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Abstract

In this thesis an introduction to quantum chromodynamics (QCD) and explicit
calculations of renormalization group evolution in QCD will be given. QCD is the
theory that explains the Strong Interaction, one of the fundamental forces in nature,
responsible for keeping quarks and gluons bound together in hadrons, and for
binding protons and neutrons in nuclei. In the introduction to QCD this thesis will treat
the QCD colour charge, the Lagrangian, the gauge symmetry related to QCD, the full
quantisation and the renormalisation of the theory. Then the application of QCD to
high energy collisions will be explained. Since in high energy collisions between
hadrons the Strong Interaction is almost always involved, QCD is necessary as the
theoretical background for such collisions, like those in the LHC. The Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations for quark and gluon
densities (also called parton distribution functions) in a hadron will be treated in terms
of perturbative kernels given by quark and gluon splitting functions, computable as
power series expansions in the QCD coupling. We will explain the physical meaning
of the splitting functions as probabilities for QCD radiation processes from colour-
charged particles. We will illustrate the dependence of the splitting functions on the
longitudinal momentum transferred during the radiative process within the DGLAP
framework. Then, by extending this framework, we will discuss how the dependence
of the splitting functions on the transverse momenta involved in the radiative process
can be computed. To this end, we will employ the high-energy factorization method in
QCD. We will illustrate the application of this method by explicitly calculating the
gluon-to-quark splitting function, at first order in the QCD coupling, including the
dependence on both longitudinal momentum and transverse momentum. Finally, we
will present numerical calculations of parton densities by using a computer code
which solves the evolution equations by a Monte Carlo method.



Samenvatting

In deze thesis wordt een introductie tot quantum chromodynamica (QCD) en
expliciete berekeningen van renormalisatiegroep evolutie in QCD gegeven. QCD is
de theorie achter de Sterke Kernkracht, één van de fundamentele krachten in de
natuur, verantwoordelijk voor het binden quarks en gluonen in hadronen, en voor het
binden van protonen en neutronen in atoomkernen. In de introductie tot QCD zal
deze thesis de QCD kleurlading, de Lagrangiaan, de gauge symmetrie gerelateerd
aan QCD, en de volledige kwantisatie en renormalisatie van de theorie geven.
Daarna word de toepassing van QCD op hoge energie botsingen uitgelegd. Omdat in
hoge energie botsingen tussen hadronen de Sterke Kernkracht altijd betrokken is, is
QCD nodig als theoretische acthergrond voor zulke botsingen. (Zoals de botsingen in
de LHC) De Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolutievergelijkingen
voor quark- en gluondichtheden (ook parton distributie functies genoemd) in een
hadron zullen worden beschreven door perturbatieve kernels gegeven door quark-
en gluonsplittingfuncties. Deze splittingfuncties zijn berekenbaar als machtreeksen in
de QCD koppeling. We zullen de fysiche betekenis van de splittingfuncties uitleggen
als waarschijnlijkheden voor QCD stralingsprocessen van deeltjes met kleurlading.
We zullen tonen dat de splittingfuncties afhankelijk zijn van de longitudinale impuls
die wordt overgebracht tijdens het stralingsprocess in het DGLAP kader. Dan zullen
we dit kader uitbreiden, en wordt uitgelegd hoe we kunnen bereken hoe de
splittingfuncties afhankelijk zijn van de transversale impulsen die aanwezig zijn in het
stralingsprocess. Om dit te doen zullen we de methode van hoge-energie-factorisatie
toepassen in QCD. We zullen de toepassing van deze methode uitleggen door
expliciet de gluon-naar-quark splittingfunctie uit te rekenen, tot op eerste orde in de
QCD koppeling, en met inbegrip van de afhankelijkheid van zowel de longitudinale
als transversale impuls. Uiteindelijk zullen we numerieke berekeningen van
partondichtheden laten zien, door het gebruik van een computerprogramma dat de
evolutievergelijkingen oplost met behulp van een Monte Carlo methode.
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Conventions and units

Units:
Throughout this thesis, we will use units in which ¢ =h = 1.

This will simplify most equations, and most units can be considered equivalent to
each other up to some power:

[length] = [time] = [mass]~! = [energy]|~

1
We will express both mass and energy in eV (electronvolt).
Special Relativity, tensors, and indices:

The metric we use will always be the Minkowski metric with the following convention:

1. 0 0 0
{0 -1 0o o
9w =10 0 -1 o0
0 0 0 -1

The inverse metric g*” will have the same components as g,, .

Greek indices will always denote full spacetime indices and run from 0 to 3, where 0
is the time component and 1, 2, 3 are the spatial components (which we will also call
space components). Sometimes we will only consider the spatial components of a
tensor, and in this case we will use lowercase Roman indices i, j, k, etc (these run
over 1, 2, 3).

In case of spacetime indices, it matters if they appear as superscript or subscript.
These are respectively contravariant and covariant indices. Four-vectors will usually
be denoted by italic letters. Three-vectors will be denoted by non-italic boldface
letters. As example we give the position vector to demonstrate these conventions:

xt = (xO'x) = (t,X); Xy = guvx” = (xO' _X) = (t, —X)
Xi — (xl,x2,x3)
The exception for boldface symbols will be the identity matrix 1 = 1,,,,

In some cases we will not write the Greek or Roman index if we mean the whole
vector and if it is unlikely to cause confusion. For example with f(x) we would mean
a function of the spacetime position vector x.

For the four-gradient we have



where V is the three-gradient, which is the usual 3D-space gradient. A time derivative
of a function will be denoted by a dot on top:
d :
0o(x) = - p(x) = P (x)
The notation for the d’Alembertian will be
0 =040,

All non-spacetime indices will also be denoted by Roman indices, and for these
indices it doesn’t matter if they appear as superscript or subscript.

Repeated indices will always be summed over, unless stated otherwise. For scalar
products we will sometimes also omit the indices.

p“xuzz:p“x”:p-x:px
U

Functions and fields:

A field is a tensor function of spacetime, with one “value” for each point in spacetime.
Instead of a simple tensor, it can also be a combination of multiple tensors.

For functions, and especially functions of spacetime, we will often omit the arguments
in our notation: f = f(x)

Fourier transformation:

d* . .
F0) = [ e @) i f®) = [ dixe (o)
Dirac-delta function:

j dx 6™ (x) = 1

fd”x e?* = 2m)"6 ™ (p)

Other:
The commutator: [4,B] = AB — BA
The anticommutator: {A,B} = AB + BA

The elementary electric charge e will be considered positive, and thus the opposite of
the electron charge: e = |e|

In Feynman diagrams time will usually run from left to right, unless stated otherwise.



1 Generalities on QCD

This chapter contains the general understanding and construction of QCD, and
SU(N) gauge field theories in general, and compared to QED. We will build up,
quantise, and renormalise the Lagrangian, and give the Feynman rules. This chapter
is heavily based on the QFT books [4] and [5].

1.1 QCD as part of the Standard Model

This section contains a general overview of the Standard Model (SM) and the
fundamental interactions, and why quantum chromodynamics (QCD) is needed.

1.1.1 Content of the Standard Model

The Standard Model of particle physics is the theory describing the known
fundamental particles and known fundamental forces (except gravity, if you would
consider this a force). The Standard Model is based on quantum field theory (QFT).
QFT is a theoretical framework that unifies special relativity, quantum mechanics and
classical field theory. It is able to describe quantum mechanics in Minkowski
spacetime, and where the number of particles does not need to remain constant (due
to creation and annihilation). The Standard Model is a specific choice of such
quantum field theories, which describes the known particle physics in our universe.

three generations of matter interactions / force carriers
(fermions) (bosons)
| I 1]
=2.2 MeV/c =1.28 GeV. =173.1 GeV/c? 0 =1
¥ 0
u D |- ¢ . @ H
up charm top gluon higgs

down strange bottom photon l

=0511 MeV/c? =105.66 MeV/c? =17768 GeV/c? =91.19 GeV/c?

=1 =l =1

« (& « « &
electron muon tau Z boson l
<22 eVic? <0.17 MeV/c? 18.2 MeV/c? =80.39 GeV/ic?
0 0 +1
Ve x Vi v O 3 V!,
elect(on muon taq W boson
neutrino neutrino neutrino

Figure 1.1: Elementary particles of the Standard Model, with property values as of 2008.
Figure from [6]
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The particles in the Standard Model can be divided into bosons and fermions.
Bosons have integer spin and obey Bose-Einstein statistics. Fermions have half-
integer spin and obey Fermi-Dirac statistics. It appears that matter is made of the
elementary fermions, while the forces are mediated by the elementary bosons.

The elementary fermions all have spin 1/2 and are divided into leptons and quarks.
The different lepton and quark species are called “flavours”. There are six lepton
flavours (electron, muon, tau, electron-neutrino, muon-neutrino and tau-neutrino) and
six quark flavours (up, down, charm, strange, top, bottom). Both leptons and quarks
can be divided into what we call “families” or “generations”. There are three lepton
families, each consisting of a charged lepton (electron, muon, tau) and its associated
neutrino (electron-neutrino, muon-neutrino, tau-neutrino). For the quarks, there are
also three families. The first family consists of the up and down quarks, the second
family consists of the charm and strange quarks, and the third family consists of the
top and bottom quarks. All fermions have mass, possibly with the exception of one of
the neutrino mass eigenstates. Neutrinos are extremely light, and the only evidence
for neutrino masses is due to neutrino oscillations. We can only observe neutrino
flavour eigenstates, but these are not equal to the neutrino mass eigenstates. Since
this only tells us something about squared mass differences, we only know that at
least two of the three mass eigenstates have non-zero mass.

The elementary bosons can be divided into gauge bosons and the Brout-Englert-
Higgs boson. The gauge bosons all have spin 1 and are the carriers of the three
main fundamental forces. These forces are electromagnetism (EM), weak interaction
(also called weak force or weak nuclear force), and strong interaction (also called
strong force or strong nuclear force). The photon is the gauge boson of
electromagnetism and interacts with everything that has an electric charge. W and Z
bosons are the gauge bosons of the weak interaction, the interaction related to weak
isospin (weak charge) and responsible for the radioactive decay of atoms. There are
two W bosons, W+ with a positive charge and W~ with a negative charge. Gluons are
the gauge bosons of the strong interaction, which is an interaction associated with
what we call “colour charges”. There are eight different gluons. The strong interaction
between quarks and gluons, which is mediated by gluons, also gives rise to the
strong interaction between hadrons. The strong interaction is what keeps quarks
together in a proton or neutron, and it also keeps protons and neutrons together in
the nucleus of an atom. These three fundamental interactions are caused by gauge
symmetries. Of the gauge bosons, only the W and Z bosons have mass. The photon
and gluons are massless.

The Brout-Englert-Higgs (BEH) boson has spin 0 and is responsible for the mass of
the elementary particles in the Standard Model. Even though the interactions
associated with the BEH boson are often not considered one of the fundamental
forces, it can technically be considered one.
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Every particle also has an antiparticle, which is the same as the particle but with
opposite charges (at least for electric and colour charges, but for weak isospin this is
not always true). In the case of the photon, Z boson, gluons and BEH boson, they are
their own antiparticle.

Gravity is not a part of the Standard Model. Gravity is often considered a fundamental
force, but whether it's a force or not depends on the theory. The currently accepted
theory for gravity is general relativity, in which gravity isn’t a force at all.

1.1.2 Fundamental interactions

In quantum field theory (QFT), every particle can be described by a quantized field.
Spin 0 bosons are described by scalar fields, spin 1 bosons are described by vector
fields, and spin 1/2 fermions are described by spinor fields. The theory is described
by a Lagrangian containing free field terms and interaction terms. Every basic
interaction in the theory corresponds to a specific interaction term in the Lagrangian,
which is a product between several fields. In the context of Feynman diagrams, such
an interaction term can be thought of as a vertex in which the involved particles meet.
In the case of a force arising from gauge symmetry, a gauge boson interacts with
everything that carries a charge associated with the gauge symmetry.

Electromagnetism (EM) is described by quantum electrodynamics (QED), which is a
type of quantum field theory called an abelian gauge field theory. It describes
interactions associated with an electric charge, due to a local U(1) gauge symmetry.
The photon is the gauge boson that mediates this force, which means it interacts with
everything that has an electric charge.

Weak interaction can be described by a type of QFT called a non-abelian gauge field
theory. It describes interactions associated with weak isospin, due to a local SU(2)
gauge symmetry. There are three weak isospin charges, of which the T; is the most
important one. The W and Z gauge bosons interact with everything that has weak
isospin, which are the left-handed fermions (spin and momentum have opposite
direction) and right-handed antifermions (spin and momentum have the same
direction).

Strong interaction is described by quantum chromodynamics (QCD), which is also a
non-abelian gauge field theory. It describes interactions associated with what we call
“colour charges”, due to a local SU(3) gauge symmetry. The gluons are the gauge
bosons that mediate this force, which means they interact with everything that has
colour charge. The only particles that carry colour charge are quarks and gluons
themselves. For the quarks there are three different colour charges, while for the
gluons there are eight.
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Both QED and weak interaction can be unified to electroweak interaction (EW). This
interaction uses a local U(1)xSU(2) symmetry and is related to weak isospin and
weak hypercharge. For the strong interaction, we have not observed a similar
unification (although some theories beyond the Standard Model unify strong
interactions with the other two interactions at very high energies).

The Brout-Englert-Higgs (BEH) boson is responsible for the mass of the W and Z
bosons via spontaneous electroweak symmetry breaking. The BEH mechanism
completes the theory of electroweak interaction. In addition to this, the masses of the
elementary fermions can also be explained by an interaction with the BEH field, via
Yukawa couplings. The BEH boson is massive and interacts with everything that has
mass, including itself. Since the vacuum expectation value is nonzero for the scalar
field that breaks electroweak symmetry, it will provide mass to the coupled fields
even in the absence of any BEH field excitations.

Particle Spin | Electric Weak Colour charge Interacts via
charge | isospin T;
- - EM, Weak,
Leptons e ,u, 1 1/2 -1 -1/2 or 0 0 BEH
Ver Vi, Ve 1/2 0 +1/2 0 Weak, BEH?
o+ o+ EM, Weak,
Antileptons et,ut, 1 1/2 +1 +1/2 or 0 0 BEH
Ve, Vs Vr 1/2 0 -1/2 0 Weak, BEH?
Quarks uct 1/2 +2/3 +1/2 or 0 orb all
dsb 172 173 12 0r 0 L&
. u,c,t 1/2 -2/3 -1/2 or 0 -
Antiquarks 45D 172 +1/3 12 0r 0 r,g,orb all
Photon y 1 0 0 0 EM*, EW**
wt 1 +1 +1 0 EM, Weak,
W bosons wW- 1 1 1 0 EW**, BEH
Weak, EW**,
Z boson V4 1 0 0 0 BEH
(rb + br)/V2
(rg+gn)/V2
(gb +bg)/V2
—i(rb — bF) /2
Gluons g 1 0 0 l, (r_ i)/\/_ Strong
—i (rg—gd/V2
—i(bg — gb)/V2
(rf — bb)/V2
(rf + bb — 2g8)/V6
BEH boson H° 0 0 -1/2 0 BEH

Table 1.1: Standard Model particles with their spin, charges and interactions they take part in.

* Solely as a force carrier, not by self-interaction or other gauge bosons from the same force.

** Has an interaction from electroweak theory that it wouldn’t have without this unification.

Also note that the weak isospin 0 versions of the fermions and antifermions don’t interact via weak
interactions.
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D is adown-type quark.  corresponding neutrino.

W LW
Wi W
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< r-jx L
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electroweak bosons such

that charge is conserved.

Figure 1.2: Interaction vertices due to gauge symmetries. (Interactions involving BEH boson omitted)
Figure from [7]

The photon and gluons are massless, which means the electromagnetic and strong
interactions have infinite range. The W and Z bosons are massive, which means the
weak interaction is short range. The coupling strengths of the interactions depend on
the energy at which the interaction is measured. For the electromagnetic interaction,
the coupling strength increases with energy. But for the strong and weak interactions,

it decreases with energy.

0.0
0.04}
0.03 el

0.02 / i

0.01

o, (g, (r3

g 0] ] i1 16
logyo(pe/GeV')

ro
.
=

Figure 1.3: Coupling strengths in function of energy scale u: a; for QED, a, for weak interaction, and
a3 for QCD. Figure from [8]

Whether the interaction results in an attractive or repulsive potential between charges
in the nonrelativistic limit depends on the type of exchanged boson. For a Yukawa
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coupling with a scalar boson, this nonrelativistic potential will always be attractive.
For a (gauge) interaction via a vector boson, this nonrelativistic potential will be
repulsive between like charges but will be attractive between unlike charges.

Exchanged - _
particle fforff ff

Scalar (Yukawa) attractive attractive
Vector (gauge) repulsive attractive

1.1.3 Why colour and QCD?

In the 1950s and onwards, a lot of new particles were discovered called hadrons.
Among the hadrons there were fermions, called baryons, and there were bosons,
called mesons. (While the proton and neutron were discovered decennia earlier, they
are also hadrons.) More and more hadrons were being discovered, and Gell-Mann
and Zweig suggested in 1964 that hadrons are not fundamental particles, but are
composed of constituent particles called quarks. (At that time there were three known
quarks: up, down and strange. The other three were too massive to show up in
experiments when the idea of quarks was introduced. The latest and heaviest one,
the top quark, was theorized in 1975 and discovered in 1995.) Mesons are bound
states of a quark and an antiquark, and baryons are bound states of three quarks
(and antibaryons consist of three antiquarks). This (pre-QCD) quark model for
hadrons was able to describe the observed hadron spectrum. Some examples of
baryons are the proton (uud) and neutron (udd). Some examples of mesons are the
't (ud), m~ (dit) and ° (uii and dd).

But there are also some problems with this model. Free quarks have never been
observed. Bound states of two quarks have also never been observed. Why only
baryons and mesons? Are quarks real particles, or just convenient mathematical
constructs and not real particles at all? Other problems are the symmetry of the
hadron wavefunction and violation of the Pauli exclusion principle.

A hadron’s wavefunction could be decomposed into three parts: A space
wavefunction, a spin wavefunction, and a flavour wavefunction.

|l/)) = |lpspace) 13y |1/)spin> X |lpﬂavour) (1.1.1)

For baryons, since theyre fermions, the overall wavefunction needs to be
antisymmetric under permutations of the quarks.

The 2~ baryon (sss), which contains three identical strange quarks with their spin all
in the same direction (so the total spin is 3/2), causes a problem. Because space,
spin, and flavour wavefunctions are all symmetric under interchange of two of the
quarks, we have a symmetric wavefunction for the 2~ instead of an antisymmetric
one.
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A similar situation happens with the 4** baryon (uuu), which contains three identical
up quarks with total spin 3/2. This causes the same problem as with the Q™.

Since these problematic baryons have three quarks with identical quantum numbers,
they also violate the Pauli exclusion principle. To solve these problems, an extra
quantum number was suggested. Since the problematic baryons have three
seemingly identical quarks, each of them should differ in this new quantum number to
obey the Pauli exclusion principle and to make the overall wavefunction
antisymmetric. So this new quantum number should have at least three different
values, or in other words, it must have a triplet representation. This new quantum
number is the “colour state”. The wavefunction of a hadron becomes:

|7~/)) = |lpspace) ® |l/)spin) ® hbﬂavour) ® Ilpcolour) (1-1-2)
With the colour wavefunction antisymmetric under interchange of two quarks.

Because mesons are made of a quark and antiquark, this triplet representation must
be complex. We can write the colour wavefunctions as follows:

Baryon: Yeolour ~ gijkqiqqu
Antibaryon: Y o1our ~ Eijkc_liq]"?k
Meson: Yeolour ~ 6747

This hints to a SU(N) symmetry group with the number of colours N>3. The exact
number of colours comes from measuring cross sections. For example, comparing
the cross section for e“e* — g with the cross section for e“e* — u~u*. Experiments
yield N=3.

This theory of colour was developed by Han, Nambu and Greenberg in 1964-1965.
Note that there are only colour neutral hadrons. In other words, only singlet states.

High energy electron-proton scattering experiments showed that hadrons were
indeed made up of smaller point-like constituents, by Bjorken and Feynman in 1968-
1969. These constituents are called “partons”. Further deep inelastic scattering
showed more and more structure of the proton. Eventually, these experiments show
that at very high energies, the proton does not only consist of three valence quarks
but also gluons (the gluon was theorised earlier by Gell-Mann) and “sea quarks”
(quark-antiquark pairs).

Quantum chromodynamics was developed by Fritzsch, Gell-Mann and Leutwyler in
1973 as a quantum field theory for the strong interaction, by employing Yang-Mills
theory for SU(3). This theory proves successful in explaining the observations and
making predictions.
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At high energy, a phenomenon called “asymptotic freedom” is observed. This means
that the results of these high energy experiments can be explained by applying
perturbation theory, while this is impossible at low energies. The strength of the
strong interaction decreases with increasing energy. This property allows the partons
to be considered nearly “free” at very high energy.

The inability to isolate a single colour charge is called “confinement”. This is
understood by QCD as follows: If you try to separate a single colour charge from a
hadron, the force will not decrease with distance and remain large. Because it
remains large, it will create quarks and antiquarks to turn this separating charge and
the original hadron into colour neutral hadrons again. While it is usually understood
like this, there is not an analytic proof yet.

To summarise, full QCD can explain:

e The hadron spectrum.

e How baryon wavefunctions can be antisymmetric even if they consist of three
identical quark flavours with identical spin direction, and how this doesn’t
violate the Pauli exclusion principle.

e Partons.

¢ Asymptotic freedom.

e Hard scattering experiments, like deep inelastic scattering and Drell-Yan.

e Confinement: why a free, separated quark or gluon has never been observed.
But confinement has not yet been proven analytically.

e Why hadrons are colour singlet states (colour neutral). This is related to
confinement.

1.2 QCD Lagrangian

In this section, we start from the free Dirac field and develop the gauge field theories
for both U(1) and SU(N) gauge symmetries. The gauge theory for SU(3) will be the
theory for QCD. The theories in this section are not quantum field theories yet, in
other words, they are not quantised by “second quantisation” yet. These theories will
be referred to as “classical”, despite that they might be compatible with quantum
mechanics as wave equations. The full quantisation to a quantum field theory will be
done in section 1.3.

1.2.1 The free Dirac field

We start with the free Dirac field, which is a field that describes free massive spin 1/2
particles that are not their own antiparticles (such as the electron, positron, quarks,
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etc), in a special relativistic way. The Lagrangian density for the free Dirac field is
given by:

Lpirac = l/;(iy”au - m)l/) = l/;(lﬂ - m)l/J (1.2.1)
In this equation, and throughout the whole thesis, we use units in which ¢ = h = 1.

Y = P(x) is a spin 1/2 spinor field, and m is the rest mass. The slash notation in the
equation denotes a contraction with the gamma matrices: A = y#4,

The gamma matrices are a set of four nxn matrices that satisfy the anticommutation
relation:

.y =vhyY +yVyH = 29" X 1y (1.2.2)

In our case, this will be 4 x4 matrices. We will often use 1 as a notation for 1,,,., , and
omit it in multiplications, because it usually understood that we dealing with matrices
if gamma matrices appear in our equations.

The gamma matrices also obey the following conditions y°t = y°, yif = —y*  where
the i components are the spatial components. (For more about gamma matrices, see
Ref [5].)

The spinors ¥ and ¥ will each have n components (4 in our case). ¥ is the adjoint
field for ¢ and is given by:

P =ty (1.2.3)

Throughout this book we will use the Weyl (also called chiral) representation of the
gamma matrices:

o_ (0 1y, i_(O O'i)
=0 o) r=(2 ¢ (124)

With ¢ the Pauli matrices. This representation allows us to write the spinor i as:

b = (://;);) (1.2.5)

Where 1), and Y, are the left handed and right handed Weyl spinors, each having
two components.

Under a Lorentz transformation, the spinor i will transform as

Ya () = P, () = Yo () = 7 a0l by () (1.26)

With the components of the spinor fields and gamma matrices labeled with a and b, ¢
the Levi-Civita tensor, and with aé‘;’ proportional to the commutator of the gamma
matrices as follows:
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i
oV = 3 [v*vY] (1.2.7)

Now we go back to the Dirac Lagrangian and derive the Euler-Lagrange equations of
motion for 1.

0 _(')L 613_0 1.2.8
“(6%})_@‘ (1.28)
d —aL 612_0 1.2.9
“(aaut/?>_a_t/7‘ (1:29)

Where the dd,y in the denominator means that it is a partial derivative with respect
to d,y .
u

Applying this to Lp;... We get:
i0,Yy* + myp =0 (1.2.10)
(iy#9, —m)yp =0 (1.2.11)

These are the Dirac equations for 1 and 1 respectively. They can be interpreted as
the relativistic wave equations for these spin 1/2 fields.

From the Lagrangian density, we can derive the Hamiltonian density, by using

Hpirac = T[all)a + T_[al/;a — Lpirac (1-2'12)

Where the dot denotes a partial derivative with respect to time, and , and 7, are the
fields conjugate to y,and vy,

0Lp; 0Lp;
Mg = —22€ — iyt Ty =—2¢ = (1.2.13)
0, LM
If we plug this in the equation for the Hamiltonian density, we get:
—( .0
Hoirac = b (~ir) o +m) v (1.2.14)

If we want the Hamiltonian, all we need to do is integrate the Hamiltonian density
over space:

Hpirac = f A3 xHpirac(x) = f d3xp(x) (—iyji + m) P(x) (1.2.15)

0xJ

This Hamiltonian equals the total energy of the free Dirac field, and will be constant.
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1.2.2 U(N) and SU(N) groups

Symmetries play a very important role in field theories, and the continuous unitary
groups U(N) and SU(N) are the fundamental reason for gauge theories in the
Standard Model. Both U(N) and SU(N) are Lie groups, groups that are differentiable
manifolds. We will now give an overview of the main properties of these groups, but
we will be mostly focusing on SU(N) and U(1) since only these are of importance in
this thesis.

U(N) is the unitary group, the group of NxN unitary matrices, which means:
VG EU(N): GTG =GGT =15,y (1.2.16)
In other words, the Hermitian conjugate is equal to the inverse G=* = G

This means that there are only N? independent components, and thus U(N) is a
group of dimension NZ2.

U(1) is equivalent to the circle group and can be represented as the complex
numbers with modulus (absolute value) equal to 1

VGeEU(): G =e@ a €R (1.2.17)

SU(N) is the special unitary group, the group of NxN unitary matrices with
determinant equal to 1. Just like with U(N), this means that the Hermitian conjugate is
equal to the inverse, but the additional condition that det(G) = 1 means that there are
only N2 — 1 independent components. Thus SU(N) is a group of dimension N% — 1.
We can represent the group elements as:

VG € SU(N) : G = e'*"T" (1.2.18)

a® are real numbers, T* are the generators for the group, and the index a runs from
1 to N? — 1. The generators are traceless Hermitian matrices, and form a Lie algebra
for SU(N), with commutation relations:

[T4,TP] = ifebeTe (1.2.19)

¢ are the structure constants and are totally antisymmetric, which means that
swapping any two indices will result in @ minus sign, and this can be expressed by
using the notation [abc] for total antisymmetrisation of the indices abc:

fabe = flabel (1.2.20)

There are different possible representations for the generators T¢. The fundamental
representation T¢ , which we will often just call T* , is a NxN representation. The
antifundamental representation T¢ is defined as T# = —T#" , and thus also a NxN
representation. The adjoint representation T is a (N? — 1) x (N? — 1) representation
for which we have (T#)P¢ = —ifabe,
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We define the Casimir invariant C for a representation R as
TETE = Crlg, (1.2.21)

where 1,  is the dp X dp identity matrix, and with dy the dimension of the
representation R.

We define the trace invariant T, for a representation R as
Tr(TETR) = TR6* (1.2.22)

They are related to each other by Crdr = Trd, , with d; = N? — 1 (the dimension of
the group SU(N)).

For the fundamental and adjoint representations we have:

T_1 C_N2—1
F=o» "7 9N

A special case is SU(1), which is the trivial group. It has the identity as its only
element. The elements of U(N) and SU(N) can be interpreted as (multidimensional)
phase transformations. U(1) is an abelian group, while SU(N>1) and U(N>1) are non-
abelian groups. U(1) will be the group underlying electromagnetism, while SU(3) will
be the group underlying QCD. For SU(3), the group generators in the fundamental
representation can be written as

Te =T# ==2¢ (1.2.24)

With 1% the Gell-Mann matrices. (See ref [5])

1.2.3 Global phase invariance and Noether current

We will now take the free Dirac Lagrangian and check if it is invariant under global
phase transformations. These transformations will be elements of U(N) or SU(N)
groups. The free Dirac Lagrangian is:

Lpirac = lﬁ(l?’ - m)lp (1.2.1)
But this time we will consider a spinor field ¥ that is a combination of N spinor fields
Y,, and has the following form:
21
Y=y, (1.2.25)

Where the components i, themselves are spinor fields, each of them having 4
components, and r runs from 1 to N. The adjoint field i will have the form:

21



v=>0 Y, .. (1.2.26)
(Keep in mind that all these fields are functions of spacetime coordinates)

We will check if this Lagrangian is invariant under global SU(N) transformations. We
will transform the fields as follows:

W - = G (1.2.27)
P> P =9PGT (1.2.28)

With ¢ = e!*“T* and Gt = ¢! = e~1*"T" (Remember that T* are Hermitian matrices,
and thus T¢" = T%).

T% is in the fundamental representation, and a® are real constants. (The word
“global” refers to a® being constant.)

If we plug this in our free Dirac Lagrangian, we get
Loirac = Lbirac = W61 (id —m)(Gy) = PGTGIY —mpGiey  (1.2.29)
And since GTG = 1, we just get the original Lagrangian again:
Loirac = Lbirac = PP P — My = Lpjrac (1.2.30)

We can conclude that the free Dirac Lagrangian is invariant under a global SU(N)
symmetry. This is also true for U(N). Generally, a Dirac field of the form we
considered (with N component fields), will always be invariant under global U(1) (with
its generator the NxN identity matrix), global SU(N), and global U(N).

If a field theory has a symmetry (from a continuous symmetry group), then according
to Noether's theorem there is a conserved current for each generator of the
symmetry group. For a symmetry transformation G that results in

Y-y =GP =y + 5y (1.2.31)
P> =96t =9+ 6P (1.2.32)
Lpirac = L],)irac = Lpirac T 6 Lpirac (1.2.33)

Noether theorem tells us that the following equation holds for the Dirac field [4 (p32)]:

aLDirac - al:Dirac aLﬁ'Dirac
0 Lpirac = 0 o) 0 — | =4 oYwl=0 1.2.34
Dirac u< aa;ﬂl) ¢+ l/) aaﬂl/) u aaul[) l/) ( )

since for our global phase transformations § Lpjrac = 0

This means that the expression inside the brackets is a conserved current.
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We can consider infinitesimal transformations since we are dealing with continuous
groups, which means

Yo =GP =e T Y~ (1+ia® TP =9 + 5 (1.2.35)
Y- P =96t = Pe T » (1 - ia®T) = + 69 (1.2.36)
So if we plug it in the equation related to Noether’s theorem, we get
9, (iYyH sy) = a0,y T) =0 (1.2.37)
This is true for any arbitrary a®, which means
0, Py T%) = 0 (1.2.38)

with Py#T*p being the conserved currents. This will also hold for transformations
that aren’t infinitesimal, by considering them an infinite amount of infinitesimal
transformations. If we integrate the timelike (u = 0) current over space, we get a
conserved charge for each T [4 (p32)]

F¢ =fd3x1/3y0Ta1/J =fd3x1/3Ty°y°Talp =fd3x1/7fTa1/) = constant  (1.2.39)

These are what we call the colour charges.

1.2.4 Local phase invariance for an abelian gauge group (U(1))

What if instead of a global transformation G = ¢*“7*, with a® constant, we would try
to do the same for a local transformation where a® = a®(x)? We will first try this with
the U(1) symmetry group, which is an abelian group, before we try this with the more
complicated SU(N) symmetry groups.

Again we start with the free Dirac Lagrangian:
Lpirac = lﬁ(lé’ - m)l/) (1.2.1)

and this time we will check if it is invariant under local U(1) transformations. We will
transform the fields as follows:

Y=Y =Gy = ey (1.2.40)
Y oY =Gt =pe @ (1.2.41)
With ¢ = e* and GT = G* = 67! = e7*, with @ = a(x).

Because in this case a isn't a constant anymore but depends on the spacetime
coordinates, we will do a phase transformation of the field where the phase
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transformation itself can be different in different spacetime locations. (This is what the
word “local” refers to.) This in contrast with a global phase transformation where we
transform the field by the same phase everywhere in spacetime.

If we plug this in our free Dirac Lagrangian, we get
Lpirac = Lbirac = P61 —m)(GY) = ip619 (Gy) —mpGTay  (1.2.42)
Again we have GTG = 1, so we get
Lpirac = Lbirac = PGP (GY) — myp (1.243)

We notice that the mass term —mynp transforms into itself again and is invariant. For
the kinetic term, we use ¢ = y*d, and

0,G = ie'*0,a = iGd,a (1.2.44)
And for the kinetic term we get:
i@ - PGP (GY) = g — (P a) # PP (1.2.45)

This means that the kinetic term iy 1 is not invariant under local U(1), which means
that the Lagrangian is not invariant either:

Lpirac = L],)irac = “/;53 Y — ll_)(ﬁ a)l/J - ml/jl/J = Lpirac — llj(ﬁ a)l/) (1.2.46)

The free Dirac Lagrangian is not invariant under local U(1) symmetry, but there is a
way to adjust this Lagrangian and force it to be invariant. Since the problem arises in
the kinetic term due to the partial derivative, we will define a new type of derivative
instead:

D, =08, +V, (1.2.47)

We call this the covariant derivative. The vector I, will not be a differential operator,
but a multiplicative one. While the partial derivative of the field transforms as

. - 0,(GY) # Ga, P (1.2.48)
We will demand that the covariant derivative transforms in the same way as ¥
D,y - D,/(GY) = GD, (1.2.49)
For the vector 1, we will also have a transformation V, -V,
If we work out D,'(Gy) = GD, , we will get
v, =GV,G"—(8,6)G* (1.2.50)
G and 1}, commute since G is an element of an abelian group, so we have
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V.-V, =V, —(8,6)6T =V, —id,a (1.2.51)

We can do something similar for the transformation of (DH¢)T, and find the
transformation of V7

vI-vlr =yl - (8,676 =Vf +id,a (1.2.52)
We find for the difference between the transformed field and the original field:

SV} = -8V, = id,a (1.2.53)

This means that 6V, is purely imaginary. We can choose V), to be purely imaginary as
well, and will define it as

V, = —ig4, (1.2.54)

where A, is a real vector, and g a real number that is called the coupling constant.
The covariant derivative can now be written as

D, = 0, — igA, (1.2.55)

Now we are ready to replace the free Dirac Lagrangian by a similar Lagrangian in
which we replace the partial derivatives by covariant derivatives.

L=9(iP —m)p = Lpirac + GPAY (1.2.56)
The fields and Lagrangian will now transform under local U(1) as
Yoy =Gy (1.2.57)
Y- =Gt (1.2.58)
Ay - A=A, - é(aﬂa)cﬁ =4, + %a#a (1.2.59)
Lo L = (1.2.60)

Here we obtained the transformation law for A, by plugging it in the transformation
law for V,.

Our new Lagrangian is now invariant under local U(1) symmetry and is equal to the
free Dirac Lagrangian plus an extra term that contains a new field 4,. We call this
field the gauge field. Because we introduced a new field, we will need to add a new
term for A, in the Lagrangian. We will take A, to be a massless field, because the
gauge fields for QED and QCD are massless. A massive gauge field would add
additional problems in the theory which would require spontaneous symmetry
breaking and the introduction of a Brout-Englert-Higgs field. We would have to do this
if we were doing Electroweak Interactions in this thesis, but we will stick to QCD and
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QED in this thesis. Since our gauge field is massless, the Lagrangian term for the
gauge field will be a purely kinetic term. This kinetic term is a free Lagrangian term
for a massless abelian vector field and is given by

1
LMaxwell = _ZF#VF;W (1.2.61)

Where F*V is the field strength tensor, an antisymmetric tensor given by
FHY = grAY — 9V A+ (1.2.62)

This is also the free Lagrangian for electromagnetism, with A* the 4D vector
potential:

A* = (¢, A) (1.2.63)

with ¢ the potential, and A the 3D vector potential. The Euler-Lagrange equations of
motion for this free Lagrangian will yield the homogeneous Maxwell equations [4

(p74)]:

d,F* =0 (1.2.64)
OrFHY 4+ QFFVA + 9VFM = 0 (1.2.65)

Or in terms of A#
DA% — 91(9,4Y) = 0 (1.2.66)

where O = a#aﬂ

Note that the fields strength tensor is proportional to the commutator of two covariant
derivatives

Frv — é[D”, D] (1.2.67)

We can show this by working out the commutator
[D¥,DV] = [0* — igAH*, 0¥ —igA’] = —ig(0*AY — dVA*) = —igF*’ (1.2.68)

Note that the commutator of 2 covariant derivatives is not a differential operator, but
just a multiplicative one.

This commutator acting on the spinor field ¥, will transform under local U(1) just like
Y itself:

[D*, D]y = G[D*, DV ]y (1.2.69)
This means that the field strength tensor will transform as
FW — FW' = GFr Gt = Frv (1.2.70)
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Where we used that G is an element of an abelian group. This means that the
following transformation law holds:

FHVE,, — FFVE,, (1.2.71)

Which means that our free Lagrangian for the gauge field is invariant under local U(1)
symmetry. Our full Lagrangian at this point is

_ 1 _
L= l,l)(ll?) - m)¢ - ZFMVF;W = Lpirac T LMaxwen T+ gYAY (1.2.72)

Lo = Lpirac + Lmaxwen 1S the free Lagrangian, which contains both spinor and gauge

fields but separated. £; = gpA 1 is a Lagrangian term that couples the spinor and
gauge fields, and will be interpreted as an interaction term.

We started with a field that was invariant under global U(1) symmetry, but not under
local U(1). We then adjusted our Lagrangian by replacing the partial derivative by a
covariant derivative, which introduces a new field. This made our new Lagrangian
invariant under local U(1) symmetry, but our Lagrangian is not free anymore since it
contains a term that couples the Dirac field to the new gauge field. While the Dirac
field is a fermion field of spin 1/2, the gauge field will be a boson field of spin 1.

It is exactly such a Lagrangian that gives rise to quantum electrodynamics (QED). In
this case A" is the photon field, and the coupling constant g = —e = —|e| , with —e
the electric charge of the electron.

1.2.5 Local phase invariance for a non-abelian gauge group (SU(N))

We will now try to do the same for local SU(N) transformations. The main difference
with U(1) is that SU(N) is a non-abelian group, while U(1) is an abelian group.

We start with the free Dirac Lagrangian:

Lpirac = lﬁ(l?’ - m)l/) (1-2-1)

where the fields 1 and y are N component spinor fields like in section 1.2.3. We will
check if it is invariant under local SU(N) transformations. We will transform the fields
as follows:

VoY =G =T
§ W = 6" = Jeie

With G =e'*T* and G' =61 =e@T" with a=a(x), and with T® in the
fundamental representation.

" (1.2.73)

aTa

(1.2.74)

If we plug this in our free Dirac Lagrangian, we get
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LDiraC - L],)irac = J’GT(W’ - m)(Gl/)) = “I’GT{Z (Gl/l) - mll_jlp (1'2'75)

The mass term —mp transforms into itself again and is invariant. For the kinetic
term we get:

i Y - PGP (GY) = PP + iPGT(P Gy # iPP Y (1.2.76)

Since G is an element of a non-abelian group, we cannot simply apply the chain rule
t0 8,6 = 9,(e%"T")

The kinetic term i@y is not invariant under local SU(N), which means that the
Lagrangian is not invariant either:

Lpirac = L],)irac = ll/jﬁ Y+ il/;GT(ﬁ G)’*/) - mlﬁl/) = Lpjrac T illeJr(ﬁ G)lli (1-2-77)

The free Dirac Lagrangian is not invariant under local SU(N) symmetry, but we can
use the same trick as we did for local U(1) symmetry, where we adjust the
Lagrangian and force it to be invariant. Again we define the covariant derivative:

D, =0d,+V, (1.2.78)

The vector V, will not be a differential operator, but a multiplicative one. The partial
derivative of the field transforms as

0, - 8, (GY) # G P (1.2.79)
Again we will demand that the covariant derivative transforms in the same way as ¢

Db - D,/ (GY) = GDp (1.2.80)
If we work out D,'(Gy) = GD,y , we will get

v, >V, =GV,Gt—(9,6)G* (1.2.81)

G and V, do not necessarily commute since G is an element of a non-abelian group.
In order for this to work, ¥, will not have to be purely imaginary, but will have to be
some linear combination of the different iT¢ instead.

We will define V, as
V, = —igA, = —igAiT® (1.2.82)

where A, = A3T“ is a convenient notation, and g the coupling constant which is a
real number. The covariant derivative can now be written as

D, =0, —igA, (1.2.83)
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Just like in the case of U(1), we replace the free Dirac Lagrangian by a similar
Lagrangian in which we replace the partial derivatives by covariant derivatives.

L= l,[_)(llb - m)lnb = LDirac + gl/_)Al/) (1.2.84)
The fields and Lagrangian will now transform under local SU(N) as
Yoy =6y (1.2.85)
P> P =9PGT (1.2.86)
A, - A, =GA,GT — é(aﬂa)aT (1.2.87)
LoL'=L (1.2.88)

Note that (9,6)GT = —Ga,G™ , by working out 3,(GG") = 9,1 =0

The new Lagrangian is now invariant under local SU(N) symmetry and is equal to the
free Dirac Lagrangian plus an extra term that contains new fields Aj. For every
generator of the group, there is a corresponding gauge field. This means we have
N2 — 1 gauge fields. Just like with U(1), these gauge fields will be bosonic spin 1
fields. Again we will need to add a new Lagrangian term for the gauge fields. We will
take Aj; to be massless field, like we did for U(1). The new Lagrangian term will be a

kinetic term for the gauge field. Because we are dealing with non-abelian vector
fields, this kinetic term will not simply be the same as in the case of U(1).

In this case, we have for the field strength tensor:
Fv — é[D“,DV] = QRAY — QY AK — ig[AF, AV] (1.2.98)

We can also write this as
FHVa = QHAVE — gVAKA 4 gfabe gKb gve (1.2.90)
with F#V = FrvaTae and where we used [T?,T¢] = if*¢T4,

Note that just like with U(1), the commutator of 2 covariant derivatives is not a
differential operator, but just a multiplicative one.

This commutator acting on the spinor field y, will transform under local SU(N) just
like v itself:

[D¥, DV — G[D*, DV ]y (1.2.91)
This means that the field strength tensor will transform as

FW — FW' = GFHv Gt (1.2.92)
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And from this we see that the following transformation law holds:
F¥E,, — GF"FE,,G' (1.2.93)

This is not invariant. Instead we will take the trace, which will turn out to be invariant.
WE,) = FWSEL TH(T9T?) = = pavaga 1.2.94
TI‘(F uv) - uv I‘( ) - E uv ( o )
Where we used the trace invariant Tr(T4T?) = Tp6% = %5“”

By working out Tr(F#*'F,,) - Tr(F*V'E,,") , and using the cyclic property of the trace,
we can easily show it is invariant:

Tr(F*'E,,'") = Tr(GF*E,,G') = Tr(GTGF*E,,) = Tr(F*E,,)  (1.2.95)
The kinetic Lagrangian term for the gauge fields will be
1 uv 1 uvara
Lg = —ETr(F E,) = — 2 PR, (1.2.96)

This term is not a free Lagrangian, because it contains terms with more than 2 fields
coupled to each other. At this point, our full Lagrangian is

_ 1 _
L= ll}(lD - m)lp - ZF#vaF;g/ = Lpjrac + Lo + gYAY (1.2.97)

This Lagrangian is known as the Yang-Mills Lagrangian. We can also write our
Lagrangian as follows:

L=1Ly+ L (1.2.98)

With the free Lagrangian term
Lo = Lpirac + Lyaxwen = P(ig —m)p — %(O”A"“ — 9vAr)(9,A4% — 0,A%) (1.2.99)
And the interaction term:
Ly = gAY + gfabeAraqvbgr gve — %ngabCfadeAubAchgAs (1.2.100)
We will now come back to 4, - 4, = GA,G" — é (6,6)G*

For small a* we can use the expansion

G = e T =1 4+ iaT% + 0(a?) ~ 1 + ia®T® (1.2.101)

Gt =e @7 = 1 — j@?T% + 0(a?) ~ 1 — ia®T® (1.2.102)
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Wherewith 0 (a?) we mean second order in a2 or higher (“alpha squared”, not the 2"
component of a). By plugging these expressions in the gauge transformation law for

the gauge field [5], we get
ro_ 16 aTa abc ,a gAbc — pal’Ta
Ay = A= Ay + 20,0 T — fUeat AGTE = AY'T
a a' _ pa 1 a abc b pC
Al - Af —Aﬂ+§6ua — fPa”A;

And for §A;; we get

, 1 1
§A% = A% — A% = Eauaa — fcal A = E(aabaﬂ — gf e AL )b

Consider the covariant derivative in the adjoint representation
fundamental representation):

D“ = 1N><Naﬂ - lgAﬁTAa
Recall the adjoint representation (T4)b¢ = —ifab¢
Dlilb — 5abaﬂ _ gfabcAlcl
Which is exactly what'’s in the brackets in the expression for §A;
a_1 ab b_1 ab abc gc b
§A% = —DiPab = —(6%0, — gf*P°AS)a
g g
Which means that in the adjoint representation we can write
Aa Aa’ = A% 1 Dab b
w2 Ay = At E w &
If we compare this to the transformation in case of U(1), where we had

1
AH—>AL =AH+§6M0(

(1.2.103)

(1.2.104)

(1.2.105)

(instead of

(1.2.106)

(1.2.107)

(1.2.108)

(1.2.109)

(1.2.110)

We notice this is of a very similar form but with d, replaced by Dﬁb , and contracting it

with a?.
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Extra remarks:

e The Dirac field i transforms according to the fundamental representation of
the SU(N) group. This is related to i being a combination of N spinor fields.
Such a spinor particle will carry 1 “colour” charge that can take on N values.

e The Dirac field ¢ transforms according to the anti-fundamental representation
of the SU(N) group. This is because 1 is also a combination of N spinor fields,
and is the adjoint field for 1, resulting it to be anti-fundamental. Such a spinor
particle will carry 1 “colour” charge that can take on N values, and that are the
opposite of the values for the colour charge of y.

e The gauge field A* transforms according to the adjoint representation of the
SU(N) group. Because of this, the field A* carries 1 colour charge that can
take on N? — 1 values. Each value corresponds to a field A#4.

1.2.6 For SU(3) (QCD)

In case of QCD, we have local SU(3) symmetry, which means 8 different gauge
fields, called gluons. The spinor fields are the quark fields, which are 3 component
spinors. There are also 6 different quark flavours, which have to be summed over in
the QCD Lagrangian.

_ 1
L= Z(¢f(i1b —ms)Py) — 2 PR, (1.2.111)
7
With the spinor fields:

lpfr
Yy = Yrg (1.2.112)

lpfb
l/;f = (l/jfr djfg l/;fb) (1.2.113)

The field 1¢; corresponds to a quark field of flavour f and a fundamental SU(3) colour

(fundamental representation). The flavour f can be u, d, s, c, b, t (up, down, strange,
charm, bottom, top). The colour can be r, g, b (red, green, blue). (The name “colour”
was chosen because of some similarities with actual rgb colours, given that there are
three different QCD colours for quarks.) Each of the iy is a spinor with 4

components for the gamma matrices.
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1.3 Quantisation

In this section we will fully quantise the Lagrangian, turning our “classical” field theory
into a quantum field theory. There are two ways to quantise the Lagrangian,
canonical quantisation and quantisation by path integrals (functional integral). The
easiest way to quantise the QCD Lagrangian is by path integrals, but canonical
quantisation has an advantage when it comes to interpreting the Lagrangian and
interactions. First, we will briefly cover the basics of canonical quantisation just as a
means to easier understand what the fields and the terms in the Lagrangian mean.
We will also briefly cover Feynman diagrams. Then we will quantise the U(1) gauge
theory via path integrals, after which we will do the same for the SU(N) gauge theory.

1.3.1 Basics of canonical quantisation

Similar to how one would go from classical mechanics to quantum mechanics by
promoting physical quantities (position, momentum, etc) to operators, we can go from
classical field theory to quantum field theory by promoting the fields to field operators.
This form of quantisation is called canonical quantisation or second quantisation.

If we want to quantise the free Dirac field, we start with the classical Lagrangian, Eq
(1.2.1). (For a detailed construction, see [5] (p52-63) and [4] (p61-69))

Lpirac = ll_’(lﬂ - m)¢ (1.3.1)

We will promote (x) and y(x) to field operators, satisfying the equal-time
anticommutation relations:

{Wa(t,x), 1, (t,X)} = i64,0(x —X') (1.3.2)
{lpa(t, X), l/)b (t' X,)} = {T[a(t, X)'T[b(ti X’)} =0 (133)

Where the indices a and b denote spinor components, and n(x) is the canonical
momentum conjugate of ¥ (x), which we found in section 1.2.1, Eq (1.2.13).

Mo = i) (1.3.4)

Thus we can rewrite the equal-time anticommutation relations as
{a (6,2, 5 (£, X} = 6456 (x = X) (13.5)
Wa (6,0, ¥, (6, XD} = (Yl (6, %), ¥ (6,x)} = 0 (1.3.6)

Remember that ¥ = yTy°. We use anticommutation relations because according to
the spin-statistics theorem, fermions will have wavefunctions that are antisymmetric
under permutation, and thus fermions must be anticommuting fields.
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Remind that the Hamiltonian is given by

Hpirac = f d3x Hpjrac(x) = f d3xll_)(—i % + m)t/) (1.3.7)

We can Fourier transform the fields by

d3 )
Wt ) = j #ewxlp(a D) (13.8)

And our Hamiltonian will be the Hamiltonian for an infinite amount of simple harmonic
oscillators. We will have one simple harmonic oscillator for every momentum p. The
fields can be decomposed in an infinite amount of creation and annihilation
operators:

P(x) = (27‘[)3 o Z(a S()e™P* + b3Tvs (p)e?¥) (1.3.9)

P(x) =J- Z(bs 75(p)e™ ”‘”‘+apJr S(p)e'P¥) (1.3.10)

(2m)* J2E, £

Where u®(p) and v®(p) are the four independent (and constant) solutions for the
Dirac equation (with index s the spin state, which can be 1 or 2), and E, the energy.

ap and by are annihilation operators, while af,* and bg* are creation operators. These
operators have the anticommutation relations:

{ah,a3™ = {b5, b3} = (2m)36™°8(p — q) (1.3.11)
And all other anticommutation relations are equal to O.
An annihilation operator acting on the vacuum state will result in zero:
ap|0) = bs|0) =0 (1.3.12)

A creation operator acting on the vacuum state, will result in a state proportional to a
one-particle state, and we will define the one-particle state as follows:

Ip,s) = /ZEpa;;HO) (1.3.13)

And the same for the operator bIS,T.

ap Will annihilate a field excitation with spin state s and momentum p, while a; T will
create a field excitation with spin state s and momentum p. The same happens for b;
and b{;Jr but for a different type of field excitation. We will interpret field excitations as
particles. For the Dirac field, there are two different types of particles, one
corresponding to a; and af,*, and one corresponding to b, and bg*. We will call the
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particle corresponding to the “a” operators a fermion, and the particle corresponding
to the “b” operators as an antifermion.

We can now also interpret what the field operators 1 and i mean in the Hamiltonian
(or Lagrangian). ¥ will annihilate (“eat”) a fermion or will create an antifermion. i will
annihilate an antifermion or will create a fermion.

We can do a similar thing for a free photon (U(1) gauge vector field), by quantising
the free Maxwell Lagrangian, Eq (1.2.61). (For a detailed construction, see [4 (p77-
84)])

1
Lyvaxwell = _ZF!WF;W (1.3.14)

Where we will promote A* to field operators. The construction is very similar to that
for the quantised Dirac field, but with commutation relations instead of
anticommutation relations. The reason for this is that according to the spin-statistics
theorem, bosons will have wavefunctions that are symmetric under permutation, and
thus bosons must be commuting fields. The field operator for the photon will be

d3p 1 °
A — __Z T, T —ipx rt _r* ipx 1.3.15
u(x) (zﬂ)3\/2—%r=0(ap€,l(l?)e +ap e (p)e'?¥) ( )

With ¢, the polarisation vector. In this case there is only one type of particle, the
photon. The field operator A* will annihilate or create a photon.

An important object in QFT is the propagator (Feynman propagator), which in the
case of a free field Lagrangian is the probability amplitude for a particle to travel from
one point to another in spacetime (or in other words, the propagation amplitude). It is
proportional to the time-ordered two-point correlation function for the field under
consideration.

For the Dirac field, the propagator is

_ d*p .
(0] (P (x)[0) = Sp(x —x) = f Ty Sr e (1.3.16)
With T the time-ordering operator

TYOP(x) = 0t — tYP)P(x) — Ot — O P(x)P(x) (1.3.17)

With @(t) the Heaviside function, which is equal to 1 if tis larger than 0, and is equal
to 0 if tis smaller than 0.

For the interpretation, let us consider ¢t > t'. In that case (0|Ty(x)1(x")|0) will create
a fermion at x" and annihilate it again at x. It represents a fermion traveling from x' to
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x. In case of t < t', (0|T(x)P(x")|0) will create an antifermion at x and annihilate it
again at x'.

The Fourier transformed propagator Sr(p) will be used more often than the one in
position space. It corresponds to a free fermion with four-momentum p, or to a free
antifermion with opposite three-momentum.

Dirac propagator: P = $.(p)
(fermion propagator) > = OFP

For the photon field we have

d*p
2m)*

(0|TA*(x)A”(x)|0) = DEY (x — ") = f DEY (p)e=ptx=x") (1.3.18)

DE” (p) corresponds to a free photon with four-momentum p.

P —»

Photon propagator: AVaVAVAVaVaY = D#v (»)

1.3.2 Introduction on Feynman diagrams and rules

When we consider higher-order correlation functions, we can describe interaction
processes if we are dealing with an interacting quantum field theory. We can
decompose the higher-order correlation functions into products of two-point
correlation functions via the Wick theorem. From this we can derive the Feynman
rules for the theory, which is a method to describe any process in the theory by
drawing a Feynman diagram for it, and then translating the diagram into a product of
propagators. After integration, this will give us the probability amplitude for the
process.

In a Feynman diagram there will be lines, which represent particles. Typically a line
represents a particle that has a four-momentum and for which an arrow is drawn that
indicates this momentum’s direction. In the case of bosons or massless particles, the
arrow is often omitted. While canonical quantisation mostly uses the Hamiltonian, we
can still find out a lot of the quantum theory by looking at the Lagrangian. In an
interacting field theory, we will have a Lagrangian of the form

L=Ly+L (1.3.19)

Where L, is the free field Lagrangian, and £; the interaction Lagrangian (interaction
term). While £, only contains terms of second order of the fields, £; will typically
consist of terms that are of a higher order of the fields. In the Hamiltonian description
this will correspond to
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H = H, + H (1.3.20)

If we have a L; that is a product of three fields, it will be called a three-point
interaction, because it is an interaction between three particles. In Feynman
diagrams, such an interaction is drawn as a vertex that connects three lines, one line
for each particle involved in the interaction. This is also called a three-point vertex. If
we have a L; that is a product of four fields, the same will be true but for four particles
instead of three. It will be called a four-point interaction, or four-point vertex. This
generalises to any type of vertex. Technically we could also have a two-point
interaction between two different fields. In elementary particle physics, this would
mean "mixing” (for example neutrino mixing, which results in neutrino oscillations).

When we have a quantum process, we start from an initial state |i) and evolve to a
final state |f). Both initial and final state can consist of multiple particles. The
probability amplitude for state |i) to evolve to state |f) is given by the S-matrix

(fIS1i) = S (1.3.21)
The transition probability that |i) has evolved into |f), is given by
2 .
|Ss|” = (FISIiN? (1.3.22)

The conservation of probability is expressed as

Z|Sﬁ|2 =1 (1.3.23)
f
We also have orthonormality and completeness of the states:
Zlf)(fl =1 (1.3.25)
f

We can show that the S-matrix is a unitary matrix:

ZISﬁI2 = 2<f|5|i>*<f|SIi) = z(i|ST|f)(f|S|i) = (i|sts|li)=1  (1.3.26)
f f f
Which means

sts=1 (1.3.27)

The S-matrix can be obtained from the interaction Hamiltonian H; (the actual
interaction Hamiltonian, not the interaction Hamiltonian density) in an iterative way [4

(P93)I:
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th-1

Szi(—i)" Jdt1 jl dt, ... j dt, Hy(t;)H(ty) ... Hi(t,) (1.3.28)
n=0 — —0

— 00

co

By using the time-ordered product we can let all integrations run over the whole
infinite domain. By changing the integrations over time into integrations over
spacetime, we can write this as a similar expression but with the interaction
Hamiltonian density H) instead [4 (p93)]:

o o0

8

SZZ(—nl!) f f f d*x dhx, ... dhx, T{H O ) H () o Hy ()} (1.3.29)
n=0 —00 —0  —o00

We can also write an expression involving the Lagrangian density:

S =exp <ifd4x131) (1.3.30)

If no interaction happens between the particles, then S will be the identity operator.
This scenario corresponds to the n = 0 term in Eq (1.3.29). So we can define

S=1+T (1.3.31)

With T the T-matrix, which contains the interactions. (Not to be confused with the
time-ordering operator.)

Since the S-matrix must preserve momentum conservation, both S and T should
contain a momentum conserving factor

6 (Z kinitial - Z kfinal) (1332)

Where Y k;niiia is the sum of the momenta of all particles in the initial state |i), and
Y. ksinal is the sum of the momenta of all particles in the final state |f). We can define:

(FITIE) = 2m)*8 (D Kiniiar = ) Krnar) MG = £ (1.333)

Where M is called the invariant matrix element, or also called Feynman amplitude.
M contains all the physics from H;, while the other factors contain all the physics that
doesn’t depend on #Hj. An important example is when we have an initial state of two
particles with momenta k; and k,, and a final states of particles with momenta p,, p,,
..., then we can define [5] (p104):

(p1py - iTk ky) = RE)*S@ | ky + k, — pr iM(kik, > pf)  (1.3.34)
7

For calculating S, T and M, we can use Feynman diagrams. We can draw a
Feynman diagram for a quantum process, typically consisting of lines and vertices.
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For every line we have a propagator, and for every vertex a vertex factor. For
calculating S, T and M, we will get a product of these propagators and vertex factors.
For S we only need to take the diagrams into account that are “connected” and
amputated. “Connected” means no vacuum bubbles (parts that are completely
disconnected from the initial and final lines), but lines that go from initial to final
particle without being connected to other parts are fine. Amputated means that if you
get a disconnected external leg by cutting 1 line, you remove it. The identity matrix in
Eq (1.3.31) corresponds to initial lines going to final lines without being connected to
eachother, or in other words, no interaction happened. This means that for iT and iM
we only need diagrams that are fully connected (no vacuum bubbles, and all external
lines are connected to eachother) and amputated. A more detailed explanation (by
an example) about relating the matrices with Feynman diagrams can be found in [5]
(p108-115).

Important about vertices in Feynman diagrams is that momentum is conserved at
each vertex, which will constrain some of the internal momenta. Any loop momenta
that remain undetermined, must be integrated over. Any fermion loop receives an
extra factor of -1, and additionally, there could also be extra symmetry factors.
Feynman rules will depend on the specific quantum field theory that is used.

If we take the classical Lagrangian for QED (U(1)):

- 1 _
LQED,classical = l/)(llz) - m)d’ - ZF#VF;W = Lpirac T LMaxwen + GYA Y (1.3.35)

We have L, = Lpirac + Lymaxwenn @nd we can use the fermion and photon propagators
defined earlier. We have an interaction term £; = gyAy =g1/3y”A#1/) . This is a

three-point interaction term and will result in three-point vertices in the Feynman
diagrams. The vertex will connect a Dirac fermion, antifermion, and a photon.

gYAY - Vertex factor ~gy#

If we take the classical Lagrangian for QCD (SU(N)), with one quark flavour for
simplicity:

. 1
LQCD,classical = l/)(lD - m)l/J - ZF#vaFl'ﬁ/ (1.3.36)
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With the free Lagrangian term:
- 1
LO = LDirac + LMaxwell = ¢(l¢ - m)gb - Z (auAva - avAua)(auAg. - avAﬁ) (1-3-37)

The free quark propagator will be defined as

_ d* )
(0] () (x)|0) = Spij(x — x') = J#Spij(p)e‘”’("‘x’) (1.3.38)

With iand j the quark colour indices, which run from 1 to N.

A quark can only carry one quark colour at a time, and quarks with different colour
don’t “mix” (their quark colours won'’t oscillate), because of the lack of a quark colour
mixing term in the Lagrangian. We can conclude

Srij(p) = 6;;Sr(p) (1.3.39)

Quark propagator: i = Srij(p) = 6;Sr(p)

The free gluon propagator will be defined as

d*p

(Zn)4D;‘V“b(p)e—iP<x—X') (1.3.40)

(OlTA,ua(x)Avb(x/)lo) — D#vab(x _ x,) — j

Where a and b the “generator indices”, running from 1 to N2 — 1. A gluon can only
carry one gluon colour at a time. The generators form an orthonormal basis, which
means that a gluon’s colour won'’t oscillate. We can conclude

DX (p) = 67 DX (p) (1.3.41)

P =

b oo @ = DF ()= 8D ()

gluon propagator:

The interaction term:

— abc pua vbuvc_l 2 rabc fade Aub pvc p4d pe
Ly =gYgp + gfPcARCAYP oH A 4gf fACARPAVEAL AT (1.3.42)
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The term gyAy = glﬁy“AﬁTalp are three-point interactions similar to the one we

have in QED. In this case we have a three-point interaction for every generator T¢,
between a quark, antiquark, and gluon.

J
gll_’A Y - a Vertex factor ~ gy“Ti‘}

i
The term gfaPcAreAvP g AV are three-point interactions between gluons

a

gfOPeAHaAVD R AVE — Vertex factor ~gfab¢

The term —ing“bcf“deA”bAchﬁAf, are four-point interactions between gluons

c b

1 1 2 cabcrad
_ ZngabcfadeAubAchﬁAs — Vertex factor ~ — Zg fa Cfa e

An external line of a diagram, in any QFT, will correspond to the polarisation and
group space orientation.

1.3.3 Basics of quantisation by functional integral (path integral)

Instead of quantising a field by promoting the fields to field operators, as we do in
canonical quantisation, we can also take a different route and use functional
integration to quantise a field theory. In the case of functional integration, the fields
do not become field operators. While canonical quantisation uses the Hamiltonian as
its fundamental object for the quantum description, the functional method will use the
Lagrangian as its fundamental object instead. Because it uses the Lagrangian, all
symmetries of the Lagrangian will be preserved (aside for some subtle exceptions
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called “anomalies”, which we will not treat in this thesis). The functional method will
also result in a quantum version of Noether’s theorem, which relates a symmetry of
the Lagrangian to conservation laws.

Generally for a Lagrangian L, with fields ¢; , we will define the generating functional
as

Z[J]] = jD(p exp (ijd‘*x[ﬁ + 0]) (1.3.43)

Where ¢ means the collection of the fields ¢; , J is a collection of source fields J; ,
and ois a source term added to the Lagrangian:

We can also write the generating functional as
Al fD(pngoz ... €Xp <ifd4x[ﬁ +]l-(pl-]> (1.3.45)

The meaning of D¢ for a single field ¢ is

Do = 1_[ do(x;) (1.3.46)
j

Where x; is the position of the j-th point on a “square” lattice (in 4D). The integral

[ De(...) is a functional integral (path integral) and will integrate over all possible field
configurations.

Note that the action S (not to be confused with S-matrix) for the theory is given by

Sle]l = Sley, @3, ...]1 = .fd“xll (1.3.47)

So we can also write the generating functional as

Z[]] = f?.)(p exp (iS[(p] +i f d*x a) (1.3.48)
For a physical observable operator 0(¢) we have

J Do 0(p)exp(iS[¢])

I OO = e GSTo])

(1.3.49)

We can relate (0|TO(¢)|0) to the generating functional by taking functional
derivatives of the generating functional with respect to the source fields. In case of a
theory with only one field ¢ we have

(OITO($)10) = (OITP(x)p(xy) - 10) = <zE] (- 5,fx1)) (- 5]&2)) -2 [”>|,=0
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(1.3.50)
Where ] is only one source field, and with a%the functional derivative.

Taking one functional derivative of the generating functional will yield

0Z
_i6](9[c]1]) = fDq.’) ¢ (x1)exp (iS[q,')] +ifd4x]q,')> (1.3.51)

Taking J = 0 will give us [ D¢ ¢ (x;)exp(iS[¢])

Taking higher multiple functional derivatives will result in

<_i6](6x1)) <_i5](6x2)> L2 = fD(b P (x)p(x3) ...exp <iS[q,’>] +i f d4x]q,’>>

(1.3.52)
Taking J = 0 will give us [ D¢ ¢(x;)p(x,) ...exp(iS[p])

Taking the functional derivatives corresponding to 0(¢) = ¢(x;)¢p(x,) ... , and taking
J = 0 afterwards, will yield [ D¢ 0(¢)exp(iS[¢]) . We now see it is indeed true that

1 o 6
OITO@)I0) = (OIT$Cep(x2) - 10) = (777 (-1 575) (- 573) 201
1 2 J=0
_ D¢ 0($)exp(iSi¢D
" IDg exp(iSIeD (1:3:53)

We will define
Z,=2[00,..]= | D S i | d* =|D S 1.3.54
0=7100,..1= [ Dpexp(isigl +1 [ avxo)| = [Doewision 1350

where again ¢ can be a single field or a collection of multiple fields. We can rewrite
our earlier general expression as

_ Do 0(@)exp(iS[p]) 1 .
OITO@I0) = e = 7 | Do 0@explisloh (13559

With this functional method, we can calculate all the observables.

A very important operator will be the two-point correlation function

_ 1 -
(Ol eCedelo) = - f D ¢ (x1)b () exp(iS[e]) (1.3.56)

Where ¢ and ¢ are two of the fields in ¢, with ¢ the “adjoint” of ¢. It is possible that ¢
is the same field as ¢ if this field has no antiparticle. This correlation function is the
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propagator we described in 1.3.1. Typically we can express all (0|T0(¢)|0) in
integrals involving propagators, by means of the Wick theorem, which results in the
Feynman rules for the quantum theory. (which we will not derive in this thesis). An
extra note of importance is that Z[]] is analogous to the partition function of statistical
mechanics. This allows us to describe the statistical mechanics of a macroscopic
system for which the microscopic physics are governed by our quantum field theory.

1.3.4 Quantisation by functional integral for a Dirac field

We will now fully quantise the free Dirac field by a functional integral. Quantising a
field by functional integrals comes down to calculating correlation functions by
functional integrals. We will only do this for the two-point correlation function here,
since for higher order correlation functions we can use Feynman rules if we know the
two-point correlation function. We will describe the Dirac field by a Grassmann field,
which is a field whose values are Grassmann numbers. Grassmann numbers are
anticommuting numbers. For any two Grassmann numbers &8 and 7, the following is
true:

on = —nb (1.3.57)
And thus for any Grassmann number 8 we see that
62 =0 (1.3.58)

We will now consider y(x) to be a Grassmann field, which we can decompose in
orthonormal basis functions

Y = D i) (1.3.59)

Where ¢;(x) are complex number (c-number) functions, and the coefficients y; are
Grassmann numbers.

The correlation function is given by

- _ | DYDY exp(S[P, PP (e P (xz)
(0]Ty (x ) (x,)[0) = T D7Dy exp ST D) (1.3.60)

Where S[y, ] is the action, and Dy is defined as

Dy = ndl,l)(xi) (13.61)

Where x; is the position of the i-th point on a “square” lattice (in 4D). The integral
[ DyYDy(...) is a functional integral (path integral) and will integrate over all possible
field configurations.
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The action S[,y] is given by
Sy, y] = J d*x Lpirac = j d*x P(ig —m)yp (1.3.62)
We will define the generating functional for the Dirac field as
200 = [ DD exp (i [ d*xLoiac + 1 + ) (1363)

Where n(x) is a Grassmann source field.

For a Grassmann field, if we have
Z[n,n] = thﬁDlp exp (lf d*xd*x'[Y(x)K (x, x)p(x)] +ijd4x[ﬁ1/1 +1ﬁ77]> (1.3.64)
Then it is true that [4 (p291-292 but with different convention)]

Z[7,1n] = Zyexp (i f d4xd4x’[ﬁK‘1n]> (1.3.65)

With Z, = Z[0,0]

From our definition of the generating functional we get
Zy = f DYDY eSI¥¥] = j DYDY exp <i f d*x LDirac> (1.3.66)
For K we have the following equality:
f d*x'K(e, x" YK 1(x', x'") = —=6(x — x") (1.3.67)

which defines the inverse of K.

In the case of the Dirac field, we have

f At xd X [P GOK (x, X ()] = f d*% Lo (1.3.68)
Where we make use of Lpjac = P(x) (i@ — m)p(x) = [ d** [P(x)K(x', x)h(x)]
We can now shift one of the fields by using the delta function:
f d*x P()(ig —m)y(x) = f d*xd*x’' [1/3(x’)5(x - x") (iy“ 667 — m) tp(x)] (1.3.69)
Now we can see that

K(x',x) =6(x —x") (iy“ % — m) = 6(x —x)(ig , —m) (1.3.70)
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By the use of Fourier transform [5] (p302) we find that

d4p ie—ip(x—xl)

O|TY()W(xN|0) = Sp(x — x) = 1.3.71
OITYCIPEIN0) =S¢ e =) = | Gz (13.71)
Where we recognise the Fourier transform for the propagator
i i(p +m)
S = = 1.3.72
F(p) yj—m-|—Lg pz_mz_l_ig ( )
And we have K~1(x,x") = iSp(x — x")
And for the generating functional we now have
Z[7,n] = Zyexp (— f d*xd*x'[7(x)Sp(x — x’)r](x’)]) (1.3.73)
For Z, = Z[0,0] , we have
Z[7,1] = Zoexp (— f d*xd ' [ () S, (x — x')n(x')]) (13.74)
SP] = [ d*x Longae = [ d*x (g = m)w (13.75)

We can obtain all correlation functions as functional derivatives of Z. For example the
two-point correlation function (which is just the propagator):

_ 1 o) o)
(0|7 BN 0) = Z—O<(—i 5ﬁ(x)) (i 5n(x,))2[ﬁ,n])

=Sp(x —x") (1.3.76)

nn=0

5 . L
Where o are functional derivatives.

1.3.5 Quantisation by functional integral for an abelian gauge field

(U(1))

Now we will quantise the free abelian U(1) field by functional integrals, which will be
free photon field from quantum electrodynamics (QED) in case we take the coupling
constant to be equal to the electron charge.

The two-point correlation function is given by

J DA exp(iS[A])A* (x1)A” (x,)
[ DA exp(iS[A])

(0|TA*(x) A" (x,)|0) = (1.3.77)

With S[A] the action:
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4 1 4 uv 1 4 uapAv VAU
S[A]=[d acﬁMaxvvellz—Z d*x F sz—z d*x (9*AY — 0vA*) (9,4, — 8,4,)

(1.3.78)

In analogy to the Dirac field, we define the generating functional as

Z[]] = f DA exp (i f d*x [ Lotaxwen + ]”AH]> (1.3.79)

Zy, =Z[0] = fDA exp(iS[A]) = fl)A exp <i f d*x LMaxwen) (1.3.80)
We can rewrite the action as

1 1
SlAl = -7 f d*x F*Ey = 5 f d*x(0*AY — 0V A*)(0,4, — 0,A,)
1 1
= EJ d*x 0,A,(0"AY — 9VAH) = Ef d*x A,(x)(Dg" — 0*0Y)A, (x) (1.3.81)

After Fourier transformation we get

1 d*p

Sll=3 | Goe

A, () (=p*g* + p*p")A, () (13.82)

We will introduce the projector operators:

PR AR i

P =g B = (1.3.83)
P{"p,=0; Pfp,=p* (1.3.84)
This allows us to rewrite the action
1 d*p
S[A] = 2] @ A,(»)(—p*P")A, () (1.3.85)

For longitudinal A* we have A*(p) = ap*, with @ = a(p) an arbitrary scalar function
of the momentum p. This means that for longitudinal A*(p) we get

—p?P A, (p) = —p?Pap, =0 (1.3.86)

So for the longitudinal polarisation of the gauge field, we have that the action will
equal 0. This means that when we take the functional integral Eq (1.3.80) we will run
into the following problem:

Zy = JDA - (1.3.87)
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When we try to quantise our free abelian vector field, we run into trouble for the
longitudinal polarisation of the field. Note that this is related to the U(1) gauge
transformation Eq (1.2.59):

1
Al = Ak 4 = 0ta (1.3.88)

The longitudinal A* will introduce a “gauge volume” factor in the integral.

Another way we can see this is by Green’s method. For the abelian vector field, we
have the conserved current

9, F* = (Oght” — a*a")A, = j" (1.3.89)
If we solve this by Green’s method we get
(Og"’ — 0*3v)D,; = i6)' 8@ (x) (1.3.90)
Or after Fourier transformation:
(=p*g"" + p*p")Dya(p) = Q*'Dy1(p) = i) (1.3.91)
Where DV is the propagator of the vector field, and where we defined
QM = —p*g"” + ptp (1.3.92)
The solution for the propagator would be
D (p) = i(Q Hw (1.3.93)

With Q! the inverse of Q. But Q~! does not exist, because it has a zero-mode, and
thus a zero eigenvalue:

Q*a(p)p, =0 (1.3.94)

Where a(p)p, is an eigenvector with eigenvalue 0. This eigenvector is precisely the
longitudinal polarization of A*.

The longitudinal mode of the abelian vector field seems to prevent us from quantising
the theory, which is related to the U(1) gauge freedom in A*. We will need to find a
way to “fix the gauge” and only count the transversal modes of A* in Eq (1.3.80).

We will do this via the Faddeev-Popov method:
We choose a gauge fixing condition.

9, AR =0 (1.3.95)
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This gauge is called the Lorenz gauge (Ludvig Lorenz, not to be confused with
Hendrik Lorentz). This can be implemented in the functional integral by a trick [5]
(p295)

Let us consider a general gauge fixing condition G(A) = 0, which in our choice would
be the Lorenz gauge 9,A* = 0. In order to constrain the functional integral to only

take the A* into account that satisfies the gauge fixing condition G(4) = 0, we will
insert a functional delta function 6(G(A, a)), with @ = a(x) an extra scalar function,

and perform an extra integration over a. For this functional delta function, the
following equation holds [5] (p295)

(1.3.96)

lYo4

1= f?.)a 5(G(A, a))det <M>

with % the functional derivative with respect to a. We will take the scalar function a
equal to the a from the gauge transformation, and we can rewrite G as

G4 a) =G(A(a)) (1.3.97)

with A*(a) the gauge transformed vector field
1
At (a) = A (a, x) = A*(x) + Ea“a(x) (1.3.98)

We can now insert the functional integral Eq (1.3.96), since it equals 1 anyway, in the
functional integral Eq (1.3.80) for Z,

Zy = IDA eiSM]ng&(G(A(a))) det (W)

= f Da f DA 146 (G(A(a)) ) det (W) (1.3.99)

In the Lorenz gauge G(A) = d,A* we have
1 1
G(A(@)) = 9,4*(a) = 9, (A” + Eaﬂa) = 0,A* + P (1.3.100)

If we work out the functional derivative in the determinant, we see that

8G6(A(@) _ 1

o . (1.3.101)

Thus det G D) is independent of A* and a, and can be treated as a “constant” in the

functional integral, and can be taken outside the functional integral [5] (p295)
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Zy = det <w>jl)ajlm eiS[A]cs(G(A(a))) (1.3.102)

Note that we have the following equalities:
D(A(a)) = DA (1.3.103)
S[A(a)] = S[A] (1.3.104)

Now we can easily change the integration variable from A to A(a), and we get

Zy = det <w> j Da f D(4(a)) e¥1@ls (G(A(a))) (1.3.105)

Since A(a) in the integral is just a dummy variable, we can rename it to A again
6G(A .
Zy = det <$> f Da f DA 514156 (4)) (1.3.106)

We note that there is no a dependence anymore in [ DA e®S41§(G(4)), so we can
write

Zo = det (W) ( f Da) f DA e 5(G(4)) (1.3.107)

The functional integral [ DA eS41§(G(A)) will result in [ DA 4] with only the A that
satisfies the gauge fixing condition G(A4) = 0, which in our case is 9,4* = 0

We will now do the same for a general class of gauge fixing conditions, the
generalised Lorenz gauge:

G(4) = 9, 4% — w (1.3.108)

With w = w(x) a scalar function. Note that in this case, we have
1
G(A(@)) = 0,A*(@) — w = 9, A% + Phainks (1.3.109)

And for the determinant of the functional derivative we have the same as before:

det <w> = det (é |:|> (1.3.110)

So for Z, we have the same as Eq (1.3.107), which will now become

Zo = det <w> (f Da) f DA eS115(9,4" — w) (1.3.111)
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This holds for any w(x), so we can replace the expression for Z, by a properly
normalised linear combination involving different w(x). Then we can integrate over all
w(x) with a Gaussian weighting function centered on w = 0, Ref [5] (p296)

Zy = N(f)fl)w exp <—ijd4x;)—;> det(%ﬁ) <] Da)f.‘DA e15(9,4% — w)

(1.3.112)

with & an arbitrary constant and N(¢) a normalisation factor. We use the S(OHA“ — w)
to perform the Dw integral, and we get

Zy = N(E)det<w> (f Da)f.‘DA eSllexp (—ifd“X%(auA”)z)

— N(&)det (%ﬁ) (f Da) f DA exp (i f d*x [EMaxwen _2_15(6#‘4#)2])

(1.3.113)
N(é)det (@) (/ Da) is an infinite “gauge-volume” factor.
[ DA exp (i [d*x [LMaxwell - % (aﬂA”)z]) is a “gauge-fixed” functional integral.

If an operator O(A) is a gauge invariant, then we can find in a similar way that the
following expression holds [5] (p296):

f DA 0(A)exp(iS[A]) (1.3.114)

= N(©)det <w> ( f Da) f DA O(A)eWexp (i f d‘*x% (3:44))

D) o) o v~ 0

We notice that we get the same gauge-volume factor in front of the gauge-fixed
functional integral as with Z, . This means that for the correlation function we have

[ DA O(A)exp(is[a]) | DAOAexp (i f d*x [LMaxwen - 2_15 (9, AH)Z])
IDA eXp(iS[A]) fDA exp (l f d*x [LMaXWell _ 2_];’; (auA”)z])

(0[TO(A)|0) =

(1.3.115)

This means that for any physical observable 0(A) the infinite gauge volume is
factored out and cancels out. The expression on the right hand side of the equation
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looks like the expression in the middle of the equation, but with an extra term added
to the Lagrangian. This gauge-fixed Lagrangian will be the full Lagrangian needed for
quantisation of the free abelian (U(1)) gauge field
1., 1 2
L = Lyaswen + Lor = = 7 F*Fpy = T (8,4%) (1.3.116)

¢ is the gauge parameter, and since this is an arbitrary parameter, it must not appear
in physical observables.

We will now calculate the propagator for the free abelian vector boson, we will refer
to as the photon propagator. We have

e [ouonfe] x2)-c. fonen o]~ ]
(1.3.117)

With C,, the infinite gauge volume. If we rework the action:
f d*x [——F’“’F (a#Aﬂ)z]
1 d*x A v — g9V 16”6" A 1.3.118
_E X u(x) 0g™" — +E v(x) ( - )

And after Fourier transforming we get

1 d* 1
S[A] = @ 1)94 u(p)( p*gh + p*p¥ —Ep”p )A ()
1 d*p ,
— (2 57 A, (p)Q™ A, (p) (1.3.119)

i — uv my _ 2
With Q¥ = —p? (P +€P//) —p g’ + (1——)p pY
Q" has no longer a zero-mode.

For longitudinal A*(p) = a(p)p* , we now have

1 1
Q" a, = —p? (Pl + 2B ap, = —za(pp?p (13.120)

Where we used
P"p,=0; P}'p, =p* (1.3.121)

For the inverse Q! we will use the method of the Green'’s function
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i8] = QD) = (~Pgu + (1~ 3) upy) D7 0) (13.122)

Due to the lack of a zero-mode for Q, Q1 will exist, and we get for the propagator [5]
(p297)

pHpY¥

DF' () = i@ = = (P + ¢8") =~ (g - -9 ) (13123)

In the complex momentum plane, his has poles in p°® = i\/ﬁ . In order to take the
correct integrals that involve the photon propagator, we include an infinitesimal ie

wo N _ NP -y e
Dy"(p) = T ¥z (g“ 1-9) ) (1.3.124)
Or in position space:
d* ;L —ip(x—x") u
QT (10 = D =) = = [ e B (o — - P
(1.3.125)

While we still have a ¢ in our propagator, there will be no ¢ dependence in physical
observables. This results from the conservation of physical currents.

Note that the gauge parameter ¢ is a Lagrange multiplier for the constraint field by
gauge fixing

1
Lo L+ 2—{,6( ) (1.3.126)

When working with photon propagators, usually an explicit choice of gauge
parameter is made. There are 2 main important choices of gauge parameter:

e ¢ =0 is called the Landau gauge, in which the propagator is proportional to
the transversal projector operator Pf”.

e ¢ =1 s called the Feynman gauge, in which the propagator is proportional to
the metric g".

Summary:

When we tried to quantise the abelian gauge field (the photon field), we ran into
problems. Due to the longitudinal modes of the photon field, we had:

e 7, — oo because of an infinite gauge volume factor.
e The longitudinal modes were zero-modes for Q#V, which meant Q! didn’t
exist, resulting in the propagator D#’(p) = i(Q~1)*" to not exist either.
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The longitudinal mode of the abelian gauge field seemed to prevent us from
quantising the theory, which is related to the U(1) gauge freedom in

1
AH > AP + 56“0( (1.3.88)

Via the Faddeev-Popov method, we made our functional integrals obey a generalised
Lorenz gauge fixing condition d,A4*(x) — w(x) = 0. Thanks to this, we could factor the
infinite gauge volume out of the functional integrals, and cancel them out in physical
observables. This resulted in adding a new term, the gauge fixing term, in our
Lagrangian:
1 1 2

L = Lyaswen + Lor = = 7 F*Fpy — 2 (6,4%) (1.3.116)
With & the gauge parameter, which is arbitrary and does not appear in physical
observables. This new Lagrangian for the abelian gauge field results in the existence
of @71, because Q no longer has any zero-modes anymore. This means we can
calculate our photon propagator:

DY (p) = —

UV
Pp ) (1.3.124)

(o -]

p? +ie

By performing the Faddeev-Popov method, we are able to cancel the unphysical
longitudinal modes of the gauge field by gauge fixing, and only take the physical
transversal modes into account.

1.3.6 Full quantised Lagrangian for QED

Now that we quantised the free Dirac field and the free abelian gauge field, we can
quantise the field theory that couples them via U(1) gauge invariance. For the
classical field theory that couples the Dirac field and the U(1) gauge field, we had Eq
(1.2.72):

_ _ 1
Lclassical = LDirac + LMaxwell + glpA 1/) = lp(lD - m)l/) - ZFuVF;'N (1'3'127)

Where L, = Lpirac + Lvaxwen 1S the free Lagrangian, and £L; = gpAy is the
interaction term that couples the Dirac field and gauge field.

Quantising this theory by functional integrals comes down to adding the gauge fixing
term to the classical Lagrangian, like we did at Eq (1.3.116), and using the
propagators for the free fields in combination with the Feynman rules for this theory.

. 1 1 2
LQED = ‘CDirac + LMaxwell + LI + *CGF = 1!’(117) - m)ll) - ZFuVP;tv - E (auAM)
(1.3.128)
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We follow the same Feynman rules as in [5] (p801-802), but for a general gauge
parameter.

For the (free) fermion propagator we had

P So(p) = i i +m)
> FP P —m+ie pP-mi+tie
(13.72)

For the (free) photon propagator we had

P —

wo N (uv_ 3 p“p”)

(1.3.124)

The interaction term £; = gAY = gl/j]/”A#l/J gives rise to a three-point interaction
and will result in three-point vertices in the Feynman diagrams. The vertex will
connect a Dirac fermion, antifermion, and a photon.

gYEY - H Vertex factor = igy*

(1.3.129)

Additionally there are also rules for the external particles, which are just the
polarisation spinors/vectors:

For an initial, respectively final, fermion: u*(p), u°(p)
For an initial, respectively final, antifermion: v°(p), v°(p)
For an initial, respectively final, photon: €;(p), €;"(p)

Where s(=1,2) labels the polarisations. For physical external photons, only
transverse polarisations are allowed.

Remember that if we take the coupling constant g = —e , we have the QED theory for
our universe. In that case, the vertex factor will be —iey* .

We now have all the building blocks to describe higher order processes in QED.
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1.3.7 Quantisation by functional integral for a non-abelian gauge field

(SU(N))

Now we will quantise the non-abelian SU(N) field by functional integrals, which will be
gluon fields from quantum chromodynamics (QCD) in case we take N = 3 and the
coupling constant g equal to g, from the Strong Interaction. Most of the definitions
and many of the equations will be of the same form as with the quantisation of the
abelian gauge field, with the main differences that we now have a symmetry group
that is non-abelian (non-commutative), that our Lagrangian is not a free field
Lagrangian, and that the gauge transformation law for the gauge field is

A, - A, =GA,GT — é(auc)m (1.3.130)
With G = ei*T*
The free Lagrangian for the gauge fields is (from Eq (1.2.99)):
1 1
Lntaxwell = =7 (0#Ave — 3vA+*)(9,A% — 0,A%) = —Zaﬂvaagv (1.3.131)
With G#V® := gHAY® — 9V AHe
But the full classical gluon-only Lagrangian is Eq (1.2.96):

1 1
Lg = —ETF(F”VEw) = _ZF#W}% (1.3.132)

With FIY@ = gHAVE — §Y ARG 4 g fabe ArD Ve
The two-point correlation function is given by

J DA AF4 (1) AP (xp)exp (iS[A])

0|TAH%(x,) AP 0) = 1.3.133
(0] (x1)A" (x)|0) DA exp(SIAD) ( )
With S[A] the action:
1
S[A] = fd“x Lg = _Zfd4x FHegs, (1.3.134)

1
=1 f d*x (HAY* — QVAHS + gf *PCAMP Av€)(9,A% — 0,A% + gf M€ AT A2)
We define the generating functional as

20 = f DA exp (i f d*x[Lg + ]#aA;;]) (1.3.135)
Zy = Z[0] = jDA exp(iS[A]) = jDA exp (ijd"x LG) (1.3.136)
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Now when we try to quantise this theory, we will just like with the abelian case run
into the same trouble due to the longitudinal modes of the gauge fields.

We will apply the Faddeev-Popov method to the non-abelian case as well. For Z, we
have like in Eq (1.3.99)

. 5G(A
Zy = fDafDA elS[A](S(G(A(a))) det (%) (1.3.137)
But this time our gauge transformation law for the gauge field is (Eq (1.2.87)):
A, > A, = GAGT - é(aﬂc;)c;T (13.138)

Recall that for small a* we had (Eq (1.2.101-104, 109):

G = e T = 1 4 ja?T* (1.3.139)
Gt = e @T" ~ 1 — jqoT? (1.3.140)
I 1 aa abc ,,a gAbc _ pa’Ta
Ay = A= A+ 20,0 T — fUat AGTe = AL'T (1.3.141)
a a' a 1 a abc b pcC a 1 ab ., b
Al — A = A+ 0,0 — [l Al = A7+ - Df’a (1.3.142)

With the covariant derivative in the adjoint representation (Eq 1.2.106):
D, = 1yxy0, — igASTS (1.3.143)
With (Tf)b¢ = —ifebe

We see that in the transformation law for AZ , the term —f#*“aP A¢ is purely non-

abelian. This means det (@) will no longer be independent of A% |, since for the

Lorenz gauge condition

ua ua 1 ua abc ,,b puc
6(A(0)) = 9,4 (a)zaﬂ<,4 +-0kat — [l )

1
= 0,A** 4+ EDO{“ — f¢9,ab AKe (1.3.144)

Which indeed means that the determinant of the functional derivative will be
dependent on Aj

det (@) — det (éaﬂuﬂ) (1.3.145)

And D2 = 699, — gfPcAS
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This means the determinant can no longer be pulled out of the functional integral
over DA. The same happens for a generalised Lorenz gauge condition

G(A()) = 9,4 (a) — w* (1.3.146)
With w® = w?*(x). So for Z, we have from Eq (1.3.137):

6G(A(a))>

Zy = N(E)JDaJDA exp Jd“ ——F"V“Fa ——a Arag A‘”"Dd < ~

28 *
(1.3.147)

The fact that the determinant can’t be pulled out the integrals, makes this different
from the abelian case. We will solve this by another trick from Faddeev and Popov,
where we represent the determinant as a functional integral over new field ¢ and ¢,
which are called Faddeev-Popov ghost fields. The main properties of these fields are:

e They belong to the adjoint representation of SU(N).

e They belong to the spin 0 representation of the Lorentz group, in other words,
they are scalar fields.

e They are anticommuting and thus obey Fermi-Dirac statistics.

The last two properties seem to contradict. A spin 0 field is a scalar boson field, but a
boson should be commuting, and thus obey Bose-Einstein statistics. This field, on the
other hand, is anticommuting, which means it obeys the statistics for a fermion. But a
fermion has half-integer spin, not spin 0. These new fields having the wrong relation
between spin and statistics hints that they will not be physical particles.

The expression for the determinant is [5] (p514)
det G“D chch exp ]d“x[caa DHab ¢ b]) (1.3.148)
Plugging this in Eq (1.3.147) yields
Zy = N(E)fDachchfDA exp jd‘* ——a AF29, AV — ¢29, DHab ¢ b])

(1.3.149)

This trick adds yet another term to the Lagrangian, the ghost term

1
L =L+ Lgr+ Lghost = —ZF“""‘FM%, — —fa ,AR29, AV — ¢99, Db b (1.3.150)

We can rewrite the ghost term

— =a ab b _ =a a abc za b c abc za b [
Lohost = —€*0, D¢’ = —¢cDc® — gf ¢ 0,A"°0,c¢ = Lgnosto — 9f *’¢c*0,A* 9,
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(1.3.151)

With Lgp,0st0 = —C*0Oc? a free field Lagrangian for the ghost field, while the other term
is an interaction term between ghost fields and the gauge field.

For a physical observable we have

J DA O(A)exp(iS[A]) _ [ DA O(A)exp(i [ d*x[Ls + Lar + Lgnost])
[ DAexpGS[A]) [ DAexp(i [ d*x[Lg + Lgr + Lgnost))

(0]TO(A)[0) =

(1.3.152)

This means that the unphysical factors that were in front of the integrals, cancel out in
physical observables. The gauge parameter ¢ will also disappear from physical
observables, like last time, due to conserved physical currents.

The gauge field propagator will be very similar to the one from the U(1) case

i5ab

D) =~ (9~ (-0

UV
ppf ) (1.3.153)

But we also need a propagator for the ghost field. The ghost term —c?0c® gives the
ghost propagator:
i5ab

p? + ie

GE*(p) = (1.3.154)
Now, what is the physical interpretation of the ghost fields? Just like the gauge fixing
term, they are there to cancel unphysical longitudinal gauge field modes. If we go
back to the gauge transformation for the gauge field:

, 1
Al - A = AL+ Eaﬂaa — febcab Ay (1.3.142)

The term éaﬂa“ is a longitudinal shift, which is éa“p# in momentum space. The

longitudinal shift re-interacts with the gauge fields via the —f%“a®Af term. This
—f“bca”A,i term can also be interpreted as a colour gauge rotation.

When we quantise the theory, the longitudinal degrees of freedom can propagate.
This means we need extra fields to cancel these unphysical degrees of freedom. This
will prevent these unphysical degrees of freedom from propagating.

There will be a very interesting class of gauge choices for non-abelian gauge field
theory, “physical” non-covariant gauges. With physical we mean the theory will be
ghost-free, while with non-covariant we mean that manifest Lorentz covariance is lost
(which means it is not easy to see if something is Lorentz invariant just by looking at
the tensorial form of the expressions). In such a gauge we will fix a preferred
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direction n* in spacetime, with n* a constant vector, and set the gauge fixing
condition n*A7 = 0. In this gauge, the ghosts do not appear because the gauge
transformation of the gauge fixing condition contains no gauge field.

) 1
ntA; - nt AL = nktAL + nﬂga#aa —nHtfacabAC (1.3.155)

And due to the gauge fixing condition, the first and last terms are each equal to O,
which results in

, 1
ntA; - ntAp =n# Ea#aa (1.3.156)

This contains no Aj, so we will be able to bring the determinant outside of the

functional integrals, and this means that there will be no ghosts. In other words, non-
abelian gauge field theories in the “physical” gauges resemble the abelian (U(1))
gauge field theory. This also shows again that the ghost fields are unphysical fields,
since we can find a gauge fixing condition for which there are no ghosts in our theory.
The gauge fixing term in a “physical” gauge will be

1 1
Lop = —inﬂAﬁnvAﬁ = —2—(5(71-A)2 (1.3.157)
While this seems to make things easier, there will still be a price to pay. The gluon
propagator (non-abelian gauge field propagator) will be a lot more complicated in
“physical” gauges than in covariant gauges, and the propagator will also depend on
n* . In case ¢ = 0 we would get

reab
Dll;tvab l(ga ( W p#nv + pvnﬂ + nz p,upv )

(n,p) = T g ESE (1.3.158)

When we will calculate the gluon-to-quark splitting function at the end of the thesis,
we will use such a “physical” gauge.

1.3.8 Full quantised Lagrangian for QCD
Now that we quantised the Dirac field and the non-abelian gauge field, we can
quantise the field theory that couples them via SU(N) gauge invariance. For the

classical field theory that couples the Dirac field and the SU(N) gauge fields, we had
the Yang-Mills Lagrangian

_ - 1
Lassical = Lpirac + Lo + gYAY = 1,0(11?) - m)l/) - ZFMVGFI"% (1.3.159)

With FHY® = gRAVE — ¥ AK® 4 g fabe pkb gve
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And D# = aﬂ - igAﬂ = aﬂ — igA,‘jT“
i and ¥ are the quark fields, and A% are the gluon fields.
Remember that £; = — %Fﬂvaﬁg/

If we take the quark flavours into account, our classical Lagrangian will be

_ 1
Lelassical = Z(ll)f(llb - mf)lpf) - ZFﬂvaEf{; (1.3.160)
f
With the quark fields:
Y1
Vp = (l/)fz) (1.3.161)
Vr =W P2 o) (1.3.162)

Quantising this theory by functional integrals comes down to adding the gauge fixing
term and the ghost term to the classical Lagrangian and using the propagators for the
free fields in combination with the Feynman rules for this theory.

(i 1 uwara 1 ua va =a uab b
Locp = Z(lpf(lw =) = g FROES = 55 0,AM 0,47 — C 9D (1.3163)
f

With p = y#D, in the fundamental representation, DHab in the adjoint representation.
Dt = §%9, — gf e A; (1.3.164)

We can also write the Lagrangian as

Locp = Lo + L (1.3.165)
With the free field Lagrangian
Loy = Lpirac + Lmaxwell T L6r T Lghost,o (1.3.166)
And with the interaction Lagrangian
Ly =g ks + Lo — Lyaxwen — 9f PC*0,AP0),c¢ (1.3.167)

Where L; — Lyaxwen are the higher order terms resulting from —%F”V“P;g,

We can rewrite this as

_ 1 _
LI — gl/)fA l,bf + gfabcAuaAvbauAvc _ Zgchabc}cadeA,ubAchﬁAi _ gfabccaauAubaHCc
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(1.3.168)

We follow the same Feynman rules as in [5] (p801-803), but for a general gauge
parameter.

The (free) quark propagator is

P . Seii(p) = =
ri () p —m+ic p>—m?+ie

J———— ]

With the indices i, j the quark colour indices, running from 1 to N. (1.3.169)

The (free) gluon propagator is

P — Jvab i5ab pupv
= — w_ (1 —
vb ooooooono ma Dr (P = = (9 A-9H=—73 )
With the indices a, b the “generator indices”, running from 1 to N2 — 1 (1.3.170)
The (free) ghost propagator is
i5ab
P ab(p) =
b ... e a GF (p) pZ +ic

With indices a, b again the “generator indices”. (1.3.171)

From the interaction term Eq (1.3.168) we get the vertex factors [5] (p506-515).

The term gy Ay, = gy*AST%Y, are three-point quark-antiquark-gluon
interactions. We will refer to this vertex as the “fermion vertex”.

— a = lg)//"Ta
gbrhvr = g ’ (1.3.172)
J
The term gfaPcAraAvbgHAYC are three-point interactions between gluons. We will
refer to this vertex as the “3-boson vertex”, or “3-gluon” vertex.

H.a
l k = gf (g (k — p)?
gfabcAuaAvbauAvc N P/ +gvp(p _ q)u
. +9°7#(q — k)]
v,b q p.c
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(1.3.173)

The term —ingabcf“d"’A“bA"CAﬁAi are four-point interactions between gluons. We
will refer to this vertex as the “4-boson vertex”, or “4-gluon” vertex.

v,b H.a
1 — _igz[fabefcde(gupgva _guogvp)
_ Zgerabc]radeAub141/61451415,; N +facefbde(g;wgpa _ g,uagvp)
+fadefbce (guvgpa _ gupgva)]
p.c od
(1.3.174)

The term —gf?°c?9,A*?9,c¢ are three-point interactions that arise from the

Faddeev-Popov gauge fixing method for QCD. The vertex will connect a ghost,
antighost, and a gluon. We will refer to this vertex as the “ghost vertex”.

a

abc =a pbay .c ‘\“P b = _gfabcpu
—g9f*°c*0,A*°9,c® - PN 60000000 M
A

(1.3.175)

There rules for the external particles are again just the polarisation spinors/vectors
like in QED, but now also with an orientation in the group space:

For an initial, respectively final, quark: u**(p), @*(p)
For an initial, respectively final, antifermion: 7*(p), v*(p)
For an initial, respectively final, gluon: €/°(p), €;°*(p)

Where s(= 1,2) labels the polarisations, i(=1,...,N) labels the quark colours and
a(=1,..,N? —1) labels the gluon colours (generators). For gluons only transverse
polarisations are allowed as physical external states.

Remember that if we take SU(N) = SU(3), and the coupling constant g = g, from the
Strong Interaction, we have the QCD theory for our universe. In that case, we have

T = g/la with A the Gell-Mann matrices (see ref [5]). The quark colours i are r, g, b.

With these basic building blocks, we can describe higher order processes. By using
the Feynman rules for QCD, we can calculate the Feynman amplitude M of some
process.
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Feynman rules:

Draw Feynman diagram.

For each line: write down the propagator.

For each vertex: write down the vertex factor.

For each external line: write down the factor for an external line.
Impose momentum conservation at each vertex.

Integrate over every undetermined (loop) momentum.

For every quark loop: take the trace and multiply with a factor -1.
For every ghost loop: multiply with -1.

Divide by symmetry factor.

©ooNOORWODN =~

(For the derivation of the Feynman rules we refer to [5] (p801-803, p506-515))

We now have a fully quantised QCD theory for a general SU(N) gauge symmetry.

1.3.9 Symmetries and quantum version of Noether’s theorem

Without going into the details of the calculation, we will now briefly discuss the role of
symmetries, and in particular global and local unitary symmetries (U(N) and SU(N)),
in quantum field theory. In the classical field theory, continuous symmetries give rise
to conservation laws via Noether’'s theorem. Noether’s theorem relates exactly one
conserved current to each generator of the symmetry group. As we discussed before,
in case of a unitary symmetry group (U(N) or SU(N)) these were the colour charge
currents, resulting in colour charge conservation. Since the functional integrals
preserve symmetries, quantising the Lagrangian by functional integrals means that
any symmetry that leaves the classical Lagrangian invariant, will do so for the
quantum Lagrangian as well. This means that for quantised gauge field theories, we
will still have the global and local unitary symmetries. This results in a quantum
version of Noether’s theorem called the Ward-Takahashi identities.

In the case of QED, the global U(1) symmetry will result in the Ward-Takahashi
identity [5] (p311)

10, (0| Tj* ()P Ce)P (x2)|0) = —igd (x — x1)(0| T (x1)1h(x2)|0)
+igd (x — x)(0|TY (x P (x,)[0)  (1.3.176)
(1.3.176)
Which translates to the amplitudes
—ik,M*(k,p,q) = —igMy(p,q — k) + igMo(p + k, q) (1.3.177)

This is the Ward-Takahashi identity for two external fermions.
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For a process that involves two external fermions and an external photon as well, this
will reduce to the Ward identity:

MWk, =0 (1.3.178)
With k* the momentum of the external photon.

As an example, consider the ey — ey scattering process in QED. On the tree level we
have:

Figure 1.4: ey — ey scattering process on the tree level.

We can write the amplitudes for it as
mr =M + ) (1.3.179)

The Ward identity is M*'k, =0 , with k the momentum of one of the external
photons. But for the amplitude of one of the individual tree level processes, the
contracted product with k, shouldn’t necessarily be 0. So we could have M}k, # 0
and M, 'k, # 0, but the sum of them should always be 0

M*k, = Mk, + Mk, =0 (1.3.180)

For the gauge transformed photon we have A*(k) - A*(k) + a(k)k* , and a(k)k*
are the unphysical, longitudinal modes of the photon. Because of the Ward (Ward-
Takahashi) identity, the longitudinal polarization mode of the photon disappears from
this amplitude.

In case of QCD (SU(N)), the global SU(N) symmetry will result in the Ward-
Takahashi identity for a non-abelian gauge theory, but in case of QCD, we call this
the Slavnov-Taylor identity. For a process that involves two external quarks and an
external gluon as well, we have Eq (1.3.178)

MMk, =0 (1.3.178)

For example consider the qg — gqg scattering process in QCD. On the tree level we
have:
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= w + % + ?
Figure 1.5: qg — qg scattering process on the tree level.

We can write the amplitudes for it as
MH#Vab = pfVP 4 pf 4 gl (1.3.181)

The Slavnov-Taylor identity is M#V%k,, = 0 , with k the momentum of one of the
external gluons. But for the amplitude of one of the individual tree level processes,
the contracted product with k, shouldn’t necessarily be 0. So we could have
Mk, 0, Mk, # 0, and MYk, # 0, but the sum of them should always
be O

Ml = M, + Mk, + Mk, = 0 (1.3.182)

Note that unlike for QED, for QCD the following sum does not result in 0 after the
contracted product with k,,

(MFveP + M Vk, # 0 (1.3.183)

Just like in QED, the longitudinal polarization modes of gluons will disappear from the
amplitude M#v because of the Slavnov-Taylor identity.

1.4 Renormalisation

While we have a fully quantised theory, and the quantised Lagrangian is good for
dealing with processes at the tree level (no loops), we will run into trouble when loops
arise in processes. Since we are usually applying perturbation theory to quantum
field theories, loops will arise in most of those theories at higher orders. They will
result in corrections to the tree level processes, called loop corrections. There will be
two main effects of these loop corrections. First of all, it is possible that a certain
process involving loops will give rise to integrals that diverge. This could endanger
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our quantum field theory if we are not able to keep observables from diverging. And
second, for observable parameters that appear in the Lagrangian, the loop
corrections to tree level processes might result in a difference between these
parameters their values in the Lagrangian and their values obtained by calculating
via perturbation theory. Because of these two effects, our quantum field theory will
need renormalisation in order to deal with loop corrections. This section will go over
the basics of renormalisation. Some more detailed calculations and applications will
appear in the next chapter, in section 2.1.

1.4.1 UV power counting and renormalizability

Feynman diagrams that contain loops could give rise to integrals that diverge. The
divergences could come from high-momentum regions of the momentum space that
is been integrated over. Consider a Feynman diagram containing a loop integral of
the form

f d‘%m (1.4.1)

In the case of one loop, the superficial degree of divergence will be
D = 4 + (powers of kin N) — (powers of kin M) (1.4.2)
If D > 0 we will most likely have a UV (“Ultraviolet”) divergence.

We will now characterise a quantum field theory by its “renormalisability”. The first
type of QFTs that we will consider, are those with only a finite number of UV
divergent amplitudes. This includes QED and QCD.

QED has 3 UV divergent amplitudes [4 (p199)]:

O O

Figure 1.6: UV divergent amplitudes for QED. From left to right: photon self-energy, fermion self-
energy, “fermion vertex” (fermion-photon vertex).

QCD, on the other hand, has 7 UV divergent amplitudes [4 (p323)]:
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Figure 1.7: UV divergent amplitudes for QCD. Top left to right: gluon self-energy, quark self-energy,
ghost self-energy. Bottom left to right: “quark vertex” (quark-gluon vertex), 3-gluon vertex, “ghost
vertex” (ghost-gluon vertex), 4-gluon vertex.

A first way to characterise a theory as a renormalisable theory is that the number of
UV divergent amplitudes is finite. Still, it is possible that a theory has an infinite
amount of UV divergent amplitudes, but is still renormalisable. This can happen if
those amplitudes are divergent because they contain one of the finite amounts of
primitively divergent amplitudes.

Renormalisability its main point is that all the UV divergences can be absorbed into
rescalings of the parameters and fields of the theory. This will be done via the
renormalisation scheme:

1.

2.

3.

Compute all the UV divergent amplitudes via the regularization method. This
involves taking a UV cut off, and dimensional analysis.
Assign renormalisation conditions which will absorb all the divergences via
rescalings of fields and parameters in the Lagrangian:
Q- Q=2 (1.4.3)

With ¢, the bare field, ¢ the renormalised field, and Z the renormalisation
constant. And we define

Z=1+§ (1.4.4)
With & the counter term, which can possibly be infinite. In the Lagrangian we
replace our original ¢ by ¢, , and after this we can write our Lagrangian as

L=Lz+6L (1.4.5)
With L the renormalised Lagrangian, and 6L the counter term Lagrangian.
All two-point correlation functions will now be finite, and unambiguously
calculable.

If we can do this scheme for a quantum field theory, it means that the theory is
renormalisable. If this is impossible to do for a quantum field theory, then it means
that the theory is non-renormalisable.
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We distinguish between the following type of quantum field theories [5] (p321):

e Super-renormalisable theory: A finite amount of diagrams that are
superficially divergent.
¢ Renormalisable theory: A finite amount of amplitudes that are

superficially divergent, but divergences
appear at all orders in the perturbation
theory.

¢ Non-renormalisable theory: All amplitudes are divergent at a
sufficiently high order.

The type of renormalisability is related to the mass dimension of the coupling
constants in the theory, in the following way [5] (p322):

e Super-renormalisable theory: The coupling constant has positive mass
dimension.

¢ Renormalisable theory: The coupling constant is dimensionless.

e Non-renormalisable theory: The coupling constant has negative

mass dimension.

1.4.2 Rescaling and counterterms

We will now carry out the rescaling in our QCD Lagrangian. By rescaling the fields
and parameters, we will get counterterms in the Lagrangian. Our quantised QCD
Lagrangian is Eq (1.3.163):

(i 1 uvara 1 ua va ~a uab ~b
f

We have 6 different quantities: i, 4,¢c,m, g, ¢
Now we rescale the fields and parameters, with the following convention:

For the free fields:

A—>A0:\/ZigA; Voo =Z,¥; coco=4Z.c (1.4.7)

For the mass and gauge parameter:

Zm Z,
m—>m0=Z—m; €—>€0=Z—E§ (1.4.8)
a

For the interaction couplings, we have 4 equations.

For the coupling from quark-gluon vertex:
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Z
91 (1.4.9)

g=90= g
Z4\JZ,

For the coupling from ghost-gluon vertex:

Z
<k (1.4.10)

9=90= 9
Zc\[Z4

For the coupling from 3-gluon vertex:

S go =230 (1.4.11)
) 9o Zgg/zg .
For the coupling from 4-gluon vertex:
Zs
g* > 9> =39 (1.4.12)
Zy

The Z, is related to the gluon self-energy, Z, is related to the quark self-energy, Z_ is
related to the ghost self-energy, Z,, is related to the quark-gluon vertex, Z, is related
to the ghost-gluon vertex, Z;, is related to the 3-gluon vertex, and Z,, is related to

the 4-gluon vertex. One renormalisation constant for each UV divergent amplitude.
So in our case, we have 7 of them.

For each renormalisation constant, there will be a counterm in the Lagrangian.
VK:Zy =1+ 6 (1.4.13)

If we plug the renormalised (rescaled) fields and parameters in our Lagrangian, we
can write it as Eq (1.4.5):

L=Lg+6L

With L, the original Lagrangian, but in terms of the renormalised fields and
parameters. 6L is the counterterm Lagrangian.

In case of QED there are only 5 parameters, and their rescalings are analogous to
those of QCD.

A-Ag=Z,4; Y-y =Z. ¢ (1.4.14)
Z Z
momy=—m; &-&=-—L¢& (1.4.15)
Z, Zg
Z
esey=—r—e (1.4.16)
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1.4.3 Relations among counterterms

Gauge invariance will result in constraints on the counterterms. Or in other words,
gauge invariance will result in relations among the UV divergences.

In QCD we have 6 quantities (¥, 4,c,m,g,&) and 9 counterterms. This means there
will be 3 relations. Because of gauge invariance, all the g's will be the same, and all
the g,'s will be the same. This means:

V4

99 _ Zge _ Zsg :VZ4g
Zq\/Z—g ZC\/Z_Q Zg3/2 Zg

These are the 3 relations among UV divergences. We can simplify this a bit more:

(1.4.17)

299 _Zgc _ 239 _ |Z4g (1.4.18)

These equations result from Slavnov-Taylor identities.

If we plug in the counterterms, we get:

1485 1485 14835  [1+8, (14.19)
146, 146, 1+, 1446, o

In case of QED there will only be one relation, which results from the Ward-
Takahashi identity [5] (p243):

Zye =2, (1.4.20)
And for counterterms:
8ye = 0, (1.4.21)

Due to Eq (1.4.20), Eq (1.4.16) simplifies to

e =./Zy e (1.4.22)

1.4.4 General effects from renormalisation

By renormalising a theory by rescaling parameters and fields, the bare parameters
and bare fields in the Lagrangian are no longer the parameters and fields that one
would observe. Even more, the bare parameters and bare fields can even be
infinitely large. The parameters and fields that would be observed, are now the
renormalised (rescaled) parameters and fields, since they are essentially the
parameters and fields that you get after applying all higher order corrections of the
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quantum field theory. The renormalised parameters and fields are what we call
“dressed” (dressed with a “cloud” of higher order corrections). The possible infinities
in the bare parameters and fields can be separated from the renormalised
parameters and fields according to Eq (1.4.5). The counterterm Lagrangian 6L
contains everything that causes a difference between renormalised and bare
parameters/fields.

Another important effect of renormalisation is that the renormalised parameters and
fields will be scale dependent. While the bare parameters and fields are independent
of energy scale, the higher order corrections will cause the renormalised ones to be
dependent on the energy scale of the process that we look at. In other words, the
masses, coupling “constants”, fields, and other parameters that we observe, now
depend on the energy scale at which we observe them. We call this effect “running
parameters” and “running fields”. This effect isn’t obvious from what we have done in
this section, but will be shown in the next chapter (in section 2.1).
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2 Application of QCD to high-energy collisions

This chapter explores QCD and renormalisation, and its dependence on energy
scale, with the goal to explain and understand collisions at high energy. First we will
look at the effects of renormalisation of gauge theories, and find that the coupling
constant becomes energy scale dependent. For QCD specifically, this “running
coupling” will lead to asymptotic freedom. After that we will discuss the parton model
and hard scattering, and how we can apply factorisation to some classes of hard
scattering processes. For factorisation we will mostly focus on the example of Deep
Inelastic Scattering (DIS), which will be of key importance for further chapters. This
chapter is based on the books [4], [5], [9], and the course [10].

2.1 Asymptotic freedom

Non-Abelian gauge theories like QCD can have a surprising property that is very
different from QED. Unlike QED which becomes stronger at shorter distances, QCD
becomes weaker at shorter distances. This means that for the limit of the distance
going to zero (or the limit of the energy scale going to infinity), quarks don’t feel the
Strong Interaction anymore and become free particles. This property is called
“asymptotic freedom”. In this section we will first see how the renormalisation of a
gauge theory results in the coupling constant being dependent on the energy scale it
is measured at. This effect is called the “running coupling”. Then we will look at the
renormalisation group and the beta function, which encodes the dependence of the
coupling on the energy scale. We will show that in the case of QCD this leads to
asymptotic freedom and a Landau pole. Finally we will also give a possible
explanation of how the Landau pole of QCD could explain colour confinement.

2.1.1 Running coupling constant

In this section we will treat the renormalisation of the coupling constant. The
derivation for this requires us to use one of the equations Eq (1.4.9-12) and calculate
the diagrams related to the involved renormalisation constants. We will choose Eq
(1.4.9) and calculate Z,, Z, and Z,, via the diagrams of the gauge field self-energy,
quark self-energy, and quark-gluon vertex correction respectively. When this is done
up to second order, they will just contain one-loop diagrams. For simplicity we will
first look at the case of QED. We will use Eq (1.4.22), which means that for the
renormalisation of the electric charge we only need to calculate Z,,, which is done via

the photon self-energy diagram:
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This diagram corresponds to the renormalised photon propagator D*V. Note that the
two photon lines are not necessarily physical external lines, but are bare photon
propagators D(‘)”’, equal to D in Eq (1.3.124). The grey disk represents the sum of
all possible intermediate diagrams. Up to second order in the coupling constant, we
only have to take into account one electron loop:

This diagram corresponds to D(’)‘“(q)iegﬂaﬂ(q)DfV(q), with the loop itself (without the
external propagators) given by ieZl1%(q). By using the Feynman rules of QED, we

can express this loop as
e
(2m)*

iedl*(q) = Trj d*ky*Sy(k + @)y Sy (k) (2.1.1)

With S, the bare fermion propagator, equal to Sr in Eq (1.3.72). The Ward identity Eq
(1.3.178) tells us that
q,1""(q) =0 (2.1.2)

and this means that I1*(q) must be proportional to the transversal projector. We can
write the 1"V (q) as in [5] (p245):

1" (q) = ¢*P" (@)1 (q?) (2.1.3)

Where P/ (q) is the transversal projection operator:

v

qtq
qZ

P (q) = g* - (2.1.4)

We can do a Dyson resummation as follows:
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Which means we can take the “resummed” photon propagator to be equal to
D = DO + DonDO + - (215)

with D, the propagator for the free photon. We notice D = D, + D,IID , and so we can
rewrite our resummed propagator as
D 1 (2.1.6)
1 - DOH i _ H o
0

D

Repeatedly applying the transversal projector in IT and using the gauge invariance,
which makes longitudinal contributions vanish, the Dyson resummation gives us

1
D =Dy——< 2.1.7
In the Feynman gauge, the free photon propagator is
igh
DY (@) = - 2.1.8
F@=-mg (2.1.8)
If we plug this in our equation for the “resummed” photon propagator, we get
Y
pw =9 (2.1.9)

q*(1 - (g®)

Where we ignored the ie since we have extracted a tree level part, and the ie only
matters in loops. Since I1(g?) is regular at g = 0, the photon remains massless. [5]
(p245-246)

This new photon propagater that we get from Dyson resummation, is the
renormalised photon propagator for this specific Dyson resummation. Ofcourse this is
not the fully renormalised photon propagator, because we haven’t taken multi-loop
diagrams into account, nor did we take diagrams into account that connect 1-loop
diagrams in a different way than what we have done. But this new photon propagator
will already be more accurate to describe physics, than the free photon propagator.

We can now use this renormalised photon propagator in other diagrams. Let us use it
in the following scattering process:

This represents the following expression:
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1

5D 5D = e§Dy————5= 2.1.10
€olo = €o €o T (D ( )
With e the bare electric charge. We can rewrite this as
e_‘iﬁﬁ—l > :e_z (2.1.11)
q* q*1-1(@q") q
And thus e is defined as
2
2 €o
= —— 2.1.12

Now we will use the following expression which separates the divergent part and
finite part in IT:

1-1(g*») = (1-1(0)(1—-1(g*» —1(0)) + 0(a?) (2.1.13)
Where (1 —11(0)) is divergent and (1 — 11(g?) — 11(0)) finite. « is the fine structure

constant, which is also called the coupling strength

a=— (2.1.14)

By using the expression that separates the divergent part from finite part, we get

et el 1 1 el 1 _e%(0) 1

q° q21—H(q2)z?1—ﬂ(0)1—(17(612)—17(0))_ 9> 1-(11(q?) - 11(0))

(2.1.15)
Where we defined

es

“O= 1w

(2.1.16)

Note that e? = e2(0) in the approximation that we made in Eq (2.1.15). If we
renormalise QED, we have e =Z,ef from Eq (1.4.22), with e the renormalised
electric charge and Z, the renormalisation constant. From Eq (2.1.16) we find that
this renormalisation constant for the electric charge e2(0), thus now redefined as
e?(0) = Z, e, is equal to

Z

Where we have done Taylor expansion to get the right most part. The relation
between renormalisation constant and counterterm is Z,, = 1 + §,,, so we have for the

counterterm:

76



s _2=10)

=TT~ 1(0) (2.1.18)

The full calculation of I1(g?) is done in [4 (p211-214)], by using dimensional
regularisation in d = 4 — ¢ dimensions, and results in

n(g? = - <§ —yg + 1n(47r)> + - (2.1.19)

12m2

pE
1212

2
m(q) = —(q*9*" — q*q") <E —yg + 1n(47r)> + o (2.1.20)

Where u is a mass scale resulting from dimensional regularisation, and y; the Euler-
Mascheroni constant. Then for Z,, we have the expression [4 (p334)] (in the reference

it is called Z3):

2,,—¢€
_ eogu (2
Z, =1 1o <£ YE + ln(4n)> (2.1.21)

And with e2(0) = egzy,re in dimensional regularisation.

Note that, in the reference [4], in II*" and Z,, the factors e2u~¢ are replaced by the

partially renormalised charge e? . But since the difference between e, and e u~%/? is
of order e2, we ommited this difference as an approximation. [4 (p334)]

Z, is a series in powers of a and can be approximated by [5] (p252):

Z 1 2a + 2.1.22
re 3me (2122)
And this means for the counterterm:
o) 2a + 2.1.23
YT 3pe (2.1.23)

From renormalisation we have these effects in the approximations that we made:

o e2(0) =Zye =ed/(1-1(0)) (2.1.24)
e 6§, =I1(0) = —2a/(3me) (2.1.25)

This shows that the charge that is observed in the scattering process is not the bare
charge eZ, but a renormalised charge. If we don’t do the approximation that sets
e? =e?(0), but take Eq (2.1.12), then another effect that we have from
renormalisation is a finite observable dependence of the electric charge on ¢2. The
electric charge e, and thus also the coupling strength a = e?/(4m) , are no longer
constant but depend on the transferred momentum g2 in the scattering process. They
are now a “running charge” and “running coupling”.
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Now we will try to do the same for QCD. For the rescaling of the coupling constant
we have from Eq (1.4.9):

2%
= 9o

Zg q

g (2.1.26)

Z,4 corresponds to the quark self-energy:

_._O_F= I AL Y

Z4 corresponds to the gluon self-energy. The calculation for this will similar to that of
the Z, and the photon self-energy, but there will be more diagrams because not only
do we have a quark loop, but also a gluon loop and a ghost loop.

-
‘n'OTr= mv+xw‘©ﬂr+“m“i )W+rx€z%w+---
e

Other 2™ order diagrams for Z, and Z, vanish by looking at the colour, vertex and

Lorentz factors when applying Feynman rules. [4 (p345-346)] The calculation for the
diagram with the quark loop is done in almost the same way as the photon self-
energy, but with an extra factor Tx6,, in Eq (2.1.3), with T the trace invariant (for
SU(N) we have T, = 1/2).

Z4q corresponds to the quark-gluon vertex:

We refer to [4 (p346-351)] for results for each of the diagrams.

The total result for the gluon self-energy, in dimensional regularisation, is given by [4
(p347-348)]

U= /2n
" (q) = =84,(q%g*’ — q*q") ( L _

2
16122 T ) <E —YE + 1n(4n)) + .- (2127)
Where a and b are the colours of the incoming and outgoing gluon, and n, the

number of quark flavours. This result is similar to the photon self-energy Eq (2.1.20),
but with orientation in the group space and replacement of
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2 2
e) 9o an B )
1212 16n2( 3 0 (2.1.28)

With g, the bare coupling constant of QCD. And similar to a in QED, we can define
the coupling strength of QCD (strong fine structure constant):

2

g

% =

(2.1.29)
The renormalisation constant Z, turns out to be similar to Z,, Eq (2.1.21), and is
given by [4 (p349)] (in the reference it is called Z5):

géu° 2
Zg=1-7— (2n; - 5) <E —yg + ln(4n)> (2.1.30)

The result for the quark self-energy, in dimensional regularisation, is given by [4
(p331,346)]

—&

u 2
Zi(p) = 5”W(¢ — 4my) (E —yE + 1n(47r)> + - (2.1.31)

Where i and j are the colours of the incoming and outgoing quark, p the momentum
of the quark. The renormalisation constant Z, is given by [4 (p347)] (in the reference
it is called Z,):

2,,—¢€
_ Gol 2
Zg=1 Tom2 <£ Ye + 1n(47r)> (2.1.32)
The result for the quark-gluon vertex, in dimensional regularisation, is given by [4

(p349)]
I ) = g0 (y*T5 + 930S (0,00 (2.1.33)

With j and p the colour and momentum of the incoming quark, i and p’ the colour and
momentum of the outgoing quark, and a the colour of the gluon leg. A‘i‘f is given by [4

(p350)]

—&

, 13u~¢ (2
N 0.0 = VT o <; — V5 + 1n(4ﬂ)) + (2.1.34)

The renormalisation constant Z,, is given by [4 (p350)] (in the reference it is called
Z,):
13g5u° (2

gq = 1- W (E —Yg+ 11‘1(47'[)) (2.1.35)

N
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Note that, in the reference [4], in the loop corrections and renormalisation constants,
the factors g2u~¢ are replaced by the partially renormalised coupling constant g2 .
But since the difference between g, and gou~¢/? is of order g3, we ommited this
difference as an approximation.

From these renormalisation constants we can calculate the renormalised coupling g
via Eq (2.1.26), which in dimensional regularisation becomes [4 (p351)]:
Zo\JZ
g= gou—f/”—rg (2.1.36)
Zgq

Making the substitution of Eq (2.1.30), Eq (2.1.32) and Eq (2.1.35) results in [4 (p351-
352)]:

2

~ g ( an) 2
= /2 - 4
g = golt [1 + 397 11 3 (e Yy +In(4n) |+ 0(g*) (2.1.37)

Just like in the QED case, the coupling constant that is observed in a scattering
process is not the bare coupling g, but a renormalised coupling g. Also, the coupling
constant g will have a finite observable dependence on the transferred momentum g2
in the scattering process. The g% dependence is not evident from Eq (2.1.37), but is
hidden as a u dependence. The g2 dependence can be retrieved in a similar way as
for QED, see Eq (2.1.24) and Eq (2.1.a). In general we can say that the renormalised
coupling depends on a renormalisation scale u, which is on the same order as the
momentum scale of the considered process.

2.1.2 Coupling strength «a;, the f function, and breaking of scale
invariance

If we take Eq (2.1.37) and go back to 4D spacetime by ¢ — 0, the following equation
will hold [4] (p351-352):

_0g  —Pog®
B(g) = “ou = Ten? (2.1.38)

With g, =11 —2% , and we neglected terms of order g°. Solving this equation will
determine the u-dependence of the renormalised coupling. Notice that g, will be
positive if n, is less than 17. This means that g will decrease if u increases.
If we substitute the strong coupling strength Eq (2.1.29):

2

as(p) = i_n (2.1.29)

Then for f(g) we get
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_ T dag(u) _ —Po 3/2
B(g) = /as(u) - 2\/E(ocs(u)) (2.1.39)

This leads to

dOCS(‘Ll) _IBO
= d 2.1.40
@) Zmn (2140
And integrating this will yield
= &ln(y//l) (2.1.41)
as(u) 2m

With A a scale parameter. Eq (2.1.41) results in an expression for the coupling
strength in function of u

2n _ 41
Boln(u/A) B Boln(u?/A2)

Where the last step is done because that is the form that is usually used. A is a scale
parameter that characterises the scale u =~ A at which a,(u) becomes large, for
decreasing u, [4] (p352). A is a physical scale which must be determined from
experiment.

a, (1) = (2.1.42)

There is also a different way we can get an expression for a,(1). From Eq (2.4.24)
We can also get [4] (p351-352):

#N%mn*_gg

o om (2.1.43)
This results in the following expression, [4] (p351-352)
as(w) = % (o) (2.1.44)

1+ (Bo/4m)as(ue)In(u?/us)

Uo is another scale parameter. But while A is a physical scale at which the coupling
becomes strong, u, is an arbitrarily chosen reference scale. Notice how all «a, that
appear in the right hand side of Eq (2.1.44) have p, as their argument. We could first
measure a, at a reference scale u,, and then use Eq (2.1.44) to calculate the value
of a, at different scale u. So while in Eq (2.1.42) A was the experimentally measured
parameter, in Eq (2.1.44) it is a,(u,) that is the experimentally measured parameter.
Per convention the Z boson mass is usually chosen for u,, which is around 91 GeV.
[4] (p351-352), [11]

Notice that we can approximate Eq (2.1.44) as

as(W) = as(uo) + 0(aZ(uy)) (2.1.45)
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If we would want to know what the coupling strength would be at the a varying
momentum scale u? = g2, with g2 the invariant mass of the considered process, we
can take make a substitution in Eq (2.1.44):

as (o)
1+ (Bo/4m)as(pe)In(q?/ug)

as(q) = (2.1.46)

2.1.3 Renormalisation schemes

We originally started with a Lagrangian with scale invariant coupling. When we
calculate loops, we will encounter UV divergences, and we perform regularisation
and renormalisation to deal with this. Regularisation will introduce a dimensionfull
mass scale like u or A, either as a cut-off frequency in the integrals, or as a way to
keep the correct mass dimension (in dimensional regularisation). When we
renormalise, the renormalised parameters will be u dependent. However, the
dependence on u will disappear from physical dimensionless observables, despite
that scale invariance will still be broken because the coupling depends on the energy
scale u. Our renormalised theory cannot give an absolute normalisation of the
coupling strength and other Lagrangian parameters, but can predict the rate of
change with respect to the energy scale u the process occurs at.

The exact expressions of the renormalisation constants and counter terms is not
unique, but depends on a choice. This choice will affect how and where exactly the
infinities go in the bare parameters and renormalisation constants. A specific choise
is called a renormalisation scheme. For example the 2/¢ — y; + In(4m) that appear in
the renormalisation constants in section 2.1.1 is such a choice.

In the expressions of running «, in section 2.1.2, we introduced new scales. Here is
also a choice we can make: which reference scale do we use for the running coupling
to describe its dependence on energy scale u? We also saw that there needs to be
input from experiment. We either take the reference scale as a physical scale 4,
which must be determined from experiment; or we take the reference scale as an
auxillary scale u, and experimentally determine «; at a specific choice of p,.

To sum up the different types of choices we make:

e Regularisation:

o The most common choices are momentum cut-off and dimensional
regularisation.

o Momentum cut-off in divergent integrals: introduces a physical cut-off
scale to make integrals finite. We lose Poincaré invariance.

o Dimensional regularisation: go to a different spacetime dimensionality
to solve integrals and take the limit. Introduces a mass scale and
typically 1/¢ poles. We do keep Poincaré invariance.
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e Renormalisation scheme:

o The exact choice of renormalisation constants and bare parameters.

o Regularisation is not the same as renormalisation, but regularisation
can be seen as a necessary part of the renormalisation scheme.

o Renormalisation scheme will introduce a renormalisation scale, which is
an unphysical scale parameter (has no effect on physical dimensionless
observables).

o The measured values of renormalised parameters are independent of
renormalisation scheme, but the way the renormalised parameters
depend on the bare parameters (which are unobservable) will depend
on renormalisation scheme.

¢ Running coupling as a function of scale:

o Introduces a reference scale.

o Most common choices are to either take the reference scale as a
physical scale determined from experiment, or take it as an arbitrary
scale at which «; is determined from experiment.

o Either way, in order to calculate a,(u) at some scale u requires an
experimentally determined parameter in the equation for ag(u).

o The measured values of observables are (theoretically), independent of
the choice of reference scale. (However, the accuracy in calculations
and measurements can differ, related to the accuracy of the
measurement of the experimentally determined parameter that fixes the
equation for a,(u))

An example of a renormalisation scheme is the MS scheme. In this scheme, the
counter terms will only contain the divergent part coming from divergent loop
calculations. A different but similar scheme is the MS scheme, in which the counter
terms not only contain the divergent part, but an universal constant is also added to
it. In this thesis we will use the MS renormalisation scheme and dimensional
regularisation. The exact form of this divergent part and additional constant is, up to
an overall factor, equal to 2/¢ — y + In(4m), which can be seen in the renormalisation
constants Eq (2.1. 21), Eq (2.1.30), Eq (2.1.32), Eq (2.1.35).

2.1.4 Renormalisation group

The previous effects and structure of the theory can be expressed by what we call
the “renormalisation group” (RG). This is the group related to scale transformations
for the renormalised parameters. The main idea is that renormalised parameters are
dependent on renormalisation scale u, while physical dimensionless observables are
independent of u. The renormalisation group will allow us to characterise the scale
dependence of the renormalised parameters and, given a measurement at a
reference scale, allow us to calculate them at another scale. We will now give a more
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formal definition of the g function by this renormalisation group. We will also redefine
Bo to get rid of the appearance of the 4w in the equations for a(u) that we saw in
section 2.1.2.

We will take for a(u)

a(u) = a, (1 + ayfoln <Z—z> + 0(a2)> (2.1.50)

In the perturbative region, a's evaluated at different scales differ by powers of « itself.
This means we can write

ay, = a(u) (1 + O(a(u))) (2.1.51)

. a
We will now compute a(in(?)

a, is independent of u up to higher order in «a itself. This means that when we take
the derivative we can treat a, as if it would be independent of u. This leads to

da

d(Tﬂz) = —CZ(Z)IBO + 0(6!2) = —az(u)ﬁo + 0(6!2) (2.1.52)
For the last equality we have used
ad = a?(u) (1 + O(a(u)))z = a?(u) (1 + O(a(u))) (2.1.53)

Note that after taking the derivative with respect to In(u?), nor ¢ nor a, appear in the
equation anymore.

We will generalise this to

da

an ) = Plalw) (2.1.54)
And £ has an expansion in powers of a:
Ba(w) = —Boa® (1) — Bra® () — Bra* (1) + . (2.1.55)

By computing the g function, we can predict the u dependece of the coupling from
theory.

We could generalise this even further by G,(p;, ay) = ZG(p;, @, 1), with G, the bare
Green function, G the renormalised Green function, Z the renormalisation constant,
and p; the physical momenta. In this case, the following differential equation will hold

dG,  d(z6)
d(lng®) d(nu®

(2.1.56)
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By using the product rule, and taking into account that G (p;, a, u) dependence on u is
also via its dependence on a(u), we can reach the following equation:

p G +ZOG Ja N 0z
d(In u?) da d(Inp?)  d(lnu?

G=0 (2.1.57)

After dividing everything by Z, we get
G 0G O« d(nz) =

— = 2.1.58
a(n® " 9a a0n D) T a(n D) (21.58)

This is what we call the Callan-Symanzik equation:
i +()a+()G( )=0 2.1.59
a(ln‘HZ) ﬁ a aa y a pl'lauu - ( " )

Where we defined the functions g and y as

(@) = =& 2.1.60
hla ~ o(Inpd (21.60)

d(InZ)
= 2.1.61

2.1.5 Solutions of RG equation

If we solve the RG equation by using only the leading order (LO) for the beta
function, Eq (2.1.55), we have to solve

d

_ax ~_p o2

d(In(u2)) B(alw) ~ —Boa’ (W) (2.1.62)
Solving this for a(u) leads to

() = o) (2.1.63)

1+ Boa(uo)In(u?/uf)
For the abelian case (QED) we will have:

1
Bo=—35- (2.1.64)

And the 1-loop QED running coupling is equal to

a(uo)
1 - 2401 2 /2)

a(p) = (2.1.65)
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For the non-abelian case we will have:
1
Bo = Tom (11N, — 4n,Tr) (2.1.66)

With N the number of colours (SU(N,)), ny the number of quark flavours, and T; the
trace invariant. If we have N. = 3 and Tr = 1/2, then B, will be positive for ny < 16,

which is the case for QCD because as far as we know there are only 6 quark
flavours. The running coupling is equal to

as (o)
1+ %) “s(“o) (11N — 4n,Tp)In(u?/ud)

as(u) = (2.1.67)

The main difference between QED and QCD for the running coupling is the sign of
the u-dependent term in the denominator. This difference will lead to two very
different behaviours.

Consider a general theory with a coupling of the form Eq (2.1.63). The behaviour can
differ depending on the sign of g,

A theory with B, < 0 (like QED) will have its coupling become larger for larger u. In
other words, the interaction grows stronger with increasing energy scale.

n

Figure 2.1: Dependence of coupling & on energy p for a negative 3, (Like QED) in leading order.

An increasing coupling with increasing energy means that the coupling (and thus the
effective charge) will decrease with increasing distance. This effect is called
screening of the effective charge.
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A theory with g, > 0 will have its coupling become smaller for larger u. In other
words, the interaction becomes weaker with increasing energy scale.

Figure 2.2: Dependence of coupling @ on energy u for a positive 3 (Like QCD) in leading order.

A decreasing coupling with increasing energy means that the coupling will increase
with increasing distance. This effect is called anti-screening of the effective coupling
(or effective charge).

There is also a more qualitative way to explain screening and anti-screening via a
charge and virtual pairs. For QED consider a charge in an otherwise vacuum. Due to
virtual electron-positron pair creation, the vacuum will have a dielectric property that
causes the effective charge to decrease at large distance. In other words, the
electron-positron pairs will screen the charge. In QCD the same happens with virtual
quark-antiquark pairs, they will screen a colour charge. But there are also virtual
gluon pairs, which will contribute to an increasing effective charge at large distance.
In other words, the gluon pairs will anti-screen the charge. Generally for a non-
abelian gauge theory, the overall effect will depend on the number of fundamental
colours and the number of quark flavours. For QCD the anti-screening effect of the
gluon pairs wins from the screening effect of the quark-antiquark pairs.

2.1.6 Landau pole and QCD scale

In case of QCD, B, will be larger than 0. This means that QCD is an interaction that
becomes weaker for higher energy scales. In fact, the coupling of QCD becomes so
small at high enough energy scales, that quarks and gluons can be considered free
particles in the limit of u —» o . This phenomenon is “asymptotic freedom”. For very
low p on the other hand, the coupling will diverge. Since we have been doing
perturbation theory, this just means that for low y our QCD theory becomes non-
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perturbative. In other words, our perturbation theory for QCD does not apply for low
energy scales. Our theory exhibits what is called a Landau pole. We have Eq
(2.1.63):

a
=13 ﬁoas(jfsﬁcqwé) (2168
We see that this singularity happens at a scale g = Aycp When
1+ Boats (o) In(Afen/ng) = 0 (2.1.69)
This means our Landau pole is at
-1
Ajep = puge Poslio) (2.1.70)

Agcp is invariant under what we call a renormalisation group transformation (RG
transformation).

o = U = poet/? (2.1.71)
With t real and arbitrary.
Then a, will transform as

a

s (o) = a5 (W) = 75— (;?;‘1)3 T (2.1.72)

For Aqcp this means that
1 _ 1+Boas(po)In(et/?) 1
Adep > w2e Poast® = p2ete Boasio) = pZe Bodstho)  (2.1.73)

So Aqcp stays the same under a RG transformation and is a physical energy scale

independent from y,. It is an intrinsic parameter of QCD which encodes the physics
of scale invariance breaking. We started with a Lagrangian that has a scale invariant
coupling, but by analysing higher order corrections we encountered divergences.
After renormalisation we’ve gotten rid of the divergences, but we get a dimensionfull
parameter Agcp and a scale dependent coupling, and thus scale invariance is

broken.
We can relate as(q) to Aqcp by substituting the u§ in the logarithm:

1
Boln(q2/A3cp)

as(q) = (2.1.74)

Since we can relate a;(ug) to Agcp, We can find Agcp from experiment by measuring
the coupling. This Aqcp scale is around 200 MeV/c?, Ref [5] (p552), [9] (p34). QED
also has a Landau pole, but at a very high energy, even far beyond the Plank scale.
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For QCD we can apply perturbation theory if the energy scale is wel above Aqcp,
while for QED we can apply perturbation theory if the energy scale is wel below Aqggp.

By using lattice QCD, which is a technique that describes QCD on a lattice, we can
make calculations in the energy range where perturbation theory doesn’t apply
anymore. This seems to point to the Landau pole not being a true Landau pole at all,
or in other words that the coupling doesn’t become infinite. In QED however, the
Landau pole seems to be a true Landau pole. But since the QED Landau pole is
much higher than even the Planck scale, we expect quantum gravity to be relevant at
that energy scale. So it is likely that we shouldn’t use QED at that energy scale, and
no coupling becomes infinite.

2.1.7 Confinement

If we look at the coupling strength and the QCD scale in the position picture, we get
that the coupling strength increases for increasing distance. The QCD scale can be
expressed as an inverse distance, Aqcp = 200MeV = 1 fm™'. This means that 1/4qcp
is a distance at which the coupling becomes very large and perturbation theory stops
being valid, while we can use perturbation theory below this distance. Consider a
quark and an antiquark with opposite colour charge. With lattice QCD it is possible to
calculate the static quark-antiquark potential, [9] (p49). For small distances the
potential is approximately of the form

V) =V, — as(ar)

(2.1.75)

With a the lattice spacing and r the distance in lattice units. For large distances the
potential is approximately of the form

V(r) =V, + Kr (2.1.76)

With K a constant known as the string tension. Since K is positive, we have at large
distances a linearly increasing potential. This means that for large distances the force
between a quark and antiquark will be approximately constant.

If we try to separate the pair, a gluon fluxtube will form and stretch between them. It
is believed that at some point, when the separation is roughly 1/4qcp ~ 1 fm, it will
be more favourable to break up the flux tube and create a new quark-antiquark pair,
instead of continuing to extend the gluon flux tube. This due to the linear potential at
large distance between the pair. After the new quark-antiquark pair is created, the
new quark will be close to the old antiquark, and the new antiquark will be close to
the old quark, each with opposite colour charge. The same would happen if we would
start with 3 quarks with each a different colour, and then try to separate one of the
quarks from the rest. A similar thing would happen if we would try to separate a gluon
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from other quarks and gluons, but by creating a new gluon pair instead of a quark-
antiquark pair.

The result of this would be that quarks and gluons only appear in colour neutral
bound states, which we call hadrons. This effect is called colour confinement. The
most simple hadrons are mesons (valence quark-antiquark pair), baryons (3 valence
quarks), antibaryons (3 valence antiquarks). More exotic hadrons that contain more
than 3 valence quarks and antiquarks, and glueballs which contain only gluons but
no valence quarks, could also be possible. Experimentally we indeed only directly
observe hadrons, not the quarks and gluons themselves, although we do “observe”
quarks and gluons in indirect ways. It are the hadrons that are detected by our
detectors, not single quarks or gluons.

Using this explanation, the size of a hadron would be roughly 1 fm. From experiment
we find that this is indeed about the size of the light hadrons. By using lattice QCD to
study the structure of hadrons, the gluon flux tubes inside the hadrons can be found
and studied, and the mass and several other properties of the hadrons can be
predicted. Important to note is that while colour confinement is observed in nature,
and the story above might sound satisfying, there hasn’t been an analytic proof yet
from the theory.

While quarks and gluons are confined into hadrons, two hadrons can still interact with
eachother via the strong interaction, even at energies (distances) beyond the QCD
scale. The lower energy strong interaction between hadrons is responsible for
binding protons and neutrons together into nuclei. The strong interaction between
hadrons in this regime cannot be described by QCD currently. This is merely due to
the inability to apply QCD outside the perturbative regime. However, there are
models outside of QCD that try to describe strong interactions between hadrons in
nuclear physics.

2.2 Parton model

In this section we will discuss the parton model and hard scattering processes. Hard
scattering processes are scattering processes via the Strong Interactions that involve
momentum transfers that are large compared to the QCD scale Aqcp ~ 200 MeV. By
this convention, processes that only involve momentum transfers that are small
compared to Aqcp can be called soft processes. The parton model was the model
proposed by Feynman to explain high energy scattering experiments involving
hadrons. The model came at a time when the exact nature of the Strong Interaction
was not yet fully known or verified, nor were any asymptotically free quantum field
theories in 4D known yet at that time. Even though the original model is incomplete, it
is still very usefull for high energy scattering. When the quark model, asymptotic
freedom and Bjorken scaling were verified/observed, partons could be understood as
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quarks and gluons, and QCD became the theory of the Strong Interaction. Now the
parton model can be understood and modified from QCD. In this section we will
already assume and apply QCD for the parton model.

In this section we will also give some important definitions and theorems that are
often used in high energy scattering, and that we will use further on, like Mandelstam
variables, cross section and the optical theorem.

2.2.1 Overview parton model

From asymptotic freedom of QCD we know that for scattering processes with
momentum transfer Q > Aqcp , our coupling strength will be a;(Q) « 1, and quarks
and gluons will be asymptotically free particles, or at most “weakly” interacting
particles. (To avoid confusion: With “weakly” interacting we mean here that the
Strong Interaction its coupling strength is very small in this region, and thus the
colour carrying particles will almost not feel forces that are governed by Strong
Interactions. We don’t mean “the” Weak Interactions, which is an entirely different
force.) This means that in hard scattering processes we can think of hadrons as
being made out of “weakly” interacting partons. (“Parton” is the collective name of
particles that are constituents of hadrons, or in other words, quarks and gluons). In
this region, perturbation methods apply to QCD. While the partons inside a hadron
can be considered “weakly” interacting in this regime, they will still be confined to
colour neutral hadrons. This hints that we would have to treat dynamics at short
distances differently from those at long distances. There could also be other
interactions involved in hard scattering processes, like QED or Weak Interactions.

Another important thing to note is that theoretical predictions are in terms of coloured
fields, while experimental measurements are in terms of colourless hadrons. We
need principles or tricks in order to make the connection between theory and
experiment.

Because of these reasons above, we will separate dynamics at short distances and
dynamics at long distances. The exact way this will be done, depends on the
scattering process under consideration. Some examples are “infrared safety” and
“factorisation”. In this thesis we will discuss factorisation, which is important for the
splitting functions.

2.2.2 Mandelstam variables

When we are dealing with scattering processes, it is usefull to use Mandelstam
variables. Consider two ingoing and two outgoing external particles:
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P1 ky

Pz ks,

Figure 2.3: Two incoming particles with momenta p; and p, interact and result in two outgoing
particles with momenta k; and k.
We define the Mandelstam variables as
§=(p1 +p2)* = (ky + ky)?
t = (ky —p)? = (ky — p2)? (2.2.1)
it = (ky —p1)? = (ky — p2)?

By this definition, § is the square of the center-of-mass (com) energy, and is also
known as the invariant mass. t is the square of the four-momentum transfer. If we
sum the three variables we get the sum of the square masses of the particles:

4
§+f+azzm§ (2.2.2)

In case of 4 massless particles, we would get:

§=2pyp; = 2ky " ky

~>
Il

_2p1 - k1 = —2p2 - k2 (2.2.3)

U =—2py ky,=-2p, kq
$+t+1=0 (2.2.4)

This is also approximately true in the ultrarelativistic limit (or massless limit) for
massive particles, since that means setting p? = m? ~ 0, p53 = m3 =~ 0, etc.

If the scattering process only contains one internal line, then there are only 3 possible
diagrams for Fig. 2.3. We name these after the 3 Mandelstam variables:
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Figure 2.4: The 3 basic “channels” for 2-body to 2-body scattering.

Mandelstam variables are usefull for expressing amplitudes and cross sections for 2-
body to 2-body scattering. An example is ete™ — u*u~. At 2" order in QED we only
have the s-channel:

e M
Figure 2.5:e*te™ - utu™ in QED.

If we work in the massless limit, the spin-summed square Feynman amplitude will be
[5] (p156-157)

4

1 2e* | R
- Z M1 = S @ + %) (2.2.5)

Another example is ey~ - e“u~, which is just Fig. 2.5 turned on its side and the
Mandelstam variables renamed. So at 2" order in QED we only have the t-channel:

Figure 2.6: e u~ — e u in QED.
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If we work in the massless limit, the spin-summed square Feynman amplitude will be
[5] (p156-157)

1 2e*
7 z PP = - 82+ 02) (2.2.6)

spins

2.2.3 Cross section

In particle colliders we typically collide 2 beams (with well defined momenta), or a
beam with a target, and observe what comes out. We will define the cross section as
a quantity that characterises the likelihood that a final state particle is different from
the initial state particle it originated from, or in other words the likelihood that
scattering took place. We will also define it in such a way that it allows us to compare
different experiments with different beam sizes and intensities. We will assume that
the particle density is uniform inside the beam. This will be a good assumptions if we
assume that the range of the interaction between particles and the width of the
particle wavepackets are both small compared to the beam width [5] (p100).
Consider a target at rest of particle type 1, length [; and particle density p,. At this
target we aim a beam of particle type 2, length [, and particle density p,.

We expect the number of scattering events ng.,iter t0 be proportional to the lengths,
densities, and the cross-sectional area A between the two bundles of particles. We
define the cross section ¢ as the proportionality factor

Nscatter

o= 2.2.7
lip1lz2p2A ( )

We could have also taken the bundle of particle type 2 at rest, or worked in a frame
where both bundles are moving, it wouldn’t change this definition of cross section. If
N; and N, are the total numbers of particles of particle type 1 and 2, then we can also
express the cross section as
NscatterA
— _scatter”” 2.2.8

For a real particle collider, the densities aren’t uniform in the beams and are typically
higher near the center. In that case we would have to integrate the density over the
the beam area (given that the density is uniform along the length of the beam).

Nscatter = Ol1ly f dzxpl(x)pz(x) (2.2.9)

In the expressions above we didn’t take the momenta of the outgoing particles into
account. If we do take this into account then we define the differential cross section
do/(d3p, ...d3p,). In case we are left with 2 final state particles, we can due to
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momentum conversation just use 2 angles, and the differential cross section will be
do/d with d2 the solid angle.

The cross section is an important quantity that relates theory to experiment. It can be
measured via measuring the number of scattering events, and can be calculated from
theory via the invariant matrix M, [5] (p106-107):

1 dgpf

do = 7
7T 4EE, v, — vy RYCOEL

@) 6@ (ky + ky — $p,)| M (p1p2 = (o))

(2.2.10)

Where |v; — v,]| is the relative velocity between the bundles of particles, and f runs
over the final state particles. |M'|? contains all the dynamics, while the other factors
contain the kinematics.

In case we only have 2 final state particles, we can express the differential cross
section in the center of mass frame (COM) as [5] (p106-107):

(da) 1 K| M k) 2211)
L
d COM 4E1E2|U1 _ Uzl (271_)24@ plpz b 1Ko

In the case were all four particles have the same mass, this becomes

(da) _ [ M apz = kak)I? (2.2.12)

E COM a 64128

2.2.4 Optical theorem

Generally when 2 particles scatter, there are many possible finite states, including
final states with more than 2 outgoing particles.

ky

Figure 2.7: two particles with momenta k; and k, scatter to a final state f.

Recall that the probability amplitude is given by the S-matrix Sf; = (f|S]i), and that
we have conservation of probability:
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Z|Sﬁ|2 =1 (2.2.13)
7

Which means the S-matrix is a unitary matrix:
sts=1 (2.2.14)
If we substitute the T-matrix, S = 1 + iT, then we get
—i(T-TH =TT (2.2.15)

If we express this by using indices for states, like T; , we get
f

We will now take the forward amplitude, which means setting the final state equal to
the initial state, and thus b = a

* * 2
i(Tog — Taa) = Z TarTar = Z|Taf| (2.2.17)
f f
Note that we can write the left-hand side as an imaginary part:
{
Im(T,,) = — E (Taa — Tga) (2.2.18)
And so we finally have
1 2
Im(T,,) = EZ|Taf| (2.2.19)
f

By using Eq (1.3.34) for (p;p,|iT|k,k,) we can also get an equation for the Feynman
amplitude M, [5] (p231)

—i(]\/[(a ->b)—-M*(b - a)) = Z .[ d[l; M*(b = /)M (a = f) (2.2.20)
f

Where Y./ [ d[] is @ sum over the sets of final state particles and their momenta:

f d[l, A = Z(ﬂ j éjg; 25) (2.2.21)

By applying forward scattering b = a, we get

2Im M (a = a) = Zfd]'[f]\/[*(a - M- f) = Zfd]'[fl]vf(a - I? (2.2.22)
f f
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By using the definition of cross section, we get the following equation [5] (p231):

Otot(a = anything) = ImM(a - a) (2.2.23)

2EcomIplcom
Where Eqoy is the total energy in the center-of-mass frame, and pcom the
momentum of either particle in the center-of-mass frame.

N
21m [ “m“#/d”f;;fgf;;@\ﬂ

Figure 2.8: The optical theorem represented by Feynman diagrams. Figure from [12]

This is the essence of the Optical Theorem, which states that we can relate the
imaginary part of a forward scattering amplitude to a sum over the contributions of all
possible intermediate particles. This can be generalised to one-particle states or
higher multiple-particle states as wel.

This also means that if we have a Feynman diagram that has mirror symmetry, with
the mirror axis cutting through internal lines, we could also apply the optical theorem.

By applying perturbation theory on both sides of the equation, we can relate
diagrams with the Optical Theorem that are of the same order in the coupling
strengths. Even more, with the Optical Theorem we can relate a diagram that has
mirror symmetry, with the mirror axis cutting through internal lines, to half the diagram
(cut along the mirror axis) [5] (p232-236). As an example we give:

2

2Im

Figure 2.9: Example of applying optical theorem on a single diagram, by cutting along the mirror axis.

This results in the Cutkosky cutting rules. These rules and their derivation can be
found in the references. [5] (p232-236), [13]

2.2.5 Deep inelastic scattering and structure functions

Deep inelastic scattering (DIS) is scattering between a high energy lepton and a
hadron target, in which the hadron absorbs some of the kinetic energy of the lepton,
and possibly even breaks up into multiple hadrons. In order to avoid taking Weak
Interactions into account, we will only consider charged leptons. We define the
momenta as follows:
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hadron

Figure 2.10: Deep inelastic lepton-hadron scattering. After the collision the hadron has typically
changed into another hadron or a collection of multiple hadrons.

The hadron has momentum p*, the lepton has momentum k* and is left with
momentum k'# after scattering. The momentum transfer g* is carried by a virtual
photon. We will define a space-like vector Q*

Q2 = —¢? (2.2.24)

With \/Q2 > Aqcp = 1fm~'. In Mandelstam variables, Q* equals . The mass M of
the hadron is given by

M? = p? (2.2.25)
We will also define
B QZ 3 Q2
X = e = IM(E =B (2.2.26)
_pPa_ . .
y—p_k—l E'/E (2.2.27)

Where E and E’ are the energies of the lepton in the restframe of the hadron. x is
called the Bjorken scaling variable. y is the relative loss in energy for the lepton. The
meaning of x, which is the ratio between the transferred momentum squared and
twice the scalar product of hadron momentum and transferred momentum, becomes
more intuitive if we go to high momenta. At high momenta, x will approximately be
the fraction of the hadron’s momentum that the struck parton carries. When x = 1 we
have no longer inelastic scattering, but elastic scattering instead. If we only consider
the situation with Q2 «< M2 then the exchange particle will be a photon (and not a Z
boson), and the differential scattering cross section will be [9] (p87-88):

d*c,_, 8ma’ME
d;lzyh = mfy (A + @ =»)*)xF + (1 = y)(F, — 2xFy) — (M/2E)xyF,) (2.2.28)

With F; = F;(x, Q?) the structure functions for lepton-hadron scattering. The structure
functions parametrise the hadron target as “seen” by the virtual photon. We now take
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the Bjorken limit, which is defined as the limit for Q% - oo, p - g —» o0 and with x fixed.
In this limit we observe that the structure functions only depend on the dimensionless
variable x.

Fi(x, Q%) - F;(x) (2.2.29)

This approximate scaling law is called Bjorken scaling.
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Figure 2.11: Structure function F, from the experiment collaborations SLAC-MIT, BCDMS, H1 and
ZEUS. Note how in most of the range of x, there is little variation in F, for a very large range of Q2.
[9] (p87-88)

Bjorken scaling means that when a hadron is struck via a virtual exchange photon,
and the transferred momentum is very large, that the hadron’s structure looks the
same no matter how hard it is struck. It also implies that the exchange photon
interacts with pointlike constituents, [9] (p87-88), [5] (p478-479). Because if this is not
the case, then the structure functions would depend on Q/Q,, with Q, some scale
related to the size of the constituents [9] (p87-88). Bjorken scaling is a remarkable
feature in that can be seen in most of the x range and for a very large range of Q?,
but a small scaling violation can be seen. The naive parton model predicts exact
Bjorken scaling, but QCD gives rise to a scaling violation by logarithms of Q2. This
scaling violation can be calculated from perturbative QCD.
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2.3 Factorisation

In this section we will discuss the factorisation method. Factorising a hard scattering
process means we separate the long-time effects (which are non-perturbative for
QCD) from the short-time effects (which are perturbative for QCD). If we have a
process with hard momentum scales of the order of Q (The “hand scale”) and soft
momentum scales of the order of the hadron mass M (of the order of Aycp), then we

can try to express the cross section in a factorised form
0(Q, M) = C(Q, partonmomenta > u) @ f(partonmomenta < u, M) (2.3.1)

Where C is a factor that only depends on hard momenta, and fis a factor that only
depends on soft momenta, and y is an auxiliary mass scale we have to introduce to
define the separation of hard and soft. Here, C ® f means a convolution.

If such a formula is valid, then this will be the benéefits:

e Qdependence will be computable in perturbation theory.

e Athough f is not computable, its dependence on x will be computable
(because it has to cancel against C).

e From the x dependence we can learn about the Q dependence.
(Renormalisation Group)

In this section we will use deep inelastic scattering (DIS) and Drell-Yan as examples
for factorisation.

2.3.1 Infinite momentum frame

For hard scattering processes, the relative velocities between incoming initial
particles is extremely high. If at least one of the initial particles is a hadron, we could
consider the scattering process in an “infinite momentum frame”. This is a reference
frame in which an incoming hadron has a momentum p that goes in the limit to
infinity. We can justify this if p is much larger than the momentum transfer and hadron
mass (p >» Q, M). This means that the other particle, lets say an electron for example
(could be a lepton, quark, etc), sees a time-dilated and Lorentz-contracted hadron.
Lorentz contraction means that the hadron will look like a thin layer of partons. This
means the time it takes for the electron to traverse through the hadron, Ats.atter, Will
be very small. Due to time dilation, the hadrons’ internal interactions will be time-
dilated, and thus the typical timescale for interactions between the hadron’s partons
Tparton Will be large. This means that

Atscatter << Tparton (2'3'2)
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In other words, the electron sees a hadronic state with a definite number of partons,
each of which has a definite momentum characterised by a fraction & of p.

Figure 2.12: Hadron-electron scattering in the infinite momentum frame. The hadron is Lorentz
contracted to the point that the electron sees a thin “layer” of distributed partons. The hadron’s internal
interactions between partons are time dilated to the point that they take much longer than the time the

electron needs to traverse the hadron.

If the virtual exchange particle travels only a small distance (4l « 1fm), and the
density of the partons is not very high, then the exchange particle will interact with
only 1 parton. This would mean the interaction between the exchange particle and a
parton will not interfere with interactions among partons that occur at time-dilated
scales. However it is important to realise that while this means that short-time
dynamics and long-time dynamics do not interfer, the overall scattering process will
still be sensitive to long-time interactions. This because the partons have existed in
the hadron since a long time before scattering takes place, and thus the parton
wavefunctions has had a long time to develop.

2.3.2 Factorisation in deep inelastic scattering

Based on section 2.2.5 we will now factorise deep inelastic lepton-hadron scattering.
The typical example for DIS is electron-proton scattering. Most of the equations in
this section will apply to other leptons and hadrons as wel. We will use the same
naming convention as in Fig. 2.10. We will use the “infinite momentum frame”, and
we will apply the reasoning of the previous section 2.3.1 to factorise DIS. Note that
for @ > Aqcp the virtual photon will be highly off mass shell, and thus it will only travel

a small distance 41,

Al « 1fm (2.3.3)

1
" 1el

So as we said in previous section, if the density of the partons is not very high, then
the photon will interact with only 1 parton. This parton will be a quark since photons
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don’t directly interact with gluons. Since this means that photon-quark interactions
don’t interfere with parton-parton interactions inside the hadron that occur at time-
dilated scales, we can now fully factorise DIS as follows:

, &p+q
short-time % >

p long-time
— I

—»

——

Figure 2.13: Factorised deep inelastic lepton-hadron scattering.

Recall from section 2.2.5 that

Q% =—q*
M2=p2
B QZ B Q2
X = e = MG ) (2.3.4)
b-q ’
=——=1-E/E
Y=k /

We will work in the lepton-hadron center-of-mass frame. We will consider the
situation where the momentum of the hadron is very high, and we will consider the
hadron to be a collection of loosely bound partons without mass. If this is the case
then the hadron’s partons will move approximately collinear with the hadron. Each of
the hadron’s partons will have a momentum that is approximately just a fraction of the
hadron’s momentum. So we can consider the parton that interacts with the virtual
exchange photon to have momentum &p, with 0 < ¢ < 1, Ref [5] (p477). Note that we
can use the Mandelstam variables for the massless limit in this section. Also
important to note is that again we will only consider the situation with Q2 « MZ, to
avoid Weak Interactions. When Q2 becomes of the order MZ or above, we would
have to take extra contribution into account from the weak bosons. In that case we
will also have neutrino-hadron DIS. The factorisation will be the same, and the
structure functions will be different but still similar to the Q% « MZ case.
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When we separate the short-time and long-time dynamics, we could calculate the
process by combining probabilities rather than amplitudes. For the cross section for
lepton-hadron scattering we get [10]

onx, @) = )" [ d o (5,0.) im0 (14 0(Mheo/?))  (235)

where g;_; is the (hard) cross section for scattering of the lepton and quark i, which
carries momentum ¢p. The function f;, is the (soft) distribution function of quark /in
the hadron. By separating hard and soft contributions, we introduced an auxiliary
mass scale ¢ as a momentum cut-off, in both o;,_; and f;/,. If we ignore the v
dependence, we will get in lowest order of perturbation a cross section that exhibits
Bjorken scaling in 1/Q?%, and we get the Bjorken-Feynman parton model (pre-QCD).
[10] The QCD features of the equation lie within the x dependence. Up to any
perturbative order, small logarithmic violations of scaling will appear via the
dependence. [10] Important to note is that the exact form of o,_; and f; , in Eq (2.3.5)
will depend on the factorisation scheme that is being used.

We can express the DIS cross section in terms of structure functions by applying the
optical theorem as follow:

optical theorem
, & 9P

LAV
I
]

4’{:\‘?’;
|
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< I <
|
—»
I
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Figure 2.14: Applying optical theorem on DIS, and defining the leptonic and hadronic tensors.

Due to factorisation, and based on Lorentz and gauge invariance, we can write the
cross section as [9] (p94)

(2.3.6)

With L*” the leptonic tensor and W, the hadronic tensor. L*V is calculable in QED via
the following diagram
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L optical theorem

1
|
k 'k k
q=k"k

Figure 2.15: Feynman diagram for the leptonic tensor L*V. Note that there is no integral over the loop,
since all momenta are fixed.

By applying Feynman rules we get the following expression for the leptonic tensor, [9]
(p94-95)

Ly, = e*TR(K v kn) = 4e?(k k', + koK', — gk - k') (2.3.7)
WH can be expressed via the following diagram

optical theorem

q
A

Figure 2.16: Feynman diagram for the hadronic tensor WH#V.

From this we get for W#V, [5] (p623-625)
W = i [ dh e pIT o O)p) (2.38)

With J# the quark electromagnetic current. Combining the leptonic and hadronic
tensors, and applying the optical theorem gives us this expression for the differential
cross section [5] (p623-625):

2

Aoin _ YV ;1 qwev (2.3.9)
dxdy 2(4m)2Q* ™" "

The Ward-Takahashi identity requires that
q,Ww* =q,W"* =0 (2.3.10)

There are only 2 possible tensors made from p and g that satisfy this. We can write
WH as a linear combination of the two, [5] (p623-625):
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UV . .
W = <_guv N qqg )W1 N (pu _ pq—zqq“) <pv _pq_zqu> W,  (23.11)

The scalar functions W, = W, (x,Q?) and W, = W,(x, Q?) are related to the structure
functions F; = F;(x, Q?) and F, = F,(x, Q?%), Ref [9] (p94-95):

Fl(xl Qz) = Wl(xv QZ)
FZ(X' QZ) =pq WZ(x' Qz) (2312)

We can substitute this in the equation for W*V:

q"q" 1 p-q P-4
Wﬂvz(_ Wy )F +—< w P 1 u)( v_B1 V)F 2.3.13
g gz )it \p z )Pz a)h ( )

Substituting L,,,, and W#¥ in the equation for the differential cross section yields

do_, _a’y 2
iy = F(s (1 — YIm(Wy) + 2xys Im(W,)) (2.3.14)

With the Mandelstam variable s = (p + k)? = 2p - k in the massless limit.

We can also write the differential cross section as [10]

do;_ A a? 2 2
dxoZith = anazL ((1 —-y+ }/7) F,(x,Q%) — y?FL(x,QZ)> (2.3.15)

With F, = F, + F;, where F; is the longitudinal structure function, and F; is the
transversal structure function. These are structure functions related to the
transversely and longitudinally polarised virtual photons. Any of the structure
functions F, themselves obey the factorisation formula, similar to the cross section
o1—n , [10]:

1
R @) = ) [ df Cule/§, s, 0/ifin(6 ) + 0(Mco/Q?)  (2:3.16)

With f;,, the parton distributions and C,; process-dependent coefficient functions.
The C,,; are computable in perturbation theory as a series in powers of a;

Cui/§ 0, /) = ) € (x/8 0/ (2317)

k

If we set the scale y at a value on the order of Q, potentially large logarithmic
corrections in Q/u are automatically taken into account, rather than appearing in the
expansion of the coefficient functions at any order. [10]

If a quark is spin 1/2 then it cannot absorb a longitudinally polarised photon. On the
other hand, if a quark would be spin 0 then it cannot absorb a transversely polarised
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photon. For spin 1/2 quarks we have 2xF; = F,, which is called the Callan-Gross
relation. For spin 0 quarks we would have F; =0 and F, = F; in the Bjorken limit.
(Ref [9], p91) Structure function measurements from experiment show that F;, < F, is
true, so this confirms that quarks have spin 1/2. [9] (p91)

2.3.3 Hadron structure and parton distribution functions

Lets think a moment about (charged) lepton-hadron scattering in general. At the
lowest energies, a hadron looks like a point particle. For some time in the past, we
indeed thought the proton, neutron and other particles were elementary particles,
because they act like point particles at the lowest energies. At higher energies
however, this is not the case. Starting at the lowest energies, when we increase the
center-of-mass energy of the lepton-hadron scattering, we will at some point reach an
‘intermediate” regime in which we see exited states of the hadron. When we keep
increasing the center-of-mass energy of the scattering, we reach the regime in which
a hadron looks like the current “typical” view of hadrons, namely a composite particle
made out of valence quarks. Mesons are made out of a valence quark and valence
antiquark, baryons (for example proton and neutron) are made out of 3 valence
quarks, antibaryons are made out of 3 valence antiquarks. “Valence quarks” means
that they are the particles providing the hadron’s charge, baryon number, spin, and
other quantum numbers. At even higher energies, there will be a point where we start
to see even more partons than just the valence quarks. These extra partons are
gluons and sea quarks (“sea quarks” are quark-antiquark pairs). The gluons and sea
quarks carry some of the hadron’s momentum, but they do not contribute to the
hadron’s quantum numbers. If we keep increasing the center-of-mass energy, we will
see more and more of these extra partons.

The information of which quarks are in a hadron, and their probabilities, is captured in
the parton distribution functions (also called parton densities). The parton distribution
function f;,, gives the probability to find a parton of type /in a hadron h, and this as a
function of the momentum fraction ¢ carried by the parton and the auxiliary scale .
This means we can probe the inner structure of a hadron via scattering experiments.
This isn’t exclusively the case for lepton-hadron scattering, but scattering to a target
hadron in general. The parton distribution functions are universal for the same
hadron, within the same factorisation scheme. At the energy scales typical for this
chapter, we are in the regime where aside for valence quarks we also see sea quarks
and gluons. For lepton-hadron scattering at these energy scales, we can include
quark flavours as long as their masses are significantly lower than u. At this point
from our theory, we don’t expect to see gluons, because leptons don’t directly couple
to gluons.

Lets take for example electron-proton scattering. We will consider Q to be smaller
than the mass of the bottom quark, Q? « m,. The quark species that we will include
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will be up, down, strange and charm quarks, and their antiquarks. We expect the
largest contribution to be from the up and down quark distribution functions, because
those contain the valence quarks as wel as sea quarks. The quark distribution
functions for the other quark species only contain sea quarks. We expect the
distribution functions for the anti-up and anti-down to be (almost) the same, because
they have almost the same mass. From experiment however, we see an asymmetry
between the anti-up and anti-down. From experiment we can determine that only
about half of the proton’s momentum is carried by the quarks. The other half is
carried by the gluons. [9] (p92)

1]1‘III!I1|I\\‘II[

B g MRSA, p°=10 GeV*

x (%)

X

Figure 2.17: Quark and gluon distribution functions of the proton, at scale u? = 10 GeV?, fitted to DIS
data. Note that u,, and d,, are the valence up and down quarks. To get the distribution for up and down
quarks in general, take the sums u = u, + @i and d = d,, + d. The gluon distribution is provided by DIS

data at small x, [14], [9] (p93)

2.3.4 Factorisation in Drell-Yan

We will very briefly give an overview of factorising the Drell-Yan process. The Drell-
Yan process is a hadron-hadron scattering process in which a quark from one hadron
and an antiquark from the other hadron annihilate eachother, creating a virtual
photon or Z boson which decays into a lepton pair. We define the the momenta as
follows:
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Figure 2.18: Factorised Drell-Yan lepton pair production.

The two hadrons have momenta p/ and pg, the interacting quark and antiquark have
momenta pi and p4, and the momentum of the virtual neutral vector boson (photon
or Z boson) is g*. We define the time-like vector Q*

Q? = g2 (2.3.18)
We also define M as the invariant mass of the lepton pair
M? = (k; + ky)? (2.3.19)

By the same reasoning as with DIS, we can consider the quark and antiquark to be
moving collinear with their respective hadron, due to the large momenta.

p1 = $1Da

P2 = &2Pp (2.3.20)

By analogous reasoning as with DIS, we can factorise this in a part with long-time
dynamics, and a part with short-time dynamics. The part with the long-time dynamics
is the hadronic part, where de-hadronisation takes place. The timescale for this part

is At » 1/4/Q?. The short-time part is the part where quark-antiquark annihilation and
lepton pair production happen. The timescale for this part is At~ 1/,/Q? « 1 fm.

We can factorise the cross section as [9] (p301-302)

AQCD)j

90v(5,Q) = ) [ 51082 fosaas OH Qb $1062 ) foymGart) + ) Ky (52
a,b j=1

(2.3.21)
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Where the f,,4 and f, 5 are the parton distribution functions for the two hadrons,
which corresponds to the long timescales. H corresponds to the short timescales, or
in other words it relates to the high momentum transfer, so we can use perturbative
QCD for it and expand it in powers of a,(u). The term at the end captures
nonperturbative effects of long timescales, which originate from the transition
between short and long scale process.

Similar to deep inelastic scattering we can also use factorisable hadron-hadron
scattering, like Drell-Yan, to study the inner structure of hadrons and the
renormalisation group from experiment.
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3 Evolution equations in QCD

Factorisation of deep inelastic scattering (DIS) allows us to derive a set of equations
for the parton distribution functions (PDF), called the DGLAP equations. They are
one example of evolution equations for the PDFs. These equations also contain the
splitting functions. In this chapter we will derive the DGLAP equations and discuss
them as well as the DGLAP splitting functions. This chapter is based on [5], [9], [10]
and [15].

3.1 DGLAP equations

In this section we will derive the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
equations [1] [2] [3], which are evolution equations for the parton distribution
functions (PDF). With evolution equation we mean an equation which characterises
the PDF’s rate of change if we vary the auxiliary scale . These equations will allow
us to evolve the PDFs from one energy scale to another. While deriving the DGLAP
equations, we will introduce the DGLAP splitting functions (or often just called
Altarelli-Parisi splitting functions, or just splitting functions). Again we will use deep
inelastic scattering (DIS) as an example, but DGLAP equations can be used in other
factorisable hard scattering processes as wel.

3.1.1 From RG to DGLAP equations

We start from Eq (2.3.16) for the structure functions:

1
FGQ) = ) [ df Cule/§, s, 0/fi6m) +0(Mheo/@?) (B

And note that F, is independent of . The x dependence in the coefficients C,;
cancels the y dependence in the PDFs f;. We also have that F, is dimensionless,
which can be seen from the differential cross section expressed in structure
functions.

Since we have a convolution F = C Q f, we will first diagonalise the x dependence in
Eq (3.1.1) by taking N-moments for any function of x. [10] We can do this by
introducing the Mellin transformation:

E,(N,Q) :=fdx xN71E (x, Q) (3.1.2)
0

Inverse Mellin transformation:
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c+ioco

dN

F(x,Q) = j X F,(N,Q) (3.1.3)
c—1l00

Where c is taken to be right of all singularities. For the PDF we will have the following

Mellin transform:

1

fV0 = [ dg £ (3.14)
0
c+ioodN

fiGw = f ﬁg_Nfi(N:ﬂ) (3.1.5)

Again with ¢ taken to be right of all singularities.

If we take the Mellin transformation of Eq (3.1.1), the convolution @ will turn into an
ordinary product:

F(N,Q) = ) CuN, QO£ (N, 10 (3.1.6)
i
Since F, is independent of y/, we have
an(x, Q)
And we have the same for the Mellin transformed E,
dF,(N,Q) _
) R

Lets consider for simplicity that we have only 1 quark flavour. From equations Eq
(3.1.6) and (3.1.8) we get the differential equation:

df(NHu') _ an(Nr Ql ,Ll)
Cn(N, Q,M)W = _f(N‘“)d(T,ﬂ) (3.1.9)
If we divide both sides by the product C, f, we can rewrite it as
d(In f(N, d(InC, (N, Q,
(nfWN,w) _  d(InC,(N,Q, 1)) (3.1.10)

d(lnu?) d(In p?)

Since Inf is dimensionless, we can use the Callan-Symanzik equation from the
Renormalisation Group (RG):

d 0
(6(1n 2 TR Gt V(“s)) Inf(N, 1) = 0 (3.1.11)
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Since the partial derivative with respect to ag equals 0, Eq (3.1.11) simplifies to the
following RG equation

AnfO) ooy - dnGN.Q.0)
d(inpz)y /WU = d(In 12)

Where y, is the anomalous dimension of the PDF. The anomalous dimension has an
expansion in powers of «a, , [10]:

(3.1.12)

v (as(w) = Z bI™am (3.1.13)
m=1

We can solve the RG equation Eq (3.1.12), which gives us

u

N
F0 = F O odesp | =2 [ yu(aste ) (3.1.14)
Ho
We can rewrite the RG equation Eq (3.1.12) as
df (N, u)
AnD - —yn(as()f (N, ) (3.1.15)
If we restore all quark flavours, we would get
dfi(N, )
Ty =~ 2, (@) (3.116)
J

We now have what we refer to as an evolution equation for the PDF, but we are still
in the Mellin transformed space. Lets define the inverse Mellin transform of the
anomalous dimension by

~yn,ij(as(w) = f dz zVN7 Py (z, as (W) (3.1.17)

If we now take Eq (3.1.16), substitute the inverse Mellin transform for the functions,
and make a change of integration variable from, we get the DGLAP (Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi) equations [1] [2] [3] [10]

df;(x, i)
d(In u?)

1
d
=Y [ S rulast @) (3.1.18)
J x

The DGLAP equation, or evolution equation, describes the coupled evolution for the
parton distribution functions (PDF). (Ref [5] (p590-591)). The functions P;; are the

DGLAP splitting functions. The splitting functions turn out to be calculable as a series
in orders of a
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Pij(z, a5) = i (Z_:T)n Py (@ (3.1.19)

n=1

The PDFs are not calculable from QCD because they contain the long timescale
effects, but by using the DGLAP equations we can calculate their 7 dependence.

3.1.2 DGLAP and higher order corrections in structure functions.

While we already derived the DGLAP equations from the Renormalisation Group and
introduced the splitting functions, we will now show the link between Feynman
diagrams and the DGLAP equations. We will take the example of DIS again. If we
work in the “naive” parton model (no 7 dependence) and if we ignore the higher order
0(A%cp/Q?) terms, the factorized DIS cross section Eq (2.3.5) will be

01-n(x, Q) = Z f a§ 01 (3.0) /() (3.1.20)

Where we didn’t include the gluon term because the photon only interacts with
quarks (and antiquarks), and not with gluons. We recall the expression for differential
cross section with the structure function [9] (p89):

d?c,_, 2ma?
delQ’; = ”01 (14 (1-9)2)F,(x) (3.1.21)

Where we set F,(x) = 2xF,(x) due to Callan-Gross relation. [9] (p91)

And for the structure function we have [9] (p90)

F, = 2xF, = Z egxfy(x) (3.1.22)

q

If we step off from the naive parton model and go to the QCD improved parton model,
then Eq (3.1.22) can be regarded as a 0™ order term in the series expansion of F, in
orders of a,. [15] If we want to include the term of order a;, we have to take the
following diagrams into account:

Figure 3.1: Contributing diagrams for deep inelastic scattering, up to first order in a.
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The 0™ order diagram is also included. In the two diagrams on the right, a collinear
gluon is emitted. [15] It will be (nearly) collinear because of the high momentum of
the quark that emits the gluon. We have strong ordering of transverse momenta:
p. Lk, Ku . If we putthe emphasis on p, « k;, then momentum p will be nearly
collinear to the hadron. If we put the emphasis on k; « u then momentum k will be
nearly collinear to momentum p.

If the third diagram in Figure 3.1 can be neglected, then we could consider the
radiated gluon as part of the hadron structure. The third diagram cannot be neglected
in order to ensure gauge invariance, but it will cancel the unphysical polarizations of
the gluon. [15] We can choose a physical (axial) gauge for which only the second
diagram contributes to the splitting function and the logarithm, while the third diagram
only contributes finite terms. We can take even higher order contributions into
account with multiple gluon radiation (ladder diagrams).

The structure function up to 1% order in a, is given by [9] (p99-105):

1
RGO =x Y e fu@+32 | %fqo@ (P (F)m (g—) +C (§)> +o| (3123)
q x

Where f,, is the bare quark distribution function, and P is a function we get from
applying Feynman rules in the diagrams. P in particular describes the q — qg
splitting. [15] Note that the transverse momentum k,; does not explicitly appear in the
structure function. However, effects from the transverse momentum still appear as a
logarithm In(Q?/u3), which comes from an integration over transverse momentum of
the form:

2

¢ /= de 2 2
f —2l~ln <QT> =In <Q—2> — In(x) (3.1.24)
, ki Hox Ho

Ho

if we would work with a momentum cut-off both at low and high transverse
momentum. [9] (p98, p102) The cut-off u3 at low transverse momentum helps to treat
the singularity. The integration can also be done by dimensional regularisation
instead, which would give something of the form [9] (p104):

(é%,v <_ %) (3.1.25)

Where € < 0.

fqo can be seen as an unmeasurable, bare distribution. Collinear singularities (will be
explained in section 3.2) are absorbed into this bare distribution (at factorization scale
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4) (Ref [9] p99-105). So we will define a renormalized distribution f;(x, ) as in [9]
(p99-105):

2

£,00 1) = fro(2) + ;"—n f ? f10(8) <P (;) In <Z—5> +C @)) +e (3126)

This means the structure function becomes [9] (p99-105):

Fy(x,Q) = xz e2 .f?fq(f,u) [5 (1 _ g) +;—;P (g) In (g) + l (3.1.27)
q X

At any scale, we have as in [9] (p105):

F(x,Q) = xz eqfq(x,Q) (3.1.28)

q

Which is called the DIS scheme. The f,(x, 1) can’t be calculated from QCD because,
even at first principles, since it is in the unperturbative regime. However we can
determine it from structure function data via Eq (3.1.28) at any scale. We can also
calculate its dependence on the scale . If we take a look at Eq (3.1.27), we notice
that the left hand side is independent of 4. This means the right hand side must also
be independent of . We will take the derivative of both sides, with respect to In u?.
This is similar to what we did in previous section. The resulting equation is [9] (p99-
105):

1
dfg(x,))  as(p) (d§ (x
d(Inp?)  2n ?P(E)fq(f,ll) (3.1.29)

Compare this with Eq (3.1.18), the DGLAP equation. They look similar. While this
was not fully rigorous, a full treatment of the theory at first order in ag would result in
the equation [9] (p108):

1
dfy(x, 1) _ as(u) (dé _[x
d(Inp?) ~ 2n ?P<g,as(u)>fq(§.u) (3.1.30)

This equation has the same form as the DGLAP equation Eq (3.1.18) with only a
quark term:

dfq(x, 1)

1
d§
d(lnuz) = !?fq(f:#)qu(x/f’as(ﬂ)) (3131)

Recall we had a series expansion for the splitting functions Eq (3.1.19), for which the
lowest order term equals:
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a
Py(z,a5) = =Py (@) + 0(a?) (3.1.32)

Eq (3.1.30) is the DGLAP equation in 1° order of a,. This means that combining Eq
(3.1.30), (3.1.31) and (3.1.32), in 1% order of a;, leads us to

P(x/§) = P (x/§) (3.1.33)

This means the splitting function F,, up to lowest order is proportional to P, and can

be represented by the g — qg splitting (q — q splitting with the emission of g). We can
generalise this up to higher orders in a,, where P, up to order a{ can be represented

by g — qg splitting up to order a.

Even by including those, our description for first order in a; would still not be
complete. We would need to include other processes like yg — qg. And analogous to
q — qg, it's possible to show that F,;, can be represented by g — qq splitting. In
general P;; can be represented by j — i parton splitting with the emission of a third
parton. [15]

If we go back to Figure 3.1 and the structure function Eq (3.1.27), We could go to
higher orders by taking multiple gluon radiation (ladder diagrams) into account. In
that case we will still have strong ordering of transverse momenta, which means that
the transverse momentum of the parton after each new radiation of a gluon will be
much larger than the previous. So we will get ordered nested integrals over
transverse momenta. [9] (p138)

3.2 Splitting functions

In this section we will discuss the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
[1] [2] [3] splitting functions more in detail. The start of this section be giving the
important general definitions and formulas again that involve the splitting functions,
what Feynman diagrams they’re related to and what their physical interpretation is.
This section will mostly focus on the leading order expressions of the splitting
functions, but at the end we will also give the next-to-leading order expressions.

3.2.1 Main definitions and importance of the splitting functions
The DGLAP splitting functions first showed up in our derivation of the DGLAP

equations. The DGLAP equations are the evolution equations for the parton
distribution functions (PDFs).
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1

d
=), f épij(x/f,am)ﬁ(e, 0 (3:2.1)

X

dfi(x, )
d(Inpu?)

Where P;;(x/¢,as(1)) are the splitting functions and f;(x,u) the PDFs. The splitting
functions are calculable in QCD as a series in orders of as.

Pij(z, a5) = Z (;Z_:z)n Py V(@) (3.2.2)

n=1

(Note that some sources define P;; and the DGLAP differently, by letting index n start

from 0 in the expansion, resulting in the appearance of an extra factor a,/2m in the
DGLAP or elsewhere.) In the way we defined the splitting function, the leading order
term is

PO (z,a5) = p“”( ) (3.2.3)

The DGLAP equation and the perturbative nature of the splitting functions, allows us
to calculate the PDF’s y scale dependence in perturbation theory, despite that the
PDFs are otherwise uncalculable. PDFs always relate to the long timescale physics,
and thus are in the unperturbative regime of QCD.

The splitting functions can also be defined via their relation to the anomalous
dimension yy;; from the Renormalisation Group. They are simply related to

eachother via a Mellin transform:

P (@s) = = [ dz 2Py (7, 050) (3.24)
0

Where we took a minus sign as convention so that the anomalous dimension would
have a plus sign in the Callan-Symanzik equation. (Note that a lot of sources define it
with the opposite sign.)

The splitting function also showed up in corrections for the structure function in
orders of a,:

Fy(x, Q) = xz eéf%fc,(f,uz) [5 (1 - g) + ;—;P;;’) @ In <i—z> + l (3.2.5)
q x

And also in the renormalized PDF:
p© w )4
fo G ) = fro () + 5= f ; fqo@)( (F)m (M?)) +C (€)> +oo (326)
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The reason for this was due to corrections from gluon emission. This also made our
first connection between splitting functions and a physical process. This idea that the
splitting functions appear in correction terms in physical quantities due to parton
emission, can be generalised beyond just quarks and beyond just deep inelastic
scattering (DIS).

An important thing to remember is that the splitting functions in leading order are
independent of the regularization or factorization scheme. The higher order terms on
the other hand, are dependent on regularisation and factorisation scheme, and are Q
dependent. [10], [9] (p99-105)

3.2.2 Physical interpretation of splitting functions

The splitting functions can be directly related to Feynman diagrams of parton
emission, or what we call “splitting”. The splitting function Pij(z, as(u)) describes the
probability for a parton j to go to a nearly collinear parton i (transverse momentum
squared much smaller than u?) by emitting another parton, with z the ratio of collinear
momenta for parton i versus parton j. Or in other words, the probability for a parton i
to be found in a parton j (with z the ratio of collinear momentum, and transverse
momentum being small). [9] (p109)

IR AR T% TF‘ ‘ékmm

© ©
qu P‘?Q

>

Figure 3.2: Leading order diagrams for the splittings functions. Time runs from bottom to top.

The probability is the norm squared of the S-matrix for a diagram.

The leading order (LO) splitting functions are directly related to observable scaling
violations (which is why they are regularization and factorization independent). For
example the measurable quantity dF,/d (In Q2). If we had exact Bjorken scaling, then
dF,/d (InQ?) would be 0, but we do measure scaling violation in this quantity. In

leading order (LO), dF,/d (In Q?) will be proportional to an LO splitting function, Pq(g)
in case of Eq (3.2.5), because in LO that is the only part that the derivative picks out.
(But for small x it will be proportional to Pq(g) instead, because at small x the gluon

distribution dominates over the quark distribution.) While in LO the scaling violation
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that can be observed in dF,/d (In Q?) is related to a LO splitting function, in next-to-
leading order (NLO) on the other hand, the relation between splitting functions and
observable scaling violations is not clear. In NLO this observable quantity requires an
integrated product between PDFs and more splitting functions (both LO and NLO
splitting functions). Because of this the observable quantity will not be proportional to
the splitting functions anymore when we assign a factorisation scheme. Thus in NLO
there is no longer a direct relation between splitting functions and observable scaling
violations.

3.2.3 Splitting function expressions at leading order

In this section we give the expressions for the leading order splitting functions, and
include some important relations and identities. For the calculations of the leading
order splitting functions; refer to [16], [9] (p109), [5] (p590-591).

First we define:

1 1

for0<x<1 (3.2.7)

f(x) fGO)-f@
fdx T Jd — (3.2.8)
DGLAP splitting functions in leading order:
1+ z2 3
PO@) =PL) = ¢ < A= t300- )) (3.2.9)
PP (2) = P2(2) = Te(2% + (1 - 2)?) (3.2.10)
1+ (1-2)?
PQ(C(I))(Z) = Pg(g)(z) = Cr <f> (3.2.11)
PO =26, [ —2— + 172 21— ) +<EC +3Tn>6(1—z) (3.2.12)
99 ¥ T A\ (1-2), ' z 6 4 3 RT -
(0 _ p(@ _
Py (2) = Pz, (2)=0 (3.2.13)
And remember the SU(N,.) factors:
NC2 -1 1
CA = NC ) F — ZNC , TF = E (3214‘)

The splitting functions satisfy the sum rules
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1
(0 —

fdz Py (2)=0 (3.2.15)

0

1
J dz z (P;f;)(z) oy (z)) =0 (3.2.16)
0
1
f dz z(2ns Py (2) + Py (z)) =0 (3.2.17)
0

3.2.4 Quark-to-quark splitting function in leading order

In section 3.1.2 we introduced the structure function for DIS up to 1% order in a, (Eq
(3.1.27))

F,(x, Q) = xZ eéf?fq(f,‘u) [5 (1 - ;) + ;—;P (g) In <g—22> + l (3.2.18)
q X

Where the 1! order effect came from the q — qg splitting. Now we will do the actual
calculation and look at this effect in more detail. In this section we follow the
calculation outlined in reference [9] (p100-105). We will also use the same momenta
parametrisation (but with k, instead of k;):

LSRR
k* = fp‘u + kJ_ + Tn” (3219)
d
d*k = —Edkzdzkl (3.2.20)
28
This means that we have as in [9] (p100-105):
k?| ki
p-K)P=0-O—F-—F (3.2.21)
s ¢
(k+q@)?=25p-q—Q*—|k?| —2q, k, (3.2.22)
For the the Feynman amplitude we get [9] (p100-105):
1
MH# = —igeqﬁ(l)y";svy"t“‘u(p) (3.2.23)
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Where e, is the quark electric charge, u and @ are the quark’s spinors, and ¢, the
polarisation of the gluon.

We will use the optical theorem:

> = 2lm

Figure 3.3: Optical theorem for quark-to-quark splitting.

This gives us an averaged squared Feynman amplitude. We define the notation

|M |2, as the average of the | M |7, over colours and spins. Converting the Feynman

diagram into math yields [9] (p100-105):

M2—122 CeTr(y” # ay esyP)— 3.2.24

MGy =5 edg PTe(r (K +d )y kear B epyF) iz (3224
pol

Where we have the colour factor Cr

For the sum over the polarisation of the gluon, we use [9] (p100-105):

n,n, +n,n
> e () = —g + (3.2.25)
pol
This is what we call a projector. When we apply this projector, only two physical
polarisations will propagate, the transverse polarisations. This is the case cause we

now have bothe-r =0and ¢-n = 0. [9] (p100-105)

If we apply this projector in Eq (3.2.24), we can write the following expression for the
Feynman amplitude [9] (p100-10):

Lo vIM|Z _ Beqas P 3.2.26
Where the function P is defined as
1+ &2
P($) =Cr7 _2 (3.2.27)

The function P(§) is Pq(g) (&), the coefficient in the leading order term of our quark-to-
quark splitting function P%” (&, a;). (Ref [9] p100-105)) Using the convention we
made in section 3.1, we have
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““@,a- Pmka P@) (3.2.28)

We only used the diagram in Figure 3.3, taking other diagrams into account as wel
would just result in an extra term in Pcfg)(f), a term that is proportional to §(1 — ¢),
Ref [9] (p100-105). So we can make the replacement

PO » P +Ks(1-§) (3.2.29)

And so we have

2

In general, this function does not allow for baryon number conservation (quark
conservation). This can be seen by plugging the splitting function into Eq (3.1.26)

+K8(1—9) (3.2.30)

2

f001) = fr000 + g—;fgfqo(é) <P (;) In (Z_S> i C (;)) b (3231)

In order to have conservation of baryon number, the solution is that the integral of the
new splitting function in Eq (3.2.30) will be 0

2
] g PO (§) = j d& (cF 11+_i +K&(1— f)) =0 (3.2.32)
Integration gives
3
K=Cs (E +1In(1 - E)|5=1) (3.2.33)

There is a logarithmic singularity for ¢ = 1. This issue has been solved by defining
the function

11
1-x), 1-—x

for0<x<1 (3.2.7)

Which has the integration property

1

0 [ fOO—fQ)

This trick will help us solve the integral by replacing 1/(1 —-¢) by 1/(1 - &), in the
splitting function. In other words we define the splitting function as

1+ ¢&2
( -84
122

PO(&) = +K5(1-¢8) (3.2.34)



We will now try again to performing the integral, and equating it to 0. This time we get

1
f d§ PP () = K + Cp
0

3 3
=K—Cpfd€(€+1)=K—ECF=K——CF=O
0

2
(3.2.35)
Which means
3
K=>Cr (3.2.36)
So our splitting function Pq(g) (&) is equal to
PP©) = Lk S 6(1 3 (3.2.9)
(1 $)+

3.2.5 Collinear divergences

Our splitting function Pq(g)(f) exhibits a singularity for ¢ = 1. Setting this value for ¢
means that the emitted gluon is collinear to the parent quark, or in other words, the
transverse momentum k; = 0. This is what we call collinear divergence. And unlike
divergences in the UV, for which we can for example introduce a maximum
momentum (cut-off), we can’t do the same in the limit to small momenta. Taking the
limit k2 - 0 is equivalent to the long distance force in QCD, [9] (p100-105). Long
distance effects in QCD are nonperturbative, so we cannot calculate this (atleast not
in perturbation theory).

We can now take the original quark distribution function, and consider it a bare
distribution, and then define a “renormalized” distribution function which absorbs the
collinear singularity. Absorbing the collinear divergence will be done at a scale p,
which we refer to as the factorisation scale. We get for the “renormalized” quark
distribution function (Ref [9] p100-105), which is a function we also introduced “ad
hoc” (together with collinear singularities) in section 3.1.2, the following expression:

faGo ) = fao(x) + ;_;fgfqo(f) <P (9 In <Z—;> +C (g)) 4+ (3.1.37)

And with this, the structure function (for hadron target) is equal to [9] (p100-105):

Fy(x,Q) = xz eqf ; f & u)l +2—P(§>ln<g—22> + l (3.1.38)
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This idea of “renormalisation” of the distribution function, is similar to renormalisation
of the coupling strength, or renormalisation of other parameters in the Lagrangian.

The “renormalized” quark distribution function f,(x,u) cannot be calculated from
(perturbative) QCD, not even from first principles, because the long distance effects
from QCD contribute to it. In other words, f,(x, ) is nonperturbative. We determine
the quark distribution function from experiments. The same is true for the other
partons their distribution functions. All the PDFs will be nonperturbative, and need to
be determined from experiments instead. However, there is one thing about the
PDFs that we can calculate from perturbative QCD: the p dependence. This is done
by using the DGLAP equations (see section 3.1).
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4 TMD Gluon-to-quark splitting function

In this section we will discuss and calculate the transverse momentum dependent
gluon-to-quark splitting function. The calculation in this part is mostly based on 3
papers [17] [18] [19] [28]. Many of the concepts, conventions, notations and choices
will be similar to those in the 3 papers. (An additional paper [20] was very briefly used
to add a bit more to the understanding of some concepts.)

4.1 Collinear vs transverse momentum factorisation

Up till now we have only considered DGLAP equations and splitting functions in the
collinear factorisation scheme, in which the incoming parton is considered to be
collinear with the momentum of the hadron, k = yp. The transverse momentum k| is
set to 0. However, even in the collinear factorisation, effects from the transverse
momentum still appear in higher order corrections. In case of the 1% order correction
we discussed in chapter 3, Eq (3.1.27), the In(Q?/u?) in the structure function
F,(x,Q) comes from an integration over transverse momentum of the form Eq
(3.1.24), which we can also write as

de 2 2 ZX
L (L) o (L) - (M2 (4.1.1)
ki HoX u? u?
if we would work with a momentum cut-off both at low and high transverse
momentum [9] (p99-105). The cut-off u3 at low transverse momentum helped to treat

the collinear singularity. If we would do the integration by dimensional regularisation
instead, it would give something of the form Eq (3.1.25):

(kcgis ~ (— %) (4.1.2)

Where € < 0.

But what if we want to take the exact effects from transverse momentum into account
already at leading order? Such a treatment will lead to what we call transverse-
momentum-dependent (TMD) splitting functions and TMD PDFs (parton distribution
functions), which are also called “unintegrated splitting functions” and “unintegrated
PDFs”. TMD splitting functions and PDFs are naturally related to a hierarchy of
scales in the phase space. [19]. For example, when we look at the situation for which
we have the scale hierarchy § » M? » Agcp , with M? the hard scale and § the COM
(center-of-mass) energy squared, we will have large In($/M?) logarithms that can
compensate the small ag (which is small because we are in the perturbative region at
high energy scale). It will be necessary to do a resummation of terms in
(as/In(8/M?))™ to all orders [19]. This was done by Balitsky-Fadin-Kuraev-Lipatov
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(BFKL) evolution equation [24-27]. The BFKL equation is based on a factorisation in
the high energy limit § > M?, the “high energy factorisation”. In this factorisation
scheme, structure functions and convolutions are automatically factorised into k;
dependent factors and the BFKL Green’s function. [19] The shortcoming of the high
energy factorisation, is that it is limited to the low M? /3§ regime. A series of problems
arise when trying to extrapolate it into the intermediate and higher M?/$ regime. [19]
For example elementary vertices that violate energy conservation, and quark
contributions arising only in next-to-leading order (NLO). [19]

To do better, a resummation could be done which restores the DGLAP splitting
functions. In essence, DGLAP preserves conservation of longitudinal momentum,
while BFKL preserves the conservation of transverse momentum. [19] Attempts to
unify DGLAP with BFKL already resulted in resummations which are stable in the low
and intermediate M?/$ regions up to M?/5~1072. [19] Matching the collinear and
high energy factorisations will be done by the k, factorisation scheme. We will use
the same approach as in the references [17] [18] [19] [28], which are based on the
Curci-Furmanski-Petronzio (CFP) formalism [29] [17]

4.2 2P1 kernels, Green functions and projector operators

We will now explain the approach to arrive at the Feynman diagram that we will use
to calculate the TMD gluon-to-quark splitting function. It is based on the approaches
of the references [17] [18] [19] [28]. Consider a single incoming hadron, we can
define a dimensionless cross section

F(x,Q*)~Q%a(x,Q?) (4.2.1)

The dimensionless cross section is factorisable, just like the cross section and the
structure functions:

1
F(x,Q%) = Z f dz Ci(x/z,as(up), Q*/ud) fi(z, ud) + 0(A4cp/Q?)  (42.2)

With f; the parton distribution functions and C; process-dependent coefficient
functions, analogous to those of the factorisation of the structure functions. uy is the
factorisation scale, and is arbitrary as long as uf >» Ajcp. The dimensionless cross
section is independent of this factorisation scale. This means, just like with the
structure functions, the ur dependence of C; cancels the ur dependence of f;. We
can treat F(x,Q?) in the exact same way as we treated the structure functions

Fi(xJ QZ)

We will now briefly discuss the factorisation schemes that are used to reach the
calculation of the gluon-to-quark splitting function.
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4.2.1 Collinear factorisation

For collinear factorisation we will use the technique by Curci-Furmanski-Petronzio
(CFP) [29] [17]. The dimensionless cross section can be factorised in the following
way:

- 7

G @ 2D
;\__‘_V (mhdﬁlg IF . )
L -1—|-4-~\
F\'m

(]
/“v

f"‘\

;-T“/

'1{ AJ/

Figure 4.1: Factorisation of the dimensionless cross section F in terms of partonic cross sections and
parton distributions. Time runs from bottom to top. Figure from [17] (p483)

F(x,Q2) = fF<0>(...,p)f<0>(p,...)+ U FOUpip) 2 (p1pa; ) + ] (4.2.3)

Where F©), F(O) . are the dimensionless partonic cross sections (analogous to the
parton structure functions, which are for a parton as target), and f©, f(o), . are the
parton distribution functions. Both the F(© and £ are considered bare quantities.
[17] With the notation [AB we mean a convolution between A and B, which

integrates over all internal momenta, and sums over all spin, colours and
intermediate particle species.

Then we apply dimensional regularisation, to a D = 4 + 2¢ dimensional spacetime.
This will introduce a regularisation scale u. When we renormalise F(®, we
automatically regularise collinear singularities into single poles in 1/e. [17]
Factorisation allows us to substract those poles from F© and it also allows us to
factorise them to all orders of a; into independent transition functions I'. [17] This can
be done according to:

FO® = f cr (4.2.4)

Where C is the coefficient function, which is finite for ¢ - 0. We use the transition
functions to define the “physical” parton density [17]:

f= jrf@) (4.2.5)

This recovers the factorisation formula at the start, Eq (4.2.2). [17]
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We now choose a momentum parametrisation to simplify things. We will use
Sudakov parametrisation, with incoming parton momentum p#*, and any other
momentum k#

p* =P(1,0,1), p*=P(1,0,—-1) (4.2.6)
k* + K?
H— u H U u_
k zpt + k| + ZZp.ﬁp , ki =1(00k0)

and for the gauge choice we will choose the axial gauge 0 - A, which is a physical
gauge. This gauge choice can also be expressed as p - A = 0. The summation over
gluon polarisations is given by

i k,p, + p,k
dyy = Z &y = —Guv + % (4.2.7)

pol

We will now expand F© in two-particle irreducible (2PI) kernels € and K@ [17]:

F© =fc<°>(1 £ KO 4 KORO 1 .) = fc(o)(;(o) 4.2.8)
o -1 _ (4.2.9)
1=KO 2

With ¢ the bare Green function. In the axial gauge we are working, there are no
mass singularities in the two-particle irreducible (2Pl1) amplitudes, and thus all
collinear singularities originate from integrations over the momenta coming out of the
kernels K and connecting them in the bare Green function ¢(©. [21], [17] We can
introduce a projector operator P, (collinear projector operator) which will give us the
factorisation formula Eq (4.2.4). This projector operator will decouple ¢ and ¢© in
the spin indices. It will also decouple them in momentum space by extracting the 1/¢
poles. [17] We can write for each kernel:

KO = f (@ =P )K® + 2 K©) (4.2.10)

Where all the singularities are in P, K©@. If we now apply this in an iterative way, we
get [17]:

GO = j GI (4.2.11)

Where all 1/¢ poles are substracted from G, the “renormalized” Green function [17]:

1
G =
1- (-7

KO = 1+ J(l — P KO + j(1 — P KO - P KO + ...
(4.2.12)
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And for the transition function we have [17]:

1

r=————
1-[P.K

= 1+jiPCK+JiPC KP. K + - (4.2.13)
Where the kernel K is equal to

K= fK(O)G (4.2.14)
Then the coefficient function C in the factorisation formula Eq (4.2.4) equals

C =fc<°>c; (4.2.15)
The projector operator can be expressed as P, = P Q P2 (Ref [17] p484), with P2

and P¢ respectively the helicity and momentum space projectors.

Given two kernels A and B, connected by a parton with momentum k. The action of
the helicity space projector PZ on the helicity space, when the connecting parton is a
quark, is equal to [17]:

[0 = [aun (3], , (7)o 216

When the connecting parton is a gluon, the action of PZ will be [17]:

#IVI
j APEB = ] Ayrr— (=g"")Buy (4.2.17)

Which contains the sum over gluon polarisations, which is given by Eq (4.2.7). The
momentum space operator P§ will set k¥ = zp# on A, and perform a k-momentum
integration up to the factorisation scale ur on B. It also extracts the 1/¢ poles. [17]
Once P¢ is uniquely defined, it completely specifies the factorisation scheme.

A very common factorisation scheme is the MS scheme (Modified Minimal
Substraction scheme). In this scheme, the transition functions have the expression
[17]:

h
1 (da
Fanw = [Peewp | £ [ Sy (42.18)

0 ab

With y, the anomalous dimension, and with h = a,(uz/u?)éS, , where S, is an e-finite
factor.

The effect of the projectors can be represented by the following Feynman diagrams:
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Figure 4.2: Effect of the projector operator P, on the spin indices of kernels A and B, in case of (a) a
quark and (b) a gluon. Time runs from bottom to top. Figure from [17] (p485)

4.2.2 Factorisation at high energy

While in collinear factorisation we only had one scale, @2, we will have two scales Q2
and s in high energy factorisation. High energy means that x = Q2/s is small. We can
do a Mellin transform between x-space and N-space (Eq (3.1.2) & Eq (3.1.3)), and
small x will mean small N. Just like in the collinear case we have that a, is small.
Since both a; and N are small, we will keep a;/N fixed. Unlike in the collinear case,
we cannot expand in powers of a; now. Instead we need to expand in ag/N.

For factorisation at high energy, we can also use Sudakov parametrisation, axial
gauge, dimensional regularisation and 2Pl kernels again. It is the k-integration from
the gluon Green’s functions c;;? that generate the large perturbative (a,/N)*. [17]
This means we will specifically use kernels that are two-gluon irreducible (2Gl).
These kernels will be transverse momentum dependent (TMD). Multiple gluon
exchange will generate logarithmic high energy (or small x) contributions [17].
Expansion in 2GI will allow us to perform a power counting at high energy.

We now want to decouple the 2GI kernels and the gluon Green’s functions while
keeping a,/N fixed. [17] k, factorisation can extract leading high energy behaviour,
by the use of the k;, dependent projection operator Py [17]:

0 0
f%@g=j%%@;+m (4.2.19)

where A, is the kernel. Similar as with the collinear projection operators, Py this
projection operator can be expressed with a momentum space projector and a
helicity (spin) projector, as Py = P ® P;;. Diagrammatically, the action of the
projection operator will be the same as Figure 4.2. However when it comes to the
formulas, the action will be different than the collinear case. The action of P} will be
[17]:
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i Kk ,k /
f ASPLGSD = j AEY “‘ — Y (~ ) GO (4.2.20)
This time we don’t sum over all polarisations, but only over klu,klv,/kz.

Pf will set k* = zp* + kil on 4, , and on Gg(z) it will perform an integration over k? at
fixed k,. [17] The 2Gl kernel has to be evaluated with an incoming gluon that is off-
shell (k? = —Kk?).

Since P, is a true projection operator (P3 =Py), we are not neglecting any
contributions of order (a;/N)*e. It also has the property Py 2 P, (and Py = P, if
k, =0). [17] This means that consistency between collinear and high energy
factorisation is guaranteed.

The high energy factorisation leads to a resummation of logarithms In(s/Q?). This
resummation leads to the BFKL equation. In the BFKL equation we only use the
unintegrated gluon distribution function because it is the only parton distribution
function that picks a,/N. This is considered the lowest log high energy factorisation.
In next-to-leading log, we would have to include quark parton distribution functions as
wel.

If we compare the collinear and high energy factorisation schemes, collinear
factorisation does only a resummation of In(Q2/u?), while high energy factorisation
does only a resummation of In(s/Q?). Trying to merge the two factorisations is
nontrivial, and requires TMD splitting functions.

4.2.3 BFKL equation

The resummation of logarithms In(s/Q?) in high energy factorisation leads to the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation. The BFKL equation in
Mellin transformed space, and in d =4 + 2¢ dimensional regularisation, can be
expressed as [17]:

Aas d2+2£q 1
(2ru)?® q

FON,K, ag, u, €) = §@+289) (k) + [T(O)(N K—q,a,u¢)

k- (k-q)

&= FO(N,K, a,, 1, e)l (4.2.21)

With FO(N, K, a,, 1, €) the N-moment unintegrated gluon distribution function in
Mellin transformed space, and where the boldface letters are defined as

Y =(00Kk0), g¢}=1(0q,0) (4.2.22)

The momentum q is internal in the kernel.
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Figure 4.3: The corresponding diagram for the BFKL equation. Time runs from bottom to top.

The unintegrated gluon PDF can also be interpreted as an unintegrated gluon
Green’s function:

0 _
Gy = f dk F© (4.2.23)

With Gg(g) the gluon Green'’s function. Resummation of terms in (ag/In($/M?))" to all

orders results in the following solution for the gluon-to-gluon anomalous dimension
[17]:

yN,gg = VN(as) + O(QS(aS/N)l) (4'2'24)
With yy (a,) the solution of the following implicit equation:

Caas
1=
N

x(yn(ay)) (4.2.25)

Where the function y can be expressed in terms of the Euler y-function:

1 (o]
xW) =291 -y -y -y) = )—/(1 + z 202l + 1))/21*1) (4.2.26)
=1

Where ¢ is the Riemann {-function.
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Figure 4.4: The characteristic function y. Figure from [17]

Eq (4.2.26) results in the following power series for the anomalous dimension [17]:

o]

) = Y () = % g ()" 2505 (G) o (2 )

n=1

(4.2.27)

Note that powers of 1/N correspond to powers of In(1/x) via Mellin transformation,
and remind that In(1/x) is equal to In(s/Q?). Remind that the anomalous dimension
vn(as) is the Mellin transform of the splitting function, Eq (3.1.17). This means we get
the following solution for the BFKL gluon-to-gluon splitting function:

CA as CA e
nz Vi

4
1
+ 2{(3)( ) ;(m(z)f + e (4.2.28)

Pyy(z,a5) =

The first term is the leading order DGLAP term. The second term is the first BFKL
correction, followed by the rest of the BFKL series.

The shortcoming of high energy factorisation and BFKL, is that it is limited to the low
M? /3 regime. Problems arise when trying to extrapolate it into the intermediate and
higher M?/3 regime. [19] For example elementary vertices that violate energy
conservation, and quark contributions arising only in next-to-leading order (NLO). [19]
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4.2.4 Kernel for gluon-to-quark splitting function
The quark Green function has the following expansion in 2Gl kernels [17]:
0 _ 0) ~(0)
Goo = f K Gy (4.2.29)

By applying the high-energy factorisation formula Eq (4.2.19), it is possible to get the
following k, factorisation formula [17]:

1
dy [ Kk
G (q.p) = f d?+2ek f —<K(§2)“B (4.p) —f{;) FO(y, K ag pe)  (4.2.30)
y k=yp+k
0 L

With 1?523 the off-shell kernel and F© the unintegrated parton distribution function.

When it comes to Feynman diagrams, the high-energy factorisation results in the
following diagrams for the gluon-to-quark Green function:

(@

k(0)

(v)

Figure 4.5: (a) High-energy factorisation of the gluon-to-quark Green function G,
(b) The corresponding off-shell kernel I?qg

Time runs from bottom to top.
Figure from [17] (p498)

Figure 4.5, which is from [17], and more specifically the lower right diagram (figure
4.5(b)), will be the starting point of our actual calculation for the gluon-to-quark
splitting function. We now have the analogue of the k, -factorisation formula, Ref [17]
(p498, 4.2)

For the gluon-to-quark kernel we have
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ng~f[dq]ﬁqg (4.2.31)

With qu an unintegrated (TMD) splitting function. The notation above means that it
integrates over unintegrated momenta or angles depending on what you want to
average over. For example this could be the fully unintegrated TMD splitting function,
or the angular averaged TMD splitting function, etc. Typically this will at least be an
integral over the transverse momentum q,, but possibly also over angle and other
variables.

4.2.5 Identifying splitting functions in Kernels

We can express a TMD kernel in the following way, while doing dimensional
regularisation [19]:

. kZ d(qZ)d2+2£q — )
K;j <Z'F'€' as> = ZIWQ(M?D +q?) Piin @ Kj5 (0. k) @ Piour  (4.2.32)
With I?i(jo) the squared matrix element for a parton of type j going to a parton of type i.
uz is the factorisation scale, and @(u2 + g?) ensures that u2 + g2 remains larger than
0. Finding the splitting function comes down to identifying it in the integral expression
for a kernel K;;. The equation that relates K;; to P;; is generally of the form

K-pf[dq]ﬁu (4.2.33)
For Eq (4.2.32) we have [19]:
N k2 a e €VE d2+2£q ~(0)
Ki; <Z'ﬁ'€' aS) AT jn1+£quij O (s +4%) (4.2.34)

With F’ig.o) the TMD splitting function (LO coefficient in the a, expansion for the TMD
splitting function)

In the next section we will calculate the pO

wg Splitting function.

4.3 From Feynman diagram to splitting function

We discussed the factorisation schemes and how they can be realised by projection
operators, and that the projection operators we introduced are consistent with
eachother despite different factorisation schemes. This will be used to extend the use
of projection operators to a situation where we take the transverse momentum into
account from the start to the end, and which can work in the small x regime as wel as
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the collinear regime. This section will contain the detailed calculation of the TMD
gluon-to-quark splitting function. During the calculation, we will do dimensional
regularisation by working in a general dimensional spacetime.

4.3.1 Optical theorem and applying Feynman rules

The gluon-to-quark splitting function’s kernel corresponds to the diagram:

Figure 4.6: Gluon-to-quark splitting. (Time runs from bottom to top)

We will refer to this diagram as Y. The lower right diagram of figure 4.5 will be
referred to as H. Due to the optical theorem [5] (p232-236) we have, conceptually
represented, the following relation between the two diagrams:

fdnlle = 2Im(H) (4.3.1)
And expressed with the T-matrix this becomes

IT,mq|” = 2Im(T () (4.3.2)

With T,_,, the T-matrix for the Y diagram, and T(H) the T-matrix for the H diagram.

Letuscall T :=T(Y) = |Tg_>q|2, T' := T(H) , and we can also write it as
T = 2Im(T") (4.3.3)

We can express the S-matrix for the process as S’ =1+ T’ , where 1 is the identity
matrix. We have

(final|iT" |initial) = (2)*5 (Z Kinieial — Z Kenar) i (4.3.4)

We will now calculate the H diagram, which relates to the Y diagram via the optical
theorem. The Y diagram corresponds to the gluon-to-quark splitting function.
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Figure 4.7: More detailed version of the H-diagram, corresponding to the off-shell kernel I?qg. (Time
runs from bottom to top.)

As illustrated on figure 4.7, the external particles will be off-shell. The only on-shell
particle is the intermediate quark, which is on-shell due to the optical theorem, [5]
(p232-236). The momentum conservation requires k —q = q' — k' , and we have for
the matrix element:

(q,q'1iT'|k, k') = 2m)*6(k + k' — q — q)iM’ (4.3.5)

We use Sudakov parametrisation:

2 2

q +q
2xp.p

kt=yp* + kY, g =xp* +qf + pr, z=2x/y (4.3.6)

k' =(0,k0), p*=P(1,0,1), p*=P(,0,-1), ¢"=(0q0)

In this chapter, the symbols that are boldface are not three-momenta, even though
they are similar to three-momenta. In fact, they are actually two-momenta, which is
why we will also represent them as boldface symbols.

There are several properties and relations among the momenta:
k?=k?=-Kk? p?=0, p*=0 (4.3.7)
kiky =k%, kiqu=kiqy, kip,=kp,=0, qip,=4d\9,=0
We also define the boost invariant transverse momentum

q=q—zk, g*=q"*—zk* (4.3.8)
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Due to the projector operators, we will have to take the external quarks their
propagators into account as well.

For the off-shell quarks:

it i6"(d +m)
(9) f—mii Comitie (4.3.9)
, i85 67" (-4 +m
S(=q) = _ o7 )

—f —m+ie  q°-m?+ie

For the on-shell quark, we can apply Cutkosky cutting rules thanks to the cut
provided by the optical theorem, [5] (p232-236):

S(q—k) = —2mis" (4 — ¥ + m—ie)d((q — k)? —m?) (4.3.10)

Now we write the expression for our gluon-to-quark splitting function kernel, and this
for a general dimension (for dimensional regularisation). In a D = 4 + 2¢ dimensional
spacetime, we have the following integral expression for the kernel:

1 d(qd)

a =73 | Goyrae ) TPy (P ou(@iM) (4.3.11)

g,in

With 2*¥ (k) and P,0ut (@) the projector operators that connect the two gluons at the

g,in
bottom of the diagram, and connect the two quarks at the top of the diagram. (Fig
4.5) The Feynman amplitude M’ will be averaged over spin, polarisations and
colours.

From the Feynman rules we find the following expression for M":

iM' = S(@)igy,TiS(q — k)ignTy;S(—q") (4.3.12)

4.3.2 Projection operators and trace

We will now define X to be the product of the propagators and the vertex factors, and
with the projector operators acting on them:

X =P (k)P ouc(@Q)iM’ (4.3.13)

g,in
= “Pgl,llyn(k)?q,out(Q)S(Q)ig]/ﬂTi‘llS(q — k)igyv’]"ll,’js(_q')
i
= —?gl,l;%(k)?q,out(q) m igy#Ti?Zni(q -k +m)-
i
-8((q - k)? - mDigy, T} —————
-4 ' —m+ic

138



This means we can write the splitting function kernel as

= 1 d(q?)
a9 = E Wj d2+28qLTT'(X) (4‘314‘)
For the projector operators, we will use the choice of Catani and Hautmann [19] (eq

(43)) for k¥ = ypH + k"

klikv 6ab
v -+t L -
Py in(k) = K NP =1 (4.3.15)
P = P 6;i0 4.3.16
q,out(CI) —% ij%q,—q ( 9. )
ab
The factor 152_1 arises because we will sum over the gluon’s colour indices. If we

would keep a = b fixed from the start, then this factor wouldn’t be needed.

Plugging this in X and carrying out some of the index contractions, gives us

2 Hiv
g Kk 1
2 2 a 1
6((q — k) —m)y, T ————
d —m+ie

After rewriting this by changing the order of some factors, and using the rightmost
forms of Eq (4.3.9), we get

ng? . p 8((q—k)?-m?)

X =i—2  TATS
"Nz 1 T G2 T(q2 — m2 1 ie)?

(d +m)k (d —k +m)k (4 +m)

(4.3.18)

Remind that we cannot simply change the order of factors that contain gamma
matrices (this also includes the factors that have a slash through). We also need to
keep the order of the group generators, but in this case it doesn’t matter because it
happens to be symmetric. We use

TqT; = CpN = Tp(N? — 1) (4.3.19)
, and Xis now equal to

2T 8((q — k)? —m?) —
- iT;gz_ﬁq ((ég_m)z +i$2)¢ (4 +m)k (4 —K +m)k (4 +m) (43.20)

We are dealing with ultrarelativistic quarks. This means we can approximate m =0,
for both the on-shell and off-shell quarks. We could have done this from the start,
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especially since we already knew we are working in the infinite momentum frame and
all masses are negligible compared to the hard momenta involved. But for the sake of
being more general, the mass was kept until this point. After setting the mass equal
to 0, our expression will become

2T, §((q — k)?) —
B iigiﬁq ((c§g+ is;Z)F‘ dk, (4 — Kk 4 (4.3.21)

We will need to take the trace of this if we want to calculate the splitting function in Eq
(4.3.15). We will define a function Z that only deals with the gamma matrices
(contracted with momenta) and the trace:

z=Tr(pdk, (4 Kk, d) (4322)
This means we can now write Tr(X) as

2T. 8 — k)2
Tr(X) = iﬂgz Tr ((g] . )2)
kipq (g2 +ie)

(4.3.23)

Calculating Z will require the use of trace identities for the gamma matrices. The
ones that we need are [5]

Tr(ABC D) =4((AB)(CD) — (AC)(BD) + (AD)(BC)) (4.3.24)

Tr(ABCDEF)=4(AB)((CD)(EF) — (CE)(DF) + (CF)(DE)) (4.3.25)
—4(AC)((BD)(EF) — (BE)(DF) + (BF)(DE))
+4(AD)((BC)(EF) — (BE)(CF) + (BF)(CE))
—4(AE)((BC)(DF) — (BD)(CF) + (BF)(CD))
+4(AF)((BC)(DE) — (BD)(CE) + (BE)(CD))

These specific relations don’t involve contraction between gamma matrices
themselves, only contractions between momentum and gamma matrix. Because of
this, these relations are independent of the dimension.

Using these trace identities in Z will lead to
z=Tr(pek, (4 — Kk, 4) (4:3.26)
= 4{2(0)[2(qk ) (k.(q = B)) = (a(q — ))k}] = 2(pk ) q*(ko(q - K))

+(p(a - k))a’k?}

= 4{k () (a2k — @) — kiq*BK) + 4@ (kLa)(kL(q — k) — 2q* Bk ) (ki(q = ©))}
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We will use the properties of the parametrisation that we use, from Eq (4.3.7) we
know

k k= ki» kiq=kiq,, kip=k,p=0
This means that for our Z we now have
Z = 4{ki(pq)(2kq — q* — 4k, q,) — k3q*(@k) + 4(Ppg)(k1q,)?}  (4.3.27)

From our parametrisation we can also deduce the following relations:

pk = ypp + pk, = ypp (4.3.28)
q*+q°

_ L

pq =xpp +pq. + 2. p p° = xpp (4.3.29)

Because pk, =pq, =p* =0
Substituting this in Z yields

Z = 4pp{ki[x(2kq — q* — 4k, q,) — yq*] + 4x(k q.)*}
1
= 4xpp (kf <2kq — (1 + E) q* — 4k¢¢1¢) + 4(’&%)2) (4.3.30)

Where in the last expression we used z = x/y

Another relation we have from our parametrisation, is

2 2
q +q
= 4.3.31
kq =k, q, + 7 (4.3.31)
So now we can write Z as
qZ

Where we have changed the factor xpp back to pq. Now that we have done the trace
part, and simplified by using the parametrisation, we insert Z into Eq (4.3.23):

mg®Tr 6((q — K)*)

Tr(X) =
r() “i2pq (@ +ie)?
0((q - k)?) <q2 (kJ_CIJ_)Z
= 4mig?Ty ———— (= — 2k, q, — q* + 4 (4.3.33)
Fg?+ie)2 \ z L k2

We can choose to express Tr(X) either in k;, and q,, or in k and q, via the following
relations that we have from the parametrisation:

k*=k?=-K?, q?=-q%, k,q, =-Kkq (4.3.34)
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Remember that k and q each are “two-vectors”, so each have 2 components in the
same plane. If we express Tr(X) in k and q, we have

§((q —k)?)
(g% +ig)?

2 k 2
Tr(X) = 4mig?T 1, 2kq — g% — 4( Y > (4.3.35)

z k?
If we work out the argument of the delta function, we get

z—1 2
5((q = k)?) = 6(q% — 2kq + k?) = & <Tq2 K2 q7 + 2kq> (4.3.36)

We will now use the following property of the delta function, which will allow us to
rewrite Tr(X) in a way that will be usefull when we integrate it:

6(ax) = ﬁ(?(x) (4.3.37)

This means we have
2

1—2z

z—1 q° Z z
2 2 2 2
6( | -k - +2kq)—|—1 Z|6<q +1 Z(k 2kq) +

) (4.3.38)
Since 0 < z < 1, we can leave out the absolute values. Using the expression above,
we can write Tr(X) as:

q° (kq)? ,

2 +2kq—q*—4
Z k2 2 Z 2 _ q
1-2z (g% + ig)? 6<q -I_l—z(k qu)-I_l—z

Tr(X) = 4mig?Tr

(4.3.39)

4.3.3 Integration over g?

Now we go back to the expression for the splitting function kernel, Eq (4.3.14):

1 d(q®
Keg =5 f % f d***q, Tr(X) (4.3.14)

We will plug Tr(X) into Eq (4.3.14), and first perform the integral over d(g?). The
kernel will now be expressed as

_ 1 d2+2£qj_

qg = E W (4340)

Where we introduce the integral I which we define as:

142



2 2
[ = | d(g>)Tr(X) = 4mig?T z d(q? q7+2kq—q2—4(l;(qz)
_f (q)T'()— ng Fl—Zf (q) (q2+i€)2
) 2+L(k2—2k)+ : (4.3.41)
712 Vri—; h

We will now solve this integral. Note that there are no other denominators aside from
1/(q? + ie)?, and we can take a contour in a way that £ wouldn’t matter. So we will
have to solve the following integral:

2 2
Lz , q7+2kq—q2—4(l;{qz)
I = 4mig TFl_Zfd(q) o
5(q%+ z (k? — 2kq) + @ 4.3.42

If we integrate now, the delta function will set its argument to 0 , which means

2

z q
24+ —(k?2-2k = 4.3.4
q°+ 17— ( Q+—,=0 (4.3.43)
This gives us the following expression for g2
s kg ol G kq) g (4344)
=71 VT 1771 vrd e

And for the integral we now have

2 2
z 2 q 2z—1 _ (kq)
- T—ZK Tza—p 27T K4
I =4mig TFl 2 >
o 1
<Z — (2(k? — Zkq) + qz))
2
z’k? + q* — 2z(2z — 1)kq — 4z(1 — z)(l;(iz)
= 4nig?Ty (4.3.45)

(z(k? — 2kq) + q%)?

4.3.4 Identification of the (unintegrated) splitting function

For the remaining integral for the splitting function kernel in Eq (4.3.40), we will use
the boost invariant transverse momentum that we defined earlier (Eq 4.3.8), and
change from g, to q

d=q-zk, §*=q"—zk"
Doing this substitution in Eq (4.3.45) gives us the following expression for I
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2
22k? + q% + 22(1 — 22)kq + 4z(z — 1) (kq)

I = 4mig?Tr
" (2(k? — 2kq) + q°)?
Amg*Tr 2 212 (k q)
(z(l C K 1 402 4z2(1 —2)’k? + G% + 4z(1 — 2)(1 — 22)kq + 4z(z —
(4.3.46)

The substitution q = q — zk will result in

d?*2%q, - d***°q = [q|'***d |qld ;42 (4.3.47)
Going back to the expression for the kernel Eq (4.3.40), we now have:

> 1 [ d***q, 1 d***q 1 (d|qldRo

And plugging in the expression for I from Eq (4.3.46) into Eq (4.3.48) yields

d |qldy. 2, |q|**%

Kog = 19°Tr (2n)3*2  (2(1 — 2)K? + q2)2 [42%(1 - 2)°k* + @° +

+4z(1—-2z)(1 — 22)kq + 4z(z— 1)

(kq)?

12 (4.3.49)
When we do dimensional regularisation in the MS renormalisation scheme, we have
the following expression for coupling g, [19]:

gz as e_gyE

2(2m)3+2e T A mitey2e (4.3.50)

With y; the Euler-Mascheroni constant.

If we plug this into Eq (4.3.49), we can rewrite the kernel as

e_SVE

~ . . B |'q«|1+2£
Kyg = iTp 77T2+—£H28f d |qld2z42¢ (z(1 — 2)K? + §?)2

[4z2(1 — 2)?k? + G* +

~ (k@)?
+4z(1-2)(1 - 22)kq + 4z(z — 1) — (4.3.51)
We identify the unintegrated splitting function in the integrand of Eq (4.3.51):
7 e e rdlq| _ 5 ~
w0 = 25 | Tl 1§12 d 025423 (2, k, @) (4.3.52)

The unintegrated TMD gluon-to-quark splitting function:

144



=12

5(0) ~ 1q]

P k =T
@@ =Tr Gk 1 902

g [4z2(1 — 2)?k? + §°® + 4z(1 — 2)(1 — 22)kq +

(k@)?
+4z(z —1) 12
lql* ) , K kq (k@)?
=Tr = DK + q0)2 1+4z°(1—-2) §+ 4z(1—-2z)(1 — 22)¥+4z(z— 1) K7q?
(4.3.53)

Note that when we turn a; and the factors due to dimensional regularisation, back
into g, the only factors in front of the integral are ig?T:. The i just originates from the
factors in front of the propagators, and g2 originates from the vertices. The descision
we make here is to only absorb the constant factor T into the splitting function.

This result for the unintegrated TMD gluon-to-quark splitting function is exactly the
same as in [19].

In the collinear limit, k? - 0, the unintegrated TMD splitting function becomes simply
Tr.

4.3.5 Calculation of the angular averaged splitting function

We will now calculate the angular averaged TMD gluon-to-quark splitting function:

f d02+2£ﬁ;3) (Z, k) q)
f d'QZ+2£

Where the denominator is the “area” of the d-dimensional unit sphere, since we are
taking the average and not just the sum. Or in other words, it is the complete solid
angle in d dimensions, [5] (p249):

5(0) =\
Py (2 k@) = (4.3.54)

a2
fdnd _ (4.3.55)
rd/2)

For example for d = 2 we would get [ d2, = 2w, which is the perimeter of the unit
circle. Using Eq (4.3.55) in Eq (4.3.54) gives us

- . Ir+e . _
Prg k@) = T 054,05 (2, k, Q) (4.3.56)
Based on Eq (4.3.53) we define:
5(0) A B ALRA
B (zk@)=A+B+C+D (4.3.57)
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With the terms A, B, ¢ and D defined as:
q4

A= a9y

- 47z%(1 — 2)?k?§>
~ T (z(1 - k2 + §?)?

o g 420 =20 - 20T (kD)
B CEEP T OF

5or L 4z(z — DG (kq)?
T PR z(1 - 2)K? + q2)?

For 4 and B we have no angle dependence, this means:

27.[1+€

f d0sre(A+B) = (A+B) f A;120 = 755 (A +6)

For the angular average of ¢ we have to deal with the scalar product.

A 4z(1-2)(1 - 22)§? _
fd.(22+25C —F (z(1 — 2)K2 + §2)? fd-(22+2gkq

To solve this, we define an angle in the plane of the two “vector”:
kq =k-q = [Kk||q| cos ¢

In 2 dimensions, we would have to do the following integral, which vanishes:

21
fd.()z cos @ = f dpcosp =0
0
Similarly, the integral in 2 + 2& dimensions also vanishes
fd.()zﬂ‘S cosp =0
This means that the integral in Eq (4.3.63) vanishes
fd92+286 =0

For the angular average of D we should calculate:

~ 1 4z(z — 1)g? .
fd.(22+25D = TF F (Z(l —z)k2 + qz)z f dﬂ2+2£(kq)

Again we use the same angle ¢ from Eq (4.3.64):
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(4.3.59)

(4.3.60)

(4.3.61)

(4.3.62)

(4.3.63)

(4.3.64)

(4.3.65)

(4.3.66)

(4.3.67)

(4.3.68)



[ @022 = 102 [ d0yz0c05°(0) (43.69)
In 2 dimensions we would have:
2T
fd.()zcosz(go) = f do cos?(p) =1 (4.3.70)
0

In 2 + 2¢ dimensions however, we have:

27.[1+£ 1
rl+e) 2+ 2¢

fd.(22+2£cosz(<p) = (4.3.71)

Using Eq (4.3.69) and Eq (4.3.71) in Eq (4.3.68), we get the following result for the
integral of D:

Aqlte z(z—1)q§*
1+a9r1+e¢ (z1 —2)k% +q2)>?

f dQ,.,.D = Tr (4.3.72)

Now we go back to Eq (4.3.56) and Eq (4.3.57), and use the solutions for the
integrals of 4, B, € and D to get a result for 13‘1(3) (z.k @)

5 . TI'+e) o
P (2 k@) = Wf dQy42:(A+ B+ C + D) (4.3.73)
o 2atte \r(1+¢) 242¢
- T (44— e+ 2D
= TF (Z(l _ Z)kz + 'q’Z)Z (q + 4z (1 Z) k® + Tie q

:TF

g2 (22(2—1)+1+£

~2 201 _ N\212
(1= 2)k? +§2)? T+e 4 T4 Z“‘)

We can rewrite 2z(z — 1) + 1 = z? + (1 — z)?, and we get the following expression for
the angular averaged TMD gluon-to-quark splitting function:

(0 ~
PO (2,kq) = Ts

q* 22+ (1—-2)3%+¢ k?
47%(1 — 2)* — 4.3.74
(z(1 — 2)k? + §?)? ( 1+¢ +42%( 2) g2 ( )

This is exactly the same as in [17]

When we take the limit € — 0, the angular averaged splitting function becomes

~4 2
5(0) ~ q k
Py (z k@) =T DY oL (zz +(1-2)%+4z*(1 - z)2$> (4.3.75)

In the collinear limit we have k? — 0, for the splitting function this means
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PO (2,k? - 0,§) = Tp(22 + (z = 1)?) (4.3.76)
This is the same as the collinear gluon-to-quark splitting function in Eq (3.2.10).

In the collinear limit we get the splitting function from DGLAP, and in high energy we
can use our TMD splitting function together with the gluon PDF from BFKL. For BFKL
we would need to calculate the resummed anomalous dimension by taking the Mellin
transform of the convolution of the angular averaged TMD splitting function and the
TMD gluon PDF. By equating this convolution to the collinearly factorised form of the
Green’s function, we would obtain a result that has the BFKL resummation of the
DGLAP anomalous dimension [24-27] [30]. So our factorisation overlaps with both
DGLAP and BFKL.

4.3.6 Calculation of the splitting kernel

We will now calculate the TMD gluon-to-quark splitting kernel I?qg by doing the last
remaining integration over |q|. We will first do this for the whole |q| space, not for the
restricted 6 (uz + q2).

When we look at Eq (4.3.52) and Eq (4.3.56), we can now write the splitting kernel as
an integral over the angular averaged splitting function from Eq (4.3.74):

o @ rdl)
W= zEr+ o) 4l

1d1%P (2. k@) (4.3.77)

When we plug in Eq (4.3.74) for P;g)(z, k,q), and when we allow |q| to take any
value larger or equal to 0, the splitting kernel will be the following integration:

. Tpaze Ve [ ql3+3e 22+ (1—-2)%+¢ k?
Ky = i—;s Iq] al — ( ) +4z2(1 - 2)*>=
mu?ér (1 + ) (z(1 - 2)k? + §?)? 1+¢ q?
0
(4.3.78)
We do the following substitution:
u = q° (4.3.79)
du = 2|q|d|q| (4.3.80)
With this, the expression for the splitting kernel is now
_ . Trage ©VE ‘ ulte zZ+ (1 -2 +¢ 5 , K?
Kog = LZn,uzgl"(l +¢) du (z(1 — 2)K?% + u)? 1+¢ +4z°(1=2) u
0

(4.3.81)
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Now we want to change this integral such that the denominator (z(1 — z)k? + u)? is

replaced by a denominator of the form (Au+ B(1— u))z, and such that the
integration limits are changed from [0,o] to [0,1]. A denominator of the form
(Au +B(1 - u))2 is something you see in Feynman parametrisation, a technique that
can solve many integrals in QFT. There is a very easy substitution that does this, and
that also keeps the function under the integral a rational function:

u

= 4.3.82
v u+1 (4.382)
dv = 2 4.3.83
VTt 1)? (4.3.83)
With this substitution, the splitting kernel becomes
T —€YE ; 1+¢ 1
~ . rlge v
K,, = d -
a9 =1 2mu2er(1 +¢) v (1 - v) (z(1 - 2)k%2(1 —v) + v)2
0
z2+(1—-2)%+¢ 1—v
. 2 _ 21,2
< T +4z2(1 - 2)2k ” ) (4.3.84)
We split the kernel up in two terms:
- Trase™VE
K,;, =i L +1 4.3.
ag lZﬂHZSF(l + 8)( 1 + 2) ( 3 85)
With I, and I, the integrals:
1 . 1
v
— 2 _ 21,2
I = 422(1 - 2)’k fdv(l_v) T Ry (4.3.86)
0
1
_zz+(1—z)2+£fd ( v )1+£ 1 1387
2T 1+¢ "1y (z(1 - 2)k2(1 —v) + v)2 (4:3.87)

0

We can try to solve this via Feynman parametrisation, or some similar techniques.
Notice that if we already go back to 4D spacetime now by taking € = 0, then Eq
(4.3.86) becomes simply the basic integral for Feynman parametrisation:

1 _ 2 dv
E‘Of(vA+(1—v)B)2

(4.3.88)

So for € = 0, the term I; will be
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q dv _ 4z°(1 - 2)’k?
bf (z1-2k2(1-v)+v)2  z(1-2z)k2

I, = 4z%(1 — z)?K?
=4z(1—-2z) (4.3.89)
The term I, for e = 0 will be

v 1
—v (z(1 - 2)k2(1 —v) + v)2

1
L=0Z*+(1-2)? f dv T (4.3.90)
0

This will be solved by partial fraction decomposition, by rewriting I, in the following
form:

1
v
= (22 —z)? 4.3.91
L=+ Z))jdv(l—v)(av+b)2 (4.3.91)
0
|dentifying a and b yields:
a=1-2z(1-2k? , b =z(1 - 2)k? (4.3.92)
Thus we have a = 1 — b, and we can write I, as
1
v
L=0Z2+01-2)?% f dv > (4.3.93)
s (1-v)((1-bv+b)
Now we will do the partial fraction decomposition:
v A B C
(4.3.94)

= + +
A-v)(A-bw+b)* 1-v A=bw+b  ((1-b)v+b)’
Putting everything on the same denominator gives us the system of equations:

A(1-b)>-B(1-b)=0
2Ab(1-b)+B(1—-b)—Bb—-C=1 (4.3.95)
Ab?+Bb+C=0

It's solution is given by
A=1
{B =1-b (4.3.96)
C=-b
Using this solution in Eq (4.3.94) and plugging the result in Eq (4.3.93) gives us

1 N 1-b B b
—v (1-bv+b ((1—b)v+b)2

1
L=0(Z*+(1-2)? f dv <1 ) (4.3.97)
0
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The first term in I, gives integrates to

1
d
J - _”v = (=InJv — 1])|?=} = —In(0) = +oo (4.3.98)
0

This term gives us a pole.

The second term in I, integrates to

1

dv
,[U+ b/(1—-Db) =1In|1/(1 = b)| —In|b/(1 — b)| = —In|b]|

0

= In(z(1 — 2)k?) (4.3.99)

The third term in I, integrates to

_f bdv b 1 !
(1-byw+b)° @A—=b?v+b/A-Db)

0 0

b 1 1
~ (1-b)? (1 +b/(1—b) b/(1— b))
=-1 (4.3.100)
Combining these three results in Eq (4.3.97) yields
L =%+ (1 -2)*)(In(z(1 — 2)k?) — 1 —1n(0)) (4.3.101)

Using Eq (4.3.89) and Eq (4.3.101) in Eq (4.3.85) for the TMD splitting kernel, where
we set € = 0 before integration, gives us

Keg = iTF;X—; [4z(1 - 2) + (2% + (1 = 2))(In(z(1 — 2)k?) — 1 —1n(0))| (4.3.102)

This splitting kernel has a logarithmic pole, coming from I,.
We go back to Eq (4.3.86) and Eq (4.3.87) and will now keep the & during integration.

We notice that if we write the denominator (z(1 — z2)k?(1 — v) + v)? as (av + b)?, it
might be possible that I, and I, are hypergeometric functions.

1
UV ¢ 1

I, =4z%(1 - zkzj 4.3.1
L =472(1 - 2) dv(l_v) IR (4.3.103)

0

1

I—ZZ+(1_Z)2+8fd ( v )1+€ 1 143104
2 1+e¢ U v (av + b)? (4:3.104)
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Where a and b are given by Eq (4.3.92).

The hypergeometric functions (or in this case specifically Gauss’s hypergeometric
functions) are a type of special functions first studied by Euler, but the full treatment

was done first by Gauss. The hypergeometric functions ,F;(a,f;y;w) are the
solutions to the hypergeometric differential equation [37]

2
w(l - w)% +@y—(a+p+1Dw) % —aBf(w) =0 (4.3.105)

The hypergeometric functions can be expressed by the hypergeometric series [37]:

Fi(e, Bysw) = % % (4.3.106)

n=0
Where the notation (x),, is a Pochhammer symbol, defined as

_T(x+n)

(x), = I =x(x+1)..x+n-1) (4.3.107)
With I' the Gamma function.

There is also the following integral for the hypergeometric functions [37]:

oFi(a, B5v;w) = m] xP1(1 — )7 A1 (1 — wx) " %dx (4.3.108)
0

With B the Euler Beta function:

_Ir()

Bx.y) = I'(x +y)

(4.3.109)

Eq (4.3.108) is only defined for Re(w) < 1, and for Re(y) > Re(B) > 0.

The integral Eq (4.3.108) looks a lot like the integrals in Eq (4.3.103) and (4.3.104),
with x = v. We can rewrite Eq (4.3.103) and (4.3.104) as

1

I —422(1_Z)Zk2fd ( 1 )‘9 1 43110
1 b2 "o (14 av/b)? (4:3.110)
0
1
_z2+(1—z)2+gfd ( v )1+£ 1 13111
27 (1+ ¢)b? 1=y (1+ av/b)? (43111)

Where the factor in front of the integral in I; simplifies to 4/k? because from Eq
(4.3.92) we have b = z(1 — z)k?. We look at Eq (4.3.108) and (4.3.110), and we

identify the arguments of the hypergeometric function ,F;(«a, 8;y;w) for I;:
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a=2, B=1+¢, y=2, w=—a/b (4.3.112)

The condition Re(y) > Re(B) > 0 is satisfied as long as —1 < € < 1. Is the condition
Re(w) < 1 satisfied?

1 1
w=—-a/b=1—--=1

3=l sa e <! (4.3.113)

This means we need to have

1

_ 4.3.114
z(1 — z)k? >0 (43 )

In order to use Eq (4.3.108). The condition Eq (4.3.114) is always valid because
0 < z < 1, and because k? practically never reaches infinity. So we can solve I; in
Eq (4.3.110) by using Eq (4.3.108):

4
L =158y — B) Fri(aBiviw) (4.3.115)

4 1
=z A +ard -e) ;F (2:1+£' 2 1‘m>

We will now look at Eq (4.3.108) and (4.3.111), and we identify the arguments of the
hypergeometric function ,F;(a, B;y;w) for I,:

a=2, B=2+¢, y=2, w=—a/b (4.3.116)

The condition Re(y) > Re(B) > 0 is satisfied as long as —2<e<0. And the
condition Re(w) < 1 is again satisfied because it is the same as with ;. So we can
solve I, in Eq (4.3.111) by using Eq (4.3.108):

B z24+(1—-2)%+¢
27 (14 €)z2(1 — 2)2k*

BB,y — B) oF1(a, Bsv; w) (4.3.117)

22+ (1 -2+
 z2(1—2)%k*

1
I'(1+ &)l (—¢) 2F; (2, 24¢ 2;1—- m)

Using Eq (4.3.115) and Eq (4.3.117) in Eq (4.3.85) we get the TMD gluon-to-quark
splitting kernel, in dimensional regularisation:

- Trase™®VE 1
g = lm(‘}r(l - 8) 2F1 (2, 1+¢ 2;1-— m) + (43118)
22+ (1—-2)%+¢

z2(1 — z)2Kk?

r Fi 2,2 ; 2; 1 !
(©)2h (2246 2 ‘m>

In order to combine I; and I, into I?qg with only one ¢, we are required to combine the
conditions that ¢ had to obey in both integrals. This results in the condition
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—1<e<0 (4.3.119)

The splitting kernel has a pole, coming from I,. When we take the limit € - 0 in Eq
(4.3.118), I'(—¢) will become infinite. For small ¢ we can expand the Gamma function
near its pole:

['(—¢) = —% —vyg+ 0(¢) (4.3.120)

With y; the Euler-Mascheroni constant. When we take the limit € — 0, the splitting
kernel becomes:

R —'TF“S(4F(21-2-1 1 )+ 4.3.121
9 = Loz T2 \4h @ z(1 — 2)k? (4:3.121)
+22+(1_Z)2 1 +0(e) F<2 2: 2: 1 1 )
z2(1—2z)2k?%2\ ¢ Ve &)\ &s & z(1 — z)k?

In the collinear limit we have k? — 0, which makes the splitting kernel collinear
divergent.

4.4 Importance of TMD splitting functions

TMD splitting functions take into account the transverse momentum, already at
leading order. The collinear splitting functions do not do this, and effects from
transverse momentum enters the collinear splitting functions only in higher orders.
The TMD splitting functions can be used in the small x region (BFKL region), and
they resum terms in (a,/In(§/M?))" to all orders. If we want to calculate the
resummed anomalous dimension, we need to take the Mellin transform of the
convolution of the angular averaged TMD splitting function and the TMD gluon PDF.
By equating this convolution to the collinearly factorised form of the Green’s function,
we would obtain a result that has the BFKL resummation of the DGLAP anomalous
dimension. In the collinear limit, the TMD splitting functions reduce to the collinear
splitting functions, which we explicitly checked for the gluon-to-quark TMD splitting
function in the previous section, which are the ones used for the DGLAP equation.
This means that the TMD splitting functions overlap with both BFKL and DGLAP.
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5 Monte Carlo method in parton branching

In this chapter | perform numerical calculations for the evolution of parton distribution
functions, both collinear and TMD, by making use of the Parton Branching (PB)
method [22] and of Monte Carlo simulations based on the computer code uPDFevolv
[23]. The numerical calculations in this chapter implement the evolution equations
and splitting functions discussed at analytical level in the previous chapters. | start in
section 5.1 with a brief description of the PB approach; then in section 5.2 | illustrate
the Monte Carlo method of solution of the evolutions; in section 5.3 | present
numerical results, based on this method, for collinear and TMD parton distributions.

5.1 Parton branching

In the parton branching approach [22] to the evolution equations, a soft-gluon
resolution scale is introduced in the DGLAP equations, which results in resolvable
and non-resolvable parton emissions. This allows us to write the evolution equations
in a way that can be solved by iteration. Parton Branching is not restricted to DGLAP
only. Instead of collinear parton distribution functions (PDFs) we can also apply the
method for transverse momentum dependent (TMD) PDFs, by using a different type
of ordering. In this section we discuss both cases.

5.1.1 Parton Branching for DGLAP

We start from DGLAP Eq (3.1.18), which we can express as

1
dﬁ(xl#) dZ
d(inu?) Zf?”if(z» as(i0)f;(x/z, 1) (5.1.1)

where z = x/¢, f;(x, ) are the parton distribution functions (PDFs), and P;;(z, as(u))
are the collinear splitting functions. The indices i and j will run over all partons, which
in general are the gluon and all quark and antiquark flavours (so 2Ny + 1 different

index values). The collinear splitting functions can be expressed as a power series
Eq (3.1.19). In parton branching, instead of working with the actual PDFs, we will
usually work with the PDFs weighted by x, which we call the momentum-weighted
PDFs:

file, ) = xf; (x, ) (5.1.2)

Using the momentum-weighted PDFs the DGLAP equation becomes
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dfiew) [ _
d(np?) fodz Pyj(z as()fj(x/z, 1) (5.1.3)

If the transverse distance between emitted partons has a finite resolution scale, then
due to energy-momentum conservation we cannot resolve partons that are radiated
with z closer to 1 than a cut-off value. On the other hand, if we would remove non-
resolvable radiative contributions, we would get a violation of unitarity. [22] In the
parton branching method we will restore unitarity by recasting the DGLAP equation in
terms of no-branching probabilities and real-emission branching probabilities. The
splitting functions can be decomposed in terms that classify the singular behaviour
for z — 1 as follows [22]:

Kij(as)
(1-2),

Where 1/(1 — z), is defined according to Eq (3.2.7) and Eq (3.2.8)., and R;;(z, a,)
contains logarithmic terms which are analytic for z — 1. The functions D;;(ay), K;;(as)
and R;;(z,as) can each be decomposed in a power series analogous to the power
series decomposition of P;;(z,as) Eq (3.1.19). D;;(as) and K;;(as) are diagonal in
parton flavour [22].

Pij(Zl (XS) = Dl](as)S(l - Z) + + Rij(Z, C(S) (514)

We introduce the soft-gluon resolution parameter z,, , where 1 — ZM~0(/1QCD/M)- In
the DGLAP equation in Eq (5.1.3) we split the integral up in the resolvable region
(z<zy) and the non-resolvable region (z>z,). By making use of the
decomposition Eq (5.1.4) and the momentum sum rule

ijpij(z, a)dz = 0 (5.1.5)
i 0

we can write the evolution equations as

ZM ZM

dfi () ] )
dj(rlnxﬂlzl) =Z f dz PiS‘R)(Z' as(ﬂ))fj(x/z,u) —f dzszER)(z, as(,u))fl-(x,y) (5.1.6)

where PiE.R)(z,as) is defined as the real-emission branching probabilities (real-
emission splitting functions):

K;j(as)
1—2z

PiS.R) (z,a5) = + R;j(z, ay) (5.1.7)

The derivation of Eq (5.1.6) can be found in [22]. The first term in Eq (5.1.6) are the

contributions from real parton emission, while the second term are the contributions
from virtual corrections.
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We introduce the Sudakov form factor:

u? ZM
du'? (R) )
Ai(Zp, 1, po) = exp| — ra dz z P;" (2, as(u) (5.1.8)
0

Juj

The Sudakov form factor A;(zy, u, 1uy) can be interpreted as the probability that a
parton /i undergoes no branching between evolution scales u, and u, and where the
branchings are classified according to the resolution parameter z,,. The evolution

equation Eq (5.1.6) can be written in terms of Pig.R) and Sudakov form factors [22]:

d <fi(x,u)) _ Zf az P (z, as(u))M (5.1.9)
J ox

d(lnp?) \ A;(w) A; (W)

where we don’'t sum over i, and where we defined A;(u) = A;(zy, i, 14y) to make
notation shorter. If we integrate this evolution equation, we get

7
du'? A;(w)
W 500 )

MZ
Fiem) = B@fitr o) + ) f dz P (z, (W) fi(x /2, 1) (5.1.10)
J oud

Note that this equation uses collinear splitting functions and collinear PDFs. This is
the equation that we want to solve in the Parton Branching method. It is a Fredholm
type equation, which can be solved by iteration as a series.

Figure 5.1: A single branching process b — a + ¢. The p™ is the “plus lightcone momentum”, which is
defined in the same way as p in Eq (4.2.6) and is equal to P(1,0,1). The k; and g, are the transverse
momenta. Figure from [22]

In the Parton Branching method with the collinear PDFs, Eq (5.1.10), we have strong
ordering of transverse momenta. This means that the transverse momentum of the
evolving parton after an emission will be much larger than before the emission.

157



(Transverse momentum ordering was also discussed in section 3.1.2) In case of
Figure 5.1 this means k. , > k., .

5.1.2 Parton Branching for TMD PDFs

Instead of restricting Parton Branching to collinear PDFs, we can also do Parton
Branching with transverse momentum dependent (TMD) PDFs. However, Parton
Branching is ill defined when using transverse momentum ordering for TMD PDFs
(for variation of z,.4). Instead, angular ordering will be used. In Figure 5.1 the
evolution scale u can be related to the angle 6 of the momentum of particle ¢ with
respect to the beam direction. The resulting angular ordering means that the angle is
much larger for each subsequent emitted parton: 6,,., > 6; . Parton Branching is well
defined for TMD PDFs if we use angular ordering.

In the transverse momentum ordered situation, z,, will be fixed, while in the angular
ordered situation z,, will be dynamic. Another difference between the orderings is
how a, is treated. In transverse momentum ordering we have u dependant a,(u),
and u equals g, . In angular ordering we still have g, dependant a;(q,), but this time
q, depends both on y and z.

For the collinear PDFs both orderings can be used. If F;(x,k,u) is the TMD PDF
(also called unintegrated PDF) for parton type i, with k the transverse 2-momentum
(like the k in Eq (4.2.6), with k' = (0,k, 0)), then the momentum-weighted collinear
PDF equals [22]

~ d’k
filx, ) = ij?i(x, Kk, 1) (5.1.11)
We can also define the momentum-weighted TMD PDF:

Fi (e, K p) = xF;(x, K, 1) (5.1.12)

By using Eq (5.1.10) and angular ordering we can write the following evolution
equation for the TMD PDFs [22]:

3 _ d2q’ A,
File o) = 5GOF ok o) + ) [ =3 %@(uz - 4)6(q” - u})-
j 2
: f dz P (z, a,(a))F;(x/z, k + (1 — 2)q’,q") (5.1.13)

X

This can be solved by iteration as [22]
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o)

Folo k, p) = Z FO(x, k10 (5.1.14)

i=0

Note that in this section the splitting functions are collinear splitting functions. We can
do Parton Branching up to a certain order. Leading order (LO) Parton Branching uses
the LO splitting functions and LO a, , NLO Parton Branching uses the NLO splitting
functions and NLO «y , etc.

5.2 Monte Carlo method

To solve the evolution equation numerically we will apply a Monte Carlo method (also
called a Monte Carlo simulation), by reducing the problem to generating z and u. The
Monte Carlo method is a class of algorithms that uses repeated random sampling to
estimate probabilistic results. It generates variables according to a probability
distribution to calculate expectation values or integrals. Monte Carlo can be used to
solve any problem that has a probabilistic nature, or any problem that can’t (or is too
difficult to) be solved analytically. The main classes of problems that are most
commonly solved by Monte Carlo are integration, optimisation and inverse problems.
In our case, Monte Carlo will be used to solve an integration problem.

=]
[~

| %)

Figure 5.2: Parton evolution process by iteration, where a parton evolves from scale y; to u. (Time
runs from bottom to top.) We have evolution without any branching (left), with only one branching
(middle), with two branchings (right), etc. Figure from [22]

In the parton evolution we start from parton a and evolve the scale from y; to u either
without branching, or with one branching at scale y;,;, or with a second branching at
scale u;,,, etc. The probability to evolve from scale yu; to u;,., without any resolvable
branching is given by the Sudakov form factor A,(zy, i1, 1i)- [22] We introduce a
random number R, € [0,1], and we generate the value for y;,, by solving Eq (5.1.8)
for u; ., at a given y; (Ref [22]),
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0 Hiy1

RofdAa(ZM:#:#o):f dAg(Zy, y Ho) (5.2.1)
ui ut

Which leads to the following equation after integration:

Aa(.ui+1)
Ry=1———— 5.2.2
0 Aa(.ui) ( )
We introduce a random number R; € [0,1], and we generate the splitting variable z

by

Zit+1 M
j dz' Pa(ff) (Z', as(.ui+1)) =R, j dz' P;g)(Z', as(.ui+1)) (5.2.3)
Zmin Zmin

where z.;, is the lowest kinematically allowed value. In case of TMD PDFs, we
introduce an extra random number to generate the angle 6; uniformly. When we
generate a pair of z;, u; (and 6;) values many times, we obtain a true and unbiased
estimate of the integrals and we obtain a solution for the evolution equations. [22] In
order to do this method we require a starting distribution, which could come from
experiment or from a model.

This Monte Carlo method for parton branching was implemented in a numerical
program. The code is the same whether we want collinear PDFs or TMD PDFs, since
the former is just obtained via an integration over the latter. As starting distributions
we can use default sets from evolution packages.

5.3 Numerical solutions of parton branching

In this section we use the numerical (Monte Carlo) Parton Branching program
“‘updfevolv” to simulate parton distribution functions (PDF), given a starting
distribution at an initial scale u, as input, by evolving the PDFs from scale p, to scale
u via the method described in the previous sections. We can simulate both collinear
PDFs (as a function of x) and transverse momentum dependent (TMD) PDFs (as a
function of x and k,). x is the Bjorken scaling variable Eq (2.2.26), and k, (also
called k;) is the transverse momentum of the parton. To improve convergence,
momentum-weighted PDFs are used in the Parton Branching program. The definition
of momentum-weighted PDFs are given by Eq (5.1.2) and Eq (5.1.12). The program
uses TMD PDFs during the iteration, and collinear PDFs are obtained via integration
of the TMD PDFs according to Eq (5.1.11).

The program used in this thesis, updfevolv can simulate both collinear and TMD
PDFs, and it can use both collinear and TMD splitting functions. We have the choice
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to use either LO (leading order) or NLO (next-to-leading order) splitting functions and
as. There are several other choices that we can make in the program, including but
not limited to a,(M,) (strong coupling strength at the scale of the Z boson mass), the
masses of the heavy quark flavours (c, b, t), the soft-gluon resolution parameter z,,,
the ordering, the starting distribution. As starting distributions use default sets from
evolution packages. In this thesis we will take the starting distributions from the
packages QCDNUM, HERAPDF2.0LO and HERAPDF2.0NLO. First we will also
demonstrate the flavour composition with PB-NLO-HERA [+1l 2018 set2, a standard
PDF set.

QCDNUM: Is based on polynomial spline interpolation and are basically “toy
distributions”. The starting distributions are parametrised at the scale u3 = 2 GeV?,
with only 3 light quark flavours (u, d, s). However, the heavier quarks can be
produced during the evolution to scales higher than their respective masses. [31]

HERAPDF2.0LO: Is based on fits to experimental data from the HERA collider, a
lepton-proton collider at DESY in Germany. HERAPDF is a fitting group for collinear
PDFs, only fitted to deep inelastic scattering (DIS). This particular one, 2.0 LO, uses
leading order (LO) ag and splitting functions. Again it uses only 3 light quark flavours
(u, d, s) for the starting distributions, parametrised at the scale u3 = 2 GeV2. [32] [33]
[34]

HERAPDF2.0NLO: Is the same as HERAPDF2.0LO, but with next-to-leading order
(NLO) a, and splitting functions instead. [32] [33] [35]

PB-NLO-HERA I+II 2018 set2: Is a standard PDF set. It is based on a fit that
produces TMD PDFs, is next-to-leading order, and was evolved to other scales via
Parton Branching (PB) method. It is fitted to DIS and uses the same experimental
data as HERAPDF. In set1, the collinear PDFs have the same parametrisation as
HERAPDF. For set2 however, it is not the same as HERAPDF, because set2 uses
angular ordering and different a,. [36]

5.3.1 Flavour composition of the proton

We will first discuss the composition of the proton by showing the PDFs for each
flavour for a standard set. The quantum numbers of a hadron are provided by what
we call “valence quarks”, which are the quarks that are typically listed as the hadron
content. But as we have seen in the previous chapters, there are also gluons and sea
quarks inside a hadron that carry a part of the hadron’s momentum but don’t
contribute to the quantum numbers, where the sea consists of quark-antiquark pairs.
In case of the proton, the valence quarks are 2 up quarks and a down quark. Naively
we would expect the valence up PDF to be twice the valence down PDF.
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Figure 5.3: Momentum-weighted collinear PDFs for the different flavours, as a function of Bjorken x,
from the standard set PB-NLO-HERA set 2, at scale u = 2 GeV. The smaller graphs at the bottom are
the ratios. Note that for sea quarks, quark and antiquark have the exact same PDF. (Thus “sea up”
equals “anti-up”, “sea down” equals “anti-down”, “strange” equals “anti-strange”, “charm” equals “anti-
charm”.) Important to note is that on these graphs the “sea” curve is not the average of the whole sea,

but the average of only the sea up, sea down and strange.

PB-NLO-HERAI+I-2018-set2, 1 = 2 GeV PB-NLO-HERAI+I-2018-set2, p = 2 GeV

1 e 1 e

up-val
down-val

up
up-val
anti-up

xf(x.)
xf(x,u)

=1
~
\I\I‘I\II|IIII|IIII|IIII‘I\I\l\l\\‘\\\\‘\\\\‘\\\\‘

TMDplotter 2.2.4

TMDplotter 2.2.4

x _, Flu Locac b bonodbocndbonnd b b e L 3

Figure 5.4: Comparison and decomposition of total, valence and sea up and down quark PDFs, at the
scale u = 2 GeV. The left graph shows how the up quark PDF is decomposed in the valence up quarks
and the sea up quarks (which equals the anti-up). The decomposition of down quark PDF in valence
down and sea down is analogous to this, but not shown. The right graphs show both valence quark
PDFs and the ratio between them.

We took a NLO standard PDF set based on experimental data from HERA to show
the flavour composition of the proton at a certain scale u. We show this in Figure 5.3
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for u = 2 GeV, which is a scale that is not too high, but high enough to allow a small
charm and anticharm component. We can see in the figure that at high x most of the
proton’s momentum is carried by up quark, down quark and gluons. At small x most
of the proton’s momentum will be carried by gluons. We also notice the amount of
sea quarks and antiquarks increases for decreasing x, and gets close the up and
down PDFs at very small x. In Figure 5.4 we can see that the up and down quarks at
high x will almost solely be valence quarks, while at small x they will mostly be sea
up and sea down quarks. We also notice in Figure 5.4 that the ratio of valence up to
valence down is approximately 2 as expected, except for high x. If we look at the sea
composition in Figure 5.3, we notice that the ratios of the sea up, down and strange
remain constant for small x. Due to the small masses of the up and down quark, we
would naively expect them to have the same PDF in the sea, and this seems to be
true for very small x. For x above 10~2 however, we see that they deviate from each
other. At the scale of u = 2 GeV we would also naively expect the strange quark to
have the same PDF as the sea up and sea down, which is shown to be not true.
Figure 5.3 also shows that there is a small charm component in the sea, as expected
since the energy scale is higher than the charm quark mass. (While the charm is part
of the sea, in the figures the charm is not part of the curve for the “sea”, due to the
definition of “sea” in the plotting tool being the average of the three lightest flavours
only.)

In Figure 5.5 we show the flavour composition at a higher scale, u = 10 GeV. This
scale also allows a small bottom and antibottom component. The figures show that at
small x the ratio between gluon PDF and quark PDFs has increased compared to the
case of u = 2 GeV. Another observation we can make is that the ratio between the
sea quarks has gotten closer to 1. These two effects are generally true for increasing
u scale.
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Figure 5.5: Momentum-weighted collinear PDFs for the different flavours, as a function of Bjorken x,
from the standard set PB-NLO-HERA set 2, at scale u = 10 GeV. The smaller graphs at the bottom are
the ratios. Note that for sea quarks, quark and antiquark have the exact same PDF. (“sea up” equals
“anti-up”, “sea down” equals “anti-down”, “strange” equals “anti-strange”, etc.) Important to note is that
on these graphs the “sea” curve is not the average of the whole sea, but the average of only the sea

up, sea down and strange.
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5.3.2 Initial distributions, LO vs NLO, and ordering

In this section we will discuss some of the different choices we can make in the
settings of the Parton Branching program. In this thesis we used QCDNUM,
HERAPDF2.0LO and HERAPDF2.0NLO as initial distributions. The explanation and
references for these initial distributions is given in the intro of section 5.3. Figure 5.6
shows Parton Branching with QCDNUM as initial distribution, and Figure 5.7 shows
this for HERAPDF2.0NLO as initial distribution. For QCDNUM we can also choose
between leading order (LO) and next-to-leading order (NLO) a; and splitting
functions. In case of QCDNUM both LO and NLO will have the same initial
distribution, while HERAPDF20 LO and NLO have different initial distributions. Figure
5.6 shows the differences between LO and NLO for QCDNUM.

For the ordering we restricted ourselves to two choices in this thesis: we either use
transverse momentum ordering (DGLAP) or angular ordering (AO) of the parton
branchings during the simulation. Collinear PDFs are well defined for both types of
ordering, while TMD PDFs are well defined for angular ordering but not for transverse
momentum ordering. So if we want to show TMD PDFs we should use angular
ordering, if we want to show collinear PDFs we could use either ordering. In the
transverse momentum ordered situation, z,, will be fixed, while in the angular ordered
situation z,, will be dynamical. z,, is the parameter that separates soft gluons (non-
resolvable) from hard gluons (resolvable). Radiated gluons outside of the angular
ordered region will interfere destructively with eachother. An abelian example of this
is bremsstrahlung in QED (quantum electrodynamics), where the photons are
radiated inside cones centered around the incoming and outgoing electron. In our
situation (QCD) we have a similar effect, but non-abelian. Another difference
between the orderings is how «; is treated. In transverse momentum ordering we
have u dependant a,(u), and u equals q,. In angular ordering we still have q,
dependant a,(q,), but this time g, depends both on u and z. Figures 5.6 and 5.7
show the differences between transverse momentum ordering (DGLAP) and angular
ordering (AO), for the collinear PDFs.

In this section we only restrict ourselves to up quark and gluon PDFs. The effects on
the down quark PDF will be analogous to the up quark, and the effect on the sea is
expected to be similar as wel.
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Figure 5.6: Simulated momentum-weighted collinear PDFs via Parton Branching, for the up quark and
gluon at two different u scales, taking QCDNUM as initial PDF. The four simulated PDFs on each
graph were made with different settings: LO vs NLO, DGLAP vs AO.
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Figure 5.7: Simulated momentum-weighted collinear PDFs via Parton Branching, for the up quark and
gluon at two different u scales, taking HERAPDF2.0NLO as initial PDF. The two simulated PDFs on
each graph are NLO but have different ordering settings: DGLAP vs AO.

In Figure 5.6, we show the simulated PDFs starting from initial QCDNUM PDF at
scale us = 2 GeV?, evolved to higher scales u. In Figure 5.6, the largest change in
PDF is caused by NLO evolution for the up quark. In Figure 5.7 we show the
simulated PDFs starting from initial HERAPDF2.0NLO PDF, again evolved from
scale u3 = 2 GeV? to higher scales. We can see that the LO AO evolution in Figure
5.6 and the NLO AO evolution in Figure 5.7 have for the most part a very similar
effect on the PDF. A general behaviour we can notice for all simulated PDFs, except
for the ones that remain almost the exact same as the initial PDF, is that they all
significantly deviate from the initial PDF in the ratio at the high end of log(x).
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5.3.3 Effect on PDF for collinear vs TMD splitting functions.

We will now look at the effects of TMD (transverse momentum dependent) splitting
functions on the PDFs simulated by Parton Branching. First we look at the effects on
the collinear PDFs in Figure 5.8, where we compare different LO PDFs, including one
simulated via TMD splitting functions, starting from HERAPDF2.0LO as initial
distribution. The PDF that uses TMD splitting functions, uses these everywhere in the
Parton Branching method, both in the real emissions and in the Sudakov form factor.
As an extra comparison we also include a NLO AO PDF that uses HERAPDF2.0NLO
as initial distribution. After the collinear PDFs, we will look at the effects on the TMD
PDFs. For those we will only use PDFs simulated via angular ordering (AO). Each
time we will look what the effect is if you use LO AO with TMD splitting functions
instead of collinear splitting functions, and what the effect is if you use NLO AO
instead of LO AO (but both collinear splitting functions). Unfortunately we have no
PDFs simulated via NLO AO with TMD splitting functions, because currently no one
knows how to get NLO TMD splitting functions. This is because a TMD splitting
function already includes some higher order corrections due to resummation.
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Figure 5.8: Simulated momentum-weighted collinear PDFs via Parton Branching, for the up quark and
gluon at two different u scales. “Col P” means they were simulated via collinear splitting functions,
while “TMD P” means simulated via TMD splitting functions. All of the LO PDFs take HERAPDF2.0LO
as initial PDF. As an extra comparison we also include the NLO AO PDF, which has
HERAPDF2.0NLO as initial PDF instead. All PDFs with collinear splitting function were made with the
typical updfevolv program. The “LO AO TMD P” was simulated via a modified program that uses TMD
splitting functions instead.

Looking at the collinear PDFs in Figure 5.8, When we compare the LO AO PDF that
uses collinear splitting functions with the one that uses TMD splitting functions, we
notice that at u? = 10 GeV? they are almost equal to each other. Apparently using
TMD splitting functions at this scale and below, barely makes a difference. At
u? = 100000 GeV?, a much higher scale, we do see a clear difference between
collinear and TMD splitting functions, for x below 107> a 107 1.
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For the simulation using NLO AO, the resulting gluon PDF is very different than the
others shown in Figure 5.8. It is much smaller than the others for small x. For the up
quark at u? = 10 GeV? on the other hand, the NLO AO PDF is near the two LO AO
PDFs. For the up quark at u? = 100000 GeV? the NLO AO PDF is clearly lower than
the others for very small x.

Next we will show and investigate TMD PDFs, for simulations with angular ordering
(AO), as a function of x with fixed k,, or as a function of k, with fixed x.
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Figure 5.9: Simulated momentum-weighted TMD PDFs via Parton Branching, as a function of x, at
transverse momentum k, = 1 GeV, for the up quark and gluon at two different u scales (u is called p in
these figures). The red and blue PDFs used collinear splitting functions, while the purple PDF used
TMD splitting functions. The two LO PDFs (red and purple) have HERAPDF2.0LO as initial PDF, while
the NLO PDF (blue) has HERAPDF2.0NLO as initial PDF. All PDFs used angular ordering (AO). In the
bottom left graph, the red and purple PDFs are almost exactly the same.

For the x dependence of the TMD PDFs, shown in Figure 5.9, we chose a fixed k;
that is much smaller than the two scales u that we show. The TMD PDFs seem to
very roughly have a similar shape as the collinear PDFs. All three considered TMD
PDFs look almost equal to each other at the higher end of log(x). In case of the
gluon PDF at scale u = 10 GeV we can even say that it is almost exactly the same for
LO evolution with either collinear splitting functions or TMD splitting functions, atleast
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for the whole region of x that is shown. For the gluon at a much higher scale u =
1 TeV, and for the up quark at both scales, the effect of simulating the LO PDF via
TMD splitting functions, compared to collinear splitting functions, is just a small
increase in the PDF at small x. (For the up quark this is visible in Figure 5.9 this is
visible for x on the order of 10~! and below, while for the gluon it is visible for x on
the order of 1072 and below.)
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Figure 5.10: Simulated momentum-weighted up quark TMD PDFs via Parton Branching, as a function
of k, ,atx =0.01 and x = 0.001, and at three different u scales (u is called p in these figures). The
red and blue PDFs used collinear splitting functions, while the purple PDF used TMD splitting
functions. The two LO PDFs (red and purple) have HERAPDF2.0LO as initial PDF, while the NLO
PDF (blue) has HERAPDF2.0NLO as initial PDF. All PDFs used angular ordering (AO). In the graphs
for x = 0.01 with u = 10 GeV and 100 GeV, the red and purple PDFs are almost the same.
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gluon, x = 0.001, p = 10 GeV

gluon, x = 0.001, p = 1000 GeV
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Figure 5.11: Simulated momentum-weighted gluon TMD PDFs via Parton Branching, as a function of
k, ,atx = 0.01 and x = 0.001, and at three different u scales (u is called p in these figures). The red
and blue PDFs used collinear splitting functions, while the purple PDF used TMD splitting functions.
The two LO PDFs (red and purple) have HERAPDF2.0LO as initial PDF, while the NLO PDF (blue)
has HERAPDF2.0NLO as initial PDF. All PDFs used angular ordering (AO). In the graphs u = 10 GeV,
the red and purple PDFs are almost the same.

We show the k; dependence of the simulated TMD PDFs for two fixed x values, and
at three different u scales. For both the up quark and gluons, shown in Figures 5.10
and 5.11 respectively, the general behaviour seems to be a decreasing PDF for
increasing k,, and the PDF practically goes to 0 at some k,. We might expect this
value for k, to be the scale u, because in transverse momentum ordering we would
have k, « u. In Figures 5.10 and 5.11 we can see that this is not true. The PDFs
under consideration are angular ordered, not transverse momentum ordered. We can
also see that on each graph the three PDFs look almost equal at their high &, tail.
We also see that in the x and u regime that we consider in Figures 5.10 and 5.11, it
seems that the TMD PDF is increased if you go from LO PDF with collinear splitting
functions to LO PDF with TMD splitting functions. However, this effect is small at
u = 10 GeV, but the effect increases with increasing u. The effect also increases with
decreasing x. In all the situations that are shown in Figures 5.10 and 5.11, the NLO
PDF is clearly different from the others, except for the up quark at u =1 TeV for
x = 0.01 in Figure 5.10.
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6 Conclusion

In this thesis we tried to calculate the transverse momentum dependent (TMD) gluon-
to-quark splitting function and study its physical effects numerically. In order to do so,
we studied and discussed the framework of quantum field theory (QFT), mostly in the
context of gauge field theory, and the theory of quantum chromodynamics (QCD) in
particular. We studied how to quantise gauge field theories, and how to renormalize
them. We studied the effects of renormalisation at high energy, which in the case of
QCD were asymptotic freedom, the QCD scale and confinement. Then we studied
QCD modified parton model and the factorisation method in order to treat deep
inelastic scattering (DIS). Deep inelastic scattering was the main example and we
kept using it throughout most of the high energy part of the thesis. It allowed us to
study the inner structure of hadrons. We studied radiation processes in high energy
QCD, and the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations
for parton densities (parton distribution functions). This is where we introduced the
DGLAP splitting functions. We studied the splitting functions in detail near the end of
the thesis, and explained their physical meaning. First we did this for the case of
collinear momentum, and noticed the collinear divergences that arise. We studied
factorisation schemes in the context of the splitting functions and we studied an
extension to include the transverse momentum as well, already in leading order.
Then we calculated the TMD gluon-to-quark splitting function in detail, and gave
physical meaning to the results. We also fully integrated the TMD splitting function
(integration over momentum q) and showed that it can be expressed by
hypergeometric functions. We presented the results of Monte Carlo calculations for
QCD parton densities, and studied the numerical effects of the splitting functions.
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