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Since the experimental observation of permanent magnetism in 2D CrI3 in 2017, the
field of 2D magnetic materials has gained a lot of interest within the material physics
community. The extraordinary magnetic properties observed in CrI3 create a lot of
opportunities for both the discovery of interesting new physics and the development
of innovative spintronic and magnonic device concepts. A current challenge within
the field is to achieve perfectly tunable magnetic properties by manipulating the
materials. In this thesis, we studied the effect of stacking and twisting of the layers
in a CrI3 bilayer on the properties of the material. The magnetism in the material is
described by a Heisenberg spin model. We used a technique called four-state energy
mapping, in combination with ab initio calculations using density functional theory,
to determine the magnetic parameters that characterize the different terms of the
Heisenberg Hamiltonian. These magnetic parameters were determined for the CrI3
monolayer and for the CrI3 bilayer in three different stacking orders. Further, we also
determined the Curie temperature for all these structures. Our calculations suggest a
dependency of the strength of the inter-layer exchange coupling, the presence of spin
canting due to the Dzyaloshinkii-Moriya interaction and the Curie temperature, on
the stacking order of the layers. In addition, we were able to show that it is possible
to tune the intra-layer exchange interaction, the inter-layer exchange interaction and
the inter-layer Dzyaloshinkii-Moriya interaction by twisting one of the layers in a
bilayer.
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Magnetische eigenschappen van CrI3 monolagen, dubbellagen and gedraaide
dubbellagen

door Maarten SOENEN

Sinds de experimentele ontdekking van permanent magnetisme in 2D CrI3 in 2017,
is de interesse in het onderzoek naar de eigenschappen van 2D magnetische mate-
rialen aanzienlijk toegenomen. De uitzonderlijke magnetische eigenschappen van
CrI3 scheppen mogelijkheden voor de ontdekking van interessante nieuwe fysica en
voor de ontwikkeling van innovatieve spintronica en magnonica applicaties. Een
van de huidige uitdagingen in dit onderzoeksveldveld bestaat erin de magnetische
eigenschappen van de materialen te kunnen manipuleren. In deze thesis, bestud-
eren we het effect van de stapeling en het draaien van lagen in een CrI3 dubbel-
laag op zijn magnetische eigenschappen. Het magnetisme in het materiaal wordt
beschreven door middel van het Heisenberg spin model. We gebruiken de ’four-
state energy mapping’ techniek in combinatie met ab initio berekeningen gebaseerd
of dichtheids functionaal theorie om de magnetische parameters te bepalen die de
verschillende termen in de Heisenberg Hamiltoniaan karakteriseren. De magnetis-
che parameters zijn bepaald voor de CrI3 monolaag en de CrI3 dubbellaag in drie
verschillende stapelingen. Daarnaast, hebben we ook de Curie temperatuur bepaald
voor al deze structuren. Onze berekeningen suggereren een afhankelijkheid van de
’exchange’ interactie tussen de lagen, de mogelijk van de spins om te kantelen als
een gevolg van de Dzyaloshinkii-Moriya interactie en de Curie temperatuur, op de
stapeling van de lagen. Daarnaast tonen we ook aan dat het mogelijk is om de ’ex-
change’ interactie binnen eenzelfde laag, de ’exchange’ interactie tussen twee lagen
en de Dzyaloshinkii-Moriya interactie tussen twee lagen, te manipuleren door het
draaien van een van de lagen in een dubbellaag.
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Chapter 1

Introduction

1.1 Magnetism in Flatland

The discovery of graphene as the first truly two-dimensional (2D) material sparked
a significant interest in single-layered crystals1. Over the years, an explosion of new
research resulted in a diverse family of materials with a wide variety of properties2–4.
Magnetism, however, has long been a remarkable absentee on the list of experimen-
tally observed properties. For quite some time, the presence of intrinsic magnetic
order had been considered impossible in 2D due to the Mermin-Wagner theorem,
which states that long-range order cannot survive temperature fluctuations in an
isotropic system5. Recently, studies suggested that in certain 2D materials with a
strong magnetocrystalline anisotropy, e.g. Chromium(III)Iodide (CrI3)6,7, the Mermin-
Wagner restriction no longer holds, and consequently, that magnetization of materi-
als at non-zero temperatures is allowed after all.

The first demonstration of 2D magnetism occurred in 2017 with the experimen-
tal confirmation of permanent magnetic order in atomically thin CrI3

8. Huang et al.
found evidence for the presence of intrinsic ferromagnetism in mechanically exfo-
liated CrI3 flakes by performing measurements based on the polar magneto-optical
Kerr effect (MOKE). The MOKE, first described by J. Kerr in 1877, predicts a change
in polarization of a beam of plane-polarized light that is reflected off a magnetized
surface9. The magnetization curves produced in the experiment show a clear signa-
ture for magnetic order in all CrI3 samples, even in the monolayer limit8.

This discovery marks an important milestone for the exploration of magnetic
’flatland’10. Although numerous magnetic monolayers have been discovered since4,
CrI3 is still one of the most studied systems as it shows great promise for the de-
velopment of applications. In fact, initial research has already led to the realiza-
tion of CrI3 based devices11,12. Nevertheless, intrinsic magnetism in CrI3 has only
been observed at very low temperatures8. If we want devices that operate in real-
istic conditions, we need to find materials that preserve their magnetic properties
at higher temperatures. Possible candidates are Manganese(IV)Selenide (MnSe2)
and Vanadium(IV)Selenide (VSe2), two materials that show room-temperature fer-
romagnetism in the monolayer limit13,14. Aside from the temperature problem, tun-
ability of magnetic properties has emerged as a second big challenge within the field.
In this regard, CrI3 continues to stand at the forefront of theoretical investigations
due to its status as the archetypical- and best understood 2D magnet. The pioneering
work done on CrI3 can pave the road towards the achievement of perfectly tunable
and controllable properties in magnetic materials.

In this thesis, we will investigate the magnetic properties of monolayer and bi-
layer CrI3. We will determine some magnetic properties of these systems, and anal-
yse if these properties can be tuned through twisting and stacking of the layers.
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The goal of this first chapter, is to motivate our interest in CrI3 through a discus-
sion of its most important properties and the exploration of some emerging device
concepts. We start off with a section that summarizes some important background
information that the reader might need to develop a good understanding of the phe-
nomena at hand. We give a brief introduction to world of 2D materials and introduce
some important concepts like heterostructures and Moiré patterns. Afterwards, we
list some important facts and figures about CrI3. Further, we review the interactions
that lie at the origin of magnetism in 2D CrI3, introduce the concept of spin waves
and discuss why the existence of 2D magnetism doesn’t violate the Mermin-Wagner
theorem. In a second section, we demonstrate the relevance of 2D magnetic mate-
rials by discussing some prospects for magnetism based applications. In the final
section of this chapter, we give a brief overview of how the thesis is organized.

1.1.1 Monolayers, Multilayers and Heterostructures

Crystalline CrI3 belongs to the family of van der Waals (vdW) solids. This type of
crystal features single-atom-thick or polyhedral-thick layers of atoms with covalent-
or ionic in-plane bonding3. The layers themselves are weakly bound together by
short-range vdW forces, hence the name of the material. Due to the weak interaction
between the layers, it’s relatively easy to produce thin samples or even monolayers
using — Scotch tape — mechanical exfoliation3.

The first truly 2D material that has been produced with the Scotch tape technique
is graphene1. For their work on graphene, A. Geim and K. Novoselov eventually
even won a Nobel prize in 2010. Not long after the discovery of graphene, more
and more 2D materials were successfully synthesized. Other notable 2D materials
include for instance hexagonal boron nitride (hBN), silicene or the transition metal
dichalcogenides, e.g. molybdenum(IV)sulfide (MoS2). Notice that a material doesn’t
need to be atomically thick, like graphene or hBN, in order to be considered a 2D
material. Monolayers of materials like MoS2 and CrI3 actually consist out of three
atomic layers but we still call them 2D since they can’t be made any thinner than
they already are, and they are periodic in only 2D.

Monolayers can be seen as the building blocks to construct other materials. By
stacking multiple layers of the same material on top of each other, you can construct
multilayer structures. By varying the stacking order of these layers, you change not
only the symmetry of the material but you might also change some of its properties.
One of the things that we will investigate in this thesis, is how the stacking of a CrI3
bilayer changes its magnetic properties.

When building new structures by stacking monolayers on top of each other, we
don’t necessarily need to limit ourselves to layers of the same material. It is pos-
sible to build stable structures by stacking layers of different materials on top of
each other. In practice, this stacking of layers can be achieved by experimental tech-
niques, e.g. molecular beam epitaxy15. Since these newly formed crystals consist
out of different materials held together by vdW forces, they are conveniently called
vdW heterostructures. The combination of materials with different properties in a het-
erostructure leads to new functionalities to be exploited in experiments or future
applications. It’s very important to develop a good understanding of the interplay
between different materials since 2D materials are, in most realistic applications, in-
tegrated in a vdW heterostructure. A phenomenon in which it becomes clear that the
functionalities of a layered crystal are heavily influenced by the physical properties
of its neighbouring layers, is the magnetic proximity effect. For example, the proxim-
ity of a magnetic CrI3 layer to the semiconductor tungsten(IV)selenide (WSe2) has
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FIGURE 1.1: Building van der Waals heterostructures. A vdW het-
erostructure containing graphene, hBN, MoS2 and WSe2 monolayers.
The different monolayers are building blocks that can be stacked in a

lego-like fashion to create new structures. Figure from: [15].

been shown to result in valley splitting and increased electrostatic control11. This
type of material design is also known as heterostructure engineering. An example
of a vdW heterostructure containing multiple materials is shown in figure 1.1.

The difference in lattice constant between different materials included in a het-
erostructure, often gives rise to a lattice mismatch. A lattice mismatch is the relative
ratio between the lattice constants of both layers. In multilayers or vdW heterostruc-
tures, Moiré patterns arise due to a lattice mismatch and/or twisting of layers16. ’A
Moiré pattern is the geometrical design that results when a set of straight or curved
lines is superposed onto another set’17. A Moiré pattern introduces additional, large-
scale, periodicity to the system over a distance of multiple unit cells. The larger
lattice we use to describe this periodicity is called the Moiré superlattice16. Moiré
patterns result in local-to-local variations of the stacking order, which could result
in local differences of material properties. The study of Moiré patterns in vdW het-
erostructures is a relatively new field, but one that shows a lot of promise. Especially
heterostructures based on graphene and hBN raise a lot of interest within the mate-
rial science community.

The introduction of Moiré patterns in materials can be a way of tuning their
electronic properties. This approach to heterostructure engineering is sometimes re-
ferred to as twistronics. In recent years, this approach has grown into a hot topic in
the field of material science and has led to some interesting results. For example, in
twisted — magic-angle — bilayer graphene (see figure 1.2) twisting and additional
doping can tune the material from semi-metallic to Mott-insulating and even to su-
perconducting states18. In graphene/hexagonal boron nitride (hBN) heterostruc-
tures like encapsulated graphene similar opportunities for gap engineering and tun-
able superconductivity have been discovered19.

In magnetic materials, the introduction of Moiré patterns are expected to break
the inversion symmetry and might, therefore, result in non-collinear spin configura-
tions. In extreme cases, there is a possibility that Moiré patterns could even lead to
’exotic’ magnetic states, like for instance magnetic skyrmions (see section 1.1.5), that
could have utility in spintronic applications16.
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FIGURE 1.2: Moiré pattern in twisted bilayer graphene. Crystal
structures of bilayer graphene without a twist (a) and with a twist
of 1.1◦, the so-called magic angle (b). Twisting one of the layers intro-

duces a Moiré pattern in the crystal. Figure from: [20].

1.1.2 CrI3 in a Nutshell

CrI3 belong to the transition metal trichalcogenides, these are compounds with a
chemical formula of the form MX3, in which M is a transition metal (e.g. Cr) and X
are chalcogen atoms (e.g. I). Like the formula suggests, the atoms occur in a 1:3
ratio in the crystal. Other transition metal trichalcogenides include for example
chromium(III)bromide CrBr3 and chromium(III)chloride CrCl3.

As mentioned earlier, CrI3 is a vdW material with a layered structure. The struc-
ture of bulk CrI3 is depicted in figure 1.3b. The bulk structure consists out of many
monolayers stacked on top of each other. A monolayer consists out of a layer of
chromium atoms sandwiched between two layers of iodine atoms. Each chromium
atom is octahedrally coordinated to six iodine atoms. Notice that there are only
bonds between the chromium and iodine atoms, i.e. there are no Cr-Cr and I-I bonds.
Each iodine atom is bound to two chromium atoms. The Cr-I-Cr bond angle is ap-
proximately ≈ 90◦. Since, the layers are only bound by relatively weak vdW forces,
it’s not too hard to produce CrI3 flakes using mechanical exfoliation. A flake that
has been produced in an actual experiment is shown in figure 1.3a. On the optical
contrast map on the right of this figure, the thickness of the flake is numbered. A
fairly big part of the flake is only one layer thick, this proves that single-layered CrI3
is a stable compound.

For bulk CrI3, there are two stable crystal structures that have been successfully
synthesized and studied in experiments. At low temperature (LT), i.e. lower than
210 K, CrI3 has a rhombohedral structure (space group R3̄), at high temperature
(HT), the structure is monoclinic (space group C2/m)6. The stacking order of these
two phases will be discussed in more detail in chapter 4 where we discuss the CrI3
bilayer.

MOKE measurements performed on bulk CrI3 show hysteresis in the magnetiza-
tion, a hallmark for ferromagnetism (see figure 1.3c). The hysteresis loop has a non-
zero remnant magnetization in the absence of an externally applied magnetic field
which is indicative for ferromagnetic (FM) order8. Similar measurements performed
on a CrI3 monolayer show that the hysteresis persists down to the 2D limit8. In the
2D case, the hystersis loop has an even bigger coercive field which suggests that
the monolayer is a permanent ferromagnet while bulk CrI3 is a soft ferromagnet8.
The latter means that the material will become magnetized when an external mag-
netic field is applied, but doesn’t tend to stay magnetized when the magnetic field
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(A) (B)

(C)

FIGURE 1.3: Crystal structure and hysteresis of CrI3. (A) A CrI3 flake
that has been produced by mechanical exfoliation. The left picture
depicts an optical micrograph of the flake. The right picture depicts
an optical contrast map with a 631-nm optical filter. The scale bar in
the left figure is equal to 3 µm. Figure from reference: [8]. (B) Lay-
ered crystal structure of bulk CrI3. Chromium- and iodine atoms are
depicted with blue and purple spheres respectively. The unit cell is
marked with black lines. The figure is drawn with the VESTA soft-
ware. (C) MOKE signal of a thin bulk CrI3 sample. The hysteresis
in the Kerr rotation is clear proof for presence of intrinsic ferromag-

netism in CrI3. Figure from reference: [8].

is switched off. The same paper also claims that bilayer CrI3 is anti-ferromagnetic
(AFM) in its ground-state8 which is true for some possible stacking orders of the lay-
ers but not all of them, more on this matter can be found in chapter 4. Superconduct-
ing quantum interference device (SQUID) magnetometery measurements predict a
saturation magnetization of 3.0 µB/Cr atom6, here µB is the Bohr magneton. This
means that the atomic spin is equal to 3/2. Temperature dependence of MOKE sig-
nals place the Curie temperature of monolayer CrI3 at Tc = 45 K8, which is slightly
smaller than the bulk value of Tc = 61 K measured with SQUID magnetometry6.

Below its Curie temperature, the CrI3 monolayer displays strongly anisotropic,
FM behaviour with an out-of-plane spin polarization8. The direction of the spin po-
larization is explained by the magnetocrystalline anisotropy, which creates an easy
axis for the magnetization perpendicular to the atomic plane7. As will be discussed
in the next two sections, the presence of a strong magnetocrystalline anisotropy is
a ’conditio sine qua non’ for the existence of permanent magnetism in monolayers.
After all, in the absence of anisotropy, permanent magnetism would be prohibited
by the Mermin-Wagner theorem5.
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1.1.3 Origin of 2D Magnetism

We call a material magnetic, when the atomic magnetic moments* posses a well de-
termined spatial ordering. If the magnetic moments have a parallel orientation, the
material is FM, if the moments are aligned anti-parallel, we call the system AFM.
Measurements performed with the MOKE confirm that monolayer CrI3 displays
strongly anisotropic, FM behaviour with an out-of-plane spin polarization8. This
FM order results from the interplay between several different mechanisms. In this
section, we will discuss the most important interactions that contribute to the real-
ization of magnetism in 2D materials, and to CrI3 in particular.

Exchange Interaction

The dominant interaction in magnetic materials is the symmetric exchange interac-
tion. The origin of this interaction can be understood through the Pauli exclusion
principle, which states that it’s impossible for two fermions, e.g. electrons, to simul-
taneously occupy the same quantum state21. This is due to the fact that the wave
function of fermionic systems has to be antisymmetric with respect to the exchange
of two electrons21. The possible electronic configurations in atoms and solids are,
thus, limited to the states that don’t violate the Pauli exclusion principle. This ef-
fect occurs both intra-atomic, where it determines the atomic spin, and-inter atomic,
where it determines the magnetic coupling between different atoms.

Intra-atomic, the exclusion principle causes electrons with parallel spin to occupy
different atomic orbitals. By occupying different orbitals, the Coulomb repulsion
between the electrons will also be minimized21. Therefore, the lowest energy state of
an atom will be the state with the maximum number of unpaired valence electrons
with parallel spin, this fact is also known as Hund’s first rule. The unpaired electrons
give rise to a net atomic spin S through formula S = ∑i si, with si the electron
spin. In summary, the spin of an atom is determined by the spins of its (unpaired)
electrons.

In materials, there will also be an exchange interaction between electrons of dif-
ferent atoms. The exchange interaction between neighbouring atoms due to the
overlap of atomic orbitals is known as the direct exchange interaction21,22. The occu-
pation of the respective overlapping orbitals will determine whether the interaction
will be FM or AFM22. Nearly filled or nearly empty shells will tend to give rise to a
FM coupling, half filled shells result in an AFM coupling22.

If the magnetic atoms aren’t neighbours, e.g. the chromium atoms in CrI3, or
when the electrons are strongly localized around an atom, there will only be a very
small overlap of the atomic orbitals and, thus, only a minor contribution due to the
direct exchange interaction21. In such cases, the dominant magnetic interaction is
the indirect exchange interaction, also called the superexchange21. This interaction is
called ’indirect’ because it involves a third non-magnetic atom that is bound to both
magnetic atoms21, e.g. the iodine atom in CrI3. Orbitals of both magnetic atoms (e.g.
Cr) will now overlap with the orbitals of the non-magnetic atom (e.g. I). In contrast,
the direct overlap between the orbitals of the magnetic atoms (e.g. Cr) will be neg-
ligible small or even non-existent. The superexchange coupling can be both FM or
AFM depending on the orbital occupation, the interatomic separation and the bond

*Throughout this work, we use both the magnetic moment m and the spin S interchangeably to
talk about magnetic order. Both variables are related through formula m = −2 (µB/h̄) S, with µB
the Bohr magneton and h̄ the reduced Planck constant. Due to the minus sign in this expression, the
magnetic moment and the spin have an opposite orientation. It’s important to take this into account
when contemplating the direction of the magnetization.
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FIGURE 1.4: Superexchange interaction along a 90◦ M-X-M bond.
The exchange interaction between partially filled d-orbitals of two
magnetic atoms and p-orbitals of a non-magnetic intermediate atom
gives rise to an indirect FM coupling between the magnetic atoms.

Figure from reference: [23].

angle, the latter determines which atomic orbitals will be overlapping21,22. When
the bond angle is approximately 90◦, like in CrI3, the overlap of magnetic, partially
filled, d-orbitals and non-magnetic p-orbitals will give rise to an overall FM coupling
between the magnetic atoms. The latter is illustrated in figure 1.4 for the d-orbitals of
two transition metals (M) and the p-orbitals of an intermediate chalcogen atom (X)
in a 90◦ M-X-M bond. The interaction between the magnetic atoms (blue) and the
non-magnetic atom (red) will be AFM, the electrons in the overlapping orbitals need
to have opposite spin otherwise they would repel each other. As a result, the spins
of both magnetic atoms (blue) have the same orientation, i.e. the are coupled FM.
In CrI3, the FM superexchange will be the main source of the exchange interaction
which explains why 2D CrI3 is a permanent ferromagnet7.

The symmetric exchange interaction between the spins on the ith and jth spin sites
can be modelled by the fairly simple formula22:

ĤEX = ∑
i<j
JijŜi · Ŝj

= ∑
i<j

[
J x

ij Ŝx
i Ŝx

j + J
y

ij Ŝx
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j + J
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ij Ŝ
x
i Ŝz

j

]
, (1.1)

in which the spins are three-dimensional (3D) vectors Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) expressed

in Cartesian coordinates, and the exchange parameters J α
ij are constants with α =

x, y, z. If the exchange constant is J α
ij < 0 the interaction is FM, if its value is J α

ij > 0
the interaction is AFM. In some papers, the exchange interaction is written with an
extra minus sign, in this case also the sign of the exchange constant for the FM and
AFM cases will be opposite. The exchange parameters have the units of energy. We
write i < j in the summation to avoid self-interaction and double counting of spins.

Dzyaloshinskii–Moriya interaction

The antisymmetric exchange interaction, more often called the Dzyaloshinskii–Moriya
interaction (DMI), is a higher-order effect occurring between ions already coupled
by superexchange22. As such, it’s a three-site interaction between two atomic spins,
Si and Sj, and a neighbouring atom with a large spin-orbit coupling (SOC). The
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FIGURE 1.5: Schematic representation of the DMI. The interaction
is generated by an indirect exchange interaction between two atomic
spins through a neighbouring atom with a large SOC. Both atomic
spins undergo a slight rotation. The DMI-vector is oriented perpen-

dicular to the plane containing the spins.

resulting DMI-vector Dij is pointed perpendicular to the plane containing the two
atomic spins. The symmetric exchange interaction between the spins on the ith and
jth spin sites can be modelled by the expression22:

ĤDMI = ∑
i<j

Dij · (Ŝi × Ŝj). (1.2)

Again, we write i < j in the summation to avoid self-interaction and double count-
ing of spins. In a system that lacks inversion symmetry, or where the symmetry is
broken, the DMI will try to force Si and Sj to take on an orthogonal orientation with
respect to vector Dij as well as each other21. In practice, this results in spin canting,
i.e. a slight rotation of the spins around a rotational axis parallel with vector Dij

21.
Usually, the spins will not make the full rotation to an orthogonal configuration due
to the competing, and dominant, symmetric exchange interaction that strives for a
parallel or anti-parallel orientation. In anti-ferromagnets, spin canting due to the
DMI can result in a small FM component perpendicular to the spin axis, this effect
is known as weak ferromagnetism24,25. The effect of the DMI on two atomic spins is
displayed schematically in figure 1.5.

When there is inversion symmetry in the system, there will be no net effect of
the DMI and the DMI-vector will vanish21. This is the case in CrI3 layers7. Each pair
of chromium atoms is connected through two Cr-I-Cr bonds. These two paths each
contribute to a DMI-vector with opposite sign resulting in a zero net contribution7.
It is expected that breaking of the inversion symmetry in CrI3, e.g. by lattice strain-
ing, introduction of defects, stacking of the layers in a multilayer, applying external
fields, etc., will result in a non-zero net DMI-vector. The DMI is the main culprit that
enables the existence of non-collinear spin configurations like magnetic skyrmions.
However, when the DMI is only small and non-uniform, no skyrmions will appear
in the lattice and the only effect of the DMI will be spin canting.

It is possible to write the symmetric exchange interaction and the DMI in one
term. Let’s include both term (1.1) and (1.2) in one expression:

ĤEX = ∑
i<j
JijŜi · Ŝj + ∑

i<j
Dij · (Ŝi × Ŝj)

= ∑
i<j

JijŜi · Ŝj. (1.3)
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FIGURE 1.6: Magnetic anisotropy energy of a CrI3 monolayer. The
anisotropy energy as a function of the spin orientation is shown in (a).
The out-of-plane direction is taken as a reference. The energetically
most favourable configuration occurs when all the spins are aligned
along the out-of-plane easy axis, as shown in (b). Figure from: [26].

Notice that Jij is now a 3× 3 matrix. The diagonal elements contain the parameters
associated with symmetric exchange, the off-diagonal elements are associated with
the DMI. More information on how to calculate the DMI parameters out of the matrix
elements of the exchange matrix is given in section 2.1.3.

Magnetic Anisotropy

The symmetric exchange interaction will cause atomic spins to align parallel or anti-
parallel to the magnetic axis. But what will determine the direction of this magnetic
axis? The answer is found in the magnetic anisotropy of a material22. This anisotropy
will create one or more, energetically favourable, easy axes for the magnetization22.
As an example, we show in figure 1.6 that a CrI3 monolayer has an out-of-plane
magnetic anisotropy, i.e. the magnetic anisotropy energy (MAE) is minimized when
the spins point in the out-of-plane direction.

The anisotropy is determined by a few different contributions. On a micro-scale,
the anisotropy is influenced by properties like the shape and composition of a sam-
ple, and the presence of external forces and stresses on the material22. The main
contribution, however, results from the crystal structure on the atomic scale and is
called the magnetocrystalline anisotropy22. The latter will be the most important con-
tribution for an atomic scale description of magnetism in materials.

The lowest order contribution to the magnetocrystalline anisotropy is the single-
ion anisotropy (SIA)22. The SIA is caused by the crystal-field and the SOC. The crystal-
field, determined by the specific atomic positions in the crystal structure, will tend to
stabilize particular atomic orbitals22. This field, thus, leads to a preferential direction
of the orbital moment L. The spin S will now also align along a preferential direction,
i.e. one of the easy axes, as to minimize the (large) SOC of the material, which is a
positive interaction for less than half-filled shells22. Since the SOC is proportional to
∝ λL · S with λ > 0, the easy axis for the magnetization will lie orthogonal to the
orbital stabilized by the crystal-field. The MAE due to the SIA scales as7:

EMAE ∝ λ〈L〉 · 〈S〉+ λ2

∆
+

λ4

∆3 , (1.4)
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with ∆ the energy separation with the crystal-field excited states of the magnetic ion.
In CrI3, the orbital moment is quenched (i.e. 〈L〉 = 0) which causes the lowest order
term of equation (1.4) to vanish7. The second term arises from quantum fluctua-
tions of the orbital moment and will also vanish in CrI3 due to the purely octahedral
environment of the chromium atoms7. If this symmetry is broken, e.g. by the intro-
duction defects or strain in the lattice, this quadratic term can become non-zero. The
remnant term in the MAE now scales as λ4

∆3 resulting in an extremely small SIA7. The
SIA, thus, delivers only a minor contribution to the magnetic anisotropy of CrI3

7.
Whereas the SIA results from the interaction of a single-ion with the crystal-field,

the two-ion anisotropy is caused by the interaction of two neighbouring ions with each
other. The two-ion anisotropy behaves very similarly to the dipole-dipole interac-
tion, since it favours a head-to-tail spin configuration instead of a broadside one22.
Each magnetic atom will generate a magnetic field that exerts a force on all other
magnetic moments to try to align the moments with the field direction (cfr. demag-
netization field)22. On an atomic scale, however, this effect is negligibly small. Only
on larger, microscopic, scales the combined contribution of many magnetic moments
will have an important influence on the magnetization of the material22. Through
competition with the symmetric exchange interaction, this will for instance result in
the formation of magnetic domains22. In 2D CrI3, this magnetic dipolar interaction is
not an important contribution since it favors an in-plane anisotropy and CrI3 clearly
possesses an out-of-plane one7.

Another important contribution originates from anisotropy in the superexchange
in the form of two interactions, namely the DMI and the anisotropic symmetric ex-
change interaction7. As discussed earlier, the contribution of the former will vanish
in a CrI3 due to the crystal’s inversion symmetry. The latter is a higher-order contri-
bution to the conventional symmetric exchange interaction and is described by for-
mula λsSz

i Sz
j with λs 6= 0, otherwise the exchange interaction would be completely

isotropic7. In CrI3, this anisotropy in the superexchange is caused by the large SOC
of the ligand iodine atoms7.

In addition to explaining the the direction of the spin polarization, the magne-
tocrystalline anisotropy also explains why magnetism is possible in CrI3 in the first
place. In the next section, we explain how the presence of anisotropy makes sure
the Mermin-Wagner theorem no longer holds. From the above discussion, it be-
comes clear that, since the SIA is suppressed by the octahedral environment, the
anisotropic superexchange due to the (large) SOC of the iodine atoms is the leading
mechanism that introduces anisotropy into the CrI3 structure and, thus, enables the
existence of 2D magnetism7. Although this anisotropy in the symmetric exchange
interaction is the leading mechanism behind the magnetic anisotropy, we still opt to
also include the small contribution due to the SIA in our model. The SIA interaction
is included for each spin site Si, and is given by the following expression:

ĤSIA = ∑
i

AiiŜ2
i , (1.5)

in which the SIA-matrix Aii is a 3× 3 matrix.
It should be noted that we don’t necessarily require exactly the above three terms

to accurately describe the magnetic properties of a certain system. Depending on the
system, some terms can be omitted or added, e.g. a Zeeman term when an external
magnetic field is applied (ĤZ = gµB ∑i Ŝi · B), or more higher order terms of the
exchange interaction. However, for the systems treated in this thesis, it suffices to
only include aforementioned three terms in the Hamiltonian.



1.1. Magnetism in Flatland 11

1.1.4 Mermin-Wagner Theorem

In 1966, Mermin and Wagner published a famous article that excludes the possibility
of FM or AFM order in one-dimensional (1D) or 2D systems at finite temperatures5.
Their theorem states that long-range magnetic order is not possible in 1D and 2D
isotropic systems due to temperature induced excitations.

In the groundstate, the magnetization of a permanent magnet is fully saturated.
Augmented temperature can diminish the magnetization by inducing excitations
into the system22. One of the most elementary excitations that result from increased
temperature are spin-waves22. When a spin gets excited and starts to oscillate (cfr.
precession of the spins), the neighbouring spins will feel this oscillation and also
start to oscillate. Like this, excitations can propagate through the material as waves
in the magnetization, i.e. spin waves. A spin wave is, thus, a collective excita-
tion of a magnetic material. A spin-wave can propagate through the lattice with
wavevector q and energy εq = h̄ωq

22. Here h̄ is the reduced Planck constant and
ωq is the frequency. The wavevector and the frequency are related via the following
expression22:

h̄ωq = 2J S

[
Z−

Z

∑
i

cos q · δi

]
, (1.6)

in which the sum runs over the Z vectors δi connecting the nearest neighbouring
spin sites, factor J is the exchange constant between these spin sites and models the
strength of the symmetric exchange interaction.

Spin-waves are quantized, the quasi particle associated with one quantum of a
spin-wave is called a magnon. The total number of magnons excited at a tempera-
ture T is given by22:

nm =
∫ ∞

0

N
(
ωq
)

dωq

eh̄ωq/kBT − 1
, (1.7)

with kB the Boltzmann constant and N
(
ωq
)

the magnon density of states (DOS),
which scales as ω−1/2

q in 1D systems, is constant in 2D systems, and varies as ω1/2
q in

3D systems. For 1D or 2D materials at finite temperatures, this integral will diverge
(i.e. nm → ∞)22. There are, thus, an infinite amount of excitations and as a result no
magnetic order. In 3D systems, the integral does not diverge and magnetic order is
possible at finite temperatures22.

At first sight, the divergence of integral (1.7) poses an insurmountable obstacle
for physicists eager to study magnetism in 2D. There is, however, a way out of this
deadlock. Namely, this divergence only occurs in isotropic systems. When there is
anisotropy in the system, there arises a gap in the spin-wave spectrum at q = 022.
Due to formula (1.6), this gap also appears in the frequency spectrum. Consequently,
the lower limit of the integration in (1.7) will now be greater than zero and therefore
the divergence is avoided22.

In conclusion, if there is anisotropy in the material, 2D magnetic order is still pos-
sible. After all, the Mermin-Wagner theorem only holds for isotropic systems. As
discussed in the previous section, monolayer CrI3 has a strong out-of-plane magne-
tocrystalline anisotropy due to its SOC and, consequently, does show intrinsic mag-
netic behaviour7. This has been confirmed both theoretically6 and experimentally8.
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FIGURE 1.7: Spin configurations in magnetic skyrmions. Hedgehog
skyrmion (a) and spiral skyrmion (b) in a 2D ferromagnet with uni-
axial magnetic anisotropy along the vertical axis. Figure from: [29].

1.1.5 Magnetic Skyrmions

Earlier in this text, we briefly mentioned that DMI could potentially give rise to some
’exotic’ spin configurations like magnetic skyrmions. Although skyrmions will not
appear spontaneously in the systems under scrutiny in this thesis, they have already
been observed in monolayer CrI3 when an additional electric field is applied27. In
this section, we will briefly summarize the most interesting properties of skyrmions
since their presence in monolayer CrI3 is a big motivator to obtain a better under-
standing of DMI in CrI3.

Magnetic skyrmions are nanoscale spin configurations that can be formed in
magnetic materials. They were named after Tony Skyrme, a particle physicist who
contributed to the quantum field theory of interacting pions28. In the aftermath of
the publication of his theory, the term ’skyrmion’ was coined to describe topologi-
cally stable field configurations that appear as particle-like solutions29. Nowadays,
the term is used to talk about mathematically similar objects in many different con-
texts, from particle physics to Bose-Einstein condensation to material science29.

In a magnetic skyrmion, the spins will adopt a whirling configuration. They
can be found in both achiral and chiral arrangements. These two forms are respec-
tively called hedgehog skyrmions and spiral skyrmions. Other names used in liter-
ature are respectively Néel- and Bloch-type skyrmions, since skyrmions effectively
are circular Néel- and Bloch-type domain walls30. Examples of both arrangements
are depicted in figure 1.7 for the spins in a 2D ferromagnet with uniaxial magnetic
anisotropy. We call an object chiral when it is distinguishable from its mirror im-
age. The chirality — the intrinsic handedness — of magnetic skyrmions can be con-
trolled and switched, which creates the potential for the inclusion of skyrmions in
applications31.

Skyrmions are often called topologically protected spin configurations29. This
means that it’s impossible to continuously deform the structure to another magnetic
state29. In a skyrmion, the spins form a continuous field. If you want to change
the magnetization of the material to another — non-skyrmionic — magnetic state,
you will need to introduce a discontinuity to the spin field30 which requires a finite
amount of energy. In other words, you will need to overcome an energy barrier
to change the magnetic phase of the material. Skyrmions, thus, occur as stable or
metastable states of a material. Research shows that the height of this topological en-
ergy barrier is proportional to the strength of the symmetric exchange interaction30.

In the continuum approximation we we can characterize a skyrmion by its topo-
logical charge32:

Q =
1

4π

∫ ∫
M ·

(
∂x M × ∂y M

)
dxdy, (1.8)
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FIGURE 1.8: Lorentz microscopy image of a skyrmion lattice. The
skyrmions are of the spiral-type and were observed in a 2D ferro-
magnet with an uniaxial magnetic anisotropy along the vertical axis.

Figure from reference: [29].

with M(x, y) the reduced magnetization. The topological charge or skyrmion num-
ber is an integer that indicates how many times the spins wind around when pro-
jected onto a unit sphere. If Q 6= 0 we call the spin configuration topologically non-
trivial, i.e. a skyrmion or another topologically protected spin texture is present33.
On the other hand, when Q = 0 the material has a uniform or trivial spin configura-
tion e.g. a FM one33.

In most cases investigated up until now, magnetic skyrmions originate in crystals
where DMI is present29. The lack- or breaking of inversion symmetry in layered
magnetic materials, i.e. the creation of Moiré patterns, could possibly result in a
non-zero DMI29. When the DMI is sufficiently large, this could result in the creation
of skyrmions in the lattice29. However, in a lot of materials skyrmions won’t appear
spontaneously since they require a uniform DMI in the material and, therefore, we
need to apply an extra electric- or magnetic field to introduce them. However, the
non-zero DMI could give rise to spin canting or perhaps other spin textures. Due
to the crystal periodicity, skyrmions can arise on multiple sites in a material with a
certain periodicity, i.e. they can form a skyrmion lattice (see figure 1.8). The DMI
is a chiral interaction, the chirality of the DMI will determine the chirality of the
skyrmion.

If we want to use skyrmions as information carriers in devices (see section 1.2),
we need to be able to move them at low energy costs. Recently, both a current-
induced rotation and motion of skyrmion lattices has been observed in experiments29.
The current densities that are required to move skyrmion lattices are very small, i.e.
106 A/m2, which is a factor 105 to 106 smaller than the current needed to move
magnetic domain walls29. According to micromagnetic simulations, the motion of
individual skyrmions should also be possible but this has not yet been observed
experimentally29. Although, a lot of research still has to be done before skyrmions
can be integrated in actual applications, the first results definitely look promising.
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1.2 Magnetic Monolayers in Action

Due to their interesting properties, magnetic monolayers show great promise for
inclusion in applications. In this section, we first discuss how the magnetism in these
materials can be controlled and tailored to match specific requirements. Afterwards,
we examine some potential applications where we can see 2D magnetism in action.

1.2.1 Tailoring of Magnetic Properties

While designing applications, we sometimes want to enhance or control certain
properties or effects in materials. Materials used in devices often require a very
specific set of properties to guarantee an optimal performance of the application. To
meet demand, scientist came up with several methods to tune the properties of ma-
terials. Here, we briefly summarize some of these methods that have been applied
to tune the magnetism in CrI3.

The electronic- and magnetic properties of solids are often heavily depended on
the crystal structure. Both the symmetry and composition of a crystal can influence
the magnetism of the material. Studies have shown that there is a clear coupling be-
tween the crystal structure and magnetism in CrI3

6. Also, from our discussion on the
origin of 2D magnetism (see section 1.1.3), it becomes clear that all important mag-
netic interactions — i.e. superexchange, DMI and magnetocrystalline anisotropy —
are in one way or another dependent on the crystal structure. In scientific literature
on CrI3, we find several examples were a change in the crystal structure resulted in
a change of the magnetic order. For example, applying strain on a CrI3 monolayer
can introduce magnetic phase transitions34. The ground state of 2D CrI3 is FM un-
der compression, but becomes AFM under tension34. Studies have also shown that
introducing atomic-scale defects in the crystal structure of a CrI3 monolayer, most
notably vacancies, can drive local FM to AFM phase transitions35. This is due to the
lattice distortions that result from the defects35. The magnetism of CrI3 also depends
on the stacking order of the layers. Depending on how the layers are stacked, a CrI3
bilayer will have either a FM- or an AFM ground-state. We will discuss this in more
detail in chapter 4. Also, combining layers of different materials in a heterostrcuture
can influence the functionalities of a material, e.g. the magnetic proximity effect or
the creation of Moiré patterns due to a lattice mismatch. As mentioned earlier, we
can also create Moiré patterns by twisting one or more layers in a structure.

Tailoring of magnetic properties can occur not only by internal changes in the
crystal structure but also by applying external forces like electric- and magnetic
fields. It is for instance well known that magnetic moments will try to align them-
selves with magnetic fields as to minimize their energy. In bilayer CrI3, an external
magnetic field can convert an AFM order to a FM one by flipping the spins in one
of the layers8. To achieve such a magnetic phase transition one needs a very strong
magnetic field which is often impractical in applications. Research shows that apply-
ing electric fields can lower the magnetic field needed to achieve such phase transi-
tions, and in some cases even make the need for a magnetic field redundant36,37. The
electric field control of magnetism will prove to be an indispensable concept when
trying to understand some of the devices that we discuss further on in this chapter.
Hence, let’s analyse this effect in a little more detail.



1.2. Magnetic Monolayers in Action 15

1.2.2 Control of Magnetism by Electric Fields

One of the most effective ways we can tailor the magnetism in materials is by apply-
ing an electric field, this is often called gating36. The conventional way to achieve
gate-controlled magnetism is by depositing a conducting material above and below
the magnetic layer to serve as gates36. When the two gates have an opposite polarity,
they impose an electric field perpendicular to the magnetic layer with a magnitude
proportional to the voltage difference. No net charge will accumulate on the mag-
netic layer. Alternatively, when the gate voltages have the same polarity, the electric
field can be made to vanish and charge can accumulate on the layer. Depending on
the sign of the voltages these charges will either be electrons or holes. This accumula-
tion of charge carriers is called electrostatic doping of the material. Research shows
that electrostatic doping can reduce the magnetic field needed to switch from an
AFM to the a FM state in bilayer CrI3

37. The same study suggests that for very high
doping concentrations this transition can occur even in the absence of an external
magnetic field. In monolayer CrI3, doping significantly modifies the saturation mag-
netization, coercive force and Curie temperature, showing strengthened/weakened
magnetic order with hole/electron doping37. Electrostatic doping is a key concept
in the context of spin-dependent transistors based on magnetic monolayers.

As mentioned earlier, electric fields are also very important when considering
magnetic skyrmions. After all, skyrmions can only appear in materials with a big
enough uniform DMI. Electric fields can be used to introduce this uniform DMI in
magnetic monolayers.

1.2.3 Spintronics

Spintronics — contraction of ’spin electronics’ — is the field that tries to exploit the
spin of electrons, in addition to their charge, for utilization in (nanoscale) electronic
devices. In what follows, we shortly review some promising spintronic device con-
cepts based on magnetic monolayers. First, we take a look at a spin-dependent
transistor developed recently12. This type of device show great promise towards
achieving non-volatile data storage and more energy-efficient transistors12. After-
wards, we discuss an interesting paper that proposes the use of magnetic skyrmions
as information carriers in memory devices.

Transistor Based on a Graphene/CrI3 Heterostructure

Recent studies report a potentially interesting tunnel field-effect transistor (TFET),
based on a graphene/CrI3/graphene heterostructure12. The device features bilayer
or four layers of CrI3 sandwiched between two bilayer graphene samples creating a
vertical tunnel junction, as shown in figure 1.9. Above and below the the graphene
bilayers we find top and bottom gates made from few-layer graphite electrodes and
hBN gate dielectrics. The gate potentials provoke an electric field that can control
the current flow. Monolayer hBN serves as a good insulator due to its high bandgap
of 6.07 eV2. A current flows through the device due to the quantum tunnelling of
electrons from the source contact, through the CrI3 layers, to the drain contact. The
choice for bilayer graphene, rather than a monolayer, as the source- and drain con-
tacts, is motivated by its bandgap. The gates can tune the Fermi level of the graphene
contacts to modulate the tunnel conductance, the device can be put in the off-state
by tuning the Fermi level into the bandgap. When using a gapless monolayer for
the contacts, no off-state of the device can be observed. In this setup, the CrI3 bilayer
serves as a spin-filter, which allows us to obtain (highly) spin-polarized tunnelling
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FIGURE 1.9: TFET based on a graphene/CrI3 heterostructure. Op-
erational principle of a spin-TFET based on a gate-controlled spin-
flip transition in bilayer CrI3 and spin filtering in the tunnel junction.
Arrows indicate the spin orientation in the CrI3 layers. The left and
right panels correspond to a low and a high tunnel conductance state,

respectively12. Figure from reference: [12].

currents. The spin-filter effect is based on the fact that there is an exponential de-
pendence of the tunnel current on the tunnel barrier height38. Each monolayer of
CrI3 can now be thought of as a spin-filter for electrons with different tunnel bar-
rier heights for spin- up and spin-down electrons12. When the bilayer is in its AFM
ground state (figure 1.9, left), spin-up and spin-down electrons will experience ap-
proximately the same tunnel barrier height. Apart from tuning the Fermi level of
the contacts, the gates can also induce a spin flip in the CrI3 bilayer, as discussed
in section 1.2.2. The electric field causes a huge reduction in the external magnetic
field required for the spin-flip. When the bilayer is in the FM phase (figure 1.9,
right), the barrier for one flavour of spins is reduced, the barrier for the other layer
is increased. Due to the exponential dependence of the tunnelling probability on
the barrier height, this will result in a greater overall electron transmission and a
polarized spin current.

This device concept shows great promise for the future of TFET devices as it ef-
fectively provides us with spin-dependent outputs that are voltage-controllable and
reversible12. However, in order to function properly, the device requires a non-zero
bias magnetic field and low temperatures, the latter due to the Curie temperature of
CrI3, which is a serious obstacle for the device to become viable for usage in realistic
conditions. The goal in future research will be to overcome these limitations by in-
terchanging CrI3 for other materials with higher critical temperatures and to achieve
more efficient gating to eliminate the need for a bias magnetic field.

Skyrmions on the Track

Due to their relatively small size, the possibility to move them with small electric
currents and their relative stability, magnetic skyrmions show a lot of promise to
function as information carriers in spintronic memory and/or logic devices29. In
the following, we discuss a memory device similar to domain wall based racetrack
memory, but were the information is now encoded in a sequence of skyrmions in-
stead of magnetic domains.

A racetrack memory device (figure 1.10) consists out of nanowires constructed
from magnetic material. The nanowire is compartmentalized in many different
equally big domains. Bits of information can be stored in the nanowire by assigning
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FIGURE 1.10: Topological racetrack memory based on magnetic
skyrmions. The device consists out of nanowires that are divided
in compartments. We assign a ’1’ or ’0’ to a compartment depending
on the fact it contains a skyrmion or not. Information can be read
or stored from/on the wire by a read-out and write-in device respec-
tively. The compartments move through the wire via current pulses.

Figure from reference: [33].

a ’1’ to a domain with a non-zero topological charge (Q 6= 0), i.e. a domain that con-
tains a skyrmion, and a ’0’ to a domain with trivial topology (Q = 0)33. A sequence
of magnetic domains, i.e. a sequence of zero’s and one’s, gives rise to byte’s of in-
formation. We can write information in the nanowire by nucleation or destruction
of skyrmions by electric fields. The information contained in a wire can be read by
measuring the topological Hall effect. By applying current pulses, we can shift the
whole magnetic domain pattern to move them over the read and write devices.

The interest in domain wall and skyrmion based racetrack memory devices is
motivated by the prospect of achieving non-volatile data storage that could revolu-
tionize the way we store data. IBM fellow Stuart Parking who invented the domain
wall racetrack device, describes it as ’a solid state memory with the same low cost of
a disk drive but with a performance 10 million times better’39. The skyrmion based
racetrack takes this idea even further. Skyrmions can be much closer together than
domain walls, and consequently there fit more skyrmions on a piece of material than
domain walls which results in a bigger information density. Using skyrmions, thus,
leads to faster information flows for similar current densities in comparison to do-
main wall version29. The goal of future research is now to improve our knowledge
about skyrmion tuning, to achieve a better control of skyrmion motion and nucle-
ation, and to obtain small diameter skyrmions at room-temperatures.

1.2.4 Magnonics

Magnonics is the field that concerns the study of spin waves in magnetic materials,
and tries to exploit the properties of spin waves in applications. Possible applica-
tions include transmission, storage and processing of information. In this section,
we briefly discuss some interesting concepts within the field of magnonics.
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FIGURE 1.11: Schematic figure of two spin wave modes observed in
CrI3 with Raman spectroscopy. The cones represent the precession
trajectories of the spins (black arrows). The precession of the spins on
the two chromium sublattices are out-of-phase (right) and in-phase
(left), which corresponds to the high- and low-energy modes respec-

tively. Figure from reference: [40].

In spintronic devices, the frequency of spin waves determines the switching
speed of the device. Current state-of-the-art devices based on Heisenberg ferromag-
nets have switching speeds in the GHz range40. Frequencies in the THz regime had
not been achieved yet since these materials only have a weak magnetic anisotropy40.
The discovery of 2D CrI3 creates new opportunities to achieve high-frequency spin
waves due to its interesting properties, namely, its strong magnetic anisotropy in the
out-of-plane direction and its large exchange coupling between adjacent chromium
atoms40. Recently, Raman spectroscopy confirmed the presence of at least two spin
wave modes in CrI3 at respectively 2.28 THz and 3.75 THz40. The same experiment
also showed that the frequencies of these two spin modes remained constant for
structures with a thickness between ten layers and a monolayer. The two spin wave
modes correspond to respectively a high energy mode where adjacent spins pre-
cess out-of-phase and a low energy mode with an in-phase precession of the spins40.
Both modes are depicted in figure 1.11. The spin waves in CrI3 had a lifetime of
the order of 10-100 ps40. These unique characteristics of spin waves in CrI3 create
opportunities for the development of extremely fast spintronic devices.

Another hot-topic in the field of magnonics are the so-called magnonic crystals.
Magnonic crystals are artificially created materials with a specific periodic variation
that can significantly influence the spectra of spin waves that propagate through
it (cfr. how photonic crystals influence photon spectra). In correspondence with
Bloch’s theorem, such a periodic modulation of the material results in the formation
of a spin wave band structure with a possible band gap. On a microscopic scale a
magnonic crystal can be created by creating holes and groves in the material. Other
ways to create a magnonic crystal include periodic electric gating, strain engineer-
ing or by growing the the 2D material on top of a substrate with a specific pattern
that matches the requirements41. A magnonic crystal for THz frequencies is very
hard to create with the aforementioned methods as it requires a modulation period
of only a few nanometers41. In a recent paper, researchers here at the university of
Antwerp showed that it is possible to create such a magnonic crystal by the intro-
duction of Moiré patterns in the structure41. By depositing a non-magnetic molyb-
denum(IV)selenide (MoSe2) layer on top of a magnetic CrBr3 layer they were able to
create a Moiré pattern, due to the lattice mismatch of the two materials, that serves as
a magnonic crystal41. This study shows that it is possible to create magnonic crystals
in the THz regime.

Due to their THz magnonic properties and the possibility to use them to create
magnonic crystals, chromium trihalids have gained a lot of interest from the research
community to study spin waves.
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1.3 Outline of the Thesis

Both the discovery of new interesting functionalities and the promise of novel inno-
vative applications motivate the increased interest in 2D magnetic materials. As the
size of electronic devices keeps shrinking (cfr. Moore’s law), more and more scien-
tists and engineers turn the the field of 2D materials in search for new innovations.
In order to be able to construct devices for a wide range of applications, we require
many different materials with a wide range of properties. Off-course 2D magnetism
can not be absent in the engineering toolbox. As the first ever discovered 2D magnet,
CrI3 has proven to be a unique platform to study the behaviour of magnetism in 2D.
Especially the high tunability of the magnetic parameters, e.g. by lattice straining,
electric gating, layer stacking or layer twisting among other techniques, is key for
the manipulation of magnetic textures, e.g. domain-walls, spin-waves or magnetic
skyrmions, which opens up an abundance of new possibilities for device concepts41.
Also, the possibility to create magnonic applications in the THz regime has gener-
ated a lot of interest from the research community for CrI3.

In this thesis, we focus on monolayer and bilayer CrI3, and more precisely on
the influence of stacking and twisting of the layers on the magnetic properties. First,
we calculate several magnetic parameters that model the behaviour of the material,
i.e. the symmetric- and anti-symmetric exchange parameters, and the single-ion
anisotropy parameters. We will determine these parameters for the monolayer, the
bilayer in three different stacking orders and for a twisted bilayer. We’ll discuss how
this stacking and twisting changes the magnetic parameters. Afterwards, we inves-
tigate for each system the dynamics of the magnetic spins which are described by the
Landau-Lifshitz-Gilbert (LLG) equation. More precisely, we will take a look at some
(meta)stable spin configurations of the systems, calculate the Curie temperature and
study the behaviour of spin waves.

In chapter 2, we describe the methodology that was used to perform the cal-
culations. The Heisenberg model is used to describe the interactions between the
spins. We calculate the energy of different magnetic configurations of the system us-
ing density functional theory (DFT), and map these energies on the corresponding
Heisenberg Hamiltonian. This method is called four-state energy mapping (4SM).
Chapter 2 discusses both the theoretical background on which 4SM and DFT are
based, and how they are implemented in practice. Once we have obtained the mag-
netic parameters, we can set up a model to investigate the spin dynamics via the
LLG equation. In the last section of chapter 2, the theory behind these spin dynam-
ics simulations will be explained.

In chapter 3 and 4, we apply this methodology to respectively the CrI3 mono-
layer and bilayer. The crystal structures are optimized, the magnetic exchange pa-
rameters are calculated and the spin dynamics are simulated. For the bilayer, we
consider three different stacking orders of the layers. Finally, we will also calculate
the magnetic parameters for a twisted bilayer, and discuss the influence of the twist.

Finally, in chapter 5, we discuss the significance of the obtained results and give
an outlook on further opportunities and challenges in the exciting field of 2D mag-
netic materials.
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Chapter 2

Methodology

In this chapter, we describe a method that can be used to investigate the magnetic
properties of materials. Interactions between magnetic moments can be modelled by
the Heisenberg spin Hamiltonian. To obtain the magnetic exchange parameters that
appear in the Heisenberg model, we use a very effective technique called four-state
energy mapping (4SM). In the first section of this chapter, we will derive the formula
for the magnetic exchange parameters, the DMI parameters, and the SIA parameters.
Afterwards, we give an introduction to density functional theory (DFT) which is a very
powerful computational method to study the electronic structure of materials. In the
4SM method, we will use DFT to calculate the energies of several magnetic configu-
rations of a system, and then map these energies on their corresponding Heisenberg
Hamiltonians. This energy mapping produces a system of equations that can be
solved algebraically to obtain the magnetic exchange parameters. In the final sec-
tion of this chapter, we discuss a method that can be used to study the dynamics
and relaxation of spins in our material.

2.1 Four-State Energy Mapping

2.1.1 Heisenberg Hamiltonian

Magnetism in materials is caused by the interaction of atomic spins. The three inter-
actions that will be included in our model for this thesis are: the symmetric exchange
interaction, the anti-symmetric exchange interaction or DMI, and the SIA. In section
1.1.3 of the previous chapter, we discussed the origin of these interactions, and how
they influence the behaviour of the spins in CrI3. The different contributions are
included in our model by adding their corresponding terms (see section 1.1.3) to
the Hamiltonian. Now, the resulting interaction between the atomic spins can be
described by the following Heisenberg Hamiltonian42:

Ĥ = ∑
i<j

JijŜi · Ŝj + ∑
i

AiiŜ2
i , (2.1)

in which the spins are 3D vectors Si = (Sx
i , Sy

i , Sz
i ) expressed in Cartesian coordi-

nates. In the remainder of this work, we will drop the operator sign above the spins
for the sake of notational simplicity. The strength of these interactions is determined
by respectively the exchange matrix Jij and the SIA matrix Aii. To deduce which
magnetic configurations will occur in CrI3, we need to calculate all components of
these matrices. In the next three sections, formula for these parameters will be de-
rived. The 4SM procedure provides us with expressions for these parameters that
depend solely on the magnitude of the spin S, and the energies of four different
magnetic configurations that can be calculated with DFT.
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2.1.2 Exchange Parameters

The exchange matrix Jij is a 3× 3 matrix and, thus, contains nine parameters. Each
parameter characterizes the interaction between a Cartesian component of the ith

spin and a component of the jth spin. For instance, the interaction between Sy
i and

Sz
j is determined by Jyz

ij , or equivalently by Jzy
ij (≡ Jyz

ij ). The matrix elements can be

written more generally as Jαβ
ij with α, β = x, y, z. Notice that, in general, Jαβ

ij 6= Jβα
ij for

α 6= β, but the symmetry of the crystal might impose this equality on the system42.
To obtain the exchange parameters, we will, for the most part, follow the deriva-

tion as presented by Sabani et al. in reference [42] . We start the derivation by writing
out the decomposition of Heisenberg Hamiltonian (2.1) in Cartesian components:

Ĥ = ∑
i<j

∑
α,β

Sα
i · J

αβ
ij · S

β
j + ∑

i
∑
α,β

Sα
i · A

αβ
ii · S

β
i . (2.2)

Now, we select two arbitrary spin sites i = 1 and j = 2. Further, we select α = x
and β = z and will, thus, derive the formula for the exchange parameter Jxz

12 . There
is nothing special about the choice for this specific matrix element or these specific
spin sites, the derivation of other exchange parameters will be completely analo-
gous. Hence, it suffices to only present one derivation in this work. We continue the
derivation by writing all the terms containing the two chosen spin sites separately:

Ĥ =∑
α,β

Sα
1 · J

αβ
12 · S

β
2 + ∑

j 6=2
∑
α,β

Sα
1 · J

αβ
1j · S

β
j + ∑

i 6=1
∑
α,β

Sα
i · J

αβ
i2 · S

β
2 + ∑

i 6=1,j 6=2
∑
α,β

Sα
i · J

αβ
ij · S

β
j

+ ∑
α,β

Sα
1 · A

αβ
11 · S

β
1 + ∑

α,β
Sα

2 · A
αβ
22 · S

β
2 + ∑

i 6=1,2
∑
α,β

Sα
i · A

αβ
ii · S

β
i . (2.3)

Let’s introduce four different magnetic states of the system. Afterwards, we fill in
these states in equation (2.3) to obtain the energy of each state. Now, it starts to
become clear where this method got its name from. The four magnetic states are:

• State 1: S1 = (S, 0, 0), S2 = (0, 0, S);

• State 2: S1 = (S, 0, 0), S2 = (0, 0,−S);

• State 3: S1 = (−S, 0, 0), S2 = (0, 0, S);

• State 4: S1 = (−S, 0, 0), S2 = (0, 0,−S).

We know that, for CrI3, the spin has a value of S = 3/2 (see section 1.1.2). However,
we will not fill in this value yet in order to keep the derivation more general. Since
we want to calculate parameter Jxz

12 , spin S1 is oriented along the x-direction and
spin S2 along the z-direction, both spins are oriented either parallel or anti-parallel
to these axes depending on which of the four states we are considering. In all four
magnetic states, all other spins are pointed along the y-axis, i.e. Si 6=1,2 = (0, S, 0) or
(0,−S, 0), and are, thus, oriented perpendicular to S1 and S2. Notice that in these
four states, spins S1, S2 and Si 6=1,2 are all orthogonal with respect to each other. As
will become clear in the next section, matrix element Jxz

12 , and all other off-diagonal
elements of the exchange matrix, are closely related to the DMI which tries to orient
all spins perpendicular to each other. We want to point out that the diagonal ele-
ments of the exchange matrix, i.e. Jxx

12 , Jyy
12 or Jzz

12, are the exchange parameters asso-
ciated with the symmetric exchange interaction. If we would like to calculate these
diagonal elements, we choose both S1 and S2 alternately parallel or anti-parallel
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along respectively the x-, y- and z-direction, and all the other spins perpendicular to
them. It are, thus, the diagonal elements that determine whether the spins favour a
parallel or an anti-parallel orientation and, consequently, whether the ground state
of the material is FM or AFM. In contrast, the off-diagonal elements give us more
information about spin canting, but more on that in the next section. Back to the
derivation! Remember that the expectation value of the Hamiltonian is equal to the
total energy of the system. By filling in the four magnetic states in expression (2.3),
we will, thus, obtain the energies of the four states. These energies are:

E1 = S · Jxz
12 · S + ∑

j 6=2
S1 · J

xy
1j · S + ∑

i 6=1
S · Jyz

i2 · S + ∑
i 6=1,j 6=2

S · Jyy
ij · S

+ S · Axx
11 · S + S · Azz

22 · S + ∑
i 6=1,2

S · Ayy
ii · S. (2.4)

E2 = − S · Jxz
12 · S + ∑

j 6=2
S1 · J

xy
1j · S−∑

i 6=1
S · Jyz

i2 · S + ∑
i 6=1,j 6=2

S · Jyy
ij · S

+ S · Axx
11 · S + S · Azz

22 · S + ∑
i 6=1,2

S · Ayy
ii · S. (2.5)

E3 = − S · Jxz
12 · S−∑

j 6=2
S1 · J

xy
1j · S + ∑

i 6=1
S · Jyz

i2 · S + ∑
i 6=1,j 6=2

S · Jyy
ij · S

+ S · Axx
11 · S + S · Azz

22 · S + ∑
i 6=1,2

S · Ayy
ii · S. (2.6)

E4 = S · Jxz
12 · S−∑

j 6=2
S1 · J

xy
1j · S−∑

i 6=1
S · Jyz

i2 · S + ∑
i 6=1,j 6=2

S · Jyy
ij · S

+ S · Axx
11 · S + S · Azz

22 · S + ∑
i 6=1,2

S · Ayy
ii · S. (2.7)

Apart from some changes in sign of the exchange terms here and there, these ex-
pressions are actually quite similar. The SIA terms are identical in all four states. We
now got a system of four equations that we will solve for Jxz

12 . By adding E1 and E4
and then subtracting E2 and E3, a lot of the terms will cancel out. We are left with:

E1 + E4 − E2 − E3 = 4S2 · Jxz
12 . (2.8)

From this, we can quite easily isolate the exchange parameter:

Jxz
12 =

E1 + E4 − E2 − E3

4S2 . (2.9)

Here, we derived the expression for the case where i = 1, j = 2, α = x and β = z.
The derivation for other matrix elements will be completely analogous (except for
the choice of the four states). We can extend expression (2.9) to the general case that
is valid for each element:

Jαβ
ij =

E1 + E4 − E2 − E3

4S2 . (2.10)

Note that this equation is applicable to any magnetic crystal, independent of the
crystal symmetry or other structural constraints42.
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2.1.3 Dzyaloshinskii–Moriya Interaction Parameters

In the previous section, we already dropped a hint that the DMI parameters are
very closely related to the off-diagonal elements of the exchange matrix. The anti-
symmetric exchange interaction, or DMI, is characterized by the DMI vector (see
section 1.1.3 for more information). The three components of this vector for the
interaction between a spin Si and a spin Sj are calculated as follows42:

Dx
ij =

1
2
(Jyz

ij − Jzy
ij ),

Dy
ij =

1
2
(Jzx

ij − Jxz
ij ),

Dz
ij =

1
2
(Jxy

ij − Jyx
ij ), (2.11)

in Cartesian coordinates. The exchange parameter Jxz
12 that we calculated in the pre-

vious section, is thus, used in the calculation of the y-component of the DMI-vector.
Notice that in systems with a symmetric exchange matrix, i.e. Jαβ

ij = Jβα
ij , the DMI will

be zero. In materials where this symmetry is broken, a non-zero DMI vector might
appear. In the special case where the matrix is anti-symmetric, i.e. Jαβ

ij = −Jβα
ij , the

DMI-components can be simplified to:

Dx
ij = Jyz

ij = −Jzy
ij ,

Dy
ij = Jzx

ij = −Jxz
ij ,

Dz
ij = Jxy

ij = −Jyx
ij . (2.12)

As explained in section 1.1.3, the DMI will try to force the spins in a orthogo-
nal configuration. In practice, there will be competition between the DMI and the
symmetric exchange interaction, which tries to implement a parallel or anti-parallel
configuration, and the SIA, which tries to order all the spins along one specific ener-
getically favourable direction. If DMI is present in a system, usually, its only effect
will be a slight canting of the spins with respect to the anisotropic axis.

2.1.4 Single-Ion Anisotropy Parameters

Finally, we will also derive a formula for the SIA parameters of a magnetic system.
Again, we will follow the derivation as presented by Sabani et al. in reference [42].
Unlike the exchange matrix, the SIA matrix has to be symmetric42. This is because
the SIA parameters model the interaction between the spin components of one and
the same single-ion42. Naturally, the interaction between spin components Sα

i and
Sβ

i is off course identical to the interaction between spin components Sβ
i and Sα

i , with
α, β = x, y, z. Due to this symmetry, one only needs to calculate six matrix elements
to construct the full SIA matrix, namely, the three diagonal elements and the three
upper (or lower) off-diagonal elements. As will turn out, we need two different
formula to calculate all the matrix elements, one for the diagonal elements, and one
for the off-diagonal elements. The derivations themselves are pretty similar to the
derivation of the exchange matrix that we presented earlier, a single exception being
that we now select only one spin site instead of a spin pair42.

We will present the derivation for an arbitrary spin site i = 1, the final formula
can again be extended to the general case pretty easily. Let’s start out by writing the
decomposition of Heisenberg Hamiltonian (2.1) in Cartesian components, the terms
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containing components of spin S1 are written separately:

Ĥ = ∑
1<j

∑
α,β

Sα
1 · J

αβ
1j · S

β
j + ∑

1<i<j
∑
α,β

Sα
i · J

αβ
ij · S

β
j

+ ∑
α,β

Sα
1 · A

αβ
11 · S

β
1 + ∑

i 6=1
∑
α,β

Sα
i · A

αβ
ii · S

β
i . (2.13)

The off-diagonal elements describe the interaction between different (Cartesian)
spin components of the same ion. We need to calculate three off-diagonal elements,
namely, Axy

11 = Ayx
11 , Axz

11 = Azx
11 and Ayz

11 = Azy
11. The equalities are off course valid

because the SIA matrix is symmetric. Our final formula will be valid for all three el-
ements but, as an example, we perform the derivation for the Axy

11 parameter. Again,
we continue by defining four different magnetic states of our system. In this specific
case, we choose our spin S1 in such a way that it lies along the diagonals of the xy-
plane. The spin S1 will, thus, make a 45◦ angle with both the x- and y-axis. The four
states are:

• State 1: S1 =
(√

2
2 S,

√
2

2 S, 0
)

;

• State 2: S1 =
(√

2
2 S,−

√
2

2 S, 0
)

;

• State 3: S1 =
(
−
√

2
2 S,

√
2

2 S, 0
)

;

• State 4: S1 =
(
−
√

2
2 S,−

√
2

2 S, 0
)

.

All other spins in the system will be oriented along the z-axis, i.e. Si 6=1 = (0,0,S)
or (0,0,-S). For the Axz

11 and Ayz
11 parameters, the choice of the four states is pretty

analogous. The spin S1 is chosen along the xz- or yz-plane respectively and all other
spins are pointed along the axis perpendicular to this plane. By filling in these four
states in equation (2.13), we can obtain the energies of each of the four states. These
energies are:

E1 = ∑
1<j

√
2

2
S · Jxz

1j · S + ∑
1<j

√
2

2
S · Jyz

1j · S + ∑
1<i<j

S · Jzz
ij · S

+
S2

2
· Axx

11 +
S2

2
· Axy

11 +
S2

2
· Ayx

11 +
S2

2
· Ayy

11 + ∑
i 6=1

S · Azz
ii · S. (2.14)

E2 = ∑
1<j

√
2

2
S · Jxz

1j · S−∑
1<j

√
2

2
S · Jyz

1j · S + ∑
1<i<j

S · Jzz
ij · S

+
S2

2
· Axx

11 −
S2

2
· Axy

11 −
S2

2
· Ayx

11 +
S2

2
· Ayy

11 + ∑
i 6=1

S · Azz
ii · S. (2.15)

E3 =−∑
1<j

√
2

2
S · Jxz

1j · S + ∑
1<j

√
2

2
S · Jyz

1j · S + ∑
1<i<j

S · Jzz
ij · S

+
S2

2
· Axx

11 −
S2

2
· Axy

11 −
S2

2
· Ayx

11 +
S2

2
· Ayy

11 + ∑
i 6=1

S · Azz
ii · S. (2.16)
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E4 =−∑
1<j

√
2

2
S · Jxz

1j · S−∑
1<j

√
2

2
S · Jyz

1j · S + ∑
1<i<j

S · Jzz
ij · S

+
S2

2
· Axx

11 +
S2

2
· Axy

11 +
S2

2
· Ayx

11 +
S2

2
· Ayy

11 + ∑
i 6=1

S · Azz
ii · S. (2.17)

Again, we find pretty similar expressions for the four energies, the only difference
are some sign changes. We solve this system of equations by adding E1 and E4 and
then subtracting E2 and E3 from that result, a lot of the terms will cancel out. We end
up with:

E1 + E4 − E2 − E3 = 2S2 · Axy
11 + 2S2 · Ayx

11 = 4S2 · Axy
11 , (2.18)

where Axy
11 = Ayx

11 due to the symmetry of the SIA matrix. If we isolate the SIA pa-
rameter, we get the final formula:

Axy
11 =

E1 + E4 − E2 − E3

4S2 . (2.19)

This expression can be extended to the general formula that is valid for all off-
diagonal (α 6= β) SIA parameters:

Aαβ
ii =

E1 + E4 − E2 − E3

4S2 . (2.20)

Again, note that this equation is applicable to any magnetic crystal, independent of
the crystal symmetry or other structural constraints42. It’s very hard not to see the
similarities between both the derivation and the final result of the exchange parame-
ters on one hand and the off-diagonal SIA parameters the other hand. However, for
the diagonal elements of the SIA matrix, the final formula will look a little different.

For the diagonal elements, it suffices to calculate only two reduced terms instead
of calculating all three the diagonal elements. The total spin is related to its com-
ponents by the relation S2

i = (Sx
i )

2 + (Sy
i )

2 + (Sz
i )

2. By using this relationship, each
spin component can be represented by the total spin (which is known for a given
material) and the two other components. Let’s illustrate this more concretely. The
diagonal part of the SIA Hamiltonian can be written as42:

Ĥdiag
SIA = ∑

i
∑
α

Sα
i · Aαα

ii · Sα
i

= ∑
i

Sx
i · Axx

ii · Sx
i + ∑

i
Sy

i · A
yy
ii · S

y
i + ∑

i
Sz

i · Azz
ii · Sz

i

= ∑
i

Axx
ii · S2

i + ∑
i
(Ayy

ii − Axx
ii ) · (S

y
i )

2 + ∑
i
(Azz

ii − Axx
ii ) · (Sz

i )
2, (2.21)

where we substituted relationship (Sx
i )

2 = S2
i − (Sy

i )
2 − (Sz

i )
2 in the second step.

In this equation, the first term is actually not important, the second and third term
already contain all the necessary information about the three diagonal elements42.
Now, we will derive the formula to calculate these two reduced terms. We will do
this for term Ayy

11 − Axx
11 as an example, off course the general formula we obtain in

the end is also valid for the Azz
11 − Axx

11 term and for any other reduced term on other
spins sites Aα′α′

ii − Aαα
ii . Without the loss of generality, we choose an arbitrary spin

site with spin S1 for which we will do this derivation42. The reduced term Ayy
11 − Axx

11
contains the SIA parameters for the x- and y-direction. Consequently, we define the
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following four magnetic states for our derivation:

• State 1: S1 = (0, S, 0);

• State 2: S1 = (0,−S, 0);

• State 3: S1 = (S, 0, 0);

• State 4: S1 = (−S, 0, 0).

All other spins in the material will be pointed along the z-direction, i.e. Si 6=1 = (0,0,S)
or (0,0,-S). By filling in these four states in equation (2.13), we can obtain the energies
of each of the four states. These energies are:

E1 = ∑
j>1

S · Jyz
1j · S + S · Ayy

11 · S + ∑
i 6=1

S · Azz
ii · S. (2.22)

E2 = −∑
j>1

S · Jyz
1j · S + S · Ayy

11 · S + ∑
i 6=1

S · Azz
ii · S. (2.23)

E3 = ∑
j>1

S · Jxz
1j · S + S · Axx

11 · S + ∑
i 6=1

S · Azz
ii · S. (2.24)

E4 = −∑
j>1

S · Jxz
1j · S + S · Axx

11 · S + ∑
i 6=1

S · Azz
ii · S. (2.25)

When comparing these energies, we see that only in the first and second term of
each expression there are some minor sign- and index changes, the third term is
completely identical in all four expressions. To solve this system of equations, we
add E1 and E2 together, and then subtract E3 and E4 from that result. We are left
with:

E1 + E2 − E3 − E4 = 2S2 · Ayy
11 − 2S2 · Axx

11 , (2.26)

which results in the following formula for the reduced term:

Ayy
11 − Axx

11 =
E1 + E2 − E3 − E4

2S2 . (2.27)

There are, thus, two small differences between this derivation and the previous two
derivations, namely, the choice of the four states and the energies that need to be
added and subtracted in the final formula. If we extend the above result to the
general formula for the diagonal elements (α = β) of the SIA parameters, we get:

Aαα
ii − Axx

ii =
E1 + E2 − E3 − E4

2S2 , (2.28)

with α = y, z. Again, note that this equation is applicable to any magnetic crystal,
independent of the crystal symmetry or other structural constraints42.

At the start of this section, we claimed that we only needed to calculate six matrix
elements to obtain the full SIA matrix. By calculating the reduced terms for the diag-
onal elements instead of calculating the three diagonal terms separately, the number
of required elements reduces further to five. In the following paragraph, we show
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that, if we take the crystal symmetry into account, we might reduce this even further.
Specifically, we will focus on the rotational symmetry in 2D systems or quasi-2D sys-
tems. A rotation around the z-axis by an angle θ in the counterclockwise direction
can be written as42:

Anew = Rz(θ) · Aold · RT
z (θ), (2.29)

with Anew the SIA matrix in the rotated coordinate system, Aold the SIA matrix in the
pre-rotation coordinate system and Rz(θ) the corresponding rotation matrix given
by42:

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (2.30)

After the execution of this transformation, we get the following two systems of
equations42:

System 1 (S1) :
{ (

Ayy
ii − Axx

ii
)
· sin2 θ + 2Axy

ii · sin θ cos θ = 0(
Ayy

ii − Axx
ii
)
· sin θ cos θ − 2Axy

ii · sin2 θ = 0
(2.31)

and,

System 2 (S2) :
{

Axz
ii · (cos θ − 1) + Ayz

ii · sin θ = 0
−Axz

ii · sin θ − Ayz
ii · (cos θ − 1) = 0

(2.32)

Further, we also get the trivial equality Azz
ii = Azz

ii . A system of equations only has
a non-trivial solution if the determinant of the system in its matrix representation is
equal to zero. The determinants for the two systems of equations are respectively:

det(S1) = −2 sin2 θ,
det(S2) = 2(1− cos θ). (2.33)

From these expressions, it’s clear that for a system with 3-, 4-, or 6-fold rotational
symmetry around the out-of-plane axis, i.e. when θ is respectively equal to 2π/3,
π/2 and π/3, the determinants are different from zero, and consequently, the sys-
tem only has trivial solutions42. The four matrix elements represented by these two
systems of equations will, thus, be equal to zero. These four elements are: Ayy

ii − Axx
ii ,

Axy
ii , Axz

ii and Ayz
ii . Only the reduced element Azz

ii − Axx
ii will be non-zero42. Of the

five matrix elements we needed to calculate the full SIA matrix, only one element
remains. This reduction makes the computation of the SIA parameters five times
less demanding42. Monolayer CrI3 has a 3-fold rotational symmetry, in the 4SM cal-
culations discussed in this thesis, we only need to calculate the Azz

ii − Axx
ii term, all

the other terms are zero42.
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2.2 Density Functional Theory

The 4SM methodology provides us with a relatively easy strategy to obtain the mag-
netic parameters of a system. All what’s left to do, is to calculate the energies of
four magnetic configurations of the system, plug these energies in our formula, and
repeat this for all elements in the exchange- and SIA matrices. To obtain these ener-
gies, we opt for the use of DFT as it’s arguably (one of) the most popular and (one
of) the most successful computational method(s) to study the properties of many-
body systems. Especially in the fields of solid state physics and material science,
DFT is a widely established theory and a plethora of literature is available. In this
section, we revise the core principles and themes of DFT and briefly discuss how it’s
implemented in practice to solve concrete material physics problems.

2.2.1 Many-Body Schrödinger Equation

Consider a magnetic solid like for instance CrI3. Since magnetism is a purely quan-
tum mechanical effect, we describe this system by the Schrödinger equation. The time-
independent Schrödinger equation for a crystalline material is given by:

ĤΨ(R, r) = EΨ(R, r), (2.34)

with energy E the eigenvalue of Hamiltonian operator Ĥ, and Ψ(R, r) the many-
body wave function of the system43. Let’s consider a material that contains M nuclei
and N electrons. For notational simplicity we have written

(R1, Σ1, R2, Σ2, . . . , RM, ΣM) ≡ R (2.35)

and

(r1, σ1, r2, σ2, . . . , rN , σN) ≡ r, (2.36)

where the position- and spin coordinates are respectively given by Ri, Σi for nuclei
and rj, σj for electrons43. The Hamiltonian operator Ĥ consists out of five terms:
the kinetic energy operators of the nuclei and the electrons, and the potential energy
operators for the nucleus-nucleus interactions, the electron-electron interactions and
the nucleus-electron interactions43. We, thus, write the Hamiltonian operator as43:

Ĥ = Ĥkin,n + Ĥkin,e + Ĥpot,n−n + Ĥpot,e−e + Ĥpot,n−e. (2.37)

If we explicitly write out every term in this Hamiltonian, we get the following ex-
pression in Gaussian units:

Ĥ =
M

∑
i=1

P2
i

2Mn
i
+

N

∑
j=1

p2
j

2me
j
+

1
2

M

∑
i 6=i′

ZiZi′e2

|Ri − Ri′ |
+

1
2

N

∑
j 6=j′

e2∣∣rj − rj′
∣∣ − M

∑
i=1

N

∑
j=1

Zie2∣∣Ri − rj
∣∣ .
(2.38)

In the kinetic energy terms, we define the momentum and the mass respectively as
Pi, Mn

i for nuclei and pj, me
j for electrons. In the interaction terms, symbol Zi stands

for the atomic number of the ith nucleus, symbol e represents an elementary charge.
In the nucleus-nucleus interaction and the electron-electron interaction, we add a
factor 1/2 to avoid double counting of terms, further, we write i 6= i′ and j 6= j′ in
the sums to exclude the self-interaction. In this Hamiltonian, we have two terms that
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depend solely on the nuclei, two terms that depend solely on the electrons and one
term that couples the nuclei and the electrons.

Implicitly, we have made several assumptions when constructing Hamiltonian
(2.38) that justify the fact that we included only five terms. First and foremost, notice
that we only included the electromagnetic force in our expression, the gravitational
force and the strong- and weak nuclear forces are neglected. This can be justified
with some simple back-of-the-envelope calculations to estimate the order of magni-
tude of these forces between particles at realistic distances. The characteristic length
scale between the particles in a solid is of the order of 1 Å. Consider a proton and
an electron at a distance of 1 Å. The electrostatic force between the particles as cal-
culated by Coulomb’s law is approximately equal to |F| ≈ 2.3× 10−8 N. In contrast,
Newton’s law of gravitation for the force between these particles gives a value of
|F| ≈ 1.0× 10−47 N. Therefore, it is fair to say that the gravitational force will have
no significant effect on our simulations. At a distance 1 Å, the strong nuclear force
between two protons will be practically equal to zero. The weak nuclear force, which
is typically even smaller than the strong nuclear force, can therefore also assumed
to be zero44. The strong- and weak nuclear forces become significant only on the
femtometer scale and smaller44. They only have a significant influence on particles
within the same nucleus or particles that approach very close to the nucleus44. In
our calculations, these nuclear forces can safely be neglected as they will not have
a significant influence on the magnetic properties of our system. More information
on these force estimations can be found in section D of the appendix. Further, we
also represented the particles as point charges. In our calculations, this approxi-
mation will pose no problems as the typical distances between the particles in our
system (≈ 1 Å) are multiple orders of magnitude larger than the typical sizes of the
nuclei (≈ 1 fm)44. Also, we neglect relativistic corrections for the motion of nuclei
and electrons, e.g. the ’zitterbewegung’45 etc. A relativistic effect that will be taken
into account is the SOC, which will later on be added ad hoc to the Hamiltonian.
Finally, we also make the trivial assumption that no external fields are present. Even
though we have made quite a few assumptions already, Hamiltonian (2.38) still gives
a fairly good description of our many-body system. However, more approximations
are needed if we want to find a solution to the Schrödinger equation.

For many-body systems, like crystalline solids, it is notoriously difficult to ana-
lytically solve the Schrödinger equation. As soon as the system contains more than
three particles, it becomes practically impossible to find a solution analytically, and
even for one- and two particle systems we can only find analytical solutions in very
specific cases, e.g. the particle in a box, the hydrogen atom, etc. If we resort to
numerical methods, we can handle some more systems, but we’re still far from be-
ing able to find a solution for realistic systems. Let’s illustrate the complexity of
this problem. Consider a sample of material with a number of particles of the or-
der of Avogadro’s number, i.e. NA = 6.02214076 × 1023 particles46. Even most
state of the art computers don’t have enough RAM (random access memory) to
store all the positions of these particles, let alone store additional data like veloci-
ties, energies and other particle properties that are needed in the calculation*. Even
if we would be able to store all this data, the calculation would still take a (too) big
amount of computational steps. Consider a system with M nuclei and N electrons.
Each particle has three spatial coordinates and one spin coordinate, which results

*Example: The Vaughan cluster of the University of Antwerp has 152 nodes of 256 GB each47. To
store a number of the ’double’ type, we need 64-bits = 8 bytes. A crude estimation tells us that the
Vaughan cluster can store a total number of ’doubles’ of the order of ≈ 1012. In other words: not even
close.
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in a total number of 4M + 4N variables for the entire system. Finding a solution
to Schrödinger equation (2.34) boils down to finding the eigenvalues and eigenvec-
tors of a (4M + 4N) × (4M + 4N) Hamiltonian matrix. Typically, the number of
required operations to solve this problem increases faster than the number of vari-
ables squared, i.e. we need more than (4M + 4N)2 steps to solve this equation48.
One can see that, for a big amount of particles, the number of required steps in-
creases rapidly. From this paragraph, it becomes clear that we need to introduce
some additional approximations in order to reduce the problem to a form which is
not only solvable in theory, but also solvable in practice.

We can lower the computational cost by introducing the Born-Oppenheimer ap-
proximation. The physical idea behind this approximation is that, since their mass is
way smaller, the electrons will move much faster than the nuclei43. Consequently
the electrons will adjust their positions immediately when there is a change in the
positions of the nuclei43. This is a very powerful assumption because from the per-
spective of the electrons its as if the nuclei are completely stationary, i.e. the elec-
trons are moving in a field of fixed nuclei43. We can implement this approximation
by writing the wave function as:

Ψ(R, r) = Ψn(R) ·Ψe(R; r), (2.39)

where the nuclear part of the wave function depends only on the nuclear coordinates
and the electronic part of the wave function depends on the electronic coordinates
explicitly, and nuclear coordinates parametrically43. By inserting equations (2.37)
and (2.39) in the Schrödinger equation (2.34), we get43:

EΨn(R)Ψe(R; r) =
[(
Ĥkin,n + Ĥpot,n−n

)
+
(
Ĥkin,e + Ĥpot,e−e + Ĥpot,n−e

)]
Ψn(R)Ψe(R; r). (2.40)

If we group all the terms containing the electronic positions together, we find the
electronic Schrödinger equation43:

(
Ĥkin,e + Ĥpot,e−e + Ĥpot,n−e

)
Ψe(R; r) =

[
E−

(
Ĥkin,n + Ĥpot,n−n

)
Ψn(R)

Ψn(R)

]
Ψe(R; r)

= Ee(R)Ψe(R; r). (2.41)

After implementation of the Born-Oppenheimer approximation, we thus, get
the electronic Schrödinger equation which only depends on the nuclear coordinates
parametrically43. For a given set of nuclear coordinates, we can now solve this elec-
tronic Schrödinger equation for the electronic energy Ee(R) and then use this to cal-
culate the total energy through43:

E =

(
Ĥkin,n + Ĥpot,n−n

)
Ψn(R)

Ψn(R)
+ Ee(R) = Epot,n−n(R) + Ee(R). (2.42)

Here, the Hamiltonian operators stand for respectively the kinetic energy of the
nuclei and electrostatic interactions between the nuclei. Notice that, in expression
(2.42), the kinetic energy of the nuclei can be completely neglected due to the fact
that, in the Born-Oppenheimer approximation, we consider the nuclei stationary
from the perspective of the electrons43. Instead of solving a 4M + 4N dimensional
eigenvalue problem, we can now choose some set of nuclear coordinates, solve the
electronic Schrödinger equation (2.41) for the electronic energies and subsequently
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calculate the total energy through formula (2.42).
By introducing the Born-Oppenheimer approximation, we have effectively re-

duced the many-body problem to a 4N dimensional eigenvalue problem which we
have to solve for certain sets of nuclear coordinates. This is a significant reduction
of the computational complexity of the calculation. Now, we can come up with an
iterative scheme to solve many-body problems (see figure 2.1). We start off the pro-
cedure by choosing some initial nuclear coordinates, this choice can be based on
experimental values or earlier theoretical studies. Subsequently, we solve the elec-
tronic Schrödinger equation, this will be done with DFT, the next three sections of
this chapter will be dedicated to DFT and finding a solution to this equation. Next,
we use the electronic energies to calculate the total energy of our system (via for-
mula 2.42), and the forces acting on the nuclei. Based on these forces, the nuclear
positions will be updated and the electronic Schrödinger equation will be solved for
these updated positions. In section 2.2.5, we go into more detail on how the forces
are calculated and how the ionic positions are updated. This whole procedure will
be repeated until the energy difference between two iterations or the magnitude of
the forces acting on the nuclei are converged below some threshold value. The con-
vergence criteria will be discussed further in section 2.2.4.

FIGURE 2.1: Flowchart of an iterative scheme to solve many-body
problems. The procedure starts off with an initial choice of the nu-
clear positions. In each loop, the electronic Schrödinger equation is
solved, the total energy and forces on the nuclei are calculated, and
the nuclear positions are updated. The loop is repeated until some

convergence criteria are met.
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2.2.2 Hohenberg-Kohn Theorems

In the previous section, we showed that we can reduce the computational complex-
ity of a many-body problem by fixing the nuclei. Now, we can solve the electronic
Schrödinger equation in the field of these fixed nuclei, use this solution to update the
nuclear coordinates, and repeat this loop until certain convergence criteria are met.
In every step of this loop, we have to solve an eigenvalue problem with 4N vari-
ables. Although, this is a significant improvement in comparison with the 4M + 4N
variables we had earlier, 4N variables is still too much to be able to solve the system
for a realistic amount of electrons. However, we can reduce this number of variables
by reformulating the problem in terms of the electron density instead of considering
each individual electron. This is not merely an approximation, Hohenberg and Kohn
formulated two theorems that show that it’s possible to calculate any ground-state
property of a system through knowledge of only the electron density43.

Since the electronic wave function only depends on the nuclear coordinates para-
metrically, we can write it as Ψe(R; r) ≡ Ψe(r) for the sake of notational simplicity.
The electron density is given by43:

ρ(r) = 〈Ψe(r)|ρ̂(r)|Ψe(r)〉

=
N

∑
i=1

∫
Ψ∗e (r)Ψe(r)δ(r− ri)dr, (2.43)

with the electron density operator equal to:

ρ̂(r) =
N

∑
i=1

δ(r− ri). (2.44)

Notice, that we have defined dr ≡ dr1dr2 · · · drN , we’ve temporally omitted the spin
polarization but it can also be included in the integration without significant quali-
tative changes to the results that will be presented in this section. Spatial integration
of the electronic density gives the total number of electrons43:

N =
∫

ρ(r)dr. (2.45)

In the many-body Schrödinger equation (2.37), we included a term Ĥpot,n−e due
to the interaction between the nuclei and the electrons. Since, from the point of view
of the electrons, the nuclei are fixed, this interaction can be viewed as the electrons
moving in an external crystal field. In the electronic Schrödinger equation, we write
this term more generally as ∑N

i Vext(ri). In our system, this external potential is in-
deed the crystal field, but other systems could also be exposed to external potentials
with another origin. We choose for the more general notation since the Hohenberg-
Kohn theorems are valid for any electronic system in any external potential. In the
remainder of this chapter, let’s assume this external potential is unknown43. Let’s
also assume that we do know the electron density, for instance, from experimental
measurements43. The Hamiltonian for the electronic Schrödinger equation (2.39) can
be written as:(

Ĥkin,e + Ĥpot,e−e +
N

∑
i

Vext(ri)

)
Ψe(R; r) = Ee(R)Ψe(R; r). (2.46)
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In 1964, Hohenberg and Kohn proved the following two theorems43:

Theorem 1: ’For a given ground-state density ρ(r), we cannot have two
different external potentials’. Consequently, ’the ground-state energy is
a unique functional* of the electron density’.

Theorem 2: ’The electron density ρ(r) that minimizes the energy func-
tional Ee[ρ] is the (true) ground-state electron density’.

The first theorem states that the complete Hamiltonian is defined by a given electron
density43. If we would know the electron density, we could, in principle, determine
the full electronic wavefunction and, therefore, calculate any ground-state property
of the system43. And so, not only the ground-state energy, but every ground-state
property is a functional of the electron density43. The first theorem clearly is an
existence theorem, i.e. it merely tells us that there exists a functional that relates
any ground-state property with the electron density43. It doesn’t tell us how such a
functional would look like. Actually, this is a difficult problem to solve and for most
properties, an approximation has to be used43. What the first theorem also doesn’t
tell us, is how to determine what the ground-state electron density of the system is.
The answer is given by the second theorem, namely, the density that minimizes the
total energy functional.

In what follows, we provide proof for these two theorems. Both proofs are based
on the work of M. Springborg which can be found in reference [43]. To prove the
first theorem, we start from the assumption that we have two different external po-
tentials Vext,1(ri) 6= Vext,2(ri) for a given density ρ(r), and show that this leads to a
contradiction. The two external potentials are assumed to differ more than an addi-
tive constant. We have two different Hamiltonian operators:

Ĥ1 = Ĥkin,e + Ĥpot,e−e +
N

∑
i

Vext,1(ri), (2.47)

Ĥ2 = Ĥkin,e + Ĥpot,e−e +
N

∑
i

Vext,2(ri). (2.48)

For each Hamiltonian we can write down its corresponding electronic Schrödinger
equation:

Ĥ1Ψe,1 = Ee,1Ψe,1, (2.49)

Ĥ2Ψe,2 = Ee,2Ψe,2. (2.50)

Since the external potentials differ, the energies are also different Ee,1 6= Ee,2. Further,
notice that we have two different wavefunctions Ψe,1 6= Ψe,2, but they give rise to the
same electronic density ρ(r) through formula (2.43). The variational principle tells
us that:

Ei = 〈Ψi|Ĥi|Ψi〉 ≤ 〈Ψj 6=i|Ĥi|Ψj 6=i〉. (2.51)

We consider the following two cases:

Ee,1 = 〈Ψe,1|Ĥ1|Ψe,1〉 < 〈Ψe,2|Ĥ1|Ψe,2〉, (2.52)

Ee,2 = 〈Ψe,2|Ĥ2|Ψe,2〉 < 〈Ψe,1|Ĥ2|Ψe,1〉. (2.53)

*One can think of a functional as a function that takes another function as its argument. For in-
stance, in this case, the energy is a function of the density which is a function of the spatial coordinates.
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The two cases can be worked out further to obtain:

Ee,1 < 〈Ψe,2|Ĥ1|Ψe,2〉 = 〈Ψe,2|Ĥ1 + Ĥ2 − Ĥ2|Ψe,2〉
= 〈Ψe,2|Ĥ1 − Ĥ2|Ψe,2〉+ 〈Ψe,2|Ĥ2|Ψe,2〉

= 〈Ψe,2|
N

∑
i

Vext,1(ri)−
N

∑
i

Vext,2(ri)|Ψe,2〉+ Ee,2

=
∫

ρ(r)[Vext,1(r)−Vext,2(r)]dr + Ee,2, (2.54)

Ee,2 < 〈Ψe,1|Ĥ2|Ψe,1〉 = 〈Ψe,1|Ĥ2 + Ĥ1 − Ĥ1|Ψe,1〉
= 〈Ψe,1|Ĥ2 − Ĥ1|Ψe,1〉+ 〈Ψe,1|Ĥ1|Ψe,1〉

= 〈Ψe,1|
N

∑
i

Vext,2(ri)−
N

∑
i

Vext,1(ri)|Ψe,1〉+ Ee,1

=
∫

ρ(r)[Vext,2(r)−Vext,1(r)]dr + Ee,1. (2.55)

Here, we used the fact that the kinetic energy and the electron-electron interaction
are identical in the two Hamiltonians (because for both cases we have the same elec-
tron density). Hence, the difference between the two Hamiltonians is equal to the
difference between the external potentials. Let’s transfer all the energies to the left
part of the equations and multiply the first equation with -1. We are left with:

Ee,2 − Ee,1 >
∫

ρ(r)[Vext,2(r)−Vext,1(r)]dr, (2.56)

Ee,2 − Ee,1 <
∫

ρ(r)[Vext,2(r)−Vext,1(r)]dr. (2.57)

It’s clear that both equations cannot be true at the same time. This contradiction
proves that our initial assumption that the two external potentials are different has
to be false, which confirms our first theorem. QED �.

For the proof of the second theorem, we start off from the variational principle:

E0 = 〈Ψ0|Ĥ|Ψ0〉 ≤ 〈Ψ′|Ĥ|Ψ′〉, (2.58)

with E0 the ground-state energy and Ψ0 the ground-state wavefunction associated
with ground state density ρ0. The variational principle states that the energy of a
trial wavefucntion Ψ′ is always greater than or equal to the ground-state energy, i.e.
the energy is an upper bound for the ground-state energy. If we now take a density
ρ1 6= ρ0, than we know that the wavefunctions associated with these densities are
also not equal Ψ1 6= Ψ0. The variational principle then gives us:

E0 = Ee[ρ0] ≤ Ee[ρ1]. (2.59)

So only the ground-state density ρ0 minimizes the total energy functional, i.e. gives
us the ground-state energy. QED �.

2.2.3 Kohn-Sham Method

The Hohenberg-Kohn theorems are an important step in the development of our
methodology as they prove that using the electron density instead of individual par-
ticles is a valid approach. However, they do not provide a practical scheme to solve



36 Chapter 2. Methodology

a many-body problem. In this section, we derive the approach that Kohn and Sham
devised in 1965.

The second Hohenberg-Kohn theorem states that the (true) ground-state density
minimizes the density43:

δEe[ρ] = 0. (2.60)

We combine this equation together with constraint (2.45) in one expression by using
a Lagrange multiplier µ to43:

0 = δ

{
Ee[ρ(r)]− µ

[∫
ρ(r)dr− N

]}
,

=
δ

δρ(r)

{
Ee[ρ(r)]− µ

[∫
ρ(r)dr− N

]}
. (2.61)

The electronic energy functional contains four terms43:

Ee[ρ(r)] = T[ρ(r)] +
∫

Vext(r)ρ(r)dr +
1
2

∫
VC(r)ρ(r)dr + Exc[ρ(r)]. (2.62)

All four terms are functionals of the electronic density in position space. The first
three terms are respectively the kinetic energy, the external potential and the inter-
particle Coulomb interaction. The fourth term is called the exchange-correlation
(XC) term. The exchange interaction repels electrons with the same spin (cfr. ex-
change hole), the correlation is a measure for how the movement of one electron is
influenced by the presence of all other electrons49. By filling in the energy functional
in expression (2.61) and taking the functional derivative, we obtain43:

δT
δρ

(r) + Vext(r) + VC(r) +
δExc

δρ
(r) = µ. (2.63)

More on the concept of functional derivatives can be found in section E of the ap-
pendix. This equation is still not easy to solve, mainly due to the interaction between
the electrons. However, Kohn and Sham came up with a neat trick. They considered
a fictitious model system of non-interacting particles that has the same density and
energy as the real interacting system43. To ensure that the systems would have the
same electronic density, they assumed that the particles were moving in some effec-
tive external potential Veff(r). For this model system, we thus, have the following
energy functional43:

Ee[ρ(r)] = T′[ρ(r)] +
∫

Veff(r)ρ(r)dr. (2.64)

Notice that the kinetic energies of the interacting system and the non-interacting
system are not necessarily the same43. We have two different systems with different
kinetic energies, the systems just happen to have the same density and energy. If we
apply the Lagrange multiplier method like for the interacting system, we get43:

δT′

δρ
(r) + Veff(r) = µ. (2.65)
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By comparison with our earlier result, it becomes clear that the effective external
potential is equal to43:

Veff(r) =
δT
δρ

(r)− δT′

δρ
(r) +

δExc

δρ
(r) + Vext(r) + VC(r),

= Vxc(r) + Vext(r) + VC(r), (2.66)

in which the first term is called the XC potential. The neat thing about this non-
interacting model system, is that we can now write the Hamiltonian of electronic
Schrödinger equation

ĤΨe = EeΨe, (2.67)

as a sum of effective single particle Hamiltonians43:

Ĥ =
N

∑
i

[
−1

2
∇2

i + Veff(ri)

]
=

N

∑
i

ĥeff(ri). (2.68)

Therefore, we can write the electronic wave function as a Slater determinant43:

Ψe = |φ1, φ2, · · · , φN |, (2.69)

in which the single-particle orbitals can be determined from the Kohn-Sham equations:

ĥeffφi = ε iφi. (2.70)

These single-particle orbitals are related to the electronic density through expression:43

ρ(r) =
N

∑
i
|φi(r)|2, (2.71)

in which the sum runs over the N orbitals with the lowest eigenvalues ε i. Notice,
that the density is determined by the single-particle orbitals that are calculated from
the Kohn-Sham equations. However, to solve the Kohn-Sham equations we first
need to know the effective potential which is off course dependent on the density.
Therefore, we again need to come up with a iterative scheme to find a self-consistent
solution. The procedure is shown in figure 2.2. This algorithm is also called a self-
consistent field (SCF) calculation. We start off the algorithm with an initial guess for
the electronic charge density. This initial density could be based on experimental
measurements or densities from earlier theoretical calculations (cfr. DOS and band
structure calculations discussed in section A.2 of the appendix). This initial density
is used to set up the effective external potential. Afterwards, we have all the nec-
essary information about our Hamiltonian to solve the Kohn-Sham equations (2.70)
for eigenvalues ε i and eigenvectors φi. Finally, with these single particle orbitals we
can calculate the electronic density through formula (2.71). With this density, we can
update the effective external potential which brings us back to the beginning of the
loop. We repeat this algorithm until a certain convergence criterium is met, usually,
until the electronic energy difference between two consecutive steps is converged
below some predefined threshold value. Notice, that to solve our overall many-
body problem, we perform two self-consistent loops. In the outer loop, we execute
an ionic minimization (see figure 2.1). In each step of this ionic loop, we try to self
consistently solve the electronic Schrödinger equation (see figure 2.2).
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FIGURE 2.2: Flowchart of an iterative scheme to solve the Electronic
Schrödinger equation. The procedure starts off with an initial choice
for the electronic density. In each loop, the Kohn-Sham equations are
solved and the density is updated. The loop is repeated until some

convergence criteria are met.

We conclude this section, with some remarks about the Kohn-Sham method.
First and foremost, for the Kohn-Sham method to be valid, we implicitly assumed
that its always possible to construct a model system of non-interacting particles with
the same ground-state density as the interacting system43. This is not necessarily the
case, but since it should be possible in most realistic systems, and also in the mate-
rials under scrutiny in this thesis, this represents no problem43. Second, notice that
the Lagrange multiplier µ that we used in this section, is the chemical potential43.
The chemical potentials tells us how the energy of the system changes if you change
the total number of electrons43. Up until now, we didn’t consider spin polarisation
in our discussion. However, the Hohenberg-Kohn and Kohn-Sham results could
relatively easily be extended to include the spin polarisation. If we would do this,
the electronic energy, and all other ground-state properties, would not only be a
functional of the density ρ(r) but also of the spin-polarisation m(r), i.e. the energy
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functional is now43:

Ee = Ee[ρ(r), m(r)]. (2.72)

The Kohn-Sham method provides us with a very good algorithm to start solving
electronic systems. However, there are a few problems that arise when implement-
ing this theory in practice. The main problem that remains, is to find a suitable form
for the effective potential. In the effective potential, usually, the XC-potential Vxc(r)
is unknown43. As this potential is unknown, we will have to make an approximation
and choose one of the many functionals that have been developed over the years. In
the next section, we will discuss our choice for the XC-functional. Further, we will
also make some remarks considering the choice of basis-set and unit cell.

Notice that, technically speaking, DFT is an exact method. To some readers, this
might sound surprising given the fact that we use quite a few approximations in
our implementation of DFT. When presenting their theorems, Hohenberg and Kohn
formulated DFT as an exact theory to solve many-body systems. If you have the
(true) ground-state density, you can exactly determine the ground-state properties
of a system. The problem is that, to determine this density, one needs to know the
XC-functional, and the functionals that are used are always an approximation of the
real functional.

2.2.4 Practical Implementation of DFT

In this section, we make some remarks concerning the implementation of the Kohn-
Sham scheme in practice. We start off with a discussion on the XC-functional. Af-
terwards, we discuss the choice of the unit cell and the boundary conditions. Subse-
quently, we introduce some concepts related to reciprocal space, the Brillouin zone
integration and the choice of a suitable basis-set. Finally, we also discuss the elec-
tronic minimization scheme.

Functional

The performance of Kohn-Sham DFT depends for a large part on the used XC-
functional. The choice of functional depends on many different factors including
the type of system you want to describe, the required accuracy and time limitations.

One of the simplest class of functionals that are commonly used are the so-called
local (spin-)density approximation (L(S)DA) functionals. In L(S)DA, the XC-functional
in each point r is equal to the potential that a homogeneous electron gas would have,
if it had a density (and spin-polarisation) equal to the density (and spin-polarisation)
in the point r of the system43. Notice that spatial variations of the density (and spin-
polarisation) are completely ignored43. Functionals of the L(S)DA type, thus, only
depend on local information, hence their name. L(S)DA functionals are used mainly
to describe solids43, since approximating the electrons in a solid by a free electron
gas yields relatively good results (cfr. Drude-Sommerfeld model).

By including some non-local information, we could increase the accuracy of a
calculation. A class of functionals that does this are the generalized gradient approxi-
mation (GGA) functionals. GGA functionals don’t only include the density, but also
the gradient of the density43. This slope will be large near nuclei and smaller far
away from the nuclei. GGA functionals, thus, include non-local information about
the system in the XC-functional.

The accuracy of calculations could be increased even further by including higher
order terms that depend for instance on∇2ρ, or by using hybrid functionals like the
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B3LYP functional50 which is a hybrid between the XC-functionals used in DFT and
the exact exchange from the Hartree-Fock theory. One could also opt for a semi-
empirical functional that contains parameters that are fitted to experimental data or
earlier ab initio results. Over the years, more and more functionals got developed
resulting in an enormous zoo of functionals that are available in literature. It would
be rather pointless to give a summary of all the available functionals. Benchmark-
ing for a fitting functional is a whole field on its own and would drive us too far
for the purpose of this thesis. However, what is important to take away from this
paragraph, is that one can increase the accuracy of a calculation by using a func-
tional that includes more (non-local) information. On the other hand, more accurate
(less local) functionals will often be more computationally expensive. The trade-off
between accuracy and computational simplicity is the biggest factor that drives the
functional picking process.

In our calculations, we opt for a functional of the GGA-type that was developed
by Perdew, Burke and Ernzerhof (PBE)51. PBE is a widely used functional with lots
of available literature, and has proven to give relatively accurate results for a lot of
solid state systems without increasing the computational complexity too much.

Unit Cell & Boundary Conditions

All DFT calculations done in this thesis were performed using the Vienna Ab initio
Simulation Package (VASP) software52–54. One of the properties of VASP is that it
automatically implements periodic boundary conditions. Usually, this is pretty use-
ful, especially when studying bulk solid materials since they have a periodic crystal
structure. However, when studying materials that lack periodicity in one or more di-
rections, the periodic boundary conditions pose some minor problems. For instance,
when studying a 2D material, we only have periodicity in two directions. In the

FIGURE 2.3: Unit cell of a CrI3 monolayer. Chromium and iodine
atoms are marked with blue- and purple spheres respectively. The
unit cell is marked with black lines. A lot of vacuum is included in
the out-of-plane direction of the unit cell to prevent interaction of the
material with its duplicate(s) that are generated through the periodic

boundary conditions.
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FIGURE 2.4: Total energy of a CrI3 monolayer as a function of the
unit cell length in the out-of-plane direction. For each unit cell
length, we performed a single-point DFT calculation, i.e. no ionic
updates only electronic updates. Thus, the atoms remain on the same
position at all times. The simulation was performed on a CrI3 mono-
layer with optimized geometry. This figure was plotted within the

MATLAB computing environment.

third, out-of-plane, direction there is no periodicity. However, due to the periodic
boundary conditions, the 2D layer will be repeated in this out-of-plane direction.
This skews the results of the calculation as the 2D material is interacting with its
duplicate(s)*. We can solve this problem by including some (big enough) amount of
vacuum in our unit cell. This is illustrated in figure 2.3 for a CrI3 monolayer, one
can see that the unit cell (black lines) contains vacuum above and below the layer.
For a multilayer structure, we also include vacuum above- and below the upper and
lower layers but off-course not between the layers. If there is enough vacuum in the
unit cell, there will still be an interaction between the 2D layer and its duplicate(s)
but since the distance between them is so big, the influence of this interaction is neg-
ligible. On the other hand, one also doesn’t want to include to much vacuum since
this can result in a bigger computational cost. To determine the ideal amount of vac-
uum to include in our unit cell, we performed several simulations each one with a
different unit cell length in the out-of-plane direction. In figure 2.4, we plotted the
energy-distance graph that resulted from these calculations. For a small unit cell
size, i.e. a small size between the layer and its duplicate(s), we notice an augmented
energy which is due to repulsion between the layers. If we we increase the unit cell
length a little further, we arrive in a minimum. The length associated with this min-
imum is the ideal bond length between layers in a bulk structure. When increasing
the unit cell length even more, the energy will increase but there will still be attrac-
tion between the layers. For a unit cell length of 15 Å or higher, the energy will be
more or less flat. From this point onward, the interaction between the layer and its
duplicate(s) will be small enough so that it doesn’t have a significant influence any
more on the energy. In our calculations, we will always try to implement a vacuum
distance of c = 15 Å .

*The periodic boundary conditions work on all sides of the unit cell, i.e. what leaves at the top
comes back up at the bottom. So, in a sense, the material is interacting with itself.
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Reciprocal Space & Brillouin Zone Integration

Instead of a real space representation of a crystal, we can also opt for a momentum
space or k-space representation. This can be achieved by performing a Fourier trans-
form on the direct lattice in order to obtain the reciprocal lattice. Just like we defined
a Bravais lattice in ’real’ space, we can define a reciprocal lattice in reciprocal space.
The reciprocal lattice vectors can be calculated from the Bravais lattice vectors as
follows55:

b1 = 2π
a2 × a3

a1 · a2 × a3
; b2 = 2π

a3 × a1

a1 · a2 × a3
; b3 = 2π

a1 × a2

a1 · a2 × a3
. (2.73)

Just like real space contains position vectors r that have a dimension of length, recip-
rocal space contains wavevectors k with a dimension of inverse length. The wavec-
tor k is a function of the wavelength |k| = k = 2π/λ. The Cartesian components
of the wavevector, i.e. kx, ky and kz, are often used as quantum numbers to label
the states of a system. Just like the Bravais lattice, the reciprocal lattice consists out
of a discrete set of points. The reciprocal lattice has an important property, namely,
the larger the unit cell of a system in real space, the smaller the unit cell in recipro-
cal space, and vice versa. For instance, if you increase the real space unit cell by a
factor three, the reciprocal unit cell will become three times smaller. If a crystal has
no periodicity in a certain direction, one can think of the unit cell as being infinitely
long in that direction. Consequently, the reciprocal lattice is infinitely small in that
direction. For instance, a monolayer has no periodicity in the out-of-plane direction
so the reciprocal lattice will also be 2D. Despite the fact that a bilayer consists of two
stacked layers on top of each other, its reciprocal lattice will also be 2D since it is still
non-periodic in the out-of-plane direction.

An important concept that needs to be introduced here is the Brillouin zone, which
is defined as a Wigner-Seitz cell* in reciprocal space55. Just like a periodic repetition
of the unit cell gives us the full lattice, a periodic repetition of the Brillouin zone
gives us the whole reciprocal lattice. Notice that there are multiple Brillouin zones,
conveniently called the first, second, third, etc. Brillouin zone. The first Brillouin
zone is the Wigner-Seitz cell we described earlier. The second Brillouin zone is the
region in reciprocal space that can be reached from the first Brillouin zone by cross-
ing only one Bragg plane, i.e. a plane through the bisector of a reciprocal lattice
vector55. Analogously, you can reach the third Brillouin zone by crossing two Bragg
planes etc. Notice that all Brillouin zones have the same volume. In the remain-
der of this thesis, when we talk about the Brillouin zone, we always mean the first
Brillouin zone. Another concept that needs to be introduced here is the irreducible
Brillouin zone. Due to the symmetries of the point-group of the lattice, we can reduce
the first Brillouin zone to a smaller region. The irreducible Brillouin zone is the part
of the first Brillouin zone that can’t be reduced any further. The entire Brillouin zone
can be constructed from the irreducible Brillouin zone by symmetry operations. In
the irreducible Brillouin zone there are several high-symmetry points, also called
critical points, that get a special name. For a 2D hexagonal lattice, these points are
the Γ-point, the K-point and the M-point56.

In many cases, when doing electronic structure calculations, we need to integrate

*A Wigner-Seitz cell is a primitive cell that contains exactly one lattice point, and that is defined
in such a way so that every point within the cell is closer to the lattice point of that cell than to any
other lattice point (cfr. Voronoi construction). A Wigner-Seitz unit cell is the unit cell with the smallest
possible volume.
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FIGURE 2.5: Total energy of a CrI3 monolayer as a function of the
number of k-points. For each number of k-points, we performed
a single-point DFT calculation, i.e. no ionic updates only electronic
updates. Thus, the atoms remain on the same position at all times.
The simulation was performed on a CrI3 monolayer with optimized
geometry. This figure was plotted within the MATLAB computing

environment.

over portions of the Brillouin zone or even the entire zone57. For instance, when cal-
culating properties like the charge density or the DOS we need to integrate over the
Brillouin zone. As an example, we write out the expression for the charge density:

ρ(r) =
1

VBZ

∫
BZ

dk
N

∑
i

f (k)i |φ
(k)
i |

2. (2.74)

In practical calculations, we replace the integration of the entire Brillouin zone by
quadrature over a finite number of points in the Brillouin zone. The integral is re-
placed by a weighted sum over special k-points:

1
VBZ

∫
BZ

dk = ∑
k

ωki . (2.75)

One of the most common k-point meshes to sample the Brillouin zone was first de-
scribed by Monckhorst and Pack57. In the case of a N1 × N2 × N3 Γ-point centred
grid, we have:

k =
3

∑
i

bi
ni + 1/2

Ni
, (2.76)

with ni = 0, Ni − 1. In our calculations, we will use such a Γ-centred Monckhorst-
Pack grid. However, we still need to determine how many k-points that will be used
in our grid. You don’t want to use too much k-points, the more k-points in the grid
to heavier the calculation. However, you want to use enough k-points to make sure
the energy is converged. Since the systems under scrutiny in this thesis don’t have
periodicity in the z-direction, we always use a 2D square k-point grid, i.e. N×N× 1
k-points. To determine N, we performed a series of single-point DFT calculations
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and plotted the energy as a function of the number of k-points. The result is shown in
figure 2.5. For a 3× 3× 1 k-point grid and bigger grids, the energy is well converged.
In this thesis, for the lighter calculations, we usually use a 15× 15× 1 grid in order
to have the same input values as some papers that were consulted as a reference.
For the heavier calculations, among which the 4SM calculations, we use a 3× 3× 1
grid to reduce the computational cost as much as possible. For 4SM calcualtions on
flakes, we used a 1× 1× 1 grid since now there is no periodicity in the structure
(see chapter 4). For DOS and band structure calculations, we increase the number of
k-points to 24× 24× 1 to get higher quality results.

Basis-Set

In Kohn-Sham DFT, we express the density as a function of single particle orbitals,
see expression (2.71). A recurring theme in quantum mechanics is that we need to
find a suitable basis for the Hilberspace of the wavefunction. In our situation, we
need to find a suitable basis for the single-particle orbitals that determine the elec-
tronic density. For atoms or molecules, we often use linear combinations of atomic
orbitals (LCAO) as the basis functions. Very often, these basis functions will be Gaus-
sian functions. However, for periodic system like solids, we prefer to use plane wave
basis sets.

In a solid, the electrons move in a periodic potential due to the nuclei. Bloch’s
theorem tells us that the eigenfunctions, i.e. the wavefunctions, of the Schrödinger
equation in a periodic potential must be of the form55:

ψk = uk(r) exp{ik · r}. (2.77)

In this expression, vector r is a position vector in real space and vector k the wavevec-
tor in reciprocal space. According to this theorem, a wavefunction can be written as a
product of a plane wave exp{ik · r} and a Bloch function uk(r). The latter is a func-
tion that reflects the periodicity of the crystal lattice, i.e. that remains unchanged
after a translation55:

uk(r) = uk(r + T). (2.78)

The translation vector is defined as T = n1a1 + n2a2 + n3a3, with n1, n2 and n3 three
arbitrary integers and a1, a2 and a3 the real space lattice vectors. Since there are mul-
tiple wavefunctions with the same k, we can write the wavefunction with a band
index n as ψnk = unk(r) exp{ik · r}. Analogous to a translation in real space, we can
write a translation in reciprocal space as K = n1b1 + n2b2 + n3b3, with n1, n2 and
n3 three arbitrary integers and b1, b2 and b3 the reciprocal lattice vectors55. As men-
tioned earlier, we can write arbitrary wavevector as k′ as the sum of a wavevector
inside the first Brillouin zone and a reciprocal translation vector, i.e. k′ = k + K.
Without the loss of generality, we can assume that wavevector k lies in the first
Brillouin zone. Now, we can expand (Fourier transform) the Bloch function in a
planewave basis set:

unk(r) = ∑
K

cnk(K) exp{iK · r}. (2.79)

After plugging this expression in Bloch’s theorem, we get:

ψnk = ∑
K

cnk(K) exp{ik + K · r}. (2.80)



2.2. Density Functional Theory 45

FIGURE 2.6: Total energy of a CrI3 monolayer as a function of the
energy cut-off. For each value of the energy cut-off, we performed
a single-point DFT calculation, i.e. no ionic updates only electronic
updates. Thus, the atoms remain on the same position at all times.
The simulation was performed on a CrI3 monolayer with optimized
geometry. This figure was plotted within the MATLAB computing

environment.

In principle, the plane wave expansion still contains an infinite number of plane
waves. In practical calculations, we have to truncate the expansion in order to get a
finite set of plane waves. We do this by defining a cut-off energy. We set an upper
bound for the kinetic energy equal to:

Ecut >
(k + K)2

2
. (2.81)

From this formula, you can determine at which wavevector you need cut-off the
expansion. The choice of this energy cut-off value can have a significant influence
on the results of a calculation. You need to include enough terms in order to get
an accurate and well converged result. However, the more terms you include, the
more computationally heavy your calculation will become. In VASP, the energy cut-
off is implemented through the ’ENCUT’-tag. In order to determine the ideal value
for ENCUT, we performed a series of calculations to investigate how the energy of
our system is influenced by this energy cut-off. The result of these calculations is
shown in figure 2.6. The energy of the system converges for an increasing energy
cut-off. For calculations that aren’t that computationally heavy, we often can afford
to use a very high cut-off of 700 eV to get really accurate results. However, for most
calculations a cut-off of 300 eV already gives pretty reasonable results. Therefore,
in the heaviest calculations, i.e. 4SM calculations for the bilayers and the bilayers
flakes, we will use an energy cut-off of 300 eV.

In the remainder of this section, we discuss some methods to reduce the number
of required basis functions to accurately describe a wavefunction. The main rea-
son why we need such huge basis sets is because the wavefunctions contain many
nodes43. Even worse, the wavefunction contains the most nodes in the region close
to the nucleus43, and this is the region we’re the least interested in. The part of the
wavefunction were chemical reactions occur etc. lies outside the region were most
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nodes occur43. Basicly, there are two possible approaches to overcome this problem.
In a first approach, we introduce a pseudopotential in order to replace the wave-
function with a smoother one43. This new wavefunction would agree with the old
one in the chemical bond region, but would be smooth and without nodes close to
the core43. This method succeeds very well in reducing the number of required basis
functions and at the same time gives relatively accurate results.

However, in our calculations, a second approach will be used. This approach
is called the projector augmented wave (PAW) method58. The PAW method uses the
opposite strategy in comparison to the pseudopotential method, instead of simpli-
fying the wavefunction, the basis will be adapted to match the potential43. In the
PAW method, a wavefunction ψnk can be derived from the pseudo-wavefunction
ψ̃nk through the following transformation58:

|ψnk〉 = |ψ̃nk〉+ ∑
i
(|φi〉 − |φ̃i〉)〈 p̃i | ψ̃nk〉. (2.82)

Just like in the pseudopotential method, wavefunction ψ̃nk coincides with the true
wavefunction far away from the cores and is smooth close to the cores58. To define
what is close or far from the nuclei, we can introduce a certain cut-off radius rc, often
this radius is chosen around half the nearest neighbour distance. The sphere defined
by rc is also called the augmentation region58. The quantities φi are partial waves and
are solutions of the Kohn-Sham Schrödinger equation58. On the other hand, quan-
tities φ̃i are pseudo partial waves, they are identical to φi outside rc and are smooth
inside rc

58. Inside the augmentation region, the pseudo-wavefunctions can be ex-
panded in pseudo-partial waves |Ψ̃〉 = ∑i |φ̃i〉ci

58. Finally, p̃i is called the projector
function and obeys the important relation 〈 p̃i|φ̃j〉 = δij

58. Very simply put, for-
mula (2.82) tells us that the true wavefunction is equal to the pseudo-wavefunction
(that gives an accurate description outside the augemtation region), plus a the par-
tial wave term (that gives an accurate discription of the wavefunction inside the
augmentation region) and minus the pseudo-partial wave term (that describes the
pseudo-wavefunction inside the augmentation region).

Electronic Minimization

To conclude the section about the practical implementation of DFT, we very briefly
discuss some methods for diagonalization of the Kohn-Sham Hamiltonian. When
self-consistently solving the Kohn-Sham equations, we use the blocked Davidson
algorithm in the first iteration of the loop and afterwards switch to the residual min-
imization method by direct inversion of the iterative subspace (RMM-DIIS)59*. The
blocked Davidson iteration scheme is used only in the first step since it is a factor
1.5-2 slower than the RMM-DIIS algorithm. The main idea behind these iterative
matrix diagonalization techniques, is that we don’t need all the eigenvectors of the
Hamiltonian but only the Nb lowest eigenstates (with Nb of the order of electrons per
unit cell). The techniques are based on the Rayleigh-Ritz method to approximate the
eigenvalues of a Nb × Nb subspace. The interested reader can find more informa-
tion on these electronic minimization methods on the VASP website were multiple
lectures are available**.

*In VASP, set ALGO = Fast in the INCAR file.
**https://www.vasp.at/wiki/index.php/The_VASP_Manual

https://www.vasp.at/wiki/index.php/The_VASP_Manual
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2.2.5 Ionic Relaxation

In this section, we will fill in the last remaining gaps of the flowchart presented in
figure 2.1. We will discuss how the forces on the nuclei are calculated and how the
nuclear positions are updated in order to obtain an optimized geometry.

To determine whether a certain set of nuclear coordinates is close to the opti-
mized structure, we will calculate the forces acting on the nuclei. These calculations
can be done via the Hellmann-Feynman theorem. The forces equal the negative of the
gradient of the energy:

Fi = −
∂E
∂Ri

, (2.83)

with i ∈ 1, · · · , M, i.e. the system contains M nuclei. When the energy is minimal,
the forces acting on the nuclei will be zero. By using the expressions for the electronic
Schrödinger equation (2.41) and the total energy (2.42), we can derive a formula for
the forces on the nuclei:

Fi = −
∂

∂Ri

[
Epot,n−n(R) + Ee(R)

]
= − ∂

∂Ri

[
Epot,n−n(R) + 〈Ψe(R; r)|Ĥkin,e + Ĥpot,e−e + Ĥpot,n−e|Ψe(R; r)〉

]
= −

∂Epot,n−n(R)

∂Ri
− ∂

∂Ri
〈Ψe(R; r)|Ĥpot,n−e|Ψe(R; r)〉

= −
∂Epot,n−n

∂Ri
− 〈∂Ψe

∂Ri
|Ĥpot,n−e|Ψe〉 − 〈Ψe|

∂Ĥpot,n−e

∂Ri
|Ψe〉 − 〈Ψe|Ĥpot,n−e|

∂Ψe

∂Ri
〉

= −
∂Epot,n−n

∂Ri
− 〈Ψe|

∂Ĥpot,n−e

∂Ri
|Ψe〉

= −
∂Epot,n−n(R)

∂Ri
−
∫

dr |Ψe|2
∂Epot,n−e(R, r)

∂Ri
. (2.84)

In this derivation, all the derivatives of terms that don’t explicitly depend on the
nuclear coordinates are zero. The only terms that stay present are the forces due to
the nuclei-nuclei interactions, and the forces due to the nuclei-electron interactions.
The electronic wave function Ψe(R; r) is found by solving the electronic Schrödinger
equation.

For the ionic relaxation, we use the conjugate gradient algorithm60. This is a
predictor-corrector step algorithm. In a first step (predictor step), the ionic positions
are moved in the direction of the resulting forces acting on them. If the correspond-
ing settings are enabled, the shape and volume of the unit cell will also be changed
based on the stress in the cell (usually we will keep the cell shape and volume fixed).
Afterwards, through an interpolation that takes into account the change in energy
and forces after the trial step, the approximate minimum is calculated and a correc-
tor step towards the approximate minimum is performed. If the convergence criteria
for the forces of the total energy aren’t reached yet, new predictor and corrector steps
are made until the geometry of the system is sufficiently converged.
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2.3 Spin Dynamics

In this section, we will describe how we can study the dynamics of the magnetic
spins, i.e. how the spin configuration of our material changes over time. Up un-
til now, we have always fixed the spins in a certain direction, and then calculated
the energy of the system while the spins were fixed in order to determine the mag-
netic parameters that model the interaction strength between the spins. Now, we
take the magnetic parameters as an input and simulate how the spins want to order
themselves to minimize the energy of the system.

The dynamics of magnetic spins can be explored by the Landau-Lifshitz-Gilbert
(LLG) equation41:

∂Ŝi

∂t
= − γ

(1 + α2) µ

[
Ŝi × Beff

i + αŜi ×
(

Ŝi × Beff
i

)]
, (2.85)

in which γ is gyromagnetic ratio and α the damping parameter. The effective field
is found by taking the derivative of the Hamiltonian Beff

i = −∂Ĥ/∂Ŝi, thus, the
field can be thought of as a gradient in the energy61. The magnetic parameters enter
the LLG equation through Hamiltonian (2.1) which is used to determine the effec-
tive field. The effective field is, thus, the field that results due to all the different
magnetic interactions that are included in the Heisenberg model. If we also want
to investigate the thermal dependencies of the magnetization, the effective field will
will also contain a stochastic thermal field (i.e. Bi → Bi + Bth

i ) given by61:

Bth
i (t) =

√
2Diηi(t) =

√
2αkBT

µi

γ
ηi(t), (2.86)

i.e. the fluctuation-dissipation theorem with ηi(t) white noise such that the ensem-
ble average and variance of the thermal field fulfil 〈Bth

iα(t)〉 = 0 and 〈Bth
iα(t)Bth

jβ(0)〉 =
2Diδijδαβδ(t) respectively. Further, we have Di the diffusion constant, kB the Boltz-
mann constant and T the temperature61. The first term in the LLG equation (2.85)
represents the precession of the spins, the second term is a damping term61. The
movement of the spins can be interpreted as follows: the spins will try to precess
around the axis of the effective field due to the first term, meanwhile the damping
term tries to relax the spins in the direction of the effective field. In some cases,
more terms can be included in the LLG equation, e.g. a term that represents the
spin-transfer torque, but this is not necessary in our calculations.

Off-course, when the direction of one spins changes, this has an influence on
their neighbouring spins. We will, thus, have to perform the simulations over a big
enough amount of time steps in order to obtain an equilibrium spin configuration.
In a temperature dependent simulation, we start off from an elevated temperature
and gradually decrease the temperature in a certain amount of steps. In each step,
we solve the LLG equation to determine the spin configuration and calculate the
magnetization. From the magnetization-temperature curve, we will be able to de-
termine the Curie temperature. The spin configuration after the final step will be
a (meta)stable spin configuration of the system. We can also use this framework
to study spin-waves by introducing a local sinusoidal magnetic field that let’s cer-
tain spins oscillate, and afterwards track how these oscillations propagate through
the material over time. All simulations were performed with the Spirit simulation
package61, which is a C++ based framework to study spin dynamics. Computational
details about the simulations can be found in section B of the appendix.
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Chapter 3

Monolayer

3.1 Crystal Structure

A CrI3 monolayer is a polyhedral-thick slab in which one layer of chromium atoms
is sandwiched between two layers of iodine atoms. The chromium atoms form a
hexagonal- or honeycomb lattice in which each chromium atom is octahedrally co-
ordinated with six iodine atoms. Each iodine atom is bound to two chromium atoms.
The Cr-I-Cr bonds have a bonding angle of ≈ 90◦. The typical crystal structure of a
CrI3 monolayer is shown in figure 3.1.

Since crystals have a periodic structure, we can describe them using periodic
boundary conditions. The unit cell, i.e. the smallest part of the crystal that contains
the full lattice symmetry, incorporates two chromium- and six iodine atoms and is
marked with black lines on figure 3.1. The entire crystal structure can be obtained
by a repetitive translation of the unit cell along the crystal axes. The lattice vectors
along these axes are given by:

a =

(√
3

2
,−1

2
, 0

)
a, b =

(√
3

2
,

1
2

, 0

)
a, c =

(
0, 0, 1

)
c, (3.1)

with a and c the lattice constants. When we relax the structure using ab initio cal-
culations based on DFT, we find a lattice constant of a = 6.919 Å, a Cr-I bond length
equal to 2.77 Å and a Cr-I-Cr bond angle of 92.46◦. For computational details and
implementation in VASP, we refer to section A.1 of the appendix. To determine the
other lattice constant (c), it’s important to realize that monolayers don’t have pe-
riodicity in the out-of-plane direction. However, since we use periodic boundary

FIGURE 3.1: Crystal structure of a CrI3 monolayer. Top view (a) and
sideways view (b) of a CrI3 monolayer’s crystal structure. Chromium
and iodine atoms are represented by blue and purple spheres respec-

tively. The unit cell is marked with black lines.
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conditions, the unit cell will replicate itself along all three crystal axes and, thus, also
in this out-of-plane direction. This problem can be solved by choosing c ≥ 15 Å in
order to include a good amount of vacuum in the unit cell. Due to this vacuum, the
(short-range) vdW interaction between adjacent layers will be negligibly small. We
refer to the earlier section on the practical implementation of DFT calculations (sec-
tion 2.2.4) for more details on the unit cell vacuum. The atomic positions within the
unit cell can be written as a function of the lattice vectors, i.e. in direct coordinates:

Ri = xia + yib + zic. (3.2)

The position of an arbitrary atom in the material R′i can be written as the position of
the corresponding atom within the unit cell and an additional translation:

R′i = Ri + T
= Ri + n1a + n2b + n3c, (3.3)

with n1, n2 and n3 three specific integers.

3.2 Electronic Properties

To get an idea of the typical electronic behaviour of CrI3, we perform DFT calcula-
tions in order to obtain the density of states (DOS) and the electronic band structure.

The DOS describes how many different states are occupied at each energy level.
In figure 3.2, we depict the DOS of monolayer CrI3 in proximity of the Fermi level.
The Fermi level itself is set to zero to serve as a reference. After all, energy has
no absolute zero, only differences in energy are physically meaningful. Notice that
we switched on the SOC, the electrons now have a preferential spin orientation,
and only states with this spin orientation will be occupied. In the same figure, we
also plotted the DOS for the most important atomic orbitals which are the d-orbitals

FIGURE 3.2: Density of States of a CrI3 monolayer. The graph con-
tains the DOS of the energy levels close to the Fermi level. The graph
contains both the total DOS (black) as the DOS for several orbitals (in
colour). The energy of the Fermi level is set as zero as a reference.

Figure is plotted with P4VASP and XmGrace.
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FIGURE 3.3: Band structure of a CrI3 monolayer. The graph contains
the band structure of monolayer CrI3 close to the Fermi level. The
energy of the Fermi level is set as zero as a reference. Figure is plotted

with P4VASP and XmGrace.

of the chromium atoms and the p-orbitals of the iodine atoms. Orbitals that are
degenerate are plotted together62. We clearly see that the px and py orbitals of the
iodine atoms (green plot) dominate the valence band maximum. The pz orbital of the
iodine atom (red plot) and the d-orbitals of the chromium atoms (blue- and magenta
plots) reside mostly in the middle of the valence band. In the conduction band, the
dxy, dxz and dyz orbitals (blue plot) are the most important orbitals. Qualitatively,
these results are in relatively good agreement with earlier published articles62.

In figure 3.3, we depict the band structure of a CrI3 monolayer near the Fermi
level. Again, we set the Fermi level to zero as a reference. Our calculations suggest
that monolayer CrI3 has a direct bandgap at the gamma point of 0.657 eV. This is in
relatively good agreement with some values in literature, e.g. Webster et al. report
a direct bandgap at the gamma point of 0.890 eV for a FM monolayer with SOC63.
This small bandgap suggests that a FM CrI3 monolayer possesses semiconducting
properties.

3.3 Magnetic Properties

In chapter 1, we already briefly discussed some experimental findings regarding the
magnetic properties of CrI3. Experimental data suggests that monolayer CrI3 dis-
plays a strongly anisotropic FM behaviour with an out-of-plane spin polarization,
and a Curie temperature of Tc = 45 K. The magnetic moments on the chromium
atoms have a magnitude of 3 µB, while the iodine atoms are non-magnetic. In this
section, we try to confirm the experimentally observed behaviour by performing
some theoretical calculations. First, we apply the 4SM methodology to the CrI3
monolayer to obtain the magnetic exchange parameters. These parameters model
the interaction between the spins in our material. Afterwards, we perform a temper-
ature dependent simulation of the spin dynamics to determine the magnetic ground-
state of the system and the Curie temperature. Finally, we also briefly discuss the
behaviour of spin waves in monolayer CrI3.
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3.3.1 Magnetic Parameters

For the 4SM calculations, we enlarge the unit cell to a 2× 2× 1 supercell as is de-
picted in figure 3.4. All the chromium atoms are labelled to differentiate between
different spin sites. We will calculate all possible exchange parameters between dif-
ferent nearest neighbouring spin site pairs. Notice that, due to the symmetry of the
crystal, many of these pairs are identical. For instance, the 1-2 pair and the 7-8 pair
are identical. All other equalities between pairs are mentioned on the right of fig-
ure 3.4. There are three different exchange matrices left to calculate. Namely, the
parameters between the 1-2 pair, the 2-3 pair and the 2-5 pair. The bonds between
these three pairs, and all bonds identical to them, are coloured in green, blue and
red respectively on figure 3.4. Due to the 3-fold symmetry in the crystal, it suffices to
calculate only one exchange matrix. For instance, it suffices to calculate the matrix
associated with the interaction between the 1-2 pair, and then perform rotations over
120 degrees and 240 degrees to obtain the other two exchange matrices.

To obtain the exchange parameters, we follow the procedure derived in section
2.1.2. The energies of four different spin configurations of the system are calculated
and mapped on the corresponding Heisenberg Hamiltonian. From the resulting sys-
tem of equations, we can derive one exchange matrix element. If we repeat this
procedure for all nine matrix elements, we obtain the following exchange matrix:

J12 =

−4.34 0.00 0.00
0.00 −3.24 −0.65
0.00 −0.65 −3.96

 , (3.4)

in which every value is expressed in meV. Notice that the exchange parameters are
either zero or negative. In principle, we can calculate the 2-3 and 2-5 pairs from the
1-2 pair by performing rotations. However, we calculated the 2-3 pair to check the

FIGURE 3.4: Labelled spin sites in a CrI3 monolayer. Top view of
a CrI3 monolayer’s crystal structure. Chromium and iodine atoms
are represented by yellow and purple spheres respectively. The
chromium atoms are labelled to differentiate between different spin
sites. The 2 × 2 × 1 supercell is marked with black lines. On the
right, three Cr-Cr bonds connected with 3-fold in-plane symmetry
are shown as blue, green, and red bars with their respective magnetic

exchange matrices. Figure from reference: [42].
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validity of this rotation. The exchange matrix for the 2-3 pair is given by:

J23 =

−3.53 −0.50 −0.57
−0.50 −4.07 0.33
−0.57 0.33 −3.97

 , (3.5)

again with all the values expressed in meV. These values are in relatively good agree-
ment with the matrices calculated from the 1-2 pair by rotation:

J23 =

−3.52 −0.48 −0.56
−0.48 −4.07 0.33
−0.56 0.33 −3.96

 ; J25 =

−3.52 0.48 0.56
0.48 −4.07 0.33
0.56 0.33 −3.96

 . (3.6)

The mean of the J12, J23 and J25 matrices can give us effective exchange parameters
that are identical for each spin site62. This effective exchange matrix, expressed in
meV, is equal to:

〈J〉 =

−3.79 0.00 0.00
0.00 −3.79 0.00
0.00 0.00 −3.96

 . (3.7)

In all exchange matrices, we observe negative values for the diagonal elements,
which suggest a FM interaction between the atoms, i.e. the atomic spins prefer a
parallel orientation.

Notice that all three the exchange matrices are symmetric. As a consequence,
all DMI parameters (i.e. the anti-symmetric exchange parameters) will be equal to
zero as can be seen from the formula presented in section 2.1.3. This is due to the
inversion symmetry of the crystal. As long as there are no external forces that break
the inversion symmetry, the CrI3 monolayer will have a DMI equal to zero.

As discussed in section 2.1.4, the crystal symmetry assures that we only need to
calculate one SIA parameter instead of the full 3× 3 SIA matrix. This parameter is
equal to Azz

ii = −0.08 meV. A negative SIA parameter indicates that the out-of-plane
direction is the preferential orientation for the spins.

In section 1.1.3, we argued that the anisotropy in the exchange has a more impor-
tant contribution to the magnetic anisotropy of the crystal than the SIA. The aniso-
topic exchange is indeed equal to ∆ = 〈J〉zz − 〈J〉xx = 〈J〉zz − 〈J〉yy = −0.17 meV,
which is significantly bigger than the SIA. This value is also negative which again
confirms the fact that the spins prefer to orient themselves along the z-direction.

3.3.2 Equilibrium Magnetization

To obtain the ground-state spin configuration and the Curie temperature of the sys-
tem, we perform simulations using the Spirit software. In CrI3, the chromium atoms
are magnetic while the iodine atoms are non-magnetic. Therefore, we only need
to include the chromium atoms in the Spirit calculations. These chromium atoms
form a hexagonal 2D spin lattice. Each unit cell contains two chromium atoms, i.e.
two spin sites. The simulations are performed on a 24× 24× 1 supercell to include
enough atoms in the lattice. In figure 3.5, we plot the ground-state spin configura-
tion of the lattice. The spins are represented with coloured arrows. The direction of
the arrows mark the directions of the spins and the colour of the arrows represents
the inclination of the spins with respect to the 2D plane. The colours of the spins
follow the order of the colours on a rainbow (red, orange, yellow, green, blue, indigo
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FIGURE 3.5: Ground-state spin configuration of a CrI3 monolayer.
The figure contains the spin-lattice for a CrI3 monolayer. Only the
magnetic atoms, i.e. the chromium atoms, are represented in the pic-
ture. The figure represents a 24× 24× 1 supercell, each unit cell con-
tains two chromium atoms. All spins have a violet colour, this means

that all the spins have a downwards out-of-plane orientation.

and violet). If the spins are oriented entirely upwards, they are coloured red, if they
are pointed entirely downwards, they are coloured violet. Spins with an in-between
orientation possess intermediate colours depending on their respective orientation,
e.g. orange arrows have a more upwards inclination while blue arrows have a more
downward inclination. Since the spins are represented as violet dots, we know they
are pointed downwards in the out-of-plane direction, which is in agreement with our
expectations based on the material’s magnetic parameters (see previous section) and
experimental observations8. Let’s conclude this section by noting that the upwards-
and downwards out-of-plane directions are energetically degenerate in a CrI3 mono-
layer. After a simulation, the system will end up in one or the other depending on
the random initial positions. Since there is no DMI in CrI3 monolayers, and since our
spin configuration matches experimental observations, we can be pretty sure of the
fact that the spin configuration found in our simulation is indeed the ground-state
of the material and not a metastable state.

3.3.3 Curie Temperature

To obtain the Curie temperature, we need to perform a temperature dependent sim-
ulation. The simulation starts off with a random spin configuration at a temperature
of T = 60 K. In steps of 0.25 K, the temperature decreases to absolute zero. In each
temperature step, we solve the LLG equation to obtain the spin configuration and
magnetization of the system. The simulation is again performed with the Spirit soft-
ware on a 24× 24× 1 supercell. More computational details can be found in section
B of the appendix. In figure 3.6, the magnetization of the system is plotted as a func-
tion of the temperature. On the left panel of the figure, we see that the Cartesian
components of the magnetization are plotted as a function of the temperature. The
calculation starts off at a temperature of T = 60 K with all the spins oriented in a
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FIGURE 3.6: Magnetization of a CrI3 monolayer as a function of the
temperature. On the left panel of the figure, the three Cartesian com-
ponents of the magnetization are depicted as a function of the tem-
perature. The sign of the magnetization denotes the direction of the
magnetization relative to the Cartesian axes. On the right panel of the
figure, the total magnetization of the system is depicted as a function
of the temperature. In both panels, the magnetization is portrayed

relative to the saturation magnetization.

random direction. If there are enough spins in the system, the magnetization along
each Cartesian axis will average out close to zero. Consequently, the total magne-
tization of the system, displayed on the right panel of figure 3.6, will also be close
to zero. If the temperature decreases, we see that the magnetization in the x- and y-
directions approach closer and closer to zero, meanwhile more and more spins orient
themselves along the z-axis which results in an increase in magnetization in this di-
rection. Consequently, also the total magnetization of the system will increase with
decreasing temperature. The temperature where the magnetization will start to in-
crease rapidly is called the Curie temperature. Below this temperature, the material
is magnetic, above this temperature, the material is non-magnetic. Our simulation
places the Curie temperature at 48 K which is in relatively good agreement with
the Curie temperature of 45 K observed in experiments8. Below the Curie temper-
ature the magnetization keeps increasing. At absolute zero, the total magnetization
is equal to one, i.e. the magnetization is fully saturated. At this point, the magne-
tization in the x- and y-directions are equal to zero while the magnetization in the
z-direction is equal to minus one. All the spins will now be oriented downwards in
the out-of-plane direction, i.e. the state depicted in figure 3.5. Since there is no DMI
in CrI3 monolayers, there will be no in-plane components (x- and y-components) of
the magnetization.

3.3.4 Spin Waves

To study the spin waves in monolayer CrI3, we artificially create a sinusoidal in-
plane oscillating field applied in a narrow rectangular region of the material and
then check how the waves propagate through the material41 (for more computa-
tional details see section B of the appendix). In figure 3.7, we show the propagation
of a spin wave generated by an oscillating magnetic field with a frequency of 0.6 THz



56 Chapter 3. Monolayer

FIGURE 3.7: Propagation of spin waves in monolayer CrI3. Four
figures showing the propagation of a spin wave through the crystal
at four different times (between 0.0 ps and 37.5 ps at intervals of 12.5
ps). The material is depicted in green, the spin wave is depicted al-
ternatingly in blue and red representing the oscillations of the spins.
The spin wave is created in the grey rectangular region marked on the
figure by an oscillating magnetic field with a frequency of 0.6 THz.

at four different times in the simulation, i.e. between 0.0 ps and 37.5 ps in intervals
of 12.5 ps. The spin wave is represented alternatingly in blue and red representing
the oscillations of the spins.

The frequency f and and wavelength λ of the spin wave can be calculated by
plotting the magnetization as function of respectively time and space and subse-
quently fitting a sine function to that data41. As an example we show how this is
done for a spin wave with a frequency of 0.6 THz in figure 3.8. From the wave-
length λ we can calculate the wavector k through k = 2π/λ. In a similar fashion,
we can determine the frequency and wavevectors for spin waves with various ini-
tial frequencies. Plotting the frequency as a function of these wavevectors gives us
the dispersion relation for spin waves in monolayer CrI3 which is depicted in figure
3.9. The solid line in this figure represents a quadratic fit to the data according to
the expression f (k) = Ak2 + f0, in which A and f0 are two fitted parameters with
f0 representing the zero-momentum spin wave mode41. The quadratic dispersion
is in agreement with the spin wave modes that have been observed experimentally
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with Raman spectroscopy40. The dispersion depicted in figure 3.9 corresponds to
the lower energy magnon mode with spins that oscillate in-phase (see also section
1.2.4). Simulations show that the spin wave dispersion relation in CrI3 can be tuned
through a large range of frequencies by applying strain on the structure which cre-
ates opportunities for possible magnonic applications41.

The results presented in this section are a reproduction of original calculations
done by Rai Menezes and published in reference [41].

FIGURE 3.8: Spin component Sx as a function of time and space
for a spin wave with a frequency of 0.6 THz. The left figure depicts
the Sx component of the spin as a function of time at different time
steps during the simulation (blue dots). Similarly, the right figure
contains data points for the Sx component of the spin as a function of
the distance travelled by the spin wave. In both figures, a sine wave
was plotted to the data to calculate the frequency f , wavelength λ

and corresponding wavevector k of the spin wave.

FIGURE 3.9: Spin wave dispersion relation for monolayer CrI3. The
figure depicts the frequency f of a spin wave as a function of the
wavevector k for six different frequencies (black dots). The black solid

line represents a numerical quadratic fit to the data.
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Chapter 4

Bilayer

4.1 Stacking

Multilayer CrI3 can be constructed by stacking multiple monolayers on top of each
other. For a CrI3 bilayer, there are at least two different stable structural phases of
the material that have been observed experimentally, the LT phase and the HT phase,
each one with another stacking order of the layers. In the LT rhombohedral phase,
the layers are stacked in a way that place the chromium atoms in one layer above a
hole in the chromium honeycomb of the adjacent layers6. One can transform the LT
rhombohedral phase to the HT monoclinic phase by sliding one of the layers by a
distance of a/3 along the in-plane lattice vectors64, with a the lattice constant of the
material. The crystal structures of the LT- and HT phases are depicted in figure 4.1.

From the previous chapter, it became clear that a CrI3 monolayer has a FM ground-
state with an out-of-plane spin polarisation. If we stack two monolayers on top of
each other, we can stack them either with their spins pointed in the same direction,

FIGURE 4.1: Crystal structure of the LT- and HT phases of a CrI3
bilayer. Top and sideways views of a CrI3 bilayer in the LT phase
(a) and the HT phase (b). Chromium and iodine atoms are depicted
with blue and purple spheres respectively. The atoms in the bottom
layer have been faded out to create some contrast with the atoms in

the upper layer. Figure from reference: [64].
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FIGURE 4.2: Transition pathway between the LT- and HT phase of
a FM- and an AFM CrI3 bilayer. The energy per chromium atom is
plotted as a function of the transition pathway, the energy of the FM
configuration in the LT phase is chosen as a reference. The LT phase

is located at x · s = 0, the HT phase at x · s = 1.

giving rise to a FM bilayer, or with their spins pointed in opposite directions, giving
rise to an AFM bilayer with zero net magnetization. So, in a CrI3 bilayer each indi-
vidual layer possesses FM order with its spins oriented perpendicular to the atomic
planes, however, the overall phase of the bilayer could be either FM or AFM. The
latter will be determined by the phase of the material. As illustrated in figure 4.2,
the LT phase favours a FM interlayer coupling, meanwhile the HT phase prefers an
AFM configuration. The figure can be interpreted as follows. We start off from a
bilayer in the LT phase and transform it to the HT phase by sliding the upper layer
along the b lattice vector with a vector s of length a/3. The transition occurs in ten
steps, in each step we calculate the energy of the system. We performed this trans-
formation both for a FM and an AFM bilayer. The transition pathway for the FM and
the AFM bilayers are plotted in red and green respectively. We set the energy of the
FM bilayer in the LT phase to zero as a reference. The graph confirms that both the
LT and the HT phases are stable configurations of the crystal, both configurations
occur at minima in the energy and are separated by an energy barrier. This figure
also predicts that the LT phase is more stable than the metastable HT phase, which
is in agreement with experimental results6. For the LT phase, the FM bilayer is 3.21
meV/Cr atom more stable than the AFM bilayer, the LT phase clearly favours a FM
spin configuration. In the HT phase, the difference is way smaller, here the AFM
phase is 0.084 meV/Cr atom more stable than the FM phase. MOKE measurements
on HT bilayer CrI3 indeed confirm this AFM phase8. The most important result to
take away from this graph is that the magnetic ground-state of a CrI3 bilayer can,
indeed, be tuned by the stacking order of the layers. Qualitatively, our results are in
good agreement with earlier publications also based on ab initio calculations64.

Next to the LT- and the HT phases, we will also consider an AA-stacking of the
layers. In an AA-stacked bilayer, every atom in the upper layer is stacked directly
above an identical atom in the bottom layer. Ab initio calculations show that an AA-
stacked bilayer prefers a FM spin configuration which is 0.199 meV/Cr atom more
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TABLE 4.1: Structural parameters of bilayer CrI3 in its different
stacking orders. For both the FM as the AFM phases of the three
stacking orders, the table contains values for the lattice constant, the
Cr-I distance, the Cr-I-Cr bonding angle, and the interlayer distance.

a (Å) dCr−I (Å) θ (◦) dlayer (Å)
LT FM 6.915 2.77 92.43 0.90

AFM 6.914 2.76 92.43 0.91
HT FM 6.913 2.76 92.42 0.92

AFM 6.914 2.76 92.45 0.92
AA FM 6.908 2.76 92.31 0.97

AFM 6.907 2.76 92.29 0.97

stable than AFM phase.
Table 4.1 contains some structural parameters for the optimized geometries of

the LT, HT and AA bilayers in both the FM and AFM phases. The structures were
optimized with DFT calculations. The parameters for the LT and HT phase are quite
similar, meanwhile the parameters for the AA bilayer are slightly different. Since
the atoms in the AA-stacked bilayer are directly on top of each other, the interlayer
distance dlayer is a little bigger to keep enough distance between the atoms. The AA
bilayer also has a smaller lattice constant a, and consequently, the Cr-I-Cr angle θ is
smaller. The bond length between the chromium and iodine atoms dCr−I was almost
identical in all structures.

4.2 Magnetic Properties

4.2.1 Magnetic Parameters

The magnetic parameters for the CrI3 bilayers are calculated with the 4SM method.
The calculations are performed for the LT-phase and the HT-phase in both the FM
and AFM configurations, and for the AA-phase in the FM configuration. Due to
the crystal symmetry in the monolayer case, we could limit ourselves to calculating
only one exchange matrix and the other matrices could be derived by performing
rotations. In the bilayer case, this rotational symmetry is absent which leads to a
bigger number of parameters that needs to be calculated.

LT-bilayer

In the 4SM calculations, we enlarge the unit cell to a 2× 2× 1 supercell as depicted
in figure 4.3. The figure contains a top view and sideways view of the LT-phase bi-
layer. Since only the chromium atoms are magnetic, we left the iodine atoms and
the atomic bonds out of the picture for the sake of simplicity. The supercell contains
16 chromium atoms in total. To make a clear distinction between the chromium
atoms in the top- and bottom layers, they are coloured in green (atoms 1-8) and yel-
low (atoms 9-16) respectively. Every spin site in the supercell is assigned a label.
In the LT-bilayer case, we need to calculate seven exchange matrices, six matrices
that model the intra-layer exchange (three in the top layer and three in the bottom
layer) and one matrix that models the inter-layer interaction. In the top layer, we
calculate the exchange matrices for the 2-1, 2-3 and 2-5 pairs, in the bottom layer,
the 10-9, 10-11 and 10-13 pairs, and for the inter-layer interaction, the 2-9 pair. No-
tice that only the interactions between intra-layer nearest neighbours and inter-layer
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FIGURE 4.3: Labelled spin sites in a CrI3 bilayer in the LT-phase.
Top view and sideways view of a CrI3 bilayer in the LT-phase. The
iodine atoms and the bonds are left out of the figure for simplicity.
Chromium atoms from the upper layer are coloured in green, atoms

from the bottom layer are coloured in yellow.
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TABLE 4.2: Magnetic parameters of a CrI3 bilayer in the LT-FM
phase. The table contains the exchange matrices, the DMI vectors
and a SIA parameter for seven distinct spin pairs. The 1-2, 2-3 and
2-5 pairs model the intra-layer interaction in the top layer. The 9-10,
10-11 and 10-13 pairs model the intra-layer interaction in the bottom

layer. The 2-9 pair model the inter-layer interaction.

Ji−j (meV) Di−j (meV) Azz
ii (meV)

-4.63 -0.04 -0.13 0.00
J1−2 0.03 -3.56 -0.64 D1−2 0.12 -0.07

0.11 -0.64 -4.25 -0.03
-3.43 -0.47 -0.54 -0.04

J2−3 -0.43 -3.93 0.26 D2−3 0.02 -0.07
-0.50 0.34 -3.86 -0.02
-3.84 0.49 0.50 0.10

J2−5 0.53 -4.34 0.42 D2−5 0.05 -0.07
0.61 0.22 -4.25 -0.02
-0.26 0.06 0.01 0.00

J2−9 0.06 -0.27 0.01 D2−9 0.00 -0.07
0.02 0.01 -0.30 0.00
-4.61 0.00 0.12 0.00

J9−10 0.05 -3.53 -0.64 D9−10 -0.12 -0.07
-0.12 -0.64 -4.23 -0.02
-3.42 -0.43 -0.50 0.04

J10−11 -0.49 -3.92 0.34 D10−11 -0.03 -0.07
-0.56 0.26 -3.86 0.03
-3.84 0.53 0.61 -0.10

J10−13 0.47 -4.34 0.22 D10−13 -0.05 -0.07
0.50 0.43 -4.25 0.03

nearest neighbours are taken into account. The results for the exchange matrices are
depicted in tables 4.2 and 4.3 for respectively the FM and the AFM cases.

In all exchange matrices, all the diagonal elements are negative. This means that
that the interaction between the spins will be FM, i.e. the spins prefer to align parallel
to each other. As expected, the inter-layer interaction (the 2-9 pair) is significantly
smaller than the intra-layer interactions.

In the monolayer case, all exchange matrices were symmetric resulting in a zero
net DMI. For the LT bilayer, there will be a non zero DMI due to some asymmetry
in the exchange matrices. However, the resulting DMI is rather small and, therefore,
the effect on the magnetization will also be very small. The non-zero DMI results
from the breaking of inversion symmetry in CrI3 bilayers.

Further, notice that the SIA parameter will has similar values for both the bilayer
and the monolayer cases. The negative values again indicate that the out-of-plane
direction is the preferential orientation of the spins.

Finally, notice that we found very similar values for both the FM- and AFM cases.
Especially the parameters for the intra-layer exchange interaction, the DMI and the
SIA are almost exactly the same in both cases. Only for the Jzz

2−9 parameter, i.e. the in-
terlayer interaction, the difference between the values was bigger. In the FM case we
found a value of -0.30 meV, in the AFM case the parameter was equal to -0.17 meV.
This difference might explain why the LT bilayer prefers a FM spin configuration.
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TABLE 4.3: Magnetic parameters of a CrI3 bilayer in the LT-AFM
phase. The table contains the exchange matrices, the DMI vectors
and a SIA parameter for seven distinct spin pairs. The 1-2, 2-3 and
2-5 pairs model the intra-layer interaction in the top layer. The 9-10,
10-11 and 10-13 pairs model the intra-layer interaction in the bottom

layer. The 2-9 pair model the inter-layer interaction.

Ji−j (meV) Di−j (meV) Azz
ii (meV)

-4.61 -0.04 -0.13 0.00
J1−2 0.03 -3.53 -0.63 D1−2 0.12 -0.06

0.12 -0.63 -4.23 -0.04
-3.82 -0.44 -0.60 -0.10

J2−3 -0.52 -4.36 0.22 D2−3 0.06 -0.08
-0.48 0.43 -4.24 0.04
-3.83 0.52 0.49 0.11

J2−5 0.45 -4.35 0.42 D2−5 0.06 -0.08
0.61 0.21 -4.24 0.04
-0.25 0.00 0.00 0.00

J2−9 0.00 -0.25 0.00 D2−9 0.00 -0.08
0.00 0.00 -0.17 0.00
-4.61 0.03 0.13 0.00

J9−10 -0.04 -3.54 -0.63 D9−10 -0.13 -0.07
-0.13 -0.64 -4.23 0.03
-3.82 0.51 -0.48 0.10

J10−11 -0.44 -4.36 0.42 D10−11 -0.06 -0.06
-0.60 0.22 -4.24 -0.04
-3.83 0.45 0.61 -0.10

J10−13 0.52 -4.34 0.21 D10−13 -0.06 -0.06
0.49 0.42 -4.24 -0.04

HT-bilayer

For the HT bilayer case, we again perform our calculations in a 2× 2× 1 supercell
as depicted in figure 4.4. The figure contains top- and sideways views of a CrI3
bilayer in the HT-phase. Again, we leave the iodine atoms and the bonds out of the
picture to simplify the figure. This is justified by the fact that only the chromium
atoms are magnetic. The supercell contains 16 chromium atoms in total. To make
a clear distinction between the chromium atoms in the top- and bottom layers, the
top-layer atoms are coloured in green (atoms 1-8) while the bottom-layer atoms are
coloured in yellow (atoms 9-16). Every spin site in the supercell is assigned a label.
In the monolayer case, we only had to calculate one exchange matrix due to the
crystal symmetry. In the LT bilayer this number grew to seven exchange matrices
to account for all the interactions. In the HT bilayer, this extends even further to
ten pairs. This is due to the fact that for the interlayer interaction, we only include
the interactions between the nearest neighbouring spins, and in the HT-phase there
are multiple atoms in the top- and bottom layer at the same distance. Therefore,
we now have to calculate four inter-layer exchange matrices, i.e. for the 1-9, 2-9, 2-10
and 5-10 pairs. Like earlier, we have six matrices that model the intra-layer exchange
interaction, three in the top layer (the matrices associated with the 1-2, 2-3 and 2-5
pairs) and three in the bottom layer (the matrices associated with the 9-10, 10-11
and 10-13 pairs). Both for the intra-layer interaction as the inter-layer interaction,
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FIGURE 4.4: Labelled spin sites in a CrI3 bilayer in the HT-phase.
Top view and sideways view of a CrI3 bilayer in the HT-phase. The
iodine atoms and the bonds are left out of the figure for simplicity.
Chromium atoms from the upper layer are coloured in green, atoms

from the bottom layer are coloured in yellow.
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TABLE 4.4: Magnetic parameters of a CrI3 bilayer in the HT-FM
phase. The table contains the exchange matrices, the DMI vectors
and a SIA parameter for ten distinct spin pairs. The 1-2, 2-3 and 2-5
pairs model the intra-layer interaction in the top layer. The 9-10, 10-11
and 10-13 pairs model the intra-layer interaction in the bottom layer.

The 1-9, 2-9, 2-10 and 5-10 pairs model the inter-layer interaction.

Ji−j (meV) Di−j (meV) Azz
ii (meV)

-4.62 0.04 -0.12 -0.01
J1−2 -0.01 -3.53 -0.65 D1−2 0.12 -0.07

0.12 -0.64 -4.24 0.03
-0.26 -0.03 -0.05 -0.04

J1−9 -0.06 -0.31 -0.02 D1−9 0.03 -0.07
0.00 0.06 -0.29 0.01
-3.42 -0.48 -0.54 -0.04

J2−3 -0.44 -3.92 0.27 D2−3 0.02 -0.07
-0.50 0.34 -3.86 -0.02
-3.83 0.48 0.51 0.10

J2−5 0.53 -4.34 0.42 D2−5 0.05 -0.07
0.61 0.22 -4.25 -0.02
-0.25 0.04 0.02 0.00

J2−9 0.06 -0.26 0.02 D2−9 0.00 -0.07
0.02 0.01 -0.29 -0.01
-0.26 -0.05 0.01 0.04

J2−10 -0.04 -0.29 0.06 D2−10 -0.03 -0.07
-0.05 -0.03 -0.29 -0.01
-0.30 0.03 -0.01 0.00

J5−10 0.03 -0.20 -0.02 D5−10 0.00 -0.07
0.00 -0.02 -0.30 0.00
-4.61 0.00 0.12 0.01

J9−10 0.05 -3.53 -0.64 D9−10 -0.12 -0.07
-0.12 -0.65 -4.23 -0.03
-3.43 -0.42 -0.49 0.04

J10−11 -0.49 -3.92 0.35 D10−11 -0.02 -0.07
-0.54 0.27 -3.86 0.04
-3.83 0.53 0.61 -0.10

J10−13 0.49 -4.33 0.22 D10−13 -0.05 -0.07
0.51 0.42 -4.24 0.02

we included only the interactions between nearest neighbours. The results for the
exchange matrices can be found in tables 4.4 and 4.3 for respectively the HT-FM and
HT-AFM cases.

In both the FM and AFM case, all the diagonal elements in every exchange matrix
are negative. This means that the spins in a HT bilayer prefer to orient themselves
parallel to each other resulting in a FM spin configuration. This is a surprising result
since our DFT calculations portrayed in figure 4.2 suggest that an AFM spin config-
uration has lower energy than a FM one, more so, an AFM spin configuration has
already been observed in the HT bilayer in experiments8.

As expected the parameters that model the inter-layer interactions are signifi-
cantly smaller than the parameters that model the intra-layer interactions which was
also the case for the LT-bilayer.
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TABLE 4.5: Magnetic parameters of a CrI3 bilayer in the HT-AFM
phase. The table contains the exchange matrices, the DMI vectors
and a SIA parameter for ten distinct spin pairs. The 1-2, 2-3 and 2-5
pairs model the intra-layer interaction in the top layer. The 9-10, 10-11
and 10-13 pairs model the intra-layer interaction in the bottom layer.

The 1-9, 2-9, 2-10 and 5-10 pairs model the inter-layer interaction.

Ji−j (meV) Di−j (meV) Azz
ii (meV)

-4.63 0.06 -0.12 -0.01
J1−2 -0.01 -3.54 -0.66 D1−2 0.12 -0.07

0.12 -0.64 -4.25 0.03
-0.26 -0.04 -0.05 -0.04

J1−9 -0.05 -0.31 -0.02 D1−9 0.02 -0.07
0.00 0.06 -0.29 0.00
-3.43 -0.48 -0.54 -0.04

J2−3 -0.44 -3.93 0.26 D2−3 0.02 -0.07
-0.50 0.34 -3.86 -0.02
-3.85 0.47 0.51 0.11

J2−5 0.54 -4.34 0.43 D2−5 0.05 -0.07
0.61 0.22 -4.26 -0.03
-0.26 0.05 0.02 0.00

J2−9 0.05 -0.27 0.02 D2−9 0.00 -0.07
0.02 0.02 -0.28 0.00
-0.26 -0.05 0.00 0.04

J2−10 -0.04 -0.31 0.05 D2−10 -0.02 -0.07
-0.05 -0.02 -0.29 0.00
-0.31 0.02 -0.01 0.00

J5−10 0.02 -0.22 -0.03 D5−10 0.00 -0.07
-0.01 -0.02 -0.30 0.00
-4.62 -0.01 0.12 0.01

J9−10 0.05 -3.53 -0.64 D9−10 -0.12 -0.07
-0.12 -0.66 -4.24 -0.03
-3.43 -0.44 -0.50 0.04

J10−11 -0.48 -3.93 0.34 D10−11 -0.02 -0.07
-0.54 0.27 -3.86 0.02
-3.84 0.54 0.61 -0.10

J10−13 0.47 -4.34 0.22 D10−13 -0.05 -0.07
0.51 0.43 -4.25 0.03

Further, note that both the FM bilayer as well as the AFM bilayer have a non-
zero DMI. However, the magnitude of the DMI vector will be rather small and will,
therefore, also have a small effect on the magnetization. The DMI in the HT-bilayer
is of the same order of magnitude as the DMI in the LT-bilayer. The non-zero DMI
results from the breaking of inversion symmetry in CrI3 bilayers.

The SIA parameter for the HT-bilayer has very similar values as the LT-bilayer
and the monolayer. The negative values again indicate that the out-of-plane direc-
tion is the preferential orientation of the spins.

Overall, we found very similar values for the FM- and AFM cases. For all in-
teractions, the intra- and inter-layer exchange, the DMI, and the SIA we found very
similar results. The fact that these values are very close together seems to confirm
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our DFT results from earlier, where there is only a very small energy difference be-
tween the FM and the AFM case. However, the DFT results suggested that the HT-
bilayer would have a AFM interlayer coupling which was not the case in our 4SM
analysis. In DFT calculations, the results of a calculation can often be significantly
different if the parameters of the calculation are poorly chosen. Since the the FM-
and AFM state are so close together in energy it could be the case that small changes
in the parameters could (wrongly) favour the FM configuration over the AFM one.
A recent paper investigated the influence of several parameters on the final state
of the system and, although, they found an AFM groundstate in most cases, there
were some instances were the HT-bilayer had an FM ground-state64. Additionally,
in future research, other methods to calculate the exchange parameters should be
solicited to exclude the possibility that the 4SM method is not valid for this system.

AA-bilayer

For the LT- and HT-phases, we calculated the magnetic parameters in both the FM
and AFM phases. When comparing these results, it becomes clear the the parame-
ters of the FM- and AFM phases don’t differ very much from each other. As such, it
suffices to only calculate the parameters for the energetically most favourable of the
two. For the AA-stacked bilayer, this is the FM one. In figure 4.5, we depict a top and
sideways view of the 2× 2× 1 supercell used in our calculations for the AA-bilayer.
Like earlier, we left the iodine atoms and the bonds out of the picture for the sake of
simplicity. Only the magnetic atoms, i.e. the chromium atoms, are depicted in the
figure. The supercell contains 16 chromium atoms in total, the atoms in the top layer
are coloured in green (atoms 1-8) while the atoms in the bottom layer are coloured
in yellow (9-16). Every spin site is assigned a label. Since we have an AA-stacking,
only the atoms in the upper layer are visible from the top view. In contrast with the
LT- and HT-bilayers, we now have to calculate eight distinct exchange matrices to
fully characterize the magnetic interactions in the lattice. Only interactions between
nearest neighbours are considered. Similarly to the two earlier structures, there are
six matrices that model the intra-layer interactions, three in the top layer (the ma-
trices associated with the 1-2, 2-3 and 2-5 pairs), and three in the bottom layer (the
matrices associated with the 9-10, 10-11 and 10-13 pairs). For the inter-layer interac-
tions we have to calculate two sets of parameters which are associated with the 1-9
and 2-10 pairs. The results from the calculations can be found in table 4.6.

In all exchange matrices (both the intra- as inter-layer), all diagonal elements are
negative. This means that the spins in the AA-bilayer prefer a FM spin configuration
with parallel oriented spins. This is in agreement with our DFT calculations that
suggested that the AA-FM bilayer had lower energy than the AA-AFM one.

As expected, the inter-layer exchange parameters are significantly smaller than
the inter-layer ones. However, when we comparing the AA-stacking with the LT-
and HT-stacked layers, we see that the inter-layer parameters of the AA-stacking
are even smaller than the parameter of the other two phases. This small inter-layer
exchange parameter suggests a very weak magnetic coupling between the layers.
The weak magnetic interaction might be explained by the bigger inter-layer distance
in the AA-stacked bilayer (see table 4.1). A bigger distance between the magnetic
atoms means a smaller overlap between the orbitals of these atoms which might
explain the weaker magnetic interaction.

The AA-bilayer has a non-zero DMI of the same order of magnitude as the DMI
in the LT- and HT-phases. Since this DMI is only small, it will also have a small effect
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FIGURE 4.5: Labelled spin sites in a CrI3 bilayer in the AA-phase.
Top view and sideways view of a CrI3 bilayer in the AA-phase. The
iodine atoms and the bonds are left out of the figure for simplicity.
Chromium atoms from the upper layer are coloured in green, atoms

from the bottom layer are coloured in yellow.
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TABLE 4.6: Magnetic parameters of a CrI3 bilayer in the AA-FM
phase. The table contains the exchange matrices, the DMI vectors
and a SIA parameter for eight distinct spin pairs. The 1-2, 2-3 and
2-5 pairs model the intra-layer interaction in the top layer. The 9-10,
10-11 and 10-13 pairs model the intra-layer interaction in the bottom

layer. The 1-9 and 2-10 pairs model the inter-layer interaction.

Ji−j (meV) Di−j (meV) Azz
ii (meV)

-4.40 0.04 0.11 0.00
J1−2 -0.04 -3.34 -0.63 D1−2 -0.11 -0.08

-0.11 -0.63 -4.05 0.04
-3.62 -0.52 -0.49 0.10

J2−3 -0.44 -4.15 0.41 D2−3 -0.06 -0.08
-0.60 0.22 -4.06 -0.04
-3.62 0.44 0.60 -0.10

J2−5 0.52 -4.15 0.22 D2−5 -0.05 -0.08
0.49 0.41 -4.06 -0.04
-0.12 -0.06 0.00 0.00

J1−9 0.06 -0.12 0.00 D1−9 0.00 -0.08
0.00 0.00 -0.04 -0.06
-0.12 0.06 0.00 0.00

J2−10 -0.06 -0.12 0.00 D2−10 0.00 -0.08
0.00 0.00 -0.04 0.06
-4.41 -0.04 -0.11 0.00

J9−10 0.04 -3.34 -0.62 D9−10 0.11 -0.08
0.11 -0.62 -4.05 -0.04
-3.62 -0.44 -0.60 -0.09

J10−11 -0.52 -4.15 0.22 D10−11 0.05 -0.08
-0.49 0.41 -4.06 0.04
-3.62 0.52 0.49 0.10

J10−13 0.44 -4.15 0.41 D10−13 0.05 -0.08
0.59 0.22 -4.06 0.04

on the magnetization. The non-zero DMI results from the breaking of inversion
symmetry in CrI3 bilayers.

Also, the SIA is of the same order of magnitude as in all earlier structures. The
negative values again indicate that the out-of-plane direction is the preferential ori-
entation of the spins.

4.2.2 Equilibrium Magnetization

To obtain an equilibrium spin configuration of our bilayers, we perform simulations
using the Spirit software to solve the LLG equation at absolute zero. Since we’re
only interested in the behaviour of the magnetic atoms of our material, it suffices to
construct a lattice that only contains the chromium atoms, the non-magnetic iodine
atoms are neglected. In each layer, the chromium atoms form a 2D hexagonal spin
lattice. The simulations are executed on a 24× 24× 1 supercell, each of these unit
cells contains four chromium atoms, two in each layer. More computational details
can be found in section B of the appendix.

At the top of figure 4.6, we depict an equilibrium spin configuration of a bilayer
in the HT-phase. All the spins are coloured in violet. Remember from previous
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FIGURE 4.6: Equilibrium spin configuration of a CrI3 bilayer in the
HT-phase. The top figure contains the spin-lattice for a CrI3 bilayer
in the HT phase. Only the magnetic atoms, i.e. the chromium atoms,
are represented in the picture. The figure represents a 24 × 24 × 1
supercell, each unit cell contains four chromium atoms, two in each
layer. All spins have a violet colour, this means that all the spins
have a downwards out-of-plane orientation. In the bottom figure, we
zoomed in on one part of the lattice. Here we see four spins that are

canted with respect to the z-direction.

discussions that this means that all the spins have an out-of-plane spin orientation
in the downwards direction. This is the case for all the spins in both the upper
and bottom layer. This simulation suggests that the HT-bilayer has a FM inter-layer
coupling. Remember from the previous chapter that, in the monolayer case, all the
atoms were also oriented along the z-axis resulting in a value of zero for the x- and
y-components of the magnetization (see section 3.3.2). In contrast, in the HT-bilayer,
the magnetization does have a very small but non-zero component in the x- and y-
directions. Some spins will be slightly canted with respect to the z-axis resulting in
a small in-plane component of the magnetization. This spin canting is due to the
non-zero DMI that is present in bilayers which is absent in monolayers due to the
symmetry of the exchange matrix. Since the DMI is only small, the resulting in-
plane magnetization will also be very small. At the bottom of figure 4.6, we zoomed
in on the spin lattice so that the canting of the spins becomes visible. Which spins
will be canted and which won’t is subject to changes from simulation to simulation.
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FIGURE 4.7: Magnetization of a CrI3 bilayer in the LT-phase, as a
function of the temperature. On the left panel of the figure, the three
Cartesian components of the magnetization are depicted as a function
of the temperature. The sign of the magnetization denotes the direc-
tion of the magnetization relative to the Cartesian axes. On the right
panel of the figure, the total magnetization of the system is depicted
as a function of the temperature. In both panels, the magnetization is

portrayed relative to the saturation magnetization.

The direction in which the spins are canted depends for a large part on the direc-
tion of the DMI vector at that specific spin site. Notice that state depicted here is
one of many (meta)stable magnetic states of the system. In order to determine the
ground-state and other possible (meta)stable states of the system one can resort to
other techniques, e.g. molecular dynamics, metropolis algorithm, etc., to probe to
entire phase space of the system. Most metastable states will be pretty similar to the
one depicted here with pretty uniform magnetization with the exception of a few
canted spins. But, since there is some non-zero DMI in the material, there is a slight
possibility to find (meta)stable states with a non-trivial spin configuration.

For the LT- and AA-stacked bilayers, we find pretty similar results as for the HT-
phase. In both cases, we also found a FM equilibrium state with all the spins pointed
in the out-of-plane direction*. In the LT-phase, there also is a small in-plane magnetic
component caused by spin canting due to the DMI. However, in the AA-layer, this
in-plane components of the magnetization is absent. This is due to the crystal sym-
metry of the AA-bilayer which more closely resembles the symmetry of a monolayer.
Due to the weak inter-layer coupling between the layers in an AA-stacked bilayer,
the behaviour of each individual layer will resemble that of monolayer.

4.2.3 Curie Temperature

In figures 4.7, 4.8 and 4.9, we depict the magnetization of respectively the LT, HT and
AA-bilayer as a function of temperature. On the left panel of each figure, we depict
the three Cartesian components of the magnetization as a function of temperature, in

*In the LT-phase and AA-phases, the spins were pointed in the upwards out-of-plane direction.
However, this doesn’t really matter since both directions are degenerate. The direction in which the
system will end up at is, for the most part, depended on the random initial orientations of the spins at
the start of the simulation.
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FIGURE 4.8: Magnetization of a CrI3 bilayer in the HT-phase, as a
function of the temperature. On the left panel of the figure, the three
Cartesian components of the magnetization are depicted as a function
of the temperature. The sign of the magnetization denotes the direc-
tion of the magnetization relative to the Cartesian axes. On the right
panel of the figure, the total magnetization of the system is depicted
as a function of the temperature. In both panels, the magnetization is

portrayed relative to the saturation magnetization.

the right panel, the temperature dependence of the total magnetization is portrayed.
All graphs have similar shapes as the magnetization curves of the monolayer. As
soon as the temperature decreases below the Curie temperature, the total magne-
tization and z-component of the magnetization start to increase rapidly. The mag-
netization keeps increasing with decreasing temperature and finally approaches the
saturation magnetization at absolute zero. In the case for the HT-bilayer, the equi-
librium spin configuration at T = 0 K is shown in figure 4.6 of the previous section.
As mentioned earlier, the LT- and AA-bilayers had an opposite magnetization which
can be seen from the z-component of the magnetization in figures 4.7 and 4.9 (which
is irrelevant since both directions are degenerate). In the monolayer, the x- and y-
components of the magnetization converged to zero with decreasing temperature
which results in the absence of spin canting. As discussed earlier, there will also be
no spin canting in the AA-bilayer since its behaviour resembles that of a monolayer
due to the weak inter-layer interaction. In the LT- and HT-phases there clearly are
non-zero components to the magnetization in the x- and y-direction caused by spin
canting due to the DMI. Further, notice that the Curie temperature of the Lt- and HT-
bilayers lies closer to the Curie temperature of bulk CrI3 which is equal to Tc = 61
K than to the Curie temperature of the monolayer which our simulations placed at
Tc = 48 K. The Curie temperatures for the LT, HT and AA-bilayers are respectively
58 K, 61 K and 50 K. The higher Curie temperature of bilayers can be explained by
the magnetic exchange interaction which is stronger for bilayers in comparison to
monolayers. This stronger interaction is both due to the intra-layer exchange pa-
rameters which are bigger in bilayers and because bilayers also have an additional
inter-layer interaction. As such, more energy, i.e. a higher temperature, is required
to thermally excite the spins. However, the Curie temperature of the AA-bilayer is
significantly lower than the temperatures of the other two structures. This is caused
by the weaker inter-layer coupling in the AA-bilayer. Due to this weak coupling, the
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FIGURE 4.9: Magnetization of a CrI3 bilayer in the AA-phase, as a
function of the temperature. On the left panel of the figure, the three
Cartesian components of the magnetization are depicted as a function
of the temperature. The sign of the magnetization denotes the direc-
tion of the magnetization relative to the Cartesian axes. On the right
panel of the figure, the total magnetization of the system is depicted
as a function of the temperature. In both panels, the magnetization is

portrayed relative to the saturation magnetization.

behaviour of each individual layer resembles that of a monolayer with only a small
additional effect of the inter-layer interaction. The result is that the Curie tempera-
ture of the AA-bilayer Tc = 50 K is only a little higher than the Curie temperature of
the monolayer Tc = 48 K.
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4.3 Twisted Bilayer

4.3.1 From Layers to Flakes

In this chapter, we will study the influence of the twisting of one of the layers in a
CrI3 bilayer on its magnetic parameters. However, performing 4SM calculations for
twisted bilayers is not so straightforward as it may seem. Due to the twisting of the
layers, Moiré patterns appear in the structure. There is now additional periodicity
in the lattice over a distance of multiple unit cells. To be able to do DFT calculations
on a twisted bilayer, we would require a very large supercell which would result
in an extremely computationally heavy calculation. Such calculations would have
a supercell that contains hundreds of atoms. Given the fact that a 4SM calculation
for a regular bilayer already requires several days of calculation time on the best
computational infrastructure available at the University of Antwerp (see section A.4
of the appendix for more information), it becomes clear that doing DFT calculations
for a twisted bilayer in this way is practically impossible within a reasonable time
frame.

However, we can solve this issue by switching our structure from an infinite layer
to finite flake. As an example, we show a monolayer flake in figure 4.10. In contrast
to the infinite sheet of atoms that is a monolayer, a flake contains a finite number of
atoms. We can construct a flake by including vacuum in the unit cell in all directions.
By stacking two monolayer flakes on top of each other, we can construct a bilayer
flake, and finally, by twisting one of the flakes we obtain the desired structure. In
figure 4.11, we show a twisted bilayer flake in the LT-phase with a twisting angle
of 3◦. Since the twisted bilayer flake contains fewer atoms than the supercell of a
regular twisted bilayer, we save a lot of computational resources and can still study
the effect of the twist on the magnetism in the material. To validate this approach,
we will first do the 4SM calculations for a monolayer flake and a bilayer flake and
compare the results with the magnetic parameters from their regular counterparts.
The results from this benchmark study can be found in section C of the appendix.
Since the method yields relatively accurate results for the regular monolayer and
bilayer, we will now apply it to a twisted bilayer.

FIGURE 4.10: Crystal structure of a CrI3 monolayer flake. Top view
of a flake constructed from a CrI3 monolayer. Chromium and iodine

atoms are represented by blue and purple spheres respectively.
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FIGURE 4.11: Crystal structure of a twisted CrI3 bilayer flake in the
LT-phase. Top view of a twisted bilayer flake in the LT-phase. The
top layer is twisted over 3◦ in the clockwise direction. Chromium and
iodine atoms are represented by blue and purple spheres respectively.

4.3.2 Magnetic Parameters

To study the influence of twisting on the magnetism of CrI3, we take a bilayer flake
in the LT-phase and calculate the exchange parameters for this structure at different
twisting angles. We repeat the calculation for both an intra-layer and an inter-layer
exchange matrix. The results from these calculations are shown in figure 4.7. The
twisting angles gradually increase from 0◦ to 15◦ in intervals of 3◦. In figure 4.11, we
show a twisted bilayer flake in the LT-phase with a twisting angle of 3◦.

For a more clear representation of the data, the results from table 4.7 are also
plotted in figure 4.12. In the intra-layer case, the diagonal elements of the exchange
matrix become more negative with an increasing twisting angle. This means that the

FIGURE 4.12: Magnetic exchange parameters of a twisted bilayer
as a function of the twisting angle. On the left figure, the diagonal
elements of an intra-layer exchange matrix of a twisted LT-bilayer are
depicted as a function of the twisting angle. On the right figure, the
absolute value of the diagonal elements of an inter-layer exchange
matrix and the size of the DMI for this interaction of a twisted LT-

bilayer, are depicted as a function of the twisting angle.



4.3. Twisted Bilayer 77

TABLE 4.7: Magnetic exchange parameters of a twisted CrI3 bilayer
in the LT-FM phase. The table contains the exchange matrices for one
intra-layer spin pair and one inter-layer spin pair at different twisting

angles.

θ Jintra (meV) Jinter (meV)
-4.50 -0.02 0.09 -0.26 0.00 0.00

0◦ 0.00 -3.50 -0.61 0.00 -0.26 0.00
-0.13 -0.59 -4.16 0.00 0.00 -0.18
-4.55 -0.03 0.11 -0.27 0.03 0.00

3◦ -0.02 -3.51 -0.63 -0.03 -0.27 -0.01
-0.13 -0.58 -4.20 0.00 0.02 -0.19
-4.63 -0.03 0.11 -0.27 0.07 0.00

6◦ 0.02 -3.55 -0.66 -0.06 -0.28 0.00
-0.11 -0.59 -4.28 0.01 0.01 -0.21
-4.73 -0.03 0.11 -0.25 0.11 0.01

9◦ -0.01 -3.64 -0.68 -0.10 -0.25 0.00
-0.07 -0.59 -4.39 0.02 0.02 -0.17
-4.83 -0.03 0.15 -0.22 0.16 0.01

12◦ -0.01 -3.72 -0.68 -0.14 -0.22 0.00
-0.12 -0.60 -4.51 0.01 -0.02 -0.16
-4.93 -0.05 0.13 -0.18 0.21 0.01

15◦ 0.00 -3.80 -0.69 -0.20 -0.18 0.01
-0.13 -0.59 -4.59 0.03 -0.02 -0.12

intra-layer exchange interaction becomes stronger in a twisted bilayer. We observe
a 10%, 8% and 9% increase in interaction strength for respectively the Jxx, Jyy and
Jzz parameters. The off-diagonal elements of the remain relatively unchanged after
applying the twists. This means that there will not be significant changes in the
intra-layer DMI throughout the twisting process.

In the inter-layer case, we see a significant increase in the DMI with each twist
of the layer (black line on the right panel of figure 4.12). On the other hand, the di-
agonal elements of the inter-layer exchange matrix slightly decrease with increasing
angle. After an angle of 15◦, the DMI even overtakes the exchange interaction as the
most dominant interaction between the layers. This can have a significant effect on
the spin configuration of the material since, in principle, the inter-layer interaction
now favours an orthogonal orientation over a parallel one. Off-course, there is com-
petition between the DMI and both the (also increased) intra-layer exchange and
inter-layer exchange which both still try to align the spin parallel. More research is
need to be able to draw a definitive conclusion as to which spin textures might ap-
pear as (meta)stable states of the system. However, our calculations are able to show
that it is possible to tune the DMI in a material by twisting of the layers.
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Chapter 5

Conclusion

In this chapter, we will conclude the thesis by summarizing the most important re-
sults that were achieved throughout this work and give an outlook on further chal-
lenges and opportunities within the field.

Magnetic Parameters

In this thesis, we used the 4SM method in combination with DFT to calculate some
magnetic parameters that model the magnetic interactions in CrI3. Based on these
parameters, we can predict the behaviour of the spins in our material. The 4SM
analysis of a CrI3 monolayer confirmed some experimental observations of the mate-
rial’s magnetic behaviour. Monolayer CrI3 is a permanent ferromagnet with strong
out-of-plane magnetic anisotropy. This anisotropy is caused by the anisotropy of
the exchange matrix in combination with a smaller contribution due to the SIA. The
exchange matrix is completely symmetric resulting in zero net DMI which prevents
spin canting.

The 4SM method was also applied to CrI3 bilayers in three different stacking or-
ders, namely an AA-stacked bilayer, a bilayer in the LT-phase and a bilayer in the
HT-phase. In CrI3 bilayers, the 4SM calculations showed a FM intra-layer exchange
interaction. The exchange parameters for the LT-phase and the HT-phase are bigger
than for the monolayer which suggest that the intra-layer exchange interaction is
even stronger in these structures. In the AA-bilayer, the difference with the mono-
layer was smaller. All three bilayers also showed a FM inter-layer coupling. The
inter-layer exchange parameters for the LT-bilayer and the HT-bilayer had more or
less the same value, the inter-layer parameters for the AA-layer were smaller. The
latter is possibly due to the bigger inter-layer distance in the AA-bilayer which re-
sults in a smaller overlap of the atomic orbitals and consequently a weaker inter-
action. In all three the layers, the inter-layer exchange interaction was significantly
smaller than the intra-layer exchange interaction. The fact that this interaction is
small means that it should be relatively easy to manipulate the inter-layer coupling,
e.g. by applying electric and/or magnetic fields, which creates opportunities for ap-
plications. The magnetic anisotropy is still caused by the anisotropy of the exchange
matrix with an additional smaller contribution due to the SIA. The latter showed
similar values in all the bilayers and in the monolayer. In the bilayers, there was a
non-zero contribution due to the DMI which allows for canting of the spins. This
could possibly lead to some interesting non-trivial (meta)stable states of the system.
Future research should investigate this claim by probing the entire phase space of the
system. Overall, the results for the bilayers were in relatively good agreement with
our expectations and experimental results. A sole exception is the inter-layer cou-
pling of the HT-bilayer which was observed to be AFM in experiments. To address
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this, other methods to calculate the exchange parameters should be consulted to con-
firm the validity of the 4SM method to calculate these parameters. Further more, the
influence of several DFT parameters on the magnetic parameters should be more
thoroughly investigated to pinpoint possible discrepancies. Another possibility is
that the Heisenberg model used in this thesis is incomplete, in future calculations,
the inclusion of other terms in the Heisenberg Hamiltonian, e.g. the biquadratic ex-
change or magnetic dipole interaction, or the inclusion of the current interactions for
the next nearest neighbours, should be considered.

In this thesis, we showed that it is possible to tune the magnetic parameters in
a CrI3 bilayer by twisting one of the layers. We proved this for a LT-bilayer. The
intra-layer exchange got stronger with increasing twisting angle. On the other hand,
the inter-layer exchange got weaker while the inter-layer DMI got stronger with in-
creasing twisting angle. At an angle of 15◦ the DMI even overtook the exchange as
the dominant inter-layer interaction. This effect creates the possibility for interesting
spin configurations in the material. However, further research is required to confirm
and quantify this effect.

Tunability of magnetic properties is currently a hot topic within the field. Earlier
tuning methods that have been investigated include: introduction of lattice defects,
applying strain and applying electric and/or magnetic fields, among others. In this
thesis, we demonstrated that stacking and twisting of the layers are also valid ways
to engineer the properties of a material. The exploration of how these tuning meth-
ods influence the material properties could lead to interesting new physics. Espe-
cially the tuning of DMI could lead to new interesting spin textures. With respect to
devices, one challenge that is still unsolved is to develop techniques that can switch
the inter-layer coupling at zero applied magnetic field. Further, we should develop
a very good understanding of how we can store information in magnets by manip-
ulation of their magnetic states.

Curie Temperature

Another property that we determined in this work is the Curie temperature of our
materials. These temperatures can be consulted in table 5.1. For the monolayer,
we found a Curie temperature of 48 K which is in pretty good agreement with the
experimentally observed Curie temperature of 45 K. For the LT- and HT- bilayer we
found Curie temperatures of respectively 58 K and 61 K. These lie both pretty close
to the Curie temperature of bulk CrI3 which is also experimentally observed to be
61 K. The Curie temperature for the AA-stacked bilayer is equal to 50 K which lies
closer to the value for the monolayer than to the values for the other bilayers. This is
due the weak inter-layer coupling in this structure. The two layers will more or less
behave themselves as individual monolayers with an additional small contribution

TABLE 5.1: Curie temperatures of the different structures that were
investigated in this thesis. The Curie temperatures were calculated
for a CrI3 monolayer, an AA-stacked bilayer, a LT-phase bilayer and

a HT-phase bilayer.

Structure T (K)
Monolayer 48
AA-Bilayer 50
LT-Bilayer 58
HT-Bilayer 61
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due to the inter-layer coupling. For the same reason there was also no spin canting
observed in the AA-bilayer. The presence of an inter-layer exchange interaction,
thus, has a significant influence on the Curie temperature of the systems.

Although CrI3 definitely has interesting properties, its relatively low Curie tem-
perature can be a problem for the inclusion in realistic applications. A current chal-
lenge in the field of 2D magnetism is to identify other materials to have similar in-
teresting properties but a higher Curie temperature. Possible candidates could be
MnSe2 or VSe2, two materials that show intrinsic 2D magnetism at room-temperature.

Spin Waves

Finally, 2D magnetic materials have drawn a lot of attention for how spin waves be-
have themselves in these materials. CrI3 shows spin wave modes in the THz regime,
a part of the spectrum that had not been utilized yet. In future research, the goal will
be to develop a very thorough understanding of how we can manipulate spin waves
in these materials. In this regard, magnonic crystals are an interesting topic as they
can create a bandgap in the spin wave spectrum. Further, we should try to extend
the study of spin waves from magnetic monolayers to multilayers. A next challenge
could be to try to determine the dispersion relation in a CrI3 bilayer. Also, the in-
teraction between spin waves and materials with a non-zero DMI is something that
requires more research. The propagation of spin waves in a material can be influ-
enced by the presence of DMI in the material.
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Appendix A

Computational Details (DFT)

The ab initio calculations done in this thesis were performed entirely within the DFT
formalism using the VASP software52–54. We thoroughly discuss DFT in section 2.2.
In this part of the appendix, we summarize some important settings and parameters
used in our calculations, and give a short overview of the available computational
resources.

A.1 Structural Calculations

As discussed in section 2.2.5, we use the conjugate gradient algorithm60 to relax the
ions in our system. The unit cell shape and volume are kept constant during the
optimizations, only the atomic positions are allowed to change.

All structural relaxations are executed using a GGA functional and the PAW
method58. We opt for the PBE exchange-correlation functional51, with the D2 method
of Grimme to account for the vdW correction term65. A term due to the SOC is
added ad hoc. Since the system contains localized (strongly correlated) d-electrons,
we implement the GGA+U method in the form proposed by Dudarev et al.66. We
add an on-site Coulomb interaction of U = 3.9 eV and J = 1.1 eV to the d-orbitals
of the chromium atoms. The energy convergence criterion between two successive
electronic iterations is set at 10−7 eV. Consequently, the convergence criterion be-
tween two successive ionic steps is 10−6 eV. For the electronic minimisation, we set
ALGO = Fast in the INCAR file. This setting uses the Davidson iteration scheme for
the first step in the minimization loop, and afterwards switches to the RMM-DIIS
algorithm59. Due to the fact that our material is magnetic, we perform spin po-
larised calculations (collinear). Since we’re also interested in magnetic anisotropies,
we recommend setting the GGA_COMPAT tag to False in the INCAR file, this will
prevent the automatic restoration of the full lattice symmetry that might be broken
by the magnetic anisotropy. The plane-wave cut-off is set at 700 eV.

For the regular CrI3 monolayer and bilayer, the Brillouin zone integration is done
over a 15× 15× 1 uniform Gamma-centred Monkhorst-Pack grid57, with a Gaussian
smearing of 0.01 eV. To construct a 2D crystal structure, we implement a unit cell
height of 15 Å in the out-of-plane direction for the monolayer, and 26 Å for the
bilayer, to make sure we got enough vacuum in the unit cell.

For all flake relaxations, we use a 1× 1× 1 grid for our k-point sampling since
flakes don’t have periodicity in either direction. We use a Gaussian smearing of 0.01
eV. Naturally, the lack of periodicity obliges us to include vacuum in all directions
of the unit cell. In all flakes, we use the length of the flake plus an additional 10 Å
of vacuum as the unit cell sizes in both the x- and y-direction. In the z-direction, we
again use a unit cell height of 15 Å for monolayer flakes, and 26 Å for bilayer flakes.
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A.2 Electronic Property Calculations

Before we can study the electronic properties of a system (DOS and band structure),
we first need to relax the system’s crystal structure and use the optimized geometry
as an input in the subsequent calculations. Further, we perform a single point cal-
culation on the optimized geometry to generate the charge density (written to the
CHGCAR file) that is also used as an input in the subsequent calculations.

In the DOS and band structure calculations, we use a GGA functional and the
PAW method58. We opt for the PBE exchange-correlation functional51, with the D2
method of Grimme to account for the vdW correction term65. A term due to the
SOC is added ad hoc. Since the system contains localized (strongly correlated) d-
electrons, we implement the GGA+U method in the form proposed by Dudarev et
al.66. We add an on-site Coulomb interaction of U = 3.9 eV and J = 1.1 eV to the
d-orbitals of the chromium atoms. The energy convergence criterion between two
successive electronic iterations is set at 10−7 eV. For the electronic minimisation, we
set ALGO = Fast in the INCAR file. This setting uses the Davidson iteration scheme
for the first step in the minimization loop, and afterwards switches to the RMM-DIIS
algorithm59. Due to the fact that our material is magnetic, we perform spin polarised
calculations (collinear). Since we’re also interested in magnetic anisotropies, we rec-
ommend setting the GGA_COMPAT tag to False in the INCAR file, this will prevent
the automatic restoration of the full lattice symmetry that might be broken by the
magnetic anisotropy. The plane-wave cutoff is set at 700 eV.

For the DOS calculation, we choose a 24× 24× 1 grid for our k-point sampling.
We use a Gaussian smearing of 0.01 eV. The DOS is evaluated on 2000 gridpoints.

We perform the band structure calculations along the Γ-M-K-Γ high-symmetry
directions of the first Brillouin zone. We use a Gaussian smearing of 0.02 eV.

A.3 Four-State Mapping Calculations

In 4SM calculations, we want to start from a system with optimized geometry. For
regular monolayers and bilayers, we just use the relaxed structure like usual. For
flake systems, we manually construct the flakes from the corresponding relaxed
monolayer and bilayer structures.

In 4SM calculations, all magnetic moments are aligned along a specific axis as
explained in section 2.1. In most calculations (e.g. monolayers, monolayer flakes and
bilayers), we use the constrained local moment approach. This means that we add
a so called penalty contribution that constrains the magnetic moments in a specified
direction. The weight of this penalty term in the total Hamiltonian is set as LAMBDA
= 10. For bilayer flakes, we use a slightly different approach. The calculation is
performed in two steps. In a first step, we constrain not only the direction, but also
the size of the spins and perform a calculation to generate a WAVECAR file. In a
second step, we start from this WAVECAR file and perform a calculation like for the
regular bilayer where only the direction of the spins is constrained.

In 4SM calculations, we use a GGA functional and the PAW method58. We opt
for the PBE exchange-correlation functional51, with the D2 method of Grimme to
account for the vdW correction term65. A term due to the SOC is added ad hoc.
Since the system contains localized (strongly correlated) d-electrons, we implement
the GGA+U method in the form proposed by Dudarev et al.66. We add an on-site
Coulomb interaction of U = 3.9 eV and J = 1.1 eV to the d-orbitals of the chromium
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atoms. The energy convergence criterion between two successive electronic itera-
tions is set at 10−7 eV. Consequently, the convergence criterion between two succes-
sive ionic steps is 10−6 eV. For the electronic minimisation, we set ALGO = Fast in
the INCAR file. This setting uses the Davidson iteration scheme for the first step
in the minimization loop, and afterwards switches to the RMM-DIIS algorithm59.
Due to the fact that our material is magnetic, we perform spin polarised calculations
(non-collinear). Since we’re also interested in magnetic anisotropies, we recommend
setting the GGA_COMPAT tag to False in the INCAR file, this will prevent the auto-
matic restoration of the full lattice symmetry that might be broken by the magnetic
anisotropy. The plane-wave cutoff is set at 700 eV for monolayers and monolayer
flakes and to 300 eV for bilayers and bilayer flakes.

In 4SM calculations on monolayers and bilayers, the number of k-points for the
Brillouin zone integration is reduced to a 3× 3× 1 grid to limit the calculation time.
For flakes, we need to use a 1× 1× 1 grid due to the lack of periodicity in all direc-
tions.

A.4 Computational Resources and Parallelization

The DFT calculations were performed on the Leibniz and Vaughan High-performance
computing (HPC) clusters of the university of Antwerp. Leibniz (2017) is a NEC sys-
tem consisting of 152 nodes with dual 14-core Intel E5-2680v4 Broadwell generation
CPUs connected through an EDR InfiniBand network. Vaughan (2020) is a NEC
system consisting of 152 nodes with two 32-core AMD Epyc 7542 generation CPUs
connected through an HDR100 InfiniBand network. More information about these
HPC clusters can be found in the documentation of the vlaams supercomputing cen-
ter (VSC)47.

The multicore architecture of clusters like Leibniz and Vaughan is ideal for par-
allel computing. The VASP software offers an option for parallelization over energy
bands through the NPAR tag. This tag specifies the number of energy bands that
should be treated in parallel. A good choice for NPAR can significantly reduce the
required time for a certain calculation. Calculating multiple energy bands at the
same time will reduce the required computational time, however, one should avoid
the spread of a single band calculation over cores from multiple nodes, communica-
tion between different nodes will slow down the calculation. At the same time, one
should always try to use all the cores of the reserved nodes as efficiently as possible,
i.e. use all cores on a reserved node on any given time (remember that a node is
always reserved in its entirety for one and only one user). One should always assign
a certain amount of cores to a simulation so that the job scheduler can efficiently fill
nodes entirely with only your jobs. Also, one should pick NPAR depending on the
total number of nodes/cores you assigned to a single simulation. Usually, NPAR is
chosen in such a way that the number of cores used to calculate one energy band is
a divisor of the total number of cores on a node.
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Appendix B

Computational Details (Spin
Dynamics)

In this thesis, we study the dynamics of the spins in materials by solving the LLG
equation. These calculations were done by using the Spirit magnetism simulation
framework61. Spirit is an open-source C++ code with a Python API. The code solves
the LLG equation numerically in a series of steps. To achieve a sufficiently converged
result, we advice using at least 500 steps in this process. A second parameter that has
an important influence on the convergence of the system is the size of the supercell.
For the systems we investigated, a supercell containing 24× 24× 1 unit cells suffices
to get good results. One unit cell contains two chromium atoms in the monolayer
case, and four chromium atoms in the bilayer case (two atoms in each layer). In most
calculations, the damping parameter of LLG equation (2.85) is set equal to α = 0.001.

The Spirit framework is a very useful tool to perform temperature dependent
magnetic simulations. In a temperature dependent simulation we start from a ran-
domly generated spin configuration at a relatively high temperature and decrease
the temperature to absolute zero in a certain amount of steps. In each step, the LLG
equation is solved for the spin configuration of the system. This solution is used
as the initial configuration in the next step. To get good well-converged results, the
steps between two consecutive temperatures can’t be too big. For the systems we
investigated, steps of 0.25 K were sufficient to achieve good results.

The Spirit code can also be used to study the propagation of spins waves in ma-
terials. We artificially create spin wave beams by introducing a sinusoidal in-plane
oscillating magnetic field41:

Binput = b0 sin (2π fin t) k̂, (B.1)

that is applied in a narrow rectangular region. In this expression, fin is the in-
put frequency, b0 the field amplitude and k̂ the propagation direction41. In our
simulations, we choose an amplitude of b0 = 0.1 T and a frequencies between
fin = 0.4− 0.8× 1012 Hz. By studying the different Cartesian components of the
spins as a function of time t we can study the propagation of spins waves through the
material along different directions. The frequency and wavelength of the spin waves
can be calulated by fitting a sine function to the osculations in the magnetization41.

For the implementation of the magnetic parameters in Spirit, we need to diago-
nalize the exchange matrix. The eigenvalues and eigenvectors of the exchange ma-
trix are used as input in the simulation. The diagonalization is done using the eig()
function in MATLAB.
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Appendix C

Layers Vs. Flakes

To reduce the unit cell size, we opt to perform calculations for the twisted bilayers
on twisted flakes and not on actual twisted layers (see section 4.3.1 for more infor-
mation). To justify this approach, we here list some tables that contain the magnetic
parameters of the monolayer and bilayer flakes and compare them with the values
for the regular monolayer and bilayer.

C.1 Monolayer

In table C.1, we see that the parameters of the monolayer flake differ a little from the
values of the regular monolayer. However, the differences are only relatively small
and they result in qualitatively the same behaviour of the spins. The negative diag-
onal elements assure the FM ground-state of the layer. The matrix is still symmetric
which results in zero net DMI. The SIA parameter is still relatively small but nega-
tive and, thus, favours an out-of-plane orientation of the spins. These results confirm
that the method is valid to qualitatively study the magnetism in monolayers.

TABLE C.1: Comparison of the magnetic parameters of a monolayer
CrI3 flake and a regular monolayer. Both the exchange matrix and

the SIA parameter are depicted in the table.

Layer Flake
-4.34 0.00 0.00 -4.20 0.00 0.00

Ji−j (meV) 0.00 -3.24 -0.65 0.00 -3.07 -0.54
0.00 -0.65 -3.96 0.00 -0.54 -3.63

Azz
ii (meV) -0.08 -0.13

C.2 Bilayer

In table C.2, we list the magnetic parameters for one intra-layer spin pair and one
inter-layer spin pair for both an LT- and an HT-bilayer flake in the FM phase. The
latter since the Spirit calculations performed in chapter 4 suggest a FM ground-state
for both phases. Just like for the monolayer, the parameters for the flakes differ only
a little from the parameters of the regular bilayers. Therefore, the flakes will dis-
play qualitatively the same magnetic behaviour as the regular bilayers. All diagonal
elements are still negative which indicates a FM interaction between the spins. Fur-
ther, the off-diagonal elements also remain rather small, consequently, the DMI in
the flakes will have more or less the same magnitude as in the regular bilayers. In
all flakes, the SIA will be close to zero. This means that the SIA has no preferential
direction for the spins. This is not a big issue since, as we’ve discussed earlier, the
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TABLE C.2: Comparison of the magnetic parameters of bilayer CrI3
flakes and a regular bilayers. Both the exchange matrix and the SIA
parameter are depicted in the table. For both the LT- and the HT-
phase, we compare the magnetic parameters that correspond to one

intra-layer and one inter-layer interaction.

Layer Flake
LT-phase -4.61 0.00 0.12 -4.50 -0.02 0.09

Jintra (meV) 0.05 -3.53 -0.64 0.00 -3.50 -0.61
-0.12 -0.64 -4.23 -0.13 -0.59 -4.16

Azz
ii (meV) -0.07 0.00

-0.26 0.06 0.01 -0.26 0.00 0.00
Jinter (meV) 0.06 -0.27 0.01 0.00 -0.26 0.00

0.02 0.01 -0.30 0.00 0.00 -0.18
Azz

ii (meV) -0.07 0.00
HT-phase -4.61 0.00 0.12 -4.50 0.00 0.11

Jintra (meV) 0.05 -3.53 -0.64 0.06 -3.42 -0.59
-0.12 -0.65 -4.23 -0.12 -0.61 -4.09

Azz
ii (meV) -0.07 -0.01

-0.26 -0.03 -0.05 -0.26 -0.02 -0.04
Jinter (meV) -0.06 -0.31 -0.02 -0.05 -0.31 -0.03

0.00 0.06 -0.29 -0.01 0.05 -0.28
Azz

ii (meV) -0.07 0.01

anisotropy in the exchange interaction is the main source for the magnetic anisotropy
in the system and not the SIA. These results confirm that the use of flakes is a valid
approach for a qualitative study of the magnetic behaviour of bilayers and twisted
bilayers.
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Appendix D

Force Estimations

In section 2.2.1, we discussed the Hamiltonian that is used in our DFT calculations
(equation 2.38). We argued that we could neglect several possible contributions to
this Hamiltonian based on some simple estimations of forces. In this part of the
appendix, we discuss how we obtained these estimations. Unless mentioned other-
wise, all physical constants used in this section were looked up from reference [46].

To estimate the electrostatic force between a proton and an electron at a distance
of 1 Å, we used Coulomb’s law:

F = ke
q1q2

r2 , (D.1)

with a Coulomb constant of ke = 8.9875517923× 109 N.m2/C2. The value of an el-
ementary charge is equal to e = 1.602176634× 10−19 C, the proton has a charge of
q1 = +e, the electron has a charge of q2 = −e. With these values, we find a force of
|F| = 2.30707755× 10−8 N.

The gravitational force between a proton and an electron at a distance of 1 Å was
estimated with Newton’s law of gravitation:

F = G
m1m2

r2 , (D.2)

in which the gravitational constant is equal to G = 0.667430× 10−10 N.m2/kg2, the
mass of the proton is m1 = 1.67262192369× 10−27 kg and the mass of the electron
is m2 = 9.1093837015× 10−31 kg. These inputs give us a value for the gravitational
force of |F| = 1.0169334× 10−47 N.

The strong- and weak nuclear interactions are quite complicated processes and,
thus, are way harder to capture in a single formula. We will, however, make some
(crude) estimations on the order of magnitude in which these forces operate, by us-
ing a formula based on the Yukawa potential. The strong nuclear force between two
protons at a distance of 1 Å is estimated by the so called ’nuclear force formula’67:

F = −H
e−r/r0

r2 . (D.3)

The constant pre-factor is equal to H = 3.4× 10−26 N.m2, constant r0 has a value of
r0 = 1.522× 10−15 m. We refer to reference [67] for more information about the origin
of this formula and how the values of the constants were determined. With these
input values, we get a force equal to zero, i.e. the result is smaller than 2.229× 10−308

which is the smallest possible number that can be represented in MS Excel. Typically,
the weak nuclear force will be even smaller44, hence its name, and can, therefore,
also be neglected in our Hamiltonian. The strong- and weak nuclear forces become
significant only in the femtometer range or smaller44.
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Appendix E

Functional Derivatives

In this part of the appendix, we will briefly introduce the concept of functional deriva-
tives. A functional can be thought of as a function takes one or more other functions
as an argument. In contrast, a function takes one or more variables as an argument.
We can extend this analogy to derivatives. A functional can be differentiated with
respect to a function, just like a function can be differentiated with respect to a vari-
able. The functional derivative of a functional F that depends on a function f can be
defined as43:

δ

δ f (x)
F[ f (x)] = lim

δ f (x)→0

F[ f (x) + δ f (x)]− F[ f (x)]
δ f (x)

. (E.1)

This definition is very similar to the definition of the derivative of a function. If we
differentiate a functional F with respect to a variable x, we get43:

dF
dx

=
∫

δF
δ f

d f
dx

d f . (E.2)

In the special case were F = f , this expression reduces to43:

d f
dx

=
∫

δ f
δ f ′

d f ′

dx
d f ′. (E.3)

This equation can be valid if and only if43:

δ f
δ f ′

= δ( f − f ′), (E.4)

where δ( f − f ′) is a Dirac-delta function and, thus, not to be confused with the use
of the greek letter δ in the notation of a functional derivative. This last identity is
very useful, and has also been used in section 2.2.3 of chapter 2. For instance, to
obtain expression (2.63), we implicitly did:

δ

δρ(r)

∫
Vext(r′)ρ(r′)dr′ =

∫
Vext(r′)

δρ(r′)
δρ(r)

dr′

=
∫

Vext(r′)δ(r′ − r)dr′

= Vext(r) (E.5)

In that same expression, we did exactly the same for the other terms.
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