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Abstract 
 
In this thesis an introduction to quantum chromodynamics (QCD) and explicit 
calculations of renormalization group evolution in QCD will be given. QCD is the 
theory that explains the Strong Interaction, one of the fundamental forces in nature, 
responsible for keeping quarks and gluons bound together in hadrons, and for 
binding protons and neutrons in nuclei. In the introduction to QCD this thesis will treat 
the QCD colour charge, the Lagrangian, the gauge symmetry related to QCD, the full 
quantisation and the renormalisation of the theory. Then the application of QCD to 
high energy collisions will be explained. Since in high energy collisions between 
hadrons the Strong Interaction is almost always involved, QCD is necessary as the 
theoretical background for such collisions, like those in the LHC. The Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations for quark and gluon 
densities (also called parton distribution functions) in a hadron will be treated in terms 
of perturbative kernels given by quark and gluon splitting functions, computable as 
power series expansions in the QCD coupling. We will explain the physical meaning 
of the splitting functions as probabilities for QCD radiation processes from colour-
charged particles. We will illustrate the dependence of the splitting functions on the 
longitudinal momentum transferred during the radiative process within the DGLAP 
framework. Then, by extending this framework, we will discuss how the dependence 
of the splitting functions on the transverse momenta involved in the radiative process 
can be computed. To this end, we will employ the high-energy factorization method in 
QCD. We will illustrate the application of this method by explicitly calculating the 
gluon-to-quark splitting function, at first order in the QCD coupling, including the 
dependence on both longitudinal momentum and transverse momentum. Finally, we 
will present numerical calculations of parton densities by using a computer code 
which solves the evolution equations by a Monte Carlo method. 
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Samenvatting 
 
In deze thesis wordt een introductie tot quantum chromodynamica (QCD) en 
expliciete berekeningen van renormalisatiegroep evolutie in QCD gegeven. QCD is 
de theorie achter de Sterke Kernkracht, één van de fundamentele krachten in de 
natuur, verantwoordelijk voor het binden quarks en gluonen in hadronen, en voor het 
binden van protonen en neutronen in atoomkernen. In de introductie tot QCD zal 
deze thesis de QCD kleurlading, de Lagrangiaan, de gauge symmetrie gerelateerd 
aan QCD, en de volledige kwantisatie en renormalisatie van de theorie geven. 
Daarna word de toepassing van QCD op hoge energie botsingen uitgelegd. Omdat in 
hoge energie botsingen tussen hadronen de Sterke Kernkracht altijd betrokken is, is 
QCD nodig als theoretische acthergrond voor zulke botsingen. (Zoals de botsingen in 
de LHC) De Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolutievergelijkingen 
voor quark- en gluondichtheden (ook parton distributie functies genoemd) in een 
hadron zullen worden beschreven door perturbatieve kernels gegeven door quark- 
en gluonsplittingfuncties. Deze splittingfuncties zijn berekenbaar als machtreeksen in 
de QCD koppeling. We zullen de fysiche betekenis van de splittingfuncties uitleggen 
als waarschijnlijkheden voor QCD stralingsprocessen van deeltjes met kleurlading. 
We zullen tonen dat de splittingfuncties afhankelijk zijn van de longitudinale impuls 
die wordt overgebracht tijdens het stralingsprocess in het DGLAP kader. Dan zullen 
we dit kader uitbreiden, en wordt uitgelegd hoe we kunnen bereken hoe de 
splittingfuncties afhankelijk zijn van de transversale impulsen die aanwezig zijn in het 
stralingsprocess. Om dit te doen zullen we de methode van hoge-energie-factorisatie 
toepassen in QCD. We zullen de toepassing van deze methode uitleggen door 
expliciet de gluon-naar-quark splittingfunctie uit te rekenen, tot op eerste orde in de 
QCD koppeling, en met inbegrip van de afhankelijkheid van zowel de longitudinale 
als transversale impuls. Uiteindelijk zullen we numerieke berekeningen van 
partondichtheden laten zien, door het gebruik van een computerprogramma dat de 
evolutievergelijkingen oplost met behulp van een Monte Carlo methode. 
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Conventions and units 
 
 
Units: 

Throughout this thesis, we will use units in which 𝑐 = ħ = 1. 

This will simplify most equations, and most units can be considered equivalent to 
each other up to some power: 

[length] = [time] = [mass]−1 = [energy]−1 

We will express both mass and energy in eV (electronvolt). 

Special Relativity, tensors, and indices: 

The metric we use will always be the Minkowski metric with the following convention: 

𝑔𝜇𝜈 = (
1
0
0
0

0
−1
0
0

0
0

−1
0

0
0
0

−1

) 

The inverse metric 𝑔𝜇𝜈 will have the same components as 𝑔𝜇𝜈 . 

Greek indices will always denote full spacetime indices and run from 0 to 3, where 0 
is the time component and 1, 2, 3 are the spatial components (which we will also call 
space components). Sometimes we will only consider the spatial components of a 
tensor, and in this case we will use lowercase Roman indices i, j, k, etc (these run 
over 1, 2, 3). 

In case of spacetime indices, it matters if they appear as superscript or subscript. 
These are respectively contravariant and covariant indices. Four-vectors will usually 
be denoted by italic letters. Three-vectors will be denoted by non-italic boldface 
letters. As example we give the position vector to demonstrate these conventions: 

𝑥𝜇 = (𝑥0, 𝐱) = (𝑡, 𝐱) ;     𝑥𝜇 = 𝑔𝜇𝜈𝑥𝜇 = (𝑥0, −𝐱) = (𝑡, −𝐱) 

𝐱𝑖 = (𝑥1, 𝑥2, 𝑥3) 

The exception for boldface symbols will be the identity matrix 𝟏 = 𝟏𝑛×𝑛 

In some cases we will not write the Greek or Roman index if we mean the whole 
vector and if it is unlikely to cause confusion. For example with 𝑓(𝑥) we would mean 
a function of the spacetime position vector 𝑥. 

For the four-gradient we have 

𝜕𝜇 =
𝜕

𝜕𝑥𝜇 = (
𝜕

𝜕𝑥0 , ∇) = (
𝜕
𝜕𝑡

, ∇) 
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where ∇ is the three-gradient, which is the usual 3D-space gradient. A time derivative 
of a function will be denoted by a dot on top: 

𝜕0𝜑(𝑥) =
𝜕
𝜕𝑡

𝜑(𝑥) = �̇�(𝑥) 

The notation for the d’Alembertian will be 

⧠ = 𝜕𝜇𝜕𝜇 

All non-spacetime indices will also be denoted by Roman indices, and for these 
indices it doesn’t matter if they appear as superscript or subscript. 

Repeated indices will always be summed over, unless stated otherwise. For scalar 
products we will sometimes also omit the indices. 

𝑝𝜇𝑥𝜇 = ∑ 𝑝𝜇𝑥𝜇
𝜇

= 𝑝 ∙ 𝑥 = 𝑝𝑥 

Functions and fields: 

A field is a tensor function of spacetime, with one “value” for each point in spacetime. 
Instead of a simple tensor, it can also be a combination of multiple tensors. 

For functions, and especially functions of spacetime, we will often omit the arguments 
in our notation: 𝑓 = 𝑓(𝑥) 

Fourier transformation: 

𝑓(𝑥) = ∫
𝑑4𝑝

(2𝜋)4 𝑒−𝑖𝑝𝑥𝑓(𝑝) ;      𝑓(𝑝) = ∫ 𝑑4𝑥 𝑒𝑖𝑝𝑥𝑓(𝑥) 

Dirac-delta function: 

∫ 𝑑𝑛𝑥 𝛿(𝑛)(𝑥) = 1 

∫ 𝑑𝑛𝑥 𝑒𝑖𝑝𝑥 = (2𝜋)𝑛𝛿(𝑛)(𝑝) 

Other: 

The commutator: [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 

The anticommutator: {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 

The elementary electric charge 𝑒 will be considered positive, and thus the opposite of 
the electron charge: 𝑒 ≔ |𝑒| 

In Feynman diagrams time will usually run from left to right, unless stated otherwise. 
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1 Generalities on QCD 
 
This chapter contains the general understanding and construction of QCD, and 
SU(N) gauge field theories in general, and compared to QED. We will build up, 
quantise, and renormalise the Lagrangian, and give the Feynman rules. This chapter 
is heavily based on the QFT books [4] and [5]. 

 

1.1 QCD as part of the Standard Model 
 
 
This section contains a general overview of the Standard Model (SM) and the 
fundamental interactions, and why quantum chromodynamics (QCD) is needed. 

 

1.1.1 Content of the Standard Model 
 
The Standard Model of particle physics is the theory describing the known 
fundamental particles and known fundamental forces (except gravity, if you would 
consider this a force). The Standard Model is based on quantum field theory (QFT). 
QFT is a theoretical framework that unifies special relativity, quantum mechanics and 
classical field theory. It is able to describe quantum mechanics in Minkowski 
spacetime, and where the number of particles does not need to remain constant (due 
to creation and annihilation). The Standard Model is a specific choice of such 
quantum field theories, which describes the known particle physics in our universe. 

 
Figure 1.1: Elementary particles of the Standard Model, with property values as of 2008. 

Figure from [6] 
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The particles in the Standard Model can be divided into bosons and fermions. 
Bosons have integer spin and obey Bose-Einstein statistics. Fermions have half-
integer spin and obey Fermi-Dirac statistics. It appears that matter is made of the 
elementary fermions, while the forces are mediated by the elementary bosons. 

The elementary fermions all have spin 1/2 and are divided into leptons and quarks. 
The different lepton and quark species are called “flavours”. There are six lepton 
flavours (electron, muon, tau, electron-neutrino, muon-neutrino and tau-neutrino) and 
six quark flavours (up, down, charm, strange, top, bottom). Both leptons and quarks 
can be divided into what we call “families” or “generations”. There are three lepton 
families, each consisting of a charged lepton (electron, muon, tau) and its associated 
neutrino (electron-neutrino, muon-neutrino, tau-neutrino). For the quarks, there are 
also three families. The first family consists of the up and down quarks, the second 
family consists of the charm and strange quarks, and the third family consists of the 
top and bottom quarks. All fermions have mass, possibly with the exception of one of 
the neutrino mass eigenstates. Neutrinos are extremely light, and the only evidence 
for neutrino masses is due to neutrino oscillations. We can only observe neutrino 
flavour eigenstates, but these are not equal to the neutrino mass eigenstates. Since 
this only tells us something about squared mass differences, we only know that at 
least two of the three mass eigenstates have non-zero mass. 

The elementary bosons can be divided into gauge bosons and the Brout-Englert-
Higgs boson. The gauge bosons all have spin 1 and are the carriers of the three 
main fundamental forces. These forces are electromagnetism (EM), weak interaction 
(also called weak force or weak nuclear force), and strong interaction (also called 
strong force or strong nuclear force). The photon is the gauge boson of 
electromagnetism and interacts with everything that has an electric charge. W and Z 
bosons are the gauge bosons of the weak interaction, the interaction related to weak 
isospin (weak charge) and responsible for the radioactive decay of atoms. There are 
two W bosons, W+ with a positive charge and W− with a negative charge. Gluons are 
the gauge bosons of the strong interaction, which is an interaction associated with 
what we call “colour charges”. There are eight different gluons. The strong interaction 
between quarks and gluons, which is mediated by gluons, also gives rise to the 
strong interaction between hadrons. The strong interaction is what keeps quarks 
together in a proton or neutron, and it also keeps protons and neutrons together in 
the nucleus of an atom. These three fundamental interactions are caused by gauge 
symmetries. Of the gauge bosons, only the W and Z bosons have mass. The photon 
and gluons are massless. 

The Brout-Englert-Higgs (BEH) boson has spin 0 and is responsible for the mass of 
the elementary particles in the Standard Model. Even though the interactions 
associated with the BEH boson are often not considered one of the fundamental 
forces, it can technically be considered one. 



12 
 

Every particle also has an antiparticle, which is the same as the particle but with 
opposite charges (at least for electric and colour charges, but for weak isospin this is 
not always true). In the case of the photon, Z boson, gluons and BEH boson, they are 
their own antiparticle. 

Gravity is not a part of the Standard Model. Gravity is often considered a fundamental 
force, but whether it’s a force or not depends on the theory. The currently accepted 
theory for gravity is general relativity, in which gravity isn’t a force at all. 

 

1.1.2 Fundamental interactions 
 
In quantum field theory (QFT), every particle can be described by a quantized field. 
Spin 0 bosons are described by scalar fields, spin 1 bosons are described by vector 
fields, and spin 1/2 fermions are described by spinor fields. The theory is described 
by a Lagrangian containing free field terms and interaction terms. Every basic 
interaction in the theory corresponds to a specific interaction term in the Lagrangian, 
which is a product between several fields. In the context of Feynman diagrams, such 
an interaction term can be thought of as a vertex in which the involved particles meet. 
In the case of a force arising from gauge symmetry, a gauge boson interacts with 
everything that carries a charge associated with the gauge symmetry. 

Electromagnetism (EM) is described by quantum electrodynamics (QED), which is a 
type of quantum field theory called an abelian gauge field theory. It describes 
interactions associated with an electric charge, due to a local U(1) gauge symmetry. 
The photon is the gauge boson that mediates this force, which means it interacts with 
everything that has an electric charge. 

Weak interaction can be described by a type of QFT called a non-abelian gauge field 
theory. It describes interactions associated with weak isospin, due to a local SU(2) 
gauge symmetry. There are three weak isospin charges, of which the T3 is the most 
important one. The W and Z gauge bosons interact with everything that has weak 
isospin, which are the left-handed fermions (spin and momentum have opposite 
direction) and right-handed antifermions (spin and momentum have the same 
direction). 

Strong interaction is described by quantum chromodynamics (QCD), which is also a 
non-abelian gauge field theory. It describes interactions associated with what we call 
“colour charges”, due to a local SU(3) gauge symmetry. The gluons are the gauge 
bosons that mediate this force, which means they interact with everything that has 
colour charge. The only particles that carry colour charge are quarks and gluons 
themselves. For the quarks there are three different colour charges, while for the 
gluons there are eight. 
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Both QED and weak interaction can be unified to electroweak interaction (EW). This 
interaction uses a local U(1)⨯SU(2) symmetry and is related to weak isospin and 
weak hypercharge. For the strong interaction, we have not observed a similar 
unification (although some theories beyond the Standard Model unify strong 
interactions with the other two interactions at very high energies). 

The Brout-Englert-Higgs (BEH) boson is responsible for the mass of the W and Z 
bosons via spontaneous electroweak symmetry breaking. The BEH mechanism 
completes the theory of electroweak interaction. In addition to this, the masses of the 
elementary fermions can also be explained by an interaction with the BEH field, via 
Yukawa couplings. The BEH boson is massive and interacts with everything that has 
mass, including itself. Since the vacuum expectation value is nonzero for the scalar 
field that breaks electroweak symmetry, it will provide mass to the coupled fields 
even in the absence of any BEH field excitations. 

 
Particle Spin Electric 

charge 
Weak 

isospin T3 
Colour charge Interacts via 

Leptons 
𝑒−, 𝜇−, 𝜏− 1/2 -1 -1/2 or 0 0 EM, Weak, 

BEH 
𝜈𝑒, 𝜈𝜇, 𝜈𝜏 1/2 0 +1/2 0 Weak, BEH? 

Antileptons 
𝑒+, 𝜇+, 𝜏+ 1/2 +1 +1/2 or 0 0 EM, Weak, 

BEH 
�̅�𝑒, �̅�𝜇, �̅�𝜏 1/2 0 -1/2 0 Weak, BEH? 

Quarks u, c, t 1/2 +2/3 +1/2 or 0 r, g, or b all d, s, b 1/2 -1/3 -1/2 or 0 

Antiquarks �̅�, 𝑐̅, 𝑡̅ 1/2 -2/3 -1/2 or 0 
r̅, g̅, or b̅ all �̅�, �̅�, �̅� 1/2 +1/3 +1/2 or 0 

Photon 𝛾 1 0 0 0 EM*, EW** 

W bosons 𝑊+ 1 +1 +1 0 EM, Weak, 
EW**, BEH 𝑊− 1 -1 -1 0 

Z boson Z 1 0 0 0 Weak, EW**, 
BEH 

Gluons g 1 0 0 

(rb̅ + br̅) √2⁄  

Strong 

(rg̅ + gr̅) √2⁄  
(gb̅ + bg̅) √2⁄  

−𝑖 (rb̅ − br̅) √2⁄  
−𝑖 (rg̅ − gr̅) √2⁄  
−𝑖 (bg̅ − gb̅) √2⁄  

(rr̅ − bb̅) √2⁄  
(rr̅ + bb̅ − 2gg̅) √6⁄  

BEH boson 𝐻0 0 0 -1/2 0 BEH 
 
Table 1.1: Standard Model particles with their spin, charges and interactions they take part in. 
* Solely as a force carrier, not by self-interaction or other gauge bosons from the same force. 
** Has an interaction from electroweak theory that it wouldn’t have without this unification. 
Also note that the weak isospin 0 versions of the fermions and antifermions don’t interact via weak 
interactions. 
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Figure 1.2: Interaction vertices due to gauge symmetries. (Interactions involving BEH boson omitted) 

Figure from [7] 
 

The photon and gluons are massless, which means the electromagnetic and strong 
interactions have infinite range. The W and Z bosons are massive, which means the 
weak interaction is short range. The coupling strengths of the interactions depend on 
the energy at which the interaction is measured. For the electromagnetic interaction, 
the coupling strength increases with energy. But for the strong and weak interactions, 
it decreases with energy. 

 
Figure 1.3: Coupling strengths in function of energy scale 𝜇: 𝛼1 for QED, 𝛼2 for weak interaction, and 
𝛼3 for QCD. Figure from [8] 
 

Whether the interaction results in an attractive or repulsive potential between charges 
in the nonrelativistic limit depends on the type of exchanged boson. For a Yukawa 
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coupling with a scalar boson, this nonrelativistic potential will always be attractive. 
For a (gauge) interaction via a vector boson, this nonrelativistic potential will be 
repulsive between like charges but will be attractive between unlike charges. 

Exchanged 
particle 𝑓𝑓 or 𝑓�̅� ̅ 𝑓𝑓̅ 

Scalar (Yukawa) attractive attractive 
Vector (gauge) repulsive attractive 

 
 

1.1.3 Why colour and QCD? 
 
In the 1950s and onwards, a lot of new particles were discovered called hadrons. 
Among the hadrons there were fermions, called baryons, and there were bosons, 
called mesons. (While the proton and neutron were discovered decennia earlier, they 
are also hadrons.) More and more hadrons were being discovered, and Gell-Mann 
and Zweig suggested in 1964 that hadrons are not fundamental particles, but are 
composed of constituent particles called quarks. (At that time there were three known 
quarks: up, down and strange. The other three were too massive to show up in 
experiments when the idea of quarks was introduced. The latest and heaviest one, 
the top quark, was theorized in 1975 and discovered in 1995.) Mesons are bound 
states of a quark and an antiquark, and baryons are bound states of three quarks 
(and antibaryons consist of three antiquarks). This (pre-QCD) quark model for 
hadrons was able to describe the observed hadron spectrum. Some examples of 
baryons are the proton (𝑢𝑢𝑑) and neutron (𝑢𝑑𝑑). Some examples of mesons are the 
𝜋+ (𝑢�̅�), 𝜋− (𝑑�̅�) and 𝜋0 (𝑢�̅� and 𝑑�̅�). 

But there are also some problems with this model. Free quarks have never been 
observed. Bound states of two quarks have also never been observed. Why only 
baryons and mesons? Are quarks real particles, or just convenient mathematical 
constructs and not real particles at all? Other problems are the symmetry of the 
hadron wavefunction and violation of the Pauli exclusion principle. 

A hadron’s wavefunction could be decomposed into three parts: A space 
wavefunction, a spin wavefunction, and a flavour wavefunction. 

|𝜓⟩ = |𝜓space⟩ ⊗ |𝜓spin⟩ ⊗ |𝜓flavour⟩                                     (1.1.1) 

For baryons, since they’re fermions, the overall wavefunction needs to be 
antisymmetric under permutations of the quarks. 

The 𝛺− baryon (𝑠𝑠𝑠), which contains three identical strange quarks with their spin all 
in the same direction (so the total spin is 3/2), causes a problem. Because space, 
spin, and flavour wavefunctions are all symmetric under interchange of two of the 
quarks, we have a symmetric wavefunction for the 𝛺− instead of an antisymmetric 
one. 
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A similar situation happens with the 𝛥++ baryon (𝑢𝑢𝑢), which contains three identical 
up quarks with total spin 3/2. This causes the same problem as with the 𝛺−. 

Since these problematic baryons have three quarks with identical quantum numbers, 
they also violate the Pauli exclusion principle. To solve these problems, an extra 
quantum number was suggested. Since the problematic baryons have three 
seemingly identical quarks, each of them should differ in this new quantum number to 
obey the Pauli exclusion principle and to make the overall wavefunction 
antisymmetric. So this new quantum number should have at least three different 
values, or in other words, it must have a triplet representation. This new quantum 
number is the “colour state”. The wavefunction of a hadron becomes: 

|𝜓⟩ = |𝜓space⟩ ⊗ |𝜓spin⟩ ⊗ |𝜓flavour⟩ ⊗ |𝜓colour⟩                          (1.1.2) 

With the colour wavefunction antisymmetric under interchange of two quarks. 

Because mesons are made of a quark and antiquark, this triplet representation must 
be complex. We can write the colour wavefunctions as follows: 

Baryon: 𝜓colour ~ 𝜀𝑖𝑗𝑘𝑞𝑖𝑞𝑗𝑞𝑘 

Antibaryon: 𝜓colour ~ 𝜀𝑖𝑗𝑘�̅�𝑖�̅�𝑗�̅�𝑘 

Meson: 𝜓colour ~ 𝛿𝑖𝑗𝑞𝑖�̅�𝑗 

This hints to a SU(N) symmetry group with the number of colours N≥3. The exact 
number of colours comes from measuring cross sections. For example, comparing 
the cross section for 𝑒−𝑒+ → 𝑞�̅� with the cross section for 𝑒−𝑒+ → 𝜇−𝜇+. Experiments 
yield N=3. 

This theory of colour was developed by Han, Nambu and Greenberg in 1964-1965. 
Note that there are only colour neutral hadrons. In other words, only singlet states. 

High energy electron-proton scattering experiments showed that hadrons were 
indeed made up of smaller point-like constituents, by Bjorken and Feynman in 1968-
1969. These constituents are called “partons”. Further deep inelastic scattering 
showed more and more structure of the proton. Eventually, these experiments show 
that at very high energies, the proton does not only consist of three valence quarks 
but also gluons (the gluon was theorised earlier by Gell-Mann) and “sea quarks” 
(quark-antiquark pairs). 

Quantum chromodynamics was developed by Fritzsch, Gell-Mann and Leutwyler in 
1973 as a quantum field theory for the strong interaction, by employing Yang-Mills 
theory for SU(3). This theory proves successful in explaining the observations and 
making predictions. 
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At high energy, a phenomenon called “asymptotic freedom” is observed. This means 
that the results of these high energy experiments can be explained by applying 
perturbation theory, while this is impossible at low energies. The strength of the 
strong interaction decreases with increasing energy. This property allows the partons 
to be considered nearly “free” at very high energy. 

The inability to isolate a single colour charge is called “confinement”. This is 
understood by QCD as follows: If you try to separate a single colour charge from a 
hadron, the force will not decrease with distance and remain large. Because it 
remains large, it will create quarks and antiquarks to turn this separating charge and 
the original hadron into colour neutral hadrons again. While it is usually understood 
like this, there is not an analytic proof yet. 

To summarise, full QCD can explain: 

x The hadron spectrum. 
x How baryon wavefunctions can be antisymmetric even if they consist of three 

identical quark flavours with identical spin direction, and how this doesn’t 
violate the Pauli exclusion principle. 

x Partons. 
x Asymptotic freedom. 
x Hard scattering experiments, like deep inelastic scattering and Drell-Yan. 
x Confinement: why a free, separated quark or gluon has never been observed. 

But confinement has not yet been proven analytically. 
x Why hadrons are colour singlet states (colour neutral). This is related to 

confinement. 

 

1.2 QCD Lagrangian 
 
 
In this section, we start from the free Dirac field and develop the gauge field theories 
for both U(1) and SU(N) gauge symmetries. The gauge theory for SU(3) will be the 
theory for QCD. The theories in this section are not quantum field theories yet, in 
other words, they are not quantised by “second quantisation” yet. These theories will 
be referred to as “classical”, despite that they might be compatible with quantum 
mechanics as wave equations. The full quantisation to a quantum field theory will be 
done in section 1.3. 

 

1.2.1 The free Dirac field 
 
We start with the free Dirac field, which is a field that describes free massive spin 1/2 
particles that are not their own antiparticles (such as the electron, positron, quarks, 
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etc), in a special relativistic way. The Lagrangian density for the free Dirac field is 
given by: 

ℒDirac = �̅�(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = �̅�(𝑖∂/ − 𝑚)𝜓                              (1.2.1) 

In this equation, and throughout the whole thesis, we use units in which 𝑐 = ħ = 1. 

𝜓 = 𝜓(𝑥) is a spin 1/2 spinor field, and m is the rest mass. The slash notation in the 
equation denotes a contraction with the gamma matrices: A/ = 𝛾𝜇𝐴𝜇 

The gamma matrices are a set of four nxn matrices that satisfy the anticommutation 
relation: 

{𝛾𝜇, 𝛾𝜈} = 𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝑔𝜇𝜈 × 𝟏𝑛×𝑛                               (1.2.2) 

In our case, this will be 4⨯4 matrices. We will often use 1 as a notation for 𝟏n×n , and 
omit it in multiplications, because it usually understood that we dealing with matrices 
if gamma matrices appear in our equations. 

The gamma matrices also obey the following conditions 𝛾0† = 𝛾0, 𝛾𝑖† = −𝛾𝑖 , where 
the i components are the spatial components. (For more about gamma matrices, see 
Ref [5].) 

The spinors 𝜓 and �̅� will each have n components (4 in our case). �̅� is the adjoint 
field for 𝜓 and is given by: 

�̅� = 𝜓†𝛾0                                                              (1.2.3) 

Throughout this book we will use the Weyl (also called chiral) representation of the 
gamma matrices: 

𝛾0 = (0 1
1 0) ;      𝛾𝑖 = ( 0 𝜎𝑖

−𝜎𝑖 0
)                                        (1.2.4) 

With 𝜎𝑖 the Pauli matrices. This representation allows us to write the spinor 𝜓 as: 

𝜓 = (𝜓𝐿
𝜓𝑅

)                                                            (1.2.5) 

Where 𝜓𝐿 and 𝜓𝑅 are the left handed and right handed Weyl spinors, each having 
two components. 

Under a Lorentz transformation, the spinor 𝜓 will transform as 

𝜓𝑎(𝑥) → 𝜓′
𝑎(𝑥′) = 𝜓𝑎(𝑥) −

𝑖
4

𝜀𝜇𝜈𝜎𝑎𝑏
𝜇𝜈𝜓𝑏(𝑥)                             (1.2.6) 

With the components of the spinor fields and gamma matrices labeled with a and b, 𝜀 
the Levi-Civita tensor, and with 𝜎𝑎𝑏

𝜇𝜈 proportional to the commutator of the gamma 
matrices as follows: 
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𝜎𝜇𝜈 =
𝑖
2

[𝛾𝜇, 𝛾𝜈]                                                          (1.2.7) 

Now we go back to the Dirac Lagrangian and derive the Euler-Lagrange equations of 
motion for 𝜓. 

𝜕𝜇 (
𝜕ℒ

𝜕𝜕𝜇𝜓
) −

𝜕ℒ
𝜕𝜓

= 0                                                   (1.2.8) 

𝜕𝜇 (
𝜕ℒ

𝜕𝜕𝜇�̅�
) −

𝜕ℒ
𝜕�̅�

= 0                                                   (1.2.9) 

Where the 𝜕𝜕𝜇𝜓 in the denominator means that it is a partial derivative with respect 
to 𝜕𝜇𝜓 . 

Applying this to ℒDirac we get: 

𝑖𝜕𝜇�̅�𝛾𝜇 + 𝑚�̅� = 0                                                 (1.2.10) 

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = 0                                                 (1.2.11) 

These are the Dirac equations for �̅� and 𝜓 respectively. They can be interpreted as 
the relativistic wave equations for these spin 1/2 fields. 

From the Lagrangian density, we can derive the Hamiltonian density, by using 

ℋDirac = 𝜋𝑎�̇�𝑎 + �̅�𝑎�̇̅�𝑎 − ℒDirac                                   (1.2.12) 

Where the dot denotes a partial derivative with respect to time, and 𝜋𝑎 and �̅�𝑎 are the 
fields conjugate to 𝜓𝑎and �̅�𝑎 

𝜋𝑎 =
𝜕ℒDirac

𝜕�̇�𝑎
= 𝑖𝜓𝑎

† ;     �̅�𝑎 =
𝜕ℒDirac

𝜕�̇̅�𝑎
= 0                           (1.2.13) 

If we plug this in the equation for the Hamiltonian density, we get: 

ℋDirac = �̅� (−𝑖𝛾𝑗 𝜕
𝜕𝑥𝑗 + 𝑚) 𝜓                                        (1.2.14) 

If we want the Hamiltonian, all we need to do is integrate the Hamiltonian density 
over space: 

𝐻Dirac = ∫ 𝑑3𝑥ℋDirac(𝑥) = ∫ 𝑑3𝑥�̅�(𝑥) (−𝑖𝛾𝑗 𝜕
𝜕𝑥𝑗 + 𝑚) 𝜓(𝑥)          (1.2.15) 

This Hamiltonian equals the total energy of the free Dirac field, and will be constant. 
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1.2.2 U(N) and SU(N) groups 
 
Symmetries play a very important role in field theories, and the continuous unitary 
groups U(N) and SU(N) are the fundamental reason for gauge theories in the 
Standard Model. Both U(N) and SU(N) are Lie groups, groups that are differentiable 
manifolds. We will now give an overview of the main properties of these groups, but 
we will be mostly focusing on SU(N) and U(1) since only these are of importance in 
this thesis. 

U(N) is the unitary group, the group of N⨯N unitary matrices, which means: 

∀𝐺 ∈ 𝑈(𝑁) ∶  𝐺†𝐺 = 𝐺𝐺† = 𝟏𝑁×𝑁                                    (1.2.16) 

In other words, the Hermitian conjugate is equal to the inverse 𝐺−1 = 𝐺† 

This means that there are only 𝑁2 independent components, and thus U(N) is a 
group of dimension 𝑁2. 

U(1) is equivalent to the circle group and can be represented as the complex 
numbers with modulus (absolute value) equal to 1 

∀𝐺 ∈ 𝑈(1) ∶   𝐺 = 𝑒𝑖𝛼           𝛼 ∈ ℝ                                    (1.2.17) 

SU(N) is the special unitary group, the group of N⨯N unitary matrices with 
determinant equal to 1. Just like with U(N), this means that the Hermitian conjugate is 
equal to the inverse, but the additional condition that 𝑑𝑒𝑡(𝐺) = 1 means that there are 
only 𝑁2 − 1 independent components. Thus SU(N) is a group of dimension 𝑁2 − 1. 
We can represent the group elements as: 

∀𝐺 ∈ 𝑆𝑈(𝑁) ∶   𝐺 = 𝑒𝑖𝛼𝑎𝑇𝑎                                          (1.2.18) 

𝛼𝑎 are real numbers, 𝑇𝑎 are the generators for the group, and the index a runs from 
1 to 𝑁2 − 1. The generators are traceless Hermitian matrices, and form a Lie algebra 
for SU(N), with commutation relations: 

[𝑇𝑎, 𝑇𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑇𝑐                                                  (1.2.19) 

𝑓𝑎𝑏𝑐 are the structure constants and are totally antisymmetric, which means that 
swapping any two indices will result in a minus sign, and this can be expressed by 
using the notation [𝑎𝑏𝑐] for total antisymmetrisation of the indices 𝑎𝑏𝑐: 

𝑓𝑎𝑏𝑐 = 𝑓[𝑎𝑏𝑐]                                                      (1.2.20) 

There are different possible representations for the generators 𝑇𝑎. The fundamental 
representation 𝑇𝐹

𝑎 , which we will often just call 𝑇𝑎 , is a N⨯N representation. The 
antifundamental representation 𝑇𝐹

𝑎 is defined as 𝑇𝐹
𝑎 = −𝑇𝐹

𝑎∗ , and thus also a N⨯N 
representation. The adjoint representation 𝑇𝐴

𝑎 is a (N2 − 1) × (N2 − 1) representation 
for which we have (𝑇𝐴

𝑎)𝑏𝑐 = −𝑖𝑓𝑎𝑏𝑐. 
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We define the Casimir invariant 𝐶𝑅 for a representation R as 

𝑇𝑅
𝑎𝑇𝑅

𝑎 = 𝐶𝑅𝟏𝑑𝑅                                                        (1.2.21) 

where 𝟏𝑑𝑅 is the 𝑑𝑅 × 𝑑𝑅 identity matrix, and with 𝑑𝑅 the dimension of the 
representation R. 

We define the trace invariant 𝑇𝑅 for a representation R as 

Tr(𝑇𝑅
𝑎𝑇𝑅

𝑏) = 𝑇𝑅𝛿𝑎𝑏                                                (1.2.22) 

They are related to each other by 𝐶𝑅𝑑𝑅 = 𝑇𝑅𝑑𝐺 , with 𝑑𝐺 = N2 − 1 (the dimension of 
the group SU(N)). 

For the fundamental and adjoint representations we have: 

𝑇𝐹 =
1
2

 ;      𝐶𝐹 =
𝑁2 − 1

2𝑁
 ;      𝑇𝐴 = 𝐶𝐴 = 𝑁                           (1.2.23) 

A special case is SU(1), which is the trivial group. It has the identity as its only 
element. The elements of U(N) and SU(N) can be interpreted as (multidimensional) 
phase transformations. U(1) is an abelian group, while SU(N>1) and U(N>1) are non-
abelian groups. U(1) will be the group underlying electromagnetism, while SU(3) will 
be the group underlying QCD. For SU(3), the group generators in the fundamental 
representation can be written as 

𝑇𝑎 = 𝑇𝐹
𝑎 =

1
2

𝜆𝑎                                                     (1.2.24) 

With 𝜆𝑎 the Gell-Mann matrices. (See ref [5]) 

 

1.2.3 Global phase invariance and Noether current 
 
We will now take the free Dirac Lagrangian and check if it is invariant under global 
phase transformations. These transformations will be elements of U(N) or SU(N) 
groups. The free Dirac Lagrangian is: 

ℒDirac = �̅�(𝑖∂/ − 𝑚)𝜓                                                 (1.2.1) 

But this time we will consider a spinor field 𝜓 that is a combination of N spinor fields 
𝜓𝑟, and has the following form: 

𝜓 = (
𝜓1
𝜓2
⋮

)                                                           (1.2.25) 

Where the components 𝜓𝑟 themselves are spinor fields, each of them having 4 
components, and r runs from 1 to N. The adjoint field �̅� will have the form: 
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�̅� = (�̅�1 �̅�2 …)                                               (1.2.26) 

(Keep in mind that all these fields are functions of spacetime coordinates) 

We will check if this Lagrangian is invariant under global SU(N) transformations. We 
will transform the fields as follows: 

𝜓 → 𝜓′ = 𝐺𝜓                                                      (1.2.27) 

�̅� → �̅�′ = �̅�𝐺†                                                    (1.2.28) 

With 𝐺 = 𝑒𝑖𝛼𝑎𝑇𝑎 and 𝐺† = 𝐺−1 = 𝑒−𝑖𝛼𝑎𝑇𝑎 (Remember that 𝑇𝑎 are Hermitian matrices, 
and thus 𝑇𝑎† = 𝑇𝑎). 

𝑇𝑎 is in the fundamental representation, and 𝛼𝑎 are real constants. (The word 
“global” refers to 𝛼𝑎 being constant.) 

If we plug this in our free Dirac Lagrangian, we get 

ℒDirac → ℒDirac
′ = �̅�𝐺†(𝑖∂/ − 𝑚)(𝐺𝜓) = 𝑖�̅�𝐺†𝐺∂/ 𝜓 − 𝑚�̅�𝐺†𝐺𝜓            (1.2.29) 

And since 𝐺†𝐺 = 1 , we just get the original Lagrangian again: 

ℒDirac → ℒDirac
′ = 𝑖�̅�∂/ 𝜓 − 𝑚�̅�𝜓 = ℒDirac                         (1.2.30) 

We can conclude that the free Dirac Lagrangian is invariant under a global SU(N) 
symmetry. This is also true for U(N). Generally, a Dirac field of the form we 
considered (with N component fields), will always be invariant under global U(1) (with 
its generator the N⨯N identity matrix), global SU(N), and global U(N). 

If a field theory has a symmetry (from a continuous symmetry group), then according 
to Noether’s theorem there is a conserved current for each generator of the 
symmetry group. For a symmetry transformation G that results in 

𝜓 → 𝜓′ = 𝐺𝜓 = 𝜓 + 𝛿𝜓                                              (1.2.31) 

�̅� → �̅�′ = �̅�𝐺† = �̅� + 𝛿�̅�                                            (1.2.32) 

ℒDirac → ℒDirac
′ = ℒDirac + 𝛿ℒDirac                                    (1.2.33) 

Noether theorem tells us that the following equation holds for the Dirac field [4 (p32)]: 

𝛿ℒDirac = 𝜕𝜇 (
𝜕ℒDirac

𝜕𝜕𝜇𝜓
𝛿𝜓 + 𝛿�̅�

𝜕ℒDirac

𝜕𝜕𝜇�̅�
) = 𝜕𝜇 (

𝜕ℒDirac

𝜕𝜕𝜇𝜓
𝛿𝜓) = 0          (1.2.34) 

since for our global phase transformations 𝛿ℒDirac = 0 

This means that the expression inside the brackets is a conserved current. 
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We can consider infinitesimal transformations since we are dealing with continuous 
groups, which means 

𝜓 → 𝜓′ = 𝐺𝜓 = 𝑒𝑖𝛼𝑎𝑇𝑎𝜓 ≈ (1 + 𝑖𝛼𝑎𝑇𝑎)𝜓 = 𝜓 + 𝛿𝜓                   (1.2.35) 

�̅� → �̅�′ = �̅�𝐺† = �̅�𝑒−𝑖𝛼𝑎𝑇𝑎 ≈ �̅�(1 − 𝑖𝛼𝑎𝑇𝑎) = �̅� + 𝛿�̅�              (1.2.36) 

So if we plug it in the equation related to Noether’s theorem, we get 

𝜕𝜇(𝑖�̅�𝛾𝜇𝛿𝜓) = 𝛼𝑎𝜕𝜇(�̅�𝛾𝜇𝑇𝑎𝜓) = 0                                    (1.2.37) 

This is true for any arbitrary 𝛼𝑎, which means 

𝜕𝜇(�̅�𝛾𝜇𝑇𝑎𝜓) = 0                                                      (1.2.38) 

with �̅�𝛾𝜇𝑇𝑎𝜓 being the conserved currents. This will also hold for transformations 
that aren’t infinitesimal, by considering them an infinite amount of infinitesimal 
transformations. If we integrate the timelike (𝜇 = 0) current over space, we get a 
conserved charge for each 𝑇𝑎 [4 (p32)] 

𝐹𝑎 = ∫ 𝑑3𝑥�̅�𝛾0𝑇𝑎𝜓 = ∫ 𝑑3𝑥�̅�†𝛾0𝛾0𝑇𝑎𝜓 = ∫ 𝑑3𝑥�̅�†𝑇𝑎𝜓 = constant        (1.2.39) 

These are what we call the colour charges. 

 

1.2.4 Local phase invariance for an abelian gauge group (U(1)) 
 
What if instead of a global transformation 𝐺 = 𝑒𝑖𝛼𝑎𝑇𝑎, with 𝛼𝑎 constant, we would try 
to do the same for a local transformation where 𝛼𝑎 = 𝛼𝑎(𝑥)? We will first try this with 
the U(1) symmetry group, which is an abelian group, before we try this with the more 
complicated SU(N) symmetry groups. 

Again we start with the free Dirac Lagrangian: 

ℒDirac = �̅�(𝑖∂/ − 𝑚)𝜓                                                  (1.2.1) 

and this time we will check if it is invariant under local U(1) transformations. We will 
transform the fields as follows: 

𝜓 → 𝜓′ = 𝐺𝜓 = 𝑒𝑖𝛼𝜓                                                 (1.2.40) 

�̅� → �̅�′ = �̅�𝐺† = �̅�𝑒−𝑖𝛼                                            (1.2.41) 

With 𝐺 = 𝑒𝑖𝛼 and 𝐺† = 𝐺∗ = 𝐺−1 = 𝑒−𝑖𝛼, with 𝛼 = 𝛼(𝑥). 

Because in this case α isn’t a constant anymore but depends on the spacetime 
coordinates, we will do a phase transformation of the field where the phase 
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transformation itself can be different in different spacetime locations. (This is what the 
word “local” refers to.) This in contrast with a global phase transformation where we 
transform the field by the same phase everywhere in spacetime. 

If we plug this in our free Dirac Lagrangian, we get 

ℒDirac → ℒDirac
′ = �̅�𝐺†(𝑖∂/ − 𝑚)(𝐺𝜓) = 𝑖�̅�𝐺†∂/ (𝐺𝜓) − 𝑚�̅�𝐺†𝐺𝜓          (1.2.42) 

Again we have 𝐺†𝐺 = 1 , so we get 

ℒDirac → ℒDirac
′ = 𝑖�̅�𝐺†∂/ (𝐺𝜓) − 𝑚�̅�𝜓                                  (1.243) 

We notice that the mass term −𝑚�̅�𝜓 transforms into itself again and is invariant. For 
the kinetic term, we use ∂/ = 𝛾𝜇𝜕𝜇 and 

𝜕𝜇𝐺 = 𝑖𝑒𝑖𝛼𝜕𝜇𝛼 = 𝑖𝐺𝜕𝜇𝛼                                           (1.2.44) 

And for the kinetic term we get: 

𝑖�̅�∂/ 𝜓 → 𝑖�̅�𝐺†∂/ (𝐺𝜓) = 𝑖�̅�∂/ 𝜓 − �̅�(∂/ 𝛼)𝜓 ≠ 𝑖�̅�∂/ 𝜓                 (1.2.45) 

This means that the kinetic term 𝑖�̅�∂/ 𝜓 is not invariant under local U(1), which means 
that the Lagrangian is not invariant either: 

ℒDirac → ℒDirac
′ = 𝑖�̅�∂/ 𝜓 − �̅�(∂/ 𝛼)𝜓 − 𝑚�̅�𝜓 = ℒDirac − �̅�(∂/ 𝛼)𝜓          (1.2.46) 

The free Dirac Lagrangian is not invariant under local U(1) symmetry, but there is a 
way to adjust this Lagrangian and force it to be invariant. Since the problem arises in 
the kinetic term due to the partial derivative, we will define a new type of derivative 
instead: 

𝐷𝜇 ≔ 𝜕𝜇 + 𝑉𝜇                                                         (1.2.47) 

We call this the covariant derivative. The vector 𝑉𝜇 will not be a differential operator, 
but a multiplicative one. While the partial derivative of the field transforms as 

𝜕𝜇𝜓 → 𝜕𝜇(𝐺𝜓) ≠ 𝐺𝜕𝜇𝜓                                             (1.2.48) 

We will demand that the covariant derivative transforms in the same way as 𝜓 

𝐷𝜇𝜓 → 𝐷𝜇′(𝐺𝜓) = 𝐺𝐷𝜇𝜓                                           (1.2.49) 

For the vector 𝑉𝜇 we will also have a transformation 𝑉𝜇 → 𝑉𝜇′ 

If we work out 𝐷𝜇′(𝐺𝜓) = 𝐺𝐷𝜇𝜓 , we will get 

𝑉𝜇
′ = 𝐺𝑉𝜇𝐺† − (𝜕𝜇𝐺)𝐺†                                               (1.2.50) 

G and 𝑉𝜇 commute since G is an element of an abelian group, so we have 
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𝑉𝜇 → 𝑉𝜇
′ = 𝑉𝜇 − (𝜕𝜇𝐺)𝐺† = 𝑉𝜇 − 𝑖𝜕𝜇𝛼                                 (1.2.51) 

We can do something similar for the transformation of (𝐷𝜇𝜓)
†
, and find the 

transformation of 𝑉𝜇
† 

𝑉𝜇
† → 𝑉𝜇

†′ = 𝑉𝜇
† − (𝜕𝜇𝐺†)𝐺 = 𝑉𝜇

† + 𝑖𝜕𝜇𝛼                            (1.2.52) 

We find for the difference between the transformed field and the original field: 

𝛿𝑉𝜇
† = −𝛿𝑉𝜇 = 𝑖𝜕𝜇𝛼                                                   (1.2.53) 

This means that 𝛿𝑉𝜇 is purely imaginary. We can choose 𝑉𝜇 to be purely imaginary as 
well, and will define it as 

𝑉𝜇 = −𝑖𝑔𝐴𝜇                                                          (1.2.54) 

where 𝐴𝜇 is a real vector, and g a real number that is called the coupling constant. 
The covariant derivative can now be written as 

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝜇                                                     (1.2.55) 

Now we are ready to replace the free Dirac Lagrangian by a similar Lagrangian in 
which we replace the partial derivatives by covariant derivatives. 

ℒ = �̅�(𝑖D/ − 𝑚)𝜓 = ℒDirac + 𝑔�̅�A/ 𝜓                                  (1.2.56) 

The fields and Lagrangian will now transform under local U(1) as 

𝜓 → 𝜓′ = 𝐺𝜓                                                                           (1.2.57) 

�̅� → �̅�′ = �̅�𝐺†                                                                         (1.2.58) 

𝐴𝜇 → 𝐴𝜇
′ = 𝐴𝜇 −

𝑖
𝑔

(𝜕𝜇𝐺)𝐺† = 𝐴𝜇 +
1
𝑔

𝜕𝜇𝛼                       (1.2.59) 

ℒ → ℒ′ = ℒ                                                                               (1.2.60) 

Here we obtained the transformation law for 𝐴𝜇 by plugging it in the transformation 
law for 𝑉𝜇. 

Our new Lagrangian is now invariant under local U(1) symmetry and is equal to the 
free Dirac Lagrangian plus an extra term that contains a new field 𝐴𝜇. We call this 
field the gauge field. Because we introduced a new field, we will need to add a new 
term for 𝐴𝜇 in the Lagrangian. We will take 𝐴𝜇 to be a massless field, because the 
gauge fields for QED and QCD are massless. A massive gauge field would add 
additional problems in the theory which would require spontaneous symmetry 
breaking and the introduction of a Brout-Englert-Higgs field. We would have to do this 
if we were doing Electroweak Interactions in this thesis, but we will stick to QCD and 
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QED in this thesis. Since our gauge field is massless, the Lagrangian term for the 
gauge field will be a purely kinetic term. This kinetic term is a free Lagrangian term 
for a massless abelian vector field and is given by 

ℒMaxwell = −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈                                                (1.2.61) 

Where 𝐹𝜇𝜈 is the field strength tensor, an antisymmetric tensor given by 

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇                                                 (1.2.62) 

This is also the free Lagrangian for electromagnetism, with 𝐴𝜇 the 4D vector 
potential: 

𝐴𝜇 = (𝜙, 𝐀)                                                      (1.2.63) 

with ϕ the potential, and 𝐀 the 3D vector potential. The Euler-Lagrange equations of 
motion for this free Lagrangian will yield the homogeneous Maxwell equations [4 
(p74)]: 

𝜕𝜈𝐹𝜇𝜈 = 0                                                          (1.2.64) 

𝜕𝜆𝐹𝜇𝜈 + 𝜕𝜇𝐹𝜈𝜆 + 𝜕𝜈𝐹𝜆𝜇 = 0                                         (1.2.65) 

Or in terms of 𝐴𝜇 

⧠𝐴𝜇 − 𝜕𝜇(𝜕𝜈𝐴𝜈) = 0                                                (1.2.66) 

where ⧠ = 𝜕𝜇𝜕𝜇 

Note that the fields strength tensor is proportional to the commutator of two covariant 
derivatives 

𝐹𝜇𝜈 =
𝑖
𝑔

[𝐷𝜇, 𝐷𝜈]                                                      (1.2.67) 

We can show this by working out the commutator 

[𝐷𝜇, 𝐷𝜈] = [𝜕𝜇 − 𝑖𝑔𝐴𝜇 ,   𝜕𝜈 − 𝑖𝑔𝐴𝜈] = −𝑖𝑔(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) = −𝑖𝑔𝐹𝜇𝜈     (1.2.68) 

Note that the commutator of 2 covariant derivatives is not a differential operator, but 
just a multiplicative one. 

This commutator acting on the spinor field 𝜓, will transform under local U(1) just like 
𝜓 itself: 

[𝐷𝜇, 𝐷𝜈]𝜓 → 𝐺[𝐷𝜇, 𝐷𝜈]𝜓                                             (1.2.69) 

This means that the field strength tensor will transform as 

𝐹𝜇𝜈 → 𝐹𝜇𝜈′ = 𝐺𝐹𝜇𝜈𝐺† = 𝐹𝜇𝜈                                        (1.2.70) 
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Where we used that G is an element of an abelian group. This means that the 
following transformation law holds: 

𝐹𝜇𝜈𝐹𝜇𝜈 → 𝐹𝜇𝜈𝐹𝜇𝜈                                                     (1.2.71) 

Which means that our free Lagrangian for the gauge field is invariant under local U(1) 
symmetry. Our full Lagrangian at this point is 

ℒ = �̅�(𝑖D/ − 𝑚)𝜓 −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈 = ℒDirac + ℒMaxwell + 𝑔�̅�A/ 𝜓                (1.2.72) 

ℒ0 = ℒDirac + ℒMaxwell is the free Lagrangian, which contains both spinor and gauge 
fields but separated. ℒI = 𝑔�̅�A/ 𝜓 is a Lagrangian term that couples the spinor and 
gauge fields, and will be interpreted as an interaction term. 

We started with a field that was invariant under global U(1) symmetry, but not under 
local U(1). We then adjusted our Lagrangian by replacing the partial derivative by a 
covariant derivative, which introduces a new field. This made our new Lagrangian 
invariant under local U(1) symmetry, but our Lagrangian is not free anymore since it 
contains a term that couples the Dirac field to the new gauge field. While the Dirac 
field is a fermion field of spin 1/2, the gauge field will be a boson field of spin 1. 

It is exactly such a Lagrangian that gives rise to quantum electrodynamics (QED). In 
this case 𝐴𝜇 is the photon field, and the coupling constant 𝑔 = −𝑒 = −|𝑒| , with −𝑒 
the electric charge of the electron. 

 

1.2.5 Local phase invariance for a non-abelian gauge group (SU(N)) 
 
We will now try to do the same for local SU(N) transformations. The main difference 
with U(1) is that SU(N) is a non-abelian group, while U(1) is an abelian group. 

We start with the free Dirac Lagrangian: 

ℒDirac = �̅�(𝑖∂/ − 𝑚)𝜓                                                   (1.2.1) 

where the fields 𝜓 and �̅� are N component spinor fields like in section 1.2.3. We will 
check if it is invariant under local SU(N) transformations. We will transform the fields 
as follows: 

𝜓 → 𝜓′ = 𝐺𝜓 = 𝑒𝑖𝛼𝑎𝑇𝑎𝜓                                               (1.2.73) 

�̅� → �̅�′ = �̅�𝐺† = �̅�𝑒−𝑖𝛼𝑎𝑇𝑎                                          (1.2.74) 

With 𝐺 = 𝑒𝑖𝛼𝑎𝑇𝑎 and 𝐺† = 𝐺−1 = 𝑒−𝑖𝛼𝑎𝑇𝑎, with 𝛼 = 𝛼(𝑥), and with 𝑇𝑎 in the 
fundamental representation. 

If we plug this in our free Dirac Lagrangian, we get 
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ℒDirac → ℒDirac
′ = �̅�𝐺†(𝑖∂/ − 𝑚)(𝐺𝜓) = 𝑖�̅�𝐺†∂/ (𝐺𝜓) − 𝑚�̅�𝜓            (1.2.75) 

The mass term −𝑚�̅�𝜓 transforms into itself again and is invariant. For the kinetic 
term we get: 

𝑖�̅�∂/ 𝜓 → 𝑖�̅�𝐺†∂/ (𝐺𝜓) = 𝑖�̅�∂/ 𝜓 + 𝑖�̅�𝐺†(∂/ 𝐺)𝜓 ≠ 𝑖�̅�∂/ 𝜓                 (1.2.76) 

Since G is an element of a non-abelian group, we cannot simply apply the chain rule 
to 𝜕𝜇𝐺 = 𝜕𝜇(𝑒𝑖𝛼𝑎𝑇𝑎) 

The kinetic term 𝑖�̅�∂/ 𝜓 is not invariant under local SU(N), which means that the 
Lagrangian is not invariant either: 

ℒDirac → ℒDirac
′ = 𝑖�̅�∂/ 𝜓 + 𝑖�̅�𝐺†(∂/ 𝐺)𝜓 − 𝑚�̅�𝜓 = ℒDirac + 𝑖�̅�𝐺†(∂/ 𝐺)𝜓     (1.2.77) 

The free Dirac Lagrangian is not invariant under local SU(N) symmetry, but we can 
use the same trick as we did for local U(1) symmetry, where we adjust the 
Lagrangian and force it to be invariant. Again we define the covariant derivative: 

𝐷𝜇 ≔ 𝜕𝜇 + 𝑉𝜇                                                         (1.2.78) 

The vector 𝑉𝜇 will not be a differential operator, but a multiplicative one. The partial 
derivative of the field transforms as 

𝜕𝜇𝜓 → 𝜕𝜇(𝐺𝜓) ≠ 𝐺𝜕𝜇𝜓                                            (1.2.79) 

Again we will demand that the covariant derivative transforms in the same way as 𝜓 

𝐷𝜇𝜓 → 𝐷𝜇′(𝐺𝜓) = 𝐺𝐷𝜇𝜓                                         (1.2.80) 

If we work out 𝐷𝜇′(𝐺𝜓) = 𝐺𝐷𝜇𝜓 , we will get 

𝑉𝜇 → 𝑉𝜇
′ = 𝐺𝑉𝜇𝐺† − (𝜕𝜇𝐺)𝐺†                                   (1.2.81) 

G and 𝑉𝜇 do not necessarily commute since G is an element of a non-abelian group. 
In order for this to work, 𝑉𝜇 will not have to be purely imaginary, but will have to be 
some linear combination of the different 𝑖𝑇𝑎 instead. 

We will define 𝑉𝜇 as 

𝑉𝜇 = −𝑖𝑔𝐴𝜇 = −𝑖𝑔𝐴𝜇
𝑎𝑇𝑎                                             (1.2.82) 

where 𝐴𝜇 = 𝐴𝜇
𝑎𝑇𝑎 is a convenient notation, and g the coupling constant which is a 

real number. The covariant derivative can now be written as 

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝜇                                                       (1.2.83) 
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Just like in the case of U(1), we replace the free Dirac Lagrangian by a similar 
Lagrangian in which we replace the partial derivatives by covariant derivatives. 

ℒ = �̅�(𝑖D/ − 𝑚)𝜓 = ℒDirac + 𝑔�̅�A/ 𝜓                                    (1.2.84) 

The fields and Lagrangian will now transform under local SU(N) as 

𝜓 → 𝜓′ = 𝐺𝜓                                                                (1.2.85) 

�̅� → �̅�′ = �̅�𝐺†                                                              (1.2.86) 

𝐴𝜇 → 𝐴𝜇
′ = 𝐺𝐴𝜇𝐺† −

𝑖
𝑔

(𝜕𝜇𝐺)𝐺†                               (1.2.87) 

ℒ → ℒ′ = ℒ                                                                    (1.2.88) 

Note that (𝜕𝜇𝐺)𝐺† = −𝐺𝜕𝜇𝐺† , by working out 𝜕𝜇(𝐺𝐺†) = 𝜕𝜇𝟏 = 0 

The new Lagrangian is now invariant under local SU(N) symmetry and is equal to the 
free Dirac Lagrangian plus an extra term that contains new fields 𝐴𝜇

𝑎. For every 
generator of the group, there is a corresponding gauge field. This means we have 
N2 − 1 gauge fields. Just like with U(1), these gauge fields will be bosonic spin 1 
fields. Again we will need to add a new Lagrangian term for the gauge fields. We will 
take 𝐴𝜇

𝑎 to be massless field, like we did for U(1). The new Lagrangian term will be a 
kinetic term for the gauge field. Because we are dealing with non-abelian vector 
fields, this kinetic term will not simply be the same as in the case of U(1). 

In this case, we have for the field strength tensor: 

𝐹𝜇𝜈 =
𝑖
𝑔

[𝐷𝜇, 𝐷𝜈] = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝑖𝑔[𝐴𝜇, 𝐴𝜈]                            (1.2.98) 

We can also write this as 

𝐹𝜇𝜈𝑎 = 𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐                                  (1.2.90) 

with 𝐹𝜇𝜈 = 𝐹𝜇𝜈𝑎𝑇𝑎 , and where we used [𝑇𝑏, 𝑇𝑐] = 𝑖𝑓𝑎𝑏𝑐𝑇𝑎. 

Note that just like with U(1), the commutator of 2 covariant derivatives is not a 
differential operator, but just a multiplicative one. 

This commutator acting on the spinor field 𝜓, will transform under local SU(N) just 
like 𝜓 itself: 

[𝐷𝜇, 𝐷𝜈]𝜓 → 𝐺[𝐷𝜇, 𝐷𝜈]𝜓                                             (1.2.91) 

This means that the field strength tensor will transform as 

𝐹𝜇𝜈 → 𝐹𝜇𝜈′ = 𝐺𝐹𝜇𝜈𝐺†                                                (1.2.92) 
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And from this we see that the following transformation law holds: 

𝐹𝜇𝜈𝐹𝜇𝜈 → 𝐺𝐹𝜇𝜈𝐹𝜇𝜈𝐺†                                                 (1.2.93) 

This is not invariant. Instead we will take the trace, which will turn out to be invariant. 

Tr(𝐹𝜇𝜈𝐹𝜇𝜈) = 𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑏 Tr(𝑇𝑎𝑇𝑏) =

1
2

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎                          (1.2.94) 

Where we used the trace invariant Tr(𝑇𝑎𝑇𝑏) = 𝑇𝐹𝛿𝑎𝑏 = 1
2

𝛿𝑎𝑏 

By working out Tr(𝐹𝜇𝜈𝐹𝜇𝜈) → Tr(𝐹𝜇𝜈′𝐹𝜇𝜈′) , and using the cyclic property of the trace, 
we can easily show it is invariant: 

Tr(𝐹𝜇𝜈′𝐹𝜇𝜈′) = Tr(𝐺𝐹𝜇𝜈𝐹𝜇𝜈𝐺†) = Tr(𝐺†𝐺𝐹𝜇𝜈𝐹𝜇𝜈) = Tr(𝐹𝜇𝜈𝐹𝜇𝜈)        (1.2.95) 

The kinetic Lagrangian term for the gauge fields will be 

ℒG = −
1
2

Tr(𝐹𝜇𝜈𝐹𝜇𝜈) = −
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎                                  (1.2.96) 

This term is not a free Lagrangian, because it contains terms with more than 2 fields 
coupled to each other. At this point, our full Lagrangian is 

ℒ = �̅�(𝑖D/ − 𝑚)𝜓 −
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎 = ℒDirac + ℒG + 𝑔�̅�A/ 𝜓                  (1.2.97) 

This Lagrangian is known as the Yang-Mills Lagrangian. We can also write our 
Lagrangian as follows: 

ℒ = ℒ0 + ℒI                                                         (1.2.98) 

With the free Lagrangian term 

ℒ0 = ℒDirac + ℒMaxwell = �̅�(𝑖∂/ − 𝑚)𝜓 −
1
4

(𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎)(𝜕𝜇𝐴𝜈
𝑎 − 𝜕𝜈𝐴𝜇

𝑎)     (1.2.99) 

And the interaction term: 

ℒI = 𝑔�̅�A/ 𝜓 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝜕𝜇𝐴𝜈𝑐 −
1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇𝑏𝐴𝜈𝑐𝐴𝜇
𝑑𝐴𝜈

𝑒         (1.2.100) 

We will now come back to 𝐴𝜇 → 𝐴𝜇
′ = 𝐺𝐴𝜇𝐺† − 𝑖

𝑔
(𝜕𝜇𝐺)𝐺† 

For small 𝛼𝑎 we can use the expansion 

𝐺 = 𝑒𝑖𝛼𝑎𝑇𝑎 = 𝟏 + 𝑖𝛼𝑎𝑇𝑎 + 𝒪(𝛼2) ≈ 𝟏 + 𝑖𝛼𝑎𝑇𝑎                        (1.2.101) 

𝐺† = 𝑒−𝑖𝛼𝑎𝑇𝑎 = 𝟏 − 𝑖𝛼𝑎𝑇𝑎 + 𝒪(𝛼2) ≈ 𝟏 − 𝑖𝛼𝑎𝑇𝑎                      (1.2.102) 
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Wherewith 𝒪(𝛼2) we mean second order in 𝛼𝑎 or higher (“alpha squared”, not the 2nd 
component of 𝛼). By plugging these expressions in the gauge transformation law for 
the gauge field [5], we get 

𝐴𝜇 → 𝐴𝜇
′ = 𝐴𝜇 +

1
𝑔

𝜕𝜇𝛼𝑎𝑇𝑎 − 𝑓𝑎𝑏𝑐𝛼𝑎𝐴𝜇
𝑏𝑇𝑐 = 𝐴𝜇

𝑎′𝑇𝑎                  (1.2.103) 

𝐴𝜇
𝑎 → 𝐴𝜇

𝑎′ = 𝐴𝜇
𝑎 +

1
𝑔

𝜕𝜇𝛼𝑎 − 𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇
𝑐                                             (1.2.104) 

And for 𝛿𝐴𝜇
𝑎 we get 

𝛿𝐴𝜇
𝑎 = 𝐴𝜇

𝑎′ − 𝐴𝜇
𝑎 =

1
𝑔

𝜕𝜇𝛼𝑎 − 𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇
𝑐 =

1
𝑔

(𝛿𝑎𝑏𝜕𝜇 − 𝑔𝑓𝑎𝑏𝑐𝐴𝜇
𝑐 )𝛼𝑏        (1.2.105) 

Consider the covariant derivative in the adjoint representation (instead of 
fundamental representation): 

𝐷𝜇 = 𝟏𝑁×𝑁𝜕𝜇 − 𝑖𝑔𝐴𝜇
𝑎𝑇𝐴

𝑎                                               (1.2.106) 

Recall the adjoint representation (𝑇𝐴
𝑎)𝑏𝑐 = −𝑖𝑓𝑎𝑏𝑐 

𝐷𝜇
𝑎𝑏 = 𝛿𝑎𝑏𝜕𝜇 − 𝑔𝑓𝑎𝑏𝑐𝐴𝜇

𝑐                                               (1.2.107) 

Which is exactly what’s in the brackets in the expression for 𝛿𝐴𝜇
𝑎 

𝛿𝐴𝜇
𝑎 =

1
𝑔

𝐷𝜇
𝑎𝑏𝛼𝑏 =

1
𝑔

(𝛿𝑎𝑏𝜕𝜇 − 𝑔𝑓𝑎𝑏𝑐𝐴𝜇
𝑐 )𝛼𝑏                         (1.2.108) 

Which means that in the adjoint representation we can write 

𝐴𝜇
𝑎 → 𝐴𝜇

𝑎′ = 𝐴𝜇
𝑎 +

1
𝑔

𝐷𝜇
𝑎𝑏𝛼𝑏                                           (1.2.109) 

If we compare this to the transformation in case of U(1), where we had 

𝐴𝜇 → 𝐴𝜇
′ = 𝐴𝜇 +

1
𝑔

𝜕𝜇𝛼                                             (1.2.110) 

We notice this is of a very similar form but with 𝜕𝜇 replaced by 𝐷𝜇
𝑎𝑏 , and contracting it 

with 𝛼𝑏. 
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Extra remarks: 

x The Dirac field 𝜓 transforms according to the fundamental representation of 
the SU(N) group. This is related to 𝜓 being a combination of N spinor fields. 
Such a spinor particle will carry 1 “colour” charge that can take on N values. 

x The Dirac field �̅� transforms according to the anti-fundamental representation 
of the SU(N) group. This is because �̅� is also a combination of N spinor fields, 
and is the adjoint field for 𝜓, resulting it to be anti-fundamental. Such a spinor 
particle will carry 1 “colour” charge that can take on N values, and that are the 
opposite of the values for the colour charge of 𝜓. 

x The gauge field 𝐴𝜇 transforms according to the adjoint representation of the 
SU(N) group. Because of this, the field 𝐴𝜇 carries 1 colour charge that can 
take on N2 − 1 values. Each value corresponds to a field 𝐴𝜇𝑎. 

 

1.2.6 For SU(3) (QCD) 
 
In case of QCD, we have local SU(3) symmetry, which means 8 different gauge 
fields, called gluons. The spinor fields are the quark fields, which are 3 component 
spinors. There are also 6 different quark flavours, which have to be summed over in 
the QCD Lagrangian. 

ℒ = ∑(�̅�𝑓(𝑖D/ − 𝑚𝑓)𝜓𝑓)
𝑓

−
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎                               (1.2.111) 

With the spinor fields: 

𝜓𝑓 = (
𝜓𝑓𝑟
𝜓𝑓𝑔
𝜓𝑓𝑏

)                                                           (1.2.112) 

�̅�𝑓 = (�̅�𝑓𝑟 �̅�𝑓𝑔 �̅�𝑓𝑏)                                       (1.2.113) 

The field 𝜓𝑓𝑖 corresponds to a quark field of flavour f and a fundamental SU(3) colour 
(fundamental representation). The flavour f can be u, d, s, c, b, t (up, down, strange, 
charm, bottom, top). The colour can be r, g, b (red, green, blue). (The name “colour” 
was chosen because of some similarities with actual rgb colours, given that there are 
three different QCD colours for quarks.) Each of the 𝜓𝑓𝑖 is a spinor with 4 
components for the gamma matrices. 
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1.3 Quantisation 
 
In this section we will fully quantise the Lagrangian, turning our “classical” field theory 
into a quantum field theory. There are two ways to quantise the Lagrangian, 
canonical quantisation and quantisation by path integrals (functional integral). The 
easiest way to quantise the QCD Lagrangian is by path integrals, but canonical 
quantisation has an advantage when it comes to interpreting the Lagrangian and 
interactions. First, we will briefly cover the basics of canonical quantisation just as a 
means to easier understand what the fields and the terms in the Lagrangian mean. 
We will also briefly cover Feynman diagrams. Then we will quantise the U(1) gauge 
theory via path integrals, after which we will do the same for the SU(N) gauge theory. 

 

1.3.1 Basics of canonical quantisation 
 
Similar to how one would go from classical mechanics to quantum mechanics by 
promoting physical quantities (position, momentum, etc) to operators, we can go from 
classical field theory to quantum field theory by promoting the fields to field operators. 
This form of quantisation is called canonical quantisation or second quantisation. 

If we want to quantise the free Dirac field, we start with the classical Lagrangian, Eq 
(1.2.1). (For a detailed construction, see [5] (p52-63) and [4] (p61-69)) 

ℒDirac = �̅�(𝑖∂/ − 𝑚)𝜓                                                  (1.3.1) 

We will promote 𝜓(𝑥) and �̅�(𝑥) to field operators, satisfying the equal-time 
anticommutation relations: 

{𝜓𝑎(𝑡, 𝐱), 𝜋𝑏(𝑡, 𝐱′)} = 𝑖𝛿𝑎𝑏𝛿(𝐱 − 𝐱′)                                           (1.3.2) 

{𝜓𝑎(𝑡, 𝐱), 𝜓𝑏(𝑡, 𝐱′)} = {𝜋𝑎(𝑡, 𝐱), 𝜋𝑏(𝑡, 𝐱′)} = 0                        (1.3.3) 

Where the indices a and b denote spinor components, and 𝜋(𝑥) is the canonical 
momentum conjugate of 𝜓(𝑥), which we found in section 1.2.1, Eq (1.2.13). 

𝜋𝑎 = 𝑖𝜓𝑎
†                                                                (1.3.4) 

Thus we can rewrite the equal-time anticommutation relations as 

{𝜓𝑎(𝑡, 𝐱), 𝜓𝑏
†(𝑡, 𝐱′)} = 𝛿𝑎𝑏𝛿(𝐱 − 𝐱′)                                              (1.3.5) 

{𝜓𝑎(𝑡, 𝐱), 𝜓𝑏(𝑡, 𝐱′)} = {𝜓𝑎
†(𝑡, 𝐱), 𝜓𝑏

†(𝑡, 𝐱′)} = 0                         (1.3.6) 

Remember that �̅� = 𝜓†𝛾0. We use anticommutation relations because according to 
the spin-statistics theorem, fermions will have wavefunctions that are antisymmetric 
under permutation, and thus fermions must be anticommuting fields. 
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Remind that the Hamiltonian is given by 

𝐻Dirac = ∫ 𝑑3𝑥 ℋDirac(𝑥) = ∫ 𝑑3𝑥 �̅� (−𝑖𝛾𝑗 𝜕
𝜕𝑥𝑗 + 𝑚) 𝜓              (1.3.7) 

We can Fourier transform the fields by 

𝜓(𝑡, 𝐱) = ∫
𝑑3𝐩

(2𝜋)3 𝑒𝑖𝐩𝐱𝜓(𝑡, 𝐩)                                            (1.3.8) 

And our Hamiltonian will be the Hamiltonian for an infinite amount of simple harmonic 
oscillators. We will have one simple harmonic oscillator for every momentum p. The 
fields can be decomposed in an infinite amount of creation and annihilation 
operators: 

𝜓(𝑥) = ∫
𝑑3𝐩

(2𝜋)3
1

√2𝐸𝐩
∑(𝑎𝐩

𝑠𝑢𝑠(𝑝)𝑒−𝑖𝑝𝑥 + 𝑏𝐩
𝑠†𝑣𝑠(𝑝)𝑒𝑖𝑝𝑥)

𝑠

                    (1.3.9) 

�̅�(𝑥) = ∫
𝑑3𝐩

(2𝜋)3
1

√2𝐸𝐩
∑(𝑏𝐩

𝑠�̅�𝑠(𝑝)𝑒−𝑖𝑝𝑥 + 𝑎𝐩
𝑠 †�̅�𝑠(𝑝)𝑒𝑖𝑝𝑥)

𝑠

                  (1.3.10) 

Where 𝑢𝑠(𝑝) and 𝑣𝑠(𝑝) are the four independent (and constant) solutions for the 
Dirac equation (with index s the spin state, which can be 1 or 2), and 𝐸𝐩 the energy. 
𝑎𝐩

𝑠  and 𝑏𝐩
𝑠 are annihilation operators, while 𝑎𝐩

𝑠 † and 𝑏𝐩
𝑠† are creation operators. These 

operators have the anticommutation relations: 

{𝑎𝐩
𝑟, 𝑎𝐪

𝑠 †} = {𝑏𝐩
𝑟, 𝑏𝐪

𝑠†} = (2𝜋)3𝛿𝑟𝑠𝛿(𝐩 − 𝐪)                             (1.3.11) 

And all other anticommutation relations are equal to 0. 

An annihilation operator acting on the vacuum state will result in zero: 

𝑎𝐩
𝑠|0⟩ = 𝑏𝐩

𝑠|0⟩ = 0                                                   (1.3.12) 

A creation operator acting on the vacuum state, will result in a state proportional to a 
one-particle state, and we will define the one-particle state as follows: 

|𝐩, 𝑠⟩ = √2𝐸𝐩𝑎𝐩
𝑠 †|0⟩                                                  (1.3.13) 

And the same for the operator 𝑏𝐩
𝑠†. 

𝑎𝐩
𝑠  will annihilate a field excitation with spin state s and momentum p, while 𝑎𝐩

𝑠 † will 
create a field excitation with spin state s and momentum p. The same happens for 𝑏𝐩

𝑠 
and 𝑏𝐩

𝑠† but for a different type of field excitation. We will interpret field excitations as 
particles. For the Dirac field, there are two different types of particles, one 
corresponding to 𝑎𝐩

𝑠  and 𝑎𝐩
𝑠 †, and one corresponding to 𝑏𝐩

𝑠 and 𝑏𝐩
𝑠†. We will call the 
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particle corresponding to the “a” operators a fermion, and the particle corresponding 
to the “b” operators as an antifermion. 

We can now also interpret what the field operators 𝜓 and �̅� mean in the Hamiltonian 
(or Lagrangian). 𝜓 will annihilate (“eat”) a fermion or will create an antifermion. �̅� will 
annihilate an antifermion or will create a fermion. 

We can do a similar thing for a free photon (U(1) gauge vector field), by quantising 
the free Maxwell Lagrangian, Eq (1.2.61). (For a detailed construction, see [4 (p77-
84)]) 

ℒMaxwell = −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈                                                  (1.3.14) 

Where we will promote 𝐴𝜇 to field operators. The construction is very similar to that 
for the quantised Dirac field, but with commutation relations instead of 
anticommutation relations. The reason for this is that according to the spin-statistics 
theorem, bosons will have wavefunctions that are symmetric under permutation, and 
thus bosons must be commuting fields. The field operator for the photon will be 

𝐴𝜇(𝑥) = ∫
𝑑3𝐩

(2𝜋)3
1

√2𝐸𝐩
∑(𝑎𝐩

𝑟𝜖𝜇
𝑟(𝑝)𝑒−𝑖𝑝𝑥 + 𝑎𝐩

𝑟†𝜖𝜇
𝑟∗(𝑝)𝑒𝑖𝑝𝑥)

3

𝑟=0

             (1.3.15) 

With 𝜖𝜇
𝑟 the polarisation vector. In this case there is only one type of particle, the 

photon. The field operator 𝐴𝜇 will annihilate or create a photon. 

An important object in QFT is the propagator (Feynman propagator), which in the 
case of a free field Lagrangian is the probability amplitude for a particle to travel from 
one point to another in spacetime (or in other words, the propagation amplitude). It is 
proportional to the time-ordered two-point correlation function for the field under 
consideration. 

For the Dirac field, the propagator is 

⟨0|𝑇𝜓(𝑥)�̅�(𝑥′)|0⟩ = 𝑆𝐹(𝑥 − 𝑥′) = ∫
𝑑4𝑝

(2𝜋)4 𝑆𝐹(𝑝)𝑒−𝑖𝑝(𝑥−𝑥′)                  (1.3.16) 

With T the time-ordering operator 

𝑇𝜓(𝑥)�̅�(𝑥′) = 𝛩(𝑡 − 𝑡′)𝜓(𝑥)�̅�(𝑥′) − 𝛩(𝑡′ − 𝑡)�̅�(𝑥′)𝜓(𝑥)                 (1.3.17) 

With 𝛩(𝑡) the Heaviside function, which is equal to 1 if t is larger than 0, and is equal 
to 0 if t is smaller than 0. 

For the interpretation, let us consider 𝑡 > 𝑡′. In that case ⟨0|𝑇𝜓(𝑥)�̅�(𝑥′)|0⟩ will create 
a fermion at 𝑥′ and annihilate it again at 𝑥. It represents a fermion traveling from 𝑥′ to 
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𝑥. In case of 𝑡 < 𝑡′ , ⟨0|𝑇𝜓(𝑥)�̅�(𝑥′)|0⟩ will create an antifermion at 𝑥 and annihilate it 
again at 𝑥′. 

The Fourier transformed propagator 𝑆𝐹(𝑝) will be used more often than the one in 
position space. It corresponds to a free fermion with four-momentum p, or to a free 
antifermion with opposite three-momentum. 

Dirac propagator: 
(fermion propagator) 

 

= 𝑆𝐹(𝑝) 

For the photon field we have 

⟨0|𝑇𝐴𝜇(𝑥)𝐴𝜈(𝑥′)|0⟩ = 𝐷𝐹
𝜇𝜈(𝑥 − 𝑥′) = ∫

𝑑4𝑝
(2𝜋)4 𝐷𝐹

𝜇𝜈(𝑝)𝑒−𝑖𝑝(𝑥−𝑥′)            (1.3.18) 

𝐷𝐹
𝜇𝜈(𝑝) corresponds to a free photon with four-momentum p. 

Photon propagator: 

 

= 𝐷𝐹
𝜇𝜈(𝑝) 

 

1.3.2 Introduction on Feynman diagrams and rules 
 
When we consider higher-order correlation functions, we can describe interaction 
processes if we are dealing with an interacting quantum field theory. We can 
decompose the higher-order correlation functions into products of two-point 
correlation functions via the Wick theorem. From this we can derive the Feynman 
rules for the theory, which is a method to describe any process in the theory by 
drawing a Feynman diagram for it, and then translating the diagram into a product of 
propagators. After integration, this will give us the probability amplitude for the 
process. 

In a Feynman diagram there will be lines, which represent particles. Typically a line 
represents a particle that has a four-momentum and for which an arrow is drawn that 
indicates this momentum’s direction. In the case of bosons or massless particles, the 
arrow is often omitted. While canonical quantisation mostly uses the Hamiltonian, we 
can still find out a lot of the quantum theory by looking at the Lagrangian. In an 
interacting field theory, we will have a Lagrangian of the form 

ℒ = ℒ0 + ℒI                                                         (1.3.19) 

Where ℒ0 is the free field Lagrangian, and ℒI the interaction Lagrangian (interaction 
term). While ℒ0 only contains terms of second order of the fields,  ℒI will typically 
consist of terms that are of a higher order of the fields. In the Hamiltonian description 
this will correspond to 
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ℋ = ℋ0 + ℋI                                                     (1.3.20) 

If we have a ℒI that is a product of three fields, it will be called a three-point 
interaction, because it is an interaction between three particles. In Feynman 
diagrams, such an interaction is drawn as a vertex that connects three lines, one line 
for each particle involved in the interaction. This is also called a three-point vertex. If 
we have a ℒI that is a product of four fields, the same will be true but for four particles 
instead of three. It will be called a four-point interaction, or four-point vertex. This 
generalises to any type of vertex. Technically we could also have a two-point 
interaction between two different fields. In elementary particle physics, this would 
mean ”mixing” (for example neutrino mixing, which results in neutrino oscillations). 

When we have a quantum process, we start from an initial state |𝑖⟩ and evolve to a 
final state |𝑓⟩. Both initial and final state can consist of multiple particles. The 
probability amplitude for state |𝑖⟩ to evolve to state |𝑓⟩ is given by the S-matrix 

⟨𝑓|𝑆|𝑖⟩ = 𝑆𝑓𝑖                                                         (1.3.21) 

The transition probability that |𝑖⟩ has evolved into |𝑓⟩, is given by 

|𝑆𝑓𝑖|
2

= |⟨𝑓|𝑆|𝑖⟩|2                                                    (1.3.22) 

The conservation of probability is expressed as  

∑|𝑆𝑓𝑖|
2

𝑓

= 1                                                         (1.3.23) 

We also have orthonormality and completeness of the states: 

⟨𝑓|𝑖⟩ = 𝛿𝑓𝑖                                                          (1.3.24) 

∑|𝑓⟩⟨𝑓|
𝑓

= 𝟏                                                        (1.3.25) 

We can show that the S-matrix is a unitary matrix: 

∑|𝑆𝑓𝑖|
2

𝑓

= ∑⟨𝑓|𝑆|𝑖⟩∗⟨𝑓|𝑆|𝑖⟩
𝑓

= ∑⟨𝑖|𝑆†|𝑓⟩⟨𝑓|𝑆|𝑖⟩
𝑓

= ⟨𝑖|𝑆†𝑆|𝑖⟩ = 1         (1.3.26) 

Which means 

𝑆†𝑆 = 𝟏                                                               (1.3.27) 

The S-matrix can be obtained from the interaction Hamiltonian 𝐻I (the actual 
interaction Hamiltonian, not the interaction Hamiltonian density) in an iterative way [4 
(p93)]: 
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𝑆 = ∑(−𝑖)𝑛 ∫ 𝑑𝑡1 ∫ 𝑑𝑡2 … ∫ 𝑑𝑡𝑛𝐻I(𝑡1)𝐻I(𝑡2) … 𝐻I(𝑡𝑛)

𝑡𝑛−1

−∞

𝑡1

−∞

∞

−∞

∞

𝑛=0

              (1.3.28) 

By using the time-ordered product we can let all integrations run over the whole 
infinite domain. By changing the integrations over time into integrations over 
spacetime, we can write this as a similar expression but with the interaction 
Hamiltonian density ℋI instead [4 (p93)]: 

𝑆 = ∑
(−𝑖)𝑛

𝑛!
∫ ∫ … ∫ 𝑑4𝑥1𝑑4𝑥2 … 𝑑4𝑥𝑛T{ℋI(𝑥1)ℋI(𝑥2) … ℋI(𝑥𝑛)}

∞

−∞

∞

−∞

∞

−∞

∞

𝑛=0

     (1.3.29) 

We can also write an expression involving the Lagrangian density: 

𝑆 = exp (𝑖 ∫ 𝑑4𝑥ℒI)                                                  (1.3.30) 

If no interaction happens between the particles, then 𝑆 will be the identity operator. 
This scenario corresponds to the 𝑛 = 0 term in Eq (1.3.29). So we can define 

𝑆 = 𝟏 + 𝑖𝑇                                                            (1.3.31) 

With 𝑇 the T-matrix, which contains the interactions. (Not to be confused with the 
time-ordering operator.) 

Since the S-matrix must preserve momentum conservation, both 𝑆 and 𝑇 should 
contain a momentum conserving factor 

𝛿 (∑ 𝑘initial − ∑ 𝑘final)                                              (1.3.32) 

Where ∑ 𝑘initial is the sum of the momenta of all particles in the initial state |𝑖⟩, and 
∑ 𝑘final is the sum of the momenta of all particles in the final state |𝑓⟩. We can define: 

⟨𝑓|𝑖𝑇|𝑖⟩ = (2𝜋)4𝛿 (∑ 𝑘initial − ∑ 𝑘final) 𝑖ℳ(𝑖 → 𝑓)                    (1.3.33) 

Where ℳ is called the invariant matrix element, or also called Feynman amplitude. 
ℳ contains all the physics from ℋI, while the other factors contain all the physics that 
doesn’t depend on ℋI. An important example is when we have an initial state of two 
particles with momenta 𝑘1 and 𝑘2, and a final states of particles with momenta 𝑝1, 𝑝2, 
…, then we can define [5] (p104): 

⟨𝑝1𝑝2 … |𝑖𝑇|𝑘1𝑘2⟩ = (2𝜋)4𝛿(4) (𝑘1 + 𝑘2 − ∑ 𝑝𝑓
𝑓

) 𝑖ℳ(𝑘1𝑘2 → 𝑝𝑓)       (1.3.34) 

For calculating 𝑆, 𝑇 and ℳ, we can use Feynman diagrams. We can draw a 
Feynman diagram for a quantum process, typically consisting of lines and vertices. 
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For every line we have a propagator, and for every vertex a vertex factor. For 
calculating 𝑆, 𝑇 and ℳ, we will get a product of these propagators and vertex factors. 
For 𝑆 we only need to take the diagrams into account that are “connected” and 
amputated. “Connected” means no vacuum bubbles (parts that are completely 
disconnected from the initial and final lines), but lines that go from initial to final 
particle without being connected to other parts are fine. Amputated means that if you 
get a disconnected external leg by cutting 1 line, you remove it. The identity matrix in 
Eq (1.3.31) corresponds to initial lines going to final lines without being connected to 
eachother, or in other words, no interaction happened. This means that for 𝑖𝑇 and 𝑖ℳ 
we only need diagrams that are fully connected (no vacuum bubbles, and all external 
lines are connected to eachother) and amputated. A more detailed explanation (by 
an example) about relating the matrices with Feynman diagrams can be found in [5] 
(p108-115). 

Important about vertices in Feynman diagrams is that momentum is conserved at 
each vertex, which will constrain some of the internal momenta. Any loop momenta 
that remain undetermined, must be integrated over. Any fermion loop receives an 
extra factor of -1, and additionally, there could also be extra symmetry factors. 
Feynman rules will depend on the specific quantum field theory that is used. 

If we take the classical Lagrangian for QED (U(1)): 

ℒQED,classical = �̅�(𝑖D/ − 𝑚)𝜓 −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈 = ℒDirac + ℒMaxwell + 𝑔�̅�A/ 𝜓       (1.3.35) 

We have ℒ0 = ℒDirac + ℒMaxwell and we can use the fermion and photon propagators 
defined earlier. We have an interaction term ℒI = 𝑔�̅�A/ 𝜓 = 𝑔�̅�𝛾𝜇𝐴𝜇𝜓 . This is a 
three-point interaction term and will result in three-point vertices in the Feynman 
diagrams. The vertex will connect a Dirac fermion, antifermion, and a photon. 

𝑔�̅�A/ 𝜓 → 

 

Vertex factor ~𝑔𝛾𝜇 

 

If we take the classical Lagrangian for QCD (SU(N)), with one quark flavour for 
simplicity: 

ℒQCD,classical = �̅�(𝑖D/ − 𝑚)𝜓 −
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎                                 (1.3.36) 
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With the free Lagrangian term: 

ℒ0 = ℒDirac + ℒMaxwell = �̅�(𝑖∂/ − 𝑚)𝜓 −
1
4

(𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎)(𝜕𝜇𝐴𝜈
𝑎 − 𝜕𝜈𝐴𝜇

𝑎)     (1.3.37) 

The free quark propagator will be defined as 

⟨0|𝑇𝜓𝑖(𝑥)�̅�𝑗(𝑥′)|0⟩ = 𝑆𝐹𝑖𝑗(𝑥 − 𝑥′) = ∫
𝑑4𝑝

(2𝜋)4 𝑆𝐹𝑖𝑗(𝑝)𝑒−𝑖𝑝(𝑥−𝑥′)               (1.3.38) 

With i and j the quark colour indices, which run from 1 to N. 

A quark can only carry one quark colour at a time, and quarks with different colour 
don’t “mix” (their quark colours won’t oscillate), because of the lack of a quark colour 
mixing term in the Lagrangian. We can conclude  

𝑆𝐹𝑖𝑗(𝑝) = 𝛿𝑖𝑗𝑆𝐹(𝑝)                                                  (1.3.39) 

Quark propagator: 
 

= 𝑆𝐹𝑖𝑗(𝑝) = 𝛿𝑖𝑗𝑆𝐹(𝑝) 

 

The free gluon propagator will be defined as 

⟨0|𝑇𝐴𝜇𝑎(𝑥)𝐴𝜈𝑏(𝑥′)|0⟩ = 𝐷𝐹
𝜇𝜈𝑎𝑏(𝑥 − 𝑥′) = ∫

𝑑4𝑝
(2𝜋)4 𝐷𝐹

𝜇𝜈𝑎𝑏(𝑝)𝑒−𝑖𝑝(𝑥−𝑥′)         (1.3.40) 

Where a and b the “generator indices”, running from 1 to 𝑁2 − 1. A gluon can only 
carry one gluon colour at a time. The generators form an orthonormal basis, which 
means that a gluon’s colour won’t oscillate. We can conclude 

𝐷𝐹
𝜇𝜈𝑎𝑏(𝑝) = 𝛿𝑎𝑏𝐷𝐹

𝜇𝜈(𝑝)                                                  (1.3.41) 

gluon propagator: 
 

= 𝐷𝐹
𝜇𝜈𝑎𝑏(𝑝) = 𝛿𝑎𝑏𝐷𝐹

𝜇𝜈(𝑝) 

 

The interaction term: 

ℒI = 𝑔�̅�A/ 𝜓 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝜕𝜇𝐴𝜈𝑐 −
1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇𝑏𝐴𝜈𝑐𝐴𝜇
𝑑𝐴𝜈

𝑒            (1.3.42) 
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The term 𝑔�̅�A/ 𝜓 = 𝑔�̅�𝛾𝜇𝐴𝜇
𝑎𝑇𝑎𝜓  are three-point interactions similar to the one we 

have in QED. In this case we have a three-point interaction for every generator 𝑇𝑎, 
between a quark, antiquark, and gluon. 

𝑔�̅�A/ 𝜓 → 

 

Vertex factor ~𝑔𝛾𝜇𝑇𝑖𝑗
𝑎 

The term 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝜕𝜇𝐴𝜈𝑐 are three-point interactions between gluons 

𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝜕𝜇𝐴𝜈𝑐 → 

 

Vertex factor ~𝑔𝑓𝑎𝑏𝑐 

 

The term − 1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇𝑏𝐴𝜈𝑐𝐴𝜇
𝑑𝐴𝜈

𝑒  are four-point interactions between gluons 

−
1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇𝑏𝐴𝜈𝑐𝐴𝜇
𝑑𝐴𝜈

𝑒 → 

 

Vertex factor ~ − 1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒 

 

An external line of a diagram, in any QFT, will correspond to the polarisation and 
group space orientation. 

 

1.3.3 Basics of quantisation by functional integral (path integral) 
 
Instead of quantising a field by promoting the fields to field operators, as we do in 
canonical quantisation, we can also take a different route and use functional 
integration to quantise a field theory. In the case of functional integration, the fields 
do not become field operators. While canonical quantisation uses the Hamiltonian as 
its fundamental object for the quantum description, the functional method will use the 
Lagrangian as its fundamental object instead. Because it uses the Lagrangian, all 
symmetries of the Lagrangian will be preserved (aside for some subtle exceptions 
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called “anomalies”, which we will not treat in this thesis). The functional method will 
also result in a quantum version of Noether’s theorem, which relates a symmetry of 
the Lagrangian to conservation laws. 

Generally for a Lagrangian ℒ, with fields 𝜑𝑖 , we will define the generating functional 
as 

𝑍[𝐽] = ∫ 𝒟𝜑 exp (𝑖 ∫ 𝑑4𝑥[ℒ + 𝜎])                                     (1.3.43) 

Where φ means the collection of the fields 𝜑𝑖 , 𝐽 is a collection of source fields 𝐽𝑖 , 
and σ is a source term added to the Lagrangian: 

𝜎 = 𝐽𝑖𝜑𝑖                                                              (1.3.44) 

We can also write the generating functional as 

𝑍[𝐽1, 𝐽2, … ] = ∫ 𝒟𝜑1𝒟𝜑2 …  exp (𝑖 ∫ 𝑑4𝑥[ℒ + 𝐽𝑖𝜑𝑖])                      (1.3.45) 

The meaning of 𝒟𝜙 for a single field ϕ is 

𝒟𝜙 = ∏ 𝑑𝜙(𝑥𝑗)
𝑗

                                                 (1.3.46) 

Where 𝑥𝑗 is the position of the j-th point on a “square” lattice (in 4D). The integral 
∫ 𝒟𝜑(… ) is a functional integral (path integral) and will integrate over all possible field 
configurations. 

Note that the action 𝑆 (not to be confused with S-matrix) for the theory is given by 

𝑆[𝜑] = 𝑆[𝜑1, 𝜑2, … ] = ∫ 𝑑4𝑥 ℒ                                      (1.3.47) 

So we can also write the generating functional as 

𝑍[𝐽] = ∫ 𝒟𝜑 exp (𝑖𝑆[𝜑] + 𝑖 ∫ 𝑑4𝑥 𝜎)                               (1.3.48) 

For a physical observable operator 𝑂(𝜑) we have 

⟨0|𝑇𝑂(𝜑)|0⟩ =
∫ 𝒟𝜑 𝑂(𝜑)exp(𝑖𝑆[𝜑])

∫ 𝒟𝜑 exp(𝑖𝑆[𝜑])
                               (1.3.49) 

We can relate ⟨0|𝑇𝑂(𝜑)|0⟩ to the generating functional by taking functional 
derivatives of the generating functional with respect to the source fields. In case of a 
theory with only one field ϕ we have 

⟨0|𝑇𝑂(𝜙)|0⟩ = ⟨0|𝑇𝜙(𝑥1)𝜙(𝑥2) … |0⟩ = (
1

𝑍[𝐽] (−𝑖
𝛿

𝛿𝐽(𝑥1)) (−𝑖
𝛿

𝛿𝐽(𝑥2)) … 𝑍[𝐽])|
𝐽=0
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(1.3.50) 

Where 𝐽 is only one source field, and with 𝜕
𝜕𝐽

 the functional derivative. 

Taking one functional derivative of the generating functional will yield 

−𝑖
𝛿𝑍[𝐽]

𝛿𝐽(𝑥1) = ∫ 𝒟𝜙 𝜙(𝑥1)exp (𝑖𝑆[𝜙] + 𝑖 ∫ 𝑑4𝑥 𝐽𝜙)                      (1.3.51) 

Taking 𝐽 = 0 will give us ∫ 𝒟𝜙 𝜙(𝑥1)exp(𝑖𝑆[𝜙]) 

Taking higher multiple functional derivatives will result in 

(−𝑖
𝛿

𝛿𝐽(𝑥1)) (−𝑖
𝛿

𝛿𝐽(𝑥2)) … 𝑍[𝐽] = ∫ 𝒟𝜙 𝜙(𝑥1)𝜙(𝑥2) … exp (𝑖𝑆[𝜙] + 𝑖 ∫ 𝑑4𝑥 𝐽𝜙) 

(1.3.52) 

Taking 𝐽 = 0 will give us ∫ 𝒟𝜙 𝜙(𝑥1)𝜙(𝑥2) … exp(𝑖𝑆[𝜙]) 

Taking the functional derivatives corresponding to 𝑂(𝜙) = 𝜙(𝑥1)𝜙(𝑥2) … , and taking 
𝐽 = 0 afterwards, will yield ∫ 𝒟𝜙 𝑂(𝜙)exp(𝑖𝑆[𝜙]) . We now see it is indeed true that 

⟨0|𝑇𝑂(𝜙)|0⟩ = ⟨0|𝑇𝜙(𝑥1)𝜙(𝑥2) … |0⟩ = (
1

𝑍[𝐽] (−𝑖
𝛿

𝛿𝐽(𝑥1)) (−𝑖
𝛿

𝛿𝐽(𝑥2)) … 𝑍[𝐽])|
𝐽=0

 

                                 =
∫ 𝒟𝜙 𝑂(𝜙)exp(𝑖𝑆[𝜙])

∫ 𝒟𝜙 exp(𝑖𝑆[𝜙])
                                                                           (1.3.53) 

We will define 

𝑍0 = 𝑍[0,0, … ] = ∫ 𝒟𝜑 exp (𝑖𝑆[𝜑] + 𝑖 ∫ 𝑑4𝑥 𝜎)|
𝐽𝑖=0

= ∫ 𝒟𝜑 exp(𝑖𝑆[𝜑])     (1.3.54) 

where again φ can be a single field or a collection of multiple fields. We can rewrite 
our earlier general expression as 

⟨0|𝑇𝑂(𝜑)|0⟩ =
∫ 𝒟𝜑 𝑂(𝜑)exp(𝑖𝑆[𝜑])

∫ 𝒟𝜑 exp(𝑖𝑆[𝜑])
=

1
𝑍0

∫ 𝒟𝜑 𝑂(𝜑)exp(𝑖𝑆[𝜑])       (1.3.55) 

With this functional method, we can calculate all the observables. 

A very important operator will be the two-point correlation function 

⟨0|𝑇𝜙(𝑥1)�̃�(𝑥2)|0⟩ =
1

𝑍0
∫ 𝒟𝜑 𝜙(𝑥1)�̃�(𝑥2)exp(𝑖𝑆[𝜑])                   (1.3.56) 

Where 𝜙 and �̃� are two of the fields in 𝜑, with �̃� the “adjoint” of 𝜙. It is possible that �̃� 
is the same field as 𝜙 if this field has no antiparticle. This correlation function is the 
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propagator we described in 1.3.1. Typically we can express all ⟨0|𝑇𝑂(𝜙)|0⟩ in 
integrals involving propagators, by means of the Wick theorem, which results in the 
Feynman rules for the quantum theory. (which we will not derive in this thesis). An 
extra note of importance is that 𝑍[𝐽] is analogous to the partition function of statistical 
mechanics. This allows us to describe the statistical mechanics of a macroscopic 
system for which the microscopic physics are governed by our quantum field theory. 

 

1.3.4 Quantisation by functional integral for a Dirac field 
 
We will now fully quantise the free Dirac field by a functional integral. Quantising a 
field by functional integrals comes down to calculating correlation functions by 
functional integrals. We will only do this for the two-point correlation function here, 
since for higher order correlation functions we can use Feynman rules if we know the 
two-point correlation function. We will describe the Dirac field by a Grassmann field, 
which is a field whose values are Grassmann numbers. Grassmann numbers are 
anticommuting numbers. For any two Grassmann numbers θ and η, the following is 
true: 

𝜃𝜂 = −𝜂𝜃                                                           (1.3.57) 

And thus for any Grassmann number θ we see that 

𝜃2 = 0                                                              (1.3.58) 

We will now consider 𝜓(𝑥) to be a Grassmann field, which we can decompose in 
orthonormal basis functions 

𝜓(𝑥) = ∑ 𝜓𝑖𝜙𝑖(𝑥)
𝑖

                                              (1.3.59) 

Where 𝜙𝑖(𝑥) are complex number (c-number) functions, and the coefficients 𝜓𝑖 are 
Grassmann numbers. 

The correlation function is given by 

⟨0|𝑇𝜓(𝑥1)�̅�(𝑥2)|0⟩ =
∫ 𝒟�̅�𝒟𝜓 exp(𝑖𝑆[�̅�, 𝜓])𝜓(𝑥1)�̅�(𝑥2)

∫ 𝒟�̅�𝒟𝜓 exp(𝑖𝑆[�̅�, 𝜓])
           (1.3.60) 

Where 𝑆[�̅�, 𝜓] is the action, and 𝒟𝜓 is defined as 

𝒟𝜓 = ∏ 𝑑𝜓(𝑥𝑖)
𝑖

                                              (1.3.61) 

Where 𝑥𝑖 is the position of the i-th point on a “square” lattice (in 4D). The integral 
∫ 𝒟�̅�𝒟𝜓(… ) is a functional integral (path integral) and will integrate over all possible 
field configurations. 
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The action 𝑆[�̅�, 𝜓] is given by 

𝑆[�̅�, 𝜓] = ∫ 𝑑4𝑥 ℒDirac = ∫ 𝑑4𝑥 �̅�(𝑖∂/ − 𝑚)𝜓                         (1.3.62) 

We will define the generating functional for the Dirac field as 

𝑍[�̅�, 𝜂] = ∫ 𝒟�̅�𝒟𝜓 exp (𝑖 ∫ 𝑑4𝑥[ℒDirac + �̅�𝜓 + �̅�𝜂])                   (1.3.63) 

Where 𝜂(𝑥) is a Grassmann source field. 

For a Grassmann field, if we have 

𝑍[�̅�, 𝜂] = ∫ 𝒟�̅�𝒟𝜓 exp (𝑖 ∫ 𝑑4𝑥𝑑4𝑥′[�̅�(𝑥)𝐾(𝑥, 𝑥′)𝜓(𝑥′)] + 𝑖 ∫ 𝑑4𝑥[�̅�𝜓 + �̅�𝜂])     (1.3.64) 

Then it is true that [4 (p291-292 but with different convention)] 

𝑍[�̅�, 𝜂] = 𝑍0exp (𝑖 ∫ 𝑑4𝑥𝑑4𝑥′[�̅�𝐾−1𝜂])                             (1.3.65) 

With 𝑍0 = 𝑍[0,0] 

From our definition of the generating functional we get 

𝑍0 = ∫ 𝒟�̅�𝒟𝜓 𝑒𝑖𝑆[�̅�,𝜓] = ∫ 𝒟�̅�𝒟𝜓 exp (𝑖 ∫ 𝑑4𝑥 ℒDirac)             (1.3.66) 

For 𝐾 we have the following equality: 

∫ 𝑑4𝑥′𝐾(𝑥, 𝑥′)𝐾−1(𝑥′, 𝑥′′) = −𝛿(𝑥 − 𝑥")                             (1.3.67) 

which defines the inverse of 𝐾. 

In the case of the Dirac field, we have 

∫ 𝑑4𝑥𝑑4𝑥′[�̅�(𝑥)𝐾(𝑥, 𝑥′)𝜓(𝑥′)] = ∫ 𝑑4𝑥 ℒDirac                       (1.3.68) 

Where we make use of ℒDirac = �̅�(𝑥)(𝑖∂/ − 𝑚)𝜓(𝑥) = ∫ 𝑑4𝑥′[�̅�(𝑥′)𝐾(𝑥′, 𝑥)𝜓(𝑥)] 

We can now shift one of the fields by using the delta function: 

∫ 𝑑4𝑥 �̅�(𝑥)(𝑖∂/ − 𝑚)𝜓(𝑥) = ∫ 𝑑4𝑥𝑑4𝑥′ [�̅�(𝑥′)𝛿(𝑥 − 𝑥′) (𝑖𝛾𝜇 𝜕
𝜕𝑥𝜇 − 𝑚) 𝜓(𝑥)]      (1.3.69) 

Now we can see that 

𝐾(𝑥′, 𝑥) = 𝛿(𝑥 − 𝑥′) (𝑖𝛾𝜇 𝜕
𝜕𝑥𝜇 − 𝑚) = 𝛿(𝑥 − 𝑥′)(𝑖∂/ 𝑥 − 𝑚)               (1.3.70) 
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By the use of Fourier transform [5] (p302) we find that 

⟨0|𝑇𝜓(𝑥)�̅�(𝑥′)|0⟩ = 𝑆𝐹(𝑥 − 𝑥′) = ∫
𝑑4𝑝

(2𝜋)4
𝑖𝑒−𝑖𝑝(𝑥−𝑥′)

p/ − 𝑚 + 𝑖𝜀
                   (1.3.71) 

Where we recognise the Fourier transform for the propagator 

𝑆𝐹(𝑝) =
𝑖

p/ − 𝑚 + 𝑖𝜀
=

𝑖(p/ + 𝑚)
𝑝2 − 𝑚2 + 𝑖𝜀

                                 (1.3.72) 

And we have 𝐾−1(𝑥, 𝑥′) = 𝑖𝑆𝐹(𝑥 − 𝑥′) 

And for the generating functional we now have 

𝑍[�̅�, 𝜂] = 𝑍0exp (− ∫ 𝑑4𝑥𝑑4𝑥′[�̅�(𝑥)𝑆𝐹(𝑥 − 𝑥′)𝜂(𝑥′)])                   (1.3.73) 

For 𝑍0 = 𝑍[0,0] , we have  

𝑍[�̅�, 𝜂] = 𝑍0exp (− ∫ 𝑑4𝑥𝑑4𝑥′[�̅�(𝑥)𝑆𝐹(𝑥 − 𝑥′)𝜂(𝑥′)])                (1.3.74) 

𝑆[�̅�, 𝜓] = ∫ 𝑑4𝑥 ℒDirac = ∫ 𝑑4𝑥 �̅�(𝑖∂/ − 𝑚)𝜓                               (1.3.75) 

We can obtain all correlation functions as functional derivatives of 𝑍. For example the 
two-point correlation function (which is just the propagator): 

⟨0|𝑇𝜓(𝑥)�̅�(𝑥′)|0⟩ =
1

𝑍0
((−𝑖

𝛿
𝛿�̅�(𝑥)) (𝑖

𝛿
𝛿𝜂(𝑥′)

) 𝑍[�̅�, 𝜂])|
�̅�,𝜂=0

= 𝑆𝐹(𝑥 − 𝑥′)      (1.3.76) 

Where 𝛿
𝛿𝜂

 are functional derivatives. 

 

1.3.5 Quantisation by functional integral for an abelian gauge field 
(U(1)) 
 
Now we will quantise the free abelian U(1) field by functional integrals, which will be 
free photon field from quantum electrodynamics (QED) in case we take the coupling 
constant to be equal to the electron charge.  

The two-point correlation function is given by 

⟨0|𝑇𝐴𝜇(𝑥1)𝐴𝜈(𝑥2)|0⟩ =
∫ 𝒟𝐴 exp(𝑖𝑆[𝐴])𝐴𝜇(𝑥1)𝐴𝜈(𝑥2)

∫ 𝒟𝐴 exp(𝑖𝑆[𝐴])
                   (1.3.77) 

With 𝑆[𝐴] the action: 
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𝑆[𝐴] = ∫ 𝑑4𝑥 ℒMaxwell = −
1
4

∫ 𝑑4𝑥 𝐹𝜇𝜈𝐹𝜇𝜈 = −
1
4

∫ 𝑑4𝑥 (𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇)(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) 

(1.3.78) 

In analogy to the Dirac field, we define the generating functional as 

𝑍[𝐽] = ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥[ℒMaxwell + 𝐽𝜇𝐴𝜇])                        (1.3.79) 

𝑍0 = 𝑍[0] = ∫ 𝒟𝐴 exp(𝑖𝑆[𝐴]) = ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 ℒMaxwell)        (1.3.80) 

We can rewrite the action as 

𝑆[𝐴] = −
1
4

∫ 𝑑4𝑥 𝐹𝜇𝜈𝐹𝜇𝜈 =
1
2

∫ 𝑑4𝑥(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇)(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) 

=
1
2

∫ 𝑑4𝑥 𝜕𝜈𝐴𝜇(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) =
1
2

∫ 𝑑4𝑥 𝐴𝜇(𝑥)(⧠𝑔𝜇𝜈 − 𝜕𝜇𝜕𝜈)𝐴𝜈(𝑥)            (1.3.81) 

After Fourier transformation we get 

𝑆[𝐴] =
1
2

∫
𝑑4𝑝

(2𝜋)4  𝐴𝜇(𝑝)(−𝑝2𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈)𝐴𝜈(𝑝)                     (13.82) 

We will introduce the projector operators: 

𝑃⊥
𝜇𝜈 = 𝑔𝜇𝜈 −

𝑝𝜇𝑝𝜈

𝑝2  ;     𝑃∕∕
𝜇𝜈 =

𝑝𝜇𝑝𝜈

𝑝2                                        (1.3.83) 

𝑃⊥
𝜇𝜈𝑝𝜈 = 0 ;      𝑃∕∕

𝜇𝜈𝑝𝜈 = 𝑝𝜇                                             (1.3.84) 

This allows us to rewrite the action 

𝑆[𝐴] =
1
2

∫
𝑑4𝑝

(2𝜋)4  𝐴𝜇(𝑝)(−𝑝2𝑃⊥
𝜇𝜈)𝐴𝜈(𝑝)                                 (1.3.85) 

For longitudinal 𝐴𝜇 we have 𝐴𝜇(𝑝) = 𝛼𝑝𝜇, with 𝛼 = 𝛼(𝑝) an arbitrary scalar function 
of the momentum 𝑝. This means that for longitudinal 𝐴𝜇(𝑝) we get 

−𝑝2𝑃⊥
𝜇𝜈𝐴𝜈(𝑝) = −𝑝2𝑃⊥

𝜇𝜈𝛼𝑝𝜈 = 0                                        (1.3.86) 

So for the longitudinal polarisation of the gauge field, we have that the action will 
equal 0. This means that when we take the functional integral Eq (1.3.80) we will run 
into the following problem: 

𝑍0 = ∫ 𝒟𝐴 → ∞                                                       (1.3.87) 
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When we try to quantise our free abelian vector field, we run into trouble for the 
longitudinal polarisation of the field. Note that this is related to the U(1) gauge 
transformation Eq (1.2.59): 

𝐴𝜇 → 𝐴𝜇 +
1
𝑔

𝜕𝜇𝛼                                                      (1.3.88) 

The longitudinal 𝐴𝜇 will introduce a “gauge volume” factor in the integral. 

Another way we can see this is by Green’s method. For the abelian vector field, we 
have the conserved current 

𝜕𝜇𝐹𝜇𝜈 = (⧠𝑔𝜇𝜈 − 𝜕𝜇𝜕𝜈)𝐴𝜇 = 𝑗𝜈                                      (1.3.89) 

If we solve this by Green’s method we get 

(⧠𝑔𝜇𝜈 − 𝜕𝜇𝜕𝜈)𝐷𝜈𝜆 = 𝑖𝛿𝜆
𝜇𝛿(4)(𝑥)                                      (1.3.90) 

Or after Fourier transformation: 

(−𝑝2𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈)𝐷𝜈𝜆(𝑝) = 𝑄𝜇𝜈𝐷𝜈𝜆(𝑝) = 𝑖𝛿𝜆
𝜇                           (1.3.91) 

Where 𝐷𝜇𝜈 is the propagator of the vector field, and where we defined 

𝑄𝜇𝜈 = −𝑝2𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈                                             (1.3.92) 

The solution for the propagator would be 

𝐷𝜇𝜈(𝑝) = 𝑖(𝑄−1)𝜇𝜈                                                (1.3.93) 

With 𝑄−1 the inverse of 𝑄. But 𝑄−1 does not exist, because it has a zero-mode, and 
thus a zero eigenvalue: 

𝑄𝜇𝜈𝛼(𝑝)𝑝𝜈 = 0                                                      (1.3.94) 

Where 𝛼(𝑝)𝑝𝜈 is an eigenvector with eigenvalue 0. This eigenvector is precisely the 
longitudinal polarization of 𝐴𝜇. 

The longitudinal mode of the abelian vector field seems to prevent us from quantising 
the theory, which is related to the U(1) gauge freedom in 𝐴𝜇. We will need to find a 
way to “fix the gauge” and only count the transversal modes of 𝐴𝜇 in Eq (1.3.80). 

We will do this via the Faddeev-Popov method: 

We choose a gauge fixing condition.  

𝜕𝜇𝐴𝜇 = 0                                                           (1.3.95) 
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This gauge is called the Lorenz gauge (Ludvig Lorenz, not to be confused with 
Hendrik Lorentz). This can be implemented in the functional integral by a trick [5] 
(p295) 

Let us consider a general gauge fixing condition 𝐺(𝐴) = 0, which in our choice would 
be the Lorenz gauge 𝜕𝜇𝐴𝜇 = 0. In order to constrain the functional integral to only 
take the 𝐴𝜇 into account that satisfies the gauge fixing condition 𝐺(𝐴) = 0, we will 
insert a functional delta function 𝛿(𝐺(𝐴, 𝛼)), with 𝛼 = 𝛼(𝑥) an extra scalar function, 
and perform an extra integration over α. For this functional delta function, the 
following equation holds [5] (p295) 

1 = ∫ 𝒟𝛼 𝛿(𝐺(𝐴, 𝛼))det (
𝛿𝐺(𝐴, 𝛼)

𝛿𝛼
)                                (1.3.96) 

with 𝛿
𝛿𝛼

 the functional derivative with respect to α. We will take the scalar function α 
equal to the α from the gauge transformation, and we can rewrite 𝐺 as 

𝐺(𝐴, 𝛼) = 𝐺(𝐴(𝛼))                                                  (1.3.97) 

with 𝐴𝜇(𝛼) the gauge transformed vector field 

𝐴𝜇(𝛼) = 𝐴𝜇(𝛼, 𝑥) ≔ 𝐴𝜇(𝑥) +
1
𝑔

𝜕𝜇𝛼(𝑥)                               (1.3.98) 

We can now insert the functional integral Eq (1.3.96), since it equals 1 anyway, in the 
functional integral Eq (1.3.80) for 𝑍0 

𝑍0 = ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴] ∫ 𝒟𝛼 𝛿 (𝐺(𝐴(𝛼))) det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) 

= ∫ 𝒟𝛼 ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿 (𝐺(𝐴(𝛼))) det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
)                    (1.3.99) 

In the Lorenz gauge 𝐺(𝐴) = 𝜕𝜇𝐴𝜇 we have 

𝐺(𝐴(𝛼)) = 𝜕𝜇𝐴𝜇(𝛼) = 𝜕𝜇 (𝐴𝜇 +
1
𝑔

𝜕𝜇𝛼) = 𝜕𝜇𝐴𝜇 +
1
𝑔

⧠𝛼                (1.3.100) 

If we work out the functional derivative in the determinant, we see that 

𝛿𝐺(𝐴(𝛼))
𝛿𝛼

=
1
𝑔

⧠                                                     (1.3.101) 

Thus det (1
𝑔

⧠) is independent of 𝐴𝜇 and 𝛼, and can be treated as a “constant” in the 

functional integral, and can be taken outside the functional integral [5] (p295) 
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𝑍0 = det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) ∫ 𝒟𝛼 ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿 (𝐺(𝐴(𝛼)))                (1.3.102) 

Note that we have the following equalities: 

𝒟(𝐴(𝛼)) = 𝒟𝐴                                                     (1.3.103) 

𝑆[𝐴(𝛼)] = 𝑆[𝐴]                                                    (1.3.104) 

Now we can easily change the integration variable from 𝐴 to 𝐴(𝛼), and we get 

𝑍0 = det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) ∫ 𝒟𝛼 ∫ 𝒟(𝐴(𝛼)) 𝑒𝑖𝑆[𝐴(𝛼)]𝛿 (𝐺(𝐴(𝛼)))            (1.3.105) 

Since 𝐴(𝛼) in the integral is just a dummy variable, we can rename it to 𝐴 again 

𝑍0 = det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) ∫ 𝒟𝛼 ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿(𝐺(𝐴))                     (1.3.106) 

We note that there is no 𝛼 dependence anymore in ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿(𝐺(𝐴)), so we can 
write 

𝑍0 = det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) (∫ 𝒟𝛼) ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿(𝐺(𝐴))                    (1.3.107) 

The functional integral ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿(𝐺(𝐴)) will result in ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴] with only the 𝐴 that 
satisfies the gauge fixing condition 𝐺(𝐴) = 0, which in our case is 𝜕𝜇𝐴𝜇 = 0 

We will now do the same for a general class of gauge fixing conditions, the 
generalised Lorenz gauge: 

𝐺(𝐴) = 𝜕𝜇𝐴𝜇 − 𝜔                                                (1.3.108) 

With 𝜔 = 𝜔(𝑥) a scalar function. Note that in this case, we have 

𝐺(𝐴(𝛼)) = 𝜕𝜇𝐴𝜇(𝛼) − 𝜔 = 𝜕𝜇𝐴𝜇 +
1
𝑔

⧠𝛼 − 𝜔                      (1.3.109) 

And for the determinant of the functional derivative we have the same as before: 

det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) = det (

1
𝑔

⧠)                                   (1.3.110) 

So for 𝑍0 we have the same as Eq (1.3.107), which will now become 

𝑍0 = det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) (∫ 𝒟𝛼) ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿(𝜕𝜇𝐴𝜇 − 𝜔)              (1.3.111) 
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This holds for any 𝜔(𝑥), so we can replace the expression for 𝑍0 by a properly 
normalised linear combination involving different 𝜔(𝑥). Then we can integrate over all 
𝜔(𝑥) with a Gaussian weighting function centered on 𝜔 = 0, Ref [5] (p296) 

𝑍0 = 𝑁(𝜉) ∫ 𝒟𝜔 exp (−𝑖 ∫ 𝑑4𝑥
𝜔2

2𝜉
) det (

𝛿𝐺(𝐴(𝛼))
𝛿𝛼

) (∫ 𝒟𝛼) ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿(𝜕𝜇𝐴𝜇 − 𝜔) 

(1.3.112) 

with 𝜉 an arbitrary constant and 𝑁(𝜉) a normalisation factor. We use the 𝛿(𝜕𝜇𝐴𝜇 − 𝜔) 
to perform the 𝒟𝜔 integral, and we get 

𝑍0 = 𝑁(𝜉)det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) (∫ 𝒟𝛼) ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]exp (−𝑖 ∫ 𝑑4𝑥

1
2𝜉

(𝜕𝜇𝐴𝜇)
2

) 

                    = 𝑁(𝜉)det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) (∫ 𝒟𝛼) ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 [ℒMaxwell −

1
2𝜉

(𝜕𝜇𝐴𝜇)
2

]) 

(1.3.113) 

𝑁(𝜉)det (𝛿𝐺(𝐴(𝛼))
𝛿𝛼

) (∫ 𝒟𝛼) is an infinite “gauge-volume” factor. 

∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 [ℒMaxwell − 1
2𝜉

(𝜕𝜇𝐴𝜇)
2

]) is a “gauge-fixed” functional integral. 

If an operator 𝑂(𝐴) is a gauge invariant, then we can find in a similar way that the 
following expression holds [5] (p296): 

∫ 𝒟𝐴 𝑂(𝐴)exp(𝑖𝑆[𝐴])                                                                                                              (1.3.114) 

= 𝑁(𝜉)det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) (∫ 𝒟𝛼) ∫ 𝒟𝐴 𝑂(𝐴)𝑒𝑖𝑆[𝐴]exp (−𝑖 ∫ 𝑑4𝑥

1
2𝜉

(𝜕𝜇𝐴𝜇)
2

)            

= 𝑁(𝜉)det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) (∫ 𝒟𝛼) ∫ 𝒟𝐴 𝑂(𝐴)exp (𝑖 ∫ 𝑑4𝑥 [ℒMaxwell −

1
2𝜉

(𝜕𝜇𝐴𝜇)
2

]) 

We notice that we get the same gauge-volume factor in front of the gauge-fixed 
functional integral as with 𝑍0 . This means that for the correlation function we have 

⟨0|𝑇𝑂(𝐴)|0⟩ =
∫ 𝒟𝐴 𝑂(𝐴)exp(𝑖𝑆[𝐴])

∫ 𝒟𝐴 exp(𝑖𝑆[𝐴])
=

∫ 𝒟𝐴 𝑂(𝐴)exp (𝑖 ∫ 𝑑4𝑥 [ℒMaxwell − 1
2𝜉 (𝜕𝜇𝐴𝜇)

2
])

∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 [ℒMaxwell − 1
2𝜉 (𝜕𝜇𝐴𝜇)

2
])

 

(1.3.115) 

This means that for any physical observable 𝑂(𝐴) the infinite gauge volume is 
factored out and cancels out. The expression on the right hand side of the equation 
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looks like the expression in the middle of the equation, but with an extra term added 
to the Lagrangian. This gauge-fixed Lagrangian will be the full Lagrangian needed for 
quantisation of the free abelian (U(1)) gauge field 

ℒ = ℒMaxwell + ℒGF = −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈 −
1

2𝜉
(𝜕𝜇𝐴𝜇)

2
                    (1.3.116) 

𝜉 is the gauge parameter, and since this is an arbitrary parameter, it must not appear 
in physical observables. 

We will now calculate the propagator for the free abelian vector boson, we will refer 
to as the photon propagator. We have 

𝑍0 = 𝐶∞ ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 ℒ) = 𝐶∞ ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 [−
1
4

𝐹𝜇𝜈𝐹𝜇𝜈 −
1

2𝜉
(𝜕𝜇𝐴𝜇)

2
]) 

(1.3.117) 

With 𝐶∞ the infinite gauge volume. If we rework the action: 

𝑆[𝐴] = ∫ 𝑑4𝑥 [−
1
4

𝐹𝜇𝜈𝐹𝜇𝜈 −
1

2𝜉
(𝜕𝜇𝐴𝜇)

2
]          

=
1
2

∫ 𝑑4𝑥 𝐴𝜇(𝑥) (⧠𝑔𝜇𝜈 − 𝜕𝜇𝜕𝜈 +
1
𝜉

𝜕𝜇𝜕𝜈) 𝐴𝜈(𝑥)       (1.3.118) 

And after Fourier transforming we get 

𝑆[𝐴] =
1
2

∫
𝑑4𝑝

(2𝜋)4 𝐴𝜇(𝑝) (−𝑝2𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈 −
1
𝜉

𝑝𝜇𝑝𝜈) 𝐴𝜈(𝑝) 

=
1
2

∫
𝑑4𝑝

(2𝜋)4 𝐴𝜇(𝑝)𝑄𝜇𝜈𝐴𝜈(𝑝)                                                          (1.3.119) 

With 𝑄𝜇𝜈 = −𝑝2 (𝑃⊥
𝜇𝜈 + 1

𝜉
𝑃∕∕

𝜇𝜈) = −𝑝2𝑔𝜇𝜈 + (1 − 1
𝜉
) 𝑝𝜇𝑝𝜈 

𝑄𝜇𝜈 has no longer a zero-mode. 

For longitudinal 𝐴𝜇(𝑝) = 𝛼(𝑝)𝑝𝜇 , we now have 

𝑄𝜇𝜈𝐴𝜈 = −𝑝2 (𝑃⊥
𝜇𝜈 +

1
𝜉

𝑃//
𝜇𝜈) 𝛼𝑝𝜈 = −

1
𝜉

𝛼(𝑝)𝑝2𝑝𝜇                     (1.3.120) 

Where we used 

𝑃⊥
𝜇𝜈𝑝𝜈 = 0 ;      𝑃∕∕

𝜇𝜈𝑝𝜈 = 𝑝𝜇                                           (1.3.121) 

For the inverse 𝑄−1 we will use the method of the Green’s function 
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𝑖𝛿𝜇
𝜆 = 𝑄𝜇𝜈𝐷𝜈𝜆(𝑝) = (−𝑝2𝑔𝜇𝜈 + (1 −

1
𝜉

) 𝑝𝜇𝑝𝜈) 𝐷𝜈𝜆(𝑝)                   (1.3.122) 

Due to the lack of a zero-mode for 𝑄, 𝑄−1 will exist, and we get for the propagator [5] 
(p297) 

𝐷𝐹
𝜇𝜈(𝑝) = 𝑖(𝑄−1)𝜇𝜈 = −

𝑖
𝑝2 (𝑃⊥

𝜇𝜈 + 𝜉𝑃//
𝜇𝜈) = −

𝑖
𝑝2 (𝑔𝜇𝜈 − (1 − 𝜉)

𝑝𝜇𝑝𝜈

𝑝2 )     (1.3.123) 

In the complex momentum plane, his has poles in 𝑝0 = ±√𝑝2 . In order to take the 
correct integrals that involve the photon propagator, we include an infinitesimal 𝑖𝜀 

𝐷𝐹
𝜇𝜈(𝑝) = −

𝑖
𝑝2 + 𝑖𝜀

(𝑔𝜇𝜈 − (1 − 𝜉)
𝑝𝜇𝑝𝜈

𝑝2 )                         (1.3.124) 

Or in position space: 

⟨0|𝑇𝐴𝜇(𝑥)𝐴𝜈(𝑥′)|0⟩ = 𝐷𝐹
𝜇𝜈(𝑥 − 𝑥′) = − ∫

𝑑4𝑝
(2𝜋)4  

𝑖𝑒−𝑖𝑝(𝑥−𝑥′)

𝑝2 + 𝑖𝜀
(𝑔𝜇𝜈 − (1 − 𝜉)

𝑝𝜇𝑝𝜈

𝑝2 ) 

(1.3.125) 

While we still have a 𝜉 in our propagator, there will be no 𝜉 dependence in physical 
observables. This results from the conservation of physical currents. 

Note that the gauge parameter 𝜉 is a Lagrange multiplier for the constraint field by 
gauge fixing 

ℒ → ℒ +
1

2𝜉
𝐺(… )                                                (1.3.126) 

When working with photon propagators, usually an explicit choice of gauge 
parameter is made. There are 2 main important choices of gauge parameter: 

x 𝜉 = 0 is called the Landau gauge, in which the propagator is proportional to 
the transversal projector operator 𝑃⊥

𝜇𝜈. 
x 𝜉 = 1 is called the Feynman gauge, in which the propagator is proportional to 

the metric 𝑔𝜇𝜈. 

 

Summary: 

When we tried to quantise the abelian gauge field (the photon field), we ran into 
problems. Due to the longitudinal modes of the photon field, we had: 

x 𝑍0 → ∞ because of an infinite gauge volume factor. 
x The longitudinal modes were zero-modes for 𝑄𝜇𝜈, which meant 𝑄−1 didn’t 

exist, resulting in the propagator 𝐷𝜇𝜈(𝑝) = 𝑖(𝑄−1)𝜇𝜈 to not exist either. 
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The longitudinal mode of the abelian gauge field seemed to prevent us from 
quantising the theory, which is related to the U(1) gauge freedom in  

𝐴𝜇 → 𝐴𝜇 +
1
𝑔

𝜕𝜇𝛼                                                     (1.3.88) 

Via the Faddeev-Popov method, we made our functional integrals obey a generalised 
Lorenz gauge fixing condition 𝜕𝜇𝐴𝜇(𝑥) − 𝜔(𝑥) = 0. Thanks to this, we could factor the 
infinite gauge volume out of the functional integrals, and cancel them out in physical 
observables. This resulted in adding a new term, the gauge fixing term, in our 
Lagrangian: 

ℒ = ℒMaxwell + ℒGF = −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈 −
1

2𝜉
(𝜕𝜇𝐴𝜇)

2
                     (1.3.116) 

With 𝜉 the gauge parameter, which is arbitrary and does not appear in physical 
observables. This new Lagrangian for the abelian gauge field results in the existence 
of 𝑄−1, because 𝑄 no longer has any zero-modes anymore. This means we can 
calculate our photon propagator: 

𝐷𝐹
𝜇𝜈(𝑝) = −

𝑖
𝑝2 + 𝑖𝜀

(𝑔𝜇𝜈 − (1 − 𝜉)
𝑝𝜇𝑝𝜈

𝑝2 )                       (1.3.124) 

By performing the Faddeev-Popov method, we are able to cancel the unphysical 
longitudinal modes of the gauge field by gauge fixing, and only take the physical 
transversal modes into account. 

 

1.3.6 Full quantised Lagrangian for QED 
 
Now that we quantised the free Dirac field and the free abelian gauge field, we can 
quantise the field theory that couples them via U(1) gauge invariance. For the 
classical field theory that couples the Dirac field and the U(1) gauge field, we had Eq 
(1.2.72): 

ℒclassical = ℒDirac + ℒMaxwell + 𝑔�̅�A/ 𝜓 = �̅�(𝑖D/ − 𝑚)𝜓 −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈       (1.3.127) 

Where ℒ0 = ℒDirac + ℒMaxwell is the free Lagrangian, and ℒI = 𝑔�̅�A/ 𝜓 is the 
interaction term that couples the Dirac field and gauge field. 

Quantising this theory by functional integrals comes down to adding the gauge fixing 
term to the classical Lagrangian, like we did at Eq (1.3.116), and using the 
propagators for the free fields in combination with the Feynman rules for this theory. 

ℒQED = ℒDirac + ℒMaxwell + ℒI + ℒGF = �̅�(𝑖D/ − 𝑚)𝜓 −
1
4

𝐹𝜇𝜈𝐹𝜇𝜈 −
1

2𝜉
(𝜕𝜇𝐴𝜇)

2
 

(1.3.128) 
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We follow the same Feynman rules as in [5] (p801-802), but for a general gauge 
parameter. 

For the (free) fermion propagator we had 

 

𝑆𝐹(𝑝) =
𝑖

p/ − 𝑚 + 𝑖𝜀
=

𝑖(p/ + 𝑚)
𝑝2 − 𝑚2 + 𝑖𝜀

 

(1.3.72) 

For the (free) photon propagator we had 

 

𝐷𝐹
𝜇𝜈(𝑝) = −

𝑖
𝑝2 + 𝑖𝜀

(𝑔𝜇𝜈 − (1 − 𝜉)
𝑝𝜇𝑝𝜈

𝑝2 ) 

(1.3.124) 

The interaction term ℒI = 𝑔�̅�A/ 𝜓 = 𝑔�̅�𝛾𝜇𝐴𝜇𝜓 gives rise to a three-point interaction 
and will result in three-point vertices in the Feynman diagrams. The vertex will 
connect a Dirac fermion, antifermion, and a photon. 

𝑔�̅�A/ 𝜓 → 

 

Vertex factor = 𝑖𝑔𝛾𝜇 

(1.3.129) 

Additionally there are also rules for the external particles, which are just the 
polarisation spinors/vectors: 

For an initial, respectively final, fermion: 𝑢𝑠(𝑝), �̅�𝑠(𝑝) 

For an initial, respectively final, antifermion: �̅�𝑠(𝑝), 𝑣𝑠(𝑝) 

For an initial, respectively final, photon: 𝜖𝜇
𝑠(𝑝), 𝜖𝜇

𝑠∗(𝑝) 

Where 𝑠(= 1,2) labels the polarisations. For physical external photons, only 
transverse polarisations are allowed. 

Remember that if we take the coupling constant 𝑔 = −𝑒 , we have the QED theory for 
our universe. In that case, the vertex factor will be −𝑖𝑒𝛾𝜇 . 

We now have all the building blocks to describe higher order processes in QED. 
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1.3.7 Quantisation by functional integral for a non-abelian gauge field 
(SU(N)) 
 
Now we will quantise the non-abelian SU(N) field by functional integrals, which will be 
gluon fields from quantum chromodynamics (QCD) in case we take 𝑁 = 3 and the 
coupling constant 𝑔 equal to 𝑔𝑠 from the Strong Interaction. Most of the definitions 
and many of the equations will be of the same form as with the quantisation of the 
abelian gauge field, with the main differences that we now have a symmetry group 
that is non-abelian (non-commutative), that our Lagrangian is not a free field 
Lagrangian, and that the gauge transformation law for the gauge field is  

𝐴𝜇 → 𝐴𝜇
′ = 𝐺𝐴𝜇𝐺† −

𝑖
𝑔

(𝜕𝜇𝐺)𝐺†                                    (1.3.130) 

With 𝐺 = 𝑒𝑖𝛼𝑎𝑇𝑎 

The free Lagrangian for the gauge fields is (from Eq (1.2.99)): 

ℒMaxwell = −
1
4

(𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎)(𝜕𝜇𝐴𝜈
𝑎 − 𝜕𝜈𝐴𝜇

𝑎) = −
1
4

𝐺𝜇𝜈𝑎𝐺𝜇𝜈
𝑎          (1.3.131) 

With 𝐺𝜇𝜈𝑎 ≔ 𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎 

But the full classical gluon-only Lagrangian is Eq (1.2.96): 

ℒG = −
1
2

Tr(𝐹𝜇𝜈𝐹𝜇𝜈) = −
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎                                (1.3.132) 

With 𝐹𝜇𝜈𝑎 = 𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐 

The two-point correlation function is given by 

⟨0|𝑇𝐴𝜇𝑎(𝑥1)𝐴𝜈𝑏(𝑥2)|0⟩ =
∫ 𝒟𝐴 𝐴𝜇𝑎(𝑥1)𝐴𝜈𝑏(𝑥2)exp(𝑖𝑆[𝐴])

∫ 𝒟𝐴 exp(𝑖𝑆[𝐴])
          (1.3.133) 

With 𝑆[𝐴] the action: 

𝑆[𝐴] = ∫ 𝑑4𝑥 ℒG = −
1
4

∫ 𝑑4𝑥 𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎                                                               (1.3.134) 

= −
1
4

∫ 𝑑4𝑥 (𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐)(𝜕𝜇𝐴𝜈
𝑎 − 𝜕𝜈𝐴𝜇

𝑎 + 𝑔𝑓𝑎𝑑𝑒𝐴𝜇
𝑑𝐴𝜈

𝑒 ) 

We define the generating functional as 

𝑍[𝐽] = ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥[ℒG + 𝐽𝜇𝑎𝐴𝜇
𝑎])                          (1.3.135) 

𝑍0 = 𝑍[0] = ∫ 𝒟𝐴 exp(𝑖𝑆[𝐴]) = ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 ℒG)             (1.3.136) 
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Now when we try to quantise this theory, we will just like with the abelian case run 
into the same trouble due to the longitudinal modes of the gauge fields. 

We will apply the Faddeev-Popov method to the non-abelian case as well. For 𝑍0 we 
have like in Eq (1.3.99) 

𝑍0 = ∫ 𝒟𝛼 ∫ 𝒟𝐴 𝑒𝑖𝑆[𝐴]𝛿 (𝐺(𝐴(𝛼))) det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
)                 (1.3.137) 

But this time our gauge transformation law for the gauge field is (Eq (1.2.87)): 

𝐴𝜇 → 𝐴𝜇
′ = 𝐺𝐴𝜇𝐺† −

𝑖
𝑔

(𝜕𝜇𝐺)𝐺†                                    (1.3.138) 

Recall that for small 𝛼𝑎 we had (Eq (1.2.101-104, 109): 

𝐺 = 𝑒𝑖𝛼𝑎𝑇𝑎 ≈ 𝟏 + 𝑖𝛼𝑎𝑇𝑎                                            (1.3.139) 

𝐺† = 𝑒−𝑖𝛼𝑎𝑇𝑎 ≈ 𝟏 − 𝑖𝛼𝑎𝑇𝑎                                          (1.3.140) 

𝐴𝜇 → 𝐴𝜇
′ = 𝐴𝜇 +

1
𝑔

𝜕𝜇𝛼𝑎𝑇𝑎 − 𝑓𝑎𝑏𝑐𝛼𝑎𝐴𝜇
𝑏𝑇𝑐 = 𝐴𝜇

𝑎′𝑇𝑎                        (1.3.141) 

𝐴𝜇
𝑎 → 𝐴𝜇

𝑎′ = 𝐴𝜇
𝑎 +

1
𝑔

𝜕𝜇𝛼𝑎 − 𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇
𝑐 = 𝐴𝜇

𝑎 +
1
𝑔

𝐷𝜇
𝑎𝑏𝛼𝑏                  (1.3.142) 

With the covariant derivative in the adjoint representation (Eq 1.2.106): 

𝐷𝜇 = 𝟏𝑁×𝑁𝜕𝜇 − 𝑖𝑔𝐴𝜇
𝑎𝑇𝐴

𝑎                                         (1.3.143) 

With (𝑇𝐴
𝑎)𝑏𝑐 = −𝑖𝑓𝑎𝑏𝑐 

We see that in the transformation law for 𝐴𝜇
𝑎 , the term −𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇

𝑐  is purely non-

abelian. This means det (𝛿𝐺(𝐴(𝛼))
𝛿𝛼

) will no longer be independent of 𝐴𝜇
𝑎 , since for the 

Lorenz gauge condition 

𝐺(𝐴(𝛼)) = 𝜕𝜇𝐴𝜇𝑎(𝛼) = 𝜕𝜇 (𝐴𝜇𝑎 +
1
𝑔

𝜕𝜇𝛼𝑎 − 𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇𝑐) 

= 𝜕𝜇𝐴𝜇𝑎 +
1
𝑔

⧠𝛼𝑎 − 𝑓𝑎𝑏𝑐𝜕𝜇𝛼𝑏𝐴𝜇𝑐                                        (1.3.144) 

Which indeed means that the determinant of the functional derivative will be 
dependent on 𝐴𝜇

𝑎  

det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) = det (

1
𝑔

𝜕𝜇𝐷𝜇)                                    (1.3.145) 

And 𝐷𝜇
𝑎𝑏 = 𝛿𝑎𝑏𝜕𝜇 − 𝑔𝑓𝑎𝑏𝑐𝐴𝜇

𝑐  
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This means the determinant can no longer be pulled out of the functional integral 
over 𝒟𝐴. The same happens for a generalised Lorenz gauge condition 

𝐺(𝐴(𝛼)) = 𝜕𝜇𝐴𝜇𝑎(𝛼) − 𝜔𝑎                                          (1.3.146) 

With 𝜔𝑎 = 𝜔𝑎(𝑥). So for 𝑍0 we have from Eq (1.3.137): 

𝑍0 = 𝑁(𝜉) ∫ 𝒟𝛼 ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 [−
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎 −

1
2𝜉

𝜕𝜇𝐴𝜇𝑎𝜕𝜈𝐴𝜈𝑎]) det (
𝛿𝐺(𝐴(𝛼))

𝛿𝛼
) 

(1.3.147) 

The fact that the determinant can’t be pulled out the integrals, makes this different 
from the abelian case. We will solve this by another trick from Faddeev and Popov, 
where we represent the determinant as a functional integral over new field 𝑐 and 𝑐̅, 
which are called Faddeev-Popov ghost fields. The main properties of these fields are: 

x They belong to the adjoint representation of SU(N). 
x They belong to the spin 0 representation of the Lorentz group, in other words, 

they are scalar fields. 
x They are anticommuting and thus obey Fermi-Dirac statistics. 

The last two properties seem to contradict. A spin 0 field is a scalar boson field, but a 
boson should be commuting, and thus obey Bose-Einstein statistics. This field, on the 
other hand, is anticommuting, which means it obeys the statistics for a fermion. But a 
fermion has half-integer spin, not spin 0. These new fields having the wrong relation 
between spin and statistics hints that they will not be physical particles. 

The expression for the determinant is [5] (p514) 

det (
1
𝑔

𝜕𝜇𝐷𝜇) = ∫ 𝒟𝑐 ∫ 𝒟𝑐̅ exp (−𝑖 ∫ 𝑑4𝑥[𝑐̅𝑎𝜕𝜇𝐷𝜇𝑎𝑏𝑐𝑏])           (1.3.148) 

Plugging this in Eq (1.3.147) yields 

𝑍0 = 𝑁(𝜉) ∫ 𝒟𝛼 ∫ 𝒟𝑐 ∫ 𝒟𝑐̅ ∫ 𝒟𝐴 exp (𝑖 ∫ 𝑑4𝑥 [ℒG −
1

2𝜉
𝜕𝜇𝐴𝜇𝑎𝜕𝜈𝐴𝜈𝑎 − 𝑐̅𝑎𝜕𝜇𝐷𝜇𝑎𝑏𝑐𝑏]) 

(1.3.149) 

This trick adds yet another term to the Lagrangian, the ghost term 

ℒ = ℒG + ℒGF + ℒghost = −
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎 −

1
2𝜉

𝜕𝜇𝐴𝜇𝑎𝜕𝜈𝐴𝜈𝑎 − 𝑐̅𝑎𝜕𝜇𝐷𝜇𝑎𝑏𝑐𝑏     (1.3.150) 

We can rewrite the ghost term 

ℒghost = −𝑐̅𝑎𝜕𝜇𝐷𝜇𝑎𝑏𝑐𝑏 = −𝑐̅𝑎⧠𝑐𝑎 − 𝑔𝑓𝑎𝑏𝑐𝑐̅𝑎𝜕𝜇𝐴𝜇𝑏𝜕𝜇𝑐𝑐 = ℒghost,0 − 𝑔𝑓𝑎𝑏𝑐𝑐̅𝑎𝜕𝜇𝐴𝜇𝑏𝜕𝜇𝑐𝑐 
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(1.3.151) 

With ℒghost,0 = −𝑐̅𝑎⧠𝑐𝑎 a free field Lagrangian for the ghost field, while the other term 
is an interaction term between ghost fields and the gauge field. 

For a physical observable we have 

⟨0|𝑇𝑂(𝐴)|0⟩ =
∫ 𝒟𝐴 𝑂(𝐴)exp(𝑖𝑆[𝐴])

∫ 𝒟𝐴 exp(𝑖𝑆[𝐴])
=

∫ 𝒟𝐴 𝑂(𝐴)exp(𝑖 ∫ 𝑑4𝑥[ℒG + ℒGF + ℒghost])
∫ 𝒟𝐴 exp(𝑖 ∫ 𝑑4𝑥[ℒG + ℒGF + ℒghost])

 

(1.3.152) 

This means that the unphysical factors that were in front of the integrals, cancel out in 
physical observables. The gauge parameter 𝜉 will also disappear from physical 
observables, like last time, due to conserved physical currents. 

The gauge field propagator will be very similar to the one from the U(1) case 

𝐷𝐹
𝜇𝜈𝑎𝑏(𝑝) = −

𝑖𝛿𝑎𝑏

𝑝2 + 𝑖𝜀
(𝑔𝜇𝜈 − (1 − 𝜉)

𝑝𝜇𝑝𝜈

𝑝2 )                      (1.3.153) 

But we also need a propagator for the ghost field. The ghost term −𝑐̅𝑎⧠𝑐𝑎 gives the 
ghost propagator: 

𝐺𝐹
𝑎𝑏(𝑝) =

𝑖𝛿𝑎𝑏

𝑝2 + 𝑖𝜀
                                                  (1.3.154) 

Now, what is the physical interpretation of the ghost fields? Just like the gauge fixing 
term, they are there to cancel unphysical longitudinal gauge field modes. If we go 
back to the gauge transformation for the gauge field: 

𝐴𝜇
𝑎 → 𝐴𝜇

𝑎′ = 𝐴𝜇
𝑎 +

1
𝑔

𝜕𝜇𝛼𝑎 − 𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇
𝑐                           (1.3.142) 

The term 1
𝑔

𝜕𝜇𝛼𝑎 is a longitudinal shift, which is 1
𝑔

𝛼𝑎𝑝𝜇 in momentum space. The 

longitudinal shift re-interacts with the gauge fields via the −𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇
𝑐  term. This 

−𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇
𝑐  term can also be interpreted as a colour gauge rotation. 

When we quantise the theory, the longitudinal degrees of freedom can propagate. 
This means we need extra fields to cancel these unphysical degrees of freedom. This 
will prevent these unphysical degrees of freedom from propagating. 

There will be a very interesting class of gauge choices for non-abelian gauge field 
theory, “physical” non-covariant gauges. With physical we mean the theory will be 
ghost-free, while with non-covariant we mean that manifest Lorentz covariance is lost 
(which means it is not easy to see if something is Lorentz invariant just by looking at 
the tensorial form of the expressions). In such a gauge we will fix a preferred 
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direction 𝑛𝜇 in spacetime, with 𝑛𝜇 a constant vector, and set the gauge fixing 
condition 𝑛𝜇𝐴𝜇

𝑎 = 0. In this gauge, the ghosts do not appear because the gauge 
transformation of the gauge fixing condition contains no gauge field. 

𝑛𝜇𝐴𝜇
𝑎 → 𝑛𝜇𝐴𝜇

𝑎′ = 𝑛𝜇𝐴𝜇
𝑎 + 𝑛𝜇 1

𝑔
𝜕𝜇𝛼𝑎 − 𝑛𝜇𝑓𝑎𝑏𝑐𝛼𝑏𝐴𝜇

𝑐                      (1.3.155) 

And due to the gauge fixing condition, the first and last terms are each equal to 0, 
which results in 

𝑛𝜇𝐴𝜇
𝑎 → 𝑛𝜇𝐴𝜇

𝑎′ = 𝑛𝜇 1
𝑔

𝜕𝜇𝛼𝑎                                         (1.3.156) 

This contains no 𝐴𝜇
𝑎, so we will be able to bring the determinant outside of the 

functional integrals, and this means that there will be no ghosts. In other words, non-
abelian gauge field theories in the “physical” gauges resemble the abelian (U(1)) 
gauge field theory. This also shows again that the ghost fields are unphysical fields, 
since we can find a gauge fixing condition for which there are no ghosts in our theory. 
The gauge fixing term in a “physical” gauge will be 

ℒ𝐺𝐹 = −
1

2𝜉
𝑛𝜇𝐴𝜇

𝑎𝑛𝜈𝐴𝜈
𝑎 = −

1
2𝜉

(𝑛 ∙ 𝐴)2                               (1.3.157) 

While this seems to make things easier, there will still be a price to pay. The gluon 
propagator (non-abelian gauge field propagator) will be a lot more complicated in 
“physical” gauges than in covariant gauges, and the propagator will also depend on 
𝑛𝜇 . In case 𝜉 = 0 we would get 

𝐷𝐹
𝜇𝜈𝑎𝑏(𝑛, 𝑝) = −

𝑖𝛿𝑎𝑏

𝑝2 + 𝑖𝜀
(𝑔𝜇𝜈 −

𝑝𝜇𝑛𝜈 + 𝑝𝜈𝑛𝜇

𝑝 ∙ 𝑛
+ 𝑛2 𝑝𝜇𝑝𝜈

(𝑝 ∙ 𝑛)2)          (1.3.158) 

When we will calculate the gluon-to-quark splitting function at the end of the thesis, 
we will use such a “physical” gauge. 

 

1.3.8 Full quantised Lagrangian for QCD 
 
Now that we quantised the Dirac field and the non-abelian gauge field, we can 
quantise the field theory that couples them via SU(N) gauge invariance. For the 
classical field theory that couples the Dirac field and the SU(N) gauge fields, we had 
the Yang-Mills Lagrangian 

ℒclassical = ℒDirac + ℒG + 𝑔�̅�A/ 𝜓 = �̅�(𝑖D/ − 𝑚)𝜓 −
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎          (1.3.159) 

With 𝐹𝜇𝜈𝑎 = 𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐 
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And 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝜇
𝑎𝑇𝑎 

𝜓 and �̅� are the quark fields, and 𝐴𝜇
𝑎 are the gluon fields. 

Remember that ℒG = − 1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎  

If we take the quark flavours into account, our classical Lagrangian will be 

ℒclassical = ∑(�̅�𝑓(𝑖D/ − 𝑚𝑓)𝜓𝑓)
𝑓

−
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎                         (1.3.160) 

With the quark fields: 

𝜓𝑓 = (
𝜓𝑓1
𝜓𝑓2

⋮
)                                                               (1.3.161) 

�̅�𝑓 = (�̅�𝑓1 �̅�𝑓2 …)                                              (1.3.162) 

Quantising this theory by functional integrals comes down to adding the gauge fixing 
term and the ghost term to the classical Lagrangian and using the propagators for the 
free fields in combination with the Feynman rules for this theory. 

ℒQCD = ∑(�̅�𝑓(𝑖D/ − 𝑚𝑓)𝜓𝑓)
𝑓

−
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎 −

1
2𝜉

𝜕𝜇𝐴𝜇𝑎𝜕𝜈𝐴𝜈𝑎 − 𝑐̅𝑎𝜕𝜇𝐷𝜇𝑎𝑏𝑐𝑏     (1.3.163) 

With D/ = 𝛾𝜇𝐷𝜇 in the fundamental representation, 𝐷𝜇𝑎𝑏 in the adjoint representation. 

𝐷𝜇
𝑎𝑏 = 𝛿𝑎𝑏𝜕𝜇 − 𝑔𝑓𝑎𝑏𝑐𝐴𝜇

𝑐                                            (1.3.164) 

We can also write the Lagrangian as 

ℒQCD = ℒ0 + ℒI                                                 (1.3.165) 

With the free field Lagrangian 

ℒ0 = ℒDirac + ℒMaxwell + ℒGF + ℒghost,0                            (1.3.166) 

And with the interaction Lagrangian 

ℒI = 𝑔�̅�𝑓A/ 𝜓𝑓 + ℒG − ℒMaxwell − 𝑔𝑓𝑎𝑏𝑐𝑐̅𝑎𝜕𝜇𝐴𝜇𝑏𝜕𝜇𝑐𝑐              (1.3.167) 

Where ℒG − ℒMaxwell are the higher order terms resulting from − 1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎  

We can rewrite this as 

ℒI = 𝑔�̅�𝑓A/ 𝜓𝑓 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝜕𝜇𝐴𝜈𝑐 −
1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇𝑏𝐴𝜈𝑐𝐴𝜇
𝑑𝐴𝜈

𝑒 − 𝑔𝑓𝑎𝑏𝑐𝑐̅𝑎𝜕𝜇𝐴𝜇𝑏𝜕𝜇𝑐𝑐 
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(1.3.168) 

We follow the same Feynman rules as in [5] (p801-803), but for a general gauge 
parameter. 

The (free) quark propagator is 

 

𝑆𝐹𝑖𝑗(𝑝) =
𝑖𝛿𝑖𝑗

p/ − 𝑚 + 𝑖𝜀
=

𝑖(p/ + 𝑚)𝛿𝑖𝑗

𝑝2 − 𝑚2 + 𝑖𝜀
 

 
With the indices 𝑖, 𝑗 the quark colour indices, running from 1 to N.                  (1.3.169) 

The (free) gluon propagator is 

 
𝐷𝐹

𝜇𝜈𝑎𝑏(𝑝) = −
𝑖𝛿𝑎𝑏

𝑝2 + 𝑖𝜀
(𝑔𝜇𝜈 − (1 − 𝜉)

𝑝𝜇𝑝𝜈

𝑝2 ) 

With the indices 𝑎, 𝑏 the “generator indices”, running from 1 to 𝑁2 − 1           (1.3.170) 

The (free) ghost propagator is 

 

𝐺𝐹
𝑎𝑏(𝑝) =

𝑖𝛿𝑎𝑏

𝑝2 + 𝑖𝜀
 

 
With indices 𝑎, 𝑏 again the “generator indices”.                                               (1.3.171) 

From the interaction term Eq (1.3.168) we get the vertex factors [5] (p506-515). 

The term 𝑔�̅�𝑓A/ 𝜓𝑓 = 𝑔�̅�𝑓𝛾𝜇𝐴𝜇
𝑎𝑇𝑎𝜓𝑓  are three-point quark-antiquark-gluon 

interactions. We will refer to this vertex as the “fermion vertex”. 

𝑔�̅�𝑓A/ 𝜓𝑓 → 

 

= 𝑖𝑔𝛾𝜇𝑇𝑖𝑗
𝑎 

(1.3.172) 

The term 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝜕𝜇𝐴𝜈𝑐 are three-point interactions between gluons. We will 
refer to this vertex as the “3-boson vertex”, or “3-gluon” vertex. 

𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝜕𝜇𝐴𝜈𝑐 → 

 

= 𝑔𝑓𝑎𝑏𝑐[𝑔𝜇𝜈(𝑘 − 𝑝)𝜌

+ 𝑔𝜈𝜌(𝑝 − 𝑞)𝜇

+ 𝑔𝜌𝜇(𝑞 − 𝑘)𝜈] 
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(1.3.173) 

The term − 1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇𝑏𝐴𝜈𝑐𝐴𝜇
𝑑𝐴𝜈

𝑒  are four-point interactions between gluons. We 
will refer to this vertex as the “4-boson vertex”, or “4-gluon” vertex. 

−
1
4

𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇𝑏𝐴𝜈𝑐𝐴𝜇
𝑑𝐴𝜈

𝑒 → 

 

= −𝑖𝑔2[𝑓𝑎𝑏𝑒𝑓𝑐𝑑𝑒(𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜎𝑔𝜈𝜌) 
+𝑓𝑎𝑐𝑒𝑓𝑏𝑑𝑒(𝑔𝜇𝜈𝑔𝜌𝜎 − 𝑔𝜇𝜎𝑔𝜈𝜌) 
+𝑓𝑎𝑑𝑒𝑓𝑏𝑐𝑒(𝑔𝜇𝜈𝑔𝜌𝜎 − 𝑔𝜇𝜌𝑔𝜈𝜎)] 

(1.3.174) 

The term −𝑔𝑓𝑎𝑏𝑐𝑐̅𝑎𝜕𝜇𝐴𝜇𝑏𝜕𝜇𝑐𝑐  are three-point interactions that arise from the 
Faddeev-Popov gauge fixing method for QCD. The vertex will connect a ghost, 
antighost, and a gluon. We will refer to this vertex as the “ghost vertex”. 

−𝑔𝑓𝑎𝑏𝑐𝑐̅𝑎𝜕𝜇𝐴𝜇𝑏𝜕𝜇𝑐𝑐 → 

 

= −𝑔𝑓𝑎𝑏𝑐𝑝𝜇 
(1.3.175) 

 

There rules for the external particles are again just the polarisation spinors/vectors 
like in QED, but now also with an orientation in the group space: 

For an initial, respectively final, quark: 𝑢𝑖𝑠(𝑝), �̅�𝑖𝑠(𝑝) 

For an initial, respectively final, antifermion: �̅�𝑖𝑠(𝑝), 𝑣𝑖𝑠(𝑝) 

For an initial, respectively final, gluon: 𝜖𝜇
𝑎𝑠(𝑝), 𝜖𝜇

𝑎𝑠∗(𝑝) 

Where 𝑠(= 1,2) labels the polarisations, 𝑖(= 1, … , 𝑁) labels the quark colours and 
𝑎(= 1, … , 𝑁2 − 1) labels the gluon colours (generators). For gluons only transverse 
polarisations are allowed as physical external states. 

Remember that if we take SU(N) = SU(3), and the coupling constant 𝑔 = 𝑔𝑠 from the 
Strong Interaction, we have the QCD theory for our universe. In that case, we have 
𝑇𝑎 = 1

2
𝜆𝑎 with 𝜆𝑎 the Gell-Mann matrices (see ref [5]). The quark colours 𝑖 are 𝑟, 𝑔, 𝑏. 

 
With these basic building blocks, we can describe higher order processes. By using 
the Feynman rules for QCD, we can calculate the Feynman amplitude ℳ of some 
process. 
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Feynman rules: 

1. Draw Feynman diagram. 
2. For each line: write down the propagator. 
3. For each vertex: write down the vertex factor. 
4. For each external line: write down the factor for an external line. 
5. Impose momentum conservation at each vertex. 
6. Integrate over every undetermined (loop) momentum. 
7. For every quark loop: take the trace and multiply with a factor -1. 
8. For every ghost loop: multiply with -1. 
9. Divide by symmetry factor. 

(For the derivation of the Feynman rules we refer to [5] (p801-803, p506-515)) 

We now have a fully quantised QCD theory for a general SU(N) gauge symmetry. 

 

1.3.9 Symmetries and quantum version of Noether’s theorem 
 
Without going into the details of the calculation, we will now briefly discuss the role of 
symmetries, and in particular global and local unitary symmetries (U(N) and SU(N)), 
in quantum field theory. In the classical field theory, continuous symmetries give rise 
to conservation laws via Noether’s theorem. Noether’s theorem relates exactly one 
conserved current to each generator of the symmetry group. As we discussed before, 
in case of a unitary symmetry group (U(N) or SU(N)) these were the colour charge 
currents, resulting in colour charge conservation. Since the functional integrals 
preserve symmetries, quantising the Lagrangian by functional integrals means that 
any symmetry that leaves the classical Lagrangian invariant, will do so for the 
quantum Lagrangian as well. This means that for quantised gauge field theories, we 
will still have the global and local unitary symmetries. This results in a quantum 
version of Noether’s theorem called the Ward-Takahashi identities. 

In the case of QED, the global U(1) symmetry will result in the Ward-Takahashi 
identity [5] (p311) 

𝑖𝜕𝜇⟨0|𝑇𝑗𝜇(𝑥)𝜓(𝑥1)�̅�(𝑥2)|0⟩ = −𝑖𝑔𝛿(𝑥 − 𝑥1)⟨0|𝑇𝜓(𝑥1)�̅�(𝑥2)|0⟩  

+𝑖𝑔𝛿(𝑥 − 𝑥2)⟨0|𝑇𝜓(𝑥1)�̅�(𝑥2)|0⟩       (1.3.176) 

(1.3.176) 

Which translates to the amplitudes 

−𝑖𝑘𝜇ℳ𝜇(𝑘, 𝑝, 𝑞) = −𝑖𝑔ℳ0(𝑝, 𝑞 − 𝑘) + 𝑖𝑔ℳ0(𝑝 + 𝑘, 𝑞)               (1.3.177) 

This is the Ward-Takahashi identity for two external fermions. 
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For a process that involves two external fermions and an external photon as well, this 
will reduce to the Ward identity: 

ℳ𝜇𝜈𝑘𝜈 = 0                                                         (1.3.178) 

With 𝑘𝜇 the momentum of the external photon. 

As an example, consider the 𝑒𝛾 → 𝑒𝛾 scattering process in QED. On the tree level we 
have: 

 

Figure 1.4: 𝑒𝛾 → 𝑒𝛾 scattering process on the tree level. 

 

We can write the amplitudes for it as 

ℳ𝜇𝜈 = ℳ1
𝜇𝜈 + ℳ2

𝜇𝜈                                              (1.3.179) 

The Ward identity is ℳ𝜇𝜈𝑘𝜈 = 0 , with 𝑘 the momentum of one of the external 
photons. But for the amplitude of one of the individual tree level processes, the 
contracted product with 𝑘𝜈 shouldn’t necessarily be 0. So we could have ℳ1

𝜇𝜈𝑘𝜈 ≠ 0 
and ℳ2

𝜇𝜈𝑘𝜈 ≠ 0 , but the sum of them should always be 0 

ℳ𝜇𝜈𝑘𝜈 = ℳ1
𝜇𝜈𝑘𝜈 + ℳ2

𝜇𝜈𝑘𝜈 = 0                                    (1.3.180) 

For the gauge transformed photon we have 𝐴𝜇(𝑘) → 𝐴𝜇(𝑘) + 𝛼(𝑘)𝑘𝜇 , and 𝛼(𝑘)𝑘𝜇 
are the unphysical, longitudinal modes of the photon. Because of the Ward (Ward-
Takahashi) identity, the longitudinal polarization mode of the photon disappears from 
this amplitude. 

In case of QCD (SU(N)), the global SU(N) symmetry will result in the Ward-
Takahashi identity for a non-abelian gauge theory, but in case of QCD, we call this 
the Slavnov-Taylor identity. For a process that involves two external quarks and an 
external gluon as well, we have Eq (1.3.178) 

ℳ𝜇𝜈𝑘𝜈 = 0                                                        (1.3.178) 

For example consider the 𝑞𝑔 → 𝑞𝑔 scattering process in QCD. On the tree level we 
have: 
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Figure 1.5: 𝑞𝑔 → 𝑞𝑔 scattering process on the tree level. 

 

We can write the amplitudes for it as 

ℳ𝜇𝜈𝑎𝑏 = ℳ1
𝜇𝜈𝑎𝑏 + ℳ2

𝜇𝜈𝑎𝑏 + ℳ3
𝜇𝜈𝑎𝑏                               (1.3.181) 

The Slavnov-Taylor identity is ℳ𝜇𝜈𝑎𝑏𝑘𝜈 = 0 , with 𝑘 the momentum of one of the 
external gluons. But for the amplitude of one of the individual tree level processes, 
the contracted product with 𝑘𝜈 shouldn’t necessarily be 0. So we could have 
ℳ1

𝜇𝜈𝑎𝑏𝑘𝜈 ≠ 0 , ℳ2
𝜇𝜈𝑎𝑏𝑘𝜈 ≠ 0 , and ℳ3

𝜇𝜈𝑎𝑏𝑘𝜈 ≠ 0 , but the sum of them should always 
be 0 

ℳ𝜇𝜈𝑎𝑏𝑘𝜈 = ℳ1
𝜇𝜈𝑎𝑏𝑘𝜈 + ℳ2

𝜇𝜈𝑎𝑏𝑘𝜈 + ℳ3
𝜇𝜈𝑎𝑏𝑘𝜈 = 0                 (1.3.182) 

Note that unlike for QED, for QCD the following sum does not result in 0 after the 
contracted product with 𝑘𝜈 

 

(ℳ1
𝜇𝜈𝑎𝑏 + ℳ2

𝜇𝜈𝑎𝑏)𝑘𝜈 ≠ 0                                         (1.3.183) 

Just like in QED, the longitudinal polarization modes of gluons will disappear from the 
amplitude ℳ𝜇𝜈𝑎𝑏 because of the Slavnov-Taylor identity. 

 

1.4 Renormalisation 
 
While we have a fully quantised theory, and the quantised Lagrangian is good for 
dealing with processes at the tree level (no loops), we will run into trouble when loops 
arise in processes. Since we are usually applying perturbation theory to quantum 
field theories, loops will arise in most of those theories at higher orders. They will 
result in corrections to the tree level processes, called loop corrections. There will be 
two main effects of these loop corrections. First of all, it is possible that a certain 
process involving loops will give rise to integrals that diverge. This could endanger 
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our quantum field theory if we are not able to keep observables from diverging. And 
second, for observable parameters that appear in the Lagrangian, the loop 
corrections to tree level processes might result in a difference between these 
parameters their values in the Lagrangian and their values obtained by calculating 
via perturbation theory. Because of these two effects, our quantum field theory will 
need renormalisation in order to deal with loop corrections. This section will go over 
the basics of renormalisation. Some more detailed calculations and applications will 
appear in the next chapter, in section 2.1. 

 

1.4.1 UV power counting and renormalizability 
 
Feynman diagrams that contain loops could give rise to integrals that diverge. The 
divergences could come from high-momentum regions of the momentum space that 
is been integrated over. Consider a Feynman diagram containing a loop integral of 
the form 

∫ 𝑑4𝑘
𝑁(𝑘)
𝑀(𝑘)                                                             (1.4.1) 

In the case of one loop, the superficial degree of divergence will be 

𝐷 = 4 + (powers of k in 𝑁) − (powers of k in 𝑀)                          (1.4.2) 

If 𝐷 ≥ 0 we will most likely have a UV (“Ultraviolet”) divergence. 

We will now characterise a quantum field theory by its “renormalisability”. The first 
type of QFTs that we will consider, are those with only a finite number of UV 
divergent amplitudes. This includes QED and QCD. 

QED has 3 UV divergent amplitudes [4 (p199)]: 

 

Figure 1.6: UV divergent amplitudes for QED. From left to right: photon self-energy, fermion self-
energy, “fermion vertex” (fermion-photon vertex). 

 
QCD, on the other hand, has 7 UV divergent amplitudes [4 (p323)]: 
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Figure 1.7: UV divergent amplitudes for QCD. Top left to right: gluon self-energy, quark self-energy, 
ghost self-energy. Bottom left to right: “quark vertex” (quark-gluon  vertex), 3-gluon vertex, “ghost 
vertex” (ghost-gluon vertex), 4-gluon vertex. 

 
A first way to characterise a theory as a renormalisable theory is that the number of 
UV divergent amplitudes is finite. Still, it is possible that a theory has an infinite 
amount of UV divergent amplitudes, but is still renormalisable. This can happen if 
those amplitudes are divergent because they contain one of the finite amounts of 
primitively divergent amplitudes. 

Renormalisability its main point is that all the UV divergences can be absorbed into 
rescalings of the parameters and fields of the theory. This will be done via the 
renormalisation scheme: 

1. Compute all the UV divergent amplitudes via the regularization method. This 
involves taking a UV cut off, and dimensional analysis. 

2. Assign renormalisation conditions which will absorb all the divergences via 
rescalings of fields and parameters in the Lagrangian: 

𝜑 → 𝜑0 = 𝑍𝜑                                                           (1.4.3) 
With 𝜑0 the bare field, 𝜑 the renormalised field, and 𝑍 the renormalisation 
constant. And we define 

𝑍 = 1 + 𝛿                                                            (1.4.4) 
With 𝛿 the counter term, which can possibly be infinite. In the Lagrangian we 
replace our original 𝜑 by 𝜑0 , and after this we can write our Lagrangian as 

ℒ = ℒ𝑅 + 𝛿ℒ                                                        (1.4.5) 
With ℒ𝑅 the renormalised Lagrangian, and 𝛿ℒ the counter term Lagrangian. 

3. All two-point correlation functions will now be finite, and unambiguously 
calculable. 

If we can do this scheme for a quantum field theory, it means that the theory is 
renormalisable. If this is impossible to do for a quantum field theory, then it means 
that the theory is non-renormalisable. 
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We distinguish between the following type of quantum field theories [5] (p321): 

x Super-renormalisable theory: A finite amount of diagrams that are 
superficially divergent. 

x Renormalisable theory: A finite amount of amplitudes that are 
superficially divergent, but divergences 
appear at all orders in the perturbation 
theory. 

x Non-renormalisable theory: All amplitudes are divergent at a 
sufficiently high order. 

 

The type of renormalisability is related to the mass dimension of the coupling 
constants in the theory, in the following way [5] (p322): 

x Super-renormalisable theory: The coupling constant has positive mass 
dimension. 

x Renormalisable theory: The coupling constant is dimensionless. 
x Non-renormalisable theory: The coupling constant has negative 

mass dimension. 
 

1.4.2 Rescaling and counterterms 
 
We will now carry out the rescaling in our QCD Lagrangian. By rescaling the fields 
and parameters, we will get counterterms in the Lagrangian. Our quantised QCD 
Lagrangian is Eq (1.3.163): 

ℒQCD = ∑(�̅�𝑓(𝑖D/ − 𝑚𝑓)𝜓𝑓)
𝑓

−
1
4

𝐹𝜇𝜈𝑎𝐹𝜇𝜈
𝑎 −

1
2𝜉

𝜕𝜇𝐴𝜇𝑎𝜕𝜈𝐴𝜈𝑎 − 𝑐̅𝑎𝜕𝜇𝐷𝜇𝑎𝑏𝑐𝑏     (1.4.6) 

We have 6 different quantities: 𝜓, 𝐴, 𝑐, 𝑚, 𝑔, 𝜉 

Now we rescale the fields and parameters, with the following convention: 

For the free fields: 

𝐴 → 𝐴0 = √𝑍𝑔 𝐴 ;      𝜓 → 𝜓0 = √𝑍𝑞 𝜓 ;      𝑐 → 𝑐0 = √𝑍𝑐 𝑐                 (1.4.7) 

For the mass and gauge parameter: 

𝑚 → 𝑚0 =
𝑍𝑚

𝑍𝑞
𝑚 ;      𝜉 → 𝜉0 =

𝑍𝑔

𝑍𝜉
𝜉                                       (1.4.8) 

For the interaction couplings, we have 4 equations. 

For the coupling from quark-gluon vertex: 
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𝑔 → 𝑔0 =
𝑍𝑔𝑞

𝑍𝑞√𝑍𝑔
𝑔                                                       (1.4.9) 

For the coupling from ghost-gluon vertex: 

𝑔 → 𝑔0 =
𝑍𝑔𝑐

𝑍𝑐√𝑍𝑔
𝑔                                                     (1.4.10) 

For the coupling from 3-gluon vertex: 

𝑔 → 𝑔0 =
𝑍3𝑔

𝑍𝑔
3/2 𝑔                                                       (1.4.11) 

For the coupling from 4-gluon vertex: 

𝑔2 → 𝑔0
2 =

𝑍4𝑔

𝑍𝑔
2 𝑔2                                                      (1.4.12) 

The 𝑍𝑔 is related to the gluon self-energy, 𝑍𝑞 is related to the quark self-energy, 𝑍𝑐 is 
related to the ghost self-energy, 𝑍𝑔𝑞 is related to the quark-gluon vertex, 𝑍𝑔𝑐 is related 
to the ghost-gluon vertex, 𝑍3𝑔 is related to the 3-gluon vertex, and 𝑍4𝑔 is related to 
the 4-gluon vertex. One renormalisation constant for each UV divergent amplitude. 
So in our case, we have 7 of them. 

For each renormalisation constant, there will be a counterm in the Lagrangian. 

∀𝐾: 𝑍𝐾 = 1 + 𝛿𝐾                                                     (1.4.13) 

If we plug the renormalised (rescaled) fields and parameters in our Lagrangian, we 
can write it as Eq (1.4.5): 

ℒ = ℒ𝑅 + 𝛿ℒ 

With ℒ𝑅 the original Lagrangian, but in terms of the renormalised fields and 
parameters. 𝛿ℒ is the counterterm Lagrangian. 

In case of QED there are only 5 parameters, and their rescalings are analogous to 
those of QCD. 

𝐴 → 𝐴0 = √𝑍𝛾 𝐴 ;      𝜓 → 𝜓0 = √𝑍𝑒 𝜓                                    (1.4.14) 

𝑚 → 𝑚0 =
𝑍𝑚

𝑍𝑒
𝑚 ;      𝜉 → 𝜉0 =

𝑍𝛾

𝑍𝜉
𝜉                                          (1.4.15) 

𝑒 → 𝑒0 =
𝑍𝛾𝑒

𝑍𝑒√𝑍𝛾
𝑒                                                     (1.4.16) 
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1.4.3 Relations among counterterms 
 
Gauge invariance will result in constraints on the counterterms. Or in other words, 
gauge invariance will result in relations among the UV divergences. 

In QCD we have 6 quantities (𝜓, 𝐴, 𝑐, 𝑚, 𝑔, 𝜉) and 9 counterterms. This means there 
will be 3 relations. Because of gauge invariance, all the 𝑔′s will be the same, and all 
the 𝑔0′s will be the same. This means: 

𝑍𝑔𝑞

𝑍𝑞√𝑍𝑔
=

𝑍𝑔𝑐

𝑍𝑐√𝑍𝑔
=

𝑍3𝑔

𝑍𝑔
3/2 =

√𝑍4𝑔

𝑍𝑔
                                     (1.4.17) 

These are the 3 relations among UV divergences. We can simplify this a bit more: 

𝑍𝑔𝑞

𝑍𝑞
=

𝑍𝑔𝑐

𝑍𝑐
=

𝑍3𝑔

𝑍𝑔
= √

𝑍4𝑔

𝑍𝑔
                                           (1.4.18) 

These equations result from Slavnov-Taylor identities. 

If we plug in the counterterms, we get: 

1 + 𝛿𝑔𝑞

1 + 𝛿𝑞
=

1 + 𝛿𝑔𝑐

1 + 𝛿𝑐
=

1 + 𝛿3𝑔

1 + 𝛿𝑔
= √

1 + 𝛿4𝑔

1 + 𝛿𝑔
                            (1.4.19) 

In case of QED there will only be one relation, which results from the Ward-
Takahashi identity [5] (p243): 

𝑍𝛾𝑒 = 𝑍𝑒                                                              (1.4.20) 

And for counterterms: 

𝛿𝛾𝑒 = 𝛿𝑒                                                              (1.4.21) 

Due to Eq (1.4.20), Eq (1.4.16) simplifies to 

𝑒 = √𝑍𝛾 𝑒0                                                           (1.4.22) 

 

1.4.4 General effects from renormalisation 
 
By renormalising a theory by rescaling parameters and fields, the bare parameters 
and bare fields in the Lagrangian are no longer the parameters and fields that one 
would observe. Even more, the bare parameters and bare fields can even be 
infinitely large. The parameters and fields that would be observed, are now the 
renormalised (rescaled) parameters and fields, since they are essentially the 
parameters and fields that you get after applying all higher order corrections of the 
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quantum field theory. The renormalised parameters and fields are what we call 
“dressed” (dressed with a “cloud” of higher order corrections). The possible infinities 
in the bare parameters and fields can be separated from the renormalised 
parameters and fields according to Eq (1.4.5). The counterterm Lagrangian 𝛿ℒ 
contains everything that causes a difference between renormalised and bare 
parameters/fields. 

Another important effect of renormalisation is that the renormalised parameters and 
fields will be scale dependent. While the bare parameters and fields are independent 
of energy scale, the higher order corrections will cause the renormalised ones to be 
dependent on the energy scale of the process that we look at. In other words, the 
masses, coupling “constants”, fields, and other parameters that we observe, now 
depend on the energy scale at which we observe them. We call this effect “running 
parameters” and “running fields”. This effect isn’t obvious from what we have done in 
this section, but will be shown in the next chapter (in section 2.1). 
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2 Application of QCD to high-energy collisions 
 
This chapter explores QCD and renormalisation, and its dependence on energy 
scale, with the goal to explain and understand collisions at high energy. First we will 
look at the effects of renormalisation of gauge theories, and find that the coupling 
constant becomes energy scale dependent. For QCD specifically, this “running 
coupling” will lead to asymptotic freedom. After that we will discuss the parton model 
and hard scattering, and how we can apply factorisation to some classes of hard 
scattering processes. For factorisation we will mostly focus on the example of  Deep 
Inelastic Scattering (DIS), which will be of key importance for further chapters. This 
chapter is based on the books [4], [5], [9], and the course [10]. 

 

2.1 Asymptotic freedom 
 
Non-Abelian gauge theories like QCD can have a surprising property that is very 
different from QED. Unlike QED which becomes stronger at shorter distances, QCD 
becomes weaker at shorter distances. This means that for the limit of the distance 
going to zero (or the limit of the energy scale going to infinity), quarks don’t feel the 
Strong Interaction anymore and become free particles. This property is called 
“asymptotic freedom”. In this section we will first see how the renormalisation of a 
gauge theory results in the coupling constant being dependent on the energy scale it 
is measured at. This effect is called the “running coupling”. Then we will look at the 
renormalisation group and the beta function, which encodes the dependence of the 
coupling on the energy scale. We will show that in the case of QCD this leads to 
asymptotic freedom and a Landau pole. Finally we will also give a possible 
explanation of how the Landau pole of QCD could explain colour confinement. 

 

2.1.1 Running coupling constant 
 
In this section we will treat the renormalisation of the coupling constant. The 
derivation for this requires us to use one of the equations Eq (1.4.9-12) and calculate 
the diagrams related to the involved renormalisation constants. We will choose Eq 
(1.4.9) and calculate 𝑍𝑔, 𝑍𝑞 and 𝑍𝑔𝑞 via the diagrams of the gauge field self-energy, 
quark self-energy, and quark-gluon vertex correction respectively. When this is done 
up to second order, they will just contain one-loop diagrams. For simplicity we will 
first look at the case of QED. We will use Eq (1.4.22), which means that for the 
renormalisation of the electric charge we only need to calculate 𝑍𝛾, which is done via 
the photon self-energy diagram: 
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This diagram corresponds to the renormalised photon propagator 𝐷𝜇𝜈. Note that the 
two photon lines are not necessarily physical external lines, but are bare photon 
propagators 𝐷0

𝜇𝜈, equal to 𝐷𝐹
𝜇𝜈 in Eq (1.3.124). The grey disk represents the sum of 

all possible intermediate diagrams. Up to second order in the coupling constant, we 
only have to take into account one electron loop: 

 

This diagram corresponds to 𝐷0
𝜇𝛼(𝑞)𝑖𝑒0

2𝛱𝛼𝛽(𝑞)𝐷0
𝛽𝜈(𝑞), with the loop itself (without the 

external propagators) given by 𝑖𝑒0
2𝛱𝛼𝛽(𝑞). By using the Feynman rules of QED, we 

can express this loop as 

𝑖𝑒0
2𝛱𝜇𝜈(𝑞) =

𝑒0
2

(2𝜋)4 Tr ∫ 𝑑4𝑘𝛾𝜇𝑆0(𝑘 + 𝑞)𝛾𝜈𝑆0(𝑘)                          (2.1.1) 

With 𝑆0 the bare fermion propagator, equal to 𝑆𝐹 in Eq (1.3.72). The Ward identity Eq 
(1.3.178) tells us that 

𝑞𝜇𝛱𝜇𝜈(𝑞) = 0                                                        (2.1.2) 

and this means that 𝛱𝜇𝜈(𝑞) must be proportional to the transversal projector. We can 
write the 𝛱𝜇𝜈(𝑞) as in [5] (p245): 

𝑖𝛱𝜇𝜈(𝑞) = 𝑞²𝑃⊥
𝜇𝜈(𝑞)𝛱(𝑞²)                                            (2.1.3) 

Where 𝑃⊥
𝜇𝜈(𝑞) is the transversal projection operator: 

𝑃⊥
𝜇𝜈(𝑞) = 𝑔𝜇𝜈 −

𝑞𝜇𝑞𝜈

𝑞2                                                (2.1.4) 

We can do a Dyson resummation as follows: 
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Which means we can take the “resummed” photon propagator to be equal to 

𝐷 = 𝐷0 + 𝐷0𝛱𝐷0 + ⋯                                            (2.1.5) 

with 𝐷0 the propagator for the free photon. We notice 𝐷 = 𝐷0 + 𝐷0𝛱𝐷 , and so we can 
rewrite our resummed propagator as 

𝐷 =
𝐷0

1 − 𝐷0𝛱
=

1
1

𝐷0
− 𝛱

                                             (2.1.6) 

Repeatedly applying the transversal projector in 𝛱 and using the gauge invariance, 
which makes longitudinal contributions vanish, the Dyson resummation gives us 

𝐷 = 𝐷0
1

1 − 𝛱(𝑞²)                                                  (2.1.7) 

In the Feynman gauge, the free photon propagator is 

𝐷𝐹
𝜇𝜈(𝑞) = −

𝑖𝑔𝜇𝜈

𝑞2 + 𝑖𝜀
                                                (2.1.8) 

If we plug this in our equation for the “resummed” photon propagator, we get 

𝐷𝜇𝜈 =
−𝑖𝑔𝜇𝜈

𝑞²(1 − 𝛱(𝑞²))
                                             (2.1.9) 

Where we ignored the 𝑖𝜀 since we have extracted a tree level part, and the 𝑖𝜀 only 
matters in loops. Since 𝛱(𝑞²) is regular at 𝑞 = 0, the photon remains massless. [5] 
(p245-246) 

This new photon propagater that we get from Dyson resummation, is the 
renormalised photon propagator for this specific Dyson resummation. Ofcourse this is 
not the fully renormalised photon propagator, because we haven’t taken multi-loop 
diagrams into account, nor did we take diagrams into account that connect 1-loop 
diagrams in a different way than what we have done. But this new photon propagator 
will already be more accurate to describe physics, than the free photon propagator. 

We can now use this renormalised photon propagator in other diagrams. Let us use it 
in the following scattering process: 

 

This represents the following expression: 



76 
 

𝑒0
2𝐷0 → 𝑒0

2𝐷 = 𝑒0
2𝐷0

1
1 − 𝛱(𝑞²)                                        (2.1.10) 

With 𝑒0
2 the bare electric charge. We can rewrite this as 

𝑒0
2

𝑞2 →
𝑒0

2

𝑞2  
1

1 − 𝛱(𝑞²) =
𝑒2

𝑞2                                               (2.1.11) 

And thus 𝑒 is defined as 

𝑒2 =
𝑒0

2

1 − 𝛱(𝑞²)                                                   (2.1.12) 

Now we will use the following expression which separates the divergent part and 
finite part in 𝛱: 

1 − 𝛱(𝑞2) = (1 − 𝛱(0))(1 − 𝛱(𝑞2) − 𝛱(0)) + 𝒪(𝛼2)               (2.1.13) 

Where (1 − 𝛱(0)) is divergent and (1 − 𝛱(𝑞2) − 𝛱(0)) finite. 𝛼 is the fine structure 
constant, which is also called the coupling strength 

𝛼 =
𝑒2

4𝜋
                                                             (2.1.14) 

By using the expression that separates the divergent part from finite part, we get 

𝑒0
2

𝑞2 →
𝑒0

2

𝑞2  
1

1 − 𝛱(𝑞²) ≈
1

𝑞2  
𝑒0

2

1 − 𝛱(0) 
1

1 − (𝛱(𝑞2) − 𝛱(0))
=

𝑒2(0)
𝑞2  

1
1 − (𝛱(𝑞2) − 𝛱(0))

 

(2.1.15) 

Where we defined 

𝑒2(0) =  
𝑒0

2

1 − 𝛱(0)                                                  (2.1.16) 

Note that 𝑒2 = 𝑒2(0) in the approximation that we made in Eq (2.1.15). If we 
renormalise QED, we have 𝑒2 = 𝑍𝛾𝑒0

2 from Eq (1.4.22), with 𝑒 the renormalised 
electric charge and 𝑍𝛾 the renormalisation constant. From Eq (2.1.16) we find that 
this renormalisation constant for the electric charge 𝑒2(0), thus now redefined as 
𝑒2(0) = 𝑍𝛾𝑒0

2, is equal to 

𝑍𝛾 =
1

1 − 𝛱(0) ≈ 1 + 𝛱(0)                                        (2.1.17) 

Where we have done Taylor expansion to get the right most part. The relation 
between renormalisation constant and counterterm is 𝑍𝛾 = 1 + 𝛿𝛾, so we have for the 
counterterm: 
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𝛿𝛾 =
2 − 𝛱(0)
1 − 𝛱(0) ≈ 𝛱(0)                                            (2.1.18) 

The full calculation of 𝛱(𝑞2) is done in [4 (p211-214)], by using dimensional 
regularisation in 𝑑 = 4 − 𝜀 dimensions, and results in 

𝛱(𝑞2) = −
1

12𝜋2 (
2
𝜀

− 𝛾𝐸 + ln(4𝜋)) + ⋯                       (2.1.19) 

𝛱𝜇𝜈(𝑞) = −(𝑞2𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈)
𝜇−𝜀

12𝜋2 (
2
𝜀

− 𝛾𝐸 + ln(4𝜋)) + ⋯         (2.1.20) 

Where 𝜇 is a mass scale resulting from dimensional regularisation, and 𝛾𝐸 the Euler-
Mascheroni constant. Then for 𝑍𝛾 we have the expression [4 (p334)] (in the reference 
it is called 𝑍3): 

𝑍𝛾 = 1 −
𝑒0

2𝜇−𝜀

12𝜋2 (
2
𝜀

− 𝛾𝐸 + ln(4𝜋))                                   (2.1.21) 

And with 𝑒2(0) = 𝑒0
2𝑍𝛾𝜇−𝜀 in dimensional regularisation. 

Note that, in the reference [4], in 𝛱𝜇𝜈 and 𝑍𝛾, the factors 𝑒0
2𝜇−𝜀 are replaced by the 

partially renormalised charge 𝑒𝑟
2 . But since the difference between 𝑒𝑟 and 𝑒0𝜇−𝜀/2 is 

of order 𝑒𝑟
3, we ommited this difference as an approximation. [4 (p334)] 

𝑍𝛾 is a series in powers of 𝛼 and can be approximated by [5] (p252): 

𝑍𝛾 ≈ 1 −
2𝛼

3𝜋𝜀
+ ⋯                                                 (2.1.22) 

And this means for the counterterm: 

𝛿𝛾 ≈ −
2𝛼
3𝜋𝜀

+ ⋯                                                  (2.1.23) 

From renormalisation we have these effects in the approximations that we made: 

x 𝑒2(0) = 𝑍𝛾𝑒0
2 = 𝑒0

2 (1 − 𝛱(0))⁄                                                                                 (2.1.24) 
x 𝛿𝛾 ≈ 𝛱(0) ≈ − 2𝛼 (3𝜋𝜀)⁄                                                                                             (2.1.25) 

This shows that the charge that is observed in the scattering process is not the bare 
charge 𝑒0

2, but a renormalised charge. If we don’t do the approximation that sets 
𝑒2 = 𝑒2(0), but take Eq (2.1.12), then another effect that we have from 
renormalisation is a finite observable dependence of the electric charge on 𝑞2. The 
electric charge 𝑒, and thus also the coupling strength 𝛼 = 𝑒2 (4𝜋)⁄  , are no longer 
constant but depend on the transferred momentum 𝑞2 in the scattering process. They 
are now a “running charge” and “running coupling”. 
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Now we will try to do the same for QCD. For the rescaling of the coupling constant 
we have from Eq (1.4.9): 

𝑔 =
𝑍𝑞√𝑍𝑔

𝑍𝑔𝑞
𝑔0                                                       (2.1.26) 

𝑍𝑞 corresponds to the quark self-energy: 

 

𝑍𝑔 corresponds to the gluon self-energy. The calculation for this will similar to that of 
the 𝑍𝛾 and the photon self-energy, but there will be more diagrams because not only 
do we have a quark loop, but also a gluon loop and a ghost loop. 

 

Other 2nd order diagrams for 𝑍𝑞 and 𝑍𝑔 vanish by looking at the colour, vertex and 
Lorentz factors when applying Feynman rules. [4 (p345-346)] The calculation for the 
diagram with the quark loop is done in almost the same way as the photon self-
energy, but with an extra factor 𝑇𝐹𝛿𝑎𝑏 in Eq (2.1.3), with 𝑇𝐹 the trace invariant (for 
SU(N) we have 𝑇𝐹 = 1/2). 

𝑍𝑔𝑞 corresponds to the quark-gluon vertex: 

 

We refer to [4 (p346-351)] for results for each of the diagrams. 

The total result for the gluon self-energy, in dimensional regularisation, is given by [4 
(p347-348)] 

𝛱𝑎𝑏
𝜇𝜈(𝑞) = −𝛿𝑎𝑏(𝑞2𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈)

𝜇−𝜀

16𝜋2 (
2𝑛𝑓

3
− 5) (

2
𝜀

− 𝛾𝐸 + ln(4𝜋)) + ⋯       (2.1.27) 

Where a and b are the colours of the incoming and outgoing gluon, and 𝑛𝑓 the 
number of quark flavours. This result is similar to the photon self-energy Eq (2.1.20), 
but with orientation in the group space and replacement of 
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𝑒0
2

12𝜋2 →
𝑔0

2

16𝜋2 (
2𝑛𝑓

3
− 5)                                             (2.1.28) 

With 𝑔0 the bare coupling constant of QCD. And similar to 𝛼 in QED, we can define 
the coupling strength of QCD (strong fine structure constant): 

𝛼𝑠 ≔
𝑔2

4𝜋
                                                             (2.1.29) 

The renormalisation constant 𝑍𝑔 turns out to be similar to 𝑍𝛾, Eq (2.1.21), and is 
given by [4 (p349)] (in the reference it is called 𝑍3): 

𝑍𝑔 = 1 −
𝑔0

2𝜇−𝜀

16𝜋2 (2𝑛𝑓 − 5) (
2
𝜀

− 𝛾𝐸 + ln(4𝜋))                                   (2.1.30) 

The result for the quark self-energy, in dimensional regularisation, is given by [4 
(p331,346)] 

𝛴𝑖𝑗(𝑝) = 𝛿𝑖𝑗
𝜇−𝜀

12𝜋2 (p/ − 4𝑚0) (
2
𝜀

− 𝛾𝐸 + ln(4𝜋)) + ⋯              (2.1.31) 

Where i and j are the colours of the incoming and outgoing quark, 𝑝 the momentum 
of the quark. The renormalisation constant 𝑍𝑞 is given by [4 (p347)] (in the reference 
it is called 𝑍2): 

𝑍𝑞 = 1 −
𝑔0

2𝜇−𝜀

12𝜋2 (
2
𝜀

− 𝛾𝐸 + ln(4𝜋))                                   (2.1.32) 

The result for the quark-gluon vertex, in dimensional regularisation, is given by [4 
(p349)] 

Γ𝑖𝑗
𝜇𝑎(𝑝, 𝑝′) = 𝑔0 (𝛾𝜇𝑇𝑖𝑗

𝑎 + 𝑔0
2Λ𝑖𝑗

𝜇𝑎(𝑝, 𝑝′))                            (2.1.33) 

With 𝑗 and 𝑝 the colour and momentum of the incoming quark, 𝑖 and 𝑝′ the colour and 
momentum of the outgoing quark, and 𝑎 the colour of the gluon leg. Λ𝑖𝑗

𝜇𝑎 is given by [4 
(p350)] 

Λ𝑖𝑗
𝜇𝑎(𝑝, 𝑝′) = 𝛾𝜇𝑇𝑖𝑗

𝑎 13𝜇−𝜀

48𝜋2 (
2
𝜀

− 𝛾𝐸 + ln(4𝜋)) + ⋯              (2.1.34) 

The renormalisation constant 𝑍𝑔𝑞 is given by [4 (p350)] (in the reference it is called 
𝑍1): 

𝑍𝑔𝑞 = 1 −
13𝑔0

2𝜇−𝜀

48𝜋2 (
2
𝜀

− 𝛾𝐸 + ln(4𝜋))                         (2.1.35) 
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Note that, in the reference [4], in the loop corrections and renormalisation constants, 
the factors 𝑔0

2𝜇−𝜀 are replaced by the partially renormalised coupling constant 𝑔𝑟
2 . 

But since the difference between 𝑔𝑟 and 𝑔0𝜇−𝜀/2 is of order 𝑔𝑟
3, we ommited this 

difference as an approximation. 

From these renormalisation constants we can calculate the renormalised coupling 𝑔 
via Eq (2.1.26), which in dimensional regularisation becomes [4 (p351)]: 

𝑔 = 𝑔0𝜇−𝜀/2 𝑍𝑞√𝑍𝑔

𝑍𝑔𝑞
                                            (2.1.36) 

Making the substitution of Eq (2.1.30), Eq (2.1.32) and Eq (2.1.35) results in [4 (p351-
352)]: 

𝑔 = 𝑔0𝜇−𝜀/2 [1 +
𝑔²

32𝜋²
(11 −

2𝑛𝑓

3
) (

2
𝜀

− 𝛾 + ln(4𝜋)) + 𝒪(𝑔4)]          (2.1.37) 

Just like in the QED case, the coupling constant that is observed in a scattering 
process is not the bare coupling 𝑔0

2, but a renormalised coupling 𝑔. Also, the coupling 
constant 𝑔 will have a finite observable dependence on the transferred momentum 𝑞2 
in the scattering process. The 𝑞2 dependence is not evident from Eq (2.1.37), but is 
hidden as a 𝜇 dependence. The 𝑞2 dependence can be retrieved in a similar way as 
for QED, see Eq (2.1.24) and Eq (2.1.a). In general we can say that the renormalised 
coupling depends on a renormalisation scale 𝜇, which is on the same order as the 
momentum scale of the considered process. 

 

2.1.2 Coupling strength 𝜶𝒔, the 𝜷 function, and breaking of scale 
invariance 
 
If we take Eq (2.1.37) and go back to 4D spacetime by 𝜀 → 0, the following equation 
will hold [4] (p351-352): 

𝛽(𝑔) = 𝜇
𝜕𝑔
𝜕𝜇

=
−𝛽0𝑔3

16𝜋2                                                (2.1.38) 

With 𝛽0 = 11 − 2𝑛𝑓

3
 , and we neglected terms of order 𝑔5. Solving this equation will 

determine the 𝜇-dependence of the renormalised coupling. Notice that 𝛽0 will be 
positive if 𝑛𝑓 is less than 17. This means that g will decrease if 𝜇 increases. 

If we substitute the strong coupling strength Eq (2.1.29): 

𝛼𝑠(𝜇) =
𝑔2

4𝜋
                                                          (2.1.29) 

Then for 𝛽(𝑔) we get 
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𝛽(𝑔) = 𝜇√
𝜋

𝛼𝑠(𝜇) 
𝜕𝛼𝑠(𝜇)

𝜕𝜇
=

−𝛽0

2√𝜋
(𝛼𝑠(𝜇))

3/2
                              (2.1.39) 

This leads to 

𝑑𝛼𝑠(𝜇)
𝛼𝑠

2(𝜇) =
−𝛽0

2𝜋𝜇
𝑑𝜇                                                    (2.1.40) 

And integrating this will yield 

1
𝛼𝑠(𝜇) =

𝛽0

2𝜋
ln(𝜇/𝛬)                                                (2.1.41) 

With 𝛬 a scale parameter. Eq (2.1.41) results in an expression for the coupling 
strength in function of 𝜇 

𝛼𝑠(𝜇) =
2𝜋

𝛽0ln(𝜇/𝛬) =
4𝜋

𝛽0ln(𝜇2 𝛬2⁄ )                                 (2.1.42) 

Where the last step is done because that is the form that is usually used. 𝛬 is a scale 
parameter that characterises the scale 𝜇 ≈ 𝛬 at which 𝛼𝑠(𝜇) becomes large, for 
decreasing 𝜇, [4] (p352). 𝛬 is a physical scale which must be determined from 
experiment. 

There is also a different way we can get an expression for 𝛼𝑠(𝜇). From Eq (2.4.24) 
We can also get [4] (p351-352): 

𝜇
𝜕(𝛼𝑠(𝜇))

−1

𝜕𝜇
=

𝛽0

2𝜋
                                                 (2.1.43) 

This results in the following expression, [4] (p351-352) 

𝛼𝑠(𝜇) =
𝛼𝑠(𝜇0)

1 + (𝛽0/4𝜋)𝛼𝑠(𝜇0)ln(𝜇²/𝜇0
2)                              (2.1.44) 

𝜇0 is another scale parameter. But while 𝛬 is a physical scale at which the coupling 
becomes strong, 𝜇0 is an arbitrarily chosen reference scale. Notice how all 𝛼𝑠 that 
appear in the right hand side of Eq (2.1.44) have 𝜇0 as their argument. We could first 
measure 𝛼𝑠 at a reference scale 𝜇0, and then use Eq (2.1.44) to calculate the value 
of 𝛼𝑠 at different scale 𝜇. So while in Eq (2.1.42) 𝛬 was the experimentally measured 
parameter, in Eq (2.1.44) it is 𝛼𝑠(𝜇0) that is the experimentally measured parameter. 
Per convention the Z boson mass is usually chosen for 𝜇0, which is around 91 GeV. 
[4] (p351-352), [11] 

Notice that we can approximate Eq (2.1.44) as 

𝛼𝑠(𝜇) = 𝛼𝑠(𝜇0) + 𝒪(𝛼𝑠
2(𝜇0))                                       (2.1.45) 
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If we would want to know what the coupling strength would be at the a varying 
momentum scale 𝜇2 = 𝑞2, with 𝑞2 the invariant mass of the considered process, we 
can take make a substitution in Eq (2.1.44): 

𝛼𝑠(𝑞) =
𝛼𝑠(𝜇0)

1 + (𝛽0/4𝜋)𝛼𝑠(𝜇0)ln(𝑞²/𝜇0
2)                                  (2.1.46) 

 

2.1.3 Renormalisation schemes 
 
We originally started with a Lagrangian with scale invariant coupling. When we 
calculate loops, we will encounter UV divergences, and we perform regularisation 
and renormalisation to deal with this. Regularisation will introduce a dimensionfull 
mass scale like 𝜇 or 𝛬, either as a cut-off frequency in the integrals, or as a way to 
keep the correct mass dimension (in dimensional regularisation). When we 
renormalise, the renormalised parameters will be 𝜇 dependent. However, the 
dependence on 𝜇 will disappear from physical dimensionless observables, despite 
that scale invariance will still be broken because the coupling depends on the energy 
scale 𝜇. Our renormalised theory cannot give an absolute normalisation of the 
coupling strength and other Lagrangian parameters, but can predict the rate of 
change with respect to the energy scale 𝜇 the process occurs at. 

The exact expressions of the renormalisation constants and counter terms is not 
unique, but depends on a choice. This choice will affect how and where exactly the 
infinities go in the bare parameters and renormalisation constants. A specific choise 
is called a renormalisation scheme. For example the 2 𝜀⁄ − 𝛾𝐸 + ln(4𝜋) that appear in 
the renormalisation constants in section 2.1.1 is such a choice. 

In the expressions of running 𝛼𝑠 in section 2.1.2, we introduced new scales. Here is 
also a choice we can make: which reference scale do we use for the running coupling 
to describe its dependence on energy scale 𝜇? We also saw that there needs to be 
input from experiment. We either take the reference scale as a physical scale 𝛬, 
which must be determined from experiment; or we take the reference scale as an 
auxillary scale 𝜇0 and experimentally determine 𝛼𝑠 at a specific choice of 𝜇0. 

To sum up the different types of choices we make: 

x Regularisation: 
o The most common choices are momentum cut-off and dimensional 

regularisation. 
o Momentum cut-off in divergent integrals: introduces a physical cut-off 

scale to make integrals finite. We lose Poincaré invariance. 
o Dimensional regularisation: go to a different spacetime dimensionality 

to solve integrals and take the limit. Introduces a mass scale and 
typically 1 𝜀⁄  poles. We do keep Poincaré invariance. 
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x Renormalisation scheme: 
o The exact choice of renormalisation constants and bare parameters. 
o Regularisation is not the same as renormalisation, but regularisation 

can be seen as a necessary part of the renormalisation scheme. 
o Renormalisation scheme will introduce a renormalisation scale, which is 

an unphysical scale parameter (has no effect on physical dimensionless 
observables). 

o The measured values of renormalised parameters are independent of 
renormalisation scheme, but the way the renormalised parameters 
depend on the bare parameters (which are unobservable) will depend 
on renormalisation scheme. 

x Running coupling as a function of scale: 
o Introduces a reference scale. 
o Most common choices are to either take the reference scale as a 

physical scale determined from experiment, or take it as an arbitrary 
scale at which 𝛼𝑠 is determined from experiment. 

o Either way, in order to calculate 𝛼𝑠(𝜇) at some scale 𝜇 requires an 
experimentally determined  parameter in the equation for 𝛼𝑠(𝜇). 

o The measured values of observables are (theoretically), independent of 
the choice of reference scale. (However, the accuracy in calculations 
and measurements can differ, related to the accuracy of the 
measurement of the experimentally determined parameter that fixes the 
equation for 𝛼𝑠(𝜇)) 

 
An example of a renormalisation scheme is the MS scheme. In this scheme, the 
counter terms will only contain the divergent part coming from divergent loop 
calculations. A different but similar scheme is the MS̅̅ ̅̅  scheme, in which the counter 
terms not only contain the divergent part, but an universal constant is also added to 
it. In this thesis we will use the MS̅̅ ̅̅  renormalisation scheme and dimensional 
regularisation. The exact form of this divergent part and additional constant is, up to 
an overall factor, equal to 2 𝜀⁄ − 𝛾 + ln(4𝜋), which can be seen in the renormalisation 
constants Eq (2.1. 21), Eq (2.1.30), Eq (2.1.32), Eq (2.1.35). 

 

2.1.4 Renormalisation group 
 
The previous effects and  structure of the theory can be expressed by what we call 
the “renormalisation group” (RG). This is the group related to scale transformations 
for the renormalised parameters. The main idea is that renormalised parameters are 
dependent on renormalisation scale 𝜇, while physical dimensionless observables are 
independent of 𝜇. The renormalisation group will allow us to characterise the scale 
dependence of the renormalised parameters and, given a measurement at a 
reference scale, allow us to calculate them at another scale. We will now give a more 
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formal definition of the 𝛽 function by this renormalisation group. We will also redefine 
𝛽0 to get rid of the appearance of the 4𝜋 in the equations for 𝛼(𝜇) that we saw in 
section 2.1.2. 

We will take for 𝛼(𝜇) 

𝛼(𝜇) = 𝛼0 (1 + 𝛼0𝛽0ln (
𝜎²
𝜇²

) + 𝒪(𝛼²))                            (2.1.50) 

In the perturbative region, 𝛼′s evaluated at different scales differ by powers of 𝛼 itself. 
This means we can write 

𝛼0 = 𝛼(𝜇) (1 + 𝒪(𝛼(𝜇)))                                          (2.1.51) 

We will now compute 𝑑𝛼
𝑑(ln(𝜇²))

 

𝛼0 is independent of 𝜇 up to higher order in 𝛼 itself. This means that when we take 
the derivative we can treat 𝛼0  as if it would be independent of 𝜇. This leads to 

𝑑𝛼
𝑑(ln 𝜇²) = −𝛼0

2𝛽0 + 𝒪(𝛼2) = −𝛼²(𝜇)𝛽0 + 𝒪(𝛼2)                     (2.1.52) 

For the last equality we have used  

𝛼0
2 = 𝛼²(𝜇) (1 + 𝒪(𝛼(𝜇)))

2
= 𝛼²(𝜇) (1 + 𝒪(𝛼(𝜇)))                (2.1.53) 

Note that after taking the derivative with respect to ln(𝜇²), nor 𝜎 nor 𝛼0 appear in the 
equation anymore. 

We will generalise this to 

𝑑𝛼
𝑑(ln 𝜇²) = 𝛽(𝛼(𝜇))                                                 (2.1.54) 

And 𝛽 has an expansion in powers of 𝛼: 

𝛽(𝛼(𝜇)) = −𝛽0𝛼2(𝜇) − 𝛽1𝛼3(𝜇) − 𝛽2𝛼4(𝜇) +  …                     (2.1.55) 

By computing the 𝛽 function, we can predict the 𝜇 dependece of the coupling from 
theory. 

We could generalise this even further by 𝐺0(𝑝𝑖, 𝛼0) = 𝑍𝐺(𝑝𝑖, 𝛼, 𝜇), with 𝐺0 the bare 
Green function, 𝐺 the renormalised Green function, 𝑍 the renormalisation constant, 
and 𝑝𝑖 the physical momenta. In this case, the following differential equation will hold 

𝑑𝐺0

𝑑(ln 𝜇²) =
𝑑(𝑍𝐺)

𝑑(ln 𝜇²) = 0                                             (2.1.56) 
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By using the product rule, and taking into account that 𝐺(𝑝𝑖, 𝛼, 𝜇) dependence on 𝜇 is 
also via its dependence on 𝛼(𝜇), we can reach the following equation: 

𝑍
𝜕𝐺

𝜕(ln 𝜇²) + 𝑍
𝜕𝐺
𝜕𝛼

 
𝜕𝛼

𝜕(ln 𝜇²) +
𝜕𝑍

𝜕(ln 𝜇²) 𝐺 = 0                         (2.1.57) 

After dividing everything by 𝑍, we get 

𝜕𝐺
𝜕(ln 𝜇²) +

𝜕𝐺
𝜕𝛼

 
𝜕𝛼

𝜕(ln 𝜇²) +
𝜕(ln 𝑍)
𝜕(ln 𝜇²) 𝐺 = 0                          (2.1.58) 

This is what we call the Callan-Symanzik equation: 

(
𝜕

𝜕(ln 𝜇²) + 𝛽(𝛼)
𝜕

𝜕𝛼
+ 𝛾(𝛼)) 𝐺(𝑝𝑖, 𝛼, 𝜇) = 0                      (2.1.59) 

Where we defined the functions 𝛽 and 𝛾 as 

𝛽(𝛼) =
𝜕𝛼

𝜕(ln 𝜇²)                                                    (2.1.60) 

𝛾(𝛼) =
𝜕(ln 𝑍)
𝜕(ln 𝜇²)                                                    (2.1.61) 

 

2.1.5 Solutions of RG equation  
 
If we solve the RG equation by using only the leading order (LO) for the beta 
function, Eq (2.1.55), we have to solve 

𝑑𝛼
𝑑(ln(𝜇²))

= 𝛽(𝛼(𝜇)) ≈ −𝛽0𝛼2(𝜇)                                   (2.1.62) 

Solving this for 𝛼(𝜇) leads to 

𝛼(𝜇) =
𝛼(𝜇0)

1 + 𝛽0𝛼(𝜇0)ln(𝜇²/𝜇0
2)                                          (2.1.63) 

For the abelian case (QED) we will have: 

𝛽0 = −
1

3𝜋
                                                            (2.1.64) 

And the 1-loop QED running coupling is equal to 

𝛼(𝜇) =
𝛼(𝜇0)

1 − 𝛼(𝜇0)
3𝜋 ln(𝜇²/𝜇0

2)
                                             (2.1.65) 
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For the non-abelian case we will have: 

𝛽0 =
1

12𝜋
(11𝑁𝐶 − 4𝑛𝑓𝑇𝐹)                                          (2.1.66) 

With 𝑁𝐶 the number of colours (SU(𝑁𝐶)), 𝑛𝑓 the number of quark flavours, and 𝑇𝑓 the 
trace invariant. If we have 𝑁𝐶 = 3 and 𝑇𝐹 = 1/2, then 𝛽0 will be positive for 𝑛𝑓 ≤ 16, 
which is the case for QCD because as far as we know there are only 6 quark 
flavours. The running coupling is equal to 

𝛼𝑠(𝜇) =
𝛼𝑠(𝜇0)

1 + 𝛼𝑠(𝜇0)
12𝜋 (11𝑁𝐶 − 4𝑛𝑓𝑇𝐹)ln(𝜇²/𝜇0

2)
                       (2.1.67) 

The main difference between QED and QCD for the running coupling is the sign of 
the 𝜇-dependent term in the denominator. This difference will lead to two very 
different behaviours. 

Consider a general theory with a coupling of the form Eq (2.1.63). The behaviour can 
differ depending on the sign of 𝛽0 

A theory with 𝛽0 < 0 (like QED) will have its coupling become larger for larger 𝜇. In 
other words, the interaction grows stronger with increasing energy scale. 

 

 

Figure 2.1: Dependence of coupling 𝛼 on energy 𝜇 for a negative 𝛽0 (Like QED) in leading order. 
 

An increasing coupling with increasing energy means that the coupling (and thus the 
effective charge) will decrease with increasing distance. This effect is called 
screening of the effective charge. 
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A theory with 𝛽0 > 0 will have its coupling become smaller for larger 𝜇. In other 
words, the interaction becomes weaker with increasing energy scale. 

 

 

Figure 2.2: Dependence of coupling 𝛼 on energy 𝜇 for a positive 𝛽0 (Like QCD) in leading order. 
 

A decreasing coupling with increasing energy means that the coupling will increase 
with increasing distance. This effect is called anti-screening of the effective coupling 
(or effective charge). 

There is also a more qualitative way to explain screening and anti-screening via a 
charge and virtual pairs. For QED consider a charge in an otherwise vacuum. Due to 
virtual electron-positron pair creation, the vacuum will have a dielectric property that 
causes the effective charge to decrease at large distance. In other words, the 
electron-positron pairs will screen the charge. In QCD the same happens with virtual 
quark-antiquark pairs, they will screen a colour charge. But there are also virtual 
gluon pairs, which will contribute to an increasing effective charge at large distance. 
In other words, the gluon pairs will anti-screen the charge. Generally for a non-
abelian gauge theory, the overall effect will depend on the number of fundamental 
colours and the number of quark flavours. For QCD the anti-screening effect of the 
gluon pairs wins from the screening effect of the quark-antiquark pairs. 

 

2.1.6 Landau pole and QCD scale 
 
In case of QCD, 𝛽0 will be larger than 0. This means that QCD is an interaction that 
becomes weaker for higher energy scales. In fact, the coupling of QCD becomes so 
small at high enough energy scales, that quarks and gluons can be considered free 
particles in the limit of 𝜇 → ∞ . This phenomenon is “asymptotic freedom”. For very 
low 𝜇 on the other hand, the coupling will diverge. Since we have been doing 
perturbation theory, this just means that for low 𝜇 our QCD theory becomes non-
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perturbative. In other words, our perturbation theory for QCD does not apply for low 
energy scales. Our theory exhibits what is called a Landau pole. We have Eq 
(2.1.63): 

𝛼𝑠(𝑞) =
𝛼𝑠(𝜇0)

1 + 𝛽0𝛼𝑠(𝜇0)ln(𝑞2/𝜇0
2)                                     (2.1.68) 

We see that this singularity happens at a scale 𝑞 = 𝛬𝑄𝐶𝐷 when 

1 + 𝛽0𝛼𝑠(𝜇0)ln(𝛬𝑄𝐶𝐷
2 /𝜇0

2) = 0                                       (2.1.69) 

This means our Landau pole is at 

𝛬QCD
2 = 𝜇0

2𝑒
− 1

𝛽0𝛼𝑠(𝜇0)                                               (2.1.70) 

𝛬𝑄𝐶𝐷 is invariant under what we call a renormalisation group transformation (RG 
transformation). 

𝜇0 → 𝜇′ = 𝜇0𝑒𝑡/2                                                 (2.1.71) 

With 𝑡 real and arbitrary. 

Then 𝛼𝑠 will transform as 

𝛼𝑠(𝜇0) → 𝛼𝑠(𝜇′) =
𝛼𝑠(𝜇0)

1 + 𝛽0𝛼𝑠(𝜇0)ln(𝜇′2/𝜇0
2)                       (2.1.72) 

For 𝛬QCD this means that 

𝛬QCD
2 → 𝜇′2𝑒

− 1
𝛽0𝛼𝑠(𝜇′2) = 𝜇0

2𝑒𝑡𝑒
− 

1+𝛽0𝛼𝑠(𝜇0)ln(𝑒𝑡/2)
𝛽0𝛼𝑠(𝜇0) = 𝜇0

2𝑒
− 1

𝛽0𝛼𝑠(𝜇0)          (2.1.73) 

So 𝛬QCD stays the same under a RG transformation and is a physical energy scale 
independent from 𝜇0. It is an intrinsic parameter of QCD which encodes the physics 
of scale invariance breaking. We started with a Lagrangian that has a scale invariant 
coupling, but by analysing higher order corrections we encountered divergences. 
After renormalisation we’ve gotten rid of the divergences, but we get a dimensionfull 
parameter 𝛬QCD and a scale dependent coupling, and thus scale invariance is 
broken. 

We can relate 𝛼𝑠(𝑞) to 𝛬QCD by substituting the 𝜇0
2 in the logarithm: 

𝛼𝑠(𝑞) =
1

𝛽0ln(𝑞2/𝛬QCD
2 )

                                              (2.1.74) 

Since we can relate 𝛼𝑠(𝜇0) to 𝛬QCD, we can find 𝛬QCD from experiment by measuring 
the coupling. This 𝛬QCD scale is around 200 MeV/c², Ref [5] (p552), [9] (p34). QED 
also has a Landau pole, but at a very high energy, even far beyond the Plank scale. 
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For QCD we can apply perturbation theory if the energy scale is wel above 𝛬QCD, 
while for QED we can apply perturbation theory if the energy scale is wel below 𝛬QED. 

By using lattice QCD, which is a technique that describes QCD on a lattice, we can 
make calculations in the energy range where perturbation theory doesn’t apply 
anymore. This seems to point to the Landau pole not being a true Landau pole at all, 
or in other words that the coupling doesn’t become infinite. In QED however, the 
Landau pole seems to be a true Landau pole. But since the QED Landau pole is 
much higher than even the Planck scale, we expect quantum gravity to be relevant at 
that energy scale. So it is likely that we shouldn’t use QED at that energy scale, and 
no coupling becomes infinite. 

 

2.1.7 Confinement 
 
If we look at the coupling strength and the QCD scale in the position picture, we get 
that the coupling strength increases for increasing distance. The QCD scale can be 
expressed as an inverse distance, 𝛬QCD ≈ 200MeV ≈ 1 fm−1. This means that 1/𝛬QCD 
is a distance at which the coupling becomes very large and perturbation theory stops 
being valid, while we can use perturbation theory below this distance. Consider a 
quark and an antiquark with opposite colour charge. With lattice QCD it is possible to 
calculate the static quark-antiquark potential, [9] (p49). For small distances the 
potential is approximately of the form 

𝑉(𝑟) = 𝑉0 −
𝛼𝑠(𝑎𝑟)

𝑟
                                                   (2.1.75) 

With a the lattice spacing and r the distance in lattice units. For large distances the 
potential is approximately of the form 

𝑉(𝑟) = 𝑉0 + 𝐾𝑟                                                        (2.1.76) 

With 𝐾 a constant known as the string tension. Since 𝐾 is positive, we have at large 
distances a linearly increasing potential. This means that for large distances the force 
between a quark and antiquark will be approximately constant. 

If we try to separate the pair, a gluon fluxtube will form and stretch between them. It 
is believed that at some point, when the separation is roughly 1 𝛬QCD⁄ ≈ 1 fm, it will 
be more favourable to break up the flux tube and create a new quark-antiquark pair, 
instead of continuing to extend the gluon flux tube. This due to the linear potential at 
large distance between the pair. After the new quark-antiquark pair is created, the 
new quark will be close to the old antiquark, and the new antiquark will be close to 
the old quark, each with opposite colour charge. The same would happen if we would 
start with 3 quarks with each a different colour, and then try to separate one of the 
quarks from the rest. A similar thing would happen if we would try to separate a gluon 
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from other quarks and gluons, but by creating a new gluon pair instead of a quark-
antiquark pair. 

The result of this would be that quarks and gluons only appear in colour neutral 
bound states, which we call hadrons. This effect is called colour confinement. The 
most simple hadrons are mesons (valence quark-antiquark pair), baryons (3 valence 
quarks), antibaryons (3 valence antiquarks). More exotic hadrons that contain more 
than 3 valence quarks and antiquarks, and glueballs which contain only gluons but 
no valence quarks, could also be possible. Experimentally we indeed only directly 
observe hadrons, not the quarks and gluons themselves, although we do “observe” 
quarks and gluons in indirect ways. It are the hadrons that are detected by our 
detectors, not single quarks or gluons. 

Using this explanation, the size of a hadron would be roughly 1 fm. From experiment 
we find that this is indeed about the size of the light hadrons. By using lattice QCD to 
study the structure of hadrons, the gluon flux tubes inside the hadrons can be found 
and studied, and the mass and several other properties of the hadrons can be 
predicted. Important to note is that while colour confinement is observed in nature, 
and the story above might sound satisfying, there hasn’t been an analytic proof yet 
from the theory. 

While quarks and gluons are confined into hadrons, two hadrons can still interact with 
eachother via the strong interaction, even at energies (distances) beyond the QCD 
scale. The lower energy strong interaction between hadrons is responsible for 
binding protons and neutrons together into nuclei. The strong interaction between 
hadrons in this regime cannot be described by QCD currently. This is merely due to 
the inability to apply QCD outside the perturbative regime. However, there are 
models outside of QCD that try to describe strong interactions between hadrons in 
nuclear physics. 

 

2.2 Parton model 
 
In this section we will discuss the parton model and hard scattering processes. Hard 
scattering processes are scattering processes via the Strong Interactions that involve 
momentum transfers that are large compared to the QCD scale 𝛬QCD ≈ 200 MeV. By 
this convention, processes that only involve momentum transfers that are small 
compared to 𝛬QCD can be called soft processes. The parton model was the model 
proposed by Feynman to explain high energy scattering experiments involving 
hadrons. The model came at a time when the exact nature of the Strong Interaction 
was not yet fully known or verified, nor were any asymptotically free quantum field 
theories in 4D known yet at that time. Even though the original model is incomplete, it 
is still very usefull for high energy scattering. When the quark model, asymptotic 
freedom and Bjorken scaling were verified/observed, partons could be understood as 
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quarks and gluons, and QCD became the theory of the Strong Interaction. Now the 
parton model can be understood and modified from QCD. In this section we will 
already assume and apply QCD for the parton model. 

In this section we will also give some important definitions and theorems that are 
often used in high energy scattering, and that we will use further on, like Mandelstam 
variables, cross section and the optical theorem. 

 

2.2.1 Overview parton model 
 
From asymptotic freedom of QCD we know that for scattering processes with 
momentum transfer 𝑄 ≫ 𝛬QCD , our coupling strength will be 𝛼𝑠(𝑄) ≪ 1, and quarks 
and gluons will be asymptotically free particles, or at most “weakly” interacting 
particles. (To avoid confusion: With “weakly” interacting we mean here that the 
Strong Interaction its coupling strength is very small in this region, and thus the 
colour carrying particles will almost not feel forces that are governed by Strong 
Interactions. We don’t mean “the” Weak Interactions, which is an entirely different 
force.) This means that in hard scattering processes we can think of hadrons as 
being made out of “weakly” interacting partons. (“Parton” is the collective name of 
particles that are constituents of hadrons, or in other words, quarks and gluons). In 
this region, perturbation methods apply to QCD. While the partons inside a hadron 
can be considered “weakly” interacting in this regime, they will still be confined to 
colour neutral hadrons. This hints that we would have to treat dynamics at short 
distances differently from those at long distances. There could also be other 
interactions involved in hard scattering processes, like QED or Weak Interactions. 

Another important thing to note is that theoretical predictions are in terms of coloured 
fields, while experimental measurements are in terms of colourless hadrons. We 
need principles or tricks in order to make the connection between theory and 
experiment. 

Because of these reasons above, we will separate dynamics at short distances and 
dynamics at long distances. The exact way this will be done, depends on the 
scattering process under consideration. Some examples are “infrared safety” and 
“factorisation”. In this thesis we will discuss factorisation, which is important for the 
splitting functions. 

 

2.2.2 Mandelstam variables 
 
When we are dealing with scattering processes, it is usefull to use Mandelstam 
variables. Consider two ingoing and two outgoing external particles: 
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Figure 2.3: Two incoming particles with momenta 𝑝1 and 𝑝2 interact and result in two outgoing 
particles with momenta 𝑘1 and 𝑘2. 

 

We define the Mandelstam variables as 

�̂� = (𝑝1 + 𝑝2)2 = (𝑘1 + 𝑘2)2                                                           

�̂� = (𝑘1 − 𝑝1)2 = (𝑘2 − 𝑝2)2                                             (2.2.1) 

�̂� = (𝑘2 − 𝑝1)2 = (𝑘1 − 𝑝2)2                                                           

By this definition, �̂� is the square of the center-of-mass (com) energy, and is also 
known as the invariant mass. �̂� is the square of the four-momentum transfer. If we 
sum the three variables we get the sum of the square masses of the particles: 

�̂� + �̂� + �̂� = ∑ 𝑚𝑖
2

4

𝑖=1

                                                    (2.2.2) 

In case of 4 massless particles, we would get: 

�̂� = 2𝑝1 ∙ 𝑝2 = 2𝑘1 ∙ 𝑘2                                                                     

�̂� = −2𝑝1 ∙ 𝑘1 = −2𝑝2 ∙ 𝑘2                                                (2.2.3) 

�̂� = −2𝑝1 ∙ 𝑘2 = −2𝑝2 ∙ 𝑘1                                                              

�̂� + �̂� + �̂� = 0                                                             (2.2.4) 

This is also approximately true in the ultrarelativistic limit (or massless limit) for 
massive particles, since that means setting 𝑝1

2 = 𝑚1
2 ≈ 0, 𝑝2

2 = 𝑚2
2 ≈ 0, etc. 

If the scattering process only contains one internal line, then there are only 3 possible 
diagrams for Fig. 2.3. We name these after the 3 Mandelstam variables: 
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Figure 2.4: The 3 basic “channels” for 2-body to 2-body scattering. 
 

Mandelstam variables are usefull for expressing amplitudes and cross sections for 2-
body to 2-body scattering. An example is 𝑒+𝑒− → 𝜇+𝜇−. At 2nd order in QED we only 
have the s-channel: 

 

Figure 2.5: 𝑒+𝑒− → 𝜇+𝜇− in QED. 
 

If we work in the massless limit, the spin-summed square Feynman amplitude will be 
[5] (p156-157) 

1
4

∑ |ℳ|2

𝑠𝑝𝑖𝑛𝑠

=
2𝑒4

�̂�2 (�̂�2 + �̂�2)                                             (2.2.5) 

Another example is 𝑒−𝜇− → 𝑒−𝜇−, which is just Fig. 2.5 turned on its side and the 
Mandelstam variables renamed. So at 2nd order in QED we only have the t-channel: 

 

Figure 2.6: 𝑒−𝜇− → 𝑒−𝜇− in QED. 
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If we work in the massless limit, the spin-summed square Feynman amplitude will be 
[5] (p156-157) 

1
4

∑ |ℳ|2

𝑠𝑝𝑖𝑛𝑠

=
2𝑒4

�̂�2 (�̂�2 + �̂�2)                                             (2.2.6) 

 

2.2.3 Cross section 
 
In particle colliders we typically collide 2 beams (with well defined momenta), or a 
beam with a target, and observe what comes out. We will define the cross section as 
a quantity that characterises the likelihood that a final state particle is different from 
the initial state particle it originated from, or in other words the likelihood that 
scattering took place. We will also define it in such a way that it allows us to compare 
different experiments with different beam sizes and intensities. We will assume that 
the particle density is uniform inside the beam. This will be a good assumptions if we 
assume that the range of the interaction between particles and the width of the 
particle wavepackets are both small compared to the beam width [5] (p100). 
Consider a target at rest of particle type 1, length 𝑙1 and particle density 𝜌1. At this 
target we aim a beam of particle type 2, length 𝑙2 and particle density 𝜌2. 

We expect the number of scattering events 𝑛scatter to be proportional to the lengths, 
densities, and the cross-sectional area 𝐴 between the two bundles of particles. We 
define the cross section 𝜎 as the proportionality factor 

𝜎 =
𝑛scatter

𝑙1𝜌1𝑙2𝜌2𝐴
                                                            (2.2.7) 

We could have also taken the bundle of particle type 2 at rest, or worked in a frame 
where both bundles are moving, it wouldn’t change this definition of cross section. If 
𝑁1 and 𝑁2 are the total numbers of particles of particle type 1 and 2, then we can also 
express the cross section as 

𝜎 =
𝑛scatter𝐴

𝑁1𝑁2
                                                             (2.2.8) 

For a real particle collider, the densities aren’t uniform in the beams and are typically 
higher near the center. In that case we would have to integrate the density over the 
the beam area (given that the density is uniform along the length of the beam). 

𝑛scatter = 𝜎𝑙1𝑙2 ∫ 𝑑2𝑥𝜌1(𝑥)𝜌2(𝑥)                                        (2.2.9) 

In the expressions above we didn’t take the momenta of the outgoing particles into 
account. If we do take this into account then we define the differential cross section 
𝑑𝜎 (𝑑3𝑝1 … 𝑑3𝑝𝑛)⁄ . In case we are left with 2 final state particles, we can due to 
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momentum conversation just use 2 angles, and the differential cross section will be 
𝑑𝜎 𝑑𝛺⁄  with 𝑑𝛺 the solid angle. 

The cross section is an important quantity that relates theory to experiment. It can be 
measured via measuring the number of scattering events, and can be calculated from 
theory via the invariant matrix ℳ, [5] (p106-107): 

𝑑𝜎 =
1

4𝐸1𝐸2|𝑣1 − 𝑣2| (∏
𝑑3𝑝𝑓

(2𝜋)32𝐸𝑓𝑓

) (2𝜋)4𝛿(4)(𝑘1 + 𝑘2 − ∑𝑝𝑓)|ℳ(𝑝1𝑝2 → {𝑝𝑓})|
2
 

(2.2.10) 

Where |𝑣1 − 𝑣2| is the relative velocity between the bundles of particles, and f runs 
over the final state particles. |ℳ|2 contains all the dynamics, while the other factors 
contain the kinematics. 

In case we only have 2 final state particles, we can express the differential cross 
section in the center of mass frame (COM) as [5] (p106-107): 

(
𝑑𝜎
𝑑𝛺

)
COM

=
1

4𝐸1𝐸2|𝑣1 − 𝑣2| 
|𝐤1|

(2𝜋)24√�̂�
|ℳ(𝑝1𝑝2 → 𝑘1𝑘2)|2                   (2.2.11) 

In the case were all four particles have the same mass, this becomes 

(
𝑑𝜎
𝑑𝛺

)
COM

=
|ℳ(𝑝1𝑝2 → 𝑘1𝑘2)|2

64𝜋2�̂�
                                             (2.2.12) 

 

2.2.4 Optical theorem 
 
Generally when 2 particles scatter, there are many possible finite states, including 
final states with more than 2 outgoing particles. 

 

Figure 2.7: two particles with momenta 𝑘1 and 𝑘2 scatter to a final state 𝑓. 
 

Recall that the probability amplitude is given by the S-matrix 𝑆𝑓𝑖 = ⟨𝑓|𝑆|𝑖⟩, and that 
we have conservation of probability: 
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∑|𝑆𝑓𝑖|
2

𝑓

= 1                                                        (2.2.13) 

Which means the S-matrix is a unitary matrix: 

𝑆†𝑆 = 𝟏                                                           (2.2.14) 

If we substitute the T-matrix, 𝑆 = 𝟏 + 𝑖𝑇, then we get 

−𝑖(𝑇 − 𝑇†) = 𝑇†𝑇                                                   (2.2.15) 

If we express this by using indices for states, like 𝑇𝑓𝑖 , we get 

−𝑖(𝑇𝑏𝑎 − 𝑇𝑎𝑏
∗ ) = ∑ 𝑇𝑏𝑓𝑇𝑎𝑓

∗

𝑓

                                         (2.2.16) 

We will now take the forward amplitude, which means setting the final state equal to 
the initial state, and thus 𝑏 = 𝑎 

−𝑖(𝑇𝑎𝑎 − 𝑇𝑎𝑎
∗ ) = ∑ 𝑇𝑎𝑓𝑇𝑎𝑓

∗

𝑓

= ∑|𝑇𝑎𝑓|
2

𝑓

                             (2.2.17) 

Note that we can write the left-hand side as an imaginary part: 

Im(𝑇𝑎𝑎) = −
𝑖
2

(𝑇𝑎𝑎 − 𝑇𝑎𝑎
∗ )                                        (2.2.18) 

And so we finally have 

Im(𝑇𝑎𝑎) =
1
2

∑|𝑇𝑎𝑓|
2

𝑓

                                          (2.2.19) 

By using Eq (1.3.34) for ⟨𝑝1𝑝2|𝑖𝑇|𝑘1𝑘2⟩ we can also get an equation for the Feynman 
amplitude ℳ, [5] (p231) 

−𝑖(ℳ(𝑎 → 𝑏) − ℳ∗(𝑏 → 𝑎)) = ∑ ∫ 𝑑∏𝑓 ℳ∗(𝑏 → 𝑓)ℳ(𝑎 → 𝑓)
𝑓

           (2.2.20) 

Where ∑ ∫ 𝑑∏𝑓𝑓  is a sum over the sets of final state particles and their momenta: 

∑ ∫ 𝑑∏𝑓 𝐴
𝑓

= ∑ (∏ ∫
𝑑3𝑞𝑖

(2𝜋)3  
𝐴

2𝐸𝑖

𝑛

𝑖=1

)
𝑛

                               (2.2.21) 

By applying forward scattering 𝑏 = 𝑎, we get 

2Im ℳ(𝑎 → 𝑎) = ∑ ∫ 𝑑∏𝑓ℳ∗(𝑎 → 𝑓)ℳ(𝑎 → 𝑓)
𝑓

= ∑ ∫ 𝑑∏𝑓|ℳ(𝑎 → 𝑓)|2

𝑓

     (2.2.22) 
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By using the definition of cross section, we get the following equation [5] (p231): 

𝜎𝑡𝑜𝑡(𝑎 → anything) =
1

2𝐸COM|𝐩|COM
Im ℳ(𝑎 → 𝑎)                     (2.2.23) 

Where 𝐸COM is the total energy in the center-of-mass frame, and 𝐩COM the 
momentum of either particle in the center-of-mass frame. 

 

Figure 2.8: The optical theorem represented by Feynman diagrams. Figure from [12] 
 

This is the essence of the Optical Theorem, which states that we can relate the 
imaginary part of a forward scattering amplitude to a sum over the contributions of all 
possible intermediate particles. This can be generalised to one-particle states or 
higher multiple-particle states as wel. 

This also means that if we have a Feynman diagram that has mirror symmetry, with 
the mirror axis cutting through internal lines, we could also apply the optical theorem. 

By applying perturbation theory on both sides of the equation, we can relate 
diagrams with the Optical Theorem that are of the same order in the coupling 
strengths. Even more, with the Optical Theorem we can relate a diagram that has 
mirror symmetry, with the mirror axis cutting through internal lines, to half the diagram 
(cut along the mirror axis) [5] (p232-236). As an example we give: 

 

Figure 2.9: Example of applying optical theorem on a single diagram, by cutting along the mirror axis. 
 

This results in the Cutkosky cutting rules. These rules and their derivation can be 
found in the references. [5] (p232-236), [13] 

 

2.2.5 Deep inelastic scattering and structure functions 
 
Deep inelastic scattering (DIS) is scattering between a high energy lepton and a 
hadron target, in which the hadron absorbs some of the kinetic energy of the lepton, 
and possibly even breaks up into multiple hadrons. In order to avoid taking Weak 
Interactions into account, we will only consider charged leptons. We define the 
momenta as follows: 



98 
 

 

Figure 2.10: Deep inelastic lepton-hadron scattering. After the collision the hadron has typically 
changed into another hadron or a collection of multiple hadrons. 

 

The hadron has momentum 𝑝𝜇, the lepton has momentum 𝑘𝜇 and is left with 
momentum 𝑘′𝜇 after scattering. The momentum transfer 𝑞𝜇 is carried by a virtual 
photon. We will define a space-like vector 𝑄𝜇 

𝑄2 = −𝑞2                                                            (2.2.24) 

With √𝑄2 ≫ 𝛬QCD ≈ 1 fm−1. In Mandelstam variables, 𝑄2 equals �̂�. The mass 𝑀 of 
the hadron is given by 

𝑀2 = 𝑝2                                                             (2.2.25) 

We will also define 

𝑥 =
𝑄2

2𝑝 ∙ 𝑞
=

𝑄2

2𝑀(𝐸 − 𝐸′)
                                               (2.2.26) 

𝑦 =
𝑝 ∙ 𝑞
𝑝 ∙ 𝑘

= 1 − 𝐸′ 𝐸⁄                                                    (2.2.27) 

Where E and E’ are the energies of the lepton in the restframe of the hadron. x is 
called the Bjorken scaling variable. 𝑦 is the relative loss in energy for the lepton. The 
meaning of 𝑥, which is the ratio between the transferred momentum squared and 
twice the scalar product of hadron momentum and transferred momentum, becomes 
more intuitive if we go to high momenta. At high momenta, 𝑥 will approximately be 
the fraction of the hadron’s momentum that the struck parton carries. When 𝑥 = 1 we 
have no longer inelastic scattering, but elastic scattering instead. If we only consider 
the situation with 𝑄2 ≪ 𝑀𝑍

2 then the exchange particle will be a photon (and not a Z 
boson), and the differential scattering cross section will be [9] (p87-88): 

𝑑2𝜎𝑙−ℎ

𝑑𝑥𝑑𝑦
=

8𝜋𝛼2𝑀𝐸
𝑄4 ((1 + (1 − 𝑦)2)𝑥𝐹1 + (1 − 𝑦)(𝐹2 − 2𝑥𝐹1) − (𝑀 2𝐸⁄ )𝑥𝑦𝐹2)     (2.2.28) 

With 𝐹𝑖 = 𝐹𝑖(𝑥, 𝑄2) the structure functions for lepton-hadron scattering. The structure 
functions parametrise the hadron target as “seen” by the virtual photon. We now take 
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the Bjorken limit, which is defined as the limit for 𝑄2 → ∞, 𝑝 ∙ 𝑞 → ∞ and with 𝑥 fixed. 
In this limit we observe that the structure functions only depend on the dimensionless 
variable 𝑥. 

𝐹𝑖(𝑥, 𝑄2) → 𝐹𝑖(𝑥)                                                     (2.2.29) 

This approximate scaling law is called Bjorken scaling. 

 

Figure 2.11: Structure function 𝐹2 from the experiment collaborations SLAC-MIT, BCDMS, H1 and 
ZEUS. Note how in most of the range of 𝑥, there is little variation in 𝐹2 for a very large range of 𝑄2. 

[9] (p87-88) 
 

Bjorken scaling means that when a hadron is struck via a virtual exchange photon, 
and the transferred momentum is very large, that the hadron’s structure looks the 
same no matter how hard it is struck. It also implies that the exchange photon 
interacts with pointlike constituents, [9] (p87-88), [5] (p478-479). Because if this is not 
the case, then the structure functions would depend on 𝑄 𝑄0⁄ , with 𝑄0 some scale 
related to the size of the constituents [9] (p87-88). Bjorken scaling is a remarkable 
feature in that can be seen in most of the 𝑥 range and for a very large range of 𝑄2, 
but a small scaling violation can be seen. The naïve parton model predicts exact 
Bjorken scaling, but QCD gives rise to a scaling violation by logarithms of 𝑄2. This 
scaling violation can be calculated from perturbative QCD. 
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2.3 Factorisation 
 
In this section we will discuss the factorisation method. Factorising a hard scattering 
process means we separate the long-time effects (which are non-perturbative for 
QCD) from the short-time effects (which are perturbative for QCD). If we have a 
process with hard momentum scales of the order of Q (The “hand scale”) and soft 
momentum scales of the order of the hadron mass M (of the order of 𝛬QCD), then we 
can try to express the cross section in a factorised form 

𝜎(𝑄, 𝑀) = 𝐶(𝑄, partonmomenta > 𝜇) ⊗ 𝑓(partonmomenta < 𝜇, 𝑀)          (2.3.1) 

Where C is a factor that only depends on hard momenta, and f is a factor that only 
depends on soft momenta, and µ is an auxiliary mass scale we have to introduce to 
define the separation of hard and soft. Here, 𝐶 ⊗ 𝑓 means a convolution. 

If such a formula is valid, then this will be the benefits: 

x Q dependence will be computable in perturbation theory. 
x Athough f is not computable, its dependence on µ will be computable 

(because it has to cancel against C). 
x From the µ dependence we can learn about the Q dependence. 

(Renormalisation Group) 

In this section we will use deep inelastic scattering (DIS) and Drell-Yan as examples 
for factorisation. 

 

2.3.1 Infinite momentum frame 
 
For hard scattering processes, the relative velocities between incoming initial 
particles is extremely high. If at least one of the initial particles is a hadron, we could 
consider the scattering process in an “infinite momentum frame”. This is a reference 
frame in which an incoming hadron has a momentum p that goes in the limit to 
infinity. We can justify this if p is much larger than the momentum transfer and hadron 
mass (𝑝 ≫ 𝑄, 𝑀). This means that the other particle, lets say an electron for example 
(could be a lepton, quark, etc), sees a time-dilated and Lorentz-contracted hadron. 
Lorentz contraction means that the hadron will look like a thin layer of partons. This 
means the time it takes for the electron to traverse through the hadron, 𝛥𝑡scatter, will 
be very small. Due to time dilation, the hadrons’ internal interactions will be time-
dilated, and thus the typical timescale for interactions between the hadron’s partons 
𝜏parton will be large. This means that 

𝛥𝑡scatter ≪ 𝜏parton                                                      (2.3.2) 
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In other words, the electron sees a hadronic state with a definite number of partons, 
each of which has a definite momentum characterised by a fraction ξ of p. 

 

Figure 2.12: Hadron-electron scattering in the infinite momentum frame. The hadron is Lorentz 
contracted to the point that the electron sees a thin “layer” of distributed partons. The hadron’s internal 
interactions between partons are time dilated to the point that they take much longer than the time the 

electron needs to traverse the hadron. 
 

If the virtual exchange particle travels only a small distance (𝛥𝑙 ≪ 1 fm), and the 
density of the partons is not very high, then the exchange particle will interact with 
only 1 parton. This would mean the interaction between the exchange particle and a 
parton will not interfere with interactions among partons that occur at time-dilated 
scales. However it is important to realise that while this means that short-time 
dynamics and long-time dynamics do not interfer, the overall scattering process will 
still be sensitive to long-time interactions. This because the partons have existed in 
the hadron since a long time before scattering takes place, and thus the parton 
wavefunctions has had a long time to develop. 

 

2.3.2 Factorisation in deep inelastic scattering 
 
Based on section 2.2.5 we will now factorise deep inelastic lepton-hadron scattering. 
The typical example for DIS is electron-proton scattering. Most of the equations in 
this section will apply to other leptons and hadrons as wel. We will use the same 
naming convention as in Fig. 2.10. We will use the “infinite momentum frame”, and 
we will apply the reasoning of the previous section 2.3.1 to factorise DIS. Note that 
for 𝑄 ≫ 𝛬QCD the virtual photon will be highly off mass shell, and thus it will only travel 
a small distance 𝛥𝑙𝛾 

𝛥𝑙𝛾~
1

|𝑄| ≪ 1 fm                                                        (2.3.3) 

So as we said in previous section, if the density of the partons is not very high, then 
the photon will interact with only 1 parton. This parton will be a quark since photons 
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don’t directly interact with gluons. Since this means that photon-quark interactions 
don’t interfere with parton-parton interactions inside the hadron that occur at time-
dilated scales, we can now fully factorise DIS as follows: 

 

Figure 2.13: Factorised deep inelastic lepton-hadron scattering. 
 

Recall from section 2.2.5 that 

𝑄2 = −𝑞2 

𝑀2 = 𝑝2 

𝑥 =
𝑄2

2𝑝 ∙ 𝑞
=

𝑄2

2𝑀(𝐸 − 𝐸′)
                                                (2.3.4) 

𝑦 =
𝑝 ∙ 𝑞
𝑝 ∙ 𝑘

= 1 − 𝐸′ 𝐸⁄                                                                        

We will work in the lepton-hadron center-of-mass frame. We will consider the 
situation where the momentum of the hadron is very high, and we will consider the 
hadron to be a collection of loosely bound partons without mass. If this is the case 
then the hadron’s partons will move approximately collinear with the hadron. Each of 
the hadron’s partons will have a momentum that is approximately just a fraction of the 
hadron’s momentum. So we can consider the parton that interacts with the virtual 
exchange photon to have momentum 𝜉𝑝, with 0 < 𝜉 < 1, Ref [5] (p477). Note that we 
can use the Mandelstam variables for the massless limit in this section. Also 
important to note is that again we will only consider the situation with 𝑄2 ≪ 𝑀𝑍

2, to 
avoid Weak Interactions. When 𝑄2 becomes of the order 𝑀𝑍

2 or above, we would 
have to take extra contribution into account from the weak bosons. In that case we 
will also have neutrino-hadron DIS. The factorisation will be the same, and the 
structure functions will be different but still similar to the 𝑄2 ≪ 𝑀𝑍

2 case.  
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When we separate the short-time and long-time dynamics, we could calculate the 
process by combining probabilities rather than amplitudes. For the cross section for 
lepton-hadron scattering we get [10] 

𝜎𝑙−ℎ(𝑥, 𝑄) = ∑ ∫ 𝑑𝜉 𝜎𝑙−𝑖 (
𝑥
𝜉

, 𝑄, 𝜇) 𝑓𝑖/ℎ(𝜉, 𝜇) (1 + 𝒪(𝛬QCD
2 𝑄2⁄ ))

1

𝑥𝑖

           (2.3.5) 

where 𝜎𝑙−𝑖 is the (hard) cross section for scattering of the lepton and quark i, which 
carries momentum 𝜉𝑝. The function 𝑓𝑖/ℎ is the (soft) distribution function of quark i in 
the hadron. By separating hard and soft contributions, we introduced an auxiliary 
mass scale µ as a momentum cut-off, in both 𝜎𝑙−𝑖 and 𝑓𝑖/ℎ. If we ignore the µ 
dependence, we will get in lowest order of perturbation a cross section that exhibits 
Bjorken scaling in 1 𝑄2⁄ , and we get the Bjorken-Feynman parton model (pre-QCD). 
[10] The QCD features of the equation lie within the µ dependence. Up to any 
perturbative order, small logarithmic violations of scaling will appear via the µ 
dependence. [10] Important to note is that the exact form of 𝜎𝑙−𝑖 and 𝑓𝑖/ℎ in Eq (2.3.5) 
will depend on the factorisation scheme that is being used. 

We can express the DIS cross section in terms of structure functions by applying the 
optical theorem as follow: 

 

Figure 2.14: Applying optical theorem on DIS, and defining the leptonic and hadronic tensors. 
 

Due to factorisation, and based on Lorentz and gauge invariance, we can write the 
cross section as [9] (p94) 

𝑑𝜎𝑙−ℎ

𝑑𝑥𝑑𝑦
∝ 𝐿𝜇𝜈𝑊𝜇𝜈                                                        (2.3.6) 

With 𝐿𝜇𝜈 the leptonic tensor and 𝑊𝜇𝜈 the hadronic tensor. 𝐿𝜇𝜈 is calculable in QED via 
the following diagram 
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Figure 2.15: Feynman diagram for the leptonic tensor 𝐿𝜇𝜈 . Note that there is no integral over the loop, 
since all momenta are fixed. 

 

By applying Feynman rules we get the following expression for the leptonic tensor, [9] 
(p94-95) 

𝐿𝜇𝜈 = 𝑒2TR(k/ ′𝛾𝜇k/ 𝛾𝜈) = 4𝑒2(𝑘𝜇𝑘′𝜈 + 𝑘𝜈𝑘′𝜇 − 𝑔𝜇𝜈𝑘 ∙ 𝑘′)               (2.3.7) 

𝑊𝜇𝜈 can be expressed via the following diagram 

 

Figure 2.16: Feynman diagram for the hadronic tensor 𝑊𝜇𝜈. 
 

From this we get for 𝑊𝜇𝜈, [5] (p623-625) 

𝑊𝜇𝜈 = 𝑖 ∫ 𝑑4𝑥 𝑒𝑖𝑞∙𝑥⟨𝑝|𝑇{𝐽𝜇(𝑥)𝐽𝜈(0)}|𝑝⟩                                 (2.3.8) 

With 𝐽𝜇 the quark electromagnetic current. Combining the leptonic and hadronic 
tensors, and applying the optical theorem gives us this expression for the differential 
cross section [5] (p623-625): 

𝑑𝜎𝑙−ℎ

𝑑𝑥𝑑𝑦
=

𝑒2𝑦
2(4𝜋)2𝑄4 𝐿𝜇𝜈Im(𝑊𝜇𝜈)                                         (2.3.9) 

The Ward-Takahashi identity requires that 

𝑞𝜇𝑊𝜇𝜈 = 𝑞𝜈𝑊𝜇𝜈 = 0                                               (2.3.10) 

There are only 2 possible tensors made from p and q that satisfy this. We can write 
𝑊𝜇𝜈 as a linear combination of the two, [5] (p623-625): 
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𝑊𝜇𝜈 = (−𝑔𝜇𝜈 +
𝑞𝜇𝑞𝜈

𝑞2 ) 𝑊1 + (𝑝𝜇 −
𝑝 ∙ 𝑞
𝑞2 𝑞𝜇) (𝑝𝜈 −

𝑝 ∙ 𝑞
𝑞2 𝑞𝜈) 𝑊2          (2.3.11) 

The scalar functions 𝑊1 = 𝑊1(𝑥, 𝑄2) and 𝑊2 = 𝑊2(𝑥, 𝑄2) are related to the structure 
functions 𝐹1 = 𝐹1(𝑥, 𝑄2) and 𝐹2 = 𝐹2(𝑥, 𝑄2), Ref [9] (p94-95): 

𝐹1(𝑥, 𝑄2) = 𝑊1(𝑥, 𝑄2)          

𝐹2(𝑥, 𝑄2) = 𝑝 ∙ 𝑞 𝑊2(𝑥, 𝑄2)                                            (2.3.12) 

We can substitute this in the equation for 𝑊𝜇𝜈: 

𝑊𝜇𝜈 = (−𝑔𝜇𝜈 +
𝑞𝜇𝑞𝜈

𝑞2 ) 𝐹1 +
1

𝑝 ∙ 𝑞
(𝑝𝜇 −

𝑝 ∙ 𝑞
𝑞2 𝑞𝜇) (𝑝𝜈 −

𝑝 ∙ 𝑞
𝑞2 𝑞𝜈) 𝐹2       (2.3.13) 

Substituting 𝐿𝜇𝜈 and 𝑊𝜇𝜈 in the equation for the differential cross section yields 

𝑑𝜎𝑙−ℎ

𝑑𝑥𝑑𝑦
=

𝛼2𝑦
𝑄4 (𝑠2(1 − 𝑦)Im(𝑊2) + 2𝑥𝑦𝑠 Im(𝑊1))                     (2.3.14) 

With the Mandelstam variable 𝑠 = (𝑝 + 𝑘)2 = 2𝑝 ∙ 𝑘 in the massless limit. 

We can also write the differential cross section as [10] 

𝑑𝜎𝑙−ℎ

𝑑𝑥𝑑𝑄2 =
4𝜋𝛼2

𝑥𝑄4 ((1 − 𝑦 +
𝑦2

2
) 𝐹2(𝑥, 𝑄2) −

𝑦2

2
𝐹𝐿(𝑥, 𝑄2))           (2.3.15) 

With 𝐹2 = 𝐹𝐿 + 𝐹𝑇, where 𝐹𝐿 is the longitudinal structure function, and 𝐹𝑇 is the 
transversal structure function. These are structure functions related to the 
transversely and longitudinally polarised virtual photons. Any of the structure 
functions 𝐹𝑛 themselves obey the factorisation formula, similar to the cross section 
𝜎𝑙−ℎ , [10]: 

𝐹𝑛(𝑥, 𝑄) = ∑ ∫ 𝑑𝜉 𝐶𝑛𝑖(𝑥 𝜉⁄ , 𝛼𝑠(𝜇), 𝑄 𝜇⁄ )𝑓𝑖/ℎ(𝜉, 𝜇)
1

𝑥𝑖

+ 𝒪(𝛬QCD
2 𝑄2⁄ )      (2.3.16) 

With 𝑓𝑖/ℎ the parton distributions and 𝐶𝑛𝑖 process-dependent coefficient functions. 
The 𝐶𝑛𝑖 are computable in perturbation theory as a series in powers of 𝛼𝑠 

𝐶𝑛𝑖(𝑥 𝜉⁄ , 𝛼𝑠, 𝑄 𝜇⁄ ) = ∑ 𝐶𝑛𝑖
(𝑘)(𝑥 𝜉⁄ , 𝑄 𝜇⁄ )𝛼𝑠

𝑘

𝑘

                              (2.3.17) 

If we set the scale µ at a value on the order of Q, potentially large logarithmic 
corrections in 𝑄 𝜇⁄  are automatically taken into account, rather than appearing in the 
expansion of the coefficient functions at any order. [10] 

If a quark is spin 1/2 then it cannot absorb a longitudinally polarised photon. On the 
other hand, if a quark would be spin 0 then it cannot absorb a transversely polarised 
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photon. For spin 1/2 quarks we have 2𝑥𝐹1 = 𝐹2, which is called the Callan-Gross 
relation. For spin 0 quarks we would have 𝐹1 = 0 and 𝐹2 = 𝐹𝐿 in the Bjorken limit. 
(Ref [9], p91) Structure function measurements from experiment show that 𝐹𝐿 ≪ 𝐹2 is 
true, so this confirms that quarks have spin 1/2. [9] (p91) 

 

2.3.3 Hadron structure and parton distribution functions 
 
Lets think a moment about (charged) lepton-hadron scattering in general. At the 
lowest energies, a hadron looks like a point particle. For some time in the past, we 
indeed thought the proton, neutron and other particles were elementary particles, 
because they act like point particles at the lowest energies. At higher energies 
however, this is not the case. Starting at the lowest energies, when we increase the 
center-of-mass energy of the lepton-hadron scattering, we will at some point reach an 
“intermediate” regime in which we see exited states of the hadron. When we keep 
increasing the center-of-mass energy of the scattering, we reach the regime in which 
a hadron looks like the current “typical” view of hadrons, namely a composite particle 
made out of valence quarks. Mesons are made out of a valence quark and valence 
antiquark, baryons (for example proton and neutron) are made out of 3 valence 
quarks, antibaryons are made out of 3 valence antiquarks. “Valence quarks” means 
that they are the particles providing the hadron’s charge, baryon number, spin, and 
other quantum numbers. At even higher energies, there will be a point where we start 
to see even more partons than just the valence quarks. These extra partons are 
gluons and sea quarks (“sea quarks” are quark-antiquark pairs). The gluons and sea 
quarks carry some of the hadron’s momentum, but they do not contribute to the 
hadron’s quantum numbers. If we keep increasing the center-of-mass energy, we will 
see more and more of these extra partons. 

The information of which quarks are in a hadron, and their probabilities, is captured in 
the parton distribution functions (also called parton densities). The parton distribution 
function 𝑓𝑖/ℎ gives the probability to find a parton of type i in a hadron h, and this as a 
function of the momentum fraction 𝜉 carried by the parton and the auxiliary scale µ. 
This means we can probe the inner structure of a hadron via scattering experiments. 
This isn’t exclusively the case for lepton-hadron scattering, but scattering to a target 
hadron in general. The parton distribution functions are universal for the same 
hadron, within the same factorisation scheme. At the energy scales typical for this 
chapter, we are in the regime where aside for valence quarks we also see sea quarks 
and gluons. For lepton-hadron scattering at these energy scales, we can include 
quark flavours as long as their masses are significantly lower than 𝜇. At this point 
from our theory, we don’t expect to see gluons, because leptons don’t directly couple 
to gluons. 

Lets take for example electron-proton scattering. We will consider Q to be smaller 
than the mass of the bottom quark, 𝑄2 ≪ 𝑚𝑏. The quark species that we will include 
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will be up, down, strange and charm quarks, and their antiquarks. We expect the 
largest contribution to be from the up and down quark distribution functions, because 
those contain the valence quarks as wel as sea quarks. The quark distribution 
functions for the other quark species only contain sea quarks. We expect the 
distribution functions for the anti-up and anti-down to be (almost) the same, because 
they have almost the same mass. From experiment however, we see an asymmetry 
between the anti-up and anti-down. From experiment we can determine that only 
about half of the proton’s momentum is carried by the quarks. The other half is 
carried by the gluons. [9] (p92) 

 

Figure 2.17: Quark and gluon distribution functions of the proton, at scale 𝜇2 = 10 GeV2, fitted to DIS 
data. Note that 𝑢𝑣 and 𝑑𝑣 are the valence up and down quarks. To get the distribution for up and down 
quarks in general, take the sums 𝑢 = 𝑢𝑣 + �̅� and 𝑑 = 𝑑𝑣 + �̅�. The gluon distribution is provided by DIS 

data at small x, [14], [9] (p93) 
 

 

2.3.4 Factorisation in Drell-Yan 
 
We will very briefly give an overview of factorising the Drell-Yan process. The Drell-
Yan process is a hadron-hadron scattering process in which a quark from one hadron 
and an antiquark from the other hadron annihilate eachother, creating a virtual 
photon or Z boson which decays into a lepton pair. We define the the momenta as 
follows: 
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Figure 2.18: Factorised Drell-Yan lepton pair production. 
 

The two hadrons have momenta 𝑝𝐴
𝜇 and 𝑝𝐵

𝜇, the interacting quark and antiquark have 
momenta 𝑝1

𝜇 and 𝑝2
𝜇, and the momentum of the virtual neutral vector boson (photon 

or Z boson) is 𝑞𝜇.  We define the time-like vector 𝑄𝜇 

𝑄2 = 𝑞2                                                              (2.3.18) 

We also define M as the invariant mass of the lepton pair 

𝑀2 = (𝑘1 + 𝑘2)2                                                      (2.3.19) 

By the same reasoning as with DIS, we can consider the quark and antiquark to be 
moving collinear with their respective hadron, due to the large momenta. 

𝑝1 = 𝜉1𝑝𝐴 

𝑝2 = 𝜉2𝑝𝐵                                                            (2.3.20) 

By analogous reasoning as with DIS, we can factorise this in a part with long-time 
dynamics, and a part with short-time dynamics. The part with the long-time dynamics 
is the hadronic part, where de-hadronisation takes place. The timescale for this part 
is 𝛥𝑡 ≫ 1 √𝑄2⁄ . The short-time part is the part where quark-antiquark annihilation and 
lepton pair production happen. The timescale for this part is 𝛥𝑡~ 1 √𝑄2⁄ ≪ 1 fm. 

We can factorise the cross section as [9] (p301-302) 

𝜎𝐷𝑌(�̂�, 𝑄) = ∑ ∫ 𝑑𝜉1𝑑𝜉2 𝑓𝑎/𝐴(𝜉1, 𝜇)𝐻(𝑄, 𝜇, 𝜉1, 𝜉2, �̂�)𝑓𝑏/𝐵(𝜉2, 𝜇)
𝑎,𝑏

+ ∑ 𝐾𝑗 (
𝛬QCD

𝑄
)

𝑗

𝑗=1

 

(2.3.21) 
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Where the 𝑓𝑎/𝐴 and 𝑓𝑏/𝐵 are the parton distribution functions for the two hadrons, 
which corresponds to the long timescales. H corresponds to the short timescales, or 
in other words it relates to the high momentum transfer, so we can use perturbative 
QCD for it and expand it in powers of 𝛼𝑠(𝜇). The term at the end captures 
nonperturbative effects of long timescales, which originate from the transition 
between short and long scale process. 

Similar to deep inelastic scattering we can also use factorisable hadron-hadron 
scattering, like Drell-Yan, to study the inner structure of hadrons and the 
renormalisation group from experiment. 
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3 Evolution equations in QCD 
 
Factorisation of deep inelastic scattering (DIS) allows us to derive a set of equations 
for the parton distribution functions (PDF), called the DGLAP equations. They are 
one example of evolution equations for the PDFs. These equations also contain the 
splitting functions. In this chapter we will derive the DGLAP equations and discuss 
them as well as the DGLAP splitting functions. This chapter is based on [5], [9], [10] 
and [15]. 

 

3.1 DGLAP equations 
 
In this section we will derive the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) 
equations [1] [2] [3], which are evolution equations for the parton distribution 
functions (PDF). With evolution equation we mean an equation which characterises 
the PDF’s rate of change if we vary the auxiliary scale µ. These equations will allow 
us to evolve the PDFs from one energy scale to another. While deriving the DGLAP 
equations, we will introduce the DGLAP splitting functions (or often just called 
Altarelli-Parisi splitting functions, or just splitting functions). Again we will use deep 
inelastic scattering (DIS) as an example, but DGLAP equations can be used in other 
factorisable hard scattering processes as wel. 

 

3.1.1 From RG to DGLAP equations 
 
We start from Eq (2.3.16) for the structure functions: 

𝐹𝑛(𝑥, 𝑄) = ∑ ∫ 𝑑𝜉 𝐶𝑛𝑖(𝑥 𝜉⁄ , 𝛼𝑠(𝜇), 𝑄 𝜇⁄ )𝑓𝑖(𝜉, 𝜇)
1

𝑥𝑖

+ 𝒪(𝛬QCD
2 𝑄2⁄ )            (3.1.1) 

And note that 𝐹𝑛 is independent of µ. The µ dependence in the coefficients 𝐶𝑛𝑖 
cancels the µ dependence in the PDFs 𝑓𝑖. We also have that 𝐹𝑛 is dimensionless, 
which can be seen from the differential cross section expressed in structure 
functions. 

Since we have a convolution 𝐹 = 𝐶 ⊗ 𝑓, we will first diagonalise the x dependence in 
Eq (3.1.1) by taking N-moments for any function of x. [10] We can do this by 
introducing the Mellin transformation: 

𝐹𝑛(𝑁, 𝑄) ≔ ∫ 𝑑𝑥 𝑥𝑁−1𝐹𝑛(𝑥, 𝑄)
1

0

                                            (3.1.2) 

Inverse Mellin transformation: 
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𝐹𝑛(𝑥, 𝑄) = ∫
𝑑𝑁
2𝜋𝑖

𝑥−𝑁𝐹𝑛(𝑁, 𝑄)
𝑐+𝑖∞

𝑐−𝑖∞

                                          (3.1.3) 

Where c is taken to be right of all singularities. For the PDF we will have the following 
Mellin transform: 

𝑓𝑖(𝑁, 𝜇) ≔ ∫ 𝑑𝜉 𝜉𝑁−1𝑓𝑖(𝜉, 𝜇)
1

0

                                              (3.1.4) 

𝑓𝑖(𝜉, 𝜇) = ∫
𝑑𝑁
2𝜋𝑖

𝜉−𝑁𝑓𝑖(𝑁, 𝜇)
𝑐+𝑖∞

𝑐−𝑖∞

                                        (3.1.5) 

Again with c taken to be right of all singularities. 

If we take the Mellin transformation of Eq (3.1.1), the convolution ⊗ will turn into an 
ordinary product: 

𝐹𝑛(𝑁, 𝑄) = ∑ 𝐶𝑛𝑖(𝑁, 𝑄, 𝜇)𝑓𝑖(𝑁, 𝜇)
𝑖

                                    (3.1.6) 

Since 𝐹𝑛 is independent of µ, we have 

𝑑𝐹𝑛(𝑥, 𝑄) 
𝑑(ln 𝜇2) = 0                                                          (3.1.7) 

And we have the same for the Mellin transformed 𝐹𝑛 

𝑑𝐹𝑛(𝑁, 𝑄) 
𝑑(ln 𝜇2) = 0                                                         (3.1.8) 

Lets consider for simplicity that we have only 1 quark flavour. From equations Eq 
(3.1.6) and (3.1.8) we get the differential equation: 

𝐶𝑛(𝑁, 𝑄, 𝜇)
𝑑𝑓(𝑁, 𝜇)
𝑑(ln 𝜇2)

= −𝑓(𝑁, 𝜇)
𝑑𝐶𝑛(𝑁, 𝑄, 𝜇)

𝑑(ln 𝜇2)                               (3.1.9) 

If we divide both sides by the product 𝐶𝑛𝑓, we can rewrite it as 

𝑑(ln 𝑓(𝑁, 𝜇))
𝑑(ln 𝜇2)

= −
𝑑(ln 𝐶𝑛(𝑁, 𝑄, 𝜇))

𝑑(ln 𝜇2)                                      (3.1.10) 

Since ln 𝑓 is dimensionless, we can use the Callan-Symanzik equation from the 
Renormalisation Group (RG): 

(
𝜕

𝜕(ln 𝜇2) + 𝛽(𝛼𝑠)
𝜕

𝜕𝛼𝑠
+ 𝛾(𝛼𝑠)) ln 𝑓(𝑁, 𝜇) = 0                            (3.1.11) 
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Since the partial derivative with respect to 𝛼𝑠 equals 0, Eq (3.1.11) simplifies to the 
following RG equation 

𝑑(ln 𝑓(𝑁, 𝜇))
𝑑(ln 𝜇2)

= −𝛾𝑁(𝛼𝑠(𝜇)) = −
𝑑(ln 𝐶𝑛(𝑁, 𝑄, 𝜇))

𝑑(ln 𝜇2)                      (3.1.12) 

Where 𝛾𝑁 is the anomalous dimension of the PDF. The anomalous dimension has an 
expansion in powers of 𝛼𝑠 , [10]: 

𝛾𝑁(𝛼𝑠(𝜇)) = ∑ 𝑏𝑁
(𝑚)𝛼𝑠

𝑚
∞

𝑚=1

                                                (3.1.13) 

We can solve the RG equation Eq (3.1.12), which gives us 

𝑓(𝑁, 𝜇) = 𝑓(𝑁, 𝜇0)exp (−2 ∫ 𝛾𝑁(𝛼𝑠(𝜇′))
𝑑𝜇′

𝜇′

𝜇

𝜇0

)                            (3.1.14) 

We can rewrite the RG equation Eq (3.1.12) as 

𝑑𝑓(𝑁, 𝜇)
𝑑(ln 𝜇2) = −𝛾𝑁(𝛼𝑠(𝜇))𝑓(𝑁, 𝜇)                                           (3.1.15) 

If we restore all quark flavours, we would get 

𝑑𝑓𝑖(𝑁, 𝜇)
𝑑(ln 𝜇2) = − ∑ 𝛾𝑁,𝑖𝑗(𝛼𝑠(𝜇))𝑓𝑗(𝑁, 𝜇)

𝑗

                                    (3.1.16) 

We now have what we refer to as an evolution equation for the PDF, but we are still 
in the Mellin transformed space. Lets define the inverse Mellin transform of the 
anomalous dimension by 

−𝛾𝑁,𝑖𝑗(𝛼𝑠(𝜇)) = ∫ 𝑑𝑧 𝑧𝑁−1𝑃𝑖𝑗(𝑧, 𝛼𝑠(𝜇))
1

0

                                   (3.1.17) 

If we now take Eq (3.1.16), substitute the inverse Mellin transform for the functions, 
and make a change of integration variable from, we get the DGLAP (Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi) equations [1] [2] [3] [10] 

𝑑𝑓𝑖(𝑥, 𝜇)
𝑑(ln 𝜇2)

= ∑ ∫
𝑑𝜉
𝜉

𝑃𝑖𝑗(𝑥 𝜉⁄ , 𝛼𝑠(𝜇))𝑓𝑗(𝜉, 𝜇)
1

𝑥𝑗

                               (3.1.18) 

The DGLAP equation, or evolution equation, describes the coupled evolution for the 
parton distribution functions (PDF). (Ref [5] (p590-591)). The functions 𝑃𝑖𝑗 are the 
DGLAP splitting functions. The splitting functions turn out to be calculable as a series 
in orders of 𝛼𝑠 
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𝑃𝑖𝑗(𝑧, 𝛼𝑠) = ∑ (
𝛼𝑠

2𝜋
)

𝑛
𝑃𝑖𝑗

(𝑛−1)(𝑧)
∞

𝑛=1

                                       (3.1.19) 

The PDFs are not calculable from QCD because they contain the long timescale 
effects, but by using the DGLAP equations we can calculate their µ dependence. 

 

3.1.2 DGLAP and higher order corrections in structure functions. 
 
While we already derived the DGLAP equations from the Renormalisation Group and 
introduced the splitting functions, we will now show the link between Feynman 
diagrams and the DGLAP equations. We will take the example of DIS again. If we 
work in the “naive” parton model (no µ dependence) and if we ignore the higher order 
𝒪(𝛬QCD

2 𝑄2⁄ ) terms, the factorized DIS cross section Eq (2.3.5) will be 

𝜎𝑙−ℎ(𝑥, 𝑄) = ∑ ∫ 𝑑𝜉 𝜎𝑙−𝑞 (
𝑥
𝜉

, 𝑄) 𝑓𝑞(𝜉)
1

𝑥𝑞

                                 (3.1.20) 

Where we didn’t include the gluon term because the photon only interacts with 
quarks (and antiquarks), and not with gluons. We recall the expression for differential 
cross section with the structure function [9] (p89): 

𝑑2𝜎𝑙−ℎ

𝑑𝑥𝑑𝑄2 =
2𝜋𝛼2

𝑥𝑄4 (1 + (1 − 𝑦)2)𝐹2(𝑥)                                   (3.1.21) 

Where we set 𝐹2(𝑥) = 2𝑥𝐹1(𝑥) due to Callan-Gross relation. [9] (p91) 

And for the structure function we have [9] (p90) 

𝐹2 = 2𝑥𝐹1 = ∑ 𝑒𝑞
2𝑥𝑓𝑞(𝑥)

𝑞

                                            (3.1.22) 

If we step off from the naive parton model and go to the QCD improved parton model, 
then Eq (3.1.22) can be regarded as a 0th order term in the series expansion of 𝐹2 in 
orders of 𝛼𝑠. [15] If we want to include the term of order 𝛼𝑠, we have to take the 
following diagrams into account: 

 

Figure 3.1: Contributing diagrams for deep inelastic scattering, up to first order in 𝛼𝑠. 
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The 0th order diagram is also included. In the two diagrams on the right, a collinear 
gluon is emitted. [15] It will be (nearly) collinear because of the high momentum of 
the quark that emits the gluon. We have strong ordering of transverse momenta: 
𝑝⊥ ≪ 𝑘⊥ ≪ 𝜇 . If we put the emphasis on 𝑝⊥ ≪ 𝑘⊥ then momentum 𝑝 will be nearly 
collinear to the hadron. If we put the emphasis on 𝑘⊥ ≪ 𝜇 then momentum 𝑘 will be 
nearly collinear to momentum 𝑝. 

If the third diagram in Figure 3.1 can be neglected, then we could consider the 
radiated gluon as part of the hadron structure. The third diagram cannot be neglected 
in order to ensure gauge invariance, but it will cancel the unphysical polarizations of 
the gluon. [15] We can choose a physical (axial) gauge for which only the second 
diagram contributes to the splitting function and the logarithm, while the third diagram 
only contributes finite terms. We can take even higher order contributions into 
account with multiple gluon radiation (ladder diagrams). 

The structure function up to 1st order in 𝛼𝑠 is given by [9] (p99-105): 

𝐹2(𝑥, 𝑄) = 𝑥 ∑ 𝑒𝑞
2 [𝑓𝑞0(𝑥) +

𝛼𝑠

2𝜋
∫

𝑑𝜉
𝜉

𝑓𝑞0(𝜉) (𝑃 (
𝑥
𝜉

) ln (
𝑄2

𝜇0
2 ) + 𝐶 (

𝑥
𝜉

)) + ⋯
1

𝑥

]
𝑞

     (3.1.23) 

Where 𝑓𝑞0 is the bare quark distribution function, and 𝑃 is a function we get from 
applying Feynman rules in the diagrams. 𝑃 in particular describes the 𝑞 → 𝑞𝑔 
splitting. [15] Note that the transverse momentum 𝑘⊥ does not explicitly appear in the 
structure function. However, effects from the transverse momentum still appear as a 
logarithm ln(𝑄2 𝜇0

2⁄ ), which comes from an integration over transverse momentum of 
the form: 

∫
𝑑𝑘⊥

2

𝑘⊥
2

𝑄2 𝑥⁄

𝜇0
2

~ln (
𝑄2

𝜇0
2𝑥

) = ln (
𝑄2

𝜇0
2 ) − ln(𝑥)                               (3.1.24) 

if we would work with a momentum cut-off both at low and high transverse 
momentum. [9] (p98, p102) The cut-off 𝜇0

2 at low transverse momentum helps to treat 
the singularity. The integration can also be done by dimensional regularisation 
instead, which would give something of the form [9] (p104): 

∫
𝑑𝑘⊥

2

(𝑘⊥
2)1+𝜀 ~ (−

1
𝜀

)                                                   (3.1.25) 

Where 𝜀 < 0. 

𝑓𝑞0 can be seen as an unmeasurable, bare distribution. Collinear singularities (will be 
explained in section 3.2) are absorbed into this bare distribution (at factorization scale 
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µ) (Ref [9] p99-105). So we will define a renormalized distribution 𝑓𝑞(𝑥, 𝜇) as in [9] 
(p99-105): 

𝑓𝑞(𝑥, 𝜇) = 𝑓𝑞0(𝑥) +
𝛼𝑠

2𝜋
∫

𝑑𝜉
𝜉

𝑓𝑞0(𝜉) (𝑃 (
𝑥
𝜉

) ln (
𝜇2

𝜇0
2) + 𝐶 (

𝑥
𝜉

))
1

𝑥

+ ⋯          (3.1.26) 

This means the structure function becomes [9] (p99-105): 

𝐹2(𝑥, 𝑄) = 𝑥 ∑ 𝑒𝑞
2 ∫

𝑑𝜉
𝜉

𝑓𝑞(𝜉, 𝜇) [𝛿 (1 −
𝑥
𝜉

) +
𝛼𝑠

2𝜋
𝑃 (

𝑥
𝜉

) ln (
𝑄2

𝜇2 ) + ⋯ ]
1

𝑥𝑞

      (3.1.27) 

At any scale, we have as in [9] (p105):  

𝐹2(𝑥, 𝑄) = 𝑥 ∑ 𝑒𝑞
2𝑓𝑞(𝑥, 𝑄)

𝑞

                                            (3.1.28) 

Which is called the DIS scheme. The 𝑓𝑞(𝑥, 𝜇) can’t be calculated from QCD because, 
even at first principles, since it is in the unperturbative regime. However we can 
determine it from structure function data via Eq (3.1.28) at any scale. We can also 
calculate its dependence on the scale µ. If we take a look at Eq (3.1.27), we notice 
that the left hand side is independent of µ. This means the right hand side must also 
be independent of µ. We will take the derivative of both sides, with respect to ln 𝜇2. 
This is similar to what we did in previous section. The resulting equation is [9] (p99-
105): 

𝑑𝑓𝑞(𝑥, 𝜇)
𝑑(ln 𝜇2)

=
𝛼𝑠(𝜇)

2𝜋
∫

𝑑𝜉
𝜉

𝑃 (
𝑥
𝜉

) 𝑓𝑞(𝜉, 𝜇)
1

𝑥

                                    (3.1.29) 

Compare this with Eq (3.1.18), the DGLAP equation. They look similar. While this 
was not fully rigorous, a full treatment of the theory at first order in 𝛼𝑠 would result in 
the equation [9] (p108): 

𝑑𝑓𝑞(𝑥, 𝜇)
𝑑(ln 𝜇2)

=
𝛼𝑠(𝜇)

2𝜋
∫

𝑑𝜉
𝜉

𝑃 (
𝑥
𝜉

, 𝛼𝑠(𝜇)) 𝑓𝑞(𝜉, 𝜇)
1

𝑥

                          (3.1.30) 

This equation has the same form as the DGLAP equation Eq (3.1.18) with only a 
quark term: 

𝑑𝑓𝑞(𝑥, 𝜇)
𝑑(ln 𝜇2)

= ∫
𝑑𝜉
𝜉

𝑓𝑞(𝜉, 𝜇)𝑃𝑞𝑞(𝑥 𝜉⁄ , 𝛼𝑠(𝜇))
1

𝑥

                             (3.1.31) 

Recall we had a series expansion for the splitting functions Eq (3.1.19), for which the 
lowest order term equals: 
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𝑃𝑖𝑗(𝑧, 𝛼𝑠) =
𝛼𝑠

2𝜋
𝑃𝑖𝑗

(0)(𝑧) + 𝒪(𝛼𝑠
2)                                             (3.1.32) 

Eq (3.1.30) is the DGLAP equation in 1st order of 𝛼𝑠. This means that combining Eq 
(3.1.30), (3.1.31) and (3.1.32), in 1st order of 𝛼𝑠, leads us to 

𝑃(𝑥 𝜉⁄ ) = 𝑃𝑞𝑞
(0)(𝑥 𝜉⁄ )                                                    (3.1.33) 

This means the splitting function 𝑃𝑞𝑞 up to lowest order is proportional to 𝑃, and can 
be represented by the 𝑞 → 𝑞𝑔 splitting (𝑞 → 𝑞 splitting with the emission of g). We can 
generalise this up to higher orders in 𝛼𝑠, where 𝑃𝑞𝑞 up to order 𝛼𝑠

𝑛 can be represented 
by 𝑞 → 𝑞𝑔 splitting up to order 𝛼𝑠

𝑛. 

Even by including those, our description for first order in 𝛼𝑠 would still not be 
complete. We would need to include other processes like 𝛾𝑔 → 𝑞�̅�. And analogous to 
𝑞 → 𝑞𝑔, it’s possible to show that 𝑃𝑞𝑔 can be represented by 𝑔 → 𝑞�̅� splitting. In 
general 𝑃𝑖𝑗 can be represented by 𝑗 → 𝑖 parton splitting with the emission of a third 
parton. [15] 

If we go back to Figure 3.1 and the structure function Eq (3.1.27), We could go to 
higher orders by taking multiple gluon radiation (ladder diagrams) into account. In 
that case we will still have strong ordering of transverse momenta, which means that 
the transverse momentum of the parton after each new radiation of a gluon will be 
much larger than the previous. So we will get ordered nested integrals over 
transverse momenta. [9] (p138) 

 

3.2 Splitting functions 
 
In this section we will discuss the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) 
[1] [2] [3] splitting functions more in detail. The start of this section be giving the 
important general definitions and formulas again that involve the splitting functions, 
what Feynman diagrams they’re related to and what their physical interpretation is. 
This section will mostly focus on the leading order expressions of the splitting 
functions, but at the end we will also give the next-to-leading order expressions. 

 

3.2.1 Main definitions and importance of the splitting functions 
 
The DGLAP splitting functions first showed up in our derivation of the DGLAP 
equations. The DGLAP equations are the evolution equations for the parton 
distribution functions (PDFs). 
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𝑑𝑓𝑖(𝑥, 𝜇)
𝑑(ln 𝜇2)

= ∑ ∫
𝑑𝜉
𝜉

𝑃𝑖𝑗(𝑥 𝜉⁄ , 𝛼𝑠(𝜇))𝑓𝑗(𝜉, 𝜇)
1

𝑥𝑗

                                (3.2.1) 

Where 𝑃𝑖𝑗(𝑥 𝜉⁄ , 𝛼𝑠(𝜇)) are the splitting functions and 𝑓𝑖(𝑥, 𝜇) the PDFs. The splitting 
functions are calculable in QCD as a series in orders of 𝛼𝑠. 

𝑃𝑖𝑗(𝑧, 𝛼𝑠) = ∑ (
𝛼𝑠

2𝜋
)

𝑛
𝑃𝑖𝑗

(𝑛−1)(𝑧)
∞

𝑛=1

                                         (3.2.2) 

(Note that some sources define 𝑃𝑖𝑗 and the DGLAP differently, by letting index n start 
from 0 in the expansion, resulting in the appearance of an extra factor 𝛼𝑠 2𝜋⁄  in the 
DGLAP or elsewhere.) In the way we defined the splitting function, the leading order 
term is 

𝑃𝑖𝑗
(𝐿𝑂)(𝑧, 𝛼𝑠) =

𝛼𝑠

2𝜋
𝑃𝑖𝑗

(0)(𝑧)                                                (3.2.3) 

The DGLAP equation and the perturbative nature of the splitting functions, allows us 
to calculate the PDF’s µ scale dependence in perturbation theory, despite that the 
PDFs are otherwise uncalculable. PDFs always relate to the long timescale physics, 
and thus are in the unperturbative regime of QCD. 

The splitting functions can also be defined via their relation to the anomalous 
dimension 𝛾𝑁,𝑖𝑗 from the Renormalisation Group. They are simply related to 
eachother via a Mellin transform: 

𝛾𝑁,𝑖𝑗(𝛼𝑠(𝜇)) = − ∫ 𝑑𝑧 𝑧𝑁−1𝑃𝑖𝑗(𝑧, 𝛼𝑠(𝜇))
1

0

                                    (3.2.4) 

Where we took a minus sign as convention so that the anomalous dimension would 
have a plus sign in the Callan-Symanzik equation. (Note that a lot of sources define it 
with the opposite sign.) 

The splitting function also showed up in corrections for the structure function in 
orders of 𝛼𝑠: 

𝐹2(𝑥, 𝑄) = 𝑥 ∑ 𝑒𝑞
2 ∫

𝑑𝜉
𝜉

𝑓𝑞(𝜉, 𝜇2) [𝛿 (1 −
𝑥
𝜉

) +
𝛼𝑠

2𝜋
𝑃𝑞𝑞

(0) (
𝑥
𝜉

) ln (
𝑄2

𝜇2 ) + ⋯ ]
1

𝑥𝑞

      (3.2.5) 

And also in the renormalized PDF: 

𝑓𝑞(𝑥, 𝜇) = 𝑓𝑞0(𝑥) +
𝛼𝑠

2𝜋
∫

𝑑𝜉
𝜉

𝑓𝑞0(𝜉) (𝑃𝑞𝑞
(0) (

𝑥
𝜉

) ln (
𝜇2

𝜇0
2) + 𝐶 (

𝑥
𝜉

)) + ⋯
1

𝑥

         (3.2.6) 
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The reason for this was due to corrections from gluon emission. This also made our 
first connection between splitting functions and a physical process. This idea that the 
splitting functions appear in correction terms in physical quantities due to parton 
emission, can be generalised beyond just quarks and beyond just deep inelastic 
scattering (DIS). 

An important thing to remember is that the splitting functions in leading order are 
independent of the regularization or factorization scheme. The higher order terms on 
the other hand, are dependent on regularisation and factorisation scheme, and are Q 
dependent. [10], [9] (p99-105) 

 

3.2.2 Physical interpretation of splitting functions 
 
The splitting functions can be directly related to Feynman diagrams of parton 
emission, or what we call “splitting”. The splitting function 𝑃𝑖𝑗(𝑧, 𝛼𝑠(𝜇)) describes the 
probability for a parton 𝑗 to go to a nearly collinear parton 𝑖 (transverse momentum 
squared much smaller than 𝜇2) by emitting another parton, with 𝑧 the ratio of collinear 
momenta for parton 𝑖 versus parton 𝑗. Or in other words, the probability for a parton 𝑖 
to be found in a parton 𝑗 (with 𝑧 the ratio of collinear momentum, and transverse 
momentum being small). [9] (p109) 

 

Figure 3.2: Leading order diagrams for the splittings functions. Time runs from bottom to top. 
 

The probability is the norm squared of the S-matrix for a diagram. 

The leading order (LO) splitting functions are directly related to observable scaling 
violations (which is why they are regularization and factorization independent). For 
example the measurable quantity 𝑑𝐹2 𝑑⁄ (ln 𝑄2). If we had exact Bjorken scaling, then 
𝑑𝐹2 𝑑⁄ (ln 𝑄2) would be 0, but we do measure scaling violation in this quantity. In 
leading order (LO), 𝑑𝐹2 𝑑⁄ (ln 𝑄2) will be proportional to an LO splitting function, 𝑃𝑞𝑞

(0) 
in case of Eq (3.2.5), because in LO that is the only part that the derivative picks out. 
(But for small 𝑥 it will be proportional to 𝑃𝑞𝑔

(0) instead, because at small 𝑥 the gluon 
distribution dominates over the quark distribution.) While in LO the scaling violation 
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that can be observed in 𝑑𝐹2 𝑑⁄ (ln 𝑄2) is related to a LO splitting function, in next-to-
leading order (NLO) on the other hand, the relation between splitting functions and 
observable scaling violations is not clear. In NLO this observable quantity requires an 
integrated product between PDFs and more splitting functions (both LO and NLO 
splitting functions). Because of this the observable quantity will not be proportional to 
the splitting functions anymore when we assign a factorisation scheme. Thus in NLO 
there is no longer a direct relation between splitting functions and observable scaling 
violations. 

 

3.2.3 Splitting function expressions at leading order 
 
In this section we give the expressions for the leading order splitting functions, and 
include some important relations and identities. For the calculations of the leading 
order splitting functions; refer to [16], [9] (p109), [5] (p590-591). 

First we define: 

1
(1 − 𝑥)+

≔
1

1 − 𝑥
     for 0 ≤ 𝑥 < 1                                          (3.2.7) 

∫ 𝑑𝑥
𝑓(𝑥)

(1 − 𝑥)+

1

0

≔ ∫ 𝑑𝑥
𝑓(𝑥) − 𝑓(1)

1 − 𝑥

1

0

                                         (3.2.8) 

DGLAP splitting functions in leading order: 

𝑃𝑞𝑞
(0)(𝑧) = 𝑃�̅��̅�

(0)(𝑧) = 𝐶𝐹 (
1 + 𝑧2

(1 − 𝑧)+
+

3
2

𝛿(1 − 𝑧))                                                           (3.2.9) 

𝑃𝑞𝑔
(0)(𝑧) = 𝑃�̅�𝑔

(0)(𝑧) = 𝑇𝑅(𝑧2 + (1 − 𝑧)2)                                                                            (3.2.10) 

𝑃𝑔𝑞
(0)(𝑧) = 𝑃𝑔�̅�

(0)(𝑧) = 𝐶𝐹 (
1 + (1 − 𝑧)2

𝑧
)                                                                           (3.2.11) 

𝑃𝑔𝑔
(0)(𝑧) = 2𝐶𝐴 (

𝑧
(1 − 𝑧)+

+
1 − 𝑧

𝑧
+ 𝑧(1 − 𝑧)) + (

11
6

𝐶𝐴 +
2
3

𝑇𝑅𝑛𝑓) 𝛿(1 − 𝑧)       (3.2.12) 

𝑃𝑞�̅�
(0)(𝑧) = 𝑃�̅�𝑞

(0)(𝑧) = 0                                                                                                           (3.2.13) 

And remember the SU(𝑁𝑐) factors: 

𝐶𝐴 = 𝑁𝑐     ,     𝐶𝐹 =
𝑁𝑐

2 − 1
2𝑁𝑐

     ,     𝑇𝐹 =
1
2

                                   (3.2.14) 

The splitting functions satisfy the sum rules 
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∫ 𝑑𝑧 𝑃𝑞𝑞
(0)(𝑧)

1

0

= 0                                                      (3.2.15) 

∫ 𝑑𝑧 𝑧 (𝑃𝑞𝑞
(0)(𝑧) + 𝑃𝑔𝑞

(0)(𝑧))
1

0

= 0                                      (3.2.16) 

∫ 𝑑𝑧 𝑧
1

0

(2𝑛𝑓𝑃𝑞𝑔
(0)(𝑧) + 𝑃𝑔𝑔

(0)(𝑧)) = 0                                   (3.2.17) 

 

3.2.4 Quark-to-quark splitting function in leading order 
 
In section 3.1.2 we introduced the structure function for DIS up to 1st order in 𝛼𝑠 (Eq 
(3.1.27)) 

𝐹2(𝑥, 𝑄) = 𝑥 ∑ 𝑒𝑞
2 ∫

𝑑𝜉
𝜉

𝑓𝑞(𝜉, 𝜇) [𝛿 (1 −
𝑥
𝜉

) +
𝛼𝑠

2𝜋
𝑃 (

𝑥
𝜉

) ln (
𝑄2

𝜇2 ) + ⋯ ]
1

𝑥𝑞

        (3.2.18) 

Where the 1st order effect came from the 𝑞 → 𝑞𝑔 splitting. Now we will do the actual 
calculation and look at this effect in more detail. In this section we follow the 
calculation outlined in reference [9] (p100-105). We will also use the same momenta 
parametrisation (but with 𝑘⊥ instead of 𝑘𝑡): 

𝑘𝜇 = 𝜉𝑝𝜇 + 𝑘⊥
𝜇 +

|𝑘2| + 𝑘⊥
2

2𝜉
𝑛𝜇                                         (3.2.19) 

𝑑4𝑘 =
𝑑𝜉
2𝜉

𝑑𝑘2𝑑2𝑘⊥                                                    (3.2.20) 

This means that we have as in [9] (p100-105): 

(𝑝 − 𝑘)2 = (1 − 𝜉)
|𝑘2|

𝜉
−

𝑘⊥
2

𝜉
                                          (3.2.21) 

(𝑘 + 𝑞)2 = 2𝜉𝑝 ∙ 𝑞 − 𝑄2 − |𝑘2| − 2𝑞⊥ ∙ 𝑘⊥                               (3.2.22) 

 

For the the Feynman amplitude we get [9] (p100-105): 

ℳ𝜇 = −𝑖𝑔𝑒𝑞�̅�(𝑙)𝛾𝜇 1
k/ 

𝜀𝜈𝛾𝜈𝑡𝐴𝑢(𝑝)                                    (3.2.23) 
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Where 𝑒𝑞 is the quark electric charge, 𝑢 and �̅� are the quark’s spinors, and 𝜀𝜈 the 
polarisation of the gluon. 

We will use the optical theorem: 

 

Figure 3.3: Optical theorem for quark-to-quark splitting. 
 

This gives us an averaged squared Feynman amplitude. We define the notation 
|ℳ|𝜇𝜈

2̅̅ ̅̅ ̅̅ ̅̅  as the average of the |ℳ|𝜇𝜈
2  over colours and spins. Converting the Feynman 

diagram into math yields [9] (p100-105): 

|ℳ|𝜇𝜈
2̅̅ ̅̅ ̅̅ ̅̅ =

1
2

𝑒𝑞
2𝑔2 ∑ 𝐶𝐹Tr(𝛾𝜈(k/ + q/ )𝛾𝜇k/ 𝜀𝛼𝛾𝛼p/ 𝜀𝛽

∗𝛾𝛽)
1

𝑘4
𝑝𝑜𝑙

          (3.2.24) 

Where we have the colour factor 𝐶𝐹 

For the sum over the polarisation of the gluon, we use [9] (p100-105): 

∑ 𝜀𝜇(𝑟)𝜀𝜈
∗(𝑟)

𝑝𝑜𝑙

= −𝑔𝜇𝜈 +
𝑛𝜇𝑟𝜈 + 𝑛𝜈𝑟𝜇

𝑛 ∙ 𝑟
                                    (3.2.25) 

This is what we call a projector. When we apply this projector, only two physical 
polarisations will propagate, the transverse polarisations. This is the case cause we 
now have both 𝜀 ∙ 𝑟 = 0 and 𝜀 ∙ 𝑛 = 0. [9] (p100-105) 

If we apply this projector in Eq (3.2.24), we can write the following expression for the 
Feynman amplitude [9] (p100-10): 

1
4𝜋

𝑛𝜇𝑛𝜈|ℳ|𝜇𝜈
2̅̅ ̅̅ ̅̅ ̅̅ =

8𝑒𝑞
2𝛼𝑠

|𝑘2| 𝜉𝑃(𝜉)                                          (3.2.26) 

Where the function 𝑃 is defined as 

𝑃(𝜉) = 𝐶𝐹
1 + 𝜉2

1 − 𝜉
                                                    (3.2.27) 

The function 𝑃(𝜉) is 𝑃𝑞𝑞
(0)(𝜉), the coefficient in the leading order term of our quark-to-

quark splitting function 𝑃𝑞𝑞
(𝐿𝑂)(𝜉, 𝛼𝑠). (Ref [9] p100-105)) Using the convention we 

made in section 3.1, we have 
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𝑃𝑞𝑞
(𝐿𝑂)(𝜉, 𝛼𝑠) =

𝛼𝑠

2𝜋
𝑃𝑞𝑞

(0)(𝜉) =
𝛼𝑠

2𝜋
𝑃(𝜉)                                   (3.2.28) 

We only used the diagram in Figure 3.3, taking other diagrams into account as wel 
would just result in an extra term in 𝑃𝑞𝑞

(0)(𝜉), a term that is proportional to 𝛿(1 − 𝜉), 
Ref [9] (p100-105). So we can make the replacement 

𝑃𝑞𝑞
(0)(𝜉) → 𝑃𝑞𝑞

(0)(𝜉) + 𝐾𝛿(1 − 𝜉)                                          (3.2.29) 

And so we have 

𝑃𝑞𝑞
(0)(𝜉) = 𝐶𝐹

1 + 𝜉2

1 − 𝜉
+ 𝐾𝛿(1 − 𝜉)                                        (3.2.30) 

In general, this function does not allow for baryon number conservation (quark 
conservation). This can be seen by plugging the splitting function into Eq (3.1.26) 

𝑓𝑞(𝑥, 𝜇) = 𝑓𝑞0(𝑥) +
𝛼𝑠

2𝜋
∫

𝑑𝜉
𝜉

𝑓𝑞0(𝜉) (𝑃 (
𝑥
𝜉

) ln (
𝜇2

𝜇0
2) + 𝐶 (

𝑥
𝜉

)) + ⋯
1

𝑥

        (3.2.31) 

In order to have conservation of baryon number, the solution is that the integral of the 
new splitting function in Eq (3.2.30) will be 0 

∫ 𝑑𝜉 𝑃𝑞𝑞
(0)(𝜉)

1

0

= ∫ 𝑑𝜉 (𝐶𝐹
1 + 𝜉2

1 − 𝜉
+ 𝐾𝛿(1 − 𝜉))

1

0

= 0                   (3.2.32) 

Integration gives 

𝐾 = 𝐶𝐹 (
3
2

+ ln(1 − 𝜉)|𝜉=1)                                          (3.2.33) 

There is a logarithmic singularity for 𝜉 = 1. This issue has been solved by defining 
the function 

1
(1 − 𝑥)+

≔
1

1 − 𝑥
     for 0 ≤ 𝑥 < 1                                          (3.2.7) 

Which has the integration property 

∫ 𝑑𝑥
𝑓(𝑥)

(1 − 𝑥)+

1

0

≔ ∫ 𝑑𝑥
𝑓(𝑥) − 𝑓(1)

1 − 𝑥

1

0

                                         (3.2.8) 

This trick will help us solve the integral by replacing 1 (1 − 𝜉)⁄  by 1 (1 − 𝜉)+⁄  in the 
splitting function. In other words we define the splitting function as 

𝑃𝑞𝑞
(0)(𝜉) = 𝐶𝐹

1 + 𝜉2

(1 − 𝜉)+
+ 𝐾𝛿(1 − 𝜉)                                   (3.2.34) 
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We will now try again to performing the integral, and equating it to 0. This time we get 

∫ 𝑑𝜉 𝑃𝑞𝑞
(0)(𝜉)

1

0

= 𝐾 + 𝐶𝐹 (∫ 𝑑𝜉
𝜉2 − 1
1 − 𝜉

1

0

) = 𝐾 − 𝐶𝐹 ∫ 𝑑𝜉(𝜉 + 1)
1

0

= 𝐾 −
3
2

𝐶𝐹 = 𝐾 −
3
2

𝐶𝐹 = 0 

(3.2.35) 

Which means 

𝐾 =
3
2

𝐶𝐹                                                               (3.2.36) 

So our splitting function 𝑃𝑞𝑞
(0)(𝜉) is equal to 

𝑃𝑞𝑞
(0)(𝜉) = 𝐶𝐹 (

1 + 𝜉2

(1 − 𝜉)+
+

3
2

𝛿(1 − 𝜉))                                   (3.2.9) 

 

3.2.5 Collinear divergences 
 
Our splitting function 𝑃𝑞𝑞

(0)(𝜉) exhibits a singularity for 𝜉 = 1. Setting this value for 𝜉 
means that the emitted gluon is collinear to the parent quark, or in other words, the 
transverse momentum 𝑘⊥ = 0. This is what we call collinear divergence. And unlike 
divergences in the UV, for which we can for example introduce a maximum 
momentum (cut-off), we can’t do the same in the limit to small momenta. Taking the 
limit 𝑘⊥

2 → 0 is equivalent to the long distance force in QCD, [9] (p100-105). Long 
distance effects in QCD are nonperturbative, so we cannot calculate this (atleast not 
in perturbation theory). 

We can now take the original quark distribution function, and consider it a bare 
distribution, and then define a “renormalized” distribution function which absorbs the 
collinear singularity. Absorbing the collinear divergence will be done at a scale 𝜇, 
which we refer to as the factorisation scale. We get for the “renormalized” quark 
distribution function (Ref [9] p100-105), which is a function we also introduced “ad 
hoc” (together with collinear singularities) in section 3.1.2, the following expression: 

𝑓𝑞(𝑥, 𝜇) = 𝑓𝑞0(𝑥) +
𝛼𝑠

2𝜋
∫

𝑑𝜉
𝜉

𝑓𝑞0(𝜉) (𝑃 (
𝑥
𝜉

) ln (
𝜇2

𝜇0
2) + 𝐶 (

𝑥
𝜉

)) + ⋯
1

𝑥

       (3.1.37) 

And with this, the structure function (for hadron target) is equal to [9] (p100-105): 

𝐹2(𝑥, 𝑄) = 𝑥 ∑ 𝑒𝑞
2 ∫

𝑑𝜉
𝜉

𝑓𝑞(𝜉, 𝜇) [𝛿 (1 −
𝑥
𝜉

) +
𝛼𝑠

2𝜋
𝑃 (

𝑥
𝜉

) ln (
𝑄2

𝜇2 ) + ⋯ ]
1

𝑥𝑞

       (3.1.38) 
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This idea of “renormalisation” of the distribution function, is similar to renormalisation 
of the coupling strength, or renormalisation of other parameters in the Lagrangian. 

The “renormalized” quark distribution function 𝑓𝑞(𝑥, 𝜇) cannot be calculated from 
(perturbative) QCD, not even from first principles, because the long distance effects 
from QCD contribute to it. In other words, 𝑓𝑞(𝑥, 𝜇) is nonperturbative. We determine 
the quark distribution function from experiments. The same is true for the other 
partons their distribution functions. All the PDFs will be nonperturbative, and need to 
be determined from experiments instead. However, there is one thing about the 
PDFs that we can calculate from perturbative QCD: the µ dependence. This is done 
by using the DGLAP equations (see section 3.1). 
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4 TMD Gluon-to-quark splitting function 
 
In this section we will discuss and calculate the transverse momentum dependent 
gluon-to-quark splitting function. The calculation in this part is mostly based on 3 
papers [17] [18] [19] [28]. Many of the concepts, conventions, notations and choices 
will be similar to those in the 3 papers. (An additional paper [20] was very briefly used 
to add a bit more to the understanding of some concepts.) 

 

4.1 Collinear vs transverse momentum factorisation 
 
Up till now we have only considered DGLAP equations and splitting functions in the 
collinear factorisation scheme, in which the incoming parton is considered to be 
collinear with the momentum of the hadron, 𝑘 = 𝑦𝑝. The transverse momentum 𝑘⊥ is 
set to 0. However, even in the collinear factorisation, effects from the transverse 
momentum still appear in higher order corrections. In case of the 1st order correction 
we discussed in chapter 3, Eq (3.1.27), the ln(𝑄2 𝜇2⁄ ) in the structure function 
𝐹2(𝑥, 𝑄) comes from an integration over transverse momentum of the form Eq 
(3.1.24), which we can also write as 

∫
𝑑𝑘⊥

2

𝑘⊥
2 ~ln (

𝑄2

𝜇0
2𝑥

) = ln (
𝑄2

𝜇2 ) − ln (
𝜇0

2𝑥
𝜇2 )                               (4.1.1) 

if we would work with a momentum cut-off both at low and high transverse 
momentum [9] (p99-105). The cut-off 𝜇0

2 at low transverse momentum helped to treat 
the collinear singularity. If we would do the integration by dimensional regularisation 
instead, it would give something of the form Eq (3.1.25): 

∫
𝑑𝑘⊥

2

(𝑘⊥
2)1+𝜀 ~ (−

1
𝜀

)                                                     (4.1.2) 

Where 𝜀 < 0.  

But what if we want to take the exact effects from transverse momentum into account 
already at leading order? Such a treatment will lead to what we call transverse-
momentum-dependent (TMD) splitting functions and TMD PDFs (parton distribution 
functions), which are also called “unintegrated splitting functions” and “unintegrated 
PDFs”. TMD splitting functions and PDFs are naturally related to a hierarchy of 
scales in the phase space. [19]. For example, when we look at the situation for which 
we have the scale hierarchy �̂� ≫ 𝑀2 ≫ 𝛬QCD

2  , with 𝑀2 the hard scale and �̂� the COM 
(center-of-mass) energy squared, we will have large ln(�̂� 𝑀2⁄ ) logarithms that can 
compensate the small 𝛼𝑠 (which is small because we are in the perturbative region at 
high energy scale). It will be necessary to do a resummation of terms in 
(𝛼𝑠 ln(�̂� 𝑀2⁄ )⁄ )𝑛 to all orders [19]. This was done by Balitsky-Fadin-Kuraev-Lipatov 
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(BFKL) evolution equation [24-27]. The BFKL equation is based on a factorisation in 
the high energy limit �̂� ≫ 𝑀2, the “high energy factorisation”. In this factorisation 
scheme, structure functions and convolutions are automatically factorised into 𝑘⊥ 
dependent factors and the BFKL Green’s function. [19] The shortcoming of the high 
energy factorisation, is that it is limited to the low 𝑀2 �̂�⁄  regime. A series of problems 
arise when trying to extrapolate it into the intermediate and higher 𝑀2 �̂�⁄  regime. [19] 
For example elementary vertices that violate energy conservation, and quark 
contributions arising only in next-to-leading order (NLO). [19] 

To do better, a resummation could be done which restores the DGLAP splitting 
functions. In essence, DGLAP preserves conservation of longitudinal momentum, 
while BFKL preserves the conservation of transverse momentum. [19] Attempts to 
unify DGLAP with BFKL already resulted in resummations which are stable in the low 
and intermediate 𝑀2 �̂�⁄  regions up to 𝑀2 �̂�⁄ ~10−2. [19] Matching the collinear and 
high energy factorisations will be done by the 𝑘⊥ factorisation scheme. We will use 
the same approach as in the references [17] [18] [19] [28], which are based on the 
Curci-Furmanski-Petronzio (CFP) formalism [29] [17] 

 

4.2 2PI kernels, Green functions and projector operators 
 
We will now explain the approach to arrive at the Feynman diagram that we will use 
to calculate the TMD gluon-to-quark splitting function. It is based on the approaches 
of the references [17] [18] [19] [28]. Consider a single incoming hadron, we can 
define a dimensionless cross section 

𝐹(𝑥, 𝑄2)~𝑄2𝜎(𝑥, 𝑄2)                                                 (4.2.1) 

The dimensionless cross section is factorisable, just like the cross section and the 
structure functions: 

𝐹(𝑥, 𝑄2) = ∑ ∫ 𝑑𝑧 𝐶𝑖(𝑥 𝑧⁄ , 𝛼𝑠(𝜇𝐹), 𝑄2 𝜇𝐹
2⁄ )𝑓𝑖(𝑧, 𝜇𝐹

2)
1

𝑥𝑖

+ 𝒪(𝛬QCD
2 𝑄2⁄ )       (4.2.2) 

With 𝑓𝑖 the parton distribution functions and 𝐶𝑖 process-dependent coefficient 
functions, analogous to those of the factorisation of the structure functions. 𝜇𝐹 is the 
factorisation scale, and is arbitrary as long as 𝜇𝐹

2 ≫ 𝛬QCD
2 . The dimensionless cross 

section is independent of this factorisation scale. This means, just like with the 
structure functions, the 𝜇𝐹 dependence of 𝐶𝑖 cancels the 𝜇𝐹 dependence of 𝑓𝑖. We 
can treat 𝐹(𝑥, 𝑄2) in the exact same way as we treated the structure functions 
𝐹𝑖(𝑥, 𝑄2). 

We will now briefly discuss the factorisation schemes that are used to reach the 
calculation of the gluon-to-quark splitting function. 
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4.2.1 Collinear factorisation 
 
For collinear factorisation we will use the technique by Curci-Furmanski-Petronzio 
(CFP) [29] [17]. The dimensionless cross section can be factorised in the following 
way: 

 

Figure 4.1: Factorisation of the dimensionless cross section 𝐹 in terms of partonic cross sections and 
parton distributions. Time runs from bottom to top. Figure from [17] (p483) 

 

𝐹(𝑥, 𝑄2) = ∫ 𝐹(0)(… , 𝑝)𝑓(0)(𝑝, … ) + [∫ 𝐹4
(0)(… ; 𝑝1𝑝2)𝑓4

(0)(𝑝1𝑝2; … ) +  … ]     (4.2.3) 

Where 𝐹(0), 𝐹4
(0) , … are the dimensionless partonic cross sections (analogous to the 

parton structure functions, which are for a parton as target), and 𝑓(0), 𝑓4
(0), … are the 

parton distribution functions. Both the 𝐹(0) and 𝑓(0) are considered bare quantities. 
[17] With the notation ∫ 𝐴𝐵 we mean a convolution between 𝐴 and 𝐵, which 
integrates over all internal momenta, and sums over all spin, colours and 
intermediate particle species. 

Then we apply dimensional regularisation, to a 𝐷 = 4 + 2𝜀 dimensional spacetime. 
This will introduce a regularisation scale 𝜇. When we renormalise 𝐹(0), we 
automatically regularise collinear singularities into single poles in 1 𝜀⁄ . [17] 
Factorisation allows us to substract those poles from 𝐹(0), and it also allows us to 
factorise them to all orders of 𝛼𝑠 into independent transition functions 𝛤. [17] This can 
be done according to: 

𝐹(0) = ∫ 𝐶𝛤                                                          (4.2.4) 

Where 𝐶 is the coefficient function, which is finite for 𝜀 → 0. We use the transition 
functions to define the “physical” parton density [17]: 

𝑓 = ∫ 𝛤𝑓(0)                                                         (4.2.5) 

This recovers the factorisation formula at the start, Eq (4.2.2). [17] 
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We now choose a momentum parametrisation to simplify things. We will use 
Sudakov parametrisation, with incoming parton momentum 𝑝𝜇, and any other 
momentum 𝑘𝜇 

𝑝𝜇 = 𝑃(1, 𝟎, 1),     �̅�𝜇 = 𝑃(1, 𝟎, −1)                                     (4.2.6) 

𝑘𝜇 = 𝑧𝑝𝜇 + 𝑘⊥
𝜇 +

𝑘² + 𝐤²
2𝑧𝑝. �̅�

�̅�𝜇,     𝑘⊥
𝜇 = (0, 𝐤, 0) 

and for the gauge choice we will choose the axial gauge 𝜕 ∙ 𝐴, which is a physical 
gauge. This gauge choice can also be expressed as �̅� ∙ 𝐴 = 0. The summation over 
gluon polarisations is given by 

𝑑𝜇𝜈 = ∑ 𝜀𝜇𝜀𝜈
∗

𝑝𝑜𝑙

= −𝑔𝜇𝜈 +
𝑘𝜇�̅�𝜈 + �̅�𝜈𝑘𝜇

�̅� ∙ 𝑘
                                       (4.2.7) 

We will now expand 𝐹(0) in two-particle irreducible (2PI) kernels 𝐶(0) and 𝐾(0) [17]: 

𝐹(0) = ∫ 𝐶(0)(1 + 𝐾(0) + 𝐾(0)𝐾(0) + ⋯ ) = ∫ 𝐶(0)𝐺(0)                     (4.2.8) 

𝐺(0) =
1

1 − 𝐾(0)                                                                                               (4.2.9) 

With 𝐺(0) the bare Green function. In the axial gauge we are working, there are no 
mass singularities in the two-particle irreducible (2PI) amplitudes, and thus all 
collinear singularities originate from integrations over the momenta coming out of the 
kernels 𝐾(0) and connecting them in the bare Green function 𝐺(0). [21], [17] We can 
introduce a projector operator 𝒫𝐶 (collinear projector operator) which will give us the 
factorisation formula Eq (4.2.4). This projector operator will decouple 𝐶(0) and 𝐺(0) in 
the spin indices. It will also decouple them in momentum space by extracting the 1 𝜀⁄  
poles. [17] We can write for each kernel: 

𝐾(0) = ∫ ((1 − 𝒫𝐶 )𝐾(0) + 𝒫𝐶 𝐾(0))                                  (4.2.10) 

Where all the singularities are in 𝒫𝐶 𝐾(0). If we now apply this in an iterative way, we 
get [17]: 

𝐺(0) = ∫ 𝐺𝛤                                                         (4.2.11) 

Where all 1 𝜀⁄  poles are substracted from 𝐺, the “renormalized” Green function [17]: 

𝐺 =
1

1 − ∫(1 − 𝒫𝐶 )𝐾(0) = 1 + ∫(1 − 𝒫𝐶 )𝐾(0) + ∫(1 − 𝒫𝐶 )𝐾(0)(1 − 𝒫𝐶 )𝐾(0) + ⋯ 

(4.2.12) 
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And for the transition function we have [17]: 

𝛤 =
1

1 − ∫ 𝒫𝐶 𝐾
= 1 + ∫ 𝒫𝐶 𝐾 + ∫ 𝒫𝐶 𝐾𝒫𝐶 𝐾 + ⋯                 (4.2.13) 

Where the kernel 𝐾 is equal to 

𝐾 = ∫ 𝐾(0)𝐺                                                          (4.2.14) 

Then the coefficient function 𝐶 in the factorisation formula Eq (4.2.4) equals 

𝐶 = ∫ 𝐶(0)𝐺                                                          (4.2.15) 

The projector operator can be expressed as 𝒫𝐶 = 𝒫𝐶
𝜀 ⊗ 𝒫𝐶

𝑠 (Ref [17] p484), with 𝒫𝐶
𝑠 

and 𝒫𝐶
𝜀 respectively the helicity and momentum space projectors. 

Given two kernels 𝐴 and 𝐵, connected by a parton with momentum 𝑘. The action of 
the helicity space projector 𝒫𝐶

𝑠 on the helicity space, when the connecting parton is a 
quark, is equal to [17]: 

∫ 𝐴𝒫𝐶
𝑠𝐵 = ∫ 𝐴𝛼′𝛽′ (

1
2

k/ )
𝛼′𝛽′

(
p/ ̅

2�̅� ∙ 𝑘
)

𝛼𝛽

𝐵𝛼𝛽                            (4.2.16) 

When the connecting parton is a gluon, the action of 𝒫𝐶
𝑠 will be [17]: 

∫ 𝐴𝒫𝐶
𝑠𝐵 = ∫ 𝐴𝜇′𝜈′

𝑑𝜇′𝜈′

𝑛 − 2
(−𝑔𝜇𝜈)𝐵𝜇𝜈                                 (4.2.17) 

Which contains the sum over gluon polarisations, which is given by Eq (4.2.7). The 
momentum space operator 𝒫𝐶

𝜀 will set 𝑘𝜇 = 𝑧𝑝𝜇 on 𝐴, and perform a k-momentum 
integration up to the factorisation scale 𝜇𝐹 on 𝐵. It also extracts the 1 𝜀⁄  poles. [17] 
Once 𝒫𝐶

𝜀 is uniquely defined, it completely specifies the factorisation scheme. 

A very common factorisation scheme is the MS̅̅ ̅̅  scheme (Modified Minimal 
Substraction scheme). In this scheme, the transition functions have the expression 
[17]: 

𝛤𝑎𝑏,𝑁 = [𝑃𝛼exp (
1
𝜀

∫
𝑑𝛼
𝛼

𝛾𝑁(𝛼)
ℎ

0

)]

𝑎𝑏

                               (4.2.18) 

With 𝛾𝑁 the anomalous dimension, and with ℎ = 𝛼𝑠(𝜇𝐹
2 𝜇2⁄ )𝜀𝑆𝜀 , where 𝑆𝜀 is an 𝜀-finite 

factor. 

The effect of the projectors can be represented by the following Feynman diagrams: 
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Figure 4.2: Effect of the projector operator 𝒫𝐶  on the spin indices of kernels A and B, in case of (a) a 
quark and (b) a gluon. Time runs from bottom to top. Figure from [17] (p485) 

 

 

4.2.2 Factorisation at high energy 
 
While in collinear factorisation we only had one scale, 𝑄2, we will have two scales 𝑄2 
and 𝑠 in high energy factorisation. High energy means that 𝑥 = 𝑄2 𝑠⁄  is small. We can 
do a Mellin transform between x-space and N-space (Eq (3.1.2) & Eq (3.1.3)), and 
small x will mean small N. Just like in the collinear case we have that 𝛼𝑠 is small. 
Since both 𝛼𝑠 and 𝑁 are small, we will keep 𝛼𝑠 𝑁⁄  fixed. Unlike in the collinear case, 
we cannot expand in powers of 𝛼𝑠 now. Instead we need to expand in 𝛼𝑠 𝑁⁄ . 

For factorisation at high energy, we can also use Sudakov parametrisation, axial 
gauge, dimensional regularisation and 2PI kernels again. It is the k-integration from 
the gluon Green’s functions 𝐺𝑞𝑎

(0) that generate the large perturbative (𝛼𝑠 𝑁⁄ )𝑘. [17] 
This means we will specifically use kernels that are two-gluon irreducible (2GI). 
These kernels will be transverse momentum dependent (TMD). Multiple gluon 
exchange will generate logarithmic high energy (or small x) contributions [17]. 
Expansion in 2GI will allow us to perform a power counting at high energy. 

We now want to decouple the 2GI kernels and the gluon Green’s functions while 
keeping 𝛼𝑠 𝑁⁄  fixed. [17] 𝑘⊥ factorisation can extract leading high energy behaviour, 
by the use of the 𝑘⊥ dependent projection operator 𝒫𝐻 [17]: 

∫ 𝐴𝑔𝐺𝑔𝑎
(0) = ∫ 𝐴𝑔𝒫𝐻𝐺𝑔𝑎

(0) +  …                                       (4.2.19) 

where 𝐴𝑔 is the kernel. Similar as with the collinear projection operators, 𝒫𝐻 this 
projection operator can be expressed with a momentum space projector and a 
helicity (spin) projector, as 𝒫𝐻 = 𝒫𝐻

𝜀 ⊗ 𝒫𝐻
𝑠 . Diagrammatically, the action of the 

projection operator will be the same as Figure 4.2. However when it comes to the 
formulas, the action will be different than the collinear case. The action of 𝒫𝐻

𝑠  will be 
[17]: 
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∫ 𝐴𝑔𝒫𝐻
𝑠 𝐺𝑔𝑎

(0) = ∫ 𝐴𝑔
𝜇′𝜈′ 𝑘⊥𝜇′𝑘⊥𝜈′

𝐤2 (−𝑔𝜇𝜈)𝐺𝑔𝑎
(0)𝜇𝜈                            (4.2.20) 

This time we don’t sum over all polarisations, but only over 𝑘⊥𝜇′𝑘⊥𝜈′ 𝐤2⁄ . 

𝒫𝐻
𝜀  will set 𝑘𝜇 = 𝑧𝑝𝜇 + 𝑘⊥

𝜇 on 𝐴𝑔 , and on 𝐺𝑔𝑎
(0) it will perform an integration over 𝑘2 at 

fixed 𝑘⊥. [17] The 2GI kernel has to be evaluated with an incoming gluon that is off-
shell (𝑘2 = −𝐤2). 

Since 𝒫𝐻 is a true projection operator (𝒫𝐻
2 = 𝒫𝐻), we are not neglecting any 

contributions of order (𝛼𝑠 𝑁⁄ )𝑘𝜀. It also has the property 𝒫𝐻 ⊇ 𝒫𝐶 (and 𝒫𝐻 = 𝒫𝐶 if 
𝑘⊥ = 0). [17] This means that consistency between collinear and high energy 
factorisation is guaranteed. 

The high energy factorisation leads to a resummation of logarithms ln(𝑠 𝑄2⁄ ). This 
resummation leads to the BFKL equation. In the BFKL equation we only use the 
unintegrated gluon distribution function because it is the only parton distribution 
function that picks 𝛼𝑠 𝑁⁄ . This is considered the lowest log high energy factorisation. 
In next-to-leading log, we would have to include quark parton distribution functions as 
wel. 

If we compare the collinear and high energy factorisation schemes, collinear 
factorisation does only a resummation of ln(𝑄2 𝜇2⁄ ), while high energy factorisation 
does only a resummation of ln(𝑠 𝑄2⁄ ). Trying to merge the two factorisations is 
nontrivial, and requires TMD splitting functions. 

 

4.2.3 BFKL equation 
 
The resummation of logarithms ln(𝑠 𝑄2⁄ ) in high energy factorisation leads to the 
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation. The BFKL equation in 
Mellin transformed space, and in 𝑑 = 4 + 2𝜀 dimensional regularisation, can be 
expressed as [17]: 

ℱ(0)(𝑁, 𝐤, 𝛼𝑠, 𝜇, 𝜀) = 𝛿(2+2𝜀)(𝐤) +
𝐶𝐴𝛼𝑠

𝜋2𝑁
∫

𝑑2+2𝜀𝐪
(2𝜋𝜇)2𝜀  

1
𝐪2 [ℱ(0)(𝑁, 𝐤 − 𝐪, 𝛼𝑠, 𝜇, 𝜀) 

−
𝐤 ∙ (𝐤 − 𝐪)
(𝐤 − 𝐪)2 ℱ(0)(𝑁, 𝐤, 𝛼𝑠, 𝜇, 𝜀)]                                         (4.2.21) 

With ℱ(0)(𝑁, 𝐤, 𝛼𝑠, 𝜇, 𝜀) the N-moment unintegrated gluon distribution function in 
Mellin transformed space, and where the boldface letters are defined as 

𝑘⊥
𝜇 = (0, 𝐤, 0) ,     𝑞⊥

𝜇 = (0, 𝐪, 0)                                        (4.2.22) 

The momentum 𝑞 is internal in the kernel. 
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Figure 4.3: The corresponding diagram for the BFKL equation. Time runs from bottom to top. 
 

The unintegrated gluon PDF can also be interpreted as an unintegrated gluon 
Green’s function: 

𝐺𝑔𝑔
(0) = ∫ 𝑑𝐤 ℱ(0)                                                    (4.2.23) 

With 𝐺𝑔𝑔
(0) the gluon Green’s function. Resummation of terms in (𝛼𝑠 ln(�̂� 𝑀2⁄ )⁄ )𝑛 to all 

orders results in the following solution for the gluon-to-gluon anomalous dimension 
[17]: 

𝛾𝑁,𝑔𝑔 = 𝛾𝑁(𝛼𝑠) + 𝒪(𝛼𝑠(𝛼𝑠 𝑁⁄ )𝑙)                                       (4.2.24) 

With 𝛾𝑁(𝛼𝑠) the solution of the following implicit equation: 

1 =
𝐶𝐴𝛼𝑠

𝜋𝑁
𝜒(𝛾𝑁(𝛼𝑠))                                                 (4.2.25) 

Where the function 𝜒 can be expressed in terms of the Euler 𝜓-function: 

𝜒(𝛾) = 2𝜓(1) − 𝜓(𝛾) − 𝜓(1 − 𝛾) =
1
𝛾

(1 + ∑ 2𝜁(2𝑙 + 1)𝛾2𝑙+1
∞

𝑙=1

)        (4.2.26) 

Where 𝜁 is the Riemann 𝜁-function. 
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Figure 4.4: The characteristic function 𝜒. Figure from [17] 
 

Eq (4.2.26) results in the following power series for the anomalous dimension [17]: 

𝛾𝑁(𝛼𝑠) = ∑ 𝑔𝑛 (
𝐶𝐴𝛼𝑠

𝜋𝑁
)

𝑛∞

𝑛=1

=
𝐶𝐴𝛼𝑠

𝜋𝑁
+ 2𝜁(3) (

𝐶𝐴𝛼𝑠

𝜋𝑁
)

4

+ 2𝜁(5) (
𝐶𝐴𝛼𝑠

𝜋𝑁
)

6

+ 𝒪 ((
𝐶𝐴𝛼𝑠

𝜋𝑁
)

7

) 

(4.2.27) 

Note that powers of 1 𝑁⁄  correspond to powers of ln(1 𝑥⁄ ) via Mellin transformation, 
and remind that ln(1 𝑥⁄ ) is equal to ln(𝑠 𝑄2⁄ ). Remind that the anomalous dimension 
𝛾𝑁(𝛼𝑠) is the Mellin transform of the splitting function, Eq (3.1.17). This means we get 
the following solution for the BFKL gluon-to-gluon splitting function: 

𝑃𝑔𝑔(𝑧, 𝛼𝑠) =
𝐶𝐴𝛼𝑠

𝜋𝑧
+ 2𝜁(3) (

𝐶𝐴𝛼𝑠

𝜋
)

4 1
𝑧

(ln(𝑧))
3

+ ⋯                     (4.2.28) 

The first term is the leading order DGLAP term. The second term is the first BFKL 
correction, followed by the rest of the BFKL series. 

The shortcoming of high energy factorisation and BFKL, is that it is limited to the low 
𝑀2 �̂�⁄  regime. Problems arise when trying to extrapolate it into the intermediate and 
higher 𝑀2 �̂�⁄  regime. [19] For example elementary vertices that violate energy 
conservation, and quark contributions arising only in next-to-leading order (NLO). [19] 
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4.2.4 Kernel for gluon-to-quark splitting function 
 
The quark Green function has the following expansion in 2GI kernels [17]: 

𝐺𝑞𝑎
(0) = ∫ 𝐾𝑞𝑏

(0)𝐺𝑏𝑎
(0)                                                        (4.2.29) 

By applying the high-energy factorisation formula Eq (4.2.19), it is possible to get the 
following 𝑘⊥ factorisation formula [17]: 

𝐺𝑞𝑎
(0)𝛼𝛽(𝑞, 𝑝) = ∫ 𝑑2+2𝜀𝐤 ∫

𝑑𝑦
𝑦

(�̂�𝑞𝑎
(0)𝛼𝛽(𝑞, 𝑝)

𝑘⊥
𝜇𝑘⊥

𝜈

𝐤2 )
𝑘=𝑦𝑝+𝑘⊥

∙
1

0

ℱ(0)(𝑦, 𝐤, 𝛼𝑠, 𝜇, 𝜀)     (4.2.30) 

With �̂�𝑞𝑎
(0) the off-shell kernel and ℱ(0) the unintegrated parton distribution function. 

When it comes to Feynman diagrams, the high-energy factorisation results in the 
following diagrams for the gluon-to-quark Green function: 

 

Figure 4.5: (a) High-energy factorisation of the gluon-to-quark Green function 𝐺𝑞𝑔 
(b) The corresponding off-shell kernel 𝐾𝑞𝑔 
Time runs from bottom to top. 
Figure from [17] (p498) 

 

Figure 4.5, which is from [17], and more specifically the lower right diagram (figure 
4.5(b)), will be the starting point of our actual calculation for the gluon-to-quark 
splitting function. We now have the analogue of the 𝑘⊥-factorisation formula, Ref [17] 
(p498, 4.2) 

For the gluon-to-quark kernel we have 
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�̂�𝑞𝑔~ ∫[𝑑𝑞]�̂�𝑞𝑔                                                      (4.2.31) 

With �̂�𝑞𝑔 an unintegrated (TMD) splitting function. The notation above means that it 
integrates over unintegrated momenta or angles depending on what you want to 
average over. For example this could be the fully unintegrated TMD splitting function, 
or the angular averaged TMD splitting function, etc. Typically this will at least be an 
integral over the transverse momentum 𝑞⊥, but possibly also over angle and other 
variables. 

 

4.2.5 Identifying splitting functions in kernels 
 
We can express a TMD kernel in the following way, while doing dimensional 
regularisation [19]: 

�̂�𝑖𝑗 (𝑧,
𝐤2

𝜇2 , 𝜀, 𝛼𝑠) = 𝑧 ∫
𝑑(𝑞2)𝑑2+2𝜀𝐪

2(2𝜋)4+2𝜀 𝛩(𝜇𝐹
2 + 𝑞2) 𝒫𝑗,𝑖𝑛 ⊗ �̂�𝑖𝑗

(0)(𝑞, 𝑘) ⊗ 𝒫𝑖,𝑜𝑢𝑡     (4.2.32) 

With �̂�𝑖𝑗
(0) the squared matrix element for a parton of type 𝑗 going to a parton of type 𝑖. 

𝜇𝐹
2 is the factorisation scale, and 𝛩(𝜇𝐹

2 + 𝑞2) ensures that 𝜇𝐹
2 + 𝑞2 remains larger than 

0. Finding the splitting function comes down to identifying it in the integral expression 
for a kernel �̂�𝑖𝑗. The equation that relates �̂�𝑖𝑗 to �̂�𝑖𝑗 is generally of the form 

�̂�𝑖𝑗~ ∫[𝑑𝑞]�̂�𝑖𝑗                                                   (4.2.33) 

For Eq (4.2.32) we have [19]: 

�̂�𝑖𝑗 (𝑧,
𝐤2

𝜇2 , 𝜀, 𝛼𝑠) =
𝛼𝑠

2𝜋
𝑧

𝑒−𝜀𝛾𝐸

𝜇2𝜀 ∫
𝑑2+2𝜀�̃�
𝜋1+𝜀�̃�2 �̂�𝑖𝑗

(0)𝛩(𝜇𝐹
2 + 𝑞2)           (4.2.34) 

With �̂�𝑖𝑗
(0) the TMD splitting function (LO coefficient in the 𝛼𝑠 expansion for the TMD 

splitting function) 

In the next section we will calculate the �̂�𝑞𝑔
(0) splitting function. 

 

4.3 From Feynman diagram to splitting function 
 
We discussed the factorisation schemes and how they can be realised by projection 
operators, and that the projection operators we introduced are consistent with 
eachother despite different factorisation schemes. This will be used to extend the use 
of projection operators to a situation where we take the transverse momentum into 
account from the start to the end, and which can work in the small x regime as wel as 
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the collinear regime. This section will contain the detailed calculation of the TMD 
gluon-to-quark splitting function. During the calculation, we will do dimensional 
regularisation by working in a general dimensional spacetime. 

 

4.3.1 Optical theorem and applying Feynman rules 
 
The gluon-to-quark splitting function’s kernel corresponds to the diagram: 

 

Figure 4.6: Gluon-to-quark splitting. (Time runs from bottom to top) 
 

We will refer to this diagram as Y. The lower right diagram of figure 4.5 will be 
referred to as H. Due to the optical theorem [5] (p232-236) we have, conceptually 
represented, the following relation between the two diagrams: 

∫ 𝑑𝛱|𝑌|2 = 2Im(𝐻)                                                        (4.3.1) 

And expressed with the T-matrix this becomes 

|𝑇𝑔→𝑞|
2

= 2Im(𝑇(𝐻))                                                      (4.3.2) 

With 𝑇𝑔→𝑞 the T-matrix for the Y diagram, and 𝑇(𝐻) the T-matrix for the H diagram. 

Let us call 𝑇 ≔ 𝑇(𝑌) ≔ |𝑇𝑔→𝑞|
2
, 𝑇′ ≔ 𝑇(𝐻) , and we can also write it as 

𝑇 = 2Im(𝑇′)                                                              (4.3.3) 

We can express the S-matrix for the process as 𝑆′ = 𝟏 + 𝑇′ , where 𝟏 is the identity 
matrix. We have 

⟨final|𝑖𝑇′|initial⟩ = (2𝜋)4𝛿 (∑ 𝑘initial − ∑ 𝑘final) 𝑖ℳ′                  (4.3.4) 

We will now calculate the H diagram, which relates to the Y diagram via the optical 
theorem. The Y diagram corresponds to the gluon-to-quark splitting function. 



137 
 

 

Figure 4.7: More detailed version of the H-diagram, corresponding to the off-shell kernel 𝐾𝑞𝑔. (Time 
runs from bottom to top.) 

 

As illustrated on figure 4.7, the external particles will be off-shell. The only on-shell 
particle is the intermediate quark, which is on-shell due to the optical theorem, [5] 
(p232-236). The momentum conservation requires 𝑘 − 𝑞 = 𝑞′ − 𝑘′ , and we have for 
the matrix element: 

⟨𝑞, 𝑞′|𝑖𝑇′|𝑘, 𝑘′⟩ = (2𝜋)4𝛿(𝑘 + 𝑘′ − 𝑞 − 𝑞′)𝑖ℳ′                            (4.3.5) 

We use Sudakov parametrisation: 

𝑘𝜇 = 𝑦𝑝𝜇 + 𝑘⊥
𝜇 ,     𝑞𝜇 = 𝑥𝑝𝜇 + 𝑞⊥

𝜇 +
𝑞² + 𝐪²
2𝑥𝑝. �̅�

�̅�𝜇 ,     𝑧 = 𝑥/𝑦                      (4.3.6) 

𝑘⊥
𝜇 = (0, 𝐤, 0) ,     𝑝𝜇 = 𝑃(1, 𝟎, 1) ,      �̅�𝜇 = 𝑃(1, 𝟎, −1) ,     𝑞⊥

𝜇 = (0, 𝐪, 0) 

In this chapter, the symbols that are boldface are not three-momenta, even though 
they are similar to three-momenta. In fact, they are actually two-momenta, which is 
why we will also represent them as boldface symbols. 

There are several properties and relations among the momenta: 

𝑘² = 𝑘⊥
2 = −𝐤2,     𝑝2 = 0 ,     �̅�2 = 0                                      (4.3.7) 

𝑘⊥
𝜇𝑘𝜇 = 𝑘⊥

2 ,     𝑘⊥
𝜇𝑞𝜇 = 𝑘⊥

𝜇𝑞⊥𝜇 ,     𝑘⊥
𝜇𝑝𝜇 = 𝑘⊥

𝜇�̅�𝜇 = 0 ,     𝑞⊥
𝜇𝑝𝜇 = 𝑞⊥

𝜇�̅�𝜇 = 0 

We also define the boost invariant transverse momentum  

�̃� = 𝐪 − 𝑧𝐤 ,     �̃�𝜇 = 𝑞𝜇 − 𝑧𝑘𝜇                                          (4.3.8) 
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Due to the projector operators, we will have to take the external quarks their 
propagators into account as well. 

For the off-shell quarks: 

𝑆(𝑞) =
𝑖𝛿𝑖𝑖′

q/ − 𝑚 + iε
=

𝑖𝛿𝑖𝑖′(q/ + 𝑚)
q² − 𝑚2 + iε

                                        (4.3.9) 

𝑆(−𝑞′) =
𝑖𝛿𝑗𝑗′

−q/ − 𝑚 + iε
=

𝑖𝛿𝑗𝑗′(−q/ + 𝑚)
q′² − 𝑚2 + iε

 

For the on-shell quark, we can apply Cutkosky cutting rules thanks to the cut 
provided by the optical theorem, [5] (p232-236): 

𝑆(𝑞 − 𝑘) = −2𝜋𝑖𝛿𝑙𝑙′(q/ − k/ + 𝑚 − iε)𝛿((𝑞 − 𝑘)2 − 𝑚²)                 (4.3.10) 

Now we write the expression for our gluon-to-quark splitting function kernel, and this 
for a general dimension (for dimensional regularisation). In a 𝐷 = 4 + 2𝜀 dimensional 
spacetime, we have the following integral expression for the kernel: 

�̂�𝑞𝑔 =
1
2

∫
𝑑(𝑞2)

(2𝜋)4+2𝜀 ∫ 𝑑2+2𝜀𝑞⊥𝑇𝑟(𝒫𝑔,𝑖𝑛
𝜇𝜈 (𝑘)𝒫𝑞,𝑜𝑢𝑡(𝑞)𝑖ℳ′)             (4.3.11) 

With 𝒫𝑔,𝑖𝑛
𝜇𝜈 (𝑘) and 𝒫𝑞,𝑜𝑢𝑡(𝑞) the projector operators that connect the two gluons at the 

bottom of the diagram, and connect the two quarks at the top of the diagram. (Fig 
4.5) The Feynman amplitude ℳ′ will be averaged over spin, polarisations and 
colours. 

From the Feynman rules we find the following expression for ℳ′: 

𝑖ℳ′ = 𝑆(𝑞)𝑖𝑔𝛾𝜇𝑇𝑖𝑙
𝑎𝑆(𝑞 − 𝑘)𝑖𝑔𝛾𝜈𝑇𝑙′𝑗

𝑏 𝑆(−𝑞′)                             (4.3.12) 

 

4.3.2 Projection operators and trace 
 
We will now define 𝑋 to be the product of the propagators and the vertex factors, and 
with the projector operators acting on them: 

𝑋 = 𝒫𝑔,𝑖𝑛
𝜇𝜈 (𝑘)𝒫𝑞,𝑜𝑢𝑡(𝑞)𝑖ℳ′                                                                              (4.3.13) 

= 𝒫𝑔,𝑖𝑛
𝜇𝜈 (𝑘)𝒫𝑞,𝑜𝑢𝑡(𝑞)𝑆(𝑞)𝑖𝑔𝛾𝜇𝑇𝑖𝑙

𝑎𝑆(𝑞 − 𝑘)𝑖𝑔𝛾𝜈𝑇𝑙′𝑗
𝑏 𝑆(−𝑞′)                                   

= −𝒫𝑔,𝑖𝑛
𝜇𝜈 (𝑘)𝒫𝑞,𝑜𝑢𝑡(𝑞)

𝑖
q/ − 𝑚 + iε

𝑖𝑔𝛾𝜇𝑇𝑖𝑙
𝑎2𝜋𝑖(q/ − k/ + 𝑚) ∙                           

∙ 𝛿((𝑞 − 𝑘)2 − 𝑚²)𝑖𝑔𝛾𝜈𝑇𝑙𝑗
𝑏 𝑖

−q/ ′ − 𝑚 + iε
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This means we can write the splitting function kernel as 

�̂�𝑞𝑔 =
1
2

∫
𝑑(𝑞2)

(2𝜋)4+2𝜀 ∫ 𝑑2+2𝜀𝑞⊥𝑇𝑟(𝑋)                                  (4.3.14) 

For the projector operators, we will use the choice of Catani and Hautmann [19] (eq 
(43)) for 𝑘𝜇 = 𝑦𝑝𝜇 + 𝑘⊥

𝜇 

𝒫𝑔,𝑖𝑛
𝜇𝜈 (𝑘) = −

𝑘⊥
𝜇𝑘⊥

𝜈

𝑘⊥
2

𝛿𝑎𝑏

𝑁2 − 1
                                              (4.3.15) 

𝒫𝑞,𝑜𝑢𝑡(𝑞) =
p/ ̅

2�̅�𝑞
𝛿𝑖𝑗𝛿𝑞,−𝑞                                                    (4.3.16) 

The factor 𝛿𝑎𝑏

𝑁²−1
 arises because we will sum over the gluon’s colour indices. If we 

would keep 𝑎 = 𝑏 fixed from the start, then this factor wouldn’t be needed. 

Plugging this in 𝑋 and carrying out some of the index contractions, gives us 

𝑋 = 𝑖
𝜋𝑔2

𝑁2 − 1
 
𝑘⊥

𝜇𝑘⊥
𝜈

𝑘⊥
2  

p/ ̅
�̅�𝑞

 
1

q/ − 𝑚 + iε
𝛾𝜇𝑇𝑖𝑙

𝑎(q/ − k/ + 𝑚) ∙                  (4.3.17) 

∙ 𝛿((𝑞 − 𝑘)2 − 𝑚²)𝛾𝜈𝑇𝑙𝑖
𝑎 1

q/ − 𝑚 + iε
                                                               

After rewriting this by changing the order of some factors, and using the rightmost 
forms of Eq (4.3.9), we get 

𝑋 = 𝑖
𝜋𝑔2

𝑁2 − 1
 𝑇𝑖𝑙

𝑎𝑇𝑙𝑖
𝑎  

p/ ̅
𝑘⊥

2�̅�𝑞
 
𝛿((𝑞 − 𝑘)2 − 𝑚2)
(q2 − 𝑚2 + iε)2 (q/ + 𝑚)k/ ⊥(q/ − k/ + 𝑚)k/ ⊥(q/ + 𝑚) 

(4.3.18) 

Remind that we cannot simply change the order of factors that contain gamma 
matrices (this also includes the factors that have a slash through). We also need to 
keep the order of the group generators, but in this case it doesn’t matter because it 
happens to be symmetric. We use 

𝑇𝑖𝑙
𝑎𝑇𝑙𝑖

𝑎 = 𝐶𝐹𝑁 = 𝑇𝐹(𝑁2 − 1)                                            (4.3.19) 

, and X is now equal to 

𝑋 = 𝑖
𝜋𝑔2𝑇𝐹

𝑘⊥
2�̅�𝑞

 
𝛿((𝑞 − 𝑘)2 − 𝑚2)
(q2 − 𝑚2 + iε)2 p/ ̅(q/ + 𝑚)k/ ⊥(q/ − k/ + 𝑚)k/ ⊥(q/ + 𝑚)      (4.3.20) 

We are dealing with ultrarelativistic quarks. This means we can approximate 𝑚 = 0 , 
for both the on-shell and off-shell quarks. We could have done this from the start, 



140 
 

especially since we already knew we are working in the infinite momentum frame and 
all masses are negligible compared to the hard momenta involved. But for the sake of 
being more general, the mass was kept until this point. After setting the mass equal 
to 0, our expression will become 

𝑋 = 𝑖
𝜋𝑔2𝑇𝐹

𝑘⊥
2�̅�𝑞

 
𝛿((𝑞 − 𝑘)2)
(q2 + iε)2 p/ ̅q/ k/ ⊥(q/ − k/ )k/ ⊥q/                             (4.3.21) 

We will need to take the trace of this if we want to calculate the splitting function in Eq 
(4.3.15). We will define a function 𝑍 that only deals with the gamma matrices 
(contracted with momenta) and the trace: 

𝑍 ≔ Tr (p/ ̅q/ k/ ⊥(q/ − k/ )k/ ⊥q/ )                                         (4.3.22) 

This means we can now write Tr(𝑋) as 

Tr(𝑋) = 𝑖
𝜋𝑔2𝑇𝐹

𝑘⊥
2�̅�𝑞

 
𝛿((𝑞 − 𝑘)2)
(q2 + iε)2 𝑍                                         (4.3.23) 

Calculating 𝑍 will require the use of trace identities for the gamma matrices. The 
ones that we need are [5] 

Tr(A/  B/  C/  D/  ) = 4((𝐴𝐵)(𝐶𝐷) − (𝐴𝐶)(𝐵𝐷) + (𝐴𝐷)(𝐵𝐶))                                    (4.3.24) 

Tr(A/  B/  C/  D/  E/  F/  ) = 4(𝐴𝐵)((𝐶𝐷)(𝐸𝐹) − (𝐶𝐸)(𝐷𝐹) + (𝐶𝐹)(𝐷𝐸))                           (4.3.25) 

−4(𝐴𝐶)((𝐵𝐷)(𝐸𝐹) − (𝐵𝐸)(𝐷𝐹) + (𝐵𝐹)(𝐷𝐸)) 

+4(𝐴𝐷)((𝐵𝐶)(𝐸𝐹) − (𝐵𝐸)(𝐶𝐹) + (𝐵𝐹)(𝐶𝐸)) 

−4(𝐴𝐸)((𝐵𝐶)(𝐷𝐹) − (𝐵𝐷)(𝐶𝐹) + (𝐵𝐹)(𝐶𝐷)) 

+4(𝐴𝐹)((𝐵𝐶)(𝐷𝐸) − (𝐵𝐷)(𝐶𝐸) + (𝐵𝐸)(𝐶𝐷)) 

These specific relations don’t involve contraction between gamma matrices 
themselves, only contractions between momentum and gamma matrix. Because of 
this, these relations are independent of the dimension. 

Using these trace identities in 𝑍 will lead to 

𝑍 = Tr (p/ ̅q/ k/ ⊥(q/ − k/ )k/ ⊥q/ )                                                                                                  (4.3.26) 

= 4{2(�̅�𝑞)[2(𝑞𝑘⊥)(𝑘⊥(𝑞 − 𝑘)) − (𝑞(𝑞 − 𝑘))𝑘⊥
2] − 2(�̅�𝑘⊥)𝑞2(𝑘⊥(𝑞 − 𝑘)) 

     +(�̅�(𝑞 − 𝑘))𝑞²𝑘⊥
2} 

= 4{𝑘⊥
2(�̅�𝑞)(𝑞(2𝑘 − 𝑞)) − 𝑘⊥

2𝑞2(�̅�𝑘) + 4(�̅�𝑞)(𝑘⊥𝑞)(𝑘⊥(𝑞 − 𝑘)) − 2𝑞²(�̅�𝑘⊥)(𝑘⊥(𝑞 − 𝑘))} 
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We will use the properties of the parametrisation that we use, from Eq (4.3.7) we 
know 

𝑘⊥𝑘 = 𝑘⊥
2 ,     𝑘⊥𝑞 = 𝑘⊥𝑞⊥ ,     𝑘⊥𝑝 = 𝑘⊥�̅� = 0 

This means that for our 𝑍 we now have 

𝑍 = 4{𝑘⊥
2(�̅�𝑞)(2𝑘𝑞 − 𝑞2 − 4𝑘⊥𝑞⊥) − 𝑘⊥

2𝑞2(�̅�𝑘) + 4(�̅�𝑞)(𝑘⊥𝑞⊥)2}          (4.3.27) 

From our parametrisation we can also deduce the following relations: 

�̅�𝑘 = 𝑦�̅�𝑝 + �̅�𝑘⊥ = 𝑦�̅�𝑝                                                            (4.3.28) 

�̅�𝑞 = 𝑥�̅�𝑝 + �̅�𝑞⊥ +
𝑞² + 𝐪²
2𝑥𝑝. �̅�

�̅�2 = 𝑥�̅�𝑝                                   (4.3.29) 

Because �̅�𝑘⊥ = �̅�𝑞⊥ = �̅�2 = 0 

Substituting this in 𝑍 yields 

𝑍 = 4�̅�𝑝{𝑘⊥
2[𝑥(2𝑘𝑞 − 𝑞2 − 4𝑘⊥𝑞⊥) − 𝑦𝑞2] + 4𝑥(𝑘⊥𝑞⊥)2} 

= 4𝑥�̅�𝑝 (𝑘⊥
2 (2𝑘𝑞 − (1 +

1
𝑧

) 𝑞2 − 4𝑘⊥𝑞⊥) + 4(𝑘⊥𝑞⊥)2)               (4.3.30) 

Where in the last expression we used 𝑧 = 𝑥/𝑦 

Another relation we have from our parametrisation, is 

𝑘𝑞 = 𝑘⊥𝑞⊥ +
𝑞² + 𝐪²

2𝑧
                                                 (4.3.31) 

So now we can write 𝑍 as 

𝑍 = 4�̅�𝑞 (𝑘⊥
2 (

𝐪²
𝑧

− 2𝑘⊥𝑞⊥ − 𝑞2) + 4(𝑘⊥𝑞⊥)2)                       (4.3.32) 

Where we have changed the factor 𝑥�̅�𝑝 back to �̅�𝑞. Now that we have done the trace 
part, and simplified by using the parametrisation, we insert 𝑍 into Eq (4.3.23): 

Tr(𝑋) = 𝑖
𝜋𝑔2𝑇𝐹

𝑘⊥
2�̅�𝑞

 
𝛿((𝑞 − 𝑘)2)
(q2 + iε)2 𝑍                                                                                                 

= 4𝜋𝑖𝑔2𝑇𝐹  
𝛿((𝑞 − 𝑘)2)
(q2 + iε)2 (

𝐪²
𝑧

− 2𝑘⊥𝑞⊥ − 𝑞2 + 4
(𝑘⊥𝑞⊥)2

𝑘⊥
2 )                   (4.3.33) 

We can choose to express Tr(𝑋) either in 𝑘⊥ and 𝑞⊥, or in 𝐤 and 𝐪, via the following 
relations that we have from the parametrisation: 

𝑘² = 𝑘⊥
2 = −𝐤2 ,     𝑞⊥

2 = −𝐪2 ,     𝑘⊥𝑞⊥ = −𝐤𝐪                               (4.3.34) 
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Remember that 𝐤 and 𝐪 each are “two-vectors”, so each have 2 components in the 
same plane. If we express Tr(𝑋) in 𝐤 and 𝐪, we have 

Tr(𝑋) = 4𝜋𝑖𝑔2𝑇𝐹  
𝛿((𝑞 − 𝑘)2)
(q2 + iε)2 (

𝐪2

𝑧
+ 2𝐤𝐪 − 𝑞2 − 4

(𝐤𝐪)2

𝐤2 )            (4.3.35) 

If we work out the argument of the delta function, we get 

𝛿((𝑞 − 𝑘)2) = 𝛿(𝑞2 − 2𝑘𝑞 + 𝑘2) = 𝛿 (
𝑧 − 1

𝑧
𝑞2 − 𝐤2 −

𝐪2

𝑧
+ 2𝐤𝐪)       (4.3.36) 

We will now use the following property of the delta function, which will allow us to 
rewrite Tr(𝑋) in a way that will be usefull when we integrate it: 

𝛿(𝛼𝑥) =
1

|𝛼| 𝛿(𝑥)                                                      (4.3.37) 

This means we have 

𝛿 (
𝑧 − 1

𝑧
𝑞2 − 𝐤2 −

𝐪2

𝑧
+ 2𝐤𝐪) = |

𝑧
1 − 𝑧

| 𝛿 (𝑞2 +
𝑧

1 − 𝑧
(𝐤2 − 2𝐤𝐪) +

𝐪2

1 − 𝑧
)      (4.3.38) 

Since 0 ≤ 𝑧 ≤ 1, we can leave out the absolute values. Using the expression above, 
we can write Tr(𝑋) as: 

Tr(𝑋) = 4𝜋𝑖𝑔2𝑇𝐹
𝑧

1 − 𝑧
 
𝐪²
𝑧 + 2𝐤𝐪 − 𝑞2 − 4 (𝐤𝐪)2

𝐤2

(q2 + iε)2 𝛿 (𝑞2 +
𝑧

1 − 𝑧
(𝐤2 − 2𝐤𝐪) +

𝐪2

1 − 𝑧
) 

(4.3.39) 

 

4.3.3 Integration over q² 
 
Now we go back to the expression for the splitting function kernel, Eq (4.3.14): 

�̂�𝑞𝑔 =
1
2

∫
𝑑(𝑞2)

(2𝜋)4+2𝜀 ∫ 𝑑2+2𝜀𝑞⊥𝑇𝑟(𝑋)                               (4.3.14) 

We will plug Tr(𝑋) into Eq (4.3.14), and first perform the integral over 𝑑(𝑞2). The 
kernel will now be expressed as 

�̂�𝑞𝑔 =
1
2

∫
𝑑2+2𝜀𝑞⊥

(2𝜋)4+2𝜀 𝐼                                                (4.3.40) 

Where we introduce the integral 𝐼 which we define as: 
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𝐼 = ∫ 𝑑(𝑞2)𝑇𝑟(𝑋) = 4𝜋𝑖𝑔2𝑇𝐹
𝑧

1 − 𝑧
∫ 𝑑(𝑞2) 

𝐪²
𝑧 + 2𝐤𝐪 − 𝑞2 − 4 (𝐤𝐪)2

𝐤2

(q2 + iε)2 ∙ 

∙ 𝛿 (𝑞2 +
𝑧

1 − 𝑧
(𝐤2 − 2𝐤𝐪) +

𝐪2

1 − 𝑧
)                          (4.3.41) 

We will now solve this integral. Note that there are no other denominators aside from 
1 (q2 + iε)2⁄ , and we can take a contour in a way that ε wouldn’t matter. So we will 
have to solve the following integral: 

𝐼 = 4𝜋𝑖𝑔2𝑇𝐹
𝑧

1 − 𝑧
∫ 𝑑(𝑞2) 

𝐪²
𝑧 + 2𝐤𝐪 − 𝑞2 − 4 (𝐤𝐪)2

𝐤2

q4  

∙ 𝛿 (𝑞2 +
𝑧

1 − 𝑧
(𝐤2 − 2𝐤𝐪) +

𝐪2

1 − 𝑧
)          (4.3.42) 

If we integrate now, the delta function will set its argument to 0 , which means 

𝑞2 +
𝑧

1 − 𝑧
(𝐤2 − 2𝐤𝐪) +

𝐪2

1 − 𝑧
= 0                                   (4.3.43) 

This gives us the following expression for 𝑞2 

𝑞2 =
𝑧

𝑧 − 1
(𝐤2 − 2𝐤𝐪) +

𝐪2

𝑧 − 1
=

1
𝑧 − 1

(𝑧(𝐤2 − 2𝐤𝐪) + 𝐪2)            (4.3.44) 

And for the integral we now have 

𝐼 = 4𝜋𝑖𝑔2𝑇𝐹
𝑧

1 − 𝑧
 

𝑧
1 − 𝑧 𝐤2 + 𝐪²

𝑧(1 − 𝑧) + 2 2𝑧 − 1
𝑧 − 1 𝐤𝐪 − 4 (𝐤𝐪)2

𝐤2

( 1
𝑧 − 1 (𝑧(𝐤2 − 2𝐤𝐪) + 𝐪2))

2  

= 4𝜋𝑖𝑔2𝑇𝐹

𝑧²𝐤2 + 𝐪² − 2𝑧(2𝑧 − 1)𝐤𝐪 − 4𝑧(1 − 𝑧) (𝐤𝐪)2

𝐤2

(𝑧(𝐤2 − 2𝐤𝐪) + 𝐪2)2                   (4.3.45) 

 

4.3.4 Identification of the (unintegrated) splitting function 
 
For the remaining integral for the splitting function kernel in Eq (4.3.40), we will use 
the boost invariant transverse momentum that we defined earlier (Eq 4.3.8), and 
change from 𝑞⊥ to �̃� 

�̃� = 𝐪 − 𝑧𝐤 ,     �̃�𝜇 = 𝑞𝜇 − 𝑧𝑘𝜇 

Doing this substitution in Eq (4.3.45) gives us the following expression for 𝐼 



144 
 

𝐼 = 4𝜋𝑖𝑔2𝑇𝐹  
𝑧²𝐤2 + 𝐪² + 2𝑧(1 − 2𝑧)𝐤𝐪 + 4𝑧(𝑧 − 1) (𝐤𝐪)2

𝐤2

(𝑧(𝐤2 − 2𝐤𝐪) + 𝐪2)2  

= 𝑖
4𝜋𝑔2𝑇𝐹

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 (4𝑧2(1 − 𝑧)2𝐤2 + �̃�2 + 4𝑧(1 − 𝑧)(1 − 2𝑧)𝐤�̃� + 4𝑧(𝑧 − 1)
(𝐤�̃�)2

𝐤2 ) 

(4.3.46) 

The substitution �̃� = 𝐪 − 𝑧𝐤 will result in 

𝑑2+2𝜀𝑞⊥ → 𝑑2+2𝜀�̃� = |�̃�|1+2𝜀𝑑 |�̃�|𝑑𝛺2+2𝜀                             (4.3.47) 

Going back to the expression for the kernel Eq (4.3.40), we now have: 

�̂�𝑞𝑔 =
1
2

∫
𝑑2+2𝜀𝑞⊥

(2𝜋)4+2𝜀 𝐼 =
1
2

∫
𝑑2+2𝜀�̃�

(2𝜋)4+2𝜀 𝐼 =
1
2

∫
𝑑 |�̃�|𝑑𝛺2+2𝜀

(2𝜋)4+2𝜀 |�̃�|1+2𝜀𝐼             (4.3.48) 

And plugging in the expression for 𝐼 from Eq (4.3.46) into Eq (4.3.48) yields 

�̂�𝑞𝑔 = 𝑖𝑔2𝑇𝐹 ∫
𝑑 |�̃�|𝑑𝛺2+2𝜀

(2𝜋)3+2𝜀  
|�̃�|1+2𝜀

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 [4𝑧2(1 − 𝑧)2𝐤2 + �̃�2 + 

+4𝑧(1 − 𝑧)(1 − 2𝑧)𝐤�̃� + 4𝑧(𝑧 − 1)
(𝐤�̃�)2

𝐤2 ]                         (4.3.49) 

When we do dimensional regularisation in the MS̅̅ ̅̅  renormalisation scheme, we have 
the following expression for coupling 𝑔, [19]: 

𝑔2

2(2𝜋)3+2𝜀 =
𝛼𝑠

4𝜋
 

𝑒−𝜀𝛾𝐸

𝜋1+𝜀𝜇2𝜀                                             (4.3.50) 

With 𝛾𝐸 the Euler-Mascheroni constant. 

If we plug this into Eq (4.3.49), we can rewrite the kernel as 

�̂�𝑞𝑔 = 𝑖𝑇𝐹
𝛼𝑠

2
𝑒−𝜀𝛾𝐸

𝜋2+𝜀𝜇2𝜀 ∫ 𝑑 |�̃�|𝑑𝛺2+2𝜀
|�̃�|1+2𝜀

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 [4𝑧2(1 − 𝑧)2𝐤2 + �̃�2 + 

+4𝑧(1 − 𝑧)(1 − 2𝑧)𝐤�̃� + 4𝑧(𝑧 − 1)
(𝐤�̃�)2

𝐤2 ]                  (4.3.51) 

We identify the unintegrated splitting function in the integrand of Eq (4.3.51): 

�̂�𝑞𝑔 = 𝑖
𝛼𝑠

2
𝑒−𝜀𝛾𝐸

𝜋2+𝜀𝜇2𝜀 ∫
𝑑 |�̃�|
|�̃�|

|�̃�|2𝜀𝑑𝛺2+2𝜀�̂�𝑞𝑔
(0)(𝑧, 𝐤, �̃�)                       (4.3.52) 

The unintegrated TMD gluon-to-quark splitting function: 
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�̂�𝑞𝑔
(0)(𝑧, 𝐤, �̃�) = 𝑇𝐹

|�̃�|2

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 [4𝑧2(1 − 𝑧)2𝐤2 + �̃�2 + 4𝑧(1 − 𝑧)(1 − 2𝑧)𝐤�̃� + 

                            +4𝑧(𝑧 − 1)
(𝐤�̃�)2

𝐤2 ] 

= 𝑇𝐹
|�̃�|4

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 [1 + 4𝑧2(1 − 𝑧)2 𝐤2

�̃�2 + 4𝑧(1 − 𝑧)(1 − 2𝑧)
𝐤�̃�
�̃�2 + 4𝑧(𝑧 − 1)

(𝐤�̃�)2

𝐤2�̃�2 ] 

(4.3.53) 

Note that when we turn 𝛼𝑠 and the factors due to dimensional regularisation, back 
into 𝑔, the only factors in front of the integral are 𝑖𝑔2𝑇𝐹. The 𝑖 just originates from the 
factors in front of the propagators, and 𝑔2 originates from the vertices. The descision 
we make here is to only absorb the constant factor 𝑇𝐹 into the splitting function. 

This result for the unintegrated TMD gluon-to-quark splitting function is exactly the 
same as in [19]. 

In the collinear limit, 𝐤2 → 0 , the unintegrated TMD splitting function becomes simply 
𝑇𝐹. 

 

4.3.5 Calculation of the angular averaged splitting function 
 
We will now calculate the angular averaged TMD gluon-to-quark splitting function: 

�̅�𝑞𝑔
(0)(𝑧, 𝐤, �̃�) =

∫ 𝑑𝛺2+2𝜀�̂�𝑞𝑔
(0)(𝑧, 𝐤, �̃�)

∫ 𝑑𝛺2+2𝜀
                                     (4.3.54) 

Where the denominator is the “area” of the d-dimensional unit sphere, since we are 
taking the average and not just the sum. Or in other words, it is the complete solid 
angle in d dimensions, [5] (p249): 

∫ 𝑑𝛺𝑑 =
2𝜋𝑑/2

𝛤(𝑑/2)                                                      (4.3.55) 

For example for 𝑑 = 2 we would get ∫ 𝑑𝛺2 = 2𝜋, which is the perimeter of the unit 
circle. Using Eq (4.3.55) in Eq (4.3.54) gives us 

�̅�𝑞𝑔
(0)(𝑧, 𝐤, �̃�) =

𝛤(1 + 𝜀)
2𝜋1+𝜀 ∫ 𝑑𝛺2+2𝜀�̂�𝑞𝑔

(0)(𝑧, 𝐤, �̃�)                         (4.3.56) 

Based on Eq (4.3.53) we define: 

�̂�𝑞𝑔
(0)(𝑧, 𝐤, �̃�) = �̂� + �̂� + �̂� + �̂�                                         (4.3.57) 
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With the terms �̂�, �̂�, �̂� and �̂� defined as: 

�̂� = 𝑇𝐹
�̃�4

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2                                                 (4.3.58) 

�̂� = 𝑇𝐹
4𝑧2(1 − 𝑧)2𝐤2�̃�2

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2                                                 (4.3.59) 

�̂� = 𝑇𝐹
4𝑧(1 − 𝑧)(1 − 2𝑧)�̃�2(𝐤�̃�)

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2                                     (4.3.60) 

�̂� = 𝑇𝐹  
1

𝐤2  
4𝑧(𝑧 − 1)�̃�2(𝐤�̃�)2

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2                                         (4.3.61) 

For �̂� and �̂� we have no angle dependence, this means: 

∫ 𝑑𝛺2+2𝜀(�̂� + �̂�) = (�̂� + �̂�) ∫ 𝑑𝛺2+2𝜀 =
2𝜋1+𝜀

𝛤(1 + 𝜀) (�̂� + �̂�)           (4.3.62) 

For the angular average of �̂� we have to deal with the scalar product. 

∫ 𝑑𝛺2+2𝜀�̂� = 𝑇𝐹
4𝑧(1 − 𝑧)(1 − 2𝑧)�̃�2

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 ∫ 𝑑𝛺2+2𝜀𝐤�̃�                  (4.3.63) 

To solve this, we define an angle in the plane of the two “vector”: 

𝐤�̃� = 𝐤 ∙ �̃� ≔ |𝐤||�̃�| cos 𝜑                                             (4.3.64) 

In 2 dimensions, we would have to do the following integral, which vanishes: 

∫ 𝑑𝛺2 cos 𝜑 = ∫ 𝑑𝜑 cos 𝜑
2𝜋

0

= 0                                        (4.3.65) 

Similarly, the integral in 2 + 2𝜀 dimensions also vanishes 

∫ 𝑑𝛺2+2𝜀 cos 𝜑 = 0                                                    (4.3.66) 

This means that the integral in Eq (4.3.63) vanishes 

∫ 𝑑𝛺2+2𝜀�̂� = 0                                                        (4.3.67) 

For the angular average of �̂� we should calculate: 

∫ 𝑑𝛺2+2𝜀�̂� = 𝑇𝐹  
1

𝐤2  
4𝑧(𝑧 − 1)�̃�2

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 ∫ 𝑑𝛺2+2𝜀(𝐤�̃�)2                (4.3.68) 

Again we use the same angle 𝜑 from Eq (4.3.64): 
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∫ 𝑑𝛺2+2𝜀(𝐤�̃�)2 = 𝐤2�̃�2 ∫ 𝑑𝛺2+2𝜀cos2(𝜑)                           (4.3.69) 

In 2 dimensions we would have: 

∫ 𝑑𝛺2cos2(𝜑) = ∫ 𝑑𝜑 cos2(𝜑)
2𝜋

0

= 𝜋                               (4.3.70) 

In 2 + 2𝜀 dimensions however, we have: 

∫ 𝑑𝛺2+2𝜀cos2(𝜑) =
2𝜋1+𝜀

𝛤(1 + 𝜀) 
1

2 + 2𝜀
                              (4.3.71) 

Using Eq (4.3.69) and Eq (4.3.71) in Eq (4.3.68), we get the following result for the 
integral of �̂�: 

∫ 𝑑𝛺2+2𝜀�̂� = 𝑇𝐹
4𝜋1+𝜀

(1 + 𝜀)𝛤(1 + 𝜀) 
𝑧(𝑧 − 1)�̃�4

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2              (4.3.72) 

Now we go back to Eq (4.3.56) and Eq (4.3.57), and use the solutions for the 
integrals of �̂�, �̂�, �̂� and �̂� to get a result for �̅�𝑞𝑔

(0)(𝑧, 𝐤, �̃�) 

�̅�𝑞𝑔
(0)(𝑧, 𝐤, �̃�) =

𝛤(1 + 𝜀)
2𝜋1+𝜀 ∫ 𝑑𝛺2+2𝜀(�̂� + �̂� + �̂� + �̂�)                                                          (4.3.73) 

                        =
𝛤(1 + 𝜀)

2𝜋1+𝜀 (
2𝜋1+𝜀

𝛤(1 + 𝜀) (�̂� + �̂�) + ∫ 𝑑𝛺2+2𝜀�̂�) 

                        = 𝑇𝐹
�̃�2

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 (�̃�2 + 4𝑧2(1 − 𝑧)2𝐤2 +
2𝑧(𝑧 − 1)

1 + 𝜀
�̃�2) 

                        = 𝑇𝐹
�̃�2

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 (
2𝑧(𝑧 − 1) + 1 + 𝜀

1 + 𝜀
�̃�2 + 4𝑧2(1 − 𝑧)2𝐤2) 

We can rewrite 2𝑧(𝑧 − 1) + 1 = 𝑧2 + (1 − 𝑧)2, and we get the following expression for 
the angular averaged TMD gluon-to-quark splitting function: 

�̅�𝑞𝑔
(0)(𝑧, 𝐤, �̃�) = 𝑇𝐹

�̃�4

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 (
𝑧2 + (1 − 𝑧)2 + 𝜀

1 + 𝜀
+ 4𝑧2(1 − 𝑧)2 𝐤2

�̃�2)     (4.3.74) 

This is exactly the same as in [17] 

When we take the limit 𝜀 → 0, the angular averaged splitting function becomes 

�̅�𝑞𝑔
(0)(𝑧, 𝐤, �̃�) = 𝑇𝐹

�̃�4

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 (𝑧2 + (1 − 𝑧)2 + 4𝑧2(1 − 𝑧)2 𝐤2

�̃�2)     (4.3.75) 

In the collinear limit we have 𝐤2 → 0, for the splitting function this means 
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�̅�𝑞𝑔
(0)(𝑧, 𝐤2 → 0, �̃�) = 𝑇𝐹(𝑧2 + (𝑧 − 1)2)                                (4.3.76) 

This is the same as the collinear gluon-to-quark splitting function in Eq (3.2.10). 

In the collinear limit we get the splitting function from DGLAP, and in high energy we 
can use our TMD splitting function together with the gluon PDF from BFKL. For BFKL 
we would need to calculate the resummed anomalous dimension by taking the Mellin 
transform of the convolution of the angular averaged TMD splitting function and the 
TMD gluon PDF. By equating this convolution to the collinearly factorised form of the 
Green’s function, we would obtain a result that has the BFKL resummation of the 
DGLAP anomalous dimension [24-27] [30]. So our factorisation overlaps with both 
DGLAP and BFKL. 

 

4.3.6 Calculation of the splitting kernel 
 
We will now calculate the TMD gluon-to-quark splitting kernel �̂�𝑞𝑔 by doing the last 
remaining integration over |�̃�|. We will first do this for the whole |�̃�| space, not for the 
restricted 𝛩(𝜇𝐹

2 + 𝑞2). 

When we look at Eq (4.3.52) and Eq (4.3.56), we can now write the splitting kernel as 
an integral over the angular averaged splitting function from Eq (4.3.74): 

�̂�𝑞𝑔 = 𝑖
𝛼𝑠𝑒−𝜀𝛾𝐸

𝜋𝜇2𝜀𝛤(1 + 𝜀) ∫
𝑑|�̃�|
|�̃�|

|�̃�|2𝜀�̅�𝑞𝑔
(0)(𝑧, 𝐤, �̃�)                         (4.3.77) 

When we plug in Eq (4.3.74) for  �̅�𝑞𝑔
(0)(𝑧, 𝐤, �̃�), and when we allow |�̃�| to take any 

value larger or equal to 0, the splitting kernel will be the following integration: 

�̂�𝑞𝑔 = 𝑖
𝑇𝐹𝛼𝑠𝑒−𝜀𝛾𝐸

𝜋𝜇2𝜀𝛤(1 + 𝜀) ∫ 𝑑|�̃�|
|�̃�|3+2𝜀

(𝑧(1 − 𝑧)𝐤2 + �̃�2)2 (
𝑧2 + (1 − 𝑧)2 + 𝜀

1 + 𝜀
+ 4𝑧2(1 − 𝑧)2 𝐤2

�̃�2)
∞

0

 

(4.3.78) 

We do the following substitution: 

𝑢 ≔ �̃�2                                                                    (4.3.79) 

𝑑𝑢 = 2|�̃�|𝑑|�̃�|                                                        (4.3.80) 

With this, the expression for the splitting kernel is now 

�̂�𝑞𝑔 = 𝑖
𝑇𝐹𝛼𝑠𝑒−𝜀𝛾𝐸

2𝜋𝜇2𝜀𝛤(1 + 𝜀) ∫ 𝑑𝑢
𝑢1+𝜀

(𝑧(1 − 𝑧)𝐤2 + 𝑢)2 (
𝑧2 + (1 − 𝑧)2 + 𝜀

1 + 𝜀
+ 4𝑧2(1 − 𝑧)2 𝐤2

𝑢
)

∞

0

 

(4.3.81) 
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Now we want to change this integral such that the denominator (𝑧(1 − 𝑧)𝐤2 + 𝑢)2 is 
replaced by a denominator of the form (𝐴𝑢 + 𝐵(1 − 𝑢))

2
, and such that the 

integration limits are changed from [0, ∞] to [0, 1]. A denominator of the form 
(𝐴𝑢 + 𝐵(1 − 𝑢))

2
 is something you see in Feynman parametrisation, a technique that 

can solve many integrals in QFT. There is a very easy substitution that does this, and 
that also keeps the function under the integral a rational function: 

𝑣 ≔
𝑢

𝑢 + 1
                                                             (4.3.82) 

𝑑𝑣 =
𝑑𝑢

(𝑢 + 1)2                                                         (4.3.83) 

With this substitution, the splitting kernel becomes 

�̂�𝑞𝑔 = 𝑖
𝑇𝐹𝛼𝑠𝑒−𝜀𝛾𝐸

2𝜋𝜇2𝜀𝛤(1 + 𝜀) ∫ 𝑑𝑣 (
𝑣

1 − 𝑣
)

1+𝜀
1

0

1
(𝑧(1 − 𝑧)𝐤2(1 − 𝑣) + 𝑣)2 ∙ 

∙ (
𝑧2 + (1 − 𝑧)2 + 𝜀

1 + 𝜀
+ 4𝑧2(1 − 𝑧)2𝐤2 1 − 𝑣

𝑣
)                                   (4.3.84) 

We split the kernel up in two terms: 

�̂�𝑞𝑔 = 𝑖
𝑇𝐹𝛼𝑠𝑒−𝜀𝛾𝐸

2𝜋𝜇2𝜀𝛤(1 + 𝜀)
(𝐼1 + 𝐼2)                                      (4.3.85) 

With 𝐼1 and 𝐼2 the integrals: 

𝐼1 = 4𝑧2(1 − 𝑧)2𝐤2 ∫ 𝑑𝑣 (
𝑣

1 − 𝑣
)

𝜀 1
(𝑧(1 − 𝑧)𝐤2(1 − 𝑣) + 𝑣)2

1

0

                    (4.3.86) 

𝐼2 =
𝑧2 + (1 − 𝑧)2 + 𝜀

1 + 𝜀
∫ 𝑑𝑣 (

𝑣
1 − 𝑣

)
1+𝜀 1

(𝑧(1 − 𝑧)𝐤2(1 − 𝑣) + 𝑣)2

1

0

          (4.3.87) 

We can try to solve this via Feynman parametrisation, or some similar techniques. 
Notice that if we already go back to 4D spacetime now by taking 𝜀 = 0, then Eq 
(4.3.86) becomes simply the basic integral for Feynman parametrisation: 

1
𝐴𝐵

= ∫
𝑑𝑣

(𝑣𝐴 + (1 − 𝑣)𝐵)2

1

0

                                            (4.3.88) 

So for 𝜀 = 0, the term 𝐼1 will be 
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𝐼1 = 4𝑧2(1 − 𝑧)2𝐤2 ∫
𝑑𝑣

(𝑧(1 − 𝑧)𝐤2(1 − 𝑣) + 𝑣)2

1

0

=
4𝑧2(1 − 𝑧)2𝐤2

𝑧(1 − 𝑧)𝐤2  

= 4𝑧(1 − 𝑧)                                                                                                         (4.3.89) 

The term 𝐼2 for 𝜀 = 0 will be 

𝐼2 = (𝑧2 + (1 − 𝑧)2) ∫ 𝑑𝑣
𝑣

1 − 𝑣
 

1
(𝑧(1 − 𝑧)𝐤2(1 − 𝑣) + 𝑣)2

1

0

                  (4.3.90) 

This will be solved by partial fraction decomposition, by rewriting 𝐼2 in the following 
form: 

𝐼2 = (𝑧2 + (1 − 𝑧)2) ∫ 𝑑𝑣
𝑣

(1 − 𝑣)(𝑎𝑣 + 𝑏)2

1

0

                           (4.3.91) 

Identifying 𝑎 and 𝑏 yields: 

𝑎 = 1 − 𝑧(1 − 𝑧)𝐤2     , 𝑏 = 𝑧(1 − 𝑧)𝐤2                               (4.3.92) 

Thus we have 𝑎 = 1 − 𝑏, and we can write 𝐼2 as 

𝐼2 = (𝑧2 + (1 − 𝑧)2) ∫ 𝑑𝑣
𝑣

(1 − 𝑣)((1 − 𝑏)𝑣 + 𝑏)
2

1

0

                      (4.3.93) 

Now we will do the partial fraction decomposition: 

𝑣

(1 − 𝑣)((1 − 𝑏)𝑣 + 𝑏)
2 =

𝐴
1 − 𝑣

+
𝐵

(1 − 𝑏)𝑣 + 𝑏
+

𝐶

((1 − 𝑏)𝑣 + 𝑏)
2         (4.3.94) 

Putting everything on the same denominator gives us the system of equations: 

{
𝐴(1 − 𝑏)2 − 𝐵(1 − 𝑏) = 0                      
2𝐴𝑏(1 − 𝑏) + 𝐵(1 − 𝑏) − 𝐵𝑏 − 𝐶 = 1
𝐴𝑏2 + 𝐵𝑏 + 𝐶 = 0                                     

                            (4.3.95) 

It’s solution is given by 

{
𝐴 = 1        
𝐵 = 1 − 𝑏
𝐶 = −𝑏    

                                                         (4.3.96) 

Using this solution in Eq (4.3.94) and plugging the result in Eq (4.3.93) gives us 

𝐼2 = (𝑧2 + (1 − 𝑧)2) ∫ 𝑑𝑣 (
1

1 − 𝑣
+

1 − 𝑏
(1 − 𝑏)𝑣 + 𝑏

−
𝑏

((1 − 𝑏)𝑣 + 𝑏)
2)

1

0

        (4.3.97) 
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The first term in 𝐼2 gives integrates to 

∫
𝑑𝑣

1 − 𝑣

1

0

= (−ln|𝑣 − 1|)|𝑣=0
𝑣=1 = −ln(0) = +∞                          (4.3.98) 

This term gives us a pole. 

The second term in 𝐼2 integrates to 

∫
𝑑𝑣

𝑣 + 𝑏 (1 − 𝑏)⁄

1

0

= ln|1 (1 − 𝑏)⁄ | − ln|𝑏 (1 − 𝑏)⁄ | = −ln|𝑏| 

= ln(𝑧(1 − 𝑧)𝐤2)                                                            (4.3.99) 

The third term in 𝐼2 integrates to 

      − ∫
𝑏 𝑑𝑣

((1 − 𝑏)𝑣 + 𝑏)
2

1

0

=
𝑏

(1 − 𝑏)2  
1

𝑣 + 𝑏 (1 − 𝑏)⁄ |
0

1

 

=
𝑏

(1 − 𝑏)2 (
1

1 + 𝑏 (1 − 𝑏)⁄ −
1

𝑏 (1 − 𝑏)⁄ ) 

= −1                                                                                                (4.3.100) 

Combining these three results in Eq (4.3.97) yields 

𝐼2 = (𝑧2 + (1 − 𝑧)2)(ln(𝑧(1 − 𝑧)𝐤2) − 1 − ln(0))                    (4.3.101) 

Using Eq (4.3.89) and Eq (4.3.101) in Eq (4.3.85) for the TMD splitting kernel, where 
we set 𝜀 = 0 before integration, gives us 

�̂�𝑞𝑔 = 𝑖𝑇𝐹
𝛼𝑠

2𝜋
[4𝑧(1 − 𝑧) + (𝑧2 + (1 − 𝑧)2)(ln(𝑧(1 − 𝑧)𝐤2) − 1 − ln(0))]     (4.3.102) 

This splitting kernel has a logarithmic pole, coming from 𝐼2. 

We go back to Eq (4.3.86) and Eq (4.3.87) and will now keep the 𝜀 during integration. 

We notice that if we write the denominator (𝑧(1 − 𝑧)𝐤2(1 − 𝑣) + 𝑣)2 as (𝑎𝑣 + 𝑏)2, it 
might be possible that 𝐼1 and 𝐼2 are hypergeometric functions. 

𝐼1 = 4𝑧2(1 − 𝑧)2𝐤2 ∫ 𝑑𝑣 (
𝑣

1 − 𝑣
)

𝜀 1
(𝑎𝑣 + 𝑏)2

1

0

                              (4.3.103) 

𝐼2 =
𝑧2 + (1 − 𝑧)2 + 𝜀

1 + 𝜀
∫ 𝑑𝑣 (

𝑣
1 − 𝑣

)
1+𝜀 1

(𝑎𝑣 + 𝑏)2

1

0

                    (4.3.104) 
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Where 𝑎 and 𝑏 are given by Eq (4.3.92). 

The hypergeometric functions (or in this case specifically Gauss’s hypergeometric 
functions) are a type of special functions first studied by Euler, but the full treatment 
was done first by Gauss. The hypergeometric functions 𝐹12 (𝛼, 𝛽; 𝛾; 𝑤) are the 
solutions to the hypergeometric differential equation [37] 

𝑤(1 − 𝑤)
𝑑2𝑓(𝑤)

𝑑𝑤2 + (𝛾 − (𝛼 + 𝛽 + 1)𝑤)
𝑑𝑓(𝑤)

𝑑𝑤
− 𝛼𝛽𝑓(𝑤) = 0            (4.3.105) 

The hypergeometric functions can be expressed by the hypergeometric series [37]: 

𝐹12 (𝛼, 𝛽; 𝛾; 𝑤) = ∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛
 
𝑤𝑛

𝑛!

∞

𝑛=0

                                 (4.3.106) 

Where the notation (𝑥)𝑛 is a Pochhammer symbol, defined as 

(𝑥)𝑛 =
Γ(𝑥 + 𝑛)

Γ(𝑥) = 𝑥(𝑥 + 1) … (𝑥 + 𝑛 − 1)                          (4.3.107) 

With Γ the Gamma function. 

There is also the following integral for the hypergeometric functions [37]: 

𝐹12 (𝛼, 𝛽; 𝛾; 𝑤) =
1

Β(𝛽, 𝛾 − 𝛽) ∫ 𝑥𝛽−1(1 − 𝑥)𝛾−𝛽−1(1 − 𝑤𝑥)−𝛼𝑑𝑥
1

0

          (4.3.108) 

With Β the Euler Beta function: 

Β(𝑥, 𝑦) =
Γ(𝑥)Γ(𝑦)
Γ(𝑥 + 𝑦)                                                 (4.3.109) 

Eq (4.3.108) is only defined for Re(𝑤) < 1, and for Re(𝛾) > Re(𝛽) > 0. 

The integral Eq (4.3.108) looks a lot like the integrals in Eq (4.3.103) and (4.3.104), 
with 𝑥 = 𝑣. We can rewrite Eq (4.3.103) and (4.3.104) as 

𝐼1 =
4𝑧2(1 − 𝑧)2𝐤2

𝑏2 ∫ 𝑑𝑣 (
𝑣

1 − 𝑣
)

𝜀 1
(1 + 𝑎𝑣 𝑏⁄ )2

1

0

                             (4.3.110) 

𝐼2 =
𝑧2 + (1 − 𝑧)2 + 𝜀

(1 + 𝜀)𝑏2 ∫ 𝑑𝑣 (
𝑣

1 − 𝑣
)

1+𝜀 1
(1 + 𝑎𝑣 𝑏⁄ )2

1

0

                   (4.3.111) 

Where the factor in front of the integral in 𝐼1 simplifies to 4 𝐤2⁄  because from Eq 
(4.3.92) we have 𝑏 = 𝑧(1 − 𝑧)𝐤2. We look at Eq (4.3.108) and (4.3.110), and we 
identify the arguments of the hypergeometric function 𝐹12 (𝛼, 𝛽; 𝛾; 𝑤) for 𝐼1: 
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𝛼 = 2 , 𝛽 = 1 + 𝜀 , 𝛾 = 2 , 𝑤 = − 𝑎 𝑏⁄                  (4.3.112) 

The condition Re(𝛾) > Re(𝛽) > 0 is satisfied as long as −1 < 𝜀 < 1. Is the condition 
Re(𝑤) < 1 satisfied? 

𝑤 = − 𝑎 𝑏⁄ = 1 −
1
𝑏

= 1 −
1

𝑧(1 − 𝑧)𝐤2 < 1                         (4.3.113) 

This means we need to have 

1
𝑧(1 − 𝑧)𝐤2 > 0                                                    (4.3.114) 

In order to use Eq (4.3.108). The condition Eq (4.3.114) is always valid because 
0 < 𝑧 < 1, and because 𝐤2 practically never  reaches infinity. So we can solve 𝐼1 in 
Eq (4.3.110) by using Eq (4.3.108): 

𝐼1 =
4

𝐤2 Β(𝛽, 𝛾 − 𝛽) 𝐹12 (𝛼, 𝛽; 𝛾; 𝑤)                                                            (4.3.115) 

=
4

𝐤2 Γ(1 + 𝜀)Γ(1 − 𝜀) 𝐹12 (2, 1 + 𝜀;  2;  1 −
1

𝑧(1 − 𝑧)𝐤2) 

We will now look at Eq (4.3.108) and (4.3.111), and we identify the arguments of the 
hypergeometric function 𝐹12 (𝛼, 𝛽; 𝛾; 𝑤) for 𝐼2: 

𝛼 = 2 , 𝛽 = 2 + 𝜀 , 𝛾 = 2 , 𝑤 = − 𝑎 𝑏⁄                   (4.3.116) 

The condition Re(𝛾) > Re(𝛽) > 0 is satisfied as long as −2 < 𝜀 < 0. And the 
condition Re(𝑤) < 1 is again satisfied because it is the same as with 𝐼1. So we can 
solve 𝐼2 in Eq (4.3.111) by using Eq (4.3.108): 

            𝐼2 =
𝑧2 + (1 − 𝑧)2 + 𝜀

(1 + 𝜀)𝑧2(1 − 𝑧)2𝐤4 Β(𝛽, 𝛾 − 𝛽) 𝐹12 (𝛼, 𝛽; 𝛾; 𝑤)                                      (4.3.117) 

=
𝑧2 + (1 − 𝑧)2 + 𝜀

𝑧2(1 − 𝑧)2𝐤4 Γ(1 + 𝜀)Γ(−𝜀) 𝐹12 (2, 2 + 𝜀;  2;  1 −
1

𝑧(1 − 𝑧)𝐤2) 

Using Eq (4.3.115) and Eq (4.3.117) in Eq (4.3.85) we get the TMD gluon-to-quark 
splitting kernel, in dimensional regularisation: 

�̂�𝑞𝑔 = 𝑖
𝑇𝐹𝛼𝑠𝑒−𝜀𝛾𝐸

2𝜋𝜇2𝜀𝐤2 (4Γ(1 − 𝜀) 𝐹12 (2, 1 + 𝜀;  2;  1 −
1

𝑧(1 − 𝑧)𝐤2) +                          (4.3.118) 

                      +
𝑧2 + (1 − 𝑧)2 + 𝜀

𝑧2(1 − 𝑧)2𝐤2 Γ(−𝜀) 𝐹12 (2, 2 + 𝜀;  2;  1 −
1

𝑧(1 − 𝑧)𝐤2)) 

In order to combine 𝐼1 and 𝐼2 into �̂�𝑞𝑔 with only one 𝜀, we are required to combine the 
conditions that 𝜀 had to obey in both integrals. This results in the condition 
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−1 < 𝜀 < 0                                                        (4.3.119) 

The splitting kernel has a pole, coming from 𝐼2. When we take the limit 𝜀 → 0 in Eq 
(4.3.118), Γ(−𝜀) will become infinite. For small 𝜀 we can expand the Gamma function 
near its pole: 

Γ(−𝜀) = −
1
𝜀

− 𝛾𝐸 + 𝒪(𝜀)                                         (4.3.120) 

With 𝛾𝐸 the Euler-Mascheroni constant. When we take the limit 𝜀 → 0, the splitting 
kernel becomes: 

�̂�𝑞𝑔 = 𝑖
𝑇𝐹𝛼𝑠

2𝜋𝐤2 (4 𝐹12 (2, 1;  2;  1 −
1

𝑧(1 − 𝑧)𝐤2) +                                                        (4.3.121) 

                      +
𝑧2 + (1 − 𝑧)2

𝑧2(1 − 𝑧)2𝐤2 (−
1
𝜀

− 𝛾𝐸 + 𝒪(𝜀)) 𝐹12 (2, 2;  2;  1 −
1

𝑧(1 − 𝑧)𝐤2)) 

In the collinear limit we have 𝐤2 → 0, which makes the splitting kernel collinear 
divergent. 

 

4.4 Importance of TMD splitting functions 
 
TMD splitting functions take into account the transverse momentum, already at 
leading order. The collinear splitting functions do not do this, and effects from 
transverse momentum enters the collinear splitting functions only in higher orders. 
The TMD splitting functions can be used in the small x region (BFKL region), and 
they resum terms in (𝛼𝑠 ln(�̂� 𝑀2⁄ )⁄ )𝑛 to all orders. If we want to calculate the 
resummed anomalous dimension, we need to take the Mellin transform of the 
convolution of the angular averaged TMD splitting function and the TMD gluon PDF. 
By equating this convolution to the collinearly factorised form of the Green’s function, 
we would obtain a result that has the BFKL resummation of the DGLAP anomalous 
dimension. In the collinear limit, the TMD splitting functions reduce to the collinear 
splitting functions, which we explicitly checked for the gluon-to-quark TMD splitting 
function in the previous section, which are the ones used for the DGLAP equation. 
This means that the TMD splitting functions overlap with both BFKL and DGLAP. 
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5 Monte Carlo method in parton branching 
 
In this chapter I perform numerical calculations for the evolution of parton distribution 
functions, both collinear and TMD, by making use of the Parton Branching (PB) 
method [22] and of Monte Carlo simulations based on the computer code uPDFevolv 
[23]. The numerical calculations in this chapter implement the evolution equations 
and splitting functions discussed at analytical level in the previous chapters. I start in 
section 5.1 with a brief description of the PB approach; then in section 5.2 I illustrate 
the Monte Carlo method of solution of the evolutions; in section 5.3 I present 
numerical results, based on this method, for collinear and TMD parton distributions. 

 

5.1 Parton branching 
 
In the parton branching approach [22] to the evolution equations, a soft-gluon 
resolution scale is introduced in the DGLAP equations, which results in resolvable 
and non-resolvable parton emissions. This allows us to write the evolution equations 
in a way that can be solved by iteration. Parton Branching is not restricted to DGLAP 
only. Instead of collinear parton distribution functions (PDFs) we can also apply the 
method for transverse momentum dependent (TMD) PDFs, by using a different type 
of ordering. In this section we discuss both cases. 

 

5.1.1 Parton Branching for DGLAP 
 
We start from DGLAP Eq (3.1.18), which we can express as 

𝑑𝑓𝑖(𝑥, 𝜇)
𝑑(ln 𝜇2)

= ∑ ∫
𝑑𝑧
𝑧

𝑃𝑖𝑗(𝑧, 𝛼𝑠(𝜇))𝑓𝑗(𝑥 𝑧⁄ , 𝜇)
1

𝑥𝑗

                            (5.1.1) 

where 𝑧 = 𝑥 𝜉⁄ , 𝑓𝑖(𝑥, 𝜇) are the parton distribution functions (PDFs), and 𝑃𝑖𝑗(𝑧, 𝛼𝑠(𝜇)) 
are the collinear splitting functions. The indices 𝑖 and 𝑗 will run over all partons, which 
in general are the gluon and all quark and antiquark flavours (so 2𝑁𝑓 + 1 different 
index values). The collinear splitting functions can be expressed as a power series 
Eq (3.1.19). In parton branching, instead of working with the actual PDFs, we will 
usually work with the PDFs weighted by 𝑥, which we call the momentum-weighted 
PDFs: 

𝑓𝑖(𝑥, 𝜇) ≔ 𝑥𝑓𝑖(𝑥, 𝜇)                                                     (5.1.2) 

Using the momentum-weighted PDFs the DGLAP equation becomes 
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𝑑𝑓𝑖(𝑥, 𝜇)
𝑑(ln 𝜇2)

= ∑ ∫ 𝑑𝑧 𝑃𝑖𝑗(𝑧, 𝛼𝑠(𝜇))𝑓𝑗(𝑥 𝑧⁄ , 𝜇)
1

𝑥𝑗

                            (5.1.3) 

If the transverse distance between emitted partons has a finite resolution scale, then 
due to energy-momentum conservation we cannot resolve partons that are radiated 
with 𝑧 closer to 1 than a cut-off value. On the other hand, if we would remove non-
resolvable radiative contributions, we would get a violation of unitarity. [22] In the 
parton branching method we will restore unitarity by recasting the DGLAP equation in 
terms of no-branching probabilities and real-emission branching probabilities. The 
splitting functions can be decomposed in terms that classify the singular behaviour 
for 𝑧 → 1 as follows [22]: 

𝑃𝑖𝑗(𝑧, 𝛼𝑠) = 𝐷𝑖𝑗(𝛼𝑠)𝛿(1 − 𝑧) +
𝐾𝑖𝑗(𝛼𝑠)

(1 − 𝑧)+
+ 𝑅𝑖𝑗(𝑧, 𝛼𝑠)                      (5.1.4) 

Where 1 (1 − 𝑧)+⁄  is defined according to Eq (3.2.7) and Eq (3.2.8)., and 𝑅𝑖𝑗(𝑧, 𝛼𝑠) 
contains logarithmic terms which are analytic for 𝑧 → 1. The functions 𝐷𝑖𝑗(𝛼𝑠), 𝐾𝑖𝑗(𝛼𝑠) 
and 𝑅𝑖𝑗(𝑧, 𝛼𝑠) can each be decomposed in a power series analogous to the power 
series decomposition of 𝑃𝑖𝑗(𝑧, 𝛼𝑠) Eq (3.1.19). 𝐷𝑖𝑗(𝛼𝑠) and 𝐾𝑖𝑗(𝛼𝑠) are diagonal in 
parton flavour [22]. 

We introduce the soft-gluon resolution parameter 𝑧𝑀 , where 1 − 𝑧𝑀~𝒪(𝛬QCD 𝜇⁄ ). In 
the DGLAP equation in Eq (5.1.3) we split the integral up in the resolvable region 
(𝑧 < 𝑧𝑀) and the non-resolvable region (𝑧 > 𝑧𝑀). By making use of the 
decomposition Eq (5.1.4) and the momentum sum rule 

∑ ∫ 𝑧
1

0

𝑃𝑖𝑗(𝑧, 𝛼𝑠)𝑑𝑧
𝑖

= 0                                                  (5.1.5) 

we can write the evolution equations as 

𝑑𝑓𝑖(𝑥, 𝜇)
𝑑(ln 𝜇2)

= ∑ [∫ 𝑑𝑧 𝑃𝑖𝑗
(𝑅)(𝑧, 𝛼𝑠(𝜇))𝑓𝑗(𝑥 𝑧⁄ , 𝜇)

𝑧𝑀

𝑥

− ∫ 𝑑𝑧 𝑧 𝑃𝑗𝑖
(𝑅)(𝑧, 𝛼𝑠(𝜇))𝑓𝑖(𝑥, 𝜇)

𝑧𝑀

0

]
𝑗

     (5.1.6) 

where 𝑃𝑖𝑗
(𝑅)(𝑧, 𝛼𝑠) is defined as the real-emission branching probabilities (real-

emission splitting functions): 

𝑃𝑖𝑗
(𝑅)(𝑧, 𝛼𝑠) =

𝐾𝑖𝑗(𝛼𝑠)
1 − 𝑧

+ 𝑅𝑖𝑗(𝑧, 𝛼𝑠)                                        (5.1.7) 

The derivation of Eq (5.1.6) can be found in [22]. The first term in Eq (5.1.6) are the 
contributions from real parton emission, while the second term are the contributions 
from virtual corrections. 
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We introduce the Sudakov form factor: 

Δ𝑖(𝑧𝑀, 𝜇, 𝜇0) = exp (− ∑ ∫
𝑑𝜇′2

𝜇′2 ∫ 𝑑𝑧 𝑧 𝑃𝑗𝑖
(𝑅)(𝑧, 𝛼𝑠(𝜇′))

𝑧𝑀

0

𝜇2

𝜇0
2𝑗

)             (5.1.8) 

The Sudakov form factor Δ𝑖(𝑧𝑀, 𝜇, 𝜇0) can be interpreted as the probability that a 
parton i undergoes no branching between evolution scales 𝜇0 and 𝜇, and where the 
branchings are classified according to the resolution parameter 𝑧𝑀. The evolution 
equation Eq (5.1.6) can be written in terms of 𝑃𝑖𝑗

(𝑅) and Sudakov form factors [22]: 

𝑑
𝑑(ln 𝜇2)

(
𝑓𝑖(𝑥, 𝜇)
Δ𝑖(𝜇) ) = ∑ ∫ 𝑑𝑧 𝑃𝑖𝑗

(𝑅)(𝑧, 𝛼𝑠(𝜇))
𝑓𝑗(𝑥 𝑧⁄ , 𝜇)

Δ𝑖(𝜇)

𝑧𝑀

𝑥𝑗

                 (5.1.9) 

where we don’t sum over i, and where we defined Δ𝑖(𝜇) ≔ Δ𝑖(𝑧𝑀, 𝜇, 𝜇0) to make 
notation shorter. If we integrate this evolution equation, we get 

𝑓𝑖(𝑥, 𝜇) = Δ𝑖(𝜇)𝑓𝑖(𝑥, 𝜇0) + ∑ ∫
𝑑𝜇′2

𝜇′2  
Δ𝑖(𝜇)
Δ𝑖(𝜇′)

∫ 𝑑𝑧 𝑃𝑖𝑗
(𝑅)(𝑧, 𝛼𝑠(𝜇′))𝑓𝑗(𝑥 𝑧⁄ , 𝜇′)

𝑧𝑀

𝑥

𝜇2

𝜇0
2𝑗

     (5.1.10) 

Note that this equation uses collinear splitting functions and collinear PDFs. This is 
the equation that we want to solve in the Parton Branching method. It is a Fredholm 
type equation, which can be solved by iteration as a series. 

 

Figure 5.1: A single branching process 𝑏 → 𝑎 + 𝑐. The 𝑝+ is the “plus lightcone momentum”, which is 
defined in the same way as 𝑝 in Eq (4.2.6) and is equal to 𝑃(1, 𝟎, 1). The 𝑘𝑡 and 𝑞𝑡 are the transverse 

momenta. Figure from [22] 
 

In the Parton Branching method with the collinear PDFs, Eq (5.1.10), we have strong 
ordering of transverse momenta. This means that the transverse momentum of the 
evolving parton after an emission will be much larger than before the emission. 
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(Transverse momentum ordering was also discussed in section 3.1.2) In case of 
Figure 5.1 this means 𝑘𝑡,𝑎 ≫ 𝑘𝑡,𝑏 . 

 

5.1.2 Parton Branching for TMD PDFs 
 
Instead of restricting Parton Branching to collinear PDFs, we can also do Parton 
Branching with transverse momentum dependent (TMD) PDFs. However, Parton 
Branching is ill defined when using transverse momentum ordering for TMD PDFs 
(for variation of 𝑧max). Instead, angular ordering will be used. In Figure 5.1 the 
evolution scale 𝜇 can be related to the angle 𝜃 of the momentum of particle c with 
respect to the beam direction. The resulting angular ordering means that the angle is 
much larger for each subsequent emitted parton: 𝜃𝑖+1 ≫ 𝜃𝑖 . Parton Branching is well 
defined for TMD PDFs if we use angular ordering. 

In the transverse momentum ordered situation, 𝑧𝑀 will be fixed, while in the angular 
ordered situation 𝑧𝑀 will be dynamic. Another difference between the orderings is 
how 𝛼𝑠 is treated. In transverse momentum ordering we have 𝜇 dependant 𝛼𝑠(𝜇), 
and 𝜇 equals 𝑞⊥. In angular ordering we still have 𝑞⊥ dependant 𝛼𝑠(𝑞⊥), but this time 
𝑞⊥ depends both on 𝜇 and 𝑧. 

For the collinear PDFs both orderings can be used. If ℱ𝑖(𝑥, 𝐤, 𝜇) is the TMD PDF 
(also called unintegrated PDF) for parton type i, with k the transverse 2-momentum 
(like the k in Eq (4.2.6), with 𝑘⊥

𝜇 = (0, 𝐤, 0)), then the momentum-weighted collinear 
PDF equals [22] 

𝑓𝑖(𝑥, 𝜇) = ∫
𝑑2𝐤

𝜋
𝑥ℱ𝑖(𝑥, 𝐤, 𝜇)                                          (5.1.11) 

We can also define the momentum-weighted TMD PDF: 

ℱ̃𝑖(𝑥, 𝐤, 𝜇) ≔ 𝑥ℱ𝑖(𝑥, 𝐤, 𝜇)                                              (5.1.12) 

By using Eq (5.1.10) and angular ordering we can write the following evolution 
equation for the TMD PDFs [22]: 

ℱ̃𝑖(𝑥, 𝐤, 𝜇) = Δ𝑖(𝜇)ℱ̃𝑖(𝑥, 𝐤, 𝜇0) + ∑ ∫
𝑑2𝐪′
𝜋𝐪′

 
Δ𝑖(𝜇)
Δ𝑖(𝐪′)

Θ(𝜇2 − 𝐪′2)Θ(𝐪′2 − 𝜇0
2)

𝑗

∙ 

∙ ∫ 𝑑𝑧 𝑃𝑖𝑗
(𝑅)(𝑧, 𝛼𝑠(𝐪′))ℱ̃𝑗(𝑥 𝑧⁄ , 𝐤 + (1 − 𝑧)𝐪′, 𝐪′)

𝑧𝑀

𝑥

                       (5.1.13) 

This can be solved by iteration as [22] 
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ℱ̃𝑎(𝑥, 𝐤, 𝜇) = ∑ ℱ̃𝑎
(𝑖)(𝑥, 𝐤, 𝜇)

∞

𝑖=0

                                          (5.1.14) 

Note that in this section the splitting functions are collinear splitting functions. We can 
do Parton Branching up to a certain order. Leading order (LO) Parton Branching uses 
the LO splitting functions and LO 𝛼𝑠 , NLO Parton Branching uses the NLO splitting 
functions and NLO 𝛼𝑠 , etc. 

 

5.2 Monte Carlo method 
 
To solve the evolution equation numerically we will apply a Monte Carlo method (also 
called a Monte Carlo simulation), by reducing the problem to generating 𝑧 and 𝜇. The 
Monte Carlo method is a class of algorithms that uses repeated random sampling to 
estimate probabilistic results. It generates variables according to a probability 
distribution to calculate expectation values or integrals. Monte Carlo can be used to 
solve any problem that has a probabilistic nature, or any problem that can’t (or is too 
difficult to) be solved analytically. The main classes of problems that are most 
commonly solved by Monte Carlo are integration, optimisation and inverse problems. 
In our case, Monte Carlo will be used to solve an integration problem. 

 

Figure 5.2: Parton evolution process by iteration, where a parton evolves from scale 𝜇𝑖 to 𝜇. (Time 
runs from bottom to top.) We have evolution without any branching (left), with only one branching 

(middle), with two branchings (right), etc. Figure from [22] 
 

In the parton evolution we start from parton a and evolve the scale from 𝜇𝑖 to 𝜇 either 
without branching, or with one branching at scale 𝜇𝑖+1, or with a second branching at 
scale 𝜇𝑖+2, etc. The probability to evolve from scale 𝜇𝑖 to 𝜇𝑖+1 without any resolvable 
branching is given by the Sudakov form factor Δ𝑎(𝑧𝑀, 𝜇𝑖+1, 𝜇𝑖). [22] We introduce a 
random number 𝑅0 ∈ [0,1], and we generate the value for 𝜇𝑖+1 by solving Eq (5.1.8) 
for 𝜇𝑖+1 at a given 𝜇𝑖 (Ref [22]), 
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𝑅0 ∫ 𝑑Δ𝑎(𝑧𝑀, 𝜇, 𝜇0)
∞

𝜇𝑖
2

= ∫ 𝑑Δ𝑎(𝑧𝑀, 𝜇, 𝜇0)

𝜇𝑖+1
2

𝜇𝑖
2

                              (5.2.1) 

Which leads to the following equation after integration: 

𝑅0 = 1 −
Δ𝑎(𝜇𝑖+1)

Δ𝑎(𝜇𝑖)
                                                     (5.2.2) 

We introduce a random number 𝑅1 ∈ [0,1], and we generate the splitting variable 𝑧 
by 

∫ 𝑑𝑧′ 𝑃𝑎𝑏
(𝑅)(𝑧′, 𝛼𝑠(𝜇𝑖+1))

𝑧𝑖+1

𝑧min

= 𝑅1 ∫ 𝑑𝑧′ 𝑃𝑎𝑏
(𝑅)(𝑧′, 𝛼𝑠(𝜇𝑖+1))

𝑧𝑀

𝑧min

                (5.2.3) 

where 𝑧min is the lowest kinematically allowed value. In case of TMD PDFs, we 
introduce an extra random number to generate the angle 𝜃𝑖 uniformly. When we 
generate a pair of 𝑧𝑖, 𝜇𝑖 (and 𝜃𝑖) values many times, we obtain a true and unbiased 
estimate of the integrals and we obtain a solution for the evolution equations. [22] In 
order to do this method we require a starting distribution, which could come from 
experiment or from a model. 

This Monte Carlo method for parton branching was implemented in a numerical 
program. The code is the same whether we want collinear PDFs or TMD PDFs, since 
the former is just obtained via an integration over the latter. As starting distributions 
we can use default sets from evolution packages. 

 

5.3 Numerical solutions of parton branching 
 
In this section we use the numerical (Monte Carlo) Parton Branching program 
“updfevolv” to simulate parton distribution functions (PDF), given a starting 
distribution at an initial scale 𝜇0 as input, by evolving the PDFs from scale 𝜇0 to scale 
𝜇 via the method described in the previous sections. We can simulate both collinear 
PDFs (as a function of 𝑥) and transverse momentum dependent (TMD) PDFs (as a 
function of 𝑥 and 𝑘⊥). 𝑥 is the Bjorken scaling variable Eq (2.2.26), and 𝑘⊥ (also 
called 𝑘𝑡) is the transverse momentum of the parton. To improve convergence, 
momentum-weighted PDFs are used in the Parton Branching program. The definition 
of momentum-weighted PDFs are given by Eq (5.1.2) and Eq (5.1.12). The program 
uses TMD PDFs during the iteration, and collinear PDFs are obtained via integration 
of the TMD PDFs according to Eq (5.1.11). 

The program used in this thesis, updfevolv can simulate both collinear and TMD 
PDFs, and it can use both collinear and TMD splitting functions. We have the choice 
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to use either LO (leading order) or NLO (next-to-leading order) splitting functions and 
𝛼𝑠. There are several other choices that we can make in the program, including but 
not limited to 𝛼𝑠(𝑀𝑍) (strong coupling strength at the scale of the Z boson mass), the 
masses of the heavy quark flavours (c, b, t), the soft-gluon resolution parameter 𝑧𝑀, 
the ordering, the starting distribution. As starting distributions use default sets from 
evolution packages. In this thesis we will take the starting distributions from the 
packages QCDNUM, HERAPDF2.0LO and HERAPDF2.0NLO. First we will also 
demonstrate the flavour composition with PB-NLO-HERA I+II 2018 set2, a standard 
PDF set. 

QCDNUM: Is based on polynomial spline interpolation and are basically “toy 
distributions”. The starting distributions are parametrised at the scale 𝜇0

2 = 2 GeV2, 
with only 3 light quark flavours (u, d, s). However, the heavier quarks can be 
produced during the evolution to scales higher than their respective masses. [31] 

HERAPDF2.0LO: Is based on fits to experimental data from the HERA collider, a 
lepton-proton collider at DESY in Germany. HERAPDF is a fitting group for collinear 
PDFs, only fitted to deep inelastic scattering (DIS). This particular one, 2.0 LO, uses 
leading order (LO) 𝛼𝑠 and splitting functions. Again it uses only 3 light quark flavours 
(u, d, s) for the starting distributions, parametrised at the scale 𝜇0

2 = 2 GeV2. [32] [33] 
[34] 

HERAPDF2.0NLO: Is the same as HERAPDF2.0LO, but with next-to-leading order 
(NLO) 𝛼𝑠 and splitting functions instead. [32] [33] [35] 

PB-NLO-HERA I+II 2018 set2: Is a standard PDF set. It is based on a fit that 
produces TMD PDFs, is next-to-leading order, and was evolved to other scales via 
Parton Branching (PB) method. It is fitted to DIS and uses the same experimental 
data as HERAPDF. In set1, the collinear PDFs have the same parametrisation as 
HERAPDF. For set2 however, it is not the same as HERAPDF, because set2 uses 
angular ordering and different 𝛼𝑠. [36] 

 

5.3.1 Flavour composition of the proton 
 
We will first discuss the composition of the proton by showing the PDFs for each 
flavour for a standard set. The quantum numbers of a hadron are provided by what 
we call “valence quarks”, which are the quarks that are typically listed as the hadron 
content. But as we have seen in the previous chapters, there are also gluons and sea 
quarks inside a hadron that carry a part of the hadron’s momentum but don’t 
contribute to the quantum numbers, where the sea consists of quark-antiquark pairs. 
In case of the proton, the valence quarks are 2 up quarks and a down quark. Naively 
we would expect the valence up PDF to be twice the valence down PDF. 
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Figure 5.3: Momentum-weighted collinear PDFs for the different flavours, as a function of Bjorken 𝑥, 
from the standard set PB-NLO-HERA set 2, at scale 𝜇 = 2 GeV. The smaller graphs at the bottom are 
the ratios. Note that for sea quarks, quark and antiquark have the exact same PDF. (Thus “sea up” 
equals “anti-up”, “sea down” equals “anti-down”, “strange” equals “anti-strange”, “charm” equals “anti-
charm”.) Important to note is that on these graphs the “sea” curve is not the average of the whole sea, 
but the average of only the sea up, sea down and strange. 
 

 

 
 
Figure 5.4: Comparison and decomposition of total, valence and sea up and down quark PDFs, at the 
scale 𝜇 = 2 GeV. The left graph shows how the up quark PDF is decomposed in the valence up quarks 
and the sea up quarks (which equals the anti-up). The decomposition of down quark PDF in valence 
down and sea down is analogous to this, but not shown. The right graphs show both valence quark 
PDFs and the ratio between them. 
 

We took a NLO standard PDF set based on experimental data from HERA to show 
the flavour composition of the proton at a certain scale 𝜇. We show this in Figure 5.3 
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for 𝜇 = 2 GeV, which is a scale that is not too high, but high enough to allow a small 
charm and anticharm component. We can see in the figure that at high 𝑥 most of the 
proton’s momentum is carried by up quark, down quark and gluons. At small 𝑥 most 
of the proton’s momentum will be carried by gluons. We also notice the amount of 
sea quarks and antiquarks increases for decreasing 𝑥, and gets close the up and 
down PDFs at very small 𝑥. In Figure 5.4 we can see that the up and down quarks at 
high 𝑥 will almost solely be valence quarks, while at small 𝑥 they will mostly be sea 
up and sea down quarks. We also notice in Figure 5.4 that the ratio of valence up to 
valence down is approximately 2 as expected, except for high 𝑥. If we look at the sea 
composition in Figure 5.3, we notice that the ratios of the sea up, down and strange 
remain constant for small 𝑥. Due to the small masses of the up and down quark, we 
would naively expect them to have the same PDF in the sea, and this seems to be 
true for very small 𝑥. For 𝑥 above 10−2 however, we see that they deviate from each 
other. At the scale of 𝜇 = 2 GeV we would also naively expect the strange quark to 
have the same PDF as the sea up and sea down, which is shown to be not true. 
Figure 5.3 also shows that there is a small charm component in the sea, as expected 
since the energy scale is higher than the charm quark mass. (While the charm is part 
of the sea, in the figures the charm is not part of the curve for the “sea”, due to the 
definition of “sea” in the plotting tool being the average of the three lightest flavours 
only.) 

In Figure 5.5 we show the flavour composition at a higher scale, 𝜇 = 10 GeV. This 
scale also allows a small bottom and antibottom component. The figures show that at 
small 𝑥 the ratio between gluon PDF and quark PDFs has increased compared to the 
case of 𝜇 = 2 GeV. Another observation we can make is that the ratio between the 
sea quarks has gotten closer to 1. These two effects are generally true for increasing 
𝜇 scale. 

 

  
 
Figure 5.5: Momentum-weighted collinear PDFs for the different flavours, as a function of Bjorken 𝑥, 
from the standard set PB-NLO-HERA set 2, at scale 𝜇 = 10 GeV. The smaller graphs at the bottom are 
the ratios. Note that for sea quarks, quark and antiquark have the exact same PDF. (“sea up” equals 
“anti-up”, “sea down” equals “anti-down”, “strange” equals “anti-strange”, etc.) Important to note is that 
on these graphs the “sea” curve is not the average of the whole sea, but the average of only the sea 
up, sea down and strange. 
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5.3.2 Initial distributions, LO vs NLO, and ordering 
 
In this section we will discuss some of the different choices we can make in the 
settings of the Parton Branching program. In this thesis we used QCDNUM, 
HERAPDF2.0LO and HERAPDF2.0NLO as initial distributions. The explanation and 
references for these initial distributions is given in the intro of section 5.3. Figure 5.6 
shows Parton Branching with QCDNUM as initial distribution, and Figure 5.7 shows 
this for HERAPDF2.0NLO as initial distribution. For QCDNUM we can also choose 
between leading order (LO) and next-to-leading order (NLO) 𝛼𝑠 and splitting 
functions. In case of QCDNUM both LO and NLO will have the same initial 
distribution, while HERAPDF20 LO and NLO have different initial distributions. Figure 
5.6 shows the differences between LO and NLO for QCDNUM. 

For the ordering we restricted ourselves to two choices in this thesis: we either use 
transverse momentum ordering (DGLAP) or angular ordering (AO) of the parton 
branchings during the simulation. Collinear PDFs are well defined for both types of 
ordering, while TMD PDFs are well defined for angular ordering but not for transverse 
momentum ordering. So if we want to show TMD PDFs we should use angular 
ordering, if we want to show collinear PDFs we could use either ordering. In the 
transverse momentum ordered situation, 𝑧𝑀 will be fixed, while in the angular ordered 
situation 𝑧𝑀 will be dynamical. 𝑧𝑀 is the parameter that separates soft gluons (non-
resolvable) from hard gluons (resolvable). Radiated gluons outside of the angular 
ordered region will interfere destructively with eachother. An abelian example of this 
is bremsstrahlung in QED (quantum electrodynamics), where the photons are 
radiated inside cones centered around the incoming and outgoing electron. In our 
situation (QCD) we have a similar effect, but non-abelian. Another difference 
between the orderings is how 𝛼𝑠 is treated. In transverse momentum ordering we 
have 𝜇 dependant 𝛼𝑠(𝜇), and 𝜇 equals 𝑞⊥. In angular ordering we still have 𝑞⊥ 
dependant 𝛼𝑠(𝑞⊥), but this time 𝑞⊥ depends both on 𝜇 and 𝑧. Figures 5.6 and 5.7 
show the differences between transverse momentum ordering (DGLAP) and angular 
ordering (AO), for the collinear PDFs. 

In this section we only restrict ourselves to up quark and gluon PDFs. The effects on 
the down quark PDF will be analogous to the up quark, and the effect on the sea is 
expected to be similar as wel. 
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Figure 5.6: Simulated momentum-weighted collinear PDFs via Parton Branching, for the up quark and 
gluon at two different 𝜇 scales, taking QCDNUM as initial PDF. The four simulated PDFs on each 
graph were made with different settings: LO vs NLO, DGLAP vs AO. 
 

  

  
 
Figure 5.7: Simulated momentum-weighted collinear PDFs via Parton Branching, for the up quark and 
gluon at two different 𝜇 scales, taking HERAPDF2.0NLO as initial PDF. The two simulated PDFs on 
each graph are NLO but have different ordering settings: DGLAP vs AO. 
 

In Figure 5.6, we show the simulated PDFs starting from initial QCDNUM PDF at 
scale 𝜇0

2 = 2 GeV2, evolved to higher scales 𝜇. In Figure 5.6, the largest change in 
PDF is caused by NLO evolution for the up quark. In Figure 5.7 we show the 
simulated PDFs starting from initial HERAPDF2.0NLO PDF, again evolved from 
scale 𝜇0

2 = 2 GeV2 to higher scales. We can see that the LO AO evolution in Figure 
5.6 and the NLO AO evolution in Figure 5.7 have for the most part a very similar 
effect on the PDF. A general behaviour we can notice for all simulated PDFs, except 
for the ones that remain almost the exact same as the initial PDF, is that they all 
significantly deviate from the initial PDF in the ratio at the high end of log (𝑥). 
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5.3.3 Effect on PDF for collinear vs TMD splitting functions. 
 
We will now look at the effects of TMD (transverse momentum dependent) splitting 
functions on the PDFs simulated by Parton Branching. First we look at the effects on 
the collinear PDFs in Figure 5.8, where we compare different LO PDFs, including one 
simulated via TMD splitting functions, starting from HERAPDF2.0LO as initial 
distribution. The PDF that uses TMD splitting functions, uses these everywhere in the 
Parton Branching method, both in the real emissions and in the Sudakov form factor. 
As an extra comparison we also include a NLO AO PDF that uses HERAPDF2.0NLO 
as initial distribution. After the collinear PDFs, we will look at the effects on the TMD 
PDFs. For those we will only use PDFs simulated via angular ordering (AO). Each 
time we will look what the effect is if you use LO AO with TMD splitting functions 
instead of collinear splitting functions, and what the effect is if you use NLO AO 
instead of LO AO (but both collinear splitting functions). Unfortunately we have no 
PDFs simulated via NLO AO with TMD splitting functions, because currently no one 
knows how to get NLO TMD splitting functions. This is because a TMD splitting 
function already includes some higher order corrections due to resummation. 

  

  
 
Figure 5.8: Simulated momentum-weighted collinear PDFs via Parton Branching, for the up quark and 
gluon at two different 𝜇 scales. “Col P” means they were simulated via collinear splitting functions, 
while “TMD P” means simulated via TMD splitting functions. All of the LO PDFs take HERAPDF2.0LO 
as initial PDF. As an extra comparison we also include the NLO AO PDF, which has 
HERAPDF2.0NLO as initial PDF instead. All PDFs with collinear splitting function were made with the 
typical updfevolv program. The “LO AO TMD P” was simulated via a modified program that uses TMD 
splitting functions instead. 
 

Looking at the collinear PDFs in Figure 5.8, When we compare the LO AO PDF that 
uses collinear splitting functions with the one that uses TMD splitting functions, we 
notice that at 𝜇2 = 10 GeV2 they are almost equal to each other. Apparently using 
TMD splitting functions at this scale and below, barely makes a difference. At 
𝜇2 = 100000 GeV2, a much higher scale, we do see a clear difference between 
collinear and TMD splitting functions, for 𝑥 below 10−1.5 a 10−1. 
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For the simulation using NLO AO, the resulting gluon PDF is very different than the 
others shown in Figure 5.8. It is much smaller than the others for small 𝑥. For the up 
quark at 𝜇2 = 10 GeV2 on the other hand, the NLO AO PDF is near the two LO AO 
PDFs. For the up quark at 𝜇2 = 100000 GeV2 the NLO AO PDF is clearly lower than 
the others for very small 𝑥. 

Next we will show and investigate TMD PDFs, for simulations with angular ordering 
(AO), as a function of 𝑥 with fixed 𝑘⊥, or as a function of 𝑘⊥ with fixed 𝑥. 

  

  
 
Figure 5.9: Simulated momentum-weighted TMD PDFs via Parton Branching, as a function of 𝑥, at 
transverse momentum 𝑘⊥ = 1 GeV, for the up quark and gluon at two different 𝜇 scales (𝜇 is called p in 
these figures). The red and blue PDFs used collinear splitting functions, while the purple PDF used 
TMD splitting functions. The two LO PDFs (red and purple) have HERAPDF2.0LO as initial PDF, while 
the NLO PDF (blue) has HERAPDF2.0NLO as initial PDF. All PDFs used angular ordering (AO). In the 
bottom left graph, the red and purple PDFs are almost exactly the same. 
 

For the 𝑥 dependence of the TMD PDFs, shown in Figure 5.9, we chose a fixed 𝑘⊥ 
that is much smaller than the two scales 𝜇 that we show. The TMD PDFs seem to 
very roughly have a similar shape as the collinear PDFs. All three considered TMD 
PDFs look almost equal to each other at the higher end of log (𝑥). In case of the 
gluon PDF at scale 𝜇 = 10 GeV we can even say that it is almost exactly the same for 
LO evolution with either collinear splitting functions or TMD splitting functions, atleast 
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for the whole region of 𝑥 that is shown. For the gluon at a much higher scale 𝜇 =
1 TeV, and for the up quark at both scales, the effect of simulating the LO PDF via 
TMD splitting functions, compared to collinear splitting functions, is just a small 
increase in the PDF at small 𝑥. (For the up quark this is visible in Figure 5.9 this is 
visible for 𝑥 on the order of 10−1 and below, while for the gluon it is visible for 𝑥 on 
the order of 10−2 and below.) 

   

   
 
Figure 5.10: Simulated momentum-weighted up quark TMD PDFs via Parton Branching, as a function 
of 𝑘⊥ , at 𝑥 = 0.01 and 𝑥 = 0.001, and at three different 𝜇 scales (𝜇 is called p in these figures). The 
red and blue PDFs used collinear splitting functions, while the purple PDF used TMD splitting 
functions. The two LO PDFs (red and purple) have HERAPDF2.0LO as initial PDF, while the NLO 
PDF (blue) has HERAPDF2.0NLO as initial PDF. All PDFs used angular ordering (AO). In the graphs 
for 𝑥 = 0.01 with 𝜇 = 10 GeV and 100 GeV, the red and purple PDFs are almost the same. 
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Figure 5.11: Simulated momentum-weighted gluon TMD PDFs via Parton Branching, as a function of 
𝑘⊥ , at 𝑥 = 0.01 and 𝑥 = 0.001, and at three different 𝜇 scales (𝜇 is called p in these figures). The red 
and blue PDFs used collinear splitting functions, while the purple PDF used TMD splitting functions. 
The two LO PDFs (red and purple) have HERAPDF2.0LO as initial PDF, while the NLO PDF (blue) 
has HERAPDF2.0NLO as initial PDF. All PDFs used angular ordering (AO). In the graphs 𝜇 = 10 GeV, 
the red and purple PDFs are almost the same. 
 

We show the 𝑘⊥ dependence of the simulated TMD PDFs for two fixed 𝑥 values, and 
at three different 𝜇 scales. For both the up quark and gluons, shown in Figures 5.10 
and 5.11 respectively, the general behaviour seems to be a decreasing PDF for 
increasing 𝑘⊥, and the PDF practically goes to 0 at some 𝑘⊥. We might expect this 
value for 𝑘⊥ to be the scale 𝜇, because in transverse momentum ordering we would 
have 𝑘⊥ ≪ 𝜇. In Figures 5.10 and 5.11 we can see that this is not true. The PDFs 
under consideration are angular ordered, not transverse momentum ordered. We can 
also see that on each graph the three PDFs look almost equal at their high 𝑘⊥ tail. 
We also see that in the 𝑥 and 𝜇 regime that we consider in Figures 5.10 and 5.11, it 
seems that the TMD PDF is increased if you go from LO PDF with collinear splitting 
functions to LO PDF with TMD splitting functions. However, this effect is small at 
𝜇 = 10 GeV, but the effect increases with increasing 𝜇. The effect also increases with 
decreasing 𝑥. In all the situations that are shown in Figures 5.10 and 5.11, the NLO 
PDF is clearly different from the others, except for the up quark at 𝜇 = 1 TeV for 
𝑥 = 0.01 in Figure 5.10. 
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6 Conclusion 
 
In this thesis we tried to calculate the transverse momentum dependent (TMD) gluon-
to-quark splitting function and study its physical effects numerically. In order to do so, 
we studied and discussed the framework of quantum field theory (QFT), mostly in the 
context of gauge field theory, and the theory of quantum chromodynamics (QCD) in 
particular. We studied how to quantise gauge field theories, and how to renormalize 
them. We studied the effects of renormalisation at high energy, which in the case of 
QCD were asymptotic freedom, the QCD scale and confinement. Then we studied 
QCD modified parton model and the factorisation method in order to treat deep 
inelastic scattering (DIS). Deep inelastic scattering was the main example and we 
kept using it throughout most of the high energy part of the thesis. It allowed us to 
study the inner structure of hadrons. We studied radiation processes in high energy 
QCD, and the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations 
for parton densities (parton distribution functions). This is where we introduced the 
DGLAP splitting functions. We studied the splitting functions in detail near the end of 
the thesis, and explained their physical meaning. First we did this for the case of 
collinear momentum, and noticed the collinear divergences that arise. We studied 
factorisation schemes in the context of the splitting functions and we studied an 
extension to include the transverse momentum as well, already in leading order. 
Then we calculated the TMD gluon-to-quark splitting function in detail, and gave 
physical meaning to the results. We also fully integrated the TMD splitting function 
(integration over momentum q) and showed that it can be expressed by 
hypergeometric functions. We presented the results of Monte Carlo calculations for 
QCD parton densities, and studied the numerical effects of the splitting functions. 
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