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Abstract

English abstract

The CERN Proton Synchrotron (PS) is a versatile and reliable accelerator that
has produced a multitude of beams for fixed target experiments and higher-
energy accelerators such as the Large Hadron Collider (LHC). During the cur-
rent Long Shutdown 2 (LS2) the PS is being upgraded in the framework of
the LHC Injectors Upgrade (LIU) project with the aim of producing LHC-type
beams of even higher-brightness. In this thesis the research performed to in-
vestigate and mitigate emittance blow-up observed at injection energy of high-
brightness beams is presented. The investigation of beam blow-up is essen-
tial to reach the desired properties for LIU beams. The first part of the the-
sis focuses on optimising the lattice optics to reduce β- and dispersion-beating
by re-positioning the Low Energy Quadrupoles (LEQs). The optics beatings
are quantified and quadrupole configurations are obtained that can reduce the
emittance blow-up by≈ 35 % at the working point (6.10, 6.24) in the horizontal
plane or by ≈ 65 % at the working point (6.21, 6.10) in the vertical plane. One
of the new quadrupole configurations is easily testable as it requires to only
remove a single quadrupole from the current lattice. For the second part, the
dispersive contributions are deconvoluted from horizontal beam profile mea-
surements through achieving zero-dispersion optics at the measurement loca-
tion using the LEQs. The number of LEQs and the LEQ strengths are optimised
for each beam measurement location to reduce optics beating through numer-
ical optimisation. The dispersion moves faster to zero with the inclusion of
space charge effects, thus the experimental optics beatings will be less than the
simulated ones. The final investigation presented in this thesis looks at the ac-
curacy of measuring the betatronic contributions of the beam emittance. The
β-function is measured through K-modulation at an LEQ during a magnetic
plateau of a measurement cycle. The characteristics of the modulation and the
number of required cycles to achieve an accuracy of 1% on the reconstructed
β-function were studied. Additionally, the impact of a transfer factor error on
the final β-function was investigated.
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Nederlandstalig abstract

De CERN Proton Synchrotron (PS) is een veelzijdige en betrouwbare versneller
die een veelvoud aan deeltjesbundels heeft geproduceerd voor vaste-doel ex-
perimenten en voor hoge-energieversnellers zoals de Large Hadron Collider
(LHC). Tijdens de huidige Long Shutdown 2 (LS2) wordt de PS bijgewerkt als
onderdeel van de high-Luminosity Injector Upgrade (LIU) van de LHC om
bundels van hogere intensiteit te bereiken. In dit proefschrift wordt de sterke
groei van de emissiecoëfficient van hoge-intensiteitsbundels tijdens de injectie-
fase onderzocht, evenals hoe deze kan worden verminderd. Dit onderzoek is
essentieel om de gewenste doelstellingen voor de LIU te bereiken. Het eerste
deel van het proefschrift richt zich op de optimalisatie van de bundeloptiek om
de β en dispersie fluctuaties te verminderen door de lage-energie quadrupolen
(LEQs) te herpositioneren. De bundeloptiek wordt gekwantificeerd en quadrupool-
configuraties worden verkregen die de groei van de emissiecoëfficient kan ver-
minderen met ≈ 35 % op het werkpunt (6.10, 6.24) in het horizontale vlak of
met ≈ 65 % op het werkpunt (6.21, 6.10) in het verticale vlak. Eén van de
nieuwe quadrupoolconfiguraties is eenvoudig te testen, omdat er maar één
quadrupool van het huidige raster hoeft te worden verwijderd. In het tweede
deel van de thesis worden de dispersieve bijdragen gedeconvolueerd van hor-
izontale bundelprofielmetingen, door een nul-dispersie optiek op de meetlo-
catie op te leggen met behulp van de LEQs. Het aantal LEQs en hun sterk-
tes zijn numeriek geoptimaliseerd op elke meetlocatie om de distorsie van de
optiek tegen te gaan. De dispersie gaat sneller naar nul door het includeren
van spacecharge-effecten, waardoor de experimentele distorsie van de bun-
deloptiek minder groot zal zijn dan de gesimuleerde. In het laatste deel van
het proefschrift wordt gekeken naar de precisie van de betatronische bijdragen
aan de emissiecoëfficient-metingen. De β-functie wordt gemeten door middel
van de zogenaamde K-modulatie op een LEQ tijdens het eerste magnetische
plateau van een magnetische cyclus. De karakteristieken van de modulatie en
het aantal cycli worden bestudeerd om een precisie van 1 % te hebben op de
gereconstrueerde β-functie. Ten slotte, werd de impact van een fout in de over-
drachtsfactor op de uiteindelijke β-function onderzocht.
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1 Introduction

The European Organization for Nuclear Research (CERN) has been at the fore-
front of energy-frontier particle physics research since its foundation in 1954.
Currently, a large part of fundamental particle physics research is, in layman’s
terms, done by accelerating charged particles, colliding them and detecting the
end products. To reach higher and higher energies, particle accelerators, de-
tectors, and other infrastructure have become extremely complex. The Pro-
ton Synchrotron (PS) is one of these accelerators and it was CERN’s flagship
accelerator until new accelerators were build in the 1970s. Currently, the PS
supplies particle beams to higher-energy accelerators and to the downstream
fixed-target facilities.

The research presented in this thesis is focused on improving the control of
the PS optics functions at injection energies. Currently, large transverse emit-
tance blow-up is generated at working points close to the integer resonances
when the tunes are controlled by means of the Low Energy Quadrupoles (LEQs).
The emittance blow-up is a consequence of the beatings of the optics functions
caused by the irregular distribution of the LEQs around the ring, which leads
to resonance excitation, and the large direct space charge tune spread of the
operational beams produced for the Large Hadron Collider (LHC). Therefore,
there are limitations on the possible working points for high-brightness beams.

Both the reduction of the beam blow-up and means to improve the accu-
racy of emittance measurements at low energy are presented in the chapters
of this thesis. Measuring the beam transverse emittance with high precision
inevitably causes a better understanding of the emitance growth. In the first
part of this study, the emittance blow-up is reduced by re-positioning the LEQs
using methods based on numerical optimisation and applying the linear imper-
fection equations to study the outcome of changes to the current LEQ configu-
ration. This results in multiple possible quadrupole configurations, dependent
on the number of allowed re-positionings, which each reduce the emittance
blow-up.

The design of the PS does not provide enough space for dispersion sup-
pressors, and the horizontal dispersion function is therefore always larger than
zero all along the ring circumference. This imposes that the dispersion func-
tion and momentum spread are taken into account in the horizontal emittance
calculations, which leads to increased uncertainties in the measured emittance.
Therefore, forcing the dispersion function to zero at the horizontal Wire Scan-
ners (WSs) is the second goal of this thesis. For every beam-measurement lo-
cation, knobs that vary the LEQ strengths are created to move the dispersion
from the nominal optics towards zero and back to the nominal optics, causing
little distortion to the β-functions along the ring.
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Finally, two sources of errors in the K-modulation measurement technique
of the β-function used for emittance calculations are studied and minimised so
that the β-function at the beam measurement location has a precision of 1%.
One error source is the inaccuracy of the Base-Band tune (BBQ) measurement
system. The other error source is the limited accuracy of the conversion factor
from electric current to quadrupole strength.

This thesis has the following structure. Chapter 2 introduces the reader to
theoretical accelerator physics concepts and defines the essential terminology
and formulas for understanding the other chapters. A brief overview of the
simulation codes used in the studies is given as well. In Chapter 3, the main
design of the PS is presented. Afterwards, Chapter 4 sets out to reduce the op-
tics beatings and subsequently the beam blow-up. Chapter 5 devises a method
to force dispersion to zero for any PS ring location using the LEQs. Lastly, the
errors due to K-modulation are studied in Chapter 6.
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2 Accelerator Physics Concepts and
Theory

The nominal or ideal trajectory of a particle beam is fixed through the construc-
tion of the accelerator. For synchrotrons, the beam needs to be guided through
the machine on a circular nominal path. The individual particles inside the
beam have a divergence from this path and it is necessary to direct these par-
ticles back onto the nominal trajectory or they will eventually touch the beam
pipe and become lost. The maximum distance a particle can diverge before it
touches the beam pipe is called the mechanical aperture.

The guiding and focusing are achieved through the Lorentz force. For par-
ticles with charge e, velocity v and momentum p the Lorentz force holds the
form

F = e (E + v× B) = ṗ, (2.1)

where E and B are the electric and magnetic fields, respectively. In physical
applications a large magnetic field B can be reached much easier so they are
the common field of choice when it comes to bending. Magnetic dipoles han-
dle beam guiding and quadrupoles cause focusing or defocusing depending
on their alignment. Higher-order multipoles are used to control effects such
as chromaticity and field error compensation, but they have little importance
for the studies discussed in this thesis. Nevertheless, they are paramount for
successfully operating an actual accelerator. Magnetic fields cannot be used to
accelerate the particles in the longitudinal direction, hence electrical fields E
generated in radio frequency (RF) cavities are always utilised for acceleration.
A brief introduction to the general solution of Eq. 2.1 as well as to the effect
of machine errors is given below. The solution to the Lorentz equation and all
its forms depend on the optics of the beam. The derivation of machine errors
concludes with equations that relates a modification of the strength of a mag-
netic element to the change in beam optics. These relations are the foundation
of machine optimisation.

Additionally, a common simulation tool to study single-particle optics is in-
troduced. Lastly, a framework to study the importance of space-charge forces
is presented that is used for final testing. There is high-quality literature avail-
able about the subjects on which the following sections are based [1–10]. The
interested reader is referred to these texts for a more in-depth treatment.
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x

s

yρ

ideal orbit

particle beam

FIGURE 2.1: Left-handed coordinate system used in synchrotrons. x and y
characterize the transverse distance from the ideal orbit and s measures the

longitudinal distance along it. Figure from [7].

2.1 Linear beam optics

To better understand the Lorentz force, the motion of a particle needs to be de-
scribed by a Cartesian coordinate system as illustrated in Fig. 2.1. The ideal
orbit of an accelerator, as shown in the figure, is the curvature − d2s

ds2 of the lon-
gitudinal distance s determined by the dipolar magnetic elements, or machine
lattice. On that note, s is often chosen as the independent variable instead of
the time t and the transverse plane is defined by the horizontal coordinate x
and vertical coordinate y.
Furthermore, the magnetic field can be expanded near the nominal trajectory
for one of the transverse directions and subsequently multiplied by e

p = 1
Bρ

where the beam rigidity Bρ is a normalisation to connect the magnetic field
with the momentum of the beam:

e
p

Bz(z) =
e
p

Bz0 +
e
p

dBz

dz
z + . . . (2.2)

=
1
ρ

+ kz + . . . (2.3)

ρ is the radius of curvature caused by dipoles that guide the beam along the
ideal orbit. k defines the strength of beam focusing or defocussing achieved
through quadrupoles. Again, the higher order effects are non-linear and are of
little importance for the continuation of this thesis.

In this linear approximation the ideal particle moves along the nominal
path. Solving Eq. 2.1 in the newly defined coordinate system and using the
linear approximation eventually leads to the following inhomogeneous differ-
ential equations of motion for particles in accelerators:

x”(s) +
(

1
ρ2(s)

− k(s)
)

x(s) =
1

ρ(s)
∆p
p0

y”(s) + k(s)y(s) = 0
(2.4)
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These are known as Hill’s equations and the expression above assumes the ab-
sence of vertical guiding fields. Particles in a beam generally have a different
momentum from nominal particles. To include this fact, the relative momen-
tum deviation ∆p

p0
is introduced. Note that in synchotrons Hill’s equations need

to satisfy the periodicity conditions Kz(s) = Kz(s+C) with C the circumference
of the accelerator and z one of the transverse directions, Kx(s) = 1

ρ2(s) − k(s)
and Ky(s) = k(s). The general solution of Eqs. 2.4 in synchotrons is of the form

z(s) =
√

εzβz(s) cos (µz(s) + µz,0) +
∆p
p0

Dz(s), (2.5)

where the emittance εz is defined as the area of the phase space ellipse bound
by the particle motion in the z-z’-plane, βz(s) is the beta or amplitude function,
µz(s) =

∫ s
0

ds
βz(s)

represents the advance in phase space as shown on Fig. 2.2
and is therefore called the phase advance, µz,0 is the particle’s initial oscillation
phase and Dz(s) is the dispersion function. Both the β and dispersion functions
are periodic with period C. Focusing on the emittance for now, this is a very
important property that is not directly quantifiable. A possible workaround,
depending on the accelerator optics, is to infer the emittance from beam size
measurements. Transverse beam distributions are mostly Gaussian and Eq. 2.5
gives the ability to express the root mean square beam size as

σz(s) =

√
εzβz + D2

z(s)
(

∆p
p0

)2

. (2.6)

The emittance as defined above is only constant if no acceleration is taking
place. Therefore, the normalised emittance εN is often used because it is energy
independent. The relation between εN and ε is

εN = βrelγrelε, (2.7)

where γrel is the Lorentz factor and βrel is the relativistic velocity.
Coming back to the dispersion, this function is the inhomogeneous solution zi

to the Hill’s equation and its effect on z is proportional to ∆p
p0

. Thus, it describes
the motion of off-momentum particles. Additionally, the dispersion function is
non-zero only if the transverse direction z is curved by ρ. The dispersion can
be found using

Dz(s) =
√

βz(s)
2 sin πQz

∫ s+C

s

dσ

ρ(σ)

√
βz(σ)cos (µz(σ)− µz(s)− πQz) . (2.8)

Here, the betatron tune Qz is introduced which is the number of transverse os-
cillations a particle makes in one revolution around the machine. Alternatively,
looking at the phase space ellipse allows the tune to be defined as the accumu-
lated phase advance over one turn.
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x

x′

1st turn
2nd

3rd

FIGURE 2.2: Horizontal phase space ellipse. After one turn the particle’s mo-
tion will have changed according to the tune Qz.

Qz =
1

2π
(µz(C)− µz(0)) =

1
2π

∮ ds
β(s)

(2.9)

βz(s) and Dz(s) are called the linear optics functions. In practice, the optics
functions are not known throughout the whole machine but only at few loca-
tions. Therefore, a transfer matrix is used, which is a general tool for studying
particle motion. Transfer matrices between two locations in a machine can be
derived using the general solution of the Hill’s equation. Eq. 2.5 leads for on-
momentum particles (∆p

p0
= 0) to

z(s) =
√

εzβz(s) [cos (µz(s)) cos (µz,0)− sin (µz(s)) sin (µz,0)]

z′(s) = −
√

εz

βz(s)
[αz(s) cos (µz(s)) cos (µz,0)− αz(s) sin (µz(s)) sin (µz,0)

+ sin (µz(s)) cos (µz,0) + cos (µz(s)) sin (µz,0)],
(2.10)

with αz = − β′z
2 . Defining the initial conditions as z(0) = z0, z′(0) = z′0, βz(0) =

β0, αz(0) = α0, and µz(0) = 0 one obtains

cos(µz,0) =
z0√
εzβ0

sin(µz,0) = −
1√
εz

(
x′0
√

β0 +
α0x0√

β0

)
.

(2.11)

Substituting this into Eqs. 2.10 allows us to establish the matrix notation.



2.2. Linear imperfections 7

(
z(s)
z′(s)

)
= M0→s

(
z0
z′0

)
, (2.12)

with the transfer matrix

M0→s =


√

βz(s)
β0

(cos µz(s) + α0 sin µz(s))
√

βz(s)β0 sin µz(s)
(α0−αz(s)) cos µz(s)−(1+α0αz(s)) sin µz(s)√

βz(s)β0

√
β0

βz(s)
(cos µz(s)− α0 sin µz(s))

 .

(2.13)
This transfer matrix allows us to define a one-turn transfer matrix which tells
how the particle’s position in phase space changes over one revolution. The
one-turn transfer matrix is

M0→C =

(
cos 2πQz + α0 sin 2πQz β0 sin 2πQ

−1+α2
0

β0
sin 2πQ cos 2πQz − α0 sin 2πQz

)
. (2.14)

The one-turn transfer matrix will prove useful when including machine errors
in the lattice.

Using the same transfer matrix approach, the propagation of a particle trough
a magnetic element can also be calculated. Again, applying Hill’s equation 2.4
in case of a horizontally focusing quadrupole (k < 0), when there is no bending
of the beam (1

ρ = 0). One starts from

x”(s)− kx(s) = 0, (2.15)

where k is constant over the length l of the quadrupole. Considering x0, x′0 as
initial conditions, this equation leads to

x(s) = x0 cos
√
|k|s + x′0√

|k|
sin
√
|k|s

x′(s) = −x0

√
|k| sin

√
|k|s + x′0 cos

√
|k|s

. (2.16)

From here it is a trivial task to extract the transfer matrix. The technique
can be repeated for a defocusing quadrupole and from Eqs. 2.4 it is visible that
substituting |k|= 1

R2 leads to the transfer matrix of a dipole.

2.2 Linear imperfections

When comparing our theoretical model to reality there will always be discrep-
ancies due to imperfections or errors in the magnetic fields. A perturbation in a
dipole field will kick a particle with the same strength every turn. Over several
turns the amplitude of the particle will be in range of the aperture leading to
particle loss. If the kick does not happen at the same phase on the phase space
ellipse turn-by-turn, a stable trajectory is still possible as seen on the second
column of Fig. 2.3. A dipolar perturbation will distort the motion by an oscil-
lating wave with the frequency of the tune. Whereas the effect of a quadrupole
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A) Qx = .0

C) Qx = .0

B) Qx = .5

D) Qx = .5

x

x′

x

x′

x

x′

x

x′

FIGURE 2.3: Illustration of dipolar and quadrupolar resonances in the x-x’-
plane. A) and B) are caused by a dipolar error while C) and D) are from
quadrupolar errors. A) and C) depict resonances at integer fractional tunes,
B) and D) present resonances at half-integer fractional tune. Adapted from [5]
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error oscillates with twice the tune. Therefore, at half integer tune values a
quadrupole kick will be in alternating directions leading to an increase in parti-
cle amplitude that can eventually result in particle loss. These effects are called
resonances and higher order magnets will also lead to higher-order resonances.
Thus, the choice of transverse tunes or working point (Qx, Qy) is important for
beam stability.

A quadrupole error δK also translates into a change in optics. For beam op-
erations, these changes must be known. To find an expression for the result of
small quadrupole variations on the optics, consider the consequences of a in-
finitesimally small quadrupole error on the one-turn transfer matrix (Eq. 2.14).
The error is found in a short quadrupole section of length ds, sufficiently small
that cos(

√
kds) = 1 and sin(

√
kds) =

√
kds. This is the thin element approxi-

mation and causes the quadrupole transfer matrix to become without and with
error, respectively:

mquad =

(
1 ds

−kquad(s)ds 1

)
merror =

(
1 ds

−(kquad(s) + δK)ds 1

)
(2.17)

Substituting mquad with merror in the one-turn matrix as such

M = merrorm−1
quadM0→C =

(
1 0

−δKds 1

)
M0→C (2.18)

yields a new one-turn matrix:

M =(
cos 2πQ + α0 sin 2πQ β0 sin 2πQ

−δKds [cos 2πQ + α0 sin 2πQ]− 1+α2
0

β0
sin 2πQz cos 2πQ− (δKdsβ0 + α0) sin 2πQ

)
(2.19)

Alternatively, the same quadrupolar perturbed one-turn matrix can be ob-
tained by introducing a perturbed frequency ω = 2π(Q + δQ) into Eq. 2.14.
The tune-shift δQ is caused by the error since quadrupoles account for beam
focusing.

M∗ =

(
cos ω + α0 sin ω β0 sin ω

1+α2
0

β0
sin ω cos ω− α0 sin ω

)
(2.20)

The Matrices M and M∗ represent the same physical quantities. Equating the
individual matrix elements does not necessarily lead to the desired result since
they could use different coordinate systems. The matrix identity that is used is
similarity. Two matrices are similar if their traces are the same. Equating the
traces gives the relation between δK and δQ.

2 cos(2πQ)− δKdsβ0 sin(2πQ) = 2 cos(2π(Q + δQ)) (2.21)

By using the trigonometric relations and the thin lens approximation, this equa-
tion unravels to 4πδQ = δKdsβ0. For multiple quadrupole errors distributed
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A

B

orbit

s1

distortion

s0observation
∆µ

FIGURE 2.4: Calculating the β-distortion at point s0 due to a quadrupole vari-
ation at point s1 in a synchrotron. Adapted from [1]

over the machine the tune-shift becomes:

δQ =
1

4π

∮
δk(s)β(s)ds (2.22)

Note, this equation only holds true when the quadrupole errors δk(s) are small.
While the tune is a general attribute of a magnetic lattice, a quadrupole error

modifies the focusing properties at all longitudinal positions s of the lattice
and thus the optics functions along the whole machine. Therefore, we aim at
calculating the modified β function. As such, the β-distortion at point s0 in
the lattice from the quadrupole error, again infinitesimally small, at point s1 is
examined. Let the phase difference between the two points be ∆µ. Use Eq. 2.13
to describe the machine between s0 and s1 as matrix A. Similarly, let matrix B
be the transformation between point s1 and s0, as seen in Fig. 2.4.

To make the following derivation more clear, the unperturbed one-turn

matrix is written as M =

(
m11 m12
m21 m22

)
= B.A and the perturbed matrix is

M∗ =

(
m∗11 m∗12
m∗21 m∗22

)
. It suffices to only consider matrix elements m12 and m∗12

to get the β-distortion. Looking solely at the one-turn matrix we expect these
matrix elements to respectively have the following values:

m12 = β0 sin 2πQ m∗12 = (β0 + δβ) sin 2π(Q + δQ) (2.23)

Where β0 = β(s0). Matrix element m∗12 is also obtainable through the following
matrix product: (

m∗11 m∗12
m∗21 m∗22

)
= B.

(
1 0

−δkds 1

)
.A (2.24)
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m∗12 = m12 − a12b12δkds
= β0 sin 2πQ− a12b12δkds

(2.25)

Setting both expression equal to each other, using the thin lens approximation
again and neglecting second order terms in δk, gives:

δβ = − 1
2 sin 2πQ

[2a12b12δkds + 2πδQβ0cos2πQ] (2.26)

Filling in the following relations and using the tune-shift equation (Eq. 2.22)
from the previous paragraph:

a12 =
√

β0β(s1)sin∆µ (2.27)

b12 =
√

β0β(s1)sin(2πQ− ∆µ) (2.28)

It follows that the β-distortion of a single quadrupole error at location s1 is

δβ = − β0β(s1)

2 sin 2πQ
cos(2∆µ− 2πQ)δkds. (2.29)

Expanding this solution to the β-beating equation for distributed errors around
the machine

∆β(s) = − β(s)
2 sin 2πQ

∫ s+C

s
β(σ)δk(σ) cos(2(µ(σ)− µ(s))− 2πQ)dσ. (2.30)

The presence of betatronic resonances is clearly visible in the β-beating equa-
tion as 1

sin2πQ blows up if Q has an integer or half-integer value. Using the
modified β function in the definition of phase advance also allows for the per-
turbed phase advance to be found. Resulting in µ∗(s) =

∫ s
0

1
β(s)+∆β(s) . For

small quadrupole errors the perturbation to the phase advance is small enough
that it can be neglected in the β-beating equation. However, the new phase
advance needs to be included for the perturbed dispersion function, as shown
in Fig. 2.5. The new dispersion function is calculated by using the perturbed
β-function, phase advance and tune in Eq. 2.8.

2.3 MAD-X

The Methodical Accelerator Design (MAD)-X program [11–13] is the main tool
for designing and optimizing accelerators and other lattices at CERN. MAD-
X allows the user to investigate the optics of a sequence of magnetic elements
and can solve various other problems on such sequences. To attain a sequence,
each element needs to be defined by its type (dipole, quadrupole, RF cavity,
etc.) and its geometric properties (positioning, length, etc.). Subsequently, the
magnetic strengths of the active elements can be set. Note that at any point,
elements can be moved, removed, redefined, etc. When the desired lattice is
correctly installed, the optical parameters can be calculated. If the lattice has
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FIGURE 2.5: Comparison of the horizontal β-beating (Eq. 2.30) and the hor-
izontal dispersion beating (Eq. 2.8) with and without using the perturbed
phase advance µ∗x. Clearly showing that the updated phase advance needs to

be considered in further calculations.

a desired property, such as a certain working point (Qx, Qy), MAD-X is able
to match the tunes accordingly. This is done by varying other properties of
the machine using different available matching methods. It is also possible to
include magnetic errors on the lattice elements and evaluate their effect on the
particle motion.

Every CERN accelerator has been modelled, benchmarked and updated af-
ter experimental measurements [14]. Therefore, MAD-X is a suitable tool for
the studies in the following chapters.

2.4 Space-charge simulation framework

A charged particle beam is a collection of moving charged particles. Apart
from the external electromagnetic fields, the beam itself also produces electro-
magnetic fields. The effects of the electric charge of the beam are divided in the
direct and indirect space-charge effects. The electromagnetic field induced by
the particles that trail behind the beam are called wakefields. The interaction
of the beam with the conductivity of the smooth beam pipe are indirect space-
charge effects and the generated effects of the beam’s interaction with itself are
direct space-charge effects.
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Even though a special version of MAD-X is able to consider space-charge
effects, MAD-X is intended as as code for single-particle calculations. Fortu-
nately, there has recently been a study that successfully benchmarked the sim-
ulated direct space-charge effects to an experimental measurement campaign
performed in the PS [15–17]. The used simulation framework essentially simu-
lates a MAD-X sequence with direct space-charge forces, but neglects the indi-
rect space-charge forces. The framework is written using PyORBIT [18]. PyOR-
BIT allows to track a particle bunch through a magnetic sequence with frequent
space-charge nodes, where the beam distribution is calculated and the particles
receive a coulomb kick dependent on this distribution. Hereby, it enables one
to test changes in the PS magnetic lattice with the inclusion of space-charge
effects. The sequence that is simulated in the initial study is the PS magnetic
lattice of 2018 that produces proton beams destined for the LHC. Any other rel-
evant characteristics of the space-charge framework will be explained in later
chapters. The implementation of the MAD-X or space-charge code and dis-
cussions on the applied models are omitted since code development is not the
objective of this thesis.
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3 The CERN Proton Synchrotron

The PS has had many purposes over its lifetime. Initially designed as the
world’s first accelerator based on the alternating-gradient focusing principle
and accelerating protons to its operational energy of 26 GeV in November 1959,
the PS has since produced beams for many fixed target experiments and has
served as a pre-accelerator to numerous other CERN accelerators, e.g. the Su-
per Proton Synchotron (SPS), the Large Electron-Positron (LEP) collider, the
LHC. Today, the versatility and reliability of the PS is an essential part of CERN
operations. In what follows, an overview is given of the main components of
the PS [19–21].

3.1 The design of the PS

The accelerator is made up of 100 quasi-identical combined-function Magnet
Units (MUs) installed around a 2π× 100 m-circumference ring. A MU consists
of a focusing and defocusing half-unit. Between the MUs there are 100 straight
drift sections (SSs) where extra devices can be placed, like beam measurement
devices and auxiliary magnets. Injection and extraction also occurs in the SSs.
The MUs and SSs together cause a recurring ’FOFDOD’ pattern where F stands
for focusing magnets, D for defocusing magnets and O for free space, i.e. with-
out magnetic field, representing the SSs.

The previous chapter states that the working point is an important param-
eter for beam stability. There are two different ways of controlling the working
point, i.e. the LEQs and the pole face windings (PFWs) [24, 25]. On the one

FIGURE 3.1: Drawing and foto of a type 1 PS LEQ. Drawing from
[22] and foto from [23].
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first quadrupole

second quadrupole

SS 01 SS 05

µ

FIGURE 3.2: Propagation and cancellation of β variation from two consecutive
LEQs with ∆µ = π

2 between them, in the PS.

hand the PFWs are extra magnetic elements on top of the hundred combined-
function magnetic poles that add extra control to quadrupolar, sextupolar and
octupolar field components. They are smoothly distributed across the ring. On
the other hand, the LEQs are used to control the transverse tunes from injection
energy to ≈3.5 GeV. Before the Long Shutdown 2 (LS2) injection took place at
1.4 GeV kinetic energy and the injection energy has been raised to 2 GeV during
LS2 [26]. LEQs are limited in strength so at higher energies the PFWs are used
to control the working point. There are 2 types of LEQ used in the PS depend-
ing on the available space. Type 1 (Fig. 3.1) is the most common and has an
integrated magnetic gradient of 35.37 mT at 6A. Type 2 has larger mechanical
aperture and hence a reduced integrated magnetic gradient at 6A of 25.99mT.
Both can be operated from -20 A to 20 A [27]. Note that the beam rigidity needs
to be taken into account when going to magnetic strength used in simulations.
Historically there were 50 LEQs installed in the PS [23]. They came in focusing
and defocusing pairs in successive SSs every four sections. The symmetry of
the quadrupole placements allowed the optics functions to stay smooth even
for large tune deviations from the bare machine working point. Since the de-
sign tune of the PS was 6.25, two quadrupoles of the same type would be π

2
apart from each other in phase advance. Looking at Eqs. 2.30 tells us that a
betatronic wave travels through the machine at 2× Q. Hence, the beating in-
duced by two consecutive focusing quadrupoles would compensate each other
as shown in Fig. 3.2. Unfortunately, over the years some LEQs were removed
or moved to make place for other installations. Currently, there are 40 LEQs
installed in the PS lattice that don’t satisfy any symmetry relations. This loss
of symmetry is clearly visible in the beta and dispersion functions when the
working point is moved closer to either the horizontal or vertical integer reso-
nance or both, as shown in Fig. 3.3.
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The combined-function MUs only guide the beam in the horizontal direc-
tion and there is no vertical bending magnet in the PS. Consequently, the verti-
cal dispersion is zero along the whole ring. The non-zero horizontal dispersion
was not an issue when the PS was built. At that time, the intensity of the beam
was the main priority and the PS ring was not provided with enough space for
dispersion suppressors. At the present time and especially considering high-
brightness beams for the LHC, the emittance is much more of a concern and
the presence of horizontal dispersion makes accurate emittance measurements
difficult.

The beam size, and therefore beam emittance, in the PS is measured using
a WS, Secondary Electron Emission grids (SEM-grid) or Beam Gas Ionization
monitors (BGI)[28–32]. BGIs rely on the residual gas particles, present in the
vacuum pipe, and their collision with the beam to generate secondary parti-
cles. The secondaries are then guided by an electric field outside of the beam
path towards a detector, where the beam distribution is reconstructed. A WS
measures the beam size by rapidly moving a perpendicularly stretched wire
through the beam. Secondary particles produced by this interaction hit a scin-
tillator and the signal is amplified by a photo multiplier, which together act as
a detector. The output, sampled with the wire’s position, is the projected beam
profile. Before LS2, the WSs in the PS looked similar to Fig. 3.4. Some of the
moving parts of the WS were placed outside the vacuum chamber of the beam,
leading to an increased probability for vacuum leaks after extensive use of the
devices. During LS2, the WSs were upgraded in the framework of the LHC
Injectors Upgrade (LIU) project [26]. The moving parts of the upgraded WSs
are placed inside of the vacuum chamber and therefore increase reliability of
the scanners. A schematic overview of an upgraded WS is presented in Fig. 3.5

FIGURE 3.4: Schematic view of the
WS mechanism. Figure from [30].

FIGURE 3.5: Upgraded WS developed
in the framework of the LIU project.

Figure from [31].
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FIGURE 3.3: β and dispersion beating comparison between the current 40 LEQ lattice
and the original 50 LEQ configuration. The optics distortion becomes prevalent when

the working point is moved to the integer tunes at (6.0,6.0).
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SEM-grids also detect secondary particles caused by the interaction of wires
with the beam, but here an array of wires is placed in the beam path. The sec-
ondary electron current caused by the interaction is then measured and sam-
pled to form a beam distribution. For beams above 1 GeV kinetic energy, the
relative energy loss due to the interaction is negligible. In the following chap-
ters an instrumentation in a specific SS will be referred to as the abbreviation of
the instrument followed by the number of the SS, for example an LEQ in SS 65
is referred to as LEQ 65.
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4 Optics Optimisation

The deviation from the nominal optics when the working point is moved away
from its nominal value is called β- and dispersion-beating. Numerically, β-
beating is defined as ∆β

β . Dispersion beating is defined in the same way and
both are presented on Fig. 4.1.

The experimental measurements on which the initial space-charge study
was based (see also Chapter 2.4), found a clear emittance blow-up when the
beam is brought closer to the integer tunes using the LEQs, as presented on
Fig. 4.2. The space-charge study considered the source of beam blow-up and
was able to replicate the emittance increase when using the LEQs to move the
working point. Fig. 4.3 displays the similarities of the simulation and the ex-
perimental measurements and Fig. 4.4 shows that using the PFWs does not
cause the same blow-up.

These results led to the conclusion that the large optics beating excites the
half-integer resonance at a tune of 6.0. In this chapter, possible re-positioning of
the installed LEQs is studied and tested to reduce optics beatings and therefore
the emittance growth. This problem will first be handled using single-particle
calculations to find new quadrupole configurations. Afterwards, the configura-
tions are tested using space-charge simulations. To accomplish this, all straight
sections, where the installation of an LEQ at the beginning of the MUs were
possible, had to be found. This was done by using the extensive PS engineer-
ing documentation and by looking at the actual machine. 12 available SSs were
found on top of the 40 sections that already have an LEQ installed. These avail-
able SSs are presented in Fig. 4.5. Some of the currently used straight sections
have enough free space for an additional LEQ to be installed. These additional
possibilities are considered in the calculations.

FIGURE 4.1: βx and horizontal dispersion-beating from a 5 mT/m
integrated quadrupole strength variation in LEQ 10.
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FIGURE 4.2: Experimental emittance measurements while the working point (Qx =
6.21) is moved with the LEQs. Figure from [16].

FIGURE 4.3: Comparison of the experimental emittance measurements and
a replication from space-charge simulations while the working point (Qx =

6.21) is moved with the LEQs. Figure from [16].

FIGURE 4.4: Replication of the experimental emittance measurements using
space-charge simulations while the working point (Qx = 6.10) is moved by

either the LEQs or the PFWs. Figure from [16].
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FIGURE 4.5: Availability of the PS straight sections. The blue markers repre-
sent the currently installed LEQs, green are the straight sections that can hold

an LEQ and the red markers are unavailable sections.

The following single-particle studies are done on a MAD-X PS lattice with a
proton beam that replicates a 2018 measurement of the bare machine [33]. The
tune and chromaticity of the MAD-X lattice is matched to a reference measure-
ment to give identical numbers when the LEQs are turned off. The LEQs are
able to be individually powered, but for this study all the LEQs that focus on
the same plane are used with the same strength, which is equivalent to how the
LEQs are used in operation. Potential quadrupole configurations that reduce
optics beating will then be tested using the space-charge framework.

4.1 Optimisation algorithm

The available SSs don’t possess an exploitable symmetry since they are ran-
domly spread along the ring. Therefore, a new method had to be developed
to select quadrupole placements. A numerical optimisation algorithm is tested
in this section [34, 35]. A general formulation, following the conventions from
[35], of a constrained optimisation problem can be written as:

minimise
x ∈ Rn

ξ(x) subject to gi(x) ≤ 0, i = 1, 2, . . . , m,

where ξ and gi are smooth, real-valued functions on a subset of Rn. They are,
respectively, called the objective function and constraints. A constrained opti-
misation algorithm will iteratively vary the optimisation variables x to test the
objective function in the feasible region, which is the set of points satisfying all
constraints, using a method specific to the solver to approach the optimal point
or solution. The optics beating problem can be converted to a constrained op-
timisation problem, as illustrated in Fig. 4.6, by using the following concepts:

• Let the optimisation variable xj be the position of quadrupole j with
j = 1, 2, . . . , 40. The positions are allowed to continuously vary over the
circumference of the whole machine. This also defines the constraints as
0 ≤ x ≤ C, with C being the circumference of the PS. Every optimisa-
tion step will begin with a bare PS lattice where all LEQs are removed.
Then, the solver varies the optimisation variables resulting in a list of 40
positions. Quadrupoles cannot yet be installed in the PS lattice at these
positions . First, every location needs to be moved to the nearest available
SS. After relocating, the resulting 40 locations become a valid quadrupole



22 Chapter 4. Optics Optimisation

Initial guess Solver
Redirect to nearest
available SS

MAD-X

Objective function

Optimization step

x0 xj x∗j

βx
βy
Dx

ξj

Solution
x∗opt

ξopt

FIGURE 4.6: Schematic overview of the optimisation algorithm.

configuration. In the simulations, the LEQs are then installed at the loca-
tions according to the obtained configuration.

• The objective function will need to convert the optics beating into a real
number. Optics beating becomes more prevalent if the working point lays
near the integer resonance. To enhance the optics beating, the working
point of the PS will first be moved to (6.1, 6.1) using the LEQs. This is
done with the matching module of MAD-X. A possible objective function
is

ξ(x) =
σ(βx) + σ(βy) + σ(Dx)

3
, (4.1)

with σ( f ) the standard deviation of the function between brackets. This
objective function definition relies on the fact that the beatings are es-
sentially large variations in the optics functions. These large variations
in a sample translate into increased standard deviation. The objective
function ξ(x) is tested by comparing the ξ-value of the ideal 50 LEQ-
configuration and the ξ-value of the current 40 LEQ-configuration, with
∆ξ being the difference between the two. The results are shown in Fig.
4.7. The figure shows a clear increase for the current lattice compared to
the ideal configuration. For the continuation of this study a normalised
ξ∗ = ξ

ξ0
is used where ξ0 corresponds to the bare machine lattice where

the LEQ strengths are set to zero and hence no optics beating is present.
ξ∗ of the current lattice is equal to 1.2460.

• Before deciding on a publicly available solver of optimisation problems,
note that the choice of optimisation variables x causes the objective func-
tion to be discrete. This is due to the relocation-step causing the objec-
tive variables to have only discrete values, which are the positions of the
available straight section. Thus, the objective function jumps between
quadrupole configurations with different ξ-values, as shown in Fig. 4.8.
Because of this discretization, the optimisation problem is ill-defined and
potentially causes problems for solvers that should be able to deal with
this type of problem. Therefore, multiple solvers are tested: Py-BOBYQA
[36], Bayesian Optimisation [37], ZOOpt [38] and Scipy.optimize [39]. One
test where each solver begins from a random initial configuration is shown
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FIGURE 4.7: ξ for both current and ideal LEQ configurations when
the working point is moved closer to the integer resonance, with ∆ξ

being the difference between both configurations.
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FIGURE 4.8: Projection of ξ on a plane where only one quadrupole is moved
across the current lattice. The objective function changes value 12 times since
there are 12 available SSs. Possible duplicate positions are not included in this

plot.

in Fig. 4.9. The ZOOpt-package is chosen since it would consequently
perform better than the other solvers for this specific problem. ZOOpt
stands for zeroth-order optimisation (a.k.a. derivative-free optimisation/black-
box optimisation). It relies mostly on taking samples of the search space
and is therefore suitable for optimising functions that are only testable, as
in the case presented here.

With the optimisation framework fully defined, it was run many times each
with a different initial guess. The amount of optimisation iterations and optimi-
sation steps was limited due to computing time required for one optimisation
step (≈ 2.5 s). Some of the iterations are shown on Fig. 4.10. From this, one can
conclude that the result of one iteration depends heavily on the initial guess.
Therefore, it must be assumed that only local minima are found. However, for
these local minima ξ∗ has already been improved in most cases.

Only the quadrupole configuration with the lowest objective function, i.e.
ξ∗ = 1.1037, was investigated in the context of emittance blow-up. Since this
configuration was found using the optimisation algorithm, we’ll name it the
optimised lattice. There would be 10 changes needed to go from the current
lattice to the optimised lattice: removing the quadrupoles in SS 55, 72, 95, 99,
100 and installing quadrupoles in SS 13, 14, 25, 26, 63. The current and op-
timised optics are shown in Fig. 4.11. A clear improvement of the peak to
peak values are seen in the horizontal β-function and a smaller improvement
in the vertical β-function. The optimised dispersion function shows great im-
provement over the first half of the lattice and a slight deterioration in the latter
half. This global enhancement, but local worsening in the dispersion function
is an outcome of the objective function formulation, which conveys that there
is room for improvement.
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FIGURE 4.9: Progress of an optimisation algorithm iteration using different solvers
starting from a random initial quadrupole configuration.

FIGURE 4.10: A selection of optimisation iterations using the ZOOpt-package each
with different initial quadrupole configurations.
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While the optimised lattice does results in improvements to the optics beat-
ings, introducing 10 changes to the current quadrupole configuration is very
challenging for an experimental test setup. Additionally, this method is unfit
to explicitly look for configurations where less changes are made, due to the
way the optimisation problem is designed.

FIGURE 4.11: βx, βy and Dx functions of the current LEQ config-
uration and optimised configuration at working point (6.1,6.1).

4.2 Single quadrupole addition or removal

Keeping the results from the previous section in mind, a new approach is re-
quired to find an easily testable quadrupole configuration. This process is
started by examining whether a better β- and dispersion-beating is achievable
by making a single change to the current operational lattice. With Eqs. 2.8,
2.22 and 2.30 from Chapter 2, it is possible to predict the optical perturbations
due to a quadrupole error or small change in quadrupole strength. Taking into
account the approximation made in that chapter, testing is needed to see if
these equations can be used to accurately calculate the outcome of removing or
adding an LEQ. The aforementioned equations are repeated here for clarity:
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∆β(s) =− β(s)
2 sin 2πQ

∫ s+C

s
β(σ)∆k(σ) cos(2(µ(σ)− µ(s))− 2πQ)dσ

∆Q =
1

4π

∮
∆k(s)β(s)ds

D(s) + ∆D(s) =
√

β(s) + ∆β(s)
2 sin π(Q + ∆Q)

∫ s+C

s

1
R(σ)

√
β(σ) + ∆β(σ)

cos [(µ(σ) + ∆µ(σ))− (µ(s) + ∆µ(s))− π(Q + ∆Q)] dσ

In Fig. 4.12 the results of applying these formulas in the four cases of adding
or removing a focusing or defocusing LEQ are shown. The figure also shows
that attempting to make 2 changes without updating the optics between every
change causes the approximations to become invalid due to the large strengths.

The value of ξ∗ is predicted for adding an LEQ where possible and remov-
ing an LEQ where possible, resulting in Fig. 4.13, on which there are many
improvements to the current lattice visible. Note that one dot on the figure rep-
resent one change in the lattice, so the red dots would result in a quadrupole
configuration with 39 LEQs and the green dots result in configuration with 41
LEQs. The goal is to find a quadrupole configuration of 40 LEQs or less to be
able to easily test it in the machine by virtually disconnecting one quadrupole
in the control system. Therefore, the green dots that represent adding an LEQ
are not considered as viable options, but they are added on the figure to fully
illustrate the method. Every dot on Fig. 4.13 represents a new quadrupole con-
figuration with a single change. By selecting the configurations with the small-
est ξ∗-values and repeating again the process of testing the effect of a single
change of a quadrupole, they will lead to quadrupole configurations with two
changes. This process can be repeated in a branch-like structure. The branching
depth will equal the number of changes to the initial magnetic lattice. Consider
that this method would give the optimal configuration for a specific depth if
the number of branches is equal to the number of possible changes. However,
depth m with n branches would require nm calculations. The number of cal-
culations gravely restricts this method. This is especially true since the optics
of each configuration needs to be updated using MAD-X for every branching
depth as Fig. 4.12 shows that changing 2 LEQs leads to large errors.

An optimal quadrupole configuration was already found in the previous
section so this new branching method is used to search for configurations with
5 changes or less with 9 branches at every depth. The result of the branching
method is shown on Fig. 4.14. The changes leading to the best configuration
at every depth as well as their ξ∗ are recorded in Table 4.1 and their optics
in comparison to the initial optics are depicted in Figs. 4.15 and 4.16. Every
configuration visually reduces the peak-to-peak ratios and thus improves the
optics beatings. However, ξ∗ decreases slowly over the number of changes.
The lattice with only one change, where only LEQ 90 is removed, appears to
be the most interesting since this change is easily made to the current lattice
and can hence be easily tested in the machine. As the 2 changes lattice shows a
higher ξ∗ value than the 1 change lattice it is removed from further testing.
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tion. The black line represents the current ξ∗ value.

remove LEQ in SS add LEQ in SS ξ∗

0 changes 1.2460
1 change 90 1.1141
2 changes 56 86 1.1707
3 changes 10, 90 26 1.1097
4 changes 10, 90 26, 36 1.1094
5 changes 21, 22, 90 13, 14 1.0908

TABLE 4.1: Changes to the current lattice to get the best
quadrupole configurations based on the branching study.
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FIGURE 4.14: Iterative prediction of ξ∗ in function of the changes to the original config-
uration to form a branching structure. Only 3 branches are shown for better visibility.

The branching depth equals the number of changes.
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FIGURE 4.15: The resulting optics for the best configurations from
the branching study 4.14. The modified quadrupoles are listed in

Table 4.1.
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FIGURE 4.16: The resulting optics for the best configurations from
the branching study 4.14. The modified quadrupoles are listed in

Table 4.1.
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4.3 Emittance blow-up investigation with space-charge
forces

The optimal LEQ configuration as well as the configurations with less changes
need to be tested using space-charge simulations. While single-particle calcu-
lations do not change over the number of turns, space-charge effects are notice-
able on a scale of many turns. The space-charge simulation framework uses
the same initial beam distribution for every working point in the transverse
tune scans, causing a mismatch between the initial parameters and the stable
equilibrium. This is intended, as it corresponds to the operational setup where
the transfer line is usually not rematched after a modification of the working
point in the PS. The emittance has to be measured after filamentation of the dis-
tribution once the beam reaches a stable equilibrium. Contrary to the MAD-X
simulations, the space-charge framework only allows to save the beam optics
at one specific location every turn, making it impossible to compare the βs and
dispersion functions over the whole lattice as it was done in the previous sec-
tion. While the transverse distribution is calculated for the nominal working
point at the start of the simulation for every test lattice, the initial longitudinal
beam distribution is calculated for the current lattice and is not recalculated for
the different quadrupole configurations leading to an additional small beam
mismatch.

The emittance until 2200 turns (≈ 5 ms after injection) is simulated and
saved for every working point to perform a horizontal and vertical tune scan,
shown in Fig. 4.17. The emittance presented on the figure is the emittance at
turn 2200. The results show many interesting things, although the beam blow-
up is still present for both planes. Most notably is the reduction of the vertical
emittance blow-up, around 58 % at Qx = 6.10, for every configuration except
for the 4 changes lattice compared to the current lattice. The horizontal blow-
up also shows some improvement for some tune values, from 10 to 35 % at
Qy = 6.10. The 3 changes lattice shows the best vertical blow-up reductions of
65 % close to the integer tune compared to the other lattices, while the horizon-
tal emittance of this lattice shows the least amount of improvement for most of
the scan. The opposite can be said about the 4 changes lattice, where the ver-
tical emittance shows no improvement and the horizontal blow-up does show
improvement (≈ 33 %). At the moment both β-functions have equal contri-
butions to ξ, but by appropriate weighing further improvement in one plane
might be found at the cost of the other plane. Additionally, the correlation be-
tween ξ and emittance blow-up can be studied to find other suitable objective
functions. The study was performed close to the integer resonance at Qz = 6.0
to enhance the optics beating and emittance blow-up. In practice, these work-
ing point are not used so Fig. 4.18 shows the results of the space-charge study
in the region closer to the machine working point for high-brightness beams.
The 1 change, 5 changes, and optimised lattices show improvement in both
planes. The horizontal blow-up is, respectively reduced by 30 %, 40 % and 45
% at Qy = 6.16 and the vertical blow-up by 60 %, 58 % and 82 % at Qx = 6.19.
The 1 change lattice is especially promising since this can be tested directly in
an experimental setup.
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FIGURE 4.17: Evolution of the normalised emittance 5 ms after injection obtained with
space-charge simulations using different quadrupole configurations. The horizontal

scan is performed at the WS 65, the vertical scan at the WS 64.
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FIGURE 4.18: Zoomed-in version of Fig. 4.17 to increase visibility around the working
point range of high-brightness beams.
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4.4 Conclusion

In the last 5 decades, the PS went from the ideal 50 LEQ lattice to the current
40 LEQ lattice. The irregular placements of the LEQs for the current lattice
leads to large optics beatings and therefore to an emittance blow-up near inte-
ger working points. In this chapter the re-positioning of the LEQs was inves-
tigated to reduce the optics beatings, and therefore the emittance blow-up. A
reduction of the beatings was realised through an optimisation algorithm or by
iteratively either removing or adding an LEQ to the current lattice. To compare
the quadrupole configurations with each other, an objective function ξ∗ was
defined that quantifies the optics beatings based on the standard deviations of
the β- and dispersion functions around the machine. As a result, 5 interest-
ing quadrupole configurations were identified, which each lead to greatly re-
duced ξ∗. Additionally, these configurations were simulated with the inclusion
of space-charge forces to examine the reduction of emittance blow-up. For all
cases, a significant reduction of emittance blow-up in at least one of the trans-
verse planes is observed. The most notable quadrupole configuration found by
the studies is the lattice where only LEQ 90 is removed, as it showed a blow-
up reduction of 10 % in the horizontal plane at Qy = 6.10 and a reduction of
58 % in the vertical plane at Qx = 6.10. This configuration is easily testable in
an experimental setup since it only requires to keep LEQ 90 at zero strength.
The variation of how each lattice reduces the emittance blow-up gives insight
to a possible redefinition of ξ, by giving more emphasis on one plane over the
other. Since the vertical tune spread for LHC-type beams is larger than the ver-
tical tune spread, reducing the blow-up in the vertical plane is more important.
The objective function can also be improved upon, by studying its correlation
with the emittance blow-up through space-charge simulations. This would aim
at identifying a quadrupole configuration for which the emittance blow-up is
reduced in both planes.
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5 Zero-Dispersion Optics to
Improve Horizontal Emittance
Measurements

In several research accelerators that were built in recent times there is a special
section where the dispersion is brought to zero, called a dispersion suppressor.
This special section is used to infer information about the beam distributions
in the transverse planes using the WS or similar instrumentation. Eliminating
the dispersion Dz(s) at the WS proves useful since the true aim of beam size
measurements is to infer εz through Eq. 2.6 assuming the βz function is also
known. Because of the very regular lattice, the PS has no such section so the
beam size contains both betatronic and dispersive contributions. The design
vertical dispersion is zero throughout the whole ring since there is no beam-
guiding in the vertical direction.

For high-brightness beams that are needed for the LHC, there is a large
horizontal emittance blow-up (≈ 40%) measured between the PS Booster (PSB)
and the PS itself, as shown in Fig. 5.1. In the framework of the LIU project, this
emittance blow-up has been extensively investigated over the last years [41–
43]. There are many contributors to the beam blow-up and to properly study all
the sources, high-resolution beam size measurements are required. An optics
configuration with zero horizontal dispersion at the location of a horizontal
WS would deconvolve the horizontal (betatronic) and longitudinal (dispersive)
distributions, and hence remove a known source of uncertainties. The zero-
dispersion optics must be reachable fast after injection, where the emittance
blow-up occurs, and must not differ too much from the nominal optics because
the tune spread of the LHC beams is large [44]. Another aspect to be considered
is that a large optics perturbation leads to a shift of the nominal working point.
Due to the large tune spread particles might overlap with excited betatronic
resonances that the beam did not experience with nominal optics.

A previous study showed successfully that lowering the dispersion in the
PS to zero, at locations where the beam size is measured, is possible [45]. The
study achieved this by individually varying ten adjacent LEQs (see Fig. 5.2).
The study concluded that reaching zero dispersion is possible, but the quadrupole
strength limit is reached and the other optics functions are also distorted. The
study was able to reach zero dispersion optics by varying many different sets
of adjacent quadrupoles, these are called active sets for the continuation of
this chapter. Each different active set distorted the optics in a unique way.
Therefore, one can assume that there is an active set of not necessarily adja-
cent quadrupoles that forces the dispersion to zero while minimally affecting
the other optics functions.
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FIGURE 5.1: Details on the emittance evolution along the LHC
injector chain. A horizontal emittance blow-up has been regu-
larly observed between PSB extraction and PS injection for high-

brightness LHC beams. Figure from [40].
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After the current shutdown the PS will be equipped to preserve the transverse
emittances of higher-brightness beams in the LIU era. Therefore, and due to
the fact that the beam blow-up occurs at injection, the lattice used to study a
new zero-dispersion optics configuration in MAD-X simulations must replicate
the new PS lattice at injection energies of 2 GeV. Note that moving from 1.4 to
2 GeV over the shutdown limits the LEQ strengths more because of the higher
beam rigidity.

5.1 Single-particle study

In this chapter the zero-dispersion optics study is continued by shifting the fo-
cus from only reaching zero-dispersion to reaching zero-dispersion while min-
imising the variations of the β-functions and keeping the working point con-
stant. Thus, techniques discussed in Chapter 4 are implemented. Utilising nu-
merical optimisation techniques and the linear imperfection equations, active
LEQ sets are pursued that satisfy all the conditions for a single beam measure-
ment location.

To begin abstracting the zero-dispersion optics study into a numerical opti-
misation problem, the quadrupole strengths are the clear choice as optimisation
variables. Secondly, the bounds of the problem must force all possible solutions
to reach zero dispersion at the specified location. This is accomplished by set-
ting the quadrupole strength limits as bounds and introducing the extra bound
that superimposes the contributions of the individual quadrupoles on the dis-
persion at one location. This bound is of the form

D∗ = D0 + ∆Dk1 × δk1 + ∆Dk2 × δk2 + . . . + ∆Dkn × δkn, (5.1)

where D0 is the initial dispersion, D∗ is the dispersion after varying the quadru-
poles and ∆Dki are the scalars proportional to the effect of a quadrupole varia-
tion of size δki on the dispersion at that location. Here the dispersion-beating
is assumed to be directly proportional to the quadrupole variation. This is not
a known property and is therefore investigated in the scope of the work car-
ried out in this chapter. The results that show this is a valid assumption are
presented in Fig. 5.3. The dispersion-beating equation is used instead of the
results from MAD-X to reduce computing time in the optimisation algorithm.

The objective function of the optimisation algorithm must then minimize
the change in optics. From Eqs. 2.30 and 2.8, one can notice that the tune-shift
and β-beating caused by varying one quadrupole is directly proportional to the
quadrupole strength error. Therefore, if the quadrupole variation is small, the
resulting optics distortion is also small. The goal of the optimisation algorithm
developed for the study is consequently to keep the quadrupole variations δki
minimal, since every possible solution will lead to zero horizontal dispersion
at the desired location due to the bounds. This leads to the objective function

minimize δk2
1 + δk2

2 + . . . + δk2
n,
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FIGURE 5.3: Tests showing the response of the dispersion function to a single
quadrupole error in order to investigate proportionality. The predictions in
blue are obtained from Eq. 2.8 with δk = 0.001 and then multiplied with a

factor to mimic the ∆k used in MAD-X simulations.

where the squares of δki are used instead of the absolute values to attain a con-
vex quadratic optimisation problem which is very common and more studied,
hence the publicly available solvers are usable. Additionally, this optimisation
problem is well defined in contrast to the one in Chapter 4 and therefore an
investigation comparing multiple solvers is trivial. The public library Python
Software For Convex Optimization (CVXOPT) was used as solver [46].

Initially, all 40 LEQs are used in the optimisation. However, to see if the
same result can be achieved by less active quadrupoles, the active number of
LEQs is iteratively reduced by one LEQ until the quadrupole strength limit is
reached. The reduction is realised with the following reasoning: If |δki| is large
for a certain quadrupole, that quadrupole heavily forces the dispersion to zero.
Hence, the LEQ with the lowest |δki| has the least influence in this problem and
can be removed from the equations. With the implementation of this last ingre-
dient, the full zero-dispersion simulation framework is built. A zero-dispersion
simulation starts with the active set that consists of the current LEQ lattice. The
quadrupole strengths of the active set, starting from their nominal settings, is
then optimized by the numerical optimisation algorithm. The lowest |δki| is
taken from the results and the corresponding LEQ is removed from the active
number of LEQs. This process is repeated, starting from the nominal optics in
every step, until the optimisation algorithm no longer finds a solution. At this
point it is no longer possible to obtain a zero-dispersion optics, while staying
within the LEQ strength limits.
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Figure 5.4 shows the progress of this method for one WS location. The β-
functions and tunes display minimal optics distortion compared to the nominal
optics when using 15 LEQs and above. When few quadrupoles are used, the
variations in quadrupole strengths become too large for the linear imperfection
formulae to hold true, similar to what was presented in Fig. 4.12, leading to
non-zero dispersion optics at the WS. In these cases, it is speculated that the set
of active quadrupoles are optimized but their strengths are not. Hence, zero-
dispersion optics can still be achieved by repeating the optimisation using the
first results as initial optics. While there is no real limit to the amount of LEQs
that can be used for this objective, a low number of LEQs is preferred. This
simplifies an experimental test of the identified configuration.

This method is applied to multiple beam measurement locations discussed
in Chapter 3, such as WSs, SEM grids and BGIs. To avoid cases where the lin-
ear approximations stop being valid, the iterative reduction of the active set is
halted at 15 LEQs. The dispersion function, other optics distortions and the
tune-shifts for 15 quadrupoles using the optimisation algorithm are shown in
Fig. 5.5 and the corresponding quadrupole strengths are presented in Table
A.2. These results are the optimum solutions found due to the minimum num-
ber of quads and minimal perturbation of all optics, while still reaching zero
dispersion at the beam measurement location.

5.2 Investigation of the impact of direct space charge
forces

In the previous section, the dispersion function is successfully forced to zero for
single-particle calculations where space charge is neglected. Here, space charge
forces are included to examine whether the dispersion behaves differently and
whether space charge needs to be included in the optimisation algorithm. This
is done by using the space charge framework discussed in Chapter 2 and the
results obtained in the previous section.

In practice, the dispersion only needs to reach zero during the beam pro-
file measurements with the WS. Before and after the measurements the beam
must be in its nominal state. This can be accomplished by using the LEQs and
varying their electric current input individually using a knob that continuously
ramps their strength up or down. This knob is a function in the control system,
which tells the system what to do dependent on the knob’s value. In the case
of this study, the knob zero value would be the nominal optics and one would
stand for the zero dispersion optics.

Using the space charge framework active LEQs can be ramped up in a sim-
ilar way as they would inside the PS. This is achieved through varying the
strengths discretely every turn. There is a small time period at zero dispersion
provided for the beam profile measurement, using the quadrupole strengths as
shown on Fig. 5.6.

The optics of the single-particle calculations from MAD-X are simulated as
the periodic solution to a defined magnetic sequence. This contrasts the space
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FIGURE 5.4: Iterative optimisation from 40 LEQs to 5 LEQs to set the dispersion at
WS 65 to zero. The perturbation of the β-functions compared to the nominal optics as
well as the tune-shifts are also shown. The black dotted line represents the location of

the WS.
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FIGURE 5.5: Zero-dispersion optics configurations obtained at different beam instru-
mentation when using 15 LEQs. The quadrupole locations and strengths were ob-

tained with the optimisation algorithm.
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FIGURE 5.6: Ramping of the LEQ 77 and LEQ 81 strengths for moving to zero-
dispersion optics at WS 65 using the strengths from Table A.2.

charge framework, where the optics are reconstructed from the distribution of
the beam. Because of the different calculation methods, the optics might differ
slightly. This is pointed out because the ramping of the LEQs is also simulated
without space charge contributions using the same framework for comparison.

As discussed in Chapter 4, the space charge framework only saves the op-
tics at one location in the machine. This location is the starting point of the
simulation. The space charge framework was set up to simulate an initial lon-
gitudinal distribution at WS 65 and must therefore start the simulation at this
point. Thus, only the LEQ strength configuration that forces the dispersion to
zero at this WS can be tested. However, one test suffices to understand whether
single-particle optimisation is sufficient or space charge needs to be included.

By replicating the beam profile measurement method of the PS, the frame-
work also shows if there are lasting consequences for the emittance after the
measurements are done. The results of the dispersion function of the space
charge simulations are shown in Fig. 5.7. From the figures, one can conclude
that space charge effects cause the dispersion to reach zero more rapidly than
without space charge. This means that less quadrupole strength has to be used
to reach zero dispersion during operation, which makes it possible to reduce
the set of active quadrupoles necessary to maintain stable optics during the
beam size measurement. Therefore, the eventual operational knob value will
lie between zero and one.

Figure 5.8 presents the horizontal and vertical beam size and emittance dur-
ing the ramping of the LEQs for a zero-dispersion measurement. The impact
on the horizontal emittance is small, which is the plane of interest, but the verti-
cal emittance shows clear growth. In ideal conditions, the horizontal beam size
would go through a minimum, whereas the vertical beam size would stay con-
stant. These effects are most likely due to the ramping time being too short for
adiabatic ramping. Figure 5.9 shows the beam size progression without space
charge effects. The similar variation of the vertical beam size strongly indicates
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FIGURE 5.7: The dispersion for space charge and non-space charge simula-
tions using the results for the WS at SS 65 from the zero-dispersion study.

that the vertical emittance growth is due to non-adiabatic ramping. However,
the difference between initial and final beam size is different for both cases
meaning that space charge forces also affect the vertical beam size. Therefore,
further investigation of the vertical emittance growth is required.

5.3 Conclusion

The perceived emittance blow-up at injection in the PS is unacceptable for
achieving the goals set by the LIU project. The blow-up has many sources
which require thorough investigations. Having a good precision on the emit-
tance measurement is essential to achieve this, but emittance measurements
have a dispersive contribution due to the absence of dispersion suppressors,
which is a known source of uncertainties. The research conducted in this chap-
ter deconvolutes the dispersive contributions from horizontal beam profile mea-
surements around the PS through obtaining zero-dispersion optics with the
LEQs, while minimally modifying the nominal optics and keeping the LEQ
strengths below their limit. The LEQ strengths needed to achieve zero-dispersion
optics are obtained by globally minimising the sum of the squares of the quadrupole
strength variations from the nominal optics, while keeping the dispersion at
zero at the measurement location and iteratively keeping the least contribut-
ing LEQ at its nominal quadrupole strength and removing it from the prob-
lem. Zero-dispersion optics are achieved with single particle MAD-X calcula-
tions, while the impact of space charge forces leads to a further decrease of the
dispersion. Hence, the operationally required quadrupole strengths is smaller
than predicted by single-particle simulations and will have less impact on the
optics. The emittances are distorted while the optics are moved between the
nominal optics and zero-dispersion optics. This shows that the LEQs were
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FIGURE 5.8: The horizontal and vertical beam size and emittance evolution
during a zero-dispersion space charge simulation.

FIGURE 5.9: The horizontal and vertical beam size evolution during a zero-
dispersion simulation without space charge.
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ramped non-adiabatically in the simulations. The moving of the optics must
therefore be further investigated using longer ramping times. The next step is
to set up knob functions in an experimental setup using the WS to measure the
beam profile for different knob values. At some point, the profile will show
minimum beam size and that is when the zero dispersion optics are reached.
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6 Quadrupole Gradient Modulation
to Improve Transverse Emittance
Measurements

The emittance is an important property of a charged particle beam. Having a
precise measurement of the emittance allows one to identify and understand
sources of emittance growth in synchrotrons and can therefore reduce beam
losses especially in transfer lines and at injection. In Chapter 4 a new optics
scheme was developed to minimize one known source of emittance growth.
Chapter 5 proposes a technique to make emittance measurement in the PS more
accurate in the horizontal plane.

Here, the aim is to improve the accuracy of emittance measurements by
examining the betatronic part of the beam, whereas the last chapter focused
on the dispersive part. As stated before, the beam profile is measured using
WSs. Then Eq. 2.6 is used to calculate the emittance. However, in general
β-functions cannot be measured at that location. They can be measured at
a nearby quadrupole using K-modulation or at the Beam Position Monitors
(BPM) using various methods. Subsequently, the resulting β will be propa-
gated to the location of the WS based on the optics models.

The K-modulation technique relies on varying the strength of an individual
quadrupole and measuring the resulting tune-shift with a tune measurement
system. The variation of the quadrupole strength is commonly sinusoidal, as
depicted on Fig 6.1. The function of the magnetic field used to inject, accelerate
and extract the beam is called a magnetic cycle. For the K-modulation mea-
surement the beam is usually kept on a plateau of constant energy. For this
study, the measurement occurs immediately after injection using an LHC-type
cycle where the injection plateau has a length of 1200 ms. Afterwards, the beam
is accelerated and extracted. Every cycle, one K-modulation measurement can
occur. After one cycle the average β̄ over an LEQ with length Lquad can be found
by fitting

β̄ =
4 [cos(2πQ0)− cos(2π(Q0 + δQ))]

δkLquad sin(2πQ0)
, (6.1)

which reshapes Eq. 2.21 to a usable form. The eventual β̄ has an error due
to the uncertainty of the tune measurements. The size of this β̄ error, once
propagated to the WS, impacts the accuracy of the emittance measurement.
The full β-measurement procedure is therefore simulated in this chapter. The
characteristics of the sinusoidal δk wave and the number of cycles is studied
with respect to their impact on the accuracy of a β-value propagated to a WS.
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FIGURE 6.1: A sinusoidal δk excitation using LEQ 68 in blue and the resulting
tune-shift in red. ∆k is the integrated quadrupole strength divergence from its

nominal value.

6.1 Impact of the modulation characteristics on the
beta-function reconstruction.

For the following simulations the latest PS lattice that is configured for LHC
beams was used. The K-modulation measurement has to be performed with
a beam with low tune spread to avoid any perturbation. To duplicate the ex-
perimental setup, the quadrupole strengths are varied in a cycle of 1200 ms.
One sinusoidal measurement is programmed per cycle, which is then used to
compute the β̄ using a fit. Experimentally, this procedure can be repeated on
several cycles to improve the precision on β̄.

Since the LEQs are individually powered, the β̄s can be evaluated at every
LEQ. Experimentally, the tune measurements are inferred from the BBQ system
[47]. In this study however the tunes will be directly obtained from MAD-X
and an appropriate normal error of σQ = 10−3 is added to replicate the uncer-
tainty of the BBQ measurements. The number of tune measurements that can
be recorded within 1200 ms depends on the settings of the BBQ system. For the
MAD-X simulations we’ll assume that the tune is recorded by the BBQ every
1024 turns which is ≈ 2 ms, but including post-processing time required by the
system results in ≈ 5 ms. One β̄-measurement cycle at LEQ 68 is presented in
Fig. 6.1 and the corresponding fitting procedure is shown in Fig. 6.2

The characteristics of the δk excitation of one cycle that could impact the
β̄-measurement are the modulation period and the modulation amplitude. The
maximum modulation amplitude is the difference between the LEQ’s nomi-
nal strength and its strength limit. The modulation period and amplitude are
tested in Fig. 6.3, where the amplitude is expressed in percentage of its maxi-
mum value. There is a dependency visible on the excitation amplitude, mean-
ing the accuracy of the K-modulation is restricted by the limited strength of the
LEQs. Additionally, the full range of the LEQ strengths might not be available
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FIGURE 6.2: Fit of a sinusoidal δk modulation and the corresponding tune-
shift to Eq. 6.1 to obtain the β̄ at the excited LEQ 68. The model values ob-

tained through MAD-X are noted on top of the figure.

for some cases since the RMS strength limit might be traversed over a number
of cycles causing the LEQ to shut down to protect the power converter. There
is no clear reliance on modulation period thus a modulation period of 1000ms
is chosen. This makes sure that the beam is varied as slowly as possible.

Apart from the BBQ system uncertainties, there is another error that influ-
ences the β measurements. An LEQ is powered through an electrical current.
The eventual quadrupole strength of a magnetic element is commonly a func-
tion of the applied current, called the transfer function. This function is in gen-
eral non-linear, because the iron used in the magnet saturates at some point. In
the case of the LEQs there is only a single value measured since the LEQs don’t
have any iron. This single value is labelled the transfer factor in this thesis.
The transfer factor between current and quadrupole strength was remeasured
in 2003 for an applied current of 6 A [27], the LEQs have a current range of
-20 A to 20 A. This measurement was done on a single isolated LEQ. In the ma-
chine, the LEQs are surrounded by the iron yoke of the adjacent MUs. This iron
yoke could have an impact on the transfer factor. For this reason, the measured
transfer factor could be different from the actual factor constituting a system-
atic error which thus can’t be improved upon by multiple measurements. The
result of a transfer factor error on LEQ 68 is displayed on Fig. 6.4. Note that
here the BBQ system uncertainties were removed from the simulations. The fig-
ure shows that a relative error to the transfer factor results in the same relative
error to the β̄-measurement.

Subsequently, the β̄s have to be propagated to the WS. This is done using
the transfer matrix method introduced in Chapter 2. Using this method the
particle trajectory can be transferred through magnetic elements. For coher-
ence, the transfer matrix of a horizontally focusing and defocusing quadrupole
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FIGURE 6.3: Dependency of the reconstructed β̄-function on amplitude and modula-
tion period at LEQ 68. The reconstructed β̄-values are shown in the left column and

the right column presents the uncertainty from the fitting procedure.
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are respectively

MQF =

(
cos Ω 1√

|k|
sin Ω

−
√
|k| sin Ω cos Ω

)
and MQD =

(
cosh Ω 1√

k
sinh Ω√

k sinh Ω cosh Ω

)
,

(6.2)
where Ω =

√
|k|Ldrift. From these matrices, the transfer matrix for a drift sec-

tion of length Ldrift can be obtained for vanishing gradient k:

Mdri f t =

(
1 s
0 1

)
(6.3)

Propagation of the β function through magnetic elements is typically explained
using properties of the phase space ellipse. The area of the ellipse, defined
as the emittance ε of an accelerator is invariant throughout the machine. The
relation of ε to β is

ε = βx′2 + 2αxx′ + γx2, (6.4)

FIGURE 6.4: Impact of the uncertainty of the transfer factor on the
reconstruction of the β̄ function.
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with α = −β′
2 and γ = 1+α2

β . Transferring from s0(β0, α0, γ0) to s(β, α, γ)

through an element with transfer matrix

M =

(
m11 m12
m21 m22

)
(6.5)

leads to the following relation:β
α
γ

 =

 m2
11 −2m11m12 m2

12
−m11m21 m11m22 + m12m21 −m22m12

m2
21 −2m22m21 m2

22

β0
α0
γ0

 (6.6)

The LEQ and the WS are separated by a drift section. However, since K-
modulation calculates the average β of an LEQ, β also needs to be transferred
through one half of the corresponding LEQ. The magnetic effect of an LEQ can
be approximated to be constant over the LEQ so the center of the LEQ is chosen
as the point where β reaches its average value. Note that the defocusing LEQ
in SS 68, on which the method was tested, will work as a focusing quadrupole
in the vertical plane. Similar to the tune, the value of α from MAD-X will be
taken and a Gaussian error of σα = 10−3 is applied to simulate actual machine
conditions. Relation 6.6 allows for the use of the variance formula

σf =

√(
∂ f
∂x

)2

σ2
x +

(
∂ f
∂y

)2

σ2
y + . . .. (6.7)

With this, the β-function and its uncertainty can be propagated from LEQ 68 to
WS 68. The results for the systematic transfer factor error is shown on Fig. 6.5.
The same relative error dependency is present at LEQ 68. Since the size of the
error on the transfer factor is currently unknown, the accuracy of the β-function
cannot be confidently less than 1 % until the transfer function of the LEQ near
the iron yoke of a MU is investigated.

Figure 6.6 and Table A.1 show the dependency of the β-function on the mod-
ulation amplitude, expressed in relative terms to its maximum value, and the
number of cycles assuming that there is no transfer factor error. The black line,
which represents the threshold for an accuracy of 1 %, is easily reached for
cases with over 20 cycles and where over 40% of the maximum amplitude is
used.
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FIGURE 6.5: Impact of the uncertainty of the transfer factor on the
propagated β-function at WS 68.
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FIGURE 6.6: The dependence of the propagated β-function at
WS 68 on the modulation amplitude and number of cycles. The

black line represents an accuracy of 1%.
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6.2 Conclusion

In the previous chapter a method was conceptualised to remove dispersive con-
tributions from emittance measurements. In this chapter, the emphasis was on
the accuracy of the measurement of the betatronic contributions, which can
be improved through investigating the uncertainty of K-modulation measure-
ments of the β̄-function at an LEQ, and by propagating these values to a beam
measurement location. This led to a better understanding of the typical un-
certainties one can expect for a given number of cycles and the amplitude of
the modulation. The impact of an error in the transfer factor of the LEQ was
also investigated and it proved to be significant enough to justify additional
measurements of the LEQ transfer function near the iron yoke of an MU.
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The PS experiences emittance blow-up for working points near the integer res-
onances, as well as during injection for LHC-type beams. The former is caused
by optics beating induced by LEQs, while the latter is an accumulation of many
sources. To improve the understanding of emittance blow-up at injection, the
emittance measurements are required to improve in accuracy.
The research conducted in this thesis examined re-positioning of the LEQs to
reduce the optics beatings, and therefore the emittance blow-up. A quantifi-
cation of the optics beatings led to new possible quadrupole placings through
numerical optimisation and by iteratively making one change to the current lat-
tice. The impact of these configurations on the emittance blow-up was tested
and they showed notable improvement. Especially keeping LEQ 90 at zero
strength looks promising and, due to its simple testability, is going to be tested
in an experimental setup once beam is again circulating in the PS after LS2. Fur-
thermore, a zero-dispersion optics was developed as means to deconvolute the
dispersive contributions from horizontal beam profile measurements around
the PS, thus increasing the accuracy of the measurement. Zero-dispersion op-
tics are achieved through minimal perturbation of the nominal optics since only
the LEQs that have the biggest impact on the dispersion are used. Starting
from the obtained strength configurations followed by experimentally improv-
ing the setup by looking for the minimal beam size using different knob values,
zero dispersion optics should be reachable inside the machine.
Additionally, the accuracy of measurements of the β-functions used to infer
the transverse emittances were studied. The β̄ of an LEQ is achieved through
K-modulation and propagated to a WS. Depending on the modulation ampli-
tude and the number of cycles used to calculate β, a precision of 1 % or less
can be achieved. Yet, the unknown error on the transfer factor causes a di-
rectly proportional relative error on the knowledge of the β-function at the WS.
Therefore, an additional measurement of the transfer function is required.
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relative βx precision [%] Amplitude [%]
cycle(s) 10 28 46 64 82 100
1 10.7 3.56 2.26 1.75 1.34 1.17
10 3.48 1.24 0.75 0.54 0.41 0.35
20 2.42 0.87 0.53 0.38 0.29 0.24
30 1.96 0.71 0.44 0.31 0.24 0.20
40 1.71 0.62 0.37 0.27 0.21 0.17
50 1.52 0.54 0.33 0.24 0.19 0.15

relative βy precision [%] Amplitude [%]
cycle(s) 10 28 46 64 82 100
1 6.45 2.15 1.36 1.06 0.81 0.70
10 2.10 0.75 0.45 0.32 0.25 0.21
20 1.46 0.52 0.32 0.23 0.18 0.15
30 1.19 0.43 0.26 0.19 0.14 0.12
40 1.03 0.37 0.22 0.16 0.13 0.10
50 0.92 0.33 0.20 0.15 0.11 0.09

TABLE A.1: The uncertainty on the β-functions at WS 68 relative
to the MAD-X β value, with respect to the maximum amplitude
and the number of measurement cycles. The corresponding β-

values are shown on Fig. 6.6
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[mT/m] SEM 48 SEM 52 SEM 54 WS 54 WS 65 WS 68 BGI 82
LEQ 5 -5.35 -5.35 4.75 5.07 -4.35
LEQ 6 -3.31 -3.31
LEQ 9 -3.93 -4.54 -5.37
LEQ 17 3.85 5.06 5.79
LEQ 18 3.15
LEQ 21 -5.24 -5.24 4.48 4.80 -4.32
LEQ 22 -3.29 -3.29
LEQ 27 -5.59 -5.21 -4.60
LEQ 28 -3.56 -3.33
LEQ 31 4.90 4.90 5.64 5.66
LEQ 32 3.64
LEQ 35 5.09 5.09 5.09
LEQ 36 3.07 3.26
LEQ 39 -5.25 -5.25 -5.77 -5.21
LEQ 40 -3.29
LEQ 45 5.18 5.18 -5.56 -5.43 3.95
LEQ 46 3.32 3.32
LEQ 49 5.59 5.59 4.37 4.69 6.01
LEQ 50 3.04
LEQ 55 5.17 5.25 -5.85 -5.15
LEQ 56 3.05 -3.39
LEQ 59 -4.78 -4.78 -4.69
LEQ 67 4.75 4.75 5.89 5.09
LEQ 71 4.97 5.06 4.22 -5.07
LEQ 72 3.02 -3.34
LEQ 77 -3.36 -3.42 -4.90
LEQ 78 -2.98 -2.91
LEQ 81 5.31 5.31 -4.78 -4.73 4.60 5.80
LEQ 85 3.80 5.11 5.78
LEQ 86 3.09
LEQ 89 -5.35 -5.35 4.51 4.84 -4.48
LEQ 90 -3.23 -3.23
LEQ 95 -5.63 -5.26 -4.60
LEQ 96 -3.52 -3.32
LEQ 99 5.06 5.06 5.89 5.98
LEQ 100 3.65

TABLE A.2: The integrated normalised LEQ strengths, in mT/m, to reach zero
dispersion optics with 15 active LEQs at the beam profile measurement loca-

tion above. The resulting optics are shown in Fig. 5.5.
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