straight QW as the one represented in Fig. 7.1. For this, we considered an
initial circularly symmetric Gaussian wavepacket centered in ~r = (x0, y0) and multiplied
by a pulse with initial wave vector ~k0, given by

Ψ(x, y) = exp

[
−(x− x0)2

2d2
− (y − y0)2

2d2
+ i ~k0 · ~r

]
. (7.19)

In this analysis, it was assumed that the QW width is much larger than the wavepacket
width, being taken d = 5 nm and L = 30 nm, and that the wavepacket is injected from
left to right into the channel with initial position (x0, y0) = (−32.5,−8.6) nm and initial
energy E = 200 meV.

Figure 7.10 shows the wavepacket average velocities as function of time for both x

and y directions that were obtained by computing the first order derivative of the average
positions Eqs. (7.17a) and (7.17b) at each time step, being given by Eqs. (7.18a) and
(7.18b), respectively. The wavepacket evolution through the straight QW with different
values of rotations angle α was analyzed for both isotropic and anisotropic cases, taking
into account the non-collinearity of the wave vector ~k and group velocity vector ~v. The
wave vector and group velocity are here associated with the angles θ and φ, respectively,
as illustrated in Fig. 7.10(a), being ~v always perpendicular to the isoenergy in momentum
space. It is easy to see from Eq. (7.5) that for isotropic case (1/µ3 = 0), one has ~v′ ‖
~k′ and the isoenergies are circular. However, as mentioned in Sec. 7.2, for anisotropic
semiconductors whose isoenergies are ellipses, this is not the case. Figure 7.10(b) shows
the relation between the angles θ and φ that differs for almost every angle, except for
θ = 0◦ and θ = 90◦ in which the wave vector and group velocity are aligned, similarly to the
isotropic case. Figures 7.10(c) to 7.10(e) depict the average velocities (top panels) v′x and
(bottom panels) v′y for the following rotation angles: [Fig. 7.10(c)] α = 0◦, [Fig. 7.10(d)]
α = 15◦, and [Fig. 7.10(e)] α = 45◦. The black solid, blue dashed, and red dashed-
dot curves correspond to θ = φ = α, i.e. the isotropic case, to θ = α 6= φ, i.e. the
anisotropic case with the QW parallel to the wave vector, and to φ = α 6= θ, i.e. the
anisotropic case with the QW parallel to the group velocity vector, respectively. According
to Figs. 7.10(c)-7.10(e), one can realize that: (i) the average velocities for both x and y
directions remain unchanged for isotropic case (θ = φ = α, black solid curves), irrespective
to the QW rotation angle, as well as for the anisotropic case in which the wave vector and
the group velocity are collinear as shown by the blue dashed and red dashed-dot curves in
Fig. 7.10(c). Qualitative similar results can be obtained for α = 90◦, instead of α = 0◦; (ii)
for θ 6= φ and α 6= 0◦, 90◦ that corresponds to non-collinear cases between the wave vector
and the group velocity, the average velocities oscillate, as expected by the semiclassical
picture due to the non-specular reflections on the edges in an anisotropic media. This can



7.5. CONCLUSIONS OF THIS CHAPTER 114

be seen by the blue dashed and red dashed-dot curves in Figs. 7.10(d) and 7.10(e); (iii)
the oscillations are more evident as |θ − φ| increases, exhibiting an increasing oscillation
amplitude the greater the non-collinearity between the vectors ~k and ~v. This can be seen
by comparing the oscillation amplitudes of the blue dashed curves in Figs. 7.10(d) and
7.10(e), and also for a fixed rotation angle by comparing the θ = α and φ = α cases.
Note from Fig. 7.10(b) that for θ = α = 15◦ one has φ ≈ 55◦, whereas for φ = α = 15◦

one implies θ ≈ 4◦, and consequently the difference |θ − φ| is larger for former case with
θ = α (blue dashed curves) that indeed exhibits the large oscillation amplitude for the
presented cases.

In order to clarify how the non-collinearity between the group velocity and wave vector
in anisotropic case affects the wavepacket evolution, it is displayed in Fig. 7.11 snapshots
of the time evolution of the probability density propagating through the QW rotated by
the angle α = 15◦ at times (i) t = 40 fs, (ii) t = 100 fs, (iii) t = 200 fs, (iv) t = 250 fs,
and (v) t = 300 fs as labeled in Fig. 7.10(d), and considering the isotropic case (upper
panels, θ = φ = α) and the anisotropic case with the QW orientation parallel to the wave
vector (middle panels, θ = α 6= φ) and to the group velocity (bottom panels, φ = α 6= θ).
By analyzing the snapshots, it is clear that for the isotropic case (upper panels) when
the wavepacket evolves it disperses but keeping the average position (white dashed lines)
and consequently the average velocity unchanged, as observed in Fig. 7.10(d). Since the
propagation direction and the wave vector are collinear for this case, after the reflections
at the potential edges the direction of the group velocity vector remains the same over
time. However, for the anisotropic case in which the wave vector and the group velocity
are non-collinear, when the wavepacket reaches the QW edges it undergoes non-specular
reflections [214]. As a consequence, for the case where θ = α, this interaction with the
edges results a subpackage splitting with different propagation directions that leads to an
average velocity oscillation with large amplitudes that are damped over time, as shown
by the blue dashed curves in Fig. 7.10(d). On the other hand, for the anisotropic case
where φ = α, no subpackage splitting is observed and the average velocity oscillation
amplitude is less pronounced, as shown by red dashed-dot curves in Fig. 7.10(d). This is
linked to the fact that in this case the group velocity is aligned with the QW orientation
and then the total wavepacket evolves in parallel to QW boundaries exhibiting a straight
trajectory and dispersing over time similarly to the isotropic snapshots case, but here
owing to the non-specular reflections its interaction with the QW edges implies a slightly
different average position and barely affecting the total propagation velocity.

7.5 Conclusions of this chapter

In summary, we developed an analytical model for classical anisotropic systems using
the effective mass model and applied this formalism to obtain the electronic properties
of QWs made up of arsenene and phosphorene and with the length direction rotated
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in relation to its anisotropy axes. The energy levels in the presence and absence of an
external magnetic field perpendicular to the QW plane were analyzed for different system
parameters. In the absence of a magnetic field, we found an analytical expression for
the QW energy levels that contains a term analog to the ones for isotropic quantum wells
with a 1/L2 dependence, and another term that carries the system anisotropy. Our results
showed that the spacing of the energy levels for both samples is strongly affected by the
alignment angle between the QW and the crystallographic directions, such that as the
angle increases, the spacing between the energy levels is lowered (raised) for phosphorene
(arsenene), as well as, observing a shifted to lower (upper) energy values. For the non-
null magnetic field case, the electronic wavefunctions obey a harmonic oscillator type
equation but for a modified mass and modified cyclotron frequency that depends on the
alignment angle between the QW and its anisotropy axes. Numerical calculations showed
that the energy spectrum is significantly affected by the confining potential edges and that
the quantum Hall edge states are less pronounced the greater the rotation angle. With
respect to the wavefunction localization, for large QW rotation angles, the wavefunction
becomes more confined, whereas in the absence of a magnetic field it remains unchanged
under rotations.

Since the electronic energy levels of anisotropic QWs are strongly affected by rotation,
we studied their transport properties by using the split-operator technique and compared
the isotropic and anisotropic results for the transmission probability, average position,
average group velocity, and snapshots of the time evolved wavepacket. By considering a
circularly symmetric Gaussian wavepacket propagating inside of a wide anisotropic QW
rotated by α with respect to the anisotropic axes, one observed oscillations in the average
velocity for the case when the initial wave vector and the group velocity vector are not
collinear, and the oscillation amplitude is more pronounced the greater the non-collinearity
between them, i.e. the greater the θ − φ value. The snapshots at different time steps
demonstrated that for the anisotropic QWs the interaction between the wavepacket and
the QW edges gives rise to subwavepackets with different momentum orientations, whereas
for isotropic QWs the wavepacket disperses over time without splitting and its interaction
with the QWs edges does not change the orientation of the average group velocity. In the
case of a bent QW, as a consequence of the energy mismatching in different sections of
the QW and the anisotropy of the system, one expects that electrons traveling through
the bend can be scattered. The results showed that the transmission probabilities are
greater the lower the rotation angle of the right-arm and the wider the QW, regardless
of the anisotropic character of the system, and the nature of the quantitative difference
of the transmission probabilities between the isotropic and anisotropic QWs is linked
to the difference on their subband values. The differences in propagation for different
orientations of the QW may be experimentally measured by attaching perpendicular leads
to the system, one expecting different Hall conductances between isotropic and anisotropic
cases, as well for collinear and non-collinear situations between the group velocity and
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momentum vectors. This direction-dependent Hall conductance will be investigated in a
future project. Finally, we hope that our electronic and transport results will prove useful
for designing anisotropic semiconductor based quantum confinement devices.



8
Dirac fermions in graphene using the

position-dependent translation operator formalism

Within the position-dependent translation operator formalism for quantum system, we
obtain analytical expressions for the eigenstates and the Landau levels spectrum of Dirac
fermions in graphene under the presence of a perpendicularly applied magnetic field and,
as a consequence of the formalism, with a generalized form of the momentum operator.
Moreover, we explore the behavior of wave packet dynamics in such system, by considering
different initial pseudospin polarization and metric parameter. Our findings show that
the Landau levels, the wave packet trajectories and velocities are significantly affected by
the choice of the metric in the non-Euclidean space of the deformed momentum operator,
exhibiting a tunable energy level spacing. In the dynamics analysis, one observes an
enhance of the oscillation amplitude of the average positions for all investigated pseudospin
polarizations due to the non-symmetric evolution of the wave packet induced by the
different metric in the system. The present formalism shows to be a theoretical platform
to describe the effects of two scenarios due to: (i) a lattice deformation in graphene, giving
rise to a natural Fermi velocity renormalization; or even (ii) a non-uniform mass-term,
induced by specific substrate, that varies on a length scale much greater than the magnetic
field length.

8.1 Motivation

During the last two decades, many studies have been carried out to understand the
unique properties of graphene, a single atomic-thin layer of graphite. [3, 62] A plethora of
its exotic features, such as: Klein tunneling effect and unusual quantum Hall effect, orig-
inate from the fact that low energy charge carriers in graphene obey the zero mass Dirac
equation, providing a favorable environment to probe interesting phenomena predicted by
quantum field theories not found in conventional semiconductors and metals. One con-
sequence of its gapless linear dispersion, under the presence of a perpendicular magnetic
field, is the

√
B dependence to the Landau levels in contrast to the linear dependence on
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B observed in conventional two-dimensional (2D) electron gas spectrum for Schrödinger
fermions. [215, 57, 216, 217]

Other very interesting property of massless Dirac fermions in graphene is that it expe-
riences zitterbewegung, a trembling motion caused by interference between positive and
negative energy states [111, 112] that was predicted by Schrödinger for the motion of
relativistic electrons in vacuum governed by the Dirac equation. Therefore, stimulated by
Schrödinger’s idea, numerous theoretical works have investigated the dynamics of wave
packets in 2D electron gas [111, 112, 13, 123, 127, 129] and more recently in 2D ma-
terials, as examples: single-layer [143, 144, 145, 146, 147, 14, 148, 152, 150, 151] and
bilayer [143, 147, 15] graphene, silicene, [167] transition metal dichalcogenide, [168] and
multilayer phosphorene [203].

From the theoretical point of view in the analysis of quantum systems, in the last
years one observed a growing literature dealing with systems consisting of particles with
position-dependent mass. [218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230,
231, 232, 233, 234] Most of the previous approaches [218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230] considered a modification of canonical commutation relations
or even modifications in the underlying space, which leads to the problem of the ordering
in the kinetic energy operator, since in this formalism mass is mapped into an operator
that does not commute with the momentum operator. [235] To overcome this issue, Costa
Filho et al. [231] in 2011 proposed a new method that consists of a generalized translation
operator which produces infinitesimal spatial displacements, such that T (dx)|x〉 = |x +

g
−1/2
xx dx〉, where g−1/2

xx is a function of the position and related to the metric. It changes the
momentum and, consequently, the commutation relation between momentum and position
into a more generalized form and leads to a modified Schrödinger equation that resembles
the standard Schrödinger equation to describe charge carriers with a position-dependent
effective masses. Thereafter, a series of recent studies have done by using this position-
dependent translation operator formalism. [231, 232, 233, 234, 236, 237, 238, 239, 240]

Based on the Costa Filho formalism [231, 232, 233, 234] and motivated by the great
interest on 2D materials due to their colossal possible future technological applications,
in this work we extend the previous reported analysis for the case of graphene under the
presence of a perpendicular magnetic field and we show that the metric in this formalism
can be viewed as an additional mechanism for controlling the electronic and transport
properties of low energy electrons in graphene, as well as we discussed it in view of two
scenarios due to the lattice deformation and to a position-dependent mass term induced by
specific substrate. To perform this investigation, we analytically solve the Dirac equation
with a generalized momentum operator and discuss the role the metric in the eigenstates
and energy spectrum. Moreover, we time evolve a Gaussian wave packet, describing charge
carriers traveling through the system, and calculate the expectation values of the position
operator and velocity operator as a function of time, discussing the main features of the
zitterbewegung effect for different initial pseudospin polarization and metric.
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In this chapter we discuss the position-dependent translation operator formalism,
showing the analytical solution of the Dirac equation for monolayer graphene in the pres-
ence of a perpendicularly applied magnetic field and with a deformed momentum along
the x-direction due to a general metric originated from the position-dependent transla-
tion operator formalism. Results of the analytically calculated Landau levels for a generic
metric is also shown and compared with the non-deformed case. Moreover, we investigate
the wave packet dynamics and how some physical quantities, such as average positions
and average velocities, evolve in time for the studied graphene system with a generic met-
ric. Results for different metrics, for different initial pseudospin polarizations, as well as
the manifestation of the zitterbwegung on the wave packet motion in graphene with this
deformed metric are discussed.

8.2 Position-dependent translation operator formalism

Matter curves the space-time in all directions leading two particles, traveling parallel
to each other, to get closer or far apart as if there is a force acting between them. This
is the definition of gravity in the realm of general relativity, where the space is curved in
the vicinities of large densities of mass or energy. In general relativity, the metric tensor
determines the geometric local structure of the curved space-time. For example, the
Minkowski metric is the one used in special relativity, while the Schwarzschild metric is the
most general solution to the Einstein’s equation. Non-Euclidean metrics appear naturally
also in very small scales where Quantum Mechanics is valid. For example, it has been used
as an attempt to merge general relativity and quantum mechanics [?, ?, ?, ?, ?], as well
as in the study of quantum systems problems with constraints [?, ?, ?]. More recently, a
Schwarzschild-like metric has been used to find the quantum wave equations [?].

In a curved surface the shortest path between two points is a geodesic and the squared
distance between two infinitesimally close points is given by

ds2 =
∑
µν

gµνdx
µdxν , (8.1)

where gµν is the metric of the curved space under consideration. Here, we use a diagonal
metric,

ds2 = gxxdx
2 + gyydy

2 + gzzdz
2, (8.2)

to show that an inertial force appears naturally in the quantum mechanics framework
leading to a modified Ehrenfest theorem. More importantly, it is shown that the metric
is responsible for a minimum momentum leading naturally to what is called extended
uncertainty principle (EUP) [?].

As a first consequence of adopting Eq. (8.2), the space curvature leads to an internal
product of the wave function given by
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〈φ|ψ〉 ≡
∫
φ∗(x, y, z)ψ(x, y, z)

√
|g|dxdydz, (8.3)

where g = det(gµν) is the determinant of the matrix of components of the metric tensor.
In this context, a particle in the vicinities of a point with coordinate x can be described
by the ket |x〉 where x̂|x〉 = x|x〉. As the set {|x〉} is complete, the identity operator can
be written as

1 =

∫ √
|g|dxdydz|x, y, z〉〈x, y, z|, (8.4)

and the scalar product in this metric for one dimension is given by 〈x|x′〉 = g(x)−1/2δ(x−
x′). With this metric, for a particle to go from a point x to x + g

−1/2
xx dx it has to get a

translation like Tg(dx)|x〉 = |x + g
−1/2
xx dx〉. This translation is clearly non-additive and

the operator can be written as

Tg( ~dr) ≡ 1− i
~P
~
· ~dr, (8.5)

where ~P is a generalized momentum that generates the translation, with [x,Px] = i~g−1/2
xx .

As a consequence, it is straightforward to show that the momentum component can be
written as Pν = −i~g−1/2

νν ∂ν leading to an stationary equation of motion for a particle
Hψ = Eψ or,

− ~2

2m
D2ψ(r) + V (r)ψ(r) = Eψ(r), (8.6)

where D =
∑

ν g
−1/2
νν ∂ν , and

D2 ≡ 1
√
g

∑
ν

∂ν
√
ggνν∂ν , (8.7)

with gννgνν = 1, and ν = x, y, z. At this point, it is important to mention that the
Hamiltonian defined by

H ≡ − ~2

2m
P2 + V (r) (8.8)

is Hermitian due to Eq. (8.4). As consequence, the probability density ρ = Ψ(x, t)Ψ(x, t)∗

obeys the continuity equation,
∂ρ

∂t
+DJ = 0, (8.9)

where the probability current is now written as J = g
−1/2
xx J . We emphasize that the

translation is non-additive in this diagonal metric, the associated Schrödinger-like equa-
tion remains linear, second-order in space and first-order in time, and that the probability
density is conserved in terms of a continuity equation of the same form as the standard
one in Euclidean space.



8.3. ELECTRONIC PROPERTIES OF GRAPHENE WITH A GENERIC METRIC 121

8.3 Electronic properties of graphene with a generic
metric

The energy spectrum of an infinite undoped graphene sheet in the presence of a mag-
netic field and in the vicinity of the Dirac cones can be obtained by solving the eigenvalue
equation HDΨ(x, y) = EΨ(x, y) with following Dirac-Weyl Hamiltonian[241, 242]

HD = vF~σ ·
(
~P + e ~A

)
+ τ∆σz, (8.10)

where vF is the Fermi velocity, e is the electron charge, ~A is the electromagnetic vector
potential, ~σ = (σx, σy, σz) denotes the Pauli matrix, ∆ (−∆) is the on-site potential
induced by the substrate on the A (B) sublattice, which can be seen as a mass term
within the continuum model, and τ is the valley index, being 1 (−1) for K (K ′) Dirac
point. Based on the position-dependent translation operator formalism, [231, 232, 233,
234] the generalized position-dependent momentum operator associated with a spatial
displacement that generates the translation from a point ν to ν+g

−1/2
νν dν can be written as

Pν = −i~g−1/2
νν

∂
∂ν
, with ν = x, y, and z, being g−1/2

νν a function of the position and related
to the metric. In fact, g−1/2

νν is an element of a diagonal metric of the non-Euclidean space
under consideration. The eigenstates of the Hamiltonian (8.10) are the two-component
spinors Ψ = [ΨA,ΨB]T , where ΨA (ΨB) are the envelope functions associated with the
probability amplitudes at the sublattice A (B).

For convenience, we choose the Landau gauge ~A = (0, B0x, 0), such that the system
has translational invariance only along y-direction (i.e. Py = ~ky). Thus, one can assume
solutions as the following ansatz

Ψ(x, y) = eiky
∫
g
1/2
yy dy

(
ψ+(x)

ψ−(x)

)
. (8.11)

By acting the Hamiltonian (8.10) on the two-component wave function (8.11), one obtains
the following set of coupled differential equations[

1
√
gxx

d

dx
+

(x− x0)

l2B

]
ψ− = i

(E − τ∆)

~vF
ψ+, (8.12a)[

1
√
gxx

d

dx
− (x− x0)

l2B

]
ψ+ = i

(E + τ∆)

~vF
ψ−, (8.12b)

where x0 = − ~ky
eB0

= −l2Bky and lB =
√

~
eB0

is the magnetic length.
Decoupling the above set of equations (8.12) with respect to ψ+, we arrive at

d2ψ+(η)

dη2
+

[
(E2−∆2)

~2v2
F

− e
√
g η
lB

l2B
− (e

√
g η
lB−1)2

gl2B

]
ψ+(η)=0, (8.13)

where one considers the spatial metric as the linear function

g−1/2
xx = 1 +

√
g

lB
(x− x0) , (8.14)
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Figure 8.1: Deformed η-coordinate as a function of the non-deformed x-coordinate in real
space [see Eq. (8.15)] for three different metric parameters: (black solid line) g = 0, (red
dashed line) g = 0.01, and (blue dotted line) g = 0.1. It was assumed a magnetic field
amplitude of B = 1 T.

and the application of the transformation

η(x) =

∫
g1/2
xx dx =

lB√
g

ln

[
1 +

√
g

lB
(x− x0)

]
, (8.15)

in order to eliminate the first derivative in Eq. (8.13). Notice that g is a dimensionless
parameter that is associated with the effect of space modification. It is easy to note
that for g = 0 one recovers the non-modified Dirac equation with the metric equal to
1 (i.e. Pν → −i~ ∂

∂ν
). Therefore, the appropriated length scale for the problem is the

magnetic length lB. To illustrate this spatial deformation in η axis, Fig. 8.1 depicts the
η’s dependence as a function of the real and non-deformed x-coordinate [Eq. (8.15)] in the
case of a linear metric as given by Eq. (8.14). Three different metric parameters g were
assumed and it was taken a fixed magnetic field amplitude B = 1 T. One can realize from
Fig. 8.1 that the introduction of a non-null metric parameter g induces a deformation
in the η’s space, such that η is moving away from a linear relation with respect to the
x-coordinate to higher values of g, as can be seen by comparing the cases g = 0 and
g = 0.1, as well as η < 0 is the most affected direction.

From Eq. (8.13), one can obtain the wave functions ψ+ and ψ− given, respectively, by
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ψ+(η) = Anβ
se−βL2s

n (2β) , (8.16a)

ψ−(η) =
Anβ

se−βi~vF
lB
√
g(E + τ∆)

×{
2e

√
gη

lB L2s+1
n−1 (2β)+

[
2e

√
gη

lB −(1+gs)

]
L2s
n (2β)

}
, (8.16b)

where β = 1
g
e
√
gη/lB , s = 1

g
− (n+ 1), L2s

n is the generalized Laguerre polynomial, and An
is the normalization constant. The corresponding energy levels read as

En = ±~vF

√
∆2

~2v2
F

+
2

l2B
(n+ 1)− g

l2B
(n+ 1)2, (8.17)

with n ∈ N . The positive values correspond to electrons (conduction band), while the
negative values correspond to holes (valence band). Repeating the same decoupling pro-
cedure of the set of equations (8.12) but now for the ψ− component, one finds

En = ±~vF

√
∆2

~2v2
F

+
n (2− gn)

l2B
. (8.18)

By taking g = 0 in Eqs. (8.17) and (8.18), one can easily obtain the Landau level energies
for the non-deformed graphene which depend on the square root of both the level index
n and the magnetic field B, and exhibit a different dependence on the energy levels for
sublattices A (En ∝

√
2(n+ 1)) and B (En ∝

√
2n). It is in contrast to the standard 2D

electron gas, whose the Landau levels are equally spaced. Notice that for the graphene
case with g 6= 0, one has an additional contribution term for the Landau levels that is
proportional to the metric g and has a n2-dependence. It is easy to realize from Eqs. (8.17)
and (8.18) that there is a range of valid g values in order to obtain real energy levels, given

by g ≤
(

∆lB
~vFn′

)2

+ 2
n′ , with n′ = 0, 1, 2, . . ., i.e. for a fixed g parameter only some n′ values

are allowed. As we shall discuss further, this term is responsible for changing the charge
carrier electronic properties in graphene with a generic metric, when compared to the non-
deformed case, and also it causes a shift into the energy spectrum. For ∆ = 0, note that
Eq. (8.17) lacks the level with E = 0 that is present in Eq. (8.18), and the introduction of
a different metric does not lift the degeneracy of the two-fold zeroth Landau levels since
E0 = 0 by Eq. (8.18), unlike the mass-term ∆ that opens a gap of 2∆ in the spectrum
and in addition the presence of ∆ shifts the Landau levels spectrum for n 6= 0. The
existence of a zeroth Landau level E0 = 0 is a direct consequence of the zero gap in the
energy spectrum for Dirac fermions in graphene and due to its chiral symmetry. [243] An
important remark about Eqs. (8.17) and (8.18) is that the Landau levels are independent
of the valley index, and therefore the Landau level for n 6= 0 (n = 0) has four-fold
(two-fold) degeneracy, being two-fold associated with the electron-hole symmetry and the
another two-fold because of valley symmetry. [57, 216, 217]
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(b)

(a)

Figure 8.2: (a) The lowest five Landau levels for electrons as a function of perpendicular
magnetic field for metric (solid black lines) g = 0, (dashed red lines) g = 0.01, and (dotted
blue lines) g = 0.1. (b) Energy levels spacing between two adjacent states En+1−En as a
function of the metric for a fixed magnetic field amplitude B = 1 T and a null mass term
∆ = 0.

The dependence of the lowest energy levels on the magnetic field for the unbiased
graphene system for g = 0 (solid black lines) and for g 6= 0 (being dashed red lines for
g = 0.01 and dotted blue lines for g = 0.1) is shown in Fig. 8.2(a). A consequence of the
metric change is a shift of the energy levels, together with a change of level spacing, as
emphasized in Fig. 8.2(b) which depicts the behavior of the level spacing as a function of
the metric g, maintaining the magnetic field amplitude B = 1 T. It is seen that as the
metric increases, the energy levels are shifted to lower values and the spacing between
them decreases too, which in turn increases in the number of accessible electronic states
for a fixed energy range. Note that these behaviors of the deformed Landau levels with
respect to the metric resemble those observed in the following two scenarios: (i) a strained
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graphene, such that both the lattice and Dirac cones are distorted which leads to a
spatial-dependence and anisotropy of the Fermi velocity induced by the lattice change
through a renormalized linear momentum; [244, 245, 246, 247, 248] and (ii) a single-
layer graphene sheet deposited on a specific deformed substrate, such that the substrate-
induced mass-term is non-uniform and that varies on a length scale much greater than the
magnetic field length. [249] In the both scenarios, the Landau levels change qualitatively
in a similar way as shown in Fig. 8.2(a), i.e. exhibiting a contraction effect of the Landau
levels spectra. With respect to the first scenario, it is worth mentioning that a more
direct analogy with the considered position-dependent spatial metric given by the linear
function Eq. (8.14) is an uniaxially strained graphene. In this context, a recent work[244]
described such unidirectional deformation by using a renormalized linear momentum in an
effective Dirac-like Hamiltonian that similarly to the current work can capture the feature
of the contraction of the Landau levels but as a function of the deformation amplitude,
instead of the metric as treated here. In both cases owing to the strain or metric change,
the contraction of the Landau level energies can be understood by the renormalization
of the Fermi velocity. From this point-of-view, one can get an explicit relation showing
quantitatively a direct correspondence between the spatial metric g and the different types
of the strain in graphene, such that it is possible to find g ≡ g(ε), being ε the amplitude
of the lattice deformation.
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Figure 8.3: The wave function amplitude for the first four excited levels (a) n = 1, (b)
n = 2, (c) n = 3, and (d) n = 4. The black solid, dashed blue and red lines correspond
to the total wave function and the two pseudospin components ψ+ and ψ−, respectively.
The metric is g = 0.25 and the assumed magnetic field was B = 1 T. It is shown I{ψ−},
since it is pure imaginary. The η unit is angstrom.
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From the analytical expressions (8.16a) and (8.16b), we plot in Fig. 8.3 the four first
excited wave functions for graphene case with a non-null metric assumed as g = 0.25

and a fixed magnetic field amplitude B = 1 T. The solid black, dashed blue and red
lines correspond to the total wave function |Ψ|2 and the two pseudopsin components ψ+

and ψ−, respectively. For the non-deformed graphene case, it is well-known [57, 216,
217, 6] that solutions in the presence of an external magnetic field are given by the
Hermite polynomials and |Ψ|2 is symmetric with respect to η = 0. Note that the total
wave function, as well as the two components of the pseudospinor are no longer spatially
symmetric when one assumed a non-null parameter g. By an analogy with the strained
graphene, such lack of spatial symmetry of the wave functions can be understood by the
lattice deformation in graphene that causes in the microscopic point-of-view changes in the
interatomic distances and in the hopping energies of the carbon atoms and, consequently,
a modification in the electronic band structure. Such distortions on the Dirac cones can
lead to an anisotropic position-dependent Fermi velocity which, in turn, can be seen as an
anisotropy and a position-dependence on the effective masses of the system. Therefore,
within this analogy, the wave function is more (less) localized at the regions where the
kinetic energy is lowest (highest) due to the highest (lowest) effective mass along certain
direction. Note from Fig. 8.3 that due to the non-null metric, the wave functions with
higher energetic states exhibit a strong localization for η < 0 that can be associated with
the region with higher effective mass, lower renormalized Fermi velocity, and most affected
η-direction as demonstrated in Fig. 8.1. Similar results for deformed graphene systems
have been already reported in the literature such strong localization along the deformed
direction. [244, 245, 246, 247, 248] A very interesting aspect about the spatial distribution
of the two-components wave functions is that, even for the non-deformed case (g = 0), the
occupation of the sublattices displays a natural asymmetric occupation which is originated
from asymmetry in positions of the nearest neighbors for atoms at A and B sublattices
due to the different dependence of the energy levels for sublattices A [Eq. (8.17)] and B
[Eq. (8.18)], which differs in the index n for 1. Moreover, Eq. (8.13) resembles a differential
equation of a particle subjected to an effective Morse-type potential [?] in η−space i.e.
[d2/dη2 + Veff (η)]ψ+ = E ′ψ+, being the effective potential the term inside the brackets
in Eq. (8.13) without the energy term E ′ = (E/~vF )2. Note also that Fig. 8.3 shows a
strong asymmetry in the probability density, which implies that it is more probable to find
the particle in the regions of maximum potential. In Refs. [250, 251], the authors showed
that such asymmetry can be obtained when a particle is subjected to an exponential-type
magnetic field. However, in the current work one obtains similar results by applying a
constant magnetic field in {x, y}-space.

In addition to the wave function analysis for graphene system with a generic metric,
in Fig. 8.4 contour plots of the (a) first (n = 1), (b) second (n = 2), (c) third (n = 3)
and (d) fourth (n = 4) excited total wave functions are shown by varying the magnetic
field amplitude but keeping a fixed value of metric as g = 0.25. As already expected, as
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Figure 8.4: The dependence of the wave function on the magnetic field for metric g = 0.25

and for the first four excited levels: (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. The
amplitude increases from black to white. The units of the magnetic field amplitude and
η are Tesla and angstrom, respectively.

the magnetic field increases the magnetic length decreases and, consequently, the wave
functions become more confined. Hence, although the introduction of a different metric
(i.e. g 6= 0) delocalizes the wave function, giving rise a spatial asymmetry, the effect of
strong magnetic fields is able to overcome such delocalization.

8.4 Wave-packet dynamics in graphene with a generic
metric

Let us now investigate the effect on the wave packet dynamics under the presence
of external magnetic field due to a non-unitary metric (i.e. for gνν 6= 1 or equivalently
for g 6= 0 in Eq. (8.14)), owing to a generalized position-dependent momentum oper-
ator in the considered formalism, and we shall also discuss the results of the role of a
different metric in association with different physical scenarios already reported in the
literature [244, 245, 246, 247, 249] and also discussed in the previous Sec. 8.3. In this
analysis, we explore the time-dependent average positions and velocities, and the snap-
shots in real space of the wave packet evolution by taking different metric parameter g and
different initial pseudospin polarization. To do this, we use the well-known split-operator
technique [110, 170, 171, 79, 99, 173, 176, 177, 178, 179, 180, 202, 203, 252, 253] for
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wave packet propagation in the real time that consists in the solution of time-dependent
Schrödinger equation i~∂Ψ(~r, t) = HΨ(~r, t), by taking a separation of the time-evolution
operator Û = exp [−iH∆t/~] in a series of matrices, such that the propagated wave
function after a time step 4t can be calculated by applying the expanded exponential
time-evolution operator on the wave packet at any instant t, i.e. Ψ(~r, t+ ∆t) = ÛΨ(~r, t).

Similarly to the previous Sec. 8.3, now to calculate the quantum electronic trajectories
using a wave packet within the split-operator technique, we consider: (i) the continuum
model Hamiltonian HD given by Eq. (8.10) for the description of low-energy massless
Fermions, (ii) a deformed momentum along the x-direction given by Px = −i~g−1/2

xx
∂
∂x
,

and (iii) the linear function for the metric given by Eq. (8.14). The initial wave packet
is assumed as a circularly symmetric Gaussian distribution, multiplied by a pseudospinor
[c1, c2]T that accounts for the probability distributions over the two sublattices of graphene
(labeled A and B), and by a plane wave with wave vector ~k = (kx, ky), which gives the
wave packet a non-zero average momentum, defined as

Ψ(~r, 0)=N

(
c1

c2

)
exp

[
−(x−x0)2+(y−y0)2

d2
+i(~k · ~r)

]
, (8.19)

whereN is a normalization factor, (x0, y0) are the coordinates of the center of the Gaussian
wave packet, and d is its width. For our study, the initial position of the wave packet is
at (x0, y0) = (0, 0), its width is assumed as d = lB, with lB =

√
~/eB0 corresponding to

the magnetic length for a fixed magnetic field amplitude considered as B0 = 10 T and
thus lB = 81.13 Å, and its initial momentum as (k0

x, k
0
y) = (0.035, 0)Å−1.

In order to exemplify the effect of the metric in the wave packet dynamics, we shall
discuss next the results for the two most considered, in the study of wave packet prop-
agation, Gaussian distributions along the subalttices: (Sec. 8.4.1) [c1, c2]T = [1, 0]T and
(Sec. 8.4.1) [c1, c2]T = [1, 1]T . Since such analysis for undeformed monolayer graphene has
been reported in details in Refs. [144, 110, 252], here we focus mainly on the differences
that arises due to the different metric.

8.4.1 Case c1 = 1, c2 = 0

We first consider the simple case where the lower component of the initial electronic
wave function is zero, i.e., taking c1 = 1 and c2 = 0. This corresponds to the situation
in which the electron probability is initially located only at the A sublattice of graphene
monolayer.

The trajectory drawn by ~r(t) = (〈x(t)〉, 〈y(t)〉) for such a packet in the xy plane
after a t = 1600 fs propagation time is shown in Fig. 8.5(a). As expected due to the
effect of an external perpendicular magnetic field, the charge carrier travels in a cyclotron
orbit, and moreover, by assuming a non-null g parameter, the radii of these orbits are
strongly affected, as we shall discuss below. The expectation values of position and
velocity as a function of time for different metric are depicted in Figs. 8.5(b,d) and 8.5(c,
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Figure 8.5: (a) Trajectories drawn by 〈x〉 and 〈y〉 within t = 1600 fs propagation time.
[(b) and (d)] Average positions and [(c) and (e)] expectation values of the velocities in
x and y directions, respectively, as a function of time for a Gaussian wave packet with
initial pseudospin polarization [c1, c2]T = [1, 0]T , width d = lB = 81.13 Å and initial
momentum kx = 0.035 Å−1. The results are obtained for different metric: g = 0 (solid
black lines), g = 10−4 (dashed blue lines), g = 10−2 (red dotted lines), and g = 0.1 (green
dashed-dotted lines). The inset in panel (d) is an enlargement for the first time steps.

e), respectively. Results for metric g = 0, g = 10−4, g = 10−2 and g = 0.1 are shown
in solid black lines, dashed blue lines, dotted red lines, and green dashed-dotted lines,
respectively. One can realize that the average values of position and velocity in the x-
direction remain constant for the undeformed graphene case (g = 0). However, when a
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non-null g is considered, the averages position and velocity in the x direction are no longer
zero and exhibit variations with the time evolution that are more evident the greater the
metric amplitude. This can be easily understood keeping in mind that the introduction
of a different metric induces a renormalization of the Fermi velocity, as discussed in the
previous Sec. 8.3, leading to non-null value for 〈vx〉. Moreover, it will be clarified next
when we discuss about the symmetries of the total probability density for different time
steps. On the other hand, by analyzing the average values of position and velocity in the
y-direction, one observes a clear oscillation even for g = 0, as emphasized in the inset
of Fig. 8.5(d), in the first time steps of the wave packet evolution that are damped as
time evolves. This oscillatory behavior indicates the manifestation of the zitterbewegung
effect along the y direction, as already reported [144, 110, 252, 148] in the literature for
this pseudospin configuration for undeformed graphene case and confirmed here for g = 0

(see black line in 8.5(d)). Moreover, one notices that such oscillations exhibit a transient
character, disappearing after a few hundred femtoseconds, and that the duration time
and amplitude of the transient zitterbewegung for 〈y〉 decays faster as the metric value
increases.
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Figure 8.6: Time evolution of electronic wave packet for the case [c1, c2]T = [1, 0]T for
the same parameters of Fig. 8.5 at the time steps (first column) t = 100 fs, (second
column) t = 300 fs, (third column) t = 500 fs, (fourth column) t = 750 fs, (fifth column)
t = 900 fs, and (sixth column) t = 1350 fs and assuming the metric as (upper panels)
g = 0, (middle panels) g = 0.01, and (bottom panels) g = 0.1. The wave packet starts at
(x0, y0) = (0, 0) Å.

For a better understanding of the average position and velocity behaviors in the x and
y directions of Fig. 8.5, we analyze the contour plots of the squared modulus (|Ψ|2) of the
propagated wave functions at different time steps. The results are depicted in Fig. 8.6
for cases g = 0 (upper painels), g = 0.01 (middle painels), and g = 0.1 (bottom painels)
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and for the following time steps: (first column) t = 100 fs, (second column) t = 300 fs,
(third column) t = 500 fs, (fourth column) t = 750 fs, (fifth column) t = 900 fs, and
(sixth column) t = 1350 fs. Note that as the time evolves the Gaussian wave packet, that
start with circularly symmetric shape, splits in two parts moving with opposite velocities
along x axis. This splitting leads to vanishing oscillations in the average position and
expectation values of velocity along y-direction (see Figs. 8.5(d) and 8.5(e)) after t ≈ 180

fs, which explains the transient behavior of the zitterbewegung. The trajectory of the
wave packet is described by a circular cyclotron orbit as clearly visible in Fig. 8.5(a) and
also evident in Fig. 8.6 from the fact that the wave packet bends for large time steps
(see latest columns in Fig. 8.6) and by the average position for y-coordinate that has
an extra oscillation with a large amplitude associated with the radius of the cyclotron
orbit. Therefore, from Figs. 8.5 and 8.6 one can see that the higher the amplitude of the
g parameter the smaller the radius of the cyclotron orbit. For the undeformed graphene
case (top panels for g = 0), the two propagating subpackets move symmetrically with
respect to x = 0, i.e. |Ψ(x, y, t)|2 = |Ψ(−x, y, t)|2 for a fixed time step. In contrast, for
non-null g case (see middle and bottom panels for g = 0.01 and g = 0.1) the portions of
probability amplitudes and widths of the two subpackets are noticeably different and they
are increasingly distorted into an elliptic shape to higher g values. This strong asymmetry
in the total probability density is due to the assumed position-dependent spatial metric
that in turn can be linked with a strong anisotropy in the Fermi velocity and linear
momentum to the electron motion, such that the momentum contributions along the
negative and positive x-directions are different and thus giving rise to two propagating
subpackets asymmetric with respect to each other, being one of them more elliptical.
Moreover, it is interesting to note that this large asymmetry in the probability density
explains the less evident zitterbewegung effect and the reduction of the transient time, as
well as is related to the reason why one gets a non-null average position for x coordinate.
Note that, since the probability densities of the two subpackages for g 6= 0 are not the
same, the contribution to the total average position value of the center-of-mass will be
different, causing changes in the trajectories and average values of position and velocity
as shown in Fig. 8.5.

8.4.2 Case c1 = 1, c2 = 1

We now investigate the case in which the wave function is equally distributed in the
sublattices A and B, which is equivalent as choosing c1 = c2 = 1. Similar to the previous
case (Sec. 8.4.1), we analyze the time evolution of average values of position and velocity
along the x and y direction, the trajectories evolved in time, as well as the snapshots of
the total probability density in different time steps, with the results displayed in Figs. 8.7
and 8.8, respectively, for the same parameters assumed in Sec. 8.4.1.

The trajectories drawn by ~r(t) = (〈x(t)〉, 〈y(t)〉) and the expectation values of the
position and velocities along the two x and y coordinates shown in Fig. 8.7 are non-null
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Figure 8.7: The same as in Fig. 8.5, but now for Gaussian wave packet with pseudospin
polarization [c1, c2]T = [1, 1]T . The inset in panel (e) is an enlargement to emphasize the
oscillatory behavior of 〈vy〉 for the first time steps.

for t > 0 and do not remain constant as a function of time even for the undeformed
graphene case (compare Fig. 8.7 with 8.5), unlike the previous case for [1, 0]T . Note
from Figs. 8.7(d) and 8.7(e) that the average values of position and velocity along the y-
direction exhibit less pronounced oscillations, as emphasized in the inset of Fig. 8.7(e). In
order to understand the origin of this weak (or absent) oscillation in the average physical
variables for this chosen of pseudopsin polarization, we verified how is the spatial time
evolution of the initial wave packet by showing snapshots for t > 0 of the total probability
density, as shown in Fig. 8.8. Notice that regardless of the g value, the wave packet for
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this pseudospin configuration does not split in two subpackets as it does for the previous
configuration (see Fig. 8.6), being the reason why the electronic motion for this case does
not exhibit zitterbewegung. In the current case, the electronic trajectory is similar to
the one for left subpacket in Fig. 8.6, deforming and varying the packet width as the
time evolves due to the position-dependent spatial metric that works in a similar way
as position-dependent effective masses and anisotropic Fermi velocity. Also similarly to
the previous pseudospin case, here the trajectory of the Gaussian wave packet center-
of-mass is given by a cyclotronic orbit that drastically changes by increasing the metric
amplitude, leading to a deformed elliptic orbit, being more squeezed the greater the g
parameter (see Fig. 8.7(a)). The oscillation in Fig. 8.7(d) for the 〈vy〉 is related to the
asymmetric spreading over time of the wave packet.
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Figure 8.8: The same as in Fig. 8.6, but now for Gaussian wave packet with pseudospin
polarization [c1, c2]T = [1, 1]T .

8.5 Conclusions of this chapter

In summary, we have investigated the effects of metric changes in the electronic prop-
erties and in the time evolution of a low-energy two-dimensional Gaussian wave packet for
graphene by means the position-dependent translation operator formalism. We showed
that such formalism is able to introduce additional control of such properties and that the
studied system mimics two different physical scenarios: a deformed graphene due to strain
and a non-uniform mass-term, induced by specific substrate, that varies on a length scale
much greater than the magnetic field length. A more direct analogy with the position-
dependent spatial metric in this formalism is done with the first scenario when takes in
account an unidirectional deformation that induces renormalized and position-dependent
linear momentum and Fermi velocity.
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With respect to the electronic properties, we analytically derived the Landau levels and
its respective wave functions. An additional contribution term for the Landau levels was
found with a √g-dependence and we showed that this term is responsible for performing
a contraction of the levels, i.e. the metric changes shift the Landau level to lower values
and decreases the level spacing. The total wave function, as well as the two pseudospin
components, are strongly affected by a non-null metric g, leading a delocalization of the
wave function.

By using the well-known split-operator technique and the deformed Dirac Hamiltonian
in the presence of an external magnetic field developed in the position-dependent trans-
lation operator formalism, we investigated the wave packet dynamics for different metric
and for different choices of the initial pseudospin polarization. We analyzed the results
for the expectation values of center-of-mass coordinates, the trajectories, the spreading
of the wave packet in real space, as well as their oscillations due to zitterbewegung. In
general, we demonstrated that the non-null metric leads to an asymmetry for the wave
packet evolution and therefore in some cases it brings up oscillations in the average of
the physical observables and in other cases it suppresses the zittebewegung. The strong
asymmetry in the total probability density is due to the position-dependent spatial met-
ric that in turn can be linked with a strong anisotropy in the Fermi velocity and linear
momentum to the electron motion. We observed that the higher the amplitude of the g
parameter the smaller the radius of the circular cyclotron orbit described by the electron
due to magnetic field presence and more deformed it becomes.

The theoretical formalism used here can be useful for comparison and analogy to
other two-dimensional based system, and we believe that the discussions about the results
found in this work will be contribute to a better understanding of the position-dependent
translation operator formalism applied for two-dimensional materials.



9
Band-gap formation and morphing in α− T3

superlattices

Electrons in α−T3 lattices behave as condensed-matter analogies of integer-spin Dirac
Fermions. The three atoms making up the unit cell bestow the energy spectrum with an
additional energy band that is completely flat, providing unique electronic properties.
The interatomic hopping term, α, is known to strongly affect the electronic spectrum
of the 2D lattice, allowing it to continuously morph from graphene-like responses to the
behaviour of Fermions in a Dice lattice. For pristine lattice structures, the energy bands
are gapless, however small deviations in the atomic equivalence of the three sublattices will
introduce gaps in the spectrum. It is unknown how these affect transport and electronic
properties such as the energy spectrum of superlattice mini-bands. Here we investigate
the dependency of these properties on the parameter α accounting for different symmetry-
breaking terms and show how it affects band gap formation. Furthermore, we find that
superlattices can force band gaps to close and shift in energy. Our results demonstrate
that α−T3 superlattices provide a versatile material for 2D band gap engineering purposes.

9.1 Motivation

The isolation of a stable single layer of carbon atoms arranged in a hexagonal lat-
tice, known as graphene, in 2004 [3] combined with the extraordinary electronic and
transport properties observed in the atomically thin material [3, 254, 8, 255] has mo-
tivated many researchers to investigate and produce other two-dimensional (2D) mate-
rials [3, 19, 256, 257]. The peculiar electronic properties of graphene are the result of
charge carriers described by an equation analogous to the Dirac one for relativistic parti-
cles but here the presence of a variable similar to a spinor representation, differently from
the "real" one, results only from the crystal structure instead from an intrinsic property
of the particles. Therefore the charge carriers in graphene are commonly referenced as
pseudospin-1/2 particles [258, 259]. These particles have a linear energy dispersion where
valence and conduction bands touch each other in special points in reciprocal space called
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Dirac points [254, 8, 258, 259].
2D materials can be subjected to electrostatic potentials with a periodicity significantly

larger than the inter-atomic distance [76, 77, 74, 78]. Because one can easily change
the strength of the electrostatic potential, this method has been thoroughly investigated
as a way to tune electronic properties of the charge carriers in these 2D systems [260,
261, 86, 262, 84, 263, 264]. Superlattice potentials are known to increase the number
of Dirac points of graphene [261, 86, 262, 80, 83, 82, 265, 87] and as such introduce new
physical modes at zero energy, as recently observed in Ref. [91]. Some relevant applications
originated from the periodic structures are electron beam supercollimation and electron
wave filter [265, 87].

Recently, novel and distinctive physics has emerged from 2D systems when adding an
additional atom in their crystal structure [266, 267, 268, 269, 52, 56, 58, 270], which leads
to their charge carriers in a low-energy approach to be described as enlarged pseudospin
Dirac Fermions [52, 56, 53, 54, 271]. Among these systems we have Lieb lattice with
the additional atom at edges of a square-lattice, which was recently obtained by adding
carbon monoxide molecules to a substrate [267] and the T3 or dice lattice which has an
additional atom at the center of the hexagonal structure. In both, different from graphene,
the massless Dirac Fermions are described as spin-1 particles and an additional flat-band
touching the top of the valence and the bottom of the conduction linear bands [55, 272].
This flat band has important and unusual effects on the electronic properties due to its
dispersionless nature and thus an infinity effective mass [271, 55, 272, 273, 274, 96, 275,
276, 98]. Moreover, flat bands are predicted to be important in the search for room-
temperature superconductivity [277, 278].

The graphene hexagonal lattice and T3 or dice lattice are incorporated in the α − T3

model [55, 96, 275, 276, 279, 98]. It allows a tuning between the central atom arrangement
and the hexagonal structure by varying the parameter α. Graphene and T3 are the limiting
cases α = 0 and α = 1, respectively.

The α − T3 model has been useful to investigate physical systems presenting Dirac
Fermions with a larger pseudo-spin value. The α − T3 model was originally proposed
to describe the dia- to paramagnetic transition in the orbital susceptibility in an optical
lattice of cold atoms [136, 280]. The limiting case α = 1 corresponds to the dice lattice
which can be obtained by stacking three layers of SrTiO3/SrIrO3/SrTiO3 [50], or be
generated by controlling three laser beams propagating in towards a two-dimensional
layer of cold atoms [51]. Likewise this model with appropriate doping and for the case
α = 1/

√
3 can be used to describe the three-dimensional Hg1−xCdxTe system [281, 282].

Curiously, systems with charge carriers described as spin-1 massless Dirac Fermions,
for certain energy conditions have an angular independent Klein tunneling through rect-
angular electrostatic barriers which is called super-Klein tunneling (SKT). This isotropic
transmission is unlike single and bilayer graphene that show highly anisotropic transmis-
sion across such barriers. In addition, the tunneling into the flat band across a potential



9.2. FERMIONS IN α− T3 LATTICES 137

step for generalized pseudospin has been discussed as well [52, 54]. Previous studies con-
sidering Dirac Fermions across electrostatic potentials in systems with intermediate values
of α reveal perfect transmission for normal incidence, and a general trend of enhanced
transmission with increasing α [54, 279, 98]. Moreover, when more barriers are consid-
ered, in the case of the dice lattice the tunneling shows little dependence on the number of
barriers, whereas for graphene the number of barriers strongly affects the tunneling [283].

Several studies have been published aiming at a way to create a band gap in these
structures [275, 97, 284, 285, 286, 287].This is necessary for practical electronic applica-
tions such as the fabrication of quantum information devices. It was demonstrated that
an additional mass term in α − T3 systems distorts the linear bands around the Dirac
cone and produces an energy gap with a third band in it which could be flat or disper-
sive [275, 276]. The position of this band inside the band gap has important consequences
for Klein tunneling of massive Dirac Fermions across potential barriers.

Motivated by the richness of the tunneling properties and the peculiar electronic prop-
erties of Dirac Fermions with integer pseudospin, and aiming at understanding how the
band gap in α− T3 systems varies as function of the tuning parameter α in the presence
of super periodicity, we investigate the energy spectra and density of states (DOS) first in
ungapped α−T3 superlattices, and subsequently we take into account the effect of differ-
ent symmetry-breaking terms. In both cases we pay special attention to the appearance
of mini-bands, its band flatness, and its dependence on the coupling parameter α.

In this chapter we discuss the electronic properties of charge carriers in α−T3 lattices
and how this is affected by small deviations in the atomic equivalence between the sites and
the presence of mass terms. We develop the transfer matrix approach to analyze the energy
spectra of Dirac Fermions in α − T3 in the presence of a one-dimensional(1D) periodic
potential. The band gap morphing and its dependence on (i) the coupling parameter, and
(ii) the symmetry-breaking between the atomic sites by the inclusion of different mass
terms are also discussed.

9.2 Fermions in α− T3 lattices

9.2.1 Energy spectrum and eigenstates

An α − T3 lattice is formed by the superposition of three triangular sublattices [56].
Two of them are formed by atom sites A and B arranged in a hexagonal lattice with
hopping term t. The additional site C is connected only to sites B by a hopping term
tuned by a parameter α, which is the parameter that provides a continuous transition
from the honeycomb (α = 0) to the dice (α = 1) lattice and determines the strength
of coupling between the C atoms at the center of the honeycomb lattice, as shown in
Fig. 10.1. The distance between the A, B and C atoms are the same and denoted by a0.
The hopping parameters t, α and a0 depend on the specific atomic composition of the
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Figure 9.1: Schematic of the α − T3 lattice where the sites of the three sublattices are
coloured differently. The limit α = 0 corresponds to the honeycomb lattice (graphene-
like), and α = 1 corresponds to the dice lattice. The hopping amplitude between the
different atoms is indicated. The region bounded by the grey lines corresponds to the
unit cell.

lattice under consideration and completely determine the properties of the α−T3 lattice.
The presence of the additional site C centered in the honeycomb lattice results in some

interesting electronic properties, like e.g. the presence of a flat band in addition to the
linear bands and the larger value of pseudospin of charge carriers in these lattices [52, 56,
55, 96, 98, 50, 51, 281, 282].

The lattice structure determines the kinetic energy of the Fermions in the material.
The low-energy Hamiltonian of Fermions in a α− T3 lattice around the K point is given
by the 3× 3 matrix expressed in the sublattice basis |Ψ〉 = (|ψA〉, |ψB〉, |ψC〉) as [56, 96]

Ĥkin =

 0 fξ(~k) cos θ 0

f ∗ξ (~k) cos θ 0 fξ(~k) sin θ

0 f ∗ξ (~k) sin θ 0

 . (9.1)

In Eq. (10.1) we introduced the parameter θ = tan−1 α, where θ = 0 and θ = π/4

corresponds to honeycomb and dice lattices, respectively. The function fξ(~k) = vF (ξkx −
iky) with vF = 3a0t/2~ the Fermi velocity and ~k = (kx, ky) the wave vector. Here, ξ = ±1

is the valley index for the K and K
′ valleys, respectively [56, 96]. In the absence of

external potentials, the eigenstates of the Hamiltonian are given by

|Ψ±〉 =

 cos θeiφk

±1

sin θe−iφk

 , (9.2)

with eigenvalues E± = ±~vFk, where ± indicates the conduction and valence bands,
respectively. The angle φk = tan−1(ky/kx) corresponds to the angle associated with the
momentum vector. In addition, a flat band state is found

|Ψ0〉 =

 cos θeiφk

0

sin θe−iφk

 , (9.3)
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Figure 9.2: Energy spectrum of massless Dirac fermions in the α − T3 lattice (a) in the
full first Brillouin zone, and (b) around the K point.

with eigenvalue E = 0 corresponding to strongly degenerate states [52, 50, 51], as rep-
resented in Fig. 9.2. Notice that the energy eigenvalues E do not depend on θ. The
parameter is solely affecting the eigenstates.

9.2.2 Introduction of a band gap

The Dirac point at E = 0 in the pristine α − T3 lattice is triple degenerate as seen
in Fig. 9.2. This degeneracy is produced by the equivalence of the three sub-lattices.
Breaking this equivalence will lead to a lifting of the degeneracy and the introduction of
a band gap. In general, one can include this in the Hamiltonian by a term proportional
to Û that enters as follows:

Ĥ = Ĥkin + ∆Û , (9.4)

with Ĥkin given by Eq. (10.1), and ∆ measures the strength of the symmetry breaking.
The Hamiltonian in Eq. (10.4) is obtained from an expansion of the tight-binding model
to nearest neighbors of the α− T3 lattices around the K point of the first Brillouin zone
when different on-site energies are considered [55, 96, 51]. In this work, we consider two
different forms of Û , respectively, given by

Û1 =

1 0 0

0 −1 0

0 0 1

 , Û2 =

1 0 0

0 0 0

0 0 −1

 . (9.5)

The effects of the inclusion of the terms Û1 and Û2 on the energy spectrum are shown in
Fig. 9.3 and Fig. 9.4, respectively.

The term Û1 introduces a site energy on the different sub-lattices as has been discussed
for photonic crystals and optical lattices [97, 284]. The solution of ĤΨ = EΨ for this
case gives the eigenenergies

E0 = ∆ , E = ±
√

∆2 + ~2v2
Fk

2 . (9.6)
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Figure 9.3: Energy spectrum of Dirac Fermions for arbitrary values of the parameter θ in
the α − T3 lattice when the symmetry-breaking term Û = Û1 is used in Eq. (10.4). (a)
Full first Brillouin zone, and (b) spectrum around the K point.

Correspondingly, the wave-functions in this case are given by

|ψ0〉 =

 cos θeiφk

0

sin θe−iφk

 , |ψ±〉 =

α cos θe−iφk

γ

α sin θeiφk

 , (9.7)

where α =
√
E + ∆, and γ =

√
E −∆.

Similar sublattice symmetry breaking systems have been discussed suggesting that
such mass potential term is attainable by depositing graphene on specif substrates, such
SiC [288, 289], and h-BN [290]. In Eq. (10.6) we find the presence of a gap 2∆ opening
in the energy spectrum. This results in massive Dirac Fermions with an effective mass
defined as m = ∆/v2

F . Since Eq. (10.6) does not depend on the parameter θ the energy
spectrum remains the same for all α − T3 lattices, as shown in Fig. 9.3. Moreover, as
long as the equivalence between the sites A and C is maintained, the flatband is shifted
and touches only the bottom of the conduction band. Notice that now the bottom of the
conduction band and the top of the valence band are quadratic in ~k.

On the other hand, the term Û2 defined in Eq. (9.5) has been used to describe the
effect of a pseudomagnetic field [285, 286], and the dispersion relations for this case are
obtained from a solution of the non-linear equation

E(∆2 − E2) + k2(∆ cos 2θ + E) = 0, (9.8)

and the eigenstate for the conduction and valence band are given by

|ψ〉 =

α′ cos θeiφk

γ′

β sin θe−iφk

 , (9.9)

with α′ =
√

1 + 2∆/(E −∆), γ′ =
√

1 + ∆ cos(2θ)/E and β =
√

1− 2∆/(E + ∆).
Unlike the previous case, there is no longer equivalence between the site C and the

other sites of the crystal structure, which means that small deviations of the coupling
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Figure 9.4: Energy spectrum of Dirac Fermions in the α−T3 lattice for different values of
θ when the symmetry-breaking term Û = Û2 is used in Eq. (10.4). The full first Brillouin
zone is shown at the top and bellow the energy spectrum around the K point for (a) θ = 0

(graphene-like case), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice case).

parameter α results in different eigenenergies as depicted in Fig. 9.4. In this case the flat
band is dispersionless only when θ = π/4 (dice lattice) and is located in the center of the
energy gap [286, 287], as shown in Fig. 9.4(a).
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Figure 9.5: Schematic representation of the superlattice potential in x − y plane. Dark
regions denote the barrier region with height V (x) = Vb and the white region represents
the well with zero potential. The angles φw and φb in the inset, respectively, denote the
angles of the carriers in the wells and barriers regions. The profiles of the 1D periodic
potential is given by the figure at the bottom.

9.3 Superlattice

In this chapter one of our goals is investigate how fermions in α − T3 lattices are
affected by a one-dimensional periodic electrostatic potential. In casu, we investigate
one-dimensional potentials with a periodicity much larger than the interatomic distance,
i.e. L/a0 � 1. We consider an infinite number of barriers periodically spaced with unit
cell length L = Ww+Wb, withWw(Wb) the width of well(barrier), as illustrated in Fig. 9.5.
The general Hamiltonian taking into account the presence of symmetry-breaking terms is
now given by [54, 96, 98]

Ĥ = Ĥkin + V (x)Î + ∆Ûi, (9.10)

with Ĥkin given by Eq. (10.1), V (x) = Vb the periodic potential, and ∆Ûi represent the
symmetry-breaking term which can be translated into a mass term. Due to translation
invariance in the y direction the wave-functions have the form Ψj(x, y) = Ψj(x)eikyy with
label j = w or j = b used to denote the region of well(barrier), and Ψj(x) is given by:

ψj(x) =
A√
2

αj cos θeiφj

γj

βj sin θe−iφj

 eikjx +
B√

2

−αj cos θe−iφj

γj

−βj sin θeiφj

 e−ikjx. (9.11)
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The angles φw = tan−1(ky/kw) and φb = tan−1(ky/kb) are the angles associated with the
direction of the momentum of the electron in the well and barrier regions, respectively,
as depicted in the inset of Fig. 9.5, and both in addition to the terms αj, γj, and βj are
obtained from the eigenstates equation using the Hamiltonian Eq. (10.10).

Moreover, the constants A,B,C,D are determined by requesting continuity of the
wave-functions. Writing the wave-functions given by Eq. (10.11) in the general form
Ψ(x) = (ψA(x), ψB(x), ψC(x)) and by integrating the eigenvalue equation ĤΨ = EΨ over
a small interval x = [−ε, ε] and allowing the interval to approach zero, we obtain the
following matching conditions for the wave-function on either side of the superlattice

ψB(−ε) = ψB(ε), (9.12a)

and
cos θψA(−ε) + sin θψC(−ε) = cos θψA(ε) + sin θψC(ε). (9.12b)

These matching conditions are different from those of the two limiting cases in the
α − T3 model, i.e. graphene-like (α = 0) and dice lattice (α = π/4) [78, 98]. Whereas
for graphene which has pseudospin-1/2 the matching conditions simply require the conti-
nuity of each two-component of the wave-function, however for the dice lattice which has
integer pseudospin, the matching condition takes into account a sum of the first and last
component of the three-components of the wave-function, as indicated in Eq. (10.12) by
setting cos θ = sin θ = 1/

√
2. Applying the matching conditions given by Eq. (10.12) into

Eq. (10.11) we obtain the transfer matrix for the α− T3 superlattice

T = Ωkw(L)Ω−1
kw

(Wb)Ωkb(Wb)Ω
−1
kb

(0), (9.13)

where

Ωkj(x) =

(
γje

ikjx γje
−ikjx

λje
ikwx − λ∗je−ikwx

)
, (9.14)

with

λj = cos2 θeiφj + sin2 θe−iφj . (9.15)

Inserting Eq. (10.15) into Eq. (10.13) we get:

T =
1

abaw

(
c+λ

†
b + c−λb γb(c+ − c−)

d+λ
†
b + d−λb γb(d+ − d−)

)
, (9.16)

where

aj = γj(λ
∗
j + λj), (9.17a)

c+ = eikbWbγw (γbb1 + λbb2) ,

c− = e−ikbWbγw (γbb1 − λ∗bb2) , (9.17b)
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d+ = eikbWb (γbλwλ
∗
wb2 + γwλbb3) ,

d− = e−ikbWb (γbλwλ
∗
wb2 − γwλ∗bb3) (9.17c)

with b1 = λ∗we
ikwWw + λwe

−ikwWw , b2 = eikwWw − e−ikwWw and b3 = λwe
ikwWw + λ∗we

−ikwWw .

According to Bloch’s theorem and requiring det[T ] = 1 the electronic dispersion at
any incident angle is given by 2 cos(KxL) = Tr(T ), where Kx = 2πn/L expresses the
periodicity of the superlattice structure. This results into the following nonlinear equation
for the dispersion relation

cos(KxL) = cos(kbWb) cos(kwWw)

−GU sin(kbWb) sin(kwWw), (9.18)

where GU differs by the presence or absence of the symmetry-breaking term. It is denoted
by G0 for the gapless case, G1, and G2 when Û1, and Û2 are taken into account, respec-
tively. As we will demonstrate further on, since the dispersion relation given in Eq. (9.18)
depends on the symmetry between the atomic sites of the crystal structure, the inclusion
of small deviations between them lead to large changes in the energy spectra and the
band gap.

The allowed states for the superlattice is obtained when −1 ≤ cos(KxL) ≤ 1 in
Eq. (9.18) which corresponds to the energy spectra for this system in the ky plane. In
addition, we can derive the density of states (DOS) represented by D(E) and given by

D(E) =
∑
n,ky

δ(E − En,ky), (9.19)

and expressed in units of D0 = L/~vF, which corresponds to the amount of states per
unit area and L is the period of the superlattice.

9.4 Pristine system

To start, we consider the pristine system corresponding to Ûi = 0 in Eq. (10.10). The
solution of ĤΨj = EΨj in this case leads to αj = γj = βj = 1 in the wave-functions
given by Eq. (10.11). Moreover, from the secular equation det(Ĥ − E) = 0 we obtain,
respectively, the wave-vectors in the x−direction in the well and barrier regions

kw =

√(
E

~vF

)2

− k2
y , kb =

√(
E − Vb
~vF

)2

− k2
y, (9.20)

with ~vF = 3a0t/2.
From the transfer matrix in Eq. (9.16) we find the dispersion relation given by Eq. (9.18)

with GU = G0 where

G0 =
1

kwkb

[
E(E − Vb)

~2v2
F

+
(E2 + (E − Vb)2)k2

y(cos2(2θ)− 1)

2E(E − Vb)
− k2

y cos2(2θ)

]
. (9.21)
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An electrostatic superlattice is capable of multiplying the number of Dirac points [80].
These are points in reciprocal space where the valence and conduction bands touch each
other and around which the energy spectrum is linear. Therefore, it is interesting to
calculate how the α− T3 lattice Dirac point is affected by the superlattice potential.

In order to determine the location of the Dirac points for the symmetric case Wb =

Ww = W we take Kx = 0, and kb = kw in Eq. (9.18). Inserting this latter condition into
Eq. (10.21), we have E = Vb/2. Thus, Eq. (9.18) becomes

1 = cos2 (kbW ) + sin2 (kbW )[
V 2

0 /4~2v2
F + 2k2

y cos2(2θ)− k2
y

V 2
0 /4~2v2

F − k2
y

]
. (9.22)

This equation has solutions when the term between brackets is equal to 1, or sin2 (kbW ) =

1. The first possibility is obtained for ky = 0 and corresponds to the main Dirac point
at ky = 0. The second possibility leads to kbW = nπ with n being a positive integer.
This last possibility determines the position of the extra Dirac points in ky space from
Eq. (10.21),

ky =

√
V 2
b

4~2v2
F

−
(nπ
W

)2

. (9.23)

Note from Eq. (9.22) that for the symmetric case the condition to determine the
position of Dirac points is regardless of the parameter θ. Note that when θ = 0, Eq. (9.22)
reduces to

1 = cos2 (kbW ) + sin2 (kbW )
[(
V 2
b /4~2v2

F + k2
y

)
/
(
V 2
b /4~2v2

F − k2
y

)]
, (9.24)

which is consistent with the equation that determines the Dirac points for graphene [80].
As discussed above, there is no real solution for Eq. (9.24) unless ky = 0 that represents
the usual Dirac point, or kbW = nπ [84, 80, 83].

On the other hand, when we set θ = π/4, Eq. (9.22) leads to

cos2 (kbW ) + sin2 (kbW ) = 1. (9.25)

Unlike the graphene-like case, Eq. (9.22) has many solutions and the condition for allowed
states in the dispersion relation of Eq. (9.18) is always satisfied for arbitrary ky.

In Figs. 9.6(a-d) we show the electronic band structures at KxL = 0 for some values
of the parameter θ assuming Ww = Wb = L/2 and Vb = 7EL, where EL = ~vF/L and
L/a0 = 1200. As discussed above, one Dirac point appears at E = Vb/2 and kyL = 0 for
0 ≤ θ < π/4 as shown in Figs. 9.6(a-c), moreover the upper and lower bands gradually
becomes closer as the structure reaches θ = π/4 (dice lattice), when the Dirac point
disappears and all states at E = 3.5EL are allowed regardless of the values of kyL, as
shown in Fig. 9.6(d).
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Figure 9.6: Electronic band structures at KxL = 0 for (a) θ = 0 (graphene-like case), (b)
θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww = Wb = L/2, where
L/a0 = 1200, and EL = ~vF/L

Figure 9.7: Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed curve),
θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same parameters
as in Fig. 9.6.

The dependence on the parameter θ observed in the energy spectra can be better
understood from the density of states (DOS) shown in Fig. 9.7 for the same parameters as
in Fig. 9.6. For the dice case, depicted by the magenta dotted curve, we notice the presence
of a pronounced peak, which agrees with Eq. (9.25) representing the manifestation of the
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Figure 9.8: Valence and conduction bands of the spectrum of a superlattice considering
θ = 0 (graphene-like), and θ = π/4 (dice) with Vb = 21EL, Ww = Wb = L/2, where
L/a0 = 1200, and EL = ~vF/L.

Figure 9.9: Electronic band structures forKxL = 0 with θ = 0 (black solid curve), θ = π/6

(red dashed curve), and θ = π/4 (blue dot-dashed curve) for KxL = 0 with Vb = 21EL,
Ww = Wb = L/2, where L/a0 = 1200, and EL = ~vF/L.

flat band and, therefore, an enhancement of the number of states.
In Fig. 9.8 the spectrum resulting from Eq. (9.18) using Eq. (9.21) for equal barrier

and well width is plotted taking L/a0 = 1200, and Vb = 21EL for θ = 0 and θ = π/4. We
observe for the honeycomb case, i.e. θ = 0, the appearance of extra Dirac points localized
to the left and to the right of the main one at the energy corresponding to Vb = 10.5EL

for KxL = 0. However, at this same point for the dice case the Dirac points disappear
giving rise to a flat band, which can be observed clearer in Fig. 9.9 where we show the
superlattice spectrum along kyL for KxL = 0 for different values of θ. We notice that
as θ increases the spacing between the upper and lower bands around the Dirac points
decreases.
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Moreover, the group velocity along the kyL direction around the main and the extra
Dirac points denoted in Fig. 9.9 by the labels I and II is shown in Fig. 9.10. Notice that
the slope of the dispersion relation around these points is strongly reduced as compared
to the value vF when no superlattice is imposed. This result is similar to the collimation
effect observed in graphene as new extra Dirac points are to arise when the height of the
potential Vb increases as discussed in Ref. [80]. But now, the collimation effect results
from changing the coupling constant θ.

Figure 9.10: Group velocity along ky direction around the main Dirac point (I), and
around the extra Dirac point (II) indicated in Fig. 9.9.

9.5 Introduction of gaps in the superlattice energy spec-
trum

Using the transfer matrix formalism from Sec. 9.3, we analyze the appearance and
morphing in α − T3 superlattices when including deviations in the atomic equivalence of
the three sublattices and by adding the terms Û1 or Û2.

9.5.1 Gapped case Û1 =diag(1,−1, 1)

Assuming Û = Û1 in Eq. (10.10), we obtain the wave-functions expressed in Eq. (10.11)
in the well (j = w) and barrier (j = b) with αw = βw =

√
E + ∆, αb = βb =

√
E − Vb + ∆, γw =√

E −∆ and γb =
√
E − Vb −∆.

The wave-vectors in x− direction in the well and barrier regions are

kw =

√
E2 −∆2

~2v2
F

− k2
y, (9.26a)

kb =

√
(E − Vb)2 −∆2

~2v2
F

− k2
y. (9.26b)
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From the transfer matrix method we get the dispersion relation in Eq.(9.18) with
GU = G1

G1 = −1

2

[(
ηw1

ηb1
+
ηb1
ηw1

)
+ cos2(2θ)

(
k2
y

k2
b

ηb1
ηw1

+
k2
y

k2
w

ηw1

ηb1

)
− 2

k2
y

kwkb
cos2(2θ)

]
, (9.27)

with ηw1 = kw~vF/(E −∆) and ηb1 = kb~vF/(E − Vb −∆).
In order to analyze the effects on the energy spectrum, and investigate how the Dirac

points are affected due to the presence of this symmetry-breaking term, we consider
Wb = WW = W , and kwW = −kbW in Eq. (9.18) at the energy E = Vb/2 where, for
gap-less case, the Dirac points are found. When we take into account these considerations
and we assume θ = 0, the dispersion relation becomes

cos(KxL) = cos2(kbW ) + sin2(kbW )

[
(V 2

b /4 + ∆2)/~2v2
F + k2

y

(V 2
b /4−∆2)/~v2

F − k2
y

]
, (9.28)

which has no real solution regardless of the value of ky, indicating the presence of a band
gap in the energy spectrum. This result can be extended to other cases where cos 2θ 6= 0

in Eq. (9.27).
Assuming the particular case θ = π/4 we get

cos(KxL) = cos2(kbW ) + sin2(kbW )

[
(V 2

b /4 + ∆2)/~2v2
F − k2

y ((V 2
b /4 + ∆2)/(V 2

b /4−∆2))

(V 2
b /4−∆2)/~2v2

F − k2
y

]
,

(9.29)

which has a real solution for two touching points ky = ±
√
V 2
b /4−∆2/~vF. Unlike the

dice case in the absence of a mass term discussed in Sec. 9.3, the energy allowed states in
the presence of a symmetry-breaking term is no longer independent of ky at E = Vb/2.

This becomes more clear when we calculate the electronic band structure for some
particular values of the parameter θ, the effective mass term ∆ = 0.1Vb, Vb = 7EL, and
L/a0 = 1200. The results are depicted in Fig. 9.11, where EL = ~vF/L. As discussed
from Eq. (9.28) and Eq. (9.29), we can observe the presence of a band gap in the energy
spectra at E = Vb/2, or, in terms of the unit EL, E ≈ 3.5EL. Except for θ = π/4, where
the band gap is closed at the touching points ky = ±

√
V 2
b /4−∆2/~vF , but we observe

the formation of another band gap at energy E ≈ 5EL. Moreover, the mini-bands present
in the energy spectra for intermediate values of θ are no longer symmetric around the
band gap, as shown in Figs. 9.11(b)-(c). The band gap morphing and its dependence on
θ can be observed when we analyze the density of states (DOS) of those systems shown in
Fig. 9.12. The appearance of asymmetric mini-bands, and the band gap shifting observed
in Fig. 9.11(d) becomes clearly apparent. In addiction, unlike the graphene-like case,
when we assume θ 6= 0 a new allowed energy state arises which appears as a new peak
localized in the energy range 7EL to 8EL as observed in Fig. 9.12 .

On the other hand, when we take a large value for the mass term ∆ = 0.4Vb maintain-
ing the other parameters used in Fig. 9.11, beyond the increased gap, we found that
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Figure 9.11: Electronic band structures at KxL = 0 for (a) θ = 0 (graphene-like case),
(b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww = Wb = L/2,
∆ = 0.1Vb and Û = Û1, where L/a0 = 1200, and EL = ~vF/L in all cases.

Figure 9.12: Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed
curve), θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same
parameters as in Fig. 9.11.

the mini-bands change drastically. When θ 6= 0, the energy spectra exhibit signifi-
cant modifications in a large range of energy, as shown in Figs. 9.13(b)-(d), where it
is possible to see the appearance of new mini-bands inside the band gap region, unlike
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the graphene-like case. The appearance of new allowed states inside the region where
for the graphene-like case there is only a band gap, is clearly seen from the density of
states, as shown in Fig. 9.14. In addition, the position of the touching points given by
ky = ±

√
V 2
b /4−∆2/~vF depends on the mass term value, and these points are shifted,

as shown in Fig. 9.13(d). From Fig. 9.14 we observe that there is a prominent peak when

Figure 9.13: Electronic band structures at KxL = 0 for (a) θ = 0 (graphene-like case),
(b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww = Wb = L/2,
∆ = 0.4Vb for Û = Û1, where L/a0 = 1200, and EL = ~vF/L in all cases.

the dice case is considered similar to Fig. 9.12 but localized at different energy, which
results from the increase of the mass term ∆. Moreover, it is evident that there are more
allowed states in the energy range 2EL to 5EL for θ 6= 0.

In Fig. 9.15 we show the dispersion relation obtained from Eq. (9.21) and Eq. (9.27)
assuming equal barrier and well widths, L/a0 = 1200, Vb = 21EL, and ∆ = 0.4Vb for
θ = 0 and θ = π/4. Unlike the gap-less case, for θ = 0 the main Dirac point at kyL = 0 is
no longer observed, although the extra Dirac points on both sides remains. Similarly, for
the dice case, the upper and lower mini-bands touch each other at two-points kyL 6= 0,
similar as in Fig. 9.11(d) and Fig. 9.13(d).

Moreover, when we assume the superlattice spectrum along kyL direction for KxL = 0

in Fig. 9.15 we find that the dispersion gradually changes around the point kyL = 0,
becoming flat for θ = π/4, as shown in Fig. 9.16. In addition, around the touching points
the slope of the dispersion decreases as θ increases.
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Figure 9.14: Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed
curve), θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same
parameters as in Fig. 9.13.
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Figure 9.15: Valence and conduction bands of the spectrum of a superlattice considering
θ = 0 (graphene-like), and θ = π/4 (dice) with Vb = 21EL, Ww = Wb = L/2, Û = Û1,
and ∆ = 0.4Vb. Where L/a0 = 1200, and EL = ~vF/L.

9.5.2 Gapped case Û2 =diag(1, 0,−1)

For the other symmetry-breaking term denoted by Û = Û2 in Eq. (10.10), we have
αw =

√
1 + 2∆/(E −∆), αb =

√
1 + 2∆/(E − Vb −∆), γw =

√
1 + ∆ cos(2θ)/E, γb =√

1 + ∆ cos(2θ)/(E − Vb), βw =
√

1− 2∆/(E + ∆), and βb =
√

1− 2∆/(E − Vb + ∆).
Consequently, the wave-functions kw and kb are given by

kw =

√
(E2 −∆2)E

(~2v2
F)(E + ∆ cos 2θ)

− k2
y, (9.30a)

kb =

√
((E − Vb)2 −∆2)(E − Vb)
(~2v2

F)(E − Vb + ∆ cos 2θ)
− k2

y. (9.30b)
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Figure 9.16: Electronic band structures at KxL = 0 for θ = 0 (black solid curve), θ = π/6

(red dashed curve), and θ = π/4 (blue dot-dashed curve) with Vb = 21EL, Ww = Wb =

L/2, ∆ = 0.4Vb where L/a0 = 1200, and EL = ~vF/L.
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and
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From Eq. (10.10) assuming ∆ = 0.1Vb for Û = Û2, and the same values of L and Vb as in
Fig. 9.6, we get the energy spectra shown in Fig. 9.17 for different values of θ. Similar to
the case Û = Û1 we observe the presence of a band gap for all values of θ 6= π/4 around
E = Vb/2, i.e E = 3.5EL, and the mini-bands tend to reach each other around this
energy as θ increases until the band gap is completely closed for the dice case, as shown in
Fig. 9.17(d). Like the gapless case, all energy states when θ = π/4 are allowed regardless
of the ky value, which results in a prominent peak in the density of states depicted in
Fig. 9.18. This result can be expected when we assume the condition Wb = Ww = W ,
E = Vb/2, and θ = π/4 in the dispersion relation for this case. Under these conditions,
the dispersion relation for the dice lattice reduces to the same one for the gapless case
represented in Eq. (9.25).
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Figure 9.17: Electronic band structures at KxL = 0 for (a) θ = 0 (graphene-like case),
(b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww = Wb = L/2,
∆ = 0.1Vb when Û = Û2, where L/a0 = 1200, and EL = ~vF/L in all cases.

Figure 9.18: Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed
curve), θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same
parameters as in Fig. 9.17.

Moreover, comparing the band gap width observed in Fig. 9.17 to the one in Fig. 9.11
the band gap is reduced and shifted up, as observed in Fig. 9.18.

Similar to the previous gapped case, if we consider a larger value of the mass term
∆ = 0.4Vb the band gap is increased and other allowed states appear inside them when
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Figure 9.19: Electronic band structures at KxL = 0 for (a) θ = 0 (graphene-like case),
(b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice lattice) with Vb = 7EL, Ww = Wb = L/2,
∆ = 0.4Vb when Û = Û2, where L = 1200, and EL = ~vF/L in all cases.

Figure 9.20: Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed
curve), θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same
parameters as in Fig. 9.19.

intermediate values of θ are considered, as shown in Fig. 9.19. However the allowed state
for arbitrary values of ky at E = Vb/2 for the dice lattice is preserved and a peak in the
density of states is observed for θ = π/4, as shown in Fig. 9.20, since this condition is
independent of the value of the effective mass. The spectrum obtained from Eq. (9.18)
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Figure 9.21: Valence and conduction bands of the spectrum of a superlattice considering
θ = 0 (graphene-like), and θ = π/4 (dice) with Vb = 21EL, Ww = Wb = L/2, Û = Û2,
and ∆ = 0.4Vb. Where L/a0 = 1200, and EL = ~vF/L.

and Eq. (9.31) considering equal barrier and well widths, L/a0 = 1200, Vb = 21EL, and
∆ = 0.4Vb for θ = 0 and θ = π/4 are shown in Fig. 9.21. Similar to previous gapped case,
for θ = 0 the upper and lower mini-bands touch each other in two-points, and at kyL = 0

there is a gap. However, as discussed above, the energy where the touching points are
localized is no longer at E = Vb/2. On the other hand, for the dice lattice the spectrum
is completely flat at kyL = 0 and E = Vb/2, similar to Fig. 9.8.

Figure 9.22: Electronic band structures at KxL = 0 for θ = 0 (black solid curve), θ = π/6

(red dashed curve), and θ = π/4 (blue dot-dashed curve) with Vb = 21EL, Ww = Wb =

L/2, ∆ = 0.4Vb where L/a0 = 1200, and EL = ~vF/L.

In Fig. 9.22 we show the superlattice spectrum considering KxL = 0 along kyL direc-
tion for some values of θ. Notice that the energy where the touching points are localized
depends on θ. Moreover, like the gapless case, as θ → π/4 the dispersion becomes flat
and shifted to lower values of energy.
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9.6 Conclusions of this chapter

We investigated the energy spectrum and the density of states (DOS) of α−T3 lattices
for different values of interlattice hopping parameter θ = tan−1 α in the presence of a 1D
superlattice. We consider both the case of equivalence between the three sub-lattices, and
how the band gap is affected by small deviations of this equivalence in the limit ∆ � t

by considering two cases of symmetry-breaking terms denoted by Û1 and Û2.
For the pristine system, when no symmetry-breaking term are present, we found the

condition for the appearance of Dirac points that depends on the cosine function of the
parameter θ, indicating that the energy level where they are located remains the same
for all cases when cos(2θ) 6= 1. When θ = π/4 all energies are allowed for arbitrary ky.
Moreover, the mini-bands for intermediate values of θ tends to close around the energy
level where Dirac points are localized. In addition, when we considered higher values of
the potential, we observed extra Dirac points localized on the right and on the left of the
main one positioned at ky = 0 for all values of θ 6= π/4.

When we introduce symmetry-breaking terms into the system, we observed the ap-
pearance of a band gap, whose creation depends on the deviation on the equivalence
between the three sub-lattices. When we considered the case Û1 = diag(1,−1, 1), a band
gap appears at energy E = Vb/2. However for the dice case, around this energy, there is
no longer a band gap and the mini-bands touch at two points. This result can be observed
either in the energy spectra and in their corresponding DOS.

In addition, the mini-bands for larger values of the mass term was shifted up, which
is a consequence of the fact that the sites A and C remain equivalent, leading to twofold
degeneracy of the energy spectra, as in the case when there is no periodic potential present.
Moreover, for larger values of the potential the main Dirac point for all θ values is no
longer present, only the extra ones appear and are localized at the energy E = Vb/2.

When Û2 = diag(1, 0,−1), the dispersion relation, and consequently, the energy spec-
trum is strongly altered. For the dice case, we found that the condition for the allowance
of the energy states at E = Vb/2 is always satisfied regardless of ky, similarly as in the
gapless case. However a band gap is still present but now localized at another energy.
In addition, we noticed that the band gap is smaller than the one observed when Û1.
Moreover, for larger values of the effective mass new energy states were observed inside
the band gap as confirmed from the density of states. In addition, for higher values of
the potential considering θ 6= π/4 only the extra Dirac points are observed, like for the
previous gapped case, but now the energy value where they are localized depends on the
hopping parameter.

The theoretical formalism and results obtained in this work are useful for a better
understanding of the band-gap behaviour of α−T3 lattices, and consequently demonstrate
that these materials are versatile for purposes of band-gap engineering in 2D materials,
since the band-gap is tunable by changing the interlattice hopping parameter and their
symmetry.



10
Tunneling properties in α− T3 lattices: effects of

symmetry-breaking terms

The α−T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also
known as dice) lattice via the parameter α. These lattices are made up of three atoms per
unit cell. This gives rise to an additional dispersionless flat band touching the conduction
and valence bands. Electrons in this model are analogous to Dirac fermions with an
enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein-
tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small
deviations in the equivalence between the atomic sites, i.e. variations in the α-parameter,
and the number of tunnel barriers changes the transmission properties. Moreover, it is
interesting to learn how tunneling occurs through regions where the energy spectrum
changes from linear with a middle flat band to a hyperbolic dispersion. In this paper
we investigate these properties, its dependence on the number of square-barriers and the
α-parameter for either gapped and gapless cases. Furthermore, we compare these results
to the case where electrons tunnel from a region with linear dispersion to a region with a
band-gap. In the latter case, contrary to tunneling through a potential barrier, the SKT
is no longer observed. Finally, we find specific cases where transmission is allowed due to
a symmetry breaking of sublattice equivalence.

10.1 Motivation

The probability for a particle to cross potential barriers even through a classically
forbidden region with a tiny probability is a quantum phenomenon. This counterintuitive
aspect of the transmission takes place when a particle, with some probability, can create
a ‘tunnel’ that enables it to traverse a potential barrier even when it is higher than
its energy. Although such tunneling is not expected in a classical particle dynamics
approach, an analogous effect called evanescent wave coupling takes place in optics, in
which an electromagnetic wave is transmitted through a region where the solution of the
corresponding wave equation is exponentially decaying. In quantum mechanics, likewise,
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the tunneling of a particle can be said to arise due to the coupling of the propagating
solutions of Schrödinger’s equation at either sides of the potential barrier with decaying
solutions in the barrier region, leading to non-zero transmission probabilities [291].

However, counterintuitive effects emerge in the tunneling of relativistic particles [67,
68, 69]. One example is the total transmission of relativist particles through large potential
steps at certain values of momentum which is known as the Klein paradox [68, 69]. Al-
though it was first described by Klein, experimental realization of a similar effect known
as the “Klein tunneling” (KT), an usual tunneling property characterized by the sup-
pression of backscattering by potential barriers [8, 72, 73], has only recently become
possible [74, 75, 76, 77] following the isolation of stable-single layer (graphene) and
bilayer carbon crystals where the carbon atoms are arranged on a honeycomb lattice
(HCL) [3, 254, 8, 255]. Since electrons in graphene at low-energy are well described by
the two-dimensional (2D) massless Dirac equation, i.e. the Dirac-Weyl equation with
pseudospin S = 1/2, graphene boosted the exploration of fundamental research in 2D
materials [292], bridging condensed matter physics, relativistic quantum mechanics, and
quantum field theory, resulting in the probing of interesting relativistic predictions, such
as KT [74, 75, 76, 77, 8, 255] and Zittebewegung [148, 111, 203, 252].

The KT observed in graphene is strongly related to the conservation of chirality for
carriers in this material and the nature of its pseudospin [78, 79]. Instigated by such
unusual properties lying on the 2D panorama, the search for new graphene-based materials
has been intensified in the past two decades. Examples of these 2D materials is T3 or
dice lattice [56], Lieb [267] and Kagome [268]. These lattices result from altering the
HCL of graphene by adding an atom at the center of the hexagons of the unit cell [266,
267, 268, 269, 52, 56, 58, 270]. As a consequence, the charge carriers are described as
enlarged pseudospin Dirac fermions [52, 56, 53, 54, 271] and a flatband appears touching
the top of the valence and the bottom of the conduction linear bands in the energy
spectrum [55, 272]. This flatband has important and unusual effects on the electronic
properties due to its dispersionless nature [271, 55, 272, 273, 274, 96, 275, 276, 98].

The α − T3 model interpolates between the HCL and the dice lattice by varying the
parameter α = tan θ, corresponding to the strength between the HCL and the central
site, from α = 0 to α = 1, respectively, with the limiting cases of the HCL (θ = 0) and
the dice lattice (θ = π/4) [55, 96, 275, 276, 98]. Unlike graphene, charge carriers in α−T3

lattices are described as massless Dirac fermions only in the limiting case α = 1, i.e.
dice. For certain energy conditions, it presents an angular independent Klein tunneling
through rectangular electrostatic barriers called super-Klein tunneling (SKT) [54, 98]. In
addition, an extraordinary Snell law is found allowing a refracted particle beam to be
focused at one point, such as occurs in a Veselago lens [293, 294]. Furthermore, there is
a general trend of enhanced transmission when increasing the α-parameter [54, 279, 98].
Moreover, in the case of the dice lattice the tunneling is less sensitive to the number of
barriers for certain values of energy [283], whereas for graphene the number of barriers
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strongly affects the tunneling [262].
Nonetheless, for practical electronic applications such as the fabrication of quantum

information devices the creation of a band-gap is necessary. It was demonstrated that an
additional mass term in α−T3 systems distorts the linear bands around the Dirac cone and
produces an energy gap with a third band in it which could be flat or dispersive [275, 276].
In the present work and using the theoretical formalism developed in Ref. [295], we
theoretically study the emergence of SKT and under what conditions this phenomena is
affected when the equivalence between the sublattices is broken and by increasing the
number of barriers. We find that as a consequence of the enlarged pseudospin and the
symmetry between the three sublattices, for dice the increasing of the number of barriers
effects is less in the transmission properties for electrons with incident energy around
half the height of the potential and omnidirectional tunneling is observed regardless the
number of barriers. Additionally, we investigate the role of the location of the flat band in
the transmission properties of charge carriers across potential barriers for some values of
α when different symmetry-breaking terms are taken into account. In both cases we find
that small deviations in the symmetry between the sublattices, followed by modifications
in the electronic band structures as discussed in Ref. [295], result in strong modifications
on the nature of wave-vectors inside the barriers, consequently, affecting the tunneling
properties of charge carriers. Subsequently, we analyze the transmission of chiral electrons
in α − T3 lattice through a region where the electronic spectrum changes from linear
dispersion to hyperbolic dispersion with a band-gap and we compare these results with
those for HCL [296]. We highlight that KT is prevented to take place and the transmission
probability is less than 1 for all values of θ, although the peaks of resonant transmission
becomes smooth as θ increases and a perfect transmission is observed for larger values of
incident angle.

In this chapter we discuss the electronic properties of charge carriers in α − T3 lat-
tices, and how this is affected by small deviations in the atomic equivalence between the
sites. The consequences of the presence of mass terms on the energy spectrum are also
discussed. We develop the transfer-matrix approach to analyze the tunneling of Dirac
fermions in α− T3 lattices through a 1D periodic potential. Using this approach we ana-
lyze the transmission properties of massless fermions and the effects of symmetry-breaking
on the tunneling properties. Furthermore we investigate the tunneling through spatial re-
gions where the energy spectrum of fermions in α− T3 changes from linear to hyperbolic
dispersion.

10.2 Fermions in α− T3 lattice

The low-energy Hamiltonian for the α−T3 model, a crystallographic lattice composed
by three atoms per unit cell as illustrated in Fig. 10.1(a), around the K point in the first
Brillouin zone can be written as
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Figure 10.1: (a) Illustration of the α − T3 lattice with three atomic sites (A, B, and
C) per unit cell (yellow rhombus) is shown. α = 0 and α = 1 limits correspond to HC
(graphene-like) and dice lattices. A − B and B − C sites are connected by the hopping
amplitude t and αt, respectively. (b) Low energy spectrum of massless Dirac fermions in
the α− T3 lattice, composed by a linear dispersion and a flat-band.

Ĥkin =

 0 fk(τ) cos θ 0

f ∗k (τ) cos θ 0 fk(τ) sin θ

0 f ∗k (τ) sin θ 0

 , (10.1)

where θ = tan−1 α is the angle that provides a continuous evolution from the honeycomb
graphene-like (α = 0) to the dice (α = 1) lattice via the parameter α. The tuning param-
eter is proportional to the strength of the coupling between B sites with the additional
atoms C at the center of the HCL, as shown in Fig. 10.1(a), and the other two atomic
sites A and B are connected by the hopping parameter t. In Eq. (10.1) we defined the
function fk(τ) = vF (τkx − iky), with vF = 3a0t/2~ the Fermi velocity, a0 the lattice
constant, ~k = (kx, ky) the wave vector, and τ = +1(−1) is the valley index for the K
and K ′ valleys, respectively. In the absence of external potentials, the eigenstates of the
Hamiltonian are given by

|Ψ±〉 =

 cos θeiφk

±1

sin θe−iφk

 , (10.2)

with eigenvalues E± = ±~vFk, where +(−) indicates the conduction and valence bands,
respectively, resulting in graphene-like conical energy bands. The angle φk = tan−1(ky/kx)

corresponds to the polar angle associated with the momentum-vector. In additional to
the linear dispersion, a third energy band, with eigenvalue E = 0, is also found, being a
highly degenerate state, as shown in Fig. 10.1(b). It is associated to the flat-band state

|Ψ0〉 =

 cos θeiφk

0

sin θe−iφk

 , (10.3)

with eigenvalues that do not depend on the θ parameter, which affects only the eigenstates.
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(a)

Figure 10.2: Energy spectrum of Dirac fermions around the K point for different values
of the parameter θ in the α−T3 lattices when (a) the sublattice symmetry-breaking term
Û = Û1 is taken in Eq. (10.4), and for the symmetry-breaking term Û = Û2 when (b)
θ = 0 (graphene-like), (c) θ = π/12, (d) θ = π/6, and (e) θ = π/4 (dice).

10.3 Introduction of band-gap

The degeneracy observed at E = 0 in the energy spectrum shown in Fig. 10.1(b)
is lifted when the equivalence between the three sub-lattices is broken, and a gap is
introduced into the energy spectrum. In general, we can include this in the Hamiltonian
by a term Û , as follows:

Ĥ = Ĥkin + ∆Û , (10.4)

with the kinetic term Ĥkin given by Eq. (10.1), and ∆ measures the strength of the sub-
lattice symmetry breaking. We consider two different forms of the Û matrix, respectively,
given by

Û1 =

1 0 0

0 −1 0

0 0 1

 , Û2 =

1 0 0

0 −1 0

0 0 −3

 . (10.5)

The effects of the inclusion of the terms Û1 and Û2 on the energy spectrum are shown in
Fig. 10.2(a) and Figs. 10.2(b)-10.2(e), respectively.
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The solution of ĤΨ = EΨ when Û = Û1 gives the eigenenergies

E0 = ∆, E = ±
√

∆2 + ~2v2
Fk

2 . (10.6)

Correspondingly, the wave-functions in this case are given by

|ψ0〉 =

 cos θeiφk

0

sin θe−iφk

 , |ψ±〉 =

α cos θe−iφk

γ

α sin θeiφk

 , (10.7)

where α =
√
E + ∆ and γ =

√
E −∆.

According to Eq. (10.6), one obtains an energy spectrum with a band-gap opening
of 2∆. It is worth mentioning that the format of Û2 in Eq. (10.5) was chosen in order
that both sublattice symmetry-breaking terms Û1 and Û2 give rise to the same 2∆ band-
gap opening. This results in massive Dirac fermions with an effective mass defined as
m = ∆/v2

F . Since Eq. (10.6) does not depend on the parameter θ, the energy spectrum
remains the same for all α−T3 lattices, as shown in Fig. 10.2(a). Moreover, as long as the
equivalence between the sites A and C is maintained, the flat-band is shifted and touches
only the bottom of the conduction band. Notice that now the bottom of the conduction
band and the top of the valence band are quadratic in k.

When we assume Û = Û2 in Eq. (10.4), the energy dispersion relation is obtained from
a non-linear equation

(E + 3∆)(E2−∆2)−k2(∆ cos 2θ+E+2∆ cos2 θ)=0, (10.8)

and the eigenstates for the conduction and valence bands are given by

|ψ〉 =

α′ cos θeiφk

γ′

β sin θe−iφk

 , (10.9)

with α′ =
√

(E + 3∆)/(E −∆), γ′ =
√

(E + ∆ cos(2θ) + 2∆ cos2 θ)/(E + ∆), and β =√
(E −∆)/(E + 3∆).
Like the previous case, a 2∆ band-gap opening is still observed for all values of θ,

but now the previous flat-band no longer touches the bottom of the conduction band. In
addition, the dispersion of the middle band depends on the θ parameter, being flat only
when θ = π/4 (dice lattice - Fig. 10.2(e)). Note that for the specific case θ = 0 (graphene-
like) the energy spectra for Û1 (Fig. 10.2(a)) and Û2 (Fig. 10.2(b)) differ only by the
localization of the flat band. As we shall discuss later, this results in similar tunneling
properties for both gapped cases when one-dimensional square potentials are applied to
these systems.
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Figure 10.3: Schematic illustration (see top insets) of the wavevectors in the tunneling
process through an electrostatic finite superlattice formed by rectangular barriers of height
V0 and width d. The well width, i.e. the inter-barrier distance, is s− d.

10.4 Transmission through one-dimensional periodic bar-
riers

First, we investigate the transmission probability of fermions in α−T3 lattice through
a finite number N of electrostatic rectangular barriers of constant height V0, width d

and inter-barrier distance s − d, as depicted in Fig. 10.3. We consider both gapless and
gapped cases as obtained from the presence of sublattice symmetry-breaking terms given
by Eq. (10.5). The general Hamiltonian taking into account both the presence of the
symmetry-breaking term and electrostatic potential is now given by

Ĥ = Ĥkin + V (x)Î + ∆Û , (10.10)

where Ĥkin is given by Eq. (10.1), V (x) denotes the superlattice potential with transla-
tional symmetry breaking along the x-direction, and ∆Û represents the previous sublattice
symmetry-breaking term assumed here by Eq. (10.5). Due to the translation invariance in
the y-direction the wave-functions have the form Ψj(x, y) = Ψj(x)eikyy, where the j index
is related to the different potential regions along the x-direction being outside (j = w)

and inside (j = b) of the barrier. Therefore, the wave-function can be written as

ψj(x)=
Aj√

2

αj cos θeiφj

γj

βj sin θe−iφj

eikjx+Bj√
2

−αj cos θe−iφj

γj

−βj sin θeiφj

e−ikjx. (10.11)

The angles φj = tan−1(ky/kj) (with j = ω, b) are the angles associated with the direction
of the momentum of the electron in the regions inside and outside of the potential, as
depicted in the insets of Fig. 10.3. In addition, the terms αj, γj, and βj, are obtained
from the eigenstates equation using the Hamiltonian Eq. (10.10).

In order to obtain the transmission probability through electrostatic barriers, we need
to solve the scattering problem by matching wave functions given in Eq. (10.11) at the
interfaces inside and outside the barrier. We assume potential variations that are smooth
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on the length scale of the lattice constant a0 but sharp on the scale of the Fermi wavelength
λF = 2πvF/|E|.

Writing the wave-functions given by Eq. (10.11) in its general form as
Ψ(x) = [ψA(x), ψB(x), ψC(x)]T and by integrating the eigenvalue equation ĤΨ = EΨ

over a small interval x = [−ε, ε], in the limit ε → 0, we obtain the following matching
conditions for the wave-function in each region

ψB(−ε) = ψB(ε), (10.12a)

cos θψA(−ε) + sin θψC(−ε) = cos θψA(ε) + sin θψC(ε). (10.12b)

Applying these matching conditions into Eq. (10.11), we obtain the transfer matrix for a
single-barrier

T (1) =Mb(d) · Mw(0) =

(
w z

z∗ w∗

)
, (10.13)

where Mb and Mw correspond to the transfer matrix into the well and barrier, respec-
tively, and are given by

Mb(d) = Ω−1
kw

(d)Ωkb(d), (10.14a)

Mw(0) = Ω−1
kb

(0)Ωkw(0), (10.14b)

with

Ωkj(x) =

(
γje

ikjx γje
−ikjx

λje
ikjx − λ∗je−ikjx

)
, (10.15)

and λj = αj cos2 θeiφj + βj sin2 θe−iφj . Using Eqs. (10.14) and (10.15), one can obtain
explicitly the terms w and z in Eq. (10.13) as

w =
1

a
[e−i(kw−kb)d (λ∗wλ

∗
b + η1λ

∗
wλw + η2λ

∗
bλb + λwλb)

+e−i(kw+kb)d (λwλ
∗
b − η1λ

∗
wλw − η2λ

∗
bλb + λ∗wλb)], (10.16a)

z =
1

a
[e−i(kw−kb)d

(
λ∗wλ

∗
b − γ2

bλ
∗
wλ
∗
w + γ2

wλ
∗
bλb − λ∗wλb

)
+e−i(kw+kb)d

(
λ∗wλb + γ2

bλ
∗
wλ
∗
w − γ2

wλ
∗
bλb − λ∗wλ∗b

)
], (10.16b)

where a = (λ∗w + λw)(λ∗b + λb), η1 = γb/γw and η2 = γw/γb.
Correspondingly, the transfer matrix considering double barriers with an inter-distance

s between them is

T (2) =Mb(2d+ s) · Mw(s+ d)T (1). (10.17)

Thus, we can extend this result to N identical barriers which is given by the product of
transfer matrices:

T (N) =
N∏
l=1

Mb(l(d+ s)− s) · Mw((l − 1)(d+ s)). (10.18)
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Once T (N) is an unimodular matrix and the electron wave originates from the left of the
system in Fig. 10.3, the transmission probability is obtained as T = 1/|T (N)

22 |2. After some
algebraic calculations, we found the transmission probability through N barriers as

T =
1

1 + |z|2
(

sinNξ
sin ξ

)2 , (10.19)

where ξ corresponds to the Bloch wave-function of the whole system and is given by

ξ = cos−1[R(w) cos(kw(d+ s))− C(w) sin(kw(d+ s))], (10.20)

with z given by Eq. (10.16b), R(w) and C(w) correspond respectively to the real and
imaginary terms of w in Eq. (10.16a).

10.5 Transmission of massless Dirac fermions

Initially, we consider the symmetry-breaking free case, i.e. taking Ûi = 0 in Eq. (10.10).
The solution of ĤΨj = EΨj in this case leads to αj = γj = βj = 1, as can be seen by
comparing Eqs. (10.11) and Eqs. (10.2) for the wave-functions of the dispersion bands,
and consequently, it implies η1 = η2 = 1 in Eq. (10.16a). Moreover, from the secular
equation det(Ĥ − E) = 0 we obtain the wave-vectors in the x−direction in the well and
barrier regions, kw and kb, respectively as

kw =

√(
E

~vF

)2

− k2
y , kb =

√(
E − V0

~vF

)2

− k2
y, (10.21)

with the eigenvalues in each region respectively given by

E = ±
√

~2v2
F(k2

w + k2
y), (10.22a)

E − V0 = ±
√
~2v2

F(k2
b + k2

y). (10.22b)

Figure 10.4 shows the transmission probabilities using Eq. (10.19) for a single barrier as
a function of the incident wave energy E and its transverse wave vector ky for different
values of the θ parameter: (a) θ = 0, (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4. The
potential height is set to V0 = 0.2 eV and the barrier width is d = 30 nm. The possible
non-null transmission regions in the (kyd,E/V0) plane of Fig. 10.4 can be explained by
identifying which modes are propagating inside and outside the potential barrier. The
borders between these regions are indicated by dashed curves superimposed on the density
plots, where the black and grey lines correspond to the energy spectrum outside and
inside of the barrier which are given by Eqs. (10.22a) and (10.22b), respectively. Since
wave-functions interfere inside the barrier, we observe for all values of θ when E/V0 < 1

the appearance of resonance peaks marked by T = 1. In addition, when the incoming
wave-function is perpendicular to the barrier, i.e. kyd = 0, the transmission is total
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Figure 10.4: Transmission probability through a single-barrier in the (ky, E/V0) plane for
(a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) in the
symmetry-breaking free case (Û = 0) for barrier height and width assumed as V0 = 0.2

eV and d = 30 nm, respectively.

and the barrier is completely transparent regardless of the potential width and height.
This perfect transmission at normal incidence is a consequence of the conservation of the
pseudo-spin at scattering on the barrier which results in the absence of backscattering
of wave-functions, an effect referred as KT which has been noted previously for the two
limiting cases θ = 0 [78] and θ = π/4 [96].

We note that for 0 < E/V0 < 0.5 sharp resonances in the transmission probabilities
become softer and less pronounced as θ increases, leading to a general enhancement trend
of transmission probability for θ 6= 0. This result is more evident in Fig. 10.5, which
shows the transmission probability in the (φw, E/V0)−plane. We observe the broadening
of transmission as θ increases in the energy region 0 < E/V0 < 0.5, indicating that
the barrier becomes more transparent, as depicted in Fig. 10.6(a) for a fixed energy
E/V0 = 0.25. Furthermore, the special case θ = π/4 (dice) at E/V0 = 0.5 the barrier
becomes fully transparent leading to an omnidirectional total transmission, as observed
in Fig. 10.5(d) and Fig. 10.6(b) and discussed in Refs. [96, 98].

However, as shown in Fig. 10.5 when the energy of incoming waves is 0.5 < E/V0 < 1
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Figure 10.5: Contour plot of transmission probability through a single-barrier in the
(φw, E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d)
θ = π/4 (dice) for the same potential parameters as in Fig. 10.4.

for all values of θ there is a reduction of the transmission probability with increasing
incident energy and the transmission curves almost coincide, indicating that, analogously
to the total reflection effect observed in optics, there is an incident critical angle such that
above it the incident wave-function is fully reflected and an evanescent wave-function is
found inside the potential. This angle is determined from the conservation of momentum
in the y direction

sinφk =
V0 − E
E

sinφq. (10.23a)

Since the condition for total reflection of incoming wave-function is sinφq = 1, the incident
critical angle φkc is determined by

sinφkc =
V0 − E
E

. (10.24)

Note that the critical angles do not depend on the parameter θ, and the transmission
probabilities are almost the same for E/V0 > 0.5 regardless of θ.

From Eq. (10.19) we analyze the effects of the numberN of barriers on the transmission
probabilities in the (φw, E/V0)−plane. The results for transmission assuming N = 2 and
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Figure 10.6: Transmission probability through a single-barrier as function of incident
angle φw at incident energy values (a) E/V0 = 0.25, and (b) E/V0 = 0.5 for θ = 0 (solid
black curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4

(dash-dotted blue curve) assuming the same potential parameters as in Fig. 10.4.

N = 6 are depicted in Figs. 10.7 and 10.8, respectively. For all these cases the inter-barrier
distance is 30 nm. One notices more resonance peaks in the transmission as the number of
barriers increases as a consequence of the fact that the wave-function interferes more with
itself inside the barriers. Beside that, a perfect transmission T = 1 for normal or near-
normal incidence is observed, which is a signature of the KT. Unlike graphene-like and
for intermediate values of θ, the increase in the number of barriers is much less effective
for dice when 0 < E/V0 < 1 and the SKT at E/V0 = 0.5 is still observed regardless the
number of barriers, as shown in Figs. 10.7(d) and 10.8(d). However, for incident energies
E/V0 > 1 and E/V0 < 0 the effect of the number of barriers in the transmission is evident
for all values of θ.

Moreover, like the single-barrier case and for 0 < E/V0 < 0.5, as θ increases there
is a broadening of the transmission resonant peaks. Since the increase of the number
of barriers does not affect the nature of pseudo-spin, which depends only on the crystal
structure, the KT and the SKT, beside the enhancement of transmission as θ increases,
are maintained regardless the number of barriers.

10.6 Symmetry-breaking effects into the tunneling prop-
erties

As discussed in Sec. 10.3, within the low-energy approach, the presence of small devia-
tions in the equivalence of the atoms generate a band-gap in the energy spectrum resulting
in charge carriers that are described as massive Dirac fermions. Now, we shall discuss the
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Figure 10.7: Contour plot of transmission probability, shown in the (φw, E/V0) plane,
through a double-barrier (N = 2) for (a) θ = 0 (graphene-like), (b) θ = π/12, (c)
θ = π/6, and (d) θ = π/4 (dice) for the same potential parameters as in Fig. 10.5 and
with a inter-barrier distance of 30 nm.

tunneling properties of those massive fermions in α − T3 lattices under the presence of
single and multiple barriers by considering the symmetry-breaking terms Û1 and Û2 given
by Eq. (10.5).

10.6.1 Case Û = Û1

Assuming Û = Û1 in Eq. (10.10), we obtain the wave-functions expressed in Eq. (10.11)
in the barrier and well regions with αw = βw =

√
E + ∆, αb = βb =

√
E − V0 + ∆, γw =√

E −∆, and γb =
√
E − V0 −∆. The wave-vectors in the x−direction inside and outside

of the barrier are

kw =

√
E2 −∆2

~2v2
F

− k2
y, (10.25a)

kb =

√
(E − V0)2 −∆2

~2v2
F

− k2
y. (10.25b)
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Figure 10.8: The same as Fig. 10.7, but now for N = 6 barriers.

The transmission probability is given by Eq. (10.19), and the terms η1 and η2 in Eq. (10.16a)
are

η1 =

√
(E + ∆)(E − V0 −∆)

(E − V0 + ∆)(E −∆)
, (10.26a)

η2 =

√
(E −∆)(E − V0 + ∆)

(E − V0 −∆)(E + ∆)
. (10.26b)

The transmission probabilities for single-barrier as function of (kyd,E/V0), assuming
V0 = 0.2 eV, d = 30 nm, and ∆ = 0.04 eV for different values of θ are shown in Fig. 10.9.
The non-zero transmission zones are bounded by the energy levels inside and outside of
barrier, corresponding to the grey and black dashed curves, respectively. It is clearly seen
that the presence of the sublattice symmetry-breaking induced band-gap in the energy
spectrum lead to a suppression of the transmission for all values of the parameter θ, as well
as the “fishbone” transmission shape in the energetic region ∆ < E < 4∆ is suppressed.
Beside, the conservation of chirality does not take place due to the introduction of small
deviation in the equivalence between the atoms and total transmission for normal or near-
normal incident angles, or equivalently smaller kyd, is no longer observed indicating that
for all values of θ KT is destroyed, as depicted in Figs. 10.9 and 10.10.
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Figure 10.9: Transmission probability through a single-barrier in the (ky, E/V0) plane for
(a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) by assuming
the symmetry-breaking term as Û = Û1, with sublattice unbalance strength ∆ = 0.04 eV,
for barrier height V0 = 0.2 eV and width d = 30 nm.

However, while the KT is no longer observed, from Fig. 10.9(d) one notices perfect
transmission when θ = π/4 at 0 < E/V0 < 0.5 for large kyd values, or equivalently for large
incident angles as shown in Fig. 10.10(d). In fact, when θ is tuned from the correspondent
value of graphene-like to dice at incident energy E/V0 = 0.25 the transmission curves tend
to exhibit a completely opposite feature: incident waves nearly parallel to the barrier are
completely transmitted, as shown in Fig. 10.11(a). On the other hand, for θ = 0 and
oblique incident angles at incident energy E/V0 = 0.5 there is a narrow resonance peak
which widens as θ increases, whereas for dice lattice beyond the broadening of this peak a
new total transmission peak appears for incident angles parallel to the barrier as noticed
in Fig. 10.11(b).

Figure 10.12 shows the transmission contour plots considering now double-barrier sys-
tems with the same width and potential height used in single-barrier case and an inter-
distance barrier of 30 nm. Comparing to Fig. 10.10, we observe that beyond total reflection
of waves for smaller incident angles at E/V0 = 0.5, the energy scale where there is non-
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Figure 10.10: Contour plot of transmission probability through a single-barrier in the
(φw, E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d)
θ = π/4 (dice) for the same system parameters as in Fig. 10.9.

null transmission is reduced and for graphene-like and intermediate values of θ there is no
transmission at incident energies close to the value of ∆, i.e E/V0 = 0.2. Nonetheless, for
dice lattice the perfect transmission of waves near-parallel or parallel to barriers is still
observed in the range E/V0 ∈ [0.2, 0.5] and for energies immediately above the potential
energy, i.e. 1.2 < E/V0 < 1.3 a peak of transmission occurs for critical incident angle, like
in the single-barrier case. This result is clear when we analyse the transmission curves
in Fig. 10.13 for incident energies E/V0 = 1.3 for single and double-barriers. While for
θ = π/4 and N = 1 there is a peak of total transmission for incident angles around ±10◦,
which corresponds to the critical angle for this value of incident energy. For the other
values of θ the transmission is reduced and falls to zero. Moreover, when N = 2, beyond
the peak of total transmission for dice, there is a peak of almost-total transmission for
θ = π/6.

The perfect transmission at large values of kyd, or incident angles parallel and near-
parallel to the barrier, for θ = π/4 is explained when we analyse Fig. 10.14(a), where we
depict the electronic band structure along kyd direction of a system consisting of an infinite
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Figure 10.11: Transmission probability through a single-barrier as function of incident
angle φw at incident energy values (a) E/V0 = 0.25 and (b) E/V0 = 0.5 for θ = 0 (solid
black curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4

(dash-dotted blue curve) for the same system parameters as in Fig. 10.9.

number of barriers with the same parameters of potential height, width and inter-barrier
distance used in Fig. 10.12. We note that for energies at the interval 0.2 < E/V0 < 0.5 the
mini-bands touch each other at large values of kyd, indicating the presence of degenerate
states, which is represented by prominent peaks in the density of states (DOS) in the
same energetic range in Fig. 10.14(b). Therefore, since more allowed energy states arise,
an enhancement of the transmission probability of electrons under these initial conditions
of momentum and energy is observed.

10.6.2 Case Û = Û2

For the other symmetry-breaking term denoted by Û = Û2 in Eq. (10.10), we have
αw =

√
(E + 3∆)/(E −∆), αb =

√
(E − V0 + 3∆)/(E − V0 −∆), γw =

√
(E + ∆ cos(2θ) + 2∆ cos2 θ)/(E + ∆),

γb =
√

(E − V0 + ∆ cos(2θ) + 2∆ cos2 θ)/(E − V0 + ∆), βw =
√
E −∆/(E + 3∆), and

βb =
√
E − V0 −∆/(E − V0 + 3∆).

Consequently, the wave-vectors kw and kb are given by

kw =

√
(E2 −∆2)(E + 3∆)

~2v2
F(E + ∆ cos 2θ + 2∆ cos2 θ)

− k2
y, (10.27a)

kb =

√
((E − V0)2 −∆2)(E − V0 + 3∆)

~2v2
F(E − V0 + ∆ cos 2θ + 2∆ cos2 θ)

− k2
y. (10.27b)

For this case, the transmission of fermions through N one-dimensional barriers is
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Figure 10.12: Contour plot of transmission probability through a double-barrier in the
(φw, E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4

(dice) when Û = Û1, V0 = 0.2 eV, ∆ = 0.04 eV, d = 30 nm, and an inter-barrier distance
s = 30 nm.

obtained using Eq. (10.19) with η1 and η2 in Eq. (10.16a) given by

η1 =

√[
E − V0 + ∆ cos 2θ + 2∆ cos2 θ

E + ∆ cos 2θ + 2∆ cos2 θ

]
η12, (10.28a)

η2 =

√[
E + ∆ cos 2θ + 2∆ cos2 θ

E − V0 + ∆ cos 2θ + 2∆ cos2 θ

]
η21, (10.28b)

with η12 = E+∆
E−V0+∆

and η21 = E−V0+∆
E+∆

. The transmission probabilities as function of
(kyd,E/V0) for this case are depicted in Fig. 10.15. Similar to previous cases, the zones
where waves are able to propagate and therefore the transmission is non-null are bounded
by the energy levels inside and outside of the barrier indicated by the grey and black
dashed curves superimposed on the transmission contour plot. As observed in Figs. 10.2(a)
and 10.2(b), the energy spectrum for both symmetry-breaking terms Û1 and Û2 for θ = 0

differs only by the position of the flat band maintaining the conduction and valence bands
with the same dispersion and position. Since the dispersionless bands do not contribute
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Figure 10.13: Transmission probability through a (a) single-barrier (N = 1) and (b)
double-barrier (N = 2) as function of incident angle φw at incident energy E/V0 = 1.3 for
θ = 0 (solid black curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve),
and θ = π/4 (dash-dotted blue curve) for the same system parameters as in Fig. 10.9 and
an inter-barrier distance of 30 nm for double-barrier system.

(a) (b)

Figure 10.14: (a) Electronic band structure along the kyd direction for θ = π/4 (dice case)
superlattices taking the same system parameters as in Fig. 10.12. (b) The corresponding
DOS of (a) is shown.

to the transmission, the effects observed in the tunneling properties for both symmetry-
breaking terms for θ = 0 are similar, as noticed when we compare Fig. 10.15(a) and
Fig. 10.9(a). However, for θ 6= 0 the transmission contour plots are quite different from
the previous gapped case, as depicted in Figs. 10.15(b)-10.15(d). We note that for incident
energies 0 < E/V0 < 1 depending on θ new zones where there is no propagation of waves
appear in the (ky, E/V0) plane. To understand this result we plot in Fig. 10.16 a diagram
for the wave-vector kb inside the barrier using the relation given in Eq. (10.27a) for the
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Figure 10.15: Transmission probability through a single-barrier in the (ky, E/V0) plane
for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when
Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.

same parameters used in Fig. 10.15. The blue zones indicate where the transmission is due
to propagating waves, i.e. kb is real, in that case the incoming waves might interfere with
itself between the two interfaces of barrier-well, leading to the transmission resonances.

When kb is purely imaginary, indicated by the grey zone in the phase diagram, the
transmission is still possible via evanescent waves but with a reduced amplitude. Fur-
thermore, the condition to have an evanescent wave is determined by the incident critical
angle, so from the conservation of momentum in the y direction and using Eq. (10.27) we
get the expression of a critical incident angle φkc

sinφkc =

√
Eθ

[
((E − V0)2 −∆2)(E − V0 + 3∆)

(E2 −∆2)(E + 3∆)

]
, (10.29)

where

Eθ =
(E + ∆ cos 2θ + 2∆ cos2 θ)

(E − V0 + ∆ cos 2θ + 2∆ cos2 θ)
. (10.30)

According to Eq. (10.29) and as shown in Fig. 10.17, unlike the gapless and previous
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Figure 10.16: Diagram obtained from the relation given in Eq. (10.27a) representing the
wave nature inside the barrier plotted in the (ky, E/V0) plane for (a) θ = 0 (graphene-like),
(b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û2, ∆ = 0.04 eV, V0 = 0.2

eV, and d = 30 nm. The blue area is the zone of propagating waves corresponding to
a real wave-vector kb, the grey area is the zone where kb is purely imaginary indicating
evanescent waves.

gapped case, the critical incident angle for transmission and consequently the condition
for evanescent or propagating waves depends on the value of θ, indicating the appearance
of new transmission zones as θ is tuned from graphene-like to dice.

In Fig. 10.17 we observe at E/V0 = 0.25 that while the transmission probability is
nearly perfect for θ = π/12 and θ = π/4, for θ = π/6 it becomes smaller, as shown
in Fig. 10.18(a). In addition, in Fig. 10.18(b) we note that there is no transmission for
θ = π/6 and θ = π/4 at E/V0 = 0.5, since under these conditions the incident waves
are evanescent and localized into the grey zone in the phase diagram in Fig. 10.16(c) and
Fig. 10.16(d), respectively.

Furthermore, for double-barrier systems assuming graphene-like and intermediate val-
ues of θ, the transmission is in general reduced for large incident angles and there are
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Figure 10.17: Contour plot of transmission probability through a single-barrier in the
(φw, E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d)
θ = π/4 (dice) when Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.

more resonant peaks, as shown in Fig. 10.19. However, for dice lattice we observe the
enhancement of the transmission, which is almost perfect for all values of incident energy
0.2 < E/V0 < 0.4 and large values of incident angle, as shown in Fig. 10.19(d).

10.7 Tunneling through spatial regions of finite mass

Now we investigate the tunneling properties of electrons in α − T3 lattices when we
assume a region where the electronic spectrum changes from the usual linear dispersion
to a hyperbolic dispersion, due to the presence of a gap originating from the presence of
the symmetry-breaking term Û1, as depicted in Fig. 10.20. The transmission expression is
obtained in a similar way as in previous section. The wave-function Ψ(x) corresponding
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Figure 10.18: Transmission probability through a single-barrier as function of incident
angle φw at incident energy values (a) E/V0 = 0.25, and (b) E/V0 = 0.5 for θ = 0 (solid
black curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4

(dash-dotted blue curve) when Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.

to eigenstates with linear dispersion in region I and III depicted in Fig. 10.20 is

ψ(x)I,III =
A√
2

 cos θeiφk

1

sin θe−iφk

 eikxx +

B√
2

− cos θe−iφk

1

− sin θeiφk

 e−ikxx. (10.31)

Consequently, the wave-function in region II corresponding to the hyperbolic and gapped
energy spectrum at 0 ≤ x ≤ d is given by

ψII(x) =
A′√

2

 α cos θeiφq

γ

α sin θe−iφq

 eiqxx +

B′√
2

−α cos θe−iφq

γ

−α sin θeiφq

 e−iqxx, (10.32)

The incident angles into the different regions with linear dispersion and band-gap are
φk = tan−1 ky/kx and φq = tan−1 ky/qx, respectively, with momentum along the x−
direction given by

kx =

√
E2

~2v2
F

− k2
y, qx =

√
E2 −∆2

~2v2
F

− k2
y. (10.33)
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Figure 10.19: Contour plot of transmission probability through a double-barrier in the
(φw, E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4

(dice) when Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, d = 30 nm, and inter-barrier distance
s = 30 nm

Figure 10.20: Schematic illustration of the electronic energy spectrum in α − T3 lattice
at different spatial regions. In Region II (0 ≤ x ≤ d), there is a band-gap in the energy
spectrum induced by the presence of the symmetry-breaking term ∆Ûi = Û1.

Using the matching conditions in Eq. (10.12) and the same procedure to get the transfer
matrix in Eq. (10.13), we determine the transmission probability through the spatial



10.7. TUNNELING THROUGH SPATIAL REGIONS OF FINITE MASS 182

-0.03 0.00 -0.03 0.000.03
kyd

0.03
kyd

0.5

-1.5

-1.0

-0.5

0.0

1.5

1.0

0.5

-1.5

-1.0

-0.5

0.0

1.5

1.0

Figure 10.21: Transmission contour plots as function of kyd of electrons in α− T3 lattice
through a spatial region that begins at x = 0 and width d = 30nm where there is a
band-gap 2∆ in the energy spectrum induced by the presence of the symmetry-breaking
term ∆Ûi = Û1 with ∆ = 0.1eV and for (a) θ = 0, (b) θ = π/12, (c) θ = π/6, and (d)
θ = π/4.

regions of finite mass using the relation T = 1/|T (1)
22 |2:

T =
1

akaq

[
ei(kx+qx)d

(
ΛkΛ

∗
q − η1ΛkΛ

∗
k − η2ΛqΛ

∗
q + Λ∗kΛq

)
+ ei(kx−qx)d

(
ΛkΛq + η1ΛkΛ

∗
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q

) ]
, (10.34)

where Λj = cos2 θeφj + sin2 θe−φj , aj = Λj + Λ∗j with j = k and j = q denoting the linear
energy spectrum and gapped regions, respectively. In that case η1 =

√
(E −∆)/(E + ∆)

and η2 =
√

(E + ∆)/(E −∆).
Figure 10.21 shows the transmission probabilities plotted in the (kyd,E/2∆) plane for

different θ, using d = 30 nm, and ∆ = 0.1 eV, resulting in a band-gap opening of 2∆ = 0.2

eV into Region II. Since our motivation is to compare the transmission results obtained in
this section to the previous one assuming transmission through potential barriers, here we
assume a band-gap with the same energy of that height of potential used in the previous
sections.
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Figure 10.22: Transmission probability as function of incident angle φk, and incident
energy (a) E = 0.15 eV, (b) E = 0.20 eV, (c) E = 0.30 eV for θ = 0 (solid black curve),
θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4 (dash-dotted
blue curve) when Û = Û1 in the Region II in Fig. 10.20 with ∆ = 0.1 eV and d = 30 nm.

The energy spectrum in the different regions, i.e. in the region with linear dispersion
and in the region with hyperbolic dispersion are indicated by dashed curves superimposed
on the contour plots. We note that due to the band-gap opening in Region II, when
incident energies are inside the gap −0.1 < E < 0.1 the transmission is exponentially
small and for kyd = 0 the transmission T < 1. Unlike the case of tunneling through
barriers discussed in Sec. 10.5, there is absence of KT. Moreover, beyond the enhancement
of the transmission as θ increases, the transmission curves are almost the same as incident
energy increases only for smaller incident angles φk, as observed in Fig. 10.22.

From Fig. 10.22 we observe, in general, that there is a broadening of transmission
curves for greater values of θ, like the barrier system case. However, for energies E < 2∆,
which is analogous to incident energies bellow the potential barrier in the previous sections,
the number of peaks in the transmission curves is the same regardless of the parameter
θ, as shown in Fig. 10.22(a). In addition, the transmission continues to be enhanced
even for incident energy above the band-gap energy 2∆, as represented in Fig. 10.22(b)
and 10.22(c). This result is opposite to the one observed for tunneling through potential
barriers, where the transmission is reduced for energies above the one associated to the
critical angle. Besides, the difference between the transmission curves as θ is tuned from
graphene-like to dice is more evident for values E > 2∆, as shown in Fig. 10.22(c), where
for θ = π/4 the transmission curve is more smooth for larger values of φk.

10.8 Conclusions

In summary, using the transfer matrix approach, we investigated the tunneling prop-
erties in α − T3 lattices of electrons across square barriers and through regions of space
where the energy spectrum has a finite band-gap. For tunneling across one-dimensional
square barriers, we consider both the case of equivalence between the three sub-lattices,
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and the ones where band-gaps originate due to small deviations of this equivalence by
including symmetry-breaking terms. We also investigated tunneling of electrons from
regions with a linear to a hyperbolic dispersion.

For the massless Dirac fermion case, when no symmetry-breaking terms are present,
besides a general trend of enhanced transmission with increasing α, KT at normal inci-
dence is found for all values of θ, regardless the number of barriers. At oblique incidence,
the transmission increases with increasing θ. For a particular case, E/V0 = 0.5 and
θ = π/4 (dice), an omnidirectional transmission is observed which is called super-Klein
tunneling (SKT) effect, and preserved regardless of the number of barriers. Although the
increase in the number of barriers gives rise to additional resonances in the transmission
for all values of θ, this increase is much less pronounced for the dice lattice, whereas for
a graphene-like lattice the transmission probability is strongly modified. Moreover, we
found that, similar to total reflection in optics, above an incident angle φk there is total
reflection of the incident wave-functions. This critical angle depends only on the incident
energy and potential barrier and remains the same for all values of θ.

The presence of additional symmetry-breaking term in the Hamiltonian distorts the
linear dispersion around the Dirac point and changes the location of the flat band, whose
occurrence depends on the deviation of the equivalence between the three sublattices. The
symmetry-breaking term destroys the KT and SKT in the α−T3 model. It is demonstrated
that the additional term in general suppresses the transmission probabilities for both cases
Û1 and Û2. When the flat band is located at the band edge, i.e. when Û1 = diag(1,−1, 1),
resonant tunneling is considerably suppressed and at incident energies 0 < E/V0 < 0.5

the transmission is perfect for larger values of incident angle, as a consequence of the
presence of degenerate states around large values of ky observed from the electronic band
structure. In addition, when we consider the double-barrier system at E/V0 = 0.5, unlike
the single-barrier, the transmission is reduced for smaller φw, and perpendicular or near-
perpendicular incident wave-functions are totally reflected.

When Û2 = diag(1,−1,−3), since the nature of wave-vector kb inside the potential
depends on the coupling parameter we note that for 0 < E/V0 < 1 and intermediate
values of θ new zones with total reflection of the wave-function appears as θ is tuned from
graphene-like to dice, indicating the strong relation between the transmission properties
and both location and distortion of the energy band inside the gap. However, the trans-
mission probabilities are much less affected by an increase of the number of barriers as θ
increases.

We also discussed the tunneling properties of electrons in α − T3 lattices when they
traverse a region of space where the spectrum exhibits a finite energy gap. In the case
we considered here, the gap is induced by inclusion of a symmetry-breaking term Û1,
rendering the sub-lattice C non-equivalent. The consequence is the opening of a gap in
the energy spectrum. We have shown that the existence of an energy gap prevents the
KT and SKT from taking place for all values of θ, and the transmission for perpendicular
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or near-perpendicular waves are less than 1, unlike the transmission through a potential
barrier. Moreover, at larger values of incident energy we noted a broadening of the
transmission curves as θ increases. For dice the transmission peaks are smoothed as
incident energy increases, and at large incident angles the transmission is perfect as a
consequence of degenerate states at large values of ky, as observed in the potential barrier
case when Û1 term was considered.

The results obtained in this work are useful to understand the effects in the transmis-
sion properties due to small deviations in the equivalence between the three sublattices
in α − T3 lattices, as well as the role of location and dispersion of the band-inside the
gap in the occurrence of KT and SKT. We discussed a versatile engineering to control
and prevent the SKT and KT, which is a necessary condition for nanoelectronic applica-
tions, by changing the symmetry between the atomic sites of the crystal and consequently,
controlling the dispersion of the middle band.



11
Final considerations and perspectives

In this thesis, we developed two methods for wave packet propagation based on the
Green’s function formalism and the split-operator technique adapted for multilayer phos-
phorene within the continuum model for low-energy electrons, which have not been pub-
lished before, to our knowledge. Both theoretical models are then used to study the
dynamics of Gaussian wave packets with different initial wave vectors and different ini-
tial pseudospin polarizations in N -layer phophorene. By calculating the time-dependent
average position and velocity, we observed transient oscillations in these observables due
to the effect known as ZBW and verified that these oscillations are directly related to the
splitting of the wave packet into two parts moving with opposite velocities. We discussed
the similarities and discrepancies between the results for multilayer phosphorene with
those ones reported in the literature for graphene and conventional semiconductors. By
comparing the results for different number of BP layers, we showed that electrons moving
in N -layer BP exhibit qualitatively similar results as the ones observed in monolayer case,
except for the oscillation phase difference and final group velocity achieved after the tran-
sient behavior, that is caused by the different curvature of the energy levels for different
N -layer BP. Due to the highly anisotropic band structur, the wave packet propagates
non-uniformly along the different x and y directions and deforms into an elliptical shape,
as a consequence of the different group velocities, effective masses along x and y direction
and the linear ky term on the off-diagonal elements of the continuum Hamiltonian. We
believe that the theoretical descriptions for the time evolution of wave packet propagation
in multilayer BP systems will make possible further investigations of transport properties
in many different BP-based materials in the presence or absence of external fields.

Further on, we theoretically explored the electronic and transport properties of QWs
of anisotropic 2D semiconductors in the presence and in the absence of a perpendicular
magnetic field. In the first part, the energy levels were analytically calculated by means
of the effective mass approximation and analyzed for different parameters, such as: QW
width, orientation angle α with respect to the anisotropy axes, and the magnetic field
amplitude. Our results showed that the energy spectrum is strongly dependent on the
alignment angle α, as for instance: the greater this angle, the smaller the energy levels



187

spacing, implying an increase of the accessible electronic states; and that in the pres-
ence of magnetic field the quantum Hall edge states are less pronounced the larger the
angle α and consequently the plateaus are more evident in the magnetic dispersion rela-
tion. In the second part of this work, the transmission probability, the average position,
the average velocity, and snapshots of the squared total wavefunction were numerically
computed by using the split-operator technique for two different configurations: (i) a
straight QW rotated and (ii) an elbow-like QW formed by a junction of two QWs with
α = 0 and α 6= 0. For (i), we demonstrated that the average velocity oscillates for the
anisotropic case in which the initial wave vector and group velocity are not collinear,
whereas the average velocity remains constant for the isotropic case. Such oscillations
are due to the non-specular reflections of the wavepacket at the QW edges and owing the
emergence of subwavepackets with different momentum orientations in this interaction
with the edges, whereas for isotropic QWs the wavepacket disperses over time without
splitting. For the latter system (ii), as a consequence of the energy band mismatching
of the two QWs sections and the system anisotropy, the electrons traveling through the
bended QW exhibit scattering processes coming from the QW geometry itself and the
anisotropic angle-dependent confinement, leading to a QW aligned angle dependence of
transmission probability. We believe that the theoretical calculations and the found re-
sults for anisotropic systems with arbitrary alignment direction will make possible further
investigations of transport and electronic properties in a variety of anisotropic materials
in the presence or absence of external fields, which may be useful for designing anisotropic
semiconductor based quantum confinement devices.

We also investigated the consequences on the electronic properties and on the dynamics
of electronic states in graphene due to a generic position-dependent metric, as well as we
made a parallel with analogous quantum systems that exhibit similar results. To do
this, we applied the position-dependent translation operator formalism that leads to a
generalized momentum operator and, consequently, a modification in the Dirac equation
used here to describe the massless Dirac fermions at low-energy regime. We showed
that such formalism is able to introduce additional control of such properties and that the
studied system mimics two different physical scenarios: a deformed graphene due to strain
and a non-uniform mass-term, induced by specific substrate. Within this generalized
formalism, we analytically obtained the eigenstates and the modified Landau levels of
the graphene system with a generic metric and under the presence of a perpendicular
magnetic field. We showed that where the metric changes it shifts the Landau level to
lower values, decrease the energy level spacing, and strongly affect the spatial distribution
of the total wave function as well as the two pseudospin components. For the study of 2D
Gaussian wave packet dynamics in graphene with a generic metric, we considered the well-
known split-operator technique that allows us to calculate the time dependence of physical
observables, such as average position and velocity, and, therefore, to track the wave packet
evolution in order to understand the influence of the metric on the transport properties
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of electrons in this system. In this context, we demonstrated for a different metric and
for different choices of the initial pseudospin polarization that the non-null metric leads
to an asymmetry for the wave packet evolution and therefore in some cases it brings up
oscillations in the average of the physical observables and in other cases it suppresses
the ZBW, as well as we showed the consequences on the cyclotron orbit of the electronic
trajectory for different metric parameters. We also discussed the origin of this strong
asymmetry in the total probability density that can be linked with a strong anisotropy
in the Fermi velocity and linear momentum to the electron motion due to the position-
dependent spatial metric. This theoretical formalism can be useful for comparison and
analogy to other 2D based system, and we believe that the discussions about the results
found in this work will contribute to a better understanding of the position-dependent
translation operator formalism applied for 2D materials.

Regarding the dice or α− T3 lattices, since they can support flat bands that are cur-
rently a very hot topic in the study of electronic transport properties of materials and
these bands are very sensitive to perturbations, its transport properties can be changed
and controlled making possible the development of new electronic devices. Motivated by
these properties we showed that the inclusion of symmetry-breaking terms translate into
deviations in the atomic equivalence between the atomic sites of the α− T3 lattice which
affects for example the number and appearance of Dirac points and band-gap morphing
in their energy spectra. Furthermore, we demonstrate that the band-gap is strongly de-
pendent on the symmetry between the atomic sites and the hopping parameter of these
lattices. New allowed states in the energy spectrum are predicted in regions where previ-
ously there were band-gaps, which is important for electronic and transport applications.
The theoretical formalism and results obtained are useful to gain a better understanding
of the band-gap behavior of α−T3 lattices, and consequently demonstrate that these ma-
terials are versatile for purposes of band-gap engineering in 2D materials. The band-gap
is tunable by changing the interlattice hopping parameter and their symmetry.

Also, since these lattices present a flat-band in their energy spectra, unusual trans-
mission properties emerge under certain conditions. We show that small deviations in the
equivalence between the atomic sites in α− T3 lattices, as well as the number of barriers
can strongly change the transmission properties in these lattices, leading to a general sup-
pression of the transmission for example. We demonstrate that by adjusting the symmetry
between the atomic sites, new tunneling regions are possible. The presence of degenerate
states and the dispersion of a quasi-flat band in the energy spectrum are associated to
the enhancement of the transmission. This indicates that the electronic and transport
properties can be controlled by altering the interlattice hopping parameter, which is a
necessary condition for applications in nanoelectronics. The theoretical formalism and
results obtained can be useful to a better understanding of the role of the location and
dispersion of the energy-band-inside the gap in the occurrence of total transmission in
α−T3 lattices, and consequently demonstrate that these materials are versatile to control
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the transmission properties in 2D materials. The dispersion of the middle band can be
controlled by changing the interlattice hopping parameter and their symmetries.

Regarding the study of electronic and transport properties of the charge carriers in
2D materials, in particular, to multi-layer α − T3-related systems, we envision a set of
interesting ideas to be developed in the near future, following the examples of previously
investigated problems in graphene, that in turn, will be covered by assuming α = 0

(honeycomb) and in addition, it will allow investigating the continuously morphing from
graphene-like to dice (α = 1) systems by an one-parameter simple model, as presented
throughout this thesis. Most interesting is that such systems possess the coexistence
of quasi-flat bands and Dirac cones which make them even more exciting, exhibiting
unconventional properties. In this context and as a short-term perspective, we intend to
study the following problems:

• chiral states and their localization that could be originated from the breaking of the
sublattice symmetry due to an asymmetric mass potential or even by the inclusion
of a defect line between two regions of α−T3 material. Such states were investigated
in monolayer graphene [297];

• chiral states and extra Dirac cone formation in superlattices composed by electro-
static kink and anti-kink potential profiles in the bilayer of α− T3. Such structures
for single and double interfaces of electrostatic kinks have been already investi-
gated for bilayer graphene [298], and we propose to develop an extension of this
investigation to check the role of α variation, number, and widths of interfaces of
the kink-anti-kink-like potentials. Such structures can be created by applying an
asymmetric potential to the upper and the lower layers of the bilayer system;

• twisted bilayer α− T3 system, checking the interplay between the α parameter and
the rotation angle between the two layers of α− T3 material.

It is worth mentioning that suggestions for similar analogies to the graphene-like sys-
tem reported in the last two decades can be easily developed/extended to α− T3 case, as
we intend to do in the near future.
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