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Samenvatting

Bose-Einstein condensaten, die voorspeld werden in 1925 en experimenteel ge-
realizeerd werden in 1995, bevatten veel interessante phenomenen (zoals super-
fluiditeit en vortices) [1, 2, 3, 4, 5]. Het is ook een excellente kandidaat voor een
kwantum simulator (zoals bedacht door Feynman [6]), om kwantum effecten
te simuleren door gebruik te maken van Bose-Einstein condensaten, wat het
hoofdonderwerp van deze Thesis is.

In 1974, vermelde Hawking [7] dat zwarte gaten niet compleet zwart zijn,
maar ook thermische straling uitzenden. Het grootste probleem is echter dat de
temperatuur te laag is om gemeten te worden [8, 9]. Als oplossing, suggereerde
Unruh [10] dat een analogie gebruikt kan worden, waar er toegang is tot beide
kanten van de horizon, wat het geval is met Bose-Einstein condensaten (met
de juiste potentiaal en parameters). Het Casimir effect, waarbij twee ongeladen
parallelle platen elkaar aantrekken door vacuum fluctuaties, kan ook gesimuleerd
worden met Bose-Einstein condensaten [11, 12, 13, 14, 15]. Beide zijn kwantum
effecten die gesimuleerd kunnen worden door Bose-Einstein condensaten.

In deze Thesis, wordt Hawking straling numeriek gesimuleerd door gebruik
te maken van een Bose-Einstein condensaat. Een bewegende horizon en een
ruimte-afhankelijke interactie sterkte worden gebruikt om de resultaten van [16]
te verkrijgen. Ook wordt de experimentele realizatie hiervan besproken.

Twee uitbreidingen worden hieraan nog toegevoegd: (i) een dubbele horizon,
een zwarte en een witte, in een de Laval nozzle configuratie waar de kwantum
vloeistof eerst versnelt en daarna weer vertraagt, wordt bekeken. (ii) we gingen
verder dan de fysica van de uniform bewegende horizon door nog een oscillerende
beweging erbij te voegen. Ook werd Bragg spectroscopie gebruikt om de dis-
persies te meten en gestimuleerde Hawking straling te simuleren door gebruik
te maken van een inkomende golf in plaats van kwantum fluctuaties.

De contributie van deze Thesis op dit veld is de gedetaleerde studie van
de oscillerende horizon en de de Laval nozzle met een ruimtelijk-gemoduleerde
interactie sterkte, terwijl een overzicht over het onderwerp van analoge Hawking
straling in BECs wordt uiteengezet.

Het Casimir effect zal worden besproken. Het statische Casimir effect wordt
bestudeerd en berekend voor een quasi-1D BEC gebaseerd op [17]. Daarbij,
worden schattingen van de Casimir kracht gemaakt voor een experimentele op-
stelling. Het dynamische Casimir effect zal ook, indirect, behandeld worden in
de context van Hawking straling.
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Abstract

Bose-Einstein condensates, which were theoretized in 1925 and achieved exper-
imentally in 1995, host lots of interesting phenomena (such as superfluidity and
vortices) [1, 2, 3, 4, 5]. It is also an excellent candidate for a quantum simulator
(as coined by Feynman [6]), to simulate quantum effects using Bose-Einstein
condensates, which will be the main topic of this Thesis.

In 1974, Hawking [7] stated that black holes are not completely black, but
emit thermal radiation. The largest problem is, however, that the temperature
is too low to be measured [8, 9]. Instead, Unruh [10] suggested that an analogy
can be used, where there is access to both sides of the horizon, as is the case
with Bose-Einstein condensates (using the right potentials and parameters).
Similarly, the Casimir effect, which states that two uncharged parallel plates
attract each other due to vacuum fluctuations, can also be simulated using
Bose-Einstein condensates [11, 12, 13, 14, 15]. Both are quantum effects which
can be simulated by a Bose-Einstein condensate.

In this Thesis, Hawking radiation will be numerically simulated using a Bose-
Einstein condensate. A moving horizon and spatially-dependent interaction
strength are used to mimic the results of [16]. Additionally, the experimental
feasibility of this will be discussed.

Two extensions were added on top of this model: (i) a double horizon, one
black and one white, in a de Laval nozzle configuration where the quantum fluid
is first accelerated and subsequently decelerated, was considered. (ii) we went
beyond the physics of the uniformly moving horizon by adding an oscillatory
motion on top of the linear motion. Also Bragg spectroscopy was used to mea-
sure the dispersions and simulate stimulated Hawking radiation by using, an
incoming wave instead of quantum fluctuations.

The contribution of this Thesis to this field is the detailed study of the os-
cillating horizon and the de Laval nozzle with a spatially-modulated interaction
strength, while reviewing the topic of analog Hawking radiation in BECs.

The Casimir effect will be discussed. The static Casimir effect will be studied
and calculated for a quasi-1D BEC based on [17]. In addition, estimates of the
Casimir force will be made for an experimental setup. The dynamical Casimir
effect will, indirectly, be covered in the context of Hawking radiation.
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Chapter 1

Introduction

1.1 Introduction and state of the art

In 1974, Hawking [7] theorized that black holes are not completely black. Hawk-
ing used quantum field theory, in combination with general relativity to predict
that black holes emit radiation according to a Planck spectrum with a cer-
tain temperature. This radiation is a result of the vacuum fluctuations at the
event horizon which produce pairs of particles, where one of the particles gets
attracted to the singularity. The other particle will be measured as radiation.
After theoretical calculations of the expected temperature, a major problem was
faced: the temperature for astrophysical black holes is so low that the radiation
is too weak to be measured over the cosmic microwave background [8, 9].

However, in 1976, Unruh [10] suggested to model gravitational fields from
general relativity using other physical systems, such as a fluid. Working with
such analogies has become known as “analog gravity”, and it can be extended
to “analog physics” for other phenomena such as the Casimir effect. This is
the foundation of this thesis, where we investigate the use of Bose-Einstein
condensates to simulate event horizons, Hawking radiation, and the Casimir
effect.

In a Bose-Einstein condensate, using an analogy between the speed of sound
(the phononic excitations) and the speed of light, an artificial horizon can be
created by using a potential step [8, 9]. A cartoon illustration of the sonic black
hole is shown in Figure 1.1. However, even in a Bose-Einstein condensate, the
temperature is too weak to be detected [8, 9]. Fortunately, in this case, there is
access to both sides of the horizon [8, 9]. Now, correlations between the Hawking
pairs at both sides of the horizon can be measured [8, 9]. Several papers about
this have already been published and here only an overview of the state of the
art is given.

In 2008, Carusotto et al. [16] already made extensive simulations of this
system by using a step potential which moves through the condensate with a
certain speed, which needs to be in between the speed of sound of both sides of

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: In this cartoon picture, the waterfall which accelerates the flow is
the horizon [18]. From vacuum fluctuations, pairs of fish are created at the
waterfall, headed in opposite directions. Note that the flow velocity at the
waterfall is larger than the swimming speed of the fish, so the downstream fish
can never reach the upstream region any more, even if it reversed course. Both
fish can be caught by fishers at opposite sides of the waterfall and this illustrates
the correlation between the fish at both sides (Hawking radiation) [18]. Source:
[18].
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the horizon [16]. They used a spatially-varying interaction strength to minimize
deterministic effects such as soliton-shedding and the production of shock waves
at the barrier [16]. Their simulation revealed two Hawking modes, and a pair
of fringes related to the dynamical Casimir effect [16]. The latter is due to the
spatially-varying interaction strength [16]. Following this, experimental studies
have been performed. One of the most prominent ones are from Steinhauer. In
2014, he studied stimulated Hawking radiation, which makes use of two horizons
(inner and black hole horizons) to amplify the Hawking radiation (just as in a
laser) [19]. This would give rise to a checkerboard pattern. This was numerically
simulated by Wang [20]. In 2015 and 2016, spontaneous Hawking radiation
was observed experimentally and the entanglement between the particles at
both sides of the horizon was studied [21, 22]. And in 2019, the thermality of
Hawking radiation was tested [23]. Also, several theoretical studies have been
performed. In this thesis, the result of Carusotto, [16], will be reproduced and
the experimental feasibility is studied. We go beyond the proposal by Carusotto
et al. by studying a double horizon configuration where the radiation created
by one horizon can be ‘amplified’, and by considering an oscillating motion of
the horizon.

A closely related effect, which has its origins in quantum fluctuations of the
vacuum too, is the Casimir effect. The Casimir effect states that two uncharged
parallel plates attract each other due to the modification of the vacuum fluctua-
tions between them [12, 13, 14, 15]. So, this is a quantum effect. Now, a similar
analogy can be applied here: Bose-Einstein condensates and their excitations
can be used to study the Casimir effect.

In addition to the static Casimir effect leading to the force on parallel plates,
there is a dynamical Casimir effect that arises when a system parameter is
suddenly changed and the virtual particle vacuum fluctuations turn real. Their
correlation properties are similar to those emitted by Hawking radiation as will
be in this thesis.

There have already been several theoretical studies [24, 17] as well as ex-
perimental studies [25, 26] of the dynamical Casimir effect. Also, studies have
looked at the measurement of the Casimir-Polder force [27]. Ref. [17] describes
the derivation of the Casimir force in the case of a quasi-1D condensate trapped
between two plates, which will be used later on in this thesis. Refs. [25, 26]
describe the measurement of the dynamical Casimir effect by using a spatially-
varying interaction strength which can take on many forms. A step potential
form is used in [16] which will be discussed in this thesis as well. The experimen-
tal feasibility of the measurement of the static Casimir effect is studied for the
RuBECi setup, designed by ColdQuanta, which will be used in the University
of Antwerp and Ghent for experiments on Bose-Einstein condensates.

1.2 Thesis outline

The overal goal of this Thesis is to get an overview of analog gravity and the
analog Casimir effect in Bose-Einstein condensates. For the former, different
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setups were considered. First, the moving step experiment is simulated, as was
previous done in [16]. The de Laval nozzle and the oscillating horizon experiment
were analyzed too. Lastly, a short section was dedicated to Bragg spectroscopy
and how it is used to stimulate Hawking radiation. This thesis is structured as
follows:

• Chapter 2: Theoretical Background - In this chapter, the necessary
theoretical background will be given. This includes: a short recap about
Bose-Einstein condensates (what they are, the theory describing them and
the excitations that play a role), the Casimir effect in electromagnetism
and Hawking radiation. Also, a short introduction will be given into the
field of analog physics.

• Chapter 3: Numerical techniques - Chapter 3 describes the differ-
ent numerical techniques which are needed in this thesis. First of all, the
pseudo-spectral split-step method used to solve the Gross-Pitaevskii equa-
tion will be explained. Secondly, the TruncatedWigner approximation will
be shown, which is used for the incorporation of quantum fluctuations in
our simulations.

• Chapter 4: Hawking radiation and other excitations - The analogy
between Hawking radiation in black holes and Bose-Einstein condensates
will be explained and the step-sweep experiment of [16] will be studied.
Also, the experimental feasibility will be reasoned. The oscillating horizon
experiment will be introduced and several other effects will be discussed.
The Laval nozzle is studied, as well. Furthermore, Bragg spectroscopy
will be shown and the relation with stimulated Hawking radiation will be
considered.

• Chapter 5: Static Casimir effect - Here, the derivation of the static
Casimir effect for a quasi-1D Bose-Einstein condensate will be studied
[17] and the RuBECi setup will be discussed. Lastly, the experimental
feasibility will be discussed.

• Chapter 6: Conclusion and Outlook - In this chapter, the conclusion
will be given and possibilities for further studies will be touched on.



Chapter 2

Theoretical Background

In this chapter, the necessary theoretical background is given. First, Bose-
Einstein condensates and the Casimir effect in the context of electromagnetism
will be studied. Secondly, Hawking radiation in general relativity will be intro-
duced. Also, the field of analog physics and its applications are shown.

2.1 Bose-Einstein condensates

Although Bose-Einstein condensation was already predicted in 1924 by Einstein
[28], it took till 1995 to be realized by Cornell, Wieman, Ketterle, and Hulet
[2, 3, 29]. The properties that a cooled gas of bosons manifest are of interest to
researchers as an controllable quantum many-particle system for the study of
weakly interacting superfluids, that are theoretically much easier to deal with
than with the strongly interacting helium superfluid. Their fermionic counter-
parts are actively used as simulators for superconductors. Beyond these rela-
tively obvious analogs, they can also be used as a gateway to study other experi-
mentally out-of-reachable systems, like black holes. The search for Bose-Einstein
condensation sparked interest in finding different cooling methods. Since the
proposal of this new state of matter, several theories were proposed to describe
it, including the Gross-Pitaevskii equation [30, 31]. Following the discovery of
Bose-Einstein condensates, other systems, including the Fermionic condensate,
were proposed and discovered [32]. All of these topics will be shortly discussed
here. The book of Pitaevskii and Stringari [33] and the course notes of Prof.
Tempere [1] are used as a thread through this section and can be consulted by
the interested reader.

2.1.1 Introduction

Boltzmann’s classical description of atoms (e.g, kinetic theory of gases) in a gas
describes atoms as mass points that possess a particular position and momentum
and collide with each other. When the gas cools down, the atoms have less

5
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Figure 2.1: While decreasing the temperature, the wavelength becomes larger
and larger and at some point, they interfere constructively to form one collective
“quantum wave”. Source: [38].

momentum and thus move slower. The mean kinetic energy of a gas of atoms
is given, classically, by [34]:

Ekin =
⟨p2⟩
2m

=
3

2
kBT, (2.1)

where m represents the mass of the atoms, kB is Boltzmann’s constant, and T
is the temperature. In 1923/1924, Louis de Broglie [35, 36] introduced the idea
that all particles should be seen as wavepackets which correspond with a spread
on position and momentum, which are related to each other by Heisenberg’s
uncertainty principle ∆x∆p ≥ ℏ/2 with ℏ Planck’s constant. The spread on the
position can be related to the temperature via the de Broglie wavelength [4]:

λdB =

√
2πℏ2
mkBT

. (2.2)

This can be interpreted as follows: when cooling the gas down, the momentum
decreases and thus also the uncertainty on the momentum (∆p <

√
⟨p2⟩), and

through the Heisenberg’s uncertainty principle, the spread on position increases.
The ratio between the spread of the wave packet and the distance between the
particles can be described by the phase space density nλ3dB. For air at room tem-
perature, the phase space density is approximately 10−7. When the gas cools
down a significant amount (so, when nλ3dB = 1), the wavefunctions of the atoms
can overlap. Here the case of bosons, which are particles with integer spin which
obey Bose-Einstein statistics, will be discussed because, with fermions, multiple
particles cannot take on the same wavefunction [37]. The bosons will then tend
to macroscopically occupy the single-particle ground state, and the wavefunc-
tions interfere constructively, resulting in one collective “quantum wave”. This
is called a Bose-Einstein Condensate (BEC) and is schematically shown in Fig-
ure 2.1. The BEC phenomenon was already predicted by Bose and Einstein in
1924 [28], however, it took till 1995 to observe a BEC (due to the, back then un-
available, cooling techniques) [2, 3]. Bose-Einstein condensation was discovered
by Cornell, Wieman for rubidium atoms, and by Ketterle for sodium atoms in
1995. They received the Nobel prize for their work in 2001.



2.1. BOSE-EINSTEIN CONDENSATES 7

2.1.2 Experimental technologies

The main impediment for achieving Bose-Einstein condensates of dilute gases
was the low temperature needed, which is of the order of µK. Several cooling
methods were invented and a few of them are discussed. This discussion is based
on [1, 39]. One of the first attempts (apart from using liquid nitrogen, which
cools till around 70 K) was made by Heike Kamerlingh Onnes, who used liquid
helium to cool systems. He reached temperatures of a few Kelvins. However,
this was still not sufficient, so other, more sophisticated methods were needed.
The different methods used for cooling include:

1. Laser cooling (or Doppler cooling): using laser light to slow down the
atoms [40, 41, 42]

2. Evaporative cooling: the most energetic atoms are pulled out of the trap

3. Simultaneous and sympathetic cooling [43]

Laser cooling

In vacuum, when cooling a dilute gas down it does not become a liquid or solid,
but it stays a gas of atoms [44]. So, decreasing the temperature is associated
with slowing down the atoms [44]. There are already multiple techniques to
slow down electrically charged particles, such as the usage of electric and mag-
netic fields [44]. However, a method to cool down electrically neutral atoms (in
general) is requested. Laser cooling is a type of cooling discovered by Cohen-
Tannoudji, Chu, and Phillips and proposed by Hänsch and Schawlow in 1975
[40, 41, 42], where the laser beam slows down most of the atoms. This works also
for electrically neutral atoms [44]. The principle is schematically represented in
Figure 2.2. A photon from the laser beam with momentum ℏk frontally collides
with an atom of the gas, which possesses a velocity v and gets absorbed. This
results in a decrease in the atom’s speed v − ℏk/m. After spontaneously re-
emission of the -now- redshifted photon, the atom stays slow. This also slows
down the atoms because a redshifted photon has lower energy than the orig-
inal absorbed photon. This will lead to temperatures of the order of tens of
microkelvins.

Magneto-Optical Traps (MOTs)

Atoms can be magnetically trapped by making use of magnetic fields. This
can be accomplished by using laser cooling as illustrated in Figure 2.3. The
atoms will favorably absorb the photons, which push them back, so confining
the atoms. Trapping can be improved by noting that the resonant frequency of
the hyperfine transition will be influenced by the Zeeman splitting of the levels
in a magnetic field (which can be created by using Helmholtz coils). Three
laser beams in three different directions and adding a magnetic field (could be
spatially varying) results in a Magneto-Optical Trap (MOT).
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Figure 2.2: Laser cooling. (a) the photon from the laser and the atom collide
which through absorption results in (b) a slowed down atom which (c) spon-
taneously re-emits the photon (which is then redshifted), while the atom still
stays slow. Source: [39].

Figure 2.3: The principle behind (a one-dimensional) MOT: Laser cooling using
two laser beams. The atoms will preferentially absorb the photons which push
them back. Source: [1].
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Figure 2.4: Illustration of evaporative cooling. The atoms with the most energy
will reach the top of the well and escape. The velocity distribution is also shown.
Source: [45].

Evaporative cooling

The temperature obtained by laser cooling is not enough to achieve Bose-
Einstein condensation. Therefore, the last step is to perform evaporative cool-
ing. Here a radiofrequent electromagnetic field is used to induce a change of
spin in the atoms, which alters the magnetic moment such that these atoms are
removed from the condensate. By making the radiofrequent field only resonant
in certain regions, it is possible to select which atoms (e.g., most energetic ones)
are removed. Now, the atoms in the remaining cloud have smaller average en-
ergy which corresponds to a lower temperature. The general idea is illustrated
in Figure 2.4. This cooling technique allows to reach nanokelvin temperatures.

2.1.3 Theoretical description

The Bose-Einstein condensate can be described by using a complex-valued order
parameter Ψ, which is proportional to the single-particle wave function ϕ0 that
all the particles occupy: Ψ =

√
N0ϕ0, where N0 is the number of particles in the

condensate. The modulus squared of the order parameter can be interpreted
as the density of condensed particles, and the phase gradients of the order
parameter are proportional to the velocity field for the condensate. This order
parameter satisfies a nonlinear extension of the Schrödinger equation, the so-
called Gross-Pitaevskii equation [30, 31]:

iℏ
∂

∂t
Ψ(r, t) = − ℏ2

2m
∇2Ψ(r, t)+V1(r, t)Ψ(r, t)+

4πℏ2a
m

|Ψ(r, t)|2Ψ(r, t). (2.3)

Here V1(r) stands for an external potential (which frequently is a harmonic trap)
and a stands for the s-wave scattering length. The latter depends on the type
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of atoms that are considered that interact and of the hyperfine state of the two
interacting atoms. A list of the s-wave scattering length is given for different
atoms in Table 2.1. Here the interatomic potentials have been approximated by
a contact potential:

V2(r− r’) =
4πℏ2a
m

δ(r− r’). (2.4)

4πℏ2a/m is frequently denoted by g, which is called the interaction strength.
This interaction strength could be constant. However, it could become spatially-
dependent. There are multiple ways to change g. One is by using the Feshbach
resonance [46, 47]. There the interaction strength g can be varied by changing
the magnetic field applied B. The main idea behind it is, that when the energy
of a bound molecular-like state of the two scattering atoms, which is influenced
by an external magnetic field, is equal to the energy of the scattering atoms
in an open scattering channel, a resonance effect occurs which in turn results
in an enhanced scattering length as [47, 46]. Early works in regard to the
Feshbach resonance have been performed by [48] and [49]. A review of the
Feshbach resonance effect in ultracold gases is given in [46] (for the interested
reader). The dependence of the scattering length on the magnetic field with the
Feshbach resonance around B0 with width ∆B is [46]:

a(B) = abg

(
1− ∆B

B −B0

)
, (2.5)

where abg represents the “background” scattering length far away from the
resonance. This is depicted in Figure 2.5.

A second way of changing g is, in the case of a 1D or 2D condensate, by
changing the confinement. So, a 1D (2D) condensate is obtained by having
strong confinement in two (one) directions such that gn ≪ ℏωdirection. The so-
called ’effective’ interaction strength in 1D is: g1D ∼ g3D/ℓ

2 (as will be discussed
in more detail in Chapter 5). By changing the confinement frequency, ℓ changes
and thus g1D changes. It could, for example, be made x-dependent by having a
confinement frequency in the y and z direction which depends on x. This will
be used later on.

Note that the Gross-Pitaevskii energy functional describes a gas of bosons
which are weakly interacting, i.e. na3 ≪ 1. Values of the background scattering
length for several widely used atom species are given in Table 2.1. From the
Gross-Pitaevskii equations, two other useful equations can be derived. First,
multiply the time-dependent GP equation by Ψ∗(r, t) and subtract its complex
conjugate:

∂|Ψ(r, t)|2

∂t
+∇ ·

(
ℏ

2mi
(Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t))

)
= 0. (2.6)

Rewriting results in a continuity equation:

∂n

∂t
+∇ · (nv) = 0, (2.7)
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Atomic species a in units of aBohr
7Li -27.6

23Na 65.3
41K 65
87Rb 106

Table 2.1: The s-wave scattering length for different atomic species in units of
the Bohr radius. Note that for some atoms it is attractive and for some it is
repulsive. Source: [1]

Figure 2.5: The Feshbach resonance displays the dependence of the scattering
length on the magnetic field, in the case of lithium atoms [47]. The scattering
length is normalized to a “background” scattering length. The scattering length
can thus be varied over a large range (here, over an order of magnitude) [47].
Source: [50].

with a velocity field:

v =
ℏ

2mi

Ψ∗∇Ψ−Ψ∇Ψ∗

|Ψ|2
. (2.8)

The wavefunction can be represented by Ψ =
√
neiS . This results in:

v =
ℏ
m
∇S and∇× v = 0. (2.9)

Now, for the second equation, plug in the phase representation of the wavefunc-
tion in to the GP equation and seperate the real components:

ℏ
∂S

∂t
+

(
ℏ2

2m
(∇S)2 + V1 +

4πℏ2a
m

n− ℏ2

2m
√
n
∇2

√
n

)
= 0. (2.10)

This is the second equation, next to the continuity equation. These equations
will be referred to as the hydrodynamic equations later on. Note that the second
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equation is Euler’s equation for a frictionless and non-viscous fluid. That is a
manifestion of the superfluid nature of atomic Bose-Einstein condensates.

In order to understand the characteristic length scale of the Gross-Pitaevskii
equation, the one-dimensional problem with a hard wall at x = 0 is studied.
The Gross-Pitaevskii equation in one dimension with the boundary conditions
Ψ(0) = 0 en Ψ(∞) =

√
n∞, has a solution for x > 0, which is given by [33]:

Ψ(x) =
√
n∞ tanh

(
x

ξ
√
2

)
. (2.11)

The characteristic length scale over which the order parameter can vary is ξ ,
the “healing length”. This is the length scale where the kinetic energy equals
the interaction energy, and it is given by [33]:

ξ =
1√
8πan

. (2.12)

Typically, the healing length is of the order of 100 nm up to a micron in exper-
imental realizations of atomic Bose-Einstein condensates. The previous solu-
tion was obtained from solving the time-independent Gross-Pitaevskii equation
(which can be deduced from the time-dependent equation by using a time-
dependency of the solution of the form e−iµt/ℏ) in one dimension and in the
case of a hard wall at x = 0. Far from the wall, the ‘bulk’ solution of a uniform
condensate is retrieved [33]:

µ =
4πℏ2a
m

n∞ = gn∞. (2.13)

This expression is not completely valid anymore in a 1D situation, as the re-
lation between g and the 3D scattering length a becomes more complicated.
Nevertheless, µ remains equal to gn∞. The chemical potential can be inter-
preted as the work that is necessary to remove a particle. It is an important
energy scale for the Bose-Einstein condensate.

2.1.4 Excitations

This section is based on [51, 33]. Consider a stationary solution Ψ0(r) of the
Gross-Pitaevskii equation and add a small perturbation:

Ψ(r) = e−iµt/ℏ(Ψ0(r) + δψ(r, t)). (2.14)

The Gross-Pitaevskii equation becomes (retaining only the terms linear in δψ
and δψ∗):

iℏ
∂

∂t
δψ =

[
− ℏ2

2M
∇2 + Vext − µ

]
δψ + g|Ψ0|2δψ + gΨ2

0δψ
∗, (2.15)

iℏ
∂

∂t

(
δψ
δψ∗

)
=

[
HGP + g|Ψ0|2 − µ gΨ2

0

−gΨ∗
0
2 −(HGP + g|Ψ0|2 − µ)

](
δψ
δψ∗

)
. (2.16)
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Figure 2.6: An illustration of the setup used to explain the Casimir effect in
electromagnetism. Source: [55].

This is called the time-dependent Bogoliubov-de Gennes equation. In the case
of an homogeneous condensate, it simplifies to:

iℏ
∂

∂t

(
δψ
δψ∗

)
=

[
ℏ2k2

2m + gn gn

−gn −(ℏ
2k2

2m + gn)

](
δψ
δψ∗

)
, (2.17)

with eigenvalues:

ℏωk = ±

√
ℏ2k2
2m

(
ℏ2k2
2m

+ 2gn

)
. (2.18)

This represents the Bogoliubov dispersion relation. In the long-wavelength limit
or for small momenta, the frequency is linear in the momentum with a propor-
tionality factor, called the speed of sound :

cs =

√
gn

m
. (2.19)

This will be an important quantity when considering Hawking radiation in con-
densates; the gravitational analogy for the speed of sound (2.19) is the speed of
light.

2.2 Casimir effect

In electromagnetism, the Casimir effect refers to the attraction of two uncharged
parallel perfectly conducting plates which are located at a small distance d with
respect to each other in a vacuum, where quantum vacuum fluctuations, which
lie at the basis of this effect, produce “macroscopic” effects [11, 12, 13, 14, 15].
It was first predicted by Casimir [52, 53] and later experimentally verified by
Lamoreaux [54] with great accuracy.

Consider two neutrally charged plates with equal area A which are separated
with a distance d. This is illustrated in Figure 2.6. The zero-point energy of
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the vacuum gives rise to a force given by:

F = −ℏπ2cA

240d2
. (2.20)

It is negative because it is an attractive force and of course it is proportional
to the area of the plates. Now, the force is very small and therefore hard to be
observed, experimentally. First of all, instead of a plate a part of a large sphere
is used, because it is hard to make two plates parallel on a small distance [56].
Furthermore, there are a lot of corrections which need to be taken into account
(such as temperature) [56]. These will not be discussed here. Finally, atomic
force microscopy (AFM) is used [56]. There, the large sphere is attached to
a ’rod’ which moves because of the plate. Due to recent developments, these
changes are measurable.

The Casimir effect is also used in many other fields in physics, such as
quantum field theory and condensed matter physics [57]. In general, the Casimir
effect can be defined as the created force, where bosons result in an attractive
contribution and fermions in a repulsive contribution when a quantum field is
enclosed in a finite space volume [57, 58]. The dynamical Casimir effect is similar
to the (static) Casimir effect, however, a quick change of boundary conditions
is applied that results in the creation of real particles [26].

To explain it informally, the static Casimir effect is a result of vacuum fluc-
tuations which result in creation and annihilation of pairs of virtual particles
[59]. Outside of the plates, the virtual photons may have any wavelength [59].
However, inside the plates the possible wavelengths are restricted [59]. The
outside virtual photons create a force against the plates [59]. However, the in-
side virtual photons create an opposite ’smaller’ force [59]. There will be a net
attractive force between the plates [59].

A Bose-Einstein condensate can also be used where there is still a Casimir
force present which can be measured as long as it is confined between two
plates [24]. An example is a BEC confined in a cylindrical tube, like in [60].
The Casimir effect studied till now is called the static Casimir effect, where the
position or geometry of the boundaries remain unchanged. In the chapter 5 of
this thesis, we will explore the static Casimir effect in more detail.

The dynamical Casimir effect is associated with the production of quasi-
particles due to a sudden change in boundary conditions, such as geometry and
position of the boundaries [26]. Such a sudden change in boundary conditions
can be realized by moving mirrors [26, 24, 60]. It can be realized by changing
the index of refraction as well [26, 24, 60]. Another possibility is the change
of the scattering length, as an obvious consequence of the change in the speed
of sound/light, due to the use of the Feshbach resonance [26, 47]. Here, the
Casimir effect is caused by phononic excitations [61].



2.3. HAWKING RADIATION 15

2.3 Hawking radiation

2.3.1 Black holes

This section is based on [62] and serves as an introduction to black holes and
general relativity for the reader. In general relativity, gravity is not a force
but is a phenomenon that arises because of the curvature of spacetime or like
physicist J. Wheeler puts it: “Spacetime tells matter how to move; matter tells
spacetime how to curve.”. The geometry of spacetime can be described by the
metric tensor gµν which can be related to an infinitesimal line element by:

ds2 = gµνdx
µdxν . (2.21)

The Christoffel symbols are defined as:

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν), (2.22)

and the Riemann tensor is defined as:

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (2.23)

where Einstein’s summation convention is used. The space is flat when every
component of the Riemann tensor is zero. Einstein’s equation is a generalization
of the Poisson equation for the Newtonian potential:

∇2Φ = 4πGρ, (2.24)

and tells us how the metric (and thus curvature) is related to the presence of
energy and momentum. It is given by:

Rµν −
1

2
Rgµν = 8πGTµν , (2.25)

where Rµν = Rσµσν is the Ricci tensor, R = Rµµ is the curvature scalar and Tµν is
the energy and momentum tensor. A spherically symmetric vacuum (Tµν = 0)
solution to this equation is the Schwarzschild solution:

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (2.26)

It has two points (singularities) where a component of the metric tensor diverges:
r = 0 and r = 2GM . To check if these are really singularities, every component
of the Riemann tensor should be checked to see if the curvature is infinite.
However, the notion of a tensor component being infinite is ambiguous because
a tensor is not invariant under a coordinate transformation. So, scalars, that
can be constructed from the Riemann tensor, should be checked. The spacetime
has one singularity at r = 0 and the other point r = 2GM is the Schwarzschild
radius and is a coordinate singularity; the coordinates which were chosen were
poor. Nevertheless, it is still an interesting point. When particles enter the
event horizon, there is no way back. An object which has an event horizon that
separates it from the rest of space is called a black hole.
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2.3.2 Hawking and Unruh radiation

This section is mainly based on [62]1. A uniformly accelerating, with magnitude
a, observer (called a Rindler observer) will observe the vacuum as a thermal bath
of temperature T = ℏa

2πck [63, 64, 65, 66]. This effect is called the Unruh effect
[10], where a flat space-time (Minkowski space) is assumed.

Hawking radiation is the thermal bath that an observer outside the black
hole perceives and has a temperature T = ℏg

2πck with g the local acceleration
due to gravity [63, 64]. This is related to Unruh radiation in the sense that
an accelerated observer in the absence of gravity is equivalent (locally) to an
observer in rest in the presence of gravity 2[63].

Classically a black hole is “black”. But, quantum-mechanically it is not
black and it is a black body with a temperature of T = ℏg

2πck .
It is intricate to observe and measure Hawking-Unruh radiation because to

produce a temperature of one microkelvin, an acceleration of the order of 1014

m s−2 is required. Ultra-cold atoms can help [67]. As suggested by Unruh
[10], Hawking radiation is a kinematic effect of QFT [68]. So, any system can
be used to study Hawking radiation as long as it has a similar analog curved
spacetime (see next section). In our case, Bose-Einstein condensates have a
similar hydrodynamic effective metric [9]. Note: in this case, the thermality
of the Hawking radiation is still small, however here, access to both sides of
the horizon is possible [9]. Therefore, correlations between both sides can be
studied [9]. The connection with the dynamical Casimir effect can be directly
observed. In the case of the dynamical Casimir effect, real particles/photons
are created by an accelerating plate [59]. With black holes, real particles are
created, similarly to the dynamical Casimir effect where gravity plays the role
of acceleration (see the weak equivalence principle) [59].

2.4 Analog physics

As mentioned earlier, astrophysical Hawking radiation is characterized by a
temperature which is small and thus challenging to measure [8]. Fortunately,
Bill Unruh [10] introduced the notion of analog spacetimes which are able to
simulate the kinematic part of General Relativity (GR) [8, 9]. However, they
are not able to simulate the dynamic part relating to the Einstein equations
[8]. This is enough to describe the Hawking radiation effect,however not, for
instance, Bekenstein entropy which is related to the dynamical part of GR
[8]. Analog spacetimes work with effective metrics which can be established
by splitting the system in two parts: the background and a perturbation [8].
There are several analog systems which can be utilized [8]. For example, the
surface waves on water or optical pulses in mediums [8]. The one which will be
of interest to us are bulk acoustics in a fluid [8]. In general, analog models are

1Be aware of the used units with c = 1
2Refer to the Weak Equivalence Principle (WEP): “The motion of freely-falling particles

are the same in a gravitational field and a uniformly accelerated frame, in small enough regions
of spacetime.” [62]
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and were very useful in physics, mathematics and geometry and could help the
development of a quantum gravity theory (see [9]).

2.4.1 Sonic analog

Consider a non-relativistic fluid which is barotropic, irrotational and inviscid
and is described by Euler’s equation and the continuity equation [8]. As will
become more clear later on, after linearizing the fluctuations describe a massless
minimally-coupled scalar field with a d’Alembertian equation propagating in
a (3+1)-dimensional Lorentzian geometry [51, 8]. Instead of refering to light
cones, one can now better refer to so-called “propagation cones” where the speed
of sound (or ripples,...) play the role of the speed of light [8]. Here, horizons
form when the speed exceeds the speed of sound [8]. Or, when defining the
Mach number as:

M =
v

cs
, (2.27)

when the Mach number is above unity [8]. So, a horizon is defined as the segment
of space where [8]:

(v · n̂)horizon = cs,horizon, orM⊥,horizon = 1. (2.28)

And thus a surface gravity, which represents the acceleration that a static ob-
sever close to the horizon undergoes observed from a observer at infinity, can
be associated with it [8, 62, 9]:

κ =
∂(c2 − v2)

2∂n

∣∣∣∣
horizon

= (c2sn̂ · ∇M⊥)horizon. (2.29)

Of course, a surface gravity can only be associated with a Killing horizon. How-
ever, we will not go any deeper into that topic [62]. For the interested reader,
the complete derivation of the surface gravity is shown in [9]. Note that in
Hawking’s original paper [7], Einstein’s equations were not used and thus, that
the result can also be applied here, which gives for the Hawking temperature
[8]:

kBTH =
ℏ
2π

(csn̂ · ∇M⊥)horizon. (2.30)

This one is the analog model which can theoretically be explained best, and for
that reason this one will be the subject of the next chapter and of this thesis [8].
Several other reasons why BECs are useful are due to the low speed of sound,
low background temperature and the simplicity in inducing supersonic flow [8].
To extend on this topic, two types of acoustics can be considered: geometrical
and physical acoustics [9]. In the case of geometrical acoustics, only the velocity
of the fluid and the speed of sound should be well-defined [9]. On the other hand,
the physical acoustics assume a irrotational, barotropic and inviscid fluid (cf.
BEC) [8, 9].
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2.4.2 Optical analog

In optics, when intense laser light, with a high enough electric field, is shined on
a crystal than the refractive index can be modified [8]. This is called the optical
Kerr effect and the exact equation is:

n = n0 + λKE2, (2.31)

with n0 the refractive index of the crystal without light, λ the wavelength of
the light, K the Kerr constant and E the electric field of the light [8]. This
effect is also used in laser physics, to generate short pulses (e.g., Kerr-lens mode
locking). In this way optical horizons can be constructed where the speed of
the pulse is slower or faster in certain regions of the crystal [8]. In the rest
frame of the photon, the perturbations move at different speeds [8]. There have
been several experiments which have been performed on this topic [69, 70, 8].
When the laser beam hits the crystal, they measure the laser beam passing
through but also other photons at other sides (perpendicular to the beam) [8].
This could be Hawking radiation, however this is not expected because the
horizon is formed perpendicular to the beam and Hawking radiation is emitted
perpendicular to the horizon [8]. Other effects could play a role, for instance,
the dynamical Casimir effect or triboluminescence (breaking of electronic bonds,
which produce light, when breaking crystal with e.g., a hamer) [8].

2.4.3 Surface waves

In the case of surface waves, it is more complicated, since shallow fluids should
be considered (λ ≫ d, with d the depth of the fluid) [8]. Here gravity waves
should be considered which occur in fluids when gravity is the restoring force
[8]. Then, the speed of the ripples are [8]:

cs =
√
g · d. (2.32)

And now, similar to the sonic case, the Froude number should be considered [8]:

F =
vsurface
cs

. (2.33)

In this case, experiments have been performed (as in [71]). However, because
the classical limit is considered, as opposed to the previous section, only the
exponential Boltzmann factor is visible (but not the Planck spectrum) [8].

In this thesis yet another analog is considered (related to the sonic analog),
based on using a Bose-Einstein condensate. Before developing the analogy, in
the next chapter we first review the numerical techniques used to simulate Bose-
Einstein condensates.



Chapter 3

Numerical techniques

In this chapter, the different numerical methods used to solve the Gross-Pitaevskii
equation are shown. The pseudo-spectral split-step method is discussed and
a method to include quantum fluctuations is discussed, called the truncated
Wigner approximation (TWA)[72, 73, 74]. We also explain how to compute the
most important observable used in this thesis, the density-density correlation
function.

3.1 Pseudo-spectral split-step method

To numerically solve the Gross-Pitaevskii equation for a system, the pseudo-
spectral split-step method is used. The time evolution needed is performed by
Fourier transforming the wavefunction, evolve it in momentum space with the
kinetic energy, inverse Fourier transforming and, lastly, evolving in real space
with the potential (ℏ = 1):

ψ(x)
F−→ ψ(k) → e−idt

k2

2mψ(k)
F−1

−−−→ ψ(x) → e−idt(V+g|ψ(x)|2)ψ(x) = ψ
′
(x)
(3.1)

A reason to use small time steps, is because for operators, the exponentials
cannot be split. However, when the time steps are small (cf. the derivation
of the path integral formulation from Schrödinger’s quantum mechanics), the
exponentials can be split as in the Trotter product formula, which is especially
used for the simulation of Hamiltonian dynamics,:

eλ(T̂+V̂ ) = lim
N→∞

(eλT̂/NeλV̂ /N )N , (3.2)

with λ an arbitrary parameter. Otherwise, the action of the kinetic energy and
potential energy is performed at once and no Fourier transform can be used
such that the kinetic energy can act easier on the wavefunction.

Before starting the time evolution, an initial wavefunction is needed. As an
initial state we choose a condensate in a (one-dimensional) box potential (two

19
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hard walls confine the atoms). A good guess for the wave function in this case
takes the form of a product of tangent hyperbolic functions that let the density
heal from zero at the wall towards the bulk density over a distance given by the
healing length. Then, an imaginary time evolution is performed to relax this
initial guess to the true ground state for the box potential. The wavefunction
can be seen as the sum of eigenstates where the amplitude of the eigenstates
decrease over time, when time is replaced with imaginary time, and the ground
state decreases the slowest [75]. So, by changing the wavefunction each time,
the ground state will be found [75].

3.2 Truncated Wigner Approximation

The truncated Wigner approximation (TWA) is a phase space method and can
be seen as a stochastic generalization of the Gross-Pitaevskii equation. It ac-
counts for the quantum fluctuations by only adding some noise to the initial
state [76]. In the TWA, an ensemble of wavefunctions is created which are
sampled from the Wigner quasiprobability distribution. Each member of the
ensemble is propagated over time using the Gross-Pitaevskii equation. Expec-
tation values of observables are then found by averaging over the time-evolved
ensemble. Whereas the Gross-Pitaevskii equation only captures the mean-field
evolution, the ensemble averaging adds the effect of quantum fluctuations.

3.2.1 The Wigner quasiprobability distribution

In the seminal work of Eugene Wigner from 1932 [72], the Wigner distribution
was introduced to study quantum corrections to the Boltzmann equation from
thermodynamics/statistical mechanics. Nowadays, it can be applied to many
problems in quantum mechanics, because it is an alternative formulation of
Schrödinger’s quantum mechanics called the phase-space formulation of quan-
tum mechanics [77]. As an example, a single-mode quantum system is discussed.
This section is based on [47].

The characteristic function of the density matrix is defined as:

χ(λ, λ∗) = Tr
(
ρ̂eλâ

†−λ∗â
)
. (3.3)

The Wigner quasiprobability distribution is the Fourier transform of the char-
acteristic function [73]:

W (α, α∗) =
1

π2

∫
e−λα

∗+λ∗αχ(λ, λ∗)d2λ, (3.4)

which is also normalized: ∫
W (α, α∗)d2α = 1. (3.5)

The reason why it is called a quasiprobability distribution is because it can
have negative values. Frequently, for our purposes, the Wigner quasiprobability
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distribution can be approximated to be close to a Gaussian. For Bose gases, the
dynamics of the Wigner quasiparticle distribution, when neglecting the third
order derivatives (therefore, it is called the Truncated Wigner Approximation
(TWA)), can be sampled by evolving the bosonic field according to the Gross-
Pitaevskii equation, as noted in [73]. In order to avoid infinities, which arise

from the commutator [ψ̂(r), ψ̂(r)†] = δ(0) = ∞, one actually has to study the

following discretized Hamiltonian, for which [ψ̂(ri), ψ̂(rj)
†] = δij/dV ,:

H =
∑
k

ℏ2k2

2m
â†kâk + dV

∑
r

U(r)ψ̂†(r)ψ̂(r) +
g

2
dV

∑
r

ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r),

(3.6)
with dV the volume of a unit cell of the grid and U(r) is the trapping potential
[73]. The divergence arised from the addition of noise with each mode, where the
number of modes are infinite [73]. The discretisation is performed by expanding
the wavefunction in plane waves:

ψ̂(r) =
1√
V

∑
k

âke
ikr, (3.7)

where the wavenumber k takes on values in the Brillouin zone corresponding to
the discrete lattice. with âk the annihilation operator for k [73].

3.2.2 Initial state preparation

For dilute Bose gases (nξ ≫ 1), the TWA approach and the time-dependent
Bogoliubov approach are equivalent, where for TWA, longer-time studies can
be performed, as mentioned in [16]. The initial state of our system is at mean
field (Gross-Pitaevskii) level:

ψ0(x) = ei(k0x−ω0t)
√
n0. (3.8)

In the TWA, noise is added to it according to:

ψ0(x) = ei(k0x−ω0t)
1√
L

√
n0 +

∑
k ̸=0

(αkuke
ikx + α∗

kvke
−ikx)

 , (3.9)

where L is the length of our system. αk are random variables, which for our
simulation, are chosen to be gaussian and independent of each other [16]. The
mean is zero and the variance depends on the temperature:

⟨αk⟩ = ⟨α2
k⟩ = 0, (3.10)

and

⟨|αk|2⟩ =
1

2 tanh
(

ϵk
2kBT

) , (3.11)
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with ϵk =
√
Ek(Ek + 2gn) the Bogoliubov dispersion and Ek = ℏ2k2

2m [16]. The
probability distribution is correspondingly [73]:

P (αk) =
2

π
tanh

(
ϵk

2kBT

)
e
−2|αk|2 tanh

(
ϵk

2kBT

)
. (3.12)

In our system, the temperature is zero and the variance approaches 1/2. The
Bogoliubov coefficients are defined by the following equations [16]:

uk + vk = (Ek/ϵk)
1/4, (3.13)

uk − vk = (Ek/ϵk)
−1/4. (3.14)

3.2.3 Evolution and disadvantages

The previously prepared initial wavefunctions will then evolve using the Gross-
Pitaevskii equation. Finally, the results will be the average over the final wave-
function ensemble. Of course, this method has several disadvantages. First of
all, this is of course never exact : a large ensemble is needed which may be com-
putationally expensive. Also, the grid used for the simulations is always finite
and will never replicate the exact dynamics. Finally, in the truncated Wigner
approximation, the cubic derivatives of W are neglected to retrieve the Gross-
Pitaevskii dynamics. This neglects effects such as ’quantum jumps’. However,
this is a simple and relatively good method for now.

For a more extensive overview of the truncated Wigner method and its ad-
vantages and applications, see [78].

3.3 Density correlation function

The power loss due to Hawking radiation for astrophysical black holes is im-
measurably small (10−48 W), and so cannot be measured [8, 9]. Nevertheless,
the advantage is that in a BEC, one has access to both sides of the horizon and
thus can measure possible correlation between both the Hawking and Partner
particles [8, 9]. And so, the density-density correlation function is an important
observable for the detection of Hawking radiation. It is defined as [79]:

G(2)(x, x′) =
⟨ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)⟩
⟨ψ̂†(x)ψ̂(x)⟩⟨ψ̂†(x′)ψ̂(x′)⟩

. (3.15)

The normally ordered quantities which are used for the calculation of the density-
density correlation function are [79]:

⟨ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)⟩ = ⟨|ψ(x)|2|ψ(x′)|2⟩W

+
1

4∆x2
(1 + δx,x′)− 1

2∆x
(1 + δx,x′)⟨|ψ(x)|2 + |ψ(x′)|2⟩W , (3.16)
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and

⟨ψ̂†(x)ψ̂(x)⟩ = ⟨|ψ(x)|2⟩W − 1

2∆x
. (3.17)

For Bose gases without a time-dependent potential, there is only a diagonal line
visible which is a result of many-body anti-bunching. The latter is related to
the repulsive interactions between the bosons. In a Fermi gas however, there is
nothing on the diagonal because of the Pauli exclusion principle.

In the next chapter, this will be worked out in more detail for the case of a
step horizon, as used in the analogy for Hawking radiation.



Chapter 4

Hawking radiation and
other excitations

Hawking radiation has a temperature that is very low, which is very compli-
cated to measure in an enviroment with a higher background temperature. To
circumvent this issue, an analogy can be made between Black Holes and Bose-
Einstein condensates. This will be further discussed below. From this, it is
possible to simulate the behavior of a BEC with a sharp potential step which
sweeps through the condensate. Also, the experimental side will be addressed
(the RuBECi setup). Other setups will be explored theoretically, including the
oscillating horizon experiment.

4.1 Introduction

Consider the sonic black hole configuration as shown in Figure 4.1. The BEC
is flowing in the positive x-direction and the horizon is located at x = 0 [80].
A sharp potential step is placed at x = 0 [80]. This results in two parts of
the system: the left side (upstream region) is the subsonic region and the right
side (downstream region) is the supersonic region [80]. This corresponds to
the event horizon in gravitational black holes, because a sound wave in the
downstream region cannot travel against the flow and will be dragged away in
the downstream region [80]. The Hawking radiation can be measured using
the density correlation function (as in [80]), because two correlated excitations
are produced which travel in the opposite direction. This should give a anti-
diagonal line on the density correlation function. The Hawking radiation has
been claimed to be measured by Steinhauer et al [22].

A more detailed mathematical explanation can be given. This is based on
[51]. Consider density and phase fluctuations of the wavefunction:

Ψ(r, t) = e−iµt/ℏΨ0(r)[1 + ϕ(r, t)] = e−iµt/ℏ
√
neiΘ

[
1 +

n1
2n

+ iΘ1

]
, (4.1)

24
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with the total density being n = n0 + n1 and for the total phase Θ = Θ0 +Θ1.
Filling these into the hydrodynamic equations (see Chapter 2), gives:

∂tn1 +∇ · (n1v+ n0ℏ∇Θ1/M) = 0, (4.2)

ℏ∂tΘ1 + ℏv∇Θ1 + gn1 −
ℏ2

4Mn
∇ · (n∇(n1/n)) = 0. (4.3)

The velocity here is the velocity generated by the phase Θ0. In the long wave-
length limit, where the momenta are small and the dispersion relation is linear
such that the analogy with the speed of sound can be made, the density variation
reduces to:

n1 = −ℏ
g
(∂tΘ1 + v · ∇Θ1), (4.4)

and the phase fluctuation obeys the following equation:

− (∂t +∇ · v) n0
Mc2s

(∂t + v · ∇)Θ1 +∇ ·
(n0
M

∇Θ1

)
= 0. (4.5)

This equation can be brought in the form of a d’Alembertian1 with a corre-
sponding metric, which belongs to a conformal class of Lorentzian metrics [9]:

□Θ1 =
1√
|g|
∂µ(

√
|g|gµν∂νΘ1) = 0, (4.6)

gµν =
n0
cs

[
−(c2s − v2) −vj

−vi δij

]
. (4.7)

Thus, “Phase fluctuations in the Bose-Einstein condensate can be interpreted
as a minimally-coupled massless scalar field propagating in a (3+1)-dimensional
Lorentzian geometry”, as noted in ref. [51]. So, here the fixed speed of sound
takes over the role of the speed of light in black holes. This is the idea of Analog
Gravity.

There are different parts of the life of a “dumb” (or sonic black) hole: the
ramp-up, spontaneous, multi-mode and mono-chromatic modes [81]. The last
two occur only in the case of the creation of the inner horizon [81]. In the
case of spontaneous Hawking radiation, the radiation is stationary [81]. Here,
only spontaneous Hawking radiation is considered. In that case, entanglement
between the Hawking pairs can be detected (except at low wavenumbers, where
it can be destroyed) [22, 21]. In the case of an inner horizon, stimulated Hawking
radiation can be found which could function as a black hole lasing, however, this
is still unsure (as it could be Bogoliubov-Cherenkov-Landau stimulated Hawking
radiation) [19, 81, 20].

1The conventional tensor notation is used: Greek indices are used as space-time indices
running from 0 to 3, Latin indices are used as space indices running from 1 to 3, and the
Einstein summation convention is assumed.
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Figure 4.1: The flow is in the positive x-direction [80]. A sharp potential step
is placed at x = 0 [80]. This splits the system into two parts: the left side
(upstream region) is the subsonic region and the right side (downstream region)
is the supersonic region [80]. The wiggly lines in the first figure represent the
Hawking radiation [51]. For the second figure, the potential and density is
plotted (not on scale). A spatially-dependent g is used (which will be explained
later). The density stays constant, then. So, the speed of sound is different for
the x > 0 and x < 0. Source: [51]

4.2 Numerical remarks

The implementation of the initial state in Matlab (see script in appendix A)
is done as follows. The random variables αk are implemented as a complex
variable with real and imaginary parts random numbers which are normally
distributed with mean 0 and standard deviation 1/

√
2. This is performed by

the randn command in Matlab. For the time evolution, the split-step method
is used and imaginary time evolution is applied to retrieve the initial ground
state (this has not that big of an effect, only at the edges it makes the order
parameter smoother). In what follows, we use units such that ℏ = m = ξ = 1,
where ξ is the healing length corresponding to the average density.

4.3 Testing the script

As a first case to consider, the potential is turned off. Here, the momentum
distribution of particles is

nk =

N∑
i=1

|Ψi(k)|2 − 1/2, (4.8)

where N stands for the number of wavefunctions in the ensemble, should be the
same before and after the time evolution via the GPE. The −1/2 is a result of
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Figure 4.2: The intensity of the condensate mode in the momentum distribution
as a function of the evolution time for several values of the interaction strength
g. The lower the interaction strength, the more stable the condensate is. The
height is normalized against the peak value at time zero. Here ℏ = 1 and m = 1.

the vacuum contribution to the density in the truncated Wigner method. This
is performed as a first test of the script. Now, for the case of a ‘large’ interaction
strength (of the order 1), the condensate decays and gets destroyed. In addition,
the Gross-Pitaevskii equation may not be valid anymore. This can be seen
by evaluating the peak height at k = 0 (the ground state, which should be
macroscopically occupied). The lower the interaction strength, the more stable
the condensate is. In Figure 4.2, the height of the condensate mode is plotted
as a function of the evolution time for several different values of g. Moreover,
the momentum distribution also agrees with the Bogoliubov result apart from
the trivial quantum depletion at k = 0. Also, the decay of the condensate is
not important because for realistic values, using rubidium-87 atoms, there is no
sign of decay. In this case, the density-density correlation function only shows
a diagonal x = x′ line which is a result of many-body antibunching, which in
turn is a result of the repulsive interactions between the atoms [16].

4.4 Step-sweep experiment and the experimen-
tal feasibility

As explained in the previous sections, the analog of a horizon can be reached by
using a potential step. Now, to simulate the flow of the condesate, the step is
moved with a speed v which is chosen to be in between the speed of sound at both
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sides of the horizon. A initial density plot is shown in Figure 4.1.However, the
Bogoliubov spectra, which is used for the noise in the truncated Wigner method,
is not applicable anymore in this case. A general way to solve for the dispersion
is by solving the Bogoliubov-de Gennes equations which is challenging. To avoid
this problem, the step is turned on at a finite time greater than zero. In this way,
the noise for the homogeneous system can be used for the initial condition. In
the presence of the moving step, the density-density correlation function shows
some interesting features. However, the parts at both sides of the diagonal line
should not be mistaken for Hawking radiation. They could possibly come from
a shock wave, which originated from the sudden switch-on of the potential step.
This shock wave results in a false signal of correlated Hawking particles. This is
similar to the soliton shedding mentioned in [16]. To minimize these effects the
interaction constant g varies such that the Hartree energy V +gn stays constant
[16].

Now, to create an interaction strength modulation experimentally is chal-
lenging. In the RuBECi setup (discussed in more detail in chapter 5) one
can for example change the confinement in the y-direction which results in a
change in g which compensates for the change in density. The Hartree energy
is V (x) + gn+ E0, where E0 can represent zero-point energy that may or may
not depend on position.

The interaction strength in an effective 1D Bose-Einstein Condensate de-
pends on the s-wave scattering length but also on the parameters of the tight
confinement in the “frozen out” directions. In our case, we assume a harmonic
confinement potential.

Firstly, the easier case of a cylindrically symmetric transverse trap will be
studied. In this case, the wavefunction may be split into two parts, a longitudinal
and transverse part [75]:

Ψ(x, y, z) = ψ(x)Φ(y, z). (4.9)

After plugging this into the Gross-Pitaevskii equation, the effective interaction
strength becomes (assuming the ground state wavefunction of a harmonic po-
tential still holds, regardless of the quantum noise):

g = 2ℏasω⊥, (4.10)

with zero-point energy of ℏω⊥ [75].
Consider the Hartee or mean-field energy:

EMF = V (x) + gn+ ℏω⊥. (4.11)

Entering the equation for the effective interaction strength in the above equation
results in:

EMF = V (x) + 2ℏω⊥asn+ ℏω⊥. (4.12)

Solving for ω⊥ gives:

ω⊥(x) =
EMF − V (x)

ℏ(1 + 2asn)
. (4.13)
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Figure 4.3: The dispersion relation in the case of v/c = 0.75 and v/c = 1.5. For
the first figure, the top left line can be denoted as the ’alpha’ branch (actually, it
is the straight line which serves as a tangent). In the second figure, the tangent
to the full line at the left is the ’beta’ branch and the tangent to the full line at
the right is the ’gamma’ branch. Based on: [16].

The implementation gives the result shown in Figure 4.4. On the top right
corner, there is a bit of a checkerboard pattern visible due to numerical insta-
bilities. This is because, the lower the grid size the smaller the checkerboard
pattern becomes. So, this is purely an effect which arises from numerical dis-
cretization and edge effects could also play a role. Still, the results are the same
as in [16]. The fringes in the upper right half come from the dynamical Casimir
effect, due to the spontaneous change in the interaction strength [16]. The dy-
namical Casimir effect is an extension of the static Casimir effect discussed in
the next chapter, in which a sudden change of boundaries or certain system
parameters (in this case, the interaction strength) can result in the production
of a pair of particles (the two opposite fringes).

The remaining two lines in Figure 4.4, in the lower left part, can be inter-
preted as follows. The dispersion relation can be writen as (with ℏ = m = 1)
[80]:

ω = vk ±

√
k2

2

(
k2

2
+ 2gn

)
. (4.14)

In the case of subsonic flow (v/c = 0.75), the dispersion relation is plotted in
the left panel of Figure 4.3. The supersonic flow case (v/c = 1.5) is shown in
right panel of Figure 4.3. Now, the Hawking radiation will follow the alpha and
beta branches with different speeds [16]. The phonon from the alpha branch
will be followed by a speed of v−c1 (the left side of the horizon) and the phonon
from the beta branch will be followed by a speed of v− c2 (the right side of the
horizon) [16]. This results in a slope of the corresponding line on the density
correlation function which is (v− c1)/(v− c2) [16]. Of course, the alpha branch
may partially back-scatter to the gamma branch which is ’traversed’ by a speed
v+ c2 [16]. So, this will result in an additional line with slope (v− c2)/(v+ c2)
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Figure 4.4: The density-density correlation function, in the case of a moving
step potential and varying interaction constant (but with an experimentally
changing ω⊥). The results are similar to the ones in [16]. The units of position
are such that the healing length is 1. The white line indicates a cut which will
be used in Figure 4.5.

[16]. Now, a quantitative analysis can be performed. A small cut, parallel to
the diagonal line gives the result shown in Figure 4.5. The first Hawking mode
can be seen to be at -96 and the second Hawking mode (is just visible) is at
-82. Also, the evolution of the length of the first Hawking line is plotted in
Figure 4.6. It grows linearly. The speed corresponding to this is 0.2 which is
the highest speed of sound (0.7) minus the speed of the horizon (0.5). This is
not a coincidence. The sound waves corresponding to the line should first ‘catch
up’ with the horizon and, also, ‘enlarge’ the line. So, the speed at which the line
enlarges is 0.7 − 0.5 = 0.2, as expected. In addition, the correlation function
was plotted in the case of temperature. Edge effects play a role in this, however,
they are removed from the figure (cutting them out). As can be seen, there is a
third line which comes from the thermal phonons which reflect from the horizon
[16].

4.5 The de Laval nozzle

A different experimental setup can be studied, which is called the de Laval
nozzle. The name is misleading; it is generally used to convert thermal heat
into a directed propulsion. However, the geometric shape is similar. This nozzle
has three regions: subsonic, supersonic and again subsonic. This can classically
be modelled by using a pipe which has a smaller diameter at the regions of
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Figure 4.5: A cut taken parallel to the diagonal line of the density-density
correlation function. The line through which the cut is taken is shown, approx-
imately, on Figure 4.4.

Figure 4.6: Time evolution of size of the first Hawking line in the correlation
function. The speed is 0.2.
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Figure 4.7: An illustration of the implementation that is used to create the
de Laval nozzle setup in a condensate. To obtain the alternation of subsonic,
supersonic and subsonic regions as suggested in Ref. [82] a moving step potential
is used.

transition. The flow becomes ‘enhanced’ and the speed increases. After going
through the second constriction the speed gets subsonic again. An illustration
is shown in Figure 4.7. This is an interesting situation to model, because it
results in two horizons which may cause the Hawking radiation to self-amplify
and thus constitute a so-called ’black-hole laser’ [19]. This can be modelled by
using a potential ’mountain’ instead of a single step. In this case, two horizons
are present and this should result in a checkerboard pattern as in [19] where
the horizontal and vertical lines may indicate stimulated Hawking radiation.
The density-density correlation function is shown in Figure 4.8. The Hawking
radiation in this setup is comparable to the Hawking radiation in the previous
setup. The setup which has two horizons does not add any extra value to the
detection of Hawking radiation.

4.6 Bragg spectroscopy

The spectra of excitations for certain systems can be studied using Bragg spec-
troscopy [83]. In this case, a Bragg pulse is added to the potential:

VBragg = Ae−(t−t0)2/(2σ2
t )e−(x−x0)

2/(2σ2
x) cos[kx− ω(t− t0)], (4.15)

with A the amplitude, k the wavenumber, ω the frequency, σt the spread of
the wavepacket in time-domain (chosen to be large) and σx the spread of the
wavepacket in real space. When applying such a Bragg pulse to a condensate,
the nk(t) has a peak at the wavenumber of the pulse. The amplitude of this
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Figure 4.8: The density-density correlation function in the case of a de Laval
nozzle with two horizons. The result is similar to [19].
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Figure 4.9: The dispersion and group velocity for a homogeneous condensate
calculated using Bragg spectroscopy (numerical) and the Bogoliubov dispersion
(theoretical).

peak depends on the frequency of the pulse. The maximum amplitude of the
peak is at the eigenfrequency frequency (which follows the dispersion).

4.6.1 Dispersions

Homogeneous condensate

In the case of a homogeneous condensate without a horizon, the dispersion
should be the familiar Bogoliubov dispersion. So, for several k values, the
optimal ω values were found and plotted as shown in Figure 4.9. They almost
perfectly fit with the Bogoliubov dispersion relation for the chosen g. The group
velocity can also be calculated by using a gradient. The gradient calculated by
using the numerical data contains jumps which are expected, because the data
is noisy. The numerical errorbar is determined by the grid size.

Horizon with no velocity

In the case of an inhomogeneous condensate (in this case, with an horizon),
there are two parts of the condensate with ‘different’ dispersions. At the right
side (the one studied here), the g is different from the previous paragraph. The
dispersion can still be fitted by using a Bogoliubov dispersion with a changed g.
The results are shown in Figure 4.10. This is only for x > 0, because for x < 0
it is still the same as in the previous paragraph.
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Figure 4.10: The dispersion and group velocity for a condensate with a horizon
with zero speed, calculated using Bragg spectroscopy (numerical) and the Bo-
goliubov dispersion (theoretical).

Moving horizon

The case of an inhomogeneous and moving condensate is a bit different then
the previous ones. The found values of ω can be linked to those of the static
horizon by transforming to a frame of reference co-moving with the horizon. In
this case, as can be seen from Figure 4.11 , the results coincide. The change in
sign comes from taking into account the direction in which the Bragg pulse is
moving. Again, the numerical and theoretical results agree.

4.6.2 Transimission and reflection

In this part, the transmission and reflection of these Bragg pulses against the
horizon will be studied

Without mean speed

In this case, as can be seen from the dispersion, there are only 2 modes: the one
which got transmitted and one which got reflected. The smoother the horizon,
the smaller the amplitude of the reflected wave becomes. In Figure 4.12, the
change in density is shown. The potential and difference in density are not on
the same scale. A transmitted and reflected wave is seen.
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Figure 4.11: The dispersion and group velocity for a condensate with a horizon
with a mean speed, calculated using Bragg spectroscopy (numerical) and the
Bogoliubov dispersion (theoretical). The Doppler shift is not shown here, in
both cases.

Figure 4.12: The transmission and reflection of the Bragg pulse in the density,
for the case of a -non moving- horizon, is shown. The potential form (not on
scale) is also shown.
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Figure 4.13: The transmission and reflection of the Bragg pulse in the density,
for the case of a moving horizon, is shown. The potential form (not on scale) is
shown, as well .

With mean speed

In the case of a net speed, the change in density is shown in 4.13. A transmitted
and reflected wave is shown. Also, another (small) transmitted wave is seen
(at approximately -300). The three wavevectors seen on the Fourier transform
are 0.47, 0.4 and 0.16. The ratio between 0.47 and 0.16 is expected (close to
(v0 − c1)/(v0 + c1), as noted in [84]). The speed of the reflected wave is also the
same as the expected one.

4.7 Oscillating horizon experiment

Let us now consider a step potential with a perodic oscillating motion superim-
posed on a constant velocity. So, the horizon position is:

xpos = −vt+A sin(ωt). (4.16)

In this case, correlated waves are created. In the density-density correlation
function, fringes are now created, as shown in Figure 4.14.

The distance between the fringes agrees with the frequency of oscillation.
Actually, there would be an asymmetry in the density-density correlation func-
tion because the frequency of excitations differ on both sides of the horizon
because the interaction strength is different on both sides. This is a bit vis-
ible because the line is not exactly parallel to the diagonal line. Note that,
the density-density correlation function in the figure is created by using a bit
different values than the previous figures. The previous figure used 50 for the
density and the range for the interaction strength is 0.01 to 0.0025. For the
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Figure 4.14: The density-density correlation function in the case of an oscillating
horizon and a sweep.

current figure, the density is 8.35 and the interaction strength goes from 0.013
to 0.0032.

The asymmetry has been confirmed where the ratio between the two end
point distances are, approximately, 1.86. The difference with the theoretically
calculated wavelengths (using the dispersion) is a factor 4 which comes from the
definition of a density correlation function. The wavefunction can be represented
as:

ψ(x) = ψ0(x) + C(αueikx + α∗ve−ikx), (4.17)

with C a constant and α a random complex Gaussian number. When looking
at the numerator of G, four factors containing ei4kx can be extracted with
prefactor |α|4|u|2|v|2 which, after averaging, is not zero. The denominator has
as highest power 1 because other combinations such as αα and α∗α∗ give zero,
after averaging.

In the case of a purely oscillating horizon, with the v = 0 in 4.14, i.e. without
a sweep, we have not observed any visisble Hawking radiation in our numerics
for the density-density correlation function.

This may be because a Bose-Einstein condensate is only superfluid at veloci-
ties lower than a critical velocity (sound velocity). This is a version of Landau’s
superfluidity criterion. In the case of an oscillating horizon experiment the prob-
lem is that the speed is only larger than the perturbation speed for a short time
because the speed v goes back to zero and then changes sign. If the speed is
larger than both sound speeds, at both sides the speed becomes larger than the
perturbation speed and multiple sonic booms are made. This can be supported
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by the fact that the fringes are created when the horizon moves with negative
velocity v.

Apart from looking into Hawking radiation, we are also curious at other
excitations. In that case, the velocity related to the oscillation is set to be
larger than both sound velocities. This gives fringes related to excitations.

4.8 Summary

In this chapter a variety of results were presented, so it can be useful to sum-
marize and group our findings.

• We simulated the potential step sweep experiment of Steinhauer. The
Truncated Wigner approximation was used to capture the effects of quan-
tum fluctuations. In order to suppress noise from phonons and shock
waves, the interaction strength is modulated to keep the Hartree energy
fixed. We identified the Hawking radiation, and have characterized its
propagation, and discussed temperature effects.

• Several alternative setups were investigated, namely an oscillating horizon
and a Laval nozze setup with two horizons. Although these also exhibit
Hawking radiation, the detectability of the radiation is not significantly
improved.

• The use of Bragg pulses to study the horizon was also investigated. These
excitations are used experimentally to study the spectrum of condensates,
and are seen to interact with the artificial event horizon. The scattering
of the Bragg pulse at the horizon was characterized.

Hawking radiation is not unique in revealing quantum fluctuations. In the con-
text of an ongoing collaboration between UGhent and Universiteit Antwerpen,
we investigated another effect of quantum fluctuations, the static Casimir effect
mentioned in the introduction. In the next chapter, we turn our attention to
the question of its detectability in Bose condensates.
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Static Casimir effect

In this chapter, the Casimir effect will be discussed for the case of BECs and
an order of magnitude estimate will be made for an experimental setup that is
quasi-1D, such that one knows if it is possible to measure it for this particular
system. Moreover, the case of multiple plates is ratiocinated.

5.1 The Casimir force in a 1D BEC

The derivation of the Casimir force for the case of a quasi-one-dimensional BEC
is based on [17]. From now on the following units are used (unless explicitly
stated): ℏ = 1, 2m = 1 and kB = 1 1 [17].

The Hamiltonian for a three-dimensional dilute Bose gas can be adapted
such that it describes a quasi-one-dimensional dilute Bose gas, by introducing
an isotropic two-dimensional harmonic potential [17]. The effective Hamiltonian
then becomes:

Heff = −
N∑
i=1

∇2
i + g

∑
i<j

δ(ri − rj)
∂

∂rij
rij +

∑
i

1

4
ω2
⊥r

2
i⊥, (5.1)

where ri⊥ = y2 + z2 and ω2
⊥ stands for the frequency of the harmonic potential

well [17]. If the potential is strong enough such that the two (y and z) degrees
of freedom of the atoms will be frozen, an effective 1D Hamiltonian can be con-

structed (with a renormalized interaction strength g1D = g
πa2⊥

(
1− C a

a⊥

)−1

):

H1D
eff = −

N∑
i=1

∂2

∂r2i
+ g1D

∑
i<j

δ(ri − rj)
∂

∂xij
xij , (5.2)

where a⊥ = (ℏ/(mω⊥))
1/2 the characteristic length of the harmonic trap and

C = 1.4603... a constant [17]. Note that now (compared to the 3D case) the

1Note that in this section m is used for the reduced mass while later it will be used as the
“actual” mass of the atoms.
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effective interaction strength can be changed in two ways [17]. One way is by
changing the interaction strength g by using a Feshbach resonance, and another
way is by changing the harmonic trap frequency [17].

For a dilute and weakly-interacting Bose gas, the ground-state energy is
calculated within the Bogoliubov approximation [17]. In 1D, this gives

E0 =
N2g1D
d

+
1

2

∑
p ̸=0

(ε(p)− p2 − 2ρ2γ), (5.3)

where ε(p) = |p|
√
p2 + 4ρ2γ is the elemental excitation spectrum, ρ = N/L the

number density of particles and γ = g1D/(2ρ) [17]. One (or multiple) slabs will
‘split’ our condensate and the boundary condition used then is ϕ(0) = ϕ(d) = 0
where d is the distance between the two slabs [17]. The first term in the above
equation is zero-temperature classical pressure due to the interactions which
gives no contribution to the Casimir force [17].

The Casimir energy can be defined according to [17] as the difference between
the Bogoliubov quasi-particle vacuum energy in an infinite condensate and a
finite condensate (this definition cancels infinities). The Casimir energy is thus:

EC =

∞∑
n=1

f(n)−
∫ ∞

0

f(n)dn+
1

2
f(0), (5.4)

where the function f(n) is defined as ρ2[(nπ/ρd)
√
(nπ/ρd)2 + 4γ − (nπ/ρd)2 −

2γ] [17]. This partially comes from the dispersion relation. For a more detailed
calculation see [17]. Using the Euler-Maclaurin theorem, the Casimir energy is:

EC = −
ρπ

√
γ

6

(
1

d
− 1

80g1Dd3

)
, (5.5)

where higher order terms (d−4, ...) are neglected [17]. The Casimir force is:

FC = −∂EC
∂d

= −
ρπ

√
γ

6d2
+

ρπ
√
γ

240g1Dd3
, (5.6)

which clearly differs with the Casimir force found in three dimensions [17]. The
main contribution to the Casimir force comes from the d−2 term, while in the
3D case it comes from the d−4 [17].

5.2 The RuBECi setup

Experiments on BECs will be performed in a collaboration between Quantum-
Group@UGent and TQC (Universiteit Antwerpen) using the RuBECi© system
of ColdQuanta [85]. The isotope used is 87Rb. Part of the system is displayed
in Figure 5.1. It consists of 2 magneto-optical traps (MOTs) and a vacuum
chamber containing the condensate, including an atomic chip. The condensate
is trapped by the fields generated by the atomic chip, and is imaged optically.
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Name Symbol Value

Scattering length a 52.9 Å
Frequency of trap ω 1 kHz
“Trap length” L 50 µm

Number of atoms N 50000 atoms
Mass of atoms m 1.443·10−25kg

Table 5.1: The approximate parameters of the experimental system used for the
calculations.

Of course, it is the integrated (over one direction) optical density that is mea-
sured. For the order of magnitude calculations performed in this Thesis, the
number of atoms can be approximated to be 50000 atoms and the frequency
of the harmonic trap in the tight direction is of the order of 1 kHz. All the
parameters used in the calculations are depicted in Table 5.1.

5.3 Experimental feasibility

5.3.1 Single plate

The Casimir force can be related to a change in the density which can be mea-
sured by using an extra laser pulse (cf. detuning). The unit of force is defined
to be f0 = ℏkHz

µm = 1.055 · 10−25N. Including the ℏ’s and masses gives for the
Casimir force:

FC =

(
−

ρπ
√
γ

6d2
√
2m

+
ρπ

√
γℏ2

240g1Dd3(2m)3/2

)
µm

kHz
f0. (5.7)

The Casimir force has been plotted as a function of the distance d in Figure
5.3. The force is of the order of the force unit f0 (for plates separated with a
distance of 1 micron). This corresponds with a density via F = µn, where µ, in
this case, can be calculated using the Thomas-Fermi limit.

The Thomas-Fermi approximation is shortly discussed because the chemical
potential needed for the calculations is approximated by this method. This is
based on [1]. An isotropic harmonic potential trap with frequency ω is consid-
ered here. The Gross-Pitaevskii energy functional can be split up into three
parts: the kinetic energy, the confinement energy, and the interaction energy
term:

Ekin =

∫
Ψ∗(r)

(
− ℏ2

2m
∇2

)
Ψ(r)dr, (5.8)

Econf =

∫
Ψ∗(r)

(
mω2r2

2

)
Ψ(r)dr, (5.9)

Eint =

∫
Ψ∗(r)

(g
2
|Ψ(r)|2

)
Ψ(r)dr. (5.10)
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Figure 5.1: Part of the system described in [85]. It consists of 2 Magneto-Optical
traps (MOTs) and a vacuum chamber containing the condensate of 87Rb atoms
of atoms, including an atomic chip. Source: [85]

The interaction energy can be approximated to be proportional to N/a2HO:

Eint ∝
N

a2HO
. (5.11)

And thus, the ratio between interaction energy and kinetic energy becomes:

Eint ∝
Na

aHO
, (5.12)

which is called the Thomas-Fermi parameter. If the Thomas-Fermi parameter
is much larger than 1 in absolute value, the kinetic energy is much smaller
than the interaction energy and hence, it can be neglected. This is called the
Thomas-Fermi approximation. This is frequently the case, this is why this will
be assumed in the next section. Using this approximation, the Gross-Pitaevskii
equation is solved straightforwardly:

nTF (r) = |Ψ(r)|2 =
m

4πℏ2a
(µ− V1(r)). (5.13)

For a harmonic trap, this results in an inverted parabola density profile, as
shown in Figure 5.2. The chemical potential can be found by making use of the
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Figure 5.2: The density plotted as a function of distance to the center of the trap
for a condensate consisting of 100000 atoms of 87Rb. The experimental values
can be nicely fitted by the Thomas-Fermi result (inverted parabola). Source:
[1]

restriction on the number of atoms:

N =

∫
nTF (r)dr (5.14)

=
m

ℏ2a

∫ √
2µ/(mω2)

0

r2(µ−mω2r2/2)dr, (5.15)

⇒ µ =
ℏω
2

(
15Na

aHO

)2/5

. (5.16)

In the Thomas-Fermi limit, the chemical potential is given by:

µ =
ℏω
2

(
15Na

a⊥

)2/5

, (5.17)

which only holds in three dimensions. Because an order of magnitude estimate
is requested, the above formula is still a good estimate for the one-dimensional
case. The one-dimensional case results in:

µ =
1

2

(
3

2
Ng1D

√
mω2

)2/3

, (5.18)

which results in a similar order of magnitude result. So, the above Casimir force
corresponds with a change in density of a few atoms per micron. This could
be measurable. The complete graph is shown in 5.3. It first is negative (and
almost zero) but increases when the plates come very close.
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Figure 5.3: The Casimir force (in units of f0) has been plotted as a function of
the distance d (in units of microns).

Figure 5.4: The Casimir force when an additional plate is introduced as a func-
tion of the fraction of the distance of the new plate. The total distance is set
constant to 1 µm.

5.3.2 Multiple plates

In the case of one other plate in between the others, the force is the difference
between the two forces on both parts of the system. When the additional plate
is exactly in the middle, the two forces cancel and no net force is present. When
the additional plate moves away from the middle, a net force is created. The net
force as a function of the fraction of distance is shown in Figure 5.4 (where the
total distance is set constant to 1 µm). Thus, the Casimir effect can possibly
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be measured in the RuBECi setup, as can be concluded from the calculations.
By varying the distance of a second plate, the Casimir force can be varied and
may perhaps be better visible.



Chapter 6

Conclusion and Outlook

In this Thesis, we illustrated that Bose-Einstein condensates can be used as
a platform to study quantum fluctuation effects that are inaccessible in other
systems, including black holes. We have considered both the Casimir effect
and Hawking radiation. The Casimir effect is the attraction of two parallel
uncharged plates due to quantum vacuum fluctuations. Hawking proved that
black holes are not “black” in quantum mechanics but emit radiation with a
temperature of T = ℏg/(2πck), which is called Hawking radiation.

The Casimir force was investigated for a quasi-one dimensional Bose-Einstein
condensate using an effective Hamiltonian and the force obviously decreases as
the plates are further away from each other. This can be applied to an exper-
imental setup, e.g. the Cold Quanta setup that is currently being installed at
the University of Ghent in collaboration with the UAntwerpen. By using order-
of-magnitude estimations, we have found that the Casmimir force corresponds
to a change in density of a few atoms per micron, which could be measurable.

The main topic in this thesis was the elaboration of the analogy between a
Bose-Einstein condensate and a black hole by rewriting the hydrodynamic equa-
tions into a d’Alembertian with an effective acoustic metric, which is similar to
the Schwarzschild one. Fluctuations of the phase field of the condensate, prop-
agate in this curved geometry. This summarizes the idea of analogue gravity.
The Bose-einstein condensate setup can be transformed into a sonic dumb hole
by placing a sharp potential step at the origin x = 0, which acts as a horizon,
with the speed of sound playing the role of the speed of light.

Signatures of Hawking radiation were found in numerical simulations per-
formed within the Truncated Wigner Approximation (TWA), which includes
quantum fluctuations by creating an ensemble of wavefunctions with initial
quantum noise (using gaussian random numbers) and to propagate all of these
using the GPE, where finally an average is taken. The interaction strength was
made spatially-dependent to make side-effects, such as soliton shedding, mini-
mal. This was the approach taken in [16]. In both cases, we have looked at the
density-density correlation functions where several lines were visible. Fringes
from the sudden modulation of the interaction strength were present (related

47
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to the dynamical Casimir effect). Two lines were visible related to different
Hawking modes. These results are in line with those in [16]. Also, we checked
how to implement this experimentally and what the expected results would be
using a change in transversal confinement. Other simulations apart from the
step-sweep experiment were performed which includes the oscillating horizon
experiment. In the case which includes a step-sweep, interference fringes can be
observed in the spatial density autocorrelation function. Without a step-sweep,
the Hawking radiation is merely visible. In the case of an oscillating horizon,
excitations were visible when the speed of movement was made larger than the
critical Landau velocity, to break superfluidity. Also, the case of a de Laval noz-
zle has been studied where the two horizons enhance the Hawking radiation and
a checkerboard pattern is visible. Bragg spectroscopy was studied to measure
the dispersions of the systems and look at stimulated Hawking radiation without
quantum fluctuations. All of the simulations were performed with Matlab.

A follow-up on this Thesis could be to experimentally observe the Casimir-
Polder force and compare it to the results provided here and to look at other
setups which may show Hawking radiation or even experimentally detect it in
the RuBECi setup (it was already detected in other setups by Steinhauer in
[22]). In addition, a deeper understanding or study of the excitations related to
the oscillating horizon could be next. It would also be interesting to look at the
“temperature” of the Hawking radiation, in detail.



Appendix A

MATLAB scripts

In this appendix, the general MATLAB script used for the numerical sim-
ulations is given. Some parameters may be different from one simulation to
another.

1 % Start with initializing parameters

2 Temperature = 0.04;

3 hbar = 1;

4 m = 1;

5 as = 5.8*10^( -3);

6 dx = 0.5;

7 Lx = 256;

8 Nx = Lx/dx;

9 dt = 10^( -3);

10 dtobs = dt *10^3;

11 tmax = dtobs *200;

12 tobs = (0: dtobs:tmax);

13 g3D = 4*pi*hbar ^2*as/m;

14 xx =(-Nx/2:Nx/2-1) '*dx;
15 kkx =(-Nx/2:Nx/2-1) '*2*pi/Lx;
16 mu0 = 0.5;

17 Uek=fftshift(exp(-1i*dt*(hbar ^2*kkx .^2) /(2*m)));

18 Vx = zeros(Nx,tmax/dt);

19 Vxa = zeros(Nx ,tmax/dt);

20 wp = 0.86* ones(Nx ,tmax/dt);

21 h = mu0 *0.75;

22 for it = 1:tmax/dt

23 if it > tmax /(10* dt)

24 v= -0.5* tanh((it-tmax /(10* dt)*1.1) /(tmax /(50* dt)));

25 for x = 1:Nx

26 if (v*it*dt <(x-Nx/2)*dx)

27 Vx(x,it) = h;

49
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28 Vxa(x,it) = h;

29 end

30 end

31 end

32 Vx(1,it) = h*100;

33 Vx(Nx,it) = h*100;

34 n_dens(it) = 50;

35 wp(:,it) = (0.5-Vxa(:,it))./( hbar *2* n_dens(it)*as)

;

36 g1D(:,it) = 2*hbar*as*wp(:,it);

37 end

38
39 % Ground state preparation using imaginary time

evolution

40
41 mux=mu0 -Vx(:,1);

42 mux(mux <0)=0;

43 psix =1* sqrt(mux./g1D(:,1));

44 psik=fft(psix);

45 Uim_ek=fftshift(exp(-dt*(hbar .^2* kkx .^2) /(2*m)));

46
47 taumax = tmax;

48 for it=1: taumax/dt

49 psik=Uim_ek .*psik;

50 psix=ifft(psik);

51 psix=exp(-dt*(Vx(:,1)+g1D(:,1).*abs(psix).^2-mu0))

.*psix;

52 psik=fft(psix);

53 end

54
55 psix_init = psix;

56 nxt_init = abs(psix_init).^2;

57
58 % Gross -Pitaevskii evolution

59 % This may include quantum fluctuations by using the

Truncated Wigner Approximation (TWA)

60
61 xik=fftshift(hbar .^2* kkx .^2/(2*m));

62 epsk=sqrt(xik .*(2* mu0+xik));

63 uk=sqrt((xik+mu0)./(2* epsk)+0.5);

64 vk=-sqrt((xik+mu0)./(2* epsk) -0.5);

65
66 nreals =3000;

67 nxt=zeros(Nx ,numel(tobs));

68 nn=zeros(Nx,Nx ,numel(tobs));

69 nkt=zeros(Nx ,numel(tobs));
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70
71 for ireal =1: nreals

72 psix=psix_init;

73 Ak =1/2*1./( sqrt(tanh(fftshift(epsk)/(2* Temperature

)))).*( randn(Nx ,1)+1i*randn(Nx ,1));

74 Amkc=conj(Ak);

75 dpsi = zeros(Nx ,1);

76 for i = 1:Nx

77 for pos = 1:Nx

78 if i ~= Nx/2+1

79 ukn = fftshift(uk);

80 vkn = fftshift(vk);

81 dpsi(pos) = dpsi(pos)+...

82 1/sqrt(Lx).*(Ak(i).*ukn(i).*exp(1i

.*kkx(i).*xx(pos))+...

83 Amkc(i).*vkn(i).*exp(-1i.*kkx(i).*

xx(pos)));

84 end

85 end

86 end

87 psix = psix+dpsi;

88 psik=fft(psix);

89
90 psixt=zeros(Nx,numel(tobs));

91 psikt=psixt;

92 psixn = zeros(Nx,numel(tobs));

93 psikn = zeros(Nx ,1);

94 nxt(:,1) = nxt_init;

95 t=0;

96 psixt (:,1)=psix;

97 psikt (:,1)=psik;

98 for it=1: tmax/dt

99 psik=Uek.*psik;

100 psix=ifft(psik);

101 psix=exp(-1i*dt*(Vx(:,it)+g1D(:,it).*abs(psix)

.^2)).*psix;

102 psik=fft(psix);

103 t=t+dt;

104 if(any(abs(tobs -t) <0.1*dt)) % Store results

105 psixt(:,round(t/dtobs)+1)=psix;

106 psikt(:,round(t/dtobs)+1)=psik;

107 nxt(:,round(t/dtobs)+1)= nxt(:,round(t/

dtobs)+1)+...

108 abs(psix).^2/ nreals;

109 nkt(:,round(t/dtobs)+1)= nkt(:,round(t/

dtobs)+1)+...
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110 fftshift(abs(psik).^2)/nreals;

111 for k = 1:Nx

112 for j = 1:Nx

113 nn(k,j,round(t/dtobs)+1) = nn(k,j,

round(t/dtobs)+1)+...

114 (abs(psix(k)).^2) .*(abs(psix(j

)).^2)/nreals;

115 end

116 end

117 end

118 end

119 end

120
121 % Calculate density -density correlation function

122 G = zeros(Nx,Nx ,201);

123 for t = 1:201

124 for k = 1:Nx

125 for j = 1:Nx

126 num = nn(k,j,t)+1/(4* dx^2) *(1+(j==k)) -1/(2*dx)*(1+(j==

k))*(nxt(j,t)+nxt(k,t));

127 denum1 = nxt(k,t) -1/(2*dx);

128 denum2 = nxt(j,t) -1/(2*dx);

129 G(j,k,t)=num./( denum1 .* denum2) -1;

130 end

131 end

132 end

133
134 Gsmoothen = smoothdata(G,1,'gaussian ' ,10);
135 Gsmoothen = smoothdata(Gsmoothen ,2,'gaussian ' ,10);
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