
Advancing interatomic potentials for molecular dynamics simulations of 2D materials 
 

Idea: The idea of this master thesis is to compare the different interatomic potentials in terms of 
accuracy and efficiency. For example, the candidate can compare machine learning potentials (GAP 
for example which is the most promising) with usual classical potentials (Tersoff, AIREBO, ILP, etc.), 
and also benchmark these results against DFT and experimental results. The thesis can be centered 
around 2D materials of current interest for example: graphene, hBN, TMDs. By accuracy one means 
the lattice constants, elastic constants, phonon bands, DOS, and by efficiency one means the speed of 
the calculations when comparing the different results (this would not involve the DFT part, just the 
MLIP implementation in LAMMPS), and convenient parallelization. 
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Catch: Molecular dynamics is the initial step into gaining insight about the properties of materials in 
the nanoscale regime. For these simulations to be accurate we need an accurate representation of the 
potential energy surface (PES), in particular one with a good description of the phonon dispersion 
spectrum, which determines various mechanical and thermodynamical properties. Quantum 
mechanical approaches such as DFT or AIMD based on DFT offers good descriptions, but they 
represent a high computational cost and poor scaling (in the order of the cube of the electron number), 
this limits the number of atoms and the simulation time. Interatomic potentials (IAPs) appear as an 
alternative. IAPs are empirical parametrization of the PES based on functional forms that depend on 
the atomic degrees of freedom. In recent years, the rise of machine learning has provided an 
alternative to the development of IAPs with an accuracy close to ab initio methods, but with a much 
lower computational cost. Machine learning interatomic potentials (ML-IAPs) describe the PES as a 
function of local atomic environment descriptors, thus achieving invariance in rotation, translation, 
and permutation of atoms. Despite the fact that ML-IAPs have proven to be a good alternative there 
is still a lot to do in terms of describing strengths and weaknesses when using them in different 
scenarios. 


