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Abstract. Given any compact connected four dimensional symplectic manifold (M,ω)
and smooth function J : M → R which generates an effective S1-action, we show that there
exists a smooth function H : M → R such that (M,ω, (J,H)) is a completely (Liouville)
integrable system of a type we call hypersemitoric — these are systems for which all sin-
gularities are non-degenerate, except possibly for a finite number of families of degenerate
points of a relatively tame type called parabolic (also sometimes called cuspidal). Such an
(M,ω, J) is often referred to as a Hamiltonian S1-space (classified by Karshon [Kar99]) and
we call any integrable system of the form (M,ω, (J,H)) an extension of (M,ω, J). Using
this terminology, our main result is that any Hamiltonian S1-space can be extended to a
hypersemitoric integrable system.

We also show that there exist Hamiltonian S1-spaces for which any extension must in-
clude at least one degenerate singular point. Parabolic points are among the most common
and natural degenerate points, and thus hypersemitoric systems are in this sense the ‘nicest’
class of systems to which all Hamiltonian S1-spaces can be extended. We also prove several
foundational results about these systems, such as the non-existence of loops of hyperbolic-
regular points and some properties about their fibers.

MSC codes. Primary: 53D20, 37J35, 70H06. Secondary: 58D19.

1. Introduction

Hamiltonian systems form an important and interesting class of dynamical systems since,
on the one hand, many fundamental physical phenomena can be modeled as Hamiltonian
systems and, on the other hand, questions of symplectic rigidity and conservation laws are
natually linked to Hamiltonian systems. Examples of Hamiltonian systems are common
in mathematics, physics, and the other sciences, such as the n-body problem in celestial
mechanics, certain Liénard type and Van der Pol type equations in biology, the Euler-
Lagrange equations in calculus of variations, and the interaction of chaotic and non-chaotic
aspects in KAM theory.

Roughly, if a Hamiltonian system has the maximal possible number of independent con-
served quantities then it is called integrable. Integrable systems form a field with a long
tradition at the intersection of dynamical systems, ODEs, PDEs, symplectic geometry, Lie
theory, algebraic geometry, classical mechanics, mathematical physics, and so on. Many
classical, familiar systems are integrable, such as the spherical pendulum, coupled angu-
lar momenta system, Gelfand-Zeitlin systems, and the Lagrange, Euler, and Kovalevskaya
spinning tops.

Date: August 1, 2022.
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In fact, all of these examples share a special property: they have a circular symmetry.
Integrable systems which display such circular symmetries are not rare but rather a very
natural and common occurrence.

The present paper aims to understand the relationship between integrable systems and
Hamiltonian S1-actions in dimension four. More precisely, we will show that any effective
Hamiltonian S1-action on a compact connected symplectic four dimensional manifold can
be extended to a completely integrable Hamiltonian system on this manifold of a relatively
‘nice’ type. Moreover, on the way there, we prove several interesting properties of integrable
systems with underlying S1 symmetries.

1.1. Integrable systems and S1-actions. To state our results properly, we first need to
fix some definitions and conventions: First of all,

throughout this paper we will assume that all manifolds M are connected.
Let (M,ω) be a symplectic manifold. Then any smooth function J : M → R determines
a vector field X J on M via the equation ω(X J , ·) = −dJ . The function J is then usually
referred to as the Hamiltonian, X J as the Hamiltonian vector field of J , and z′ = X J(z) as
Hamiltonian system induced by J or X J(z).

We are interested in particular in the following type of Hamiltonian systems:

Definition 1.1. We call (M,ω, J) a Hamiltonian S1-space if (M,ω) is a compact four di-
mensional symplectic manifold with Hamiltonian J : M → R and the flow of X J is periodic
of minimal period 2π. In other words, the Hamiltonian flow of such a J generates an effective
Hamiltonian action of S1 = R/2πZ on M .

Such Hamiltonian S1-spaces were classified up to isomorphism by Karshon [Kar99] in
terms of a labeled graph encoding information about the fixed points and isotropy groups
(Zk-spheres) of the S1-action — for the readers’ convenience, we will recall the necessary
details in Section 2.1.

This paper aims at extending effective Hamiltonian S1-actions to integrable systems, so
we need to fix our notion of integrability: We will work with so-called ‘Liouville integrability’
which is defined as follows.

Definition 1.2. A triple (M,ω, F = (f1, . . . , fn)) is an 2n-dimensional completely integrable
system (briefly an integrable system) if (M,ω) is a 2n-dimensional symplectic manifold and
F : M → Rn, called the momentum map, satisfies:

(1) ω(X fi ,X fj) = 0 for all i, j ∈ {1, . . . , n};
(2) X f1(p), . . . ,X fn(p) ∈ TpM are linearly independent for almost all p ∈M .

We say that an integrable system (M,ω, F ) is compact if M is compact. The points in M
at which Condition (2) fails are called singular points, and the other points of M are called
regular points.

1.2. Extending S1-actions to integrable systems. Given a four dimensional compact
integrable system (M,ω, (J,H)) such that J generates an S1-action, it is clear that, by simply
forgetting the function H, we obtain the Hamiltonian S1-space (M,ω, J).

Definition 1.3. If (M,ω, J) is a Hamiltonian S1-space and H : M → R is such that
(M,ω, (J,H)) is an integrable system, then (M,ω, (J,H)) is said to be an extension to
an integrable system of (M,ω, J) and, conversely, (M,ω, J) is the underlying Hamiltonian
S1-space of (M,ω, (J,H)).
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Whereas recovering an underlying Hamiltonian S1-space (M,ω, J) by forgetting H is triv-
ial, the converse is everything but obvious:

Question 1.4. Given a compact four dimensional Hamiltonian S1-space (M,ω, J), when
and, if yes, how can we extend it to an integrable system (M,ω, (J,H))? What do these
integrable systems look like, in particular the function H : M → R? What are the ‘nicest
possible’ resulting integrable systems (M,ω, (J,H))?

Looking at this problem from a different angle, one is in fact studying an ‘intermediate
situation’ in the sense that one component of the moment map induces an S1-action and the
other one an R-action on the manifold. If both components induce R-actions, we are dealing
with general integable systems which can exhibit extremely complicated behavior. If, on
the other hand, both components induce S1-actions, we are facing an induced Hamiltonian
2-torus action on the underlying manifold which imposes quite a lot of restrictions on the
system as a whole.

Definition 1.5. A completely integrable system (M,ω, F = (f1, . . . , fn)) is toric if each of
the f1, . . . , fn induces an S1-action of minimal period 2π.

After classifying Hamiltonian S1-spaces, Karshon [Kar99] studied and solved Question
1.4 concerning four dimensional toric systems, i.e., she found the necessary and sufficient
conditions under which a Hamiltonian S1-space (M,ω, J) extends to a toric integrable system
(M,ω, F = (J,H)), see Section 2.3 for more details.

1.3. Main results. As mentioned in the previous subsection, Karshon was already consid-
ering Question 1.4 in her paper [Kar99] containing the original classification of Hamiltonian
S1-spaces, where she proved exactly which Hamiltonian S1-spaces can be extended to a toric
system. More recently1 Hohloch & Sabatini & Sepe & Symington [HSSS] have exactly de-
scribed which Hamiltonian S1-spaces can be extended to so-called semitoric systems (cf.
Definition 1.8). Semitoric systems are a generalization of toric systems in dimension four
which can include all of the types of singularities that appear in toric systems and addition-
ally a type of non-degenerate singularity known as a focus-focus singular point.

We now define hypersemitoric systems, which represent a substantial generalization of
semitoric systems. In particular, hypersemitoric systems they allow all types of non-degenerate
singularities (including singularities with hyperbolic components) and certain relatively mild
degenerate singular points which naturally occur with hyperbolic-regular singularities in
many cases. Singularities of hyperbolic-hyperbolic type are not explicitly ruled out, but
cannot appear due to the presence of the global S1-action. All other types of non-degenerate
points can appear.

Definition 1.6. An integrable system (M,ω, F = (J,H)) is called a hypersemitoric system
if:

(1) J is proper and generates an effective S1-action;
(2) all degenerate singular points of F (if any) are of parabolic type (as in Definition 2.37).

Hypersemitoric systems form a significantly more general class than semitoric systems
(cf. Remark 1.9), which are in turn significantly more abundant than toric ones.

1first announced at Poisson 2014 in a talk by Daniele Sepe.
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In the first part of this paper we give several examples and prove certain properties of
such systems. For instance, we show that hypersemitoric systems do not admit ‘loops of
hyperbolic-regular values’ (see Corollary 4.3 for a more precise statement).

In the second part of this paper we show that any compact four dimensional Hamiltonian
S1-space can be extended to a hypersemitoric system. That is, we prove:

Theorem 1.7. Let (M,ω, J) be a 4-dimensional Hamiltonian S1-space where (M,ω) is a
compact symplectic manifold. Then there exists a smooth function H : M → R such that
(M,ω, (J,H)) is a hypersemitoric system.

We sketch the idea of the proof of Theorem 1.7 in Section 1.5. The proof of Theorem 1.7,
given in Section 5.5, actually gives a slightly more refined result about the properties of the
resulting hypersemitoric system, which we state as Corollary 5.13.

Singular fibers of hyperbolic-regular type occur in one-parameter families, and in many
cases the two endpoints of the family correspond to fibers that include degenerate singular
points, which is why it is somewhat necessary to allow degenerate singularities in this defi-
nition. In fact, there exist systems which cannot be extended to an integrable system with
no degenerate singular points (Corollary 4.5), so to have any hope to be able to extend all
Hamiltonian S1-spaces to a class of integrable systems, we must include some type of de-
generate points. Degenerate singularities of parabolic type are one of the simplest classes of
degenerate singularities among the typical degenerate singularities discussed in Bolsinov &
Fomenko [BF04], and they are stable under perturbation [Gia07]. That is, parabolic points
cannot be removed from a system by completely integrable perturbations, and they are there-
fore common in nature as well. For instance, they appear in the Kovalevskaya top [BRF00]
and many other systems from rigid body dynamics, see the references in [BGK18].

Thus, the motivation of this paper is two-fold:

• Motivation 1: non-degenerate singularities and parabolic singularities are the most
common ones in nature. The known classifications (toric and semitoric) prohibit
the existence of certain non-degenerate singular points (those containing hyperbolic
blocks) and parabolic points, but the time is ripe to extend the toric and semitoric
techniques to systems including these singularities;

• Motivation 2: there are Hamiltonian S1-spaces which cannot be extended to either
a toric or a semitoric system, so to extend all Hamiltonian S1-spaces to a class of
integrable systems we must consider a more general class. The class of hypersemitoric
systems is in some sense the ‘easiest and smallest’ class with this property.

1.4. Background and interactions of this paper with other works. For many years
interactions between the classical field of integrable systems and the more modern field of
compact Hamiltonian group actions on symplectic manifolds have lead to interesting results.
One of the earliest and best known examples of results in this direction is the classification
of effective Hamiltonian Tn-actions on compact symplectic 2n-manifolds, which can equiva-
lently be thought of as a classification of compact toric integrable systems: Atiyah [Ati82]
and Guillemin & Sternberg [GS82] showed that if (M,ω, F ) is a toric system then the image
F (M) is a convex n-dimensional polytope, and moreover Delzant [Del88] showed that toric
systems are classified up to isomorphism by this convex polytope, up to the action of the
affine group GL(n,R)nRn. Karshon & Lerman [KL15] generalized this to the non-compact
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case. Given a fixed compact symplectic four manifold, the S1- and 2-torus actions on that
manifold have also been classified by Holm & Kessler [HK19] and Karshon & Kessler &
Pinsonnault [KKP15].

Another important classification result is that of semitoric integrable systems, which gen-
eralize toric integrable systems in dimension four.

Definition 1.8. A four dimensional integrable system (M,ω, F = (J,H)) is a semitoric
integrable system, or briefly a semitoric system, if:

(1) J is proper and generates an effective S1-action;
(2) all singular points of F = (J,H) are non-degenerate and do not include hyperbolic

blocks (i.e. there are no singular points of hyperbolic-regular, hyperbolic-elliptic, or
hyperbolic-hyperbolic type, as described in Section 2.6).

About ten years ago, semitoric systems were classified in terms of five invariants by Pelayo
& Vũ Ngo.c [PVuN09, PVuN11], generalizing Delzant’s [Del88] toric classification. Their
original classification has the extra assumption that the systems must be simple (see Section
2.8), but this assumption has been removed recently by Palmer & Pelayo & Tang [PPT19].
Semitoric systems are much more general than toric systems, and their behavior is much
more complicated due to the presence of focus-focus singularities which cannot occur in
toric systems. Note that the semitoric classification includes both compact and non-compact
systems.

A semitoric system naturally comes with the structure of an underlying Hamiltonian S1-
action. The relationship between the semitoric classification and Karshon’s classification
of Hamiltonian S1-actions on compact 4-manifolds was studied by Hohloch & Sabatini &
Sepe [HSS15].

Suppose that (M,ω, J) is a 4-dimensional Hamiltonian S1-space where (M,ω) is a compact
symplectic manifold. Combining Theorem 1.7 with the results of Karshon [Kar99] and those
of Hohloch & Sabatini & Sepe & Symington [HSSS], one obtains the following:

(1) There exists H : M → R such that (M,ω, (J,H)) is a toric system if and only if
each fixed surface (if any exists) has genus zero and each non-extremal level set of J
contains at most two non-free orbits of the S1-action (see Karshon [Kar99, Proposition
5.21] );

(2) There exists H : M → R such that (M,ω, (J,H)) is a semitoric system if and only if
each fixed surface has genus zero (if any exists) and each non-extremal level set of J
contains at most two non-free orbits of the S1-action which are not fixed points (see
Hohloch & Sabatini & Sepe & Symington [HSSS] );

(3) In all cases, there exists H : M → R such that (M,ω, (J,H)) is a hypersemitoric
system (see Theorem 1.7).

The relationship between these results is shown in the diagram in Figure 1.1.
It is natural to consider extending the semitoric classification to hypersemitoric systems.

Pelayo & Vũ Ngo.c [PVuN12, Section 2.3] discuss the expected difficulty in classifying systems
with hyperbolic singular points. One of the main extra difficulties that make these systems
more challenging, but also more interesting, is that the fibers of the momentum map are
often disconnected. The existence of disconnected fibers prevents the application of many
standard techniques, and therefore analyzing these systems is a non-trivial endeavor. These
extra difficulties are unavoidable though, since hyperbolic singularities, and also disconnected
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Toric systems

classified by Delzant [Del88]

(S1 × S1)-action

Semitoric systems

classified by Pelayo & Vũ
Ngo.c [PVuN09, PVuN11]

(S1 × R)-action

Hypersemitoric
systems

not yet classified

(S1 × R)-action

Hamiltonian S1-
spaces satisfying:

• g = 0
• at most two non-free

orbits in each J−1(jint)

classified by Karshon[Kar99]

Hamiltonian S1-
spaces satisfying:

• g = 0
• at most two non-free,

non-fixed orbits in each
J−1(jint)

classified by Karshon[Kar99]

All Hamiltonian
S1-spaces

classified by Karshon[Kar99]

⊂ ⊂

⊂ ⊂

[Kar99] [HSS15][Kar99] [HSSS] Theorem 1.7

Figure 1.1. Relationships between integrable systems and Hamiltonian S1-
spaces: g refers to the genus of all fixed surfaces which exist, and jint refers
to an element of the interior of the image of J . This diagram is commutative
in the sense that the inclusions and projections downwards are compatible.
The upwards arrows represent extending, and the downwards arrows represent
using the classification of the integrable system to recover the Karshon graph.
Since hypersemitoric systems are not yet symplectically classified, there is no
downwards arrow from them in the diagram.

fibers, are a common feature in natural systems. For instance, the Lagrange top and the
two body problem are two fundamental physical systems which include an S1-symmetry and
also have singularities with hyperbolic components.

1.5. Sketch of the proof of Theorem 1.7. The proof of Theorem 1.7 makes use of re-
sults concerning minimal models in Karshon’s classification [Kar99]. Karshon proved that
all Hamiltonian S1-spaces can be obtained from a list of certain minimal models by a finite
sequence of S1-equivariant blowups. We first show that all of the minimal models can be ex-
tended to hypersemitoric systems (Proposition 5.1). We then show that these hypersemitoric
systems on the minimal models can be carried along to construct a hypersemitoric system
on any Hamiltonian S1-space which can be obtained from a minimal model via a sequence
of S1-equivariant blowups. Since all Hamiltonian S1-spaces can be produced in this way, we
then conclude that all Hamiltonian S1-spaces can be extended to hypersemitoric systems
and the proof is complete.

The main difficulty is, roughly, that we must show that any hypersemitoric system on a
given Hamiltonian S1-space induces a hypersemitoric system on any S1-equivariant blowup
of that Hamiltonian S1-space. Such blowups occur at fixed points of the S1-action, which
are necessarily singular points of the integrable system which are of elliptic-elliptic, elliptic-
regular, or focus-focus type. If the blowup occurs at an elliptic-elliptic or elliptic-regular point
of the integrable system then the argument follows similarly to that of Hohloch & Sabatini
& Sepe & Symington [HSSS], except that we cannot make use of a polygon invariant in our
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Karshon graphKarshon graphKarshon graph

Dullin

Pelayo

blowup

2

2 2

2

2

2

2

Figure 1.2. Let p be a fixed point in the Hamiltonian S1-space which cor-
responds to a focus-focus singular point in the extended integrable system.
We first use the technique of Dullin & Pelayo [DP16] to induce a Hamiltonian-
Hopf bifurcation which changes the system so that p becomes an elliptic-elliptic
point, and then we perform an S1-equivariant blowup at p.

more general situation since so far such an invariant exists only for semitoric systems. Here
we compensate for the lack of a polygon invariant by working locally around the fixed point.
For extending all Hamiltonian S1-spaces, though, performing blowups only at elliptic-elliptic
and elliptic-points is insufficient. We must also perform blowups at focus-focus points of the
system, as explained in the following paragraph.

One of the main new ideas of the present paper is performing an S1-equivariant blowup at
a focus-focus singular point p ∈ M . This is done by incorporating the technique described
by Dullin & Pelayo [DP16] to use a supercritical Hamiltonian-Hopf bifurcation to replace a
neighborhood of the focus-focus singular value in F (M) with a triangle of singular values
known as a flap (see Definition 2.45) while keeping the structure of the integrable system and
leaving the underlying S1-space unchanged. The flap includes two families of elliptic-regular
points, one family of hyperbolic-regular points, one elliptic-elliptic point, and two degenerate
orbits of parabolic type. Once the Dullin & Pelayo technique has been used to create the
flap, the point p is now an elliptic-elliptic singular point of the new system and thus a usual
toric-type blowup can be performed at p. This process is shown in Figure 1.2. One of the
main technical difficulties of the paper is verifying that the flap may be made large enough
so that the entire blowup occurs at points contained ‘on the flap’. Furthermore, we cannot
proceed purely by induction on the number of blowups and make the flaps one at a time,
since each flap must be carefully positioned relative to all others to insure that none of the
flaps created in this process interfere with each other.

Remark 1.9. Hypersemitoric systems represent a very general class of systems with S1-
symmetries. To analyze this more deeply is beyond the scope of the present paper (we will
consider this in a future project), but, given a Hamiltonian S1-space (M,ω, J), it seems
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reasonable to conjecture that the set

{H : M → R | (M,ω, (J,H)) is a hypersemitoric system}
is an open and dense subset of

{H : M → R | (M,ω, (J,H)) is integrable}.
This seems plausible by the following sketched argument: such an integral H can (roughly)
be thought of as a one-parameter family of functions on the reduced space. By the work
of Cerf [Cer70], one parameter families of functions on smooth manifolds can be perturbed
to be Morse at all but finitely many times, at which times the function takes a form which
lifts to be a parabolic point. Lifting such a perturbed function should yield a hypersemitoric
system. One of the technical problems that would need to be overcome, is that in this
situation the reduced space is in general not a smooth manifold but has a finite number of
singular points.

1.6. Outline of paper: In Section 2 we recall various results we will need throughout the
paper. In Section 3 we give some motivating examples. In Section 4 we prove some results
about properties of integrable systems for which one of the integrals generates an S1-action.
In Section 5 we prove Theorem 1.7.

1.7. Acknowledgments: We would like to thank A. Bolsinov and S. Vũ Ngo.c for helpful
remarks and references. The first author was partially funded by the FWO-EoS project
G0H4518N, and the second author was partially supported by the FWO senior postdoctoral
fellowship 12ZW320N.

2. Preliminaries

In this section we briefly recall a number of results from the literature that we need. We
will cover all of the relevant background partially to fix notation, and partially to provide an
overview of the topics relevant for the present paper. These subjects range from relatively
classical to extremely recent, and also include a few new results, and thus we believe a
modern summary of this material has independent value.

Specifically, this section mainly summarizes the works of Karshon [Kar99], Delzant [Del88],
Pelayo & Vũ Ngo.c [PVuN09, PVuN11], Hohloch & Sabatini & Sepe [HSS15], Efstathiou &
Giacobbe [EG12], Bolsinov & Guglielmi & Kudryavtseva [BGK18], and Kudryavtseva &
Martynchuk [KM21b, KM21a].

2.1. Hamiltonian S1-spaces and their Karshon graphs. Let (M,ω, J) be a Hamil-
tonian S1-space (cf. Definition 1.1) and keep in mind that the underlying manifold is by
definition compact and four-dimensional. Following [Kar99], we will construct a labeled
graph associated to this space.

Lemma 2.1 ([Kar99, Lemma 2.1]). Let (M,ω, J) be a four dimensional compact Hamilton-

ian S1-space and denote by MS1
the fixed point set of the S1-action. Then MS1

has finitely
many components, each of which is either an isolated point or a symplectic surface (i.e. ω
restricts to a symplectic form on the surface), and any such surface, if it exists, is exactly
the preimage under J of the maximum or minimum value of J . Moreover, the preimages
under J of its maximum and minimum values are each connected.
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p q

k

Figure 2.1. A Zk-sphere connecting the fixed points p and q.

For k ∈ Z>0 define Zk := {λ ∈ S1 | kλ ∈ 2πZ}. Connected components of the set of points
on M with isotropy subgroup Zk, k > 1, are homeomorphic to cylinders, and the closure of
each such component is an embedded sphere in M , called a Zk-sphere (see Figure 2.1) on
which the S1-action acts as rotation leaving the points in the closure (‘poles’) fixed. Thus,

Zk-spheres connect distinct components of MS1
.

Now we will describe the graph used by Karshon to classify Hamiltonian S1-spaces.

• The set of vertices is the set of connected components of MS1
each labeled by the

value of J on that component. The fixed surfaces Σ are represented by ‘fat vertices’
(in figures drawn as large black ovals) that are labeled by the value of J and, in
addition, by the normalized symplectic area of the surface

(2.1) A(Σ) :=
1

2π

∫
Σ

ω

and its genus g. If the genus is 0 we often omit the label in figures.
• Two vertices are connected by an edge if and only if there exists a Zk-sphere, k > 1,

connecting the two associated fixed points in M . Each edge is labeled by its k. The
horizontal position of the vertices corresponds to their J-value (although we usually
omit the coordinate axis with the values of J). We also usually omit the volume
label.

Notice that our graphs are rotated by 90◦ compared to Karshon’s [Kar99] since it is more
natural for us to align the J-value direction in the graphs with the J-coordinate axis of the
semitoric polygons.

Given any fixed point p ∈ MS1
, there exist integers m,n ∈ Z and complex coordinates

w, z around p such that the S1-action by t ∈ S1 is given by t · (w, z) = (eimtw, eintz) and the
symplectic form is locally given by i

2
(dw∧dw+dz∧dz). The integers m and n are called the

weights of the S1-action at p, and they are also easy to see in the graph: for k > 1, a fixed
point has −k as one of its weights if and only if it forms the north pole of a Zk-sphere and
k as one of its weights if and only if it forms the south pole of a Zk-sphere. The point p has
zero as one of its weights if and only if it lies in a fixed surface. All weights not determined
by these rules are either +1 or −1. Furthermore, if p is in the preimage of the maximum
value of J then p has two non-positive weights, if p is in the preimage of the minimum value
of J then it has two non-negative weights, and otherwise p has one positive and one negative
weight.

Example 2.2. Consider the usual action of S1 on CP2 given by t · [z0 : z1 : z2] = [z0 :
eitz1 : z2] for t ∈ S1 with Hamiltonian J([z0 : z1 : z2]) = |z1|2 /(|z0|2 + |z1|2 + |z2|2). Then
J−1(0) = {z1 = 0} is a sphere which is fixed by the S1-action and J−1(1) = {z0 = z2 = 0} is
a point fixed by the S1-action. There are no other fixed points and the action is free away
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(a) The Karshon graph for CP2. (b) The Delzant polygon of CP2.

Figure 2.2. The Karshon graph and Delzant polygon for the standard ac-
tions of S1 and T2 on CP2. Their geometric relation is described in Section 2.3.

from these sets. The fixed sphere is represented by a fat vertex at J = 0 with normalized
area A = 1 (cf. Equation (2.1)), the fixed point is represented by a regular vertex at J = 1,
and there are no edges. The graph is shown in Figure 2.2a.

An isomorphism between two Hamiltonian S1-spaces (M1, ω1, J1) and (M2, ω2, J2) is a
symplectomorphism Ψ: M1 →M2 such that J2◦Ψ = J1, in which case Ψ is also automatically
equivariant with respect to the S1-actions. One of the main results of Karshon’s work [Kar99]
is that the graphs contain all of the information of the isomorphism class of the associated
Hamiltonian S1-space.

Theorem 2.3 ([Kar99, Theorem 4.1]). Two four-dimensional compact Hamiltonian S1-
spaces have the same Karshon graph if and only if they are isomorphic as Hamiltonian
S1-spaces.

Karshon completes the classification by describing exactly which graphs occur as the
invariant of an S1-space. We discuss this in Section 2.5.

Remark 2.4. Complexity-one spaces are the higher dimensional analogue of Hamiltonian
S1-spaces: they consist of a 2n-dimensional symplectic manifold carrying a Hamiltonian
action of the torus Tn−1. A complexity-one space is called tall if all reduced spaces are two-
dimensional. Tall complexity-one spaces are classified by a series of papers by Karshon &
Tolman [KT01, KT03, KT14], which extends the above presented classification of Hamilton-
ian S1-spaces by including additional invariants. Extending such Hamiltonian torus actions
to integrable systems is unfortunately beyond the scope of the present paper and thus will be
treated in a future work. First steps in this direction have been made by Wacheux [Wac13]
who studied six dimensional integrable systems where two components of the momentum
map are both periodic, and thus generate a Hamiltonian T2-action.

2.2. Classification of toric systems. Let (M,ω, F = (f1, . . . , fn)) be a 2n-dimensional
toric system, and recall from Section 1 that, in our convention, the underlying manifold M
of a toric system is always compact. The flows of f1, . . . , fn are each periodic of minimal
period 2π, and thus induce an effective action of Tn = Rn/2πZn so that one can interpret
it as a Hamiltonian action of Tn on M . Atiyah [Ati82] and Guillemin & Sternberg [GS82]
showed that the image F (M) is a convex n-dimensional polytope and, moreover, that it is
the convex hull of the images of the fixed points of the torus action on M . Furthermore,
Delzant [Del88] showed that the polytope ∆ := F (M) always satisfies three conditions:

(1) simplicity : exactly n edges meet at each vertex of ∆ (note that this is automatic if
n = 2, the case we will consider in this paper);

10



(2) rationality : each face of ∆ admits an integral normal vector (i.e. a normal vector in
Zn);

(3) smoothness : given any vertex, the set of integral inwards pointing normal vectors
(from item (2)) of the faces adjacent to that vertex can be chosen such that their
Z-space is the entire lattice Zn.

Delzant also showed that any n-dimensional polytope satisfying these conditions arises as the
image of the momentum map for some toric system, and that two toric systems (M1, ω1, F1)
and (M2, ω2, F2) have the same momentum map image if and only if there exists a symplec-
tomorphism Φ: M1 → M2 such that F2 ◦ Φ = F1, called an isomorphism of toric systems.
Thus, Delzant completed the classification of toric systems up to isomorphism in terms of a
convex polytope given by the image of the momentum map. We will call this polytope the
Delzant polytope of the system, or, in case n = 2, the Delzant polygon.

Example 2.5. Consider the toric system (CP2, ωFS, F = (J,H)) where ωFS is the usual
Fubini-Study symplectic form, J is as in Example 2.2, and H([z0, z1, z2]) = |z2|2 /(|z0|2 +
|z1|2 + |z2|2). Then the associated Delzant polygon is the triangle with vertices at (0, 0),
(0, 1), and (1, 0) drawn in Figure 2.2b.

2.3. Hamiltonian S1-spaces and toric systems. Let (M,ω, F = (J,H)) be a compact
toric system with Delzant polygon ∆ = F (M). Then (M,ω, J) is a Hamiltonian S1-space
with S1-action associated with the subgroup S1 × {0} ⊂ T2 of the torus acting on M . The
fixed surfaces (if any) of this action are the preimages of the (closed) vertical edges of ∆
which have normalized symplectic area (see Equation (2.1)) equal to the length of the edge
and have always genus zero. The isolated fixed points of the action are the vertices of ∆
which are not on vertical edges. Each Zk-sphere with k ∈ Z>1 associated with the action
induced by J is the preimage of an edge (including the limiting vertices) of ∆ of which the
slope can be written as b/k for some b ∈ Z such that k and b are relatively prime. Thus, it
is straightforward to construct the Karshon graph from the Delzant polygon, compare the
Delzant polygon to the Karshon graph for the standard action on CP2 in Figure 2.2. Note
that there are Hamiltonian S1-spaces that cannot be obtained from a Hamiltonian T2-action
in this way, as we will see now. We call a level set non-extremal if it is the preimage of any
point in the image of J except for its maximum or minimum values.

Lemma 2.6 ([Kar99, Proposition 5.21]). A Hamiltonian S1-space can be extended to a toric
system if and only if each fixed surface (if any) of the Hamiltonian S1-space has genus zero
and each non-extremal level set of J contains at most two non-free orbits of the S1-action.

Actions without fixed surfaces can be extended:

Lemma 2.7 ([Kar99, Corollary 5.19]). Let (M,ω, J) be a Hamiltonian S1-space. If all fixed
points of the S1-action are isolated then (M,ω, J) extends to a toric system.

2.4. Equivariant blowups. Not every possible labeled graph can actually be obtained as
the Karshon graph associated to a Hamiltonian S1-space. Following Karshon [Kar99], we
will describe, in terms of minimal models, the set of labeled graphs which do correspond
to a Hamiltonian S1-space. This involves in particular the effect of S1-equivariant blowups
and blowdowns on the labeled graph and the notion of minimal Hamiltonian S1-spaces,
i.e., Hamiltonian S1-spaces which do not admit such blowdowns, and their Karshon graphs.
Essential for the present paper is the fact that the set of graphs that can be obtained from
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Hamiltonian S1-spaces is equal to the set of graphs which can be produced from one of these
minimal graphs via a finite sequence of S1-equivariant blowups.

2.4.1. Symplectic and equivariant blowups and blowdowns. Let (M,ω) be a symplectic 4-
manifold. Intuitively, a ‘blowup’ of (M,ω) amounts to removing an embedded 4-ball and
collapsing the boundary via the Hopf fibration to a 2-sphere. Since a ‘blowdown’ is the
inverse operation of a blowup we recall in the following only the construction and definition
of (various types of) blowups but not blowdowns.

Definition 2.8. Let p ∈M , let U ⊂M be a neighborhood of p, and let φ : U → V ⊂ C2 be
a symplectomorphism with φ(p) = (0, 0). Then, given any r > 0 such that the standard ball

of radius r in C2 is contained in V , we define the symplectic blowup at p of size λ := r2

2
by

removing the preimage of the ball and collapsing the boundary to a 2-sphere via the usual
Hopf fibration given by S3 → CP1, (z0, z1) 7→ [z0 : z1] where the coordinates (z0, z1) come
from the inclusion S3 ⊂ C2. We will denote the manifold obtained by blowing up M at k
points by Blk(M).

The blowup and the blowdown and how to equip the resulting manifold with a symplectic
form are described in detail in McDuff & Salamon [MS17, Section 7.1]. Note that the
diffeomorphism type of Blk(M) is independent of the choice of points and sizes of the blowups.

Suppose that (M,ω, J) is a Hamiltonian S1-space. To obtain S1-equivariant coordinates
we require that the map φ from Definition 2.8 is equivariant with respect to the given
Hamiltonian S1-action on (M,ω) and a Hamiltonian S1-action on C2 given by λ · (z, w) =
(λmz, λnw) for some m,n ∈ Z, where λ ∈ S1. Notice that such a φ only exists if p is a fixed
point of the action.

Definition 2.9. Let (M,ω, J) be a Hamiltonian S1-space and p ∈ M . Taking the blowup
with respect to the above mentioned S1-equivariant coordinates and restricting the momen-
tum map to the resulting space yields the S1-equivariant blowup at p ∈M of size λ.

Now consider a toric system and its induced Hamiltonian T2-action. To obtain T2-
equivariant coordinates we require that the map φ from Definition 2.8 is equivariant with
respect to the given Hamiltonian T2-action on (M,ω) and a standard linear Hamiltonian
T2-action on C2 given by (s, t) · (z, w) = (smtm

′
z, sntn

′
w) for (s, t) ∈ T2 with weights

m,m′, n, n′ ∈ Z.

Definition 2.10. Let (M,ω, F ) be a toric system and p ∈ M . Taking the blowup with
respect to the above mentioned T2-equivariant coordinates and restricting the momentum
map to the resulting space yields the T2-equivariant blowup at p ∈M of size λ.

The isomorphism class of the result of the S1-equivariant and T2-equivariant blowups
described above is independent of all choices. This can be seen by simply noting that the
resulting Karshon graph (for a Hamiltonian S1-space) or Delzant polygon (for a toric system)
is independent of all choices, and using the fact that these objects classify Hamiltonian
S1-spaces and toric systems, respectively, up to isomorphisms (this is the same argument
from [Kar99, Proposition 6.1]).

2.4.2. Blowups on 2-dimensional Delzant polytopes. Now we analyze the impact of a T2-
equivariant blowup of a toric system on its Delzant polygon.
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Figure 2.3. Performing a blowup at one of the fixed points of CP2 corre-
sponds to performing a corner chop on the associated Delzant polygon.

A vector v ∈ Z2 is primitive if v = ku for u ∈ Z2 and k ∈ Z implies k = ±1, i.e., v is not
a multiple of a shorter integral vector. Given primitive vectors u1, u2 ∈ Z2 and x ∈ R2 set

Simpλx(u1, u2) := {x+ t1u1 + t2u2 | t1, t2 > 0, t1 + t2 < λ}.
which parametrizes a simplex originating from x between λu1 and λu2. Thus, taking x to
be the origin of R2 and u1, u2 to be the standard basis vectors of Z2 yields a right triangle
with two sides of length λ. Other choices of x and primitive vectors u1, u2 ∈ Z2 lead to all
translations of images of that triangle under GL(2,Z).

Remark 2.11. Let (M,ω, F ) be a compact, four dimensional, toric integrable system with
Delzant polygon F (M) =: ∆. Let p ∈M be a fixed point of the system and λ > 0 such that
the blowup at p of size λ is well-defined. Let (M ′, ω′, F ′) be the toric system resulting from
a T2-equivariant blowup at p ∈M of size λ > 0. Then the Delzant polygon F ′(M ′) =: ∆′ is
related to ∆ via

∆′ = ∆ \ SimpλF (p)(v1, v2),

cf. Figure 2.3, where v1, v2 ∈ Z2 are the primitive vectors aligned with the edges emanating
from the corner F (p). This operation is usually referred to as a corner chop and is well
known in the literature, see for instance Cannas da Silva [CdS03, Sections 3.4-3.5].

Now we can reformulate the idea of the blowup entirely in terms of the Delzant polygon.

Remark 2.12. The toric system (M,ω, F ) associated to a Delzant polygon ∆ admits a
T2-equivariant blowup of size λ > 0 at a fixed point p ∈ M if and only if F (p) is the only
vertex of ∆ contained in the simplex SimpλF (p)(v1, v2), where v1, v2 are the primitive vectors
aligned with the edges emanating from F (p).

2.4.3. Blowups on Karshon graphs. Let (M,ω, J) be a Hamiltonian S1-space on which we
perform an S1-equivariant blowup at a fixed point p ∈M of (admissible) size λ. Denote the
resulting Hamiltonian S1-space by (M ′, ω′, J ′) and flag all objects associated with (M ′, ω′, J ′)
by a prime ′. Recall that a fixed point of the S1-action is either an isolated fixed point or
lies in a fixed surface (which can only be located at the minimum and/or maximum of J).
Denote by jmin, jmax ∈ R the minimum and maximum values of J(M).

We will now describe how the Karshon graph Γ′ of (M ′, ω′, J ′) relates to the Karshon
graph Γ of (M,ω, J), see Figure 2.4.

Lemma 2.13 ([Kar99, Section 6.1]). The effect of an S1-equivariant blowup at a fixed point

p ∈MS1
of (admissible) size λ on the associated Karshon graph depends on the type of fixed

point (isolated or not) and the value of J(p):
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Figure 2.4. The effect of a blowup on a Karshon graph in cases (B1)-(B4)
from Lemma 2.13.

(B1) If Σ := J−1(jmin) is a fixed surface and p ∈ Σ, then the normalized symplectic area
A(Σ) of Σ is reduced by λ, i.e., A(Σ′) = A(Σ)− λ. Moreover, there is a new isolated
fixed point p′ in Γ′ with J ′(p′) = J(p) + λ = jmin + λ. Other than this the graph is
unchanged, and in particular there are no new edges.

Replacing jmin by jmax works similar, except that J ′(p′) = J(p)− λ = jmax − λ.

(B2) If p is an isolated fixed point with J(p) = jmin and weights both equal to 1, then the
vertex in Γ corresponding to p does not exist any more in Γ′, but is replaced in Γ′

by a fat vertex of normalized area A = λ with genus zero and J-value J = jmin + λ.
There is no change in the edge set of the graph.

The case in which p is an isolated fixed point with J(p) = jmax and weights both
equal to −1 is similar, except that the new fat vertex has J-value J = jmax − λ.

(B3) If p is an isolated fixed point with J(p) = jmin with weights n, m satisfying 0 < n < m,
then the vertex associated to p in Γ is removed and replaced in Γ′ by two new vertices
associated with two fixed points p′− and p′+ with J ′(p′−) = jmin + nλ and J ′(p′+) =
jmin +mλ. The edge with label n that was attached to the vertex corresponding to p is
now attached to the new vertex corresponding to p′− and the edge labeled by m is now
attached to the new vertex corresponding to p′+. The two new vertices are connected
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to each other by an edge labeled by m−n. Recall that edges with labels equal to 1 are
not drawn in the graph.

The case with J(p) = jmax is a reflection of this situation. That is, if the weights
of p are −n and −m satisfying 0 < n < m then the new vertices have J-values
J ′(p′−) = jmax − nλ and J ′(p′+) = jmax −mλ, and the edge connecting them has label
m− n.

(B4) If p is an isolated fixed point with J(p) ∈ ]jmin, jmax[ with weights −n and m satisfying
n,m > 0 then the vertex in Γ corresponding to p is removed from the graph and
replaced in Γ′ with two new vertices corresponding to two isolated fixed points p′− and
p′+ satisfying J ′(p′−) = J(p)− nλ and J ′(p′+) = J(p) + mλ, so that J ′(p′−) ≤ J ′(p′+).
The edge with label n that was attached to the vertex corresponding to p is now
attached to the new vertex associated with p′−. The edge labeled m is now attached
to the new vertex corresponding to p′+. The two new vertices are connected to each
other by an edge with label m+ n.

Above we have described the effect of the blowups on the graphs, but if λ is too large,
an S1-equivariant blowup of size λ on (M,ω, J) will not be possible. To describe which
blowups on the graphs can actually be realized by blowups on the S1-space (i.e. to describe
which S1-equivariant blowups are possible on a given S1-space), we must first define a partial
ordering of the vertices of a Karshon graph (again following Karshon [Kar99]). If v and w
are vertices of a Karshon graph, then we say that v < w if and only if the J-value of v is
less than the J-value of w and one of the following holds:

• v or w are extremal, or
• v and w are connected by a chain of edges.

This partial ordering on the vertices of Γ also induces a partial ordering on the vertices of
any blowup of Γ in the following way: let v be a vertex of a Karshon graph Γ and let Γv,λ be
a graph obtained by performing a blowup at v of some size λ > 0. There is a value λ0 > 0
such that for all 0 < λ < λ0 the partial ordering described above on the vertices of Γv,λ is
not changed by the size of λ. We endow the vertices of Γv,λ with this partial ordering, no
matter the size of λ.

The following proposition essentially states that the sizes of blowups which are allowed are
those for which λ is sufficiently small so that the ordering on the vertices described above is
in agreement with ordering of their J-values:

Proposition 2.14 ([Kar99, Proposition 7.2]). An S1-space admits an S1-equivariant blowup
of size λ > 0 at a given fixed point if and only if the blowup of size λ of the corresponding
Karshon graph at the corresponding vertex satisfies:

(1) for all vertices v, w in the blowup graph, if v < w then J(v) < J(w);
(2) the area label of each fat vertex (if any) is positive.

Remark 2.15. For the goal of the present paper, case (B4) of Lemma 2.13 is of interest for
m = n = 1, i.e., the situation where a single vertex p with J(p) =: j which is not the end or
start point of any edge is replaced by a pair of vertices p′− and p′+ with J ′(p′−) = j − λ and
J ′(p′+) = j + λ that are connected by an edge with label 2.

2.4.4. Toric blowups. If a fixed point of an integrable system consists only of elliptic com-
ponents in the sense of Theorem 2.20 it is said to be a completely elliptic point. Given a
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completely elliptic fixed point p of an 2n-dimensional integrable system, the coordinates of
the local normal form in Theorem 2.20 yield an identification of a neighborhood of p with
Cn. This allows to define a blowup at completely elliptic points, referred to as toric blowups.
Details can be found for instance in Le Floch & Palmer [LFP19, Section 4.2], in particular
for the fact that the resulting system is independent of all choices.

2.5. Minimal Hamiltonian S1-spaces. The exposition of this section closely follows the
line of thoughts in Karshon [Kar99, Section 6].

Definition 2.16. A Hamiltonian S1-space is minimal if it does not admit an S1-equivariant
blowdown.

To formulate the list of all minimal Hamiltonian S1-spaces, we need the following definition:

Definition 2.17. A ruled surface (M,ω, J) is an S2-bundle M over a closed surface Σ
endowed with a momentum map J : M → R inducing an S1-action that fixes the base while
rotating each fiber and equipped with an S1-invariant symplectic form ω.

Note that this definition of ruled surfaces may differ from the one used in a non-equivariant
or complex setting. Since the S1-action is by rotation of the sphere component, there exist
local trivializations in which the Hamiltonian function J is given by (an appropriate multiple
of) the standard height function on the sphere component. The S1-action on ruled surfaces
fixes two surfaces, both diffeomorphic to the base Σ, corresponding to the north and south
poles of the spheres which are fixed by the S1-action. There are no other fixed points, and
thus the Karshon graph of a ruled surface is composed of two fat vertices. The J-values of
the fat vertices are j0 and j0 + s, for some s > 0, the area labels are a > 0 and a + ns (for
some n ∈ Z such that a + ns > 0), and both are labeled with the same genus g ∈ Z≥0. In
the case that n = 0 the ruled surface is simply the product S2×Σg, where Σg is a surface of
genus g.

Now recall that, given a toric system (M,ω, F ), any homomorphism S1 ↪→ T2 induces a
Hamiltonian action of S1 on (M,ω).

Theorem 2.18 (Karshon [Kar99, Theorem 6.3]). A Hamiltonian S1-space (M,ω, J) is min-
imal if and only if either:

(1) (M,ω, J) is induced by the standard toric system on CP2 with some multiple of the
Fubini-Study form by a homomorphism S1 ↪→ T2;

(2) (M,ω, J) is induced by the standard toric system on one of the scaled Hirzebruch
surfaces by a homomorphism S1 ↪→ T2;

(3) (M,ω, J) has two fixed surfaces and no other fixed points, in which case it is a ruled
surface in the sense of Definition 2.17.

Definition 2.19. The minimal Karshon graphs are those that can be obtained from minimal
Hamiltonian S1-spaces.

Thus, Karshon’s classification of Hamiltonian S1-spaces works in terms of ‘minimal mod-
els’, i.e., the set of all possible Karshon graphs is obtained by starting with the minimal
Karshon graphs and also including in all graphs that can be obtained from those by a finite
sequence of admissible S1-equivariant blowups. Constructing the Karshon graph of a Hamil-
tonian S1-space then defines a bijection between the set of all Hamiltonian S1-spaces up to
isomorphism and the set of all Karshon graphs generated from the minimal models in this
way.
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2.6. Singularities of integrable systems. Let (M,ω, F = (f1, . . . , fn)) be a 2n-dimen-
sional integrable system. A point p ∈M is singular if

rank(p) := dim(spanR{X f1(p), . . . ,X fn(p)}) = rank(dF (p)) < n.

Referring to Bolsinov & Fomenko [BF04] for details, the space of quadratic forms on TpM
can be endowed with a Lie algebra structure isomorphic to sp(2n,R). A rank zero singular
point p is non-degenerate if and only if the Hessians of f1, . . . , fn span a so-called Cartan
subalgebra. There is also a notion of non-degeneracy for singular points p with rank(p) > 0:
Here the idea is, loosely speaking, to take the symplectic quotient with respect to the non-
singular part of the momentum map and apply the same condition.

Cartan subalgebras of TpM ∼= sp(2n,R) were classified by Williamson [Wil36]. This
pointwise classification was extended to a local classification by a series of papers, such as
Colin de Verdière-Vey [CdVV79], Rüssmann [Rüs64], Vey [Vey78], Eliasson [Eli84, Eli90],
Dufour & Molino [DM91], Miranda & Vũ Ngo.c [MVuN05], Vũ Ngo.c & Wacheux [VuNW13],
Chaperon [Cha13], and Miranda & Zung [MZ04].

Theorem 2.20 (Local normal form for non-degenerate singularities). Let p ∈ M be a
non-degenerate singular point of a 2n-dimensional completely integrable system (M,ω, F =
(f1, . . . , fn)). Then:

(1) there exist local symplectic coordinates (x1, . . . , xn, ξ1, . . . , ξn) on an open neighbor-
hood U ⊂ M and smooth functions q1, . . . , qn : U → R where we have the following
possibilities for the form of each qj:
• Elliptic component: qj = (x2

j + ξ2
j )/2,

• Hyperbolic component: qj = xjξj,
• Focus-focus component: qj = xjξj+1 − xj+1ξj and qj+1 = xjξj + xj+1ξj+1,
• Regular component: qj = ξj,

such that {qi, fj} = 0 for all i, j ∈ {0, . . . , n} and p corresponds to the origin in these
coordinates;

(2) if there is no hyperbolic component then the system of equations {qi, fj} = 0 for all
possible i, j is equivalent to the existence of a local diffeomorphism g : Rn → Rn such
that

g ◦ F = (q1, . . . , qn) ◦ (x1, . . . , xn, ξ1, . . . , ξn).

The number of elliptic, hyperbolic, focus-focus, and regular components locally classifies
a non-degenerate singular point and is referred to as its Williamson type. For instance, if
dim(M) = 4, each non-degenerate singular point is of exactly one of the following six types:

• rank 0: elliptic-elliptic, focus-focus, hyperbolic-hyperbolic, hyperbolic-elliptic;
• rank 1: elliptic-regular, hyperbolic-regular.

Remark 2.21. Suppose that M = Σ1×Σ2 where Σ1 and Σ2 are surfaces. For i ∈ {1, 2} let
πi : M → Σi be the projection map, let ωi be a symplectic form on Σi, and let fi : Σi → R
be a Morse function. Then (M,ω1 ⊕ ω2, F = (f1 ◦ π1, f2 ◦ π2)) is an integrable system and
all singular points of this system are non-degenerate. Moreover, p = (p1, p2) is a singular
point of F if and only if at least one of the pi is a critical point of the corresponding fi,
and the Williamson type of p is determined by the Morse indices of p1 and p2. This is
because given Morse charts Ui ⊂ Σi around pi with coordinates putting each fi into the
standard form (as in the Morse lemma) the product U1 × U2 ⊂ M forms one of the charts
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discussed in Theorem 2.20. Regular points of one of the Morse functions correspond to
regular components in the local normal form, index 1 critical points correspond to hyperbolic
components, and index 0 or 2 critical points correspond to elliptic components. For instance,
if p1 ∈ Σ1 is an index 1 critical point with Morse coordinates a, b then locally f1 = a2− b2 =
(a− b)(a+ b) so taking x = a− b and ξ = a+ b gives the coordinates for a hyperbolic block
from Theorem 2.20, q1 = xξ. Alternatively, one can compare the eigenvalues of the Hessians
of the Morse functions with the eigenvalues of the block diagonal Hessian of F , which is
not the way that we will approach this in the present paper, but is closer to the pointwise
classification of Williamson.

2.7. Integrable systems and singular Lagrangian fibrations. Let the triple (M,ω, F )
be a 2n-dimensional completely integrable system. A connected component of a fiber of
F : M → Rn is called singular if it contains a singular point of the integrable system and
called regular otherwise. Every regular component of a fiber of F is a Lagrangian subman-
ifold of M . If M is compact then, according to the Arnold-Liouville theorem, all regular
components are diffeomorphic to n-tori. Let B be the topological space obtained as the
quotient space of M by identifying two points if and only if they are in the same component
of the same level set of F and denote by τ : M → B the associated quotient map. The map
τ : M → B is in fact a so-called singular Lagrangian fibration of M with base B since the
union of the fibers of τ which are Lagrangian submanifolds forms an open dense set in M .
Thus, we say that the singular Lagrangian fibration τ : M → B is induced by the momentum
map F .

In the case that all fibers of F are connected, the base B can be naturally identified with
the image of the momentum map F (M). This is the case for toric and semitoric systems.
For more general classes of integrable systems, such as hypersemitoric systems, there is a
natural surjection B → F (M), but this is not necessarily a bijection.

The next result follows from Bolsinov & Fomenko [BF04, Proposition 1.16].

Lemma 2.22. Let (M,ω, F = (J,H)) be a four dimensional integrable system and let
MHR ⊂ M be the set of hyperbolic-regular singular points. If C ⊂ M is a connected compo-
nent of MHR then F |C is an immersion whose image is a smooth immersed submanifold of
dimension 1. Thus, for any p ∈ C there exists a set U ⊂ C which is an open (as a subset of
C) neighborhood of p such that F (U) is a one-dimensional submanifold of R2.

Remark 2.23. Concerning Lemma 2.22, notice that the connected components of F (MHR)
are not always embedded curves in R2. This is because given two components C and C ′ of
MHR the curves F (C) and F (C ′) may pass through each other in R2, although their images
τ(C) and τ(C ′) cannot intersect in the base of the fibration induced by F .

2.8. Semitoric systems and marked polygons. Due to Theorem 2.20, semitoric systems
(as in Definition 1.8) can have singular points of three types: elliptic-elliptic, focus-focus, and
elliptic-regular. A semitoric system (M,ω, F = (J,H)) is simple if there is at most one focus-
focus point in each fiber of J . Simple semitoric systems were classified by Pelayo & Vũ Ngo.c
[PVuN09, PVuN11] in terms of five invariants: the number of focus-focus points, the semitoric
polygon, the height invariant, the Taylor series invariant, and the twisting index invariant.
This classification was extended to non-simple systems by Palmer & Pelayo & Tang [PPT19].
We will focus our attention on the first three invariants, which were already developed in
Vũ Ngo.c [VN07] before the full classification and which extended nearly unchanged to the
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g ◦ F
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F

Figure 2.5. The momentum map image of a semitoric system can be
‘straightened out’ to recover a polygon.

non-simple case. As in Le Floch & Palmer [LFP19], we will collect these three invariants
together into a single invariant called the marked semitoric polygon invariant.

Given a semitoric system (M,ω, F = (J,H)) there are at most finitely many singular points
of focus-focus type, according to Vũ Ngo.c [VN07, Corollary 5.10]. Denote their number by
mf ∈ Z≥0 and the set of focus-focus singular points by MFF = {p1, . . . , pmf

} ⊂ M . The
images F (p1), . . . , F (pmf

) ∈ R2 of these points lie, due to Theorem 2.20, in the interior of
the momentum map image F (M). Without loss of generality, we may assume that their
images are in lexicographic order in R2 with respect to the ‘coordinates’ induced by (J,H),
i.e. J(p1) ≤ . . . ≤ J(pmf

) and if J(p`) = J(p`′) with ` < `′ then H(p`) ≤ H(p`′). Given a
point c ∈ R2 and ε = ±1, let `εc ⊂ R2 be the closed ray starting at c directed along a vector in
the positive H-direction if ε = 1 and the negative H-direction if ε = −1. Given ~ε ∈ {±1}mf

let ~̀~ε = ∪mf
j=1`

εj
F (pj). Let M ′ = M \F−1(~̀~ε). Then, as in Vũ Ngo.c [VN07, Theorem 3.8], there

exists a homeomorphism g : F (M)→ R2 preserving the first component which is smooth on

F (M) \ ~̀~ε such that each component of g ◦ F |M ′ : M ′ → R2 generates an effective S1-action.
We will call such a g a straightening map. The closure of the image of this toric momentum
map is a polygon as sketched in Figure 2.5. It is unique up to the freedom in the choices of
~ε and g, which we will below encode in a group action on the triple

(2.2)
(
∆ := g ◦ F (M), g ◦ (F (p1), . . . , F (pmf

)),~ε
)
.

Remark 2.24. In the context of almost toric manifolds, a similar construction was devised
by Symington [Sym03].

Remark 2.25. Notice that we have allowed for the case of multiple focus-focus points in
the same fiber of F , in which case the ordering of the labeling of the focus-focus points is
not unique. This will not cause any problems in constructing a unique invariant because
changing the order of points in the same fiber does not change the resulting marked semitoric
polygon. However, the non-uniqueness of the ordering of the labels does cause complications
if the Taylor series labels are included (which are not relevant in the present paper), in which
case the focus-focus points in the same fiber have a cyclic ordering as in Palmer & Pelayo &
Tang [PPT19].
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For k = 1, 2 let πk : R2 → R denote the projection onto the kth coordinate and let s ∈ Z≥0.
In general, we call a triple (

∆,~c = (c1, . . . , cs),~ε = (ε1, . . . , εs)
)

a marked weighted polygon if ∆ ⊂ R2 is a polygon, the ~c is a list of points in lexocographic
order satisfying ci ∈ int(∆) for all i, and εi ∈ {±1} for all i. Thus, the triple from Equa-
tion (2.2) obtained from a semitoric system is an example of a marked weighted polygon.
For j ∈ R, let

(2.3) T =

(
1 0
1 1

)
and tj : R2 → R2, (x, y) 7→

{
(x, y + x− j) if x ≥ j,

(x, y) otherwise.

Let T be the group generated by powers of T and vertical translations. This is in fact the
subgroup of the group of integral affine maps on the plane which preserve the first component.
Let Gs := {±1}s. Then T ×Gs acts on the set of marked weighted polygons by

(τ, ~ε′) · (∆,~c,~ε ) =
(
σ(∆), (σ(c1), . . . , σ(cs)), (ε

′
1ε1, . . . , ε

′
sεs)
)

where σ = τ ◦ tu1

π1(c1) ◦ · · · ◦ t
us
π1(cs) and uk = εk(1 − ε′k)/2. Denote by [∆,~c,~ε ] the orbit of

(∆,~c,~ε ) under this action.
This group action represents exactly the effect of the choice of straightening map g and cut

directions ~ε on the triple in Equation (2.2) above: if (∆,~c,~ε ) is the result of that construction
for one choice of g and ~ε then the set of all possible triples produced in this way is exactly the
orbit [∆,~c,~ε ]. This orbit is the marked semitoric polygon invariant of the system (M,ω, F ).

Remark 2.26. Note that the marked semitoric polygon invariant contains more informa-
tion than the semitoric polygon invariant introduced in Vũ Ngo.c [VN03] and used in the
classification by Pelayo & Vũ Ngo.c [PVuN09, PVuN11], since it also includes the marked
points corresponding to the focus-focus values of the system. The height invariant of the
semitoric system is encoded in the marked semitoric polygon as the vertical distance from
ck to the bottom of ∆. It does not depend on the choice of representative.

The Taylor series and twisting index invariants are not encoded in the marked semitoric
polygon, so the marked semitoric polygon is not a complete invariant of semitoric systems.
The Taylor series, developed by Vũ Ngo.c [VN03], and extended to the case of multiple focus-
focus points in the same fiber by Pelayo & Tang [PT19], describes the semi-local (i.e. in a
neighborhood of the fiber) structure around a focus-focus singular point, and the twisting
index, introduced in Pelayo & Vũ Ngo.c [PVuN09], roughly, takes into account an additional
degree of freedom when gluing the neighborhood of a focus-focus fiber into the global system.
Since they are not related to the structure of the underlying Hamiltonian S1-space, these
two invariants are not be as important as the other three for this paper.

In the remainder of this section, we will describe which marked weighted polygons are
obtained from semitoric systems, summarizing results from Pelayo & Vũ Ngo.c [PVuN11]
adapted to the case of marked polygons that may have multiple marked points in the same
vertical line J = const. We say that a polygon is rational if the slope of each non-vertical
edge is rational. Let q be a vertex of a rational polygon and let v, w ∈ Z2 be the primitive
vectors directing the edges adjacent to q. Then we say that q satisfies:

• the Delzant condition if det(v, w) = 1;
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• the hidden Delzant condition for m cuts if det(v, Tmw) = 1;
• the fake condition for m cuts if det(v, Tmw) = 0,

where in each case det(v, w) denotes the determinant of the matrix with first column v and
second column w. The orbit [∆,~c,~ε ] can be obtained from a simple semitoric system if and
only if one, and hence all, representatives (∆,~c,~ε ) satisfy the following three conditions:

(1) ∆ is rational and convex;
(2) each point of ∂∆ ∩

(
∪k`εkck

)
is a vertex of ∆ and satisfies either the fake or hidden

Delzant condition for m cuts (in which case it is known as a fake corner or hidden
corner respectively) where m > 0 is the number of distinct k such that the vertex in
question lies on a ray `εkck ;

(3) each other vertex of ∆ satisfies the Delzant condition (and is known as a Delzant
corner).

Such marked semitoric polygons are known as marked Delzant semitoric polygons. We will
represent these by drawing each ray `εkck as a dotted line (known as a cut) and the image
under g ◦ F of each focus-focus point will be indicated by a small cross, see Figure 2.6b for
an example.

2.9. Hamiltonian S1-spaces and semitoric systems. In this section we briefly recall
the results of Hohloch & Sabatini & Sepe [HSS15]. Given a compact semitoric system
(M,ω, F = (J,H)) the Karshon graph of the underlying Hamiltonian S1-space (M,ω, J)
can be obtained from any representative of the associated marked semitoric polygon [∆,~c,~ε ]
much in the same way as obtaining the Karshon graph of a toric system from the associated
Delzant polygon. Let (∆,~c,~ε ) be any representative of [∆,~c,~ε ].

• The fixed surfaces of the S1-action are the preimages of the closure of the vertical
edges of ∆ (if any). The value of the normalized symplectic area of a fixed surface
equals the length of the associated edge. The genus is always zero. Thus, for each
vertical edge of ∆ the Karshon graph includes a fat vertex labeled by g = 0 and
normalized area equal to the length of the edge.
• The isolated fixed points of the S1-action are the focus-focus points and also the

preimages of any vertices of ∆ which lie not on vertical edges and are not fake
corners. Thus, the Karshon graph includes a regular vertex for each Delzant corner,
each hidden Delzant corner, and each focus-focus singular point.
• The Zk-spheres of the S1-action are determined by the edges of the polygon: Let
e1, . . . , em with m ≥ 1 be a collection of adjacent edges of ∆ such that the vertex
joining e` to e`+1, for ` = 1, . . . ,m − 1, is a fake vertex and the remaining two
endpoints (of e1 and em) are not fake. Then each of these edges has slope b`/k for
certain distinct integers b` with 1 ≤ ` ≤ m and a common integer k > 0, such that
b` and k are relatively prime. Moreover, the closure of the preimage of the union
e1 ∪ · · · ∪ em is a Zk-sphere, which, if k > 1, is represented by an edge labeled by
k in the Karshon graph between the vertices corresponding to the endpoints of the
piecewise linear curve consisting of e1 ∪ · · · ∪ em.

Example 2.27. We now produce a Hamiltonian S1-space on CP2 blown up five times which
cannot be extended to a toric system but can be extended to a semitoric system, cf. Figure
2.6. This construction will depend on two parameters, λ1 ∈ ]0, 1/3[ and λ2 ∈ ]0, λ1[. Starting
with CP2 with the Fubini-Study symplectic form and the (usual) S1-action as in Example 2.2,
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(a) The Delzant polygon of Bl4(CP2).

×

(b) A semitoric polygon of Bl5(CP2).

2

2

(c) The Karshon graph of the Hamiltonian
S1-space induced by the toric system from
Figure 2.6a.

2

2

(d) The Karshon graph of the Hamiltonian
S1-space induced by the semitoric system
from Figure 2.6b.

Figure 2.6. The Delzant polygons, semitoric polygons, and Karshon graphs
of CP2 blown up four and five times as in Example 2.27 with parameters
λ1 = 1/4 and λ2 = 1/8. The Delzant and semitoric polygons are drawn over
the lattice 1

8
Z2 ⊂ R2. Since the Delzant polygon for CP2 is the convex hull

of (0, 0), (1, 0), and (0, 1), performing the four blowups of the specified sizes
produces the Delzant polygon with vertices at (1/8, 1/8), (0, 2/8), (0, 6/8),
(1/8, 6/8), (3/8, 5/8), (1, 0), and (3/8, 0) shown in Figure 2.6a. Performing one
more blowup produces a semitoric system with the semitoric polygon shown
in Figure 2.6b.

perform two S1-equivariant blowups of the same size λ1 on the fixed surface. This produces
two new fixed points, and next we perform one blowup of size λ2 at each of these fixed
points. This gives us the Karshon graph as in Figure 2.6c, which can be extended to the
toric system corresponding to the Delzant polygon in Figure 2.6a. Now, performing another
blowup of size λ1 on the fixed surface produces the Hamiltonian S1-space corresponding to
the Karshon graph in Figure 2.6d which cannot be extended to a toric system according to
Lemma 2.6, but can be extended to a semitoric system. A representative of the semitoric
polygon of such a semitoric system is shown in Figure 2.6b. Figures 2.6a and 2.6b represent
choices of extensions for the S1-spaces represented by Figures 2.6c and 2.6d below them,
respectively. Later, in Example 3.5 we will perform another blowup on this graph, to obtain
the Karshon graph shown in Figure 3.2, and explain that the resulting S1-space cannot be
lifted to a semitoric system, but we show that it can be lifted to a hypersemitoric system.
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2.10. Blowups of semitoric systems. In Section 2.4, we already encountered blowups for
Karshon graphs, Delzant polygons, and toric systems. We will now describe two types of
blowups of semitoric systems.

2.10.1. Toric blowups. This type of blowup is motivated by the blowup for toric systems
described in Section 2.4:

Definition 2.28. Let (M,ω, F = (J,H)) be a semitoric system and let p ∈M be an elliptic-
elliptic singular point. Then one can perform a toric blowup of (M,ω, F = (J,H)) at p of
size λ > 0 if there exists a straightening map g : R2 → R2 as in Section 2.8 such that

(1) g ◦ F (p) is a Delzant corner of ∆ := g ◦ F (M),
(2) g ◦ F (p) is the unique vertex of ∆ contained in SimpλF (p)(v1, v2), where v1, v2 are

primitive vectors directing the edges of ∆ adjacent to g ◦ F (p),
(3) SimpλF (p)(v1, v2) does not intersect any of the cuts or marked points in ∆.

The result of a such a toric blowup is a semitoric system which has all of the same
invariants as the original system except that its marked polygon is the result of performing
a corner chop on the marked polygon invariant of the original system. This process amounts
to performing a usual T2-equivariant blowup with respect to the toric momentum map g ◦F .
It can be shown that the result of this operation does not depend on any of the choices made,
see for instance Le Floch & Palmer [LFP19, Section 4.3].

Remark 2.29. Note that we only need to find one representative of the marked semitoric
polygon invariant which admits a corner chop at the vertex corresponding to p in order to
perform a toric blowup. Also note that given any elliptic-elliptic point there is at least one
representative such that this point corresponds to a Delzant corner and thus for sufficiently
small size λ > 0 a toric blowup can always be performed.

2.10.2. Semitoric blowups of marked polygons. In a semitoric system (M,ω, F ), with F =
(J,H), a blowup can also be performed at an elliptic-regular point p if it lies in a surface
Σ which is fixed by the S1-action generated by J . Such blowups, and their effect on the
semitoric system, are described in detail in the upcoming work by Hohloch & Sabatini
& Sepe & Symington [HSSS]2, but here we will simply describe their effect on the marked
semitoric polygon invariant, and then use the result of Pelayo & Vũ Ngo.c [PVuN09, PVuN11]
which states there exists a system (actually infinitely many) associated to the resulting
marked semitoric polygon. In the context of almost toric manifolds, this type of blowup
already appeared in the work of Symington [Sym03, Section 5.4], and, furthermore, Auroux
described this operation in a very explicit example in the context of Lagrangian fibrations
when studying wall crossing phenomenon [Aur09, Example 3.1.2]. Such blowups are also
discussed in the lecture notes by Evans [Eva21, Section 9.1].

For any set B ⊂ R2 define

∂+B := {(x, y) ∈ ∂B | y ≥ y′ for all y′ such that (x, y′) ∈ ∂B}
and call it the upper boundary of B. Analogously define the lower boundary ∂−B. Note
that ∂+B ∪ ∂−B is not in general the entire boundary of B, but if B is convex specifying
∂+B and ∂−B nevertheless completely determines B. In fact, in this case B is equal to the
convex hull of ∂+B ∪ ∂−B.

2first announced at Poisson 2014 in a talk by Daniele Sepe.
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Definition 2.30. Suppose that [∆,~c,~ε ] is a marked Delzant semitoric polygon, and let
jmin, jmax ∈ R be such that π1(∆) = [jmin, jmax]. Suppose that emax := ∆ ∩ π−1

1 (jmax) is a
vertical edge of ∆ of length A > 0. Let λ > 0 be any real number such that λ < A and
λ < jmax − jmin. We now let (∆′, ~c′, ~ε′ ) be any marked weighted polygon such that:

(1) ∆′ is the unique convex polygon with ∂−∆′ = ∂−∆ and ∂+∆′ = t−1
jmax−λ(∂

+∆), where
tj is as in Equation (2.3).

(2) ~c′ is a list of points in int(∆′) in lexicographic order which has one entry more than

~c such that π1(~c′), the list of x-coordinates of the marked points, is equal to the list
π1(~c) with one additional value, namely jmax − λ.

(3) Let the new point be the `th entry in the list. Then set ~ε′ = (ε1, . . . , ε`−1, 1, ε`, . . . , εs).

The resulting marked Delzant semitoric polygon [∆′, ~c′, ~ε′ ] is called a semitoric blowup of
[∆,~c,~ε ] of size λ on emax. The case of performing the blowup on emin := ∆ ∩ π−1

1 (jmin)
proceeds analogously.

Remark 2.31. Note that in Definition 2.30 the change in the top boundary of ∆′ is designed
so that the new upward cut intersects the top boundary at either a fake corner or a hidden
Delzant corner. Thus, the orbit [∆′, ~c′, ~ε′ ] is indeed a marked Delzant semitoric polygon, and
thus there exists infinitely many semitoric systems with this as its marked semitoric polygon
invariant, guaranteed by the semitoric classification theorem of Pelayo & Vũ Ngo.c [PVuN09,
PVuN11]. The resulting marked polygon, forgetting about the height of each marked point,
does not depend on the choice of representative for [∆,~c, ~ε ], since different choices produce

different representatives of the same class [∆′, ~c′, ~ε′ ] because tj, ti, and T all commute. The
height of each marked point in the semitoric blowup can be freely chosen, representing
another degree of freedom when performing a semitoric blowup, but it does not change the
Karshon graph of the underlying S1-space of the resulting marked polygon.

Remark 2.32. We have only specified how the semitoric blowup operation behaves on
marked semitoric polygon invariants, and not on semitoric systems themselves. Thus the
resulting system of the semitoric blowup discussed below in Lemma 2.34 is not unique, and
furthermore we make no attempt to describe this blowup as an operation on the semitoric
system itself, instead depending on a description of its effect on the invariants since we
need no more detailed version for the present paper. A description of the operation on
(M,ω, (J,H)) will be discussed in detail in the upcoming [HSSS].

Example 2.33. Performing a semitoric blowup of size λ = 1/4 on the fixed surface of the
polygon in Figure 2.6a results in the polygon in Figure 2.6b.

Definition 2.30 was made with the following statement in mind.

Lemma 2.34. Let (M,ω, F = (J,H)) be a semitoric system and let [∆,~c,~ε ] be its marked

semitoric polygon invariant. Let [∆′, ~c′, ~ε′ ] be a choice of semitoric blowup of [∆,~c,~ε ] of size
λ on the vertical edge e. Then there exists a semitoric system (M ′, ω′, (J ′, H ′)) such that:

(1) The semitoric polygon invariant of (M ′, ω′, (J ′, H ′)) is [∆′, ~c′, ~ε′ ];
(2) (M ′, ω′, J ′) is the S1-equivariant blowup of (M,ω, J) at a point p ∈ F−1(e) of size λ.

Proof. First of all, notice that by Remark 2.31 the result of performing a semitoric blowup on
a marked polygon is another marked polygon. Let [∆,~c,~ε ] be the marked polygon invariant
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of (M,ω, F ) and let [∆′, ~c′, ~ε′ ] be a choice of semitoric blowup of [∆,~c,~ε ]. As recalled in
Section 2.9 from the work by Hohloch & Sabatini & Sepe [HSS15], we obtain now the

Karshon graphs underlying [∆,~c,~ε ] and [∆′, ~c′, ~ε′ ]: the Karshon graph of the new marked
semitoric polygon is related to the Karshon graph of the original one by reducing the area
label on the fat vertex corresponding to Σ by λ and adding a new isolated fixed point with
J-value label given by

J =

{
jmax − λ, if Σ = J−1(jmax),

jmin + λ, if Σ = J−1(jmin).

This is exactly Case (B1) from Section 2.4.3 describing the effect of a blowup at a point in a
fixed surface on the Karshon graph. Thus, the underlying S1-space of any system (M ′, ω′, F ′)

associated to the marked Delzant semitoric polygon [∆′, ~c′, ~ε′ ] is S1-equivariantly symplec-
tomorphic to the S1-equivariant blowup of (M,ω, J), since they have the same Karshon
graph. This also proves the last statement of the lemma, since the resulting Karshon graph
is the same for any such system. Moreover, the conditions for a semitoric system to admit
a semitoric blowup of size λ at p are exactly the same as the conditions for the associated
Hamiltonian S1-space to admit a blowup of size λ at p. �

2.11. Symplectic reduction and integrable systems. Given a Hamiltonian action of
an abelian compact Lie group T on a symplectic manifold (M,ω) with momentum map
µ : M → t∗ ∼= Rdim(T ), where t∗ is the dual of the Lie algebra t of T , the symplectic reduction
or symplectic quotient at level j ∈ µ(M) is defined to be

(M//T )j := µ−1(j)/T.

Let πj : µ−1(j) → (M//T )j be the projection on the quotient, and denote by ij : µ−1(j) →
M the inclusion map. The Marsden-Weinstein-Meyer Theorem [MW74, Mey73] describes
symplectic reduction for general compact Lie groups G. We will use the following version
specialized to the situation that the Lie group is a torus.

Theorem 2.35 ([Aud04, Proposition III.2.15]). Let T be a compact abelian Lie group acting
on (M,ω) in a Hamiltonian fashion with momentum map µ : M → t∗. If T acts freely on
µ−1(j) then (M//T )j is a smooth manifold and there exists a symplectic form ωj on (M//T )j
satisfying π∗jωj = i∗jω.

More generally, if T does not act freely on µ−1(j) then (M//T )j is a type of singular space
called a stratified symplectic space, but it still inherits smooth and symplectic structures
on the set of points πj(x) ∈ (M//T )j such that T acts freely on the fiber π−1

j (πj(x)). For
a detailed study of singular reduction and stratified symplectic spaces, see Cushman &
Bates [CB97], Sjamaar & Lerman [SL91], and Alonso [Alo19].

Now let (M,ω, J) be a Hamiltonian S1-space. Consider the quotient

M̂ := M/S1

with quotient map π : M → M̂ and let

M̂j := (J−1(j))/S1

be the symplectic quotient for j ∈ J(M). Denote by Non-free(J) ⊂ M the set of points on
which the S1-action generated by J does not act freely, i.e. the points in Non-free(J) ⊂M are
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those with non-trivial stabilizer. Then M̂ inherits a smooth structure away from sing(M̂) :=

π(Non-free(J)). Set smooth(M̂) := M̂ \ sing(M̂). Note that M̂j = π(J−1(j)) ⊂ M̂ and

let Ĥj := Ĥ|M̂j
. We now describe the relationship between the Morse classification of the

critical points of Ĥj on (the smooth parts of) M̂j and the classification of singular points of
the integrable system (M,ω, F ).

Lemma 2.36. Let (M,ω, (J,H)) be an integrable system such that J generates an S1-action,

let p ∈ M be such that S1 acts freely on p, and let c = π(p) ∈ M̂j where j = J(p). Then

c ∈ smooth(M̂). Furthermore:

(a) c is a regular point of Ĥj if and only if p is a regular point of (J,H),

(b) c is a non-degenerate critical point of Ĥj with index 0 or 2 if and only if p is an
elliptic-regular singular point of (J,H),

(c) c is a non-degenerate critical point of Ĥj with index 1 if and only if p is a hyperbolic-
regular singular point of (J,H).

In particular, the last two items imply that c is non-degenerate in the sense of Morse theory
if and only if p is non-degenerate in the sense of integrable systems.

Proof. Since the S1-action is proper, smooth, and free at p the statement c ∈ smooth(M̂) is
a standard result from the theory of group actions. Moreover, keep in mind that J inducing
a free S1-action at p implies dJ(p) 6= 0.

(a): c is a regular point of Ĥj if and only if dĤj(c) 6= 0 if and only if dH(p) and dJ(p) are
linearly independent, which is the definition of p being a regular point of (J,H).

(b) & (c): According to Hohloch & Palmer [HP18, Lemma 2.4]3, c is a non-degenerate

critical point of Ĥj in the sense of Morse theory if and only if p is a non-degenerate singular
point of (J,H). Due to dJ(p) 6= 0, the point p is not a fixed point of (J,H). Thus,
Theorem 2.20 only leaves two possibilities, namely p is elliptic-regular or p hyperbolic-regular.
On the other hand, again due to Hohloch & Palmer [HP18, Lemma 2.4], if p is an elliptic-

regular or hyperbolic-regular point then c must be a non-degenerate critical point of Ĥj in

the sense of Morse theory. We conclude that c is a non-degenerate point of Ĥj if and only if
p is either an elliptic-regular or hyperbolic-regular point of (J,H).

All that remains is to associate the index of the critical point c with the type of the
singular point p. We can do this by examining the topology of the fibers. First, notice
that if p is an elliptic-regular point then the local normal form (cf. Theorem 2.20) sends a
neighborhood of p in the level set F−1(F (p)) diffeomorphically to an open set in R1. Since all
of the points in the orbit of p under the S1-action are also elliptic-regular, these local charts
cover the connected component of F−1(F (p)) which contains p, and thus this component of
F−1(F (p)) is a compact one dimensional manifold, i.e. it is diffeomorphic to S1. If p is a
hyperbolic regular point, the local normal form shows that nearby p the level set F−1(F (p))
is homeomorphic to two planes intersecting at a line, and therefore in this case the connected
component of F−1(F (p)) containing p cannot be homeomorphic to S1. Thus, in our situation
p is an elliptic-regular point if and only if the connected component of F−1(F (p)) which
contains p is homeomorphic to S1. Now we are prepared to prove the claim. Supposing that

3In the published version of [HP18] there is a small error in Lemma 2.4, it requires that dJ(p) 6= 0 but it
should actually require that the S1-action generated by J acts freely on p.
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p is an elliptic-regular or hyperbolic-regular point, p is an elliptic-regular point if and only if
the connected component of F−1(F (p)) which contains p is homeomorphic to S1, if and only

if the connected component of Ĥ−1
j (Ĥj(c)) which contains c is a single point, if and only if

the index of c is 0 or 2 (since we already know that c is a non-degenerate critical point in
this situation). Therefore, we also conclude that p is hyperbolic regular if and only if c has
index 1. �

2.12. Parabolic degenerate points. Now we motivate and define the type of degenerate
points that appear in the definition of hypersemitoric systems. These degenerate singularities
were referred to by Colin De Verdiere [CDV03] as ‘the simplest non-Morse [i.e. degenerate]
example’ of singular points in integrable systems, and moreover, we will see that they natu-
rally occur in many systems with hyperbolic-regular points.

Definition 2.37 (Bolsinov & Guglielmi & Kudryavtseva [BGK18, Definition 2.1]). Let
(M,ω, F ) be an integrable system and p ∈ M a singular point such that df1(p) 6= 0 where
(f1, f2) = g ◦ F for some local diffeomorphism g of R2 defined in a neighborhood of F (p).
Define

f̃2 := f̃2,p := (f2)|f−1
1 (f1(p)) : f−1

1 (f1(p))→ R.
The point p is a parabolic degenerate singular point, briefly a parabolic point, if:

(1) p is a critical point of f̃2,

(2) rank(d2f̃2(p)) = 1,

(3) there exists v ∈ ker(d2f̃2(p)) such that

v3(f̃2) :=
d3

dt3
f̃2(γ(t))|t=0

is nonzero, where γ : ]−ε, ε[→ f−1
1 (f1(p)) is a curve satisfying γ(0) = p and γ̇(0) = v.

(4) rank
(
d2(f2 − kf1)(p)

)
= 3, where k ∈ R is determined by df2(p) = kdf1(p).

We call the image of a parabolic singular point a parabolic singular value of F , briefly a
parabolic value.

Remark 2.38. That the definition of v3(f̃2) does not depend on the choice of the the curve
γ is proven in Bolsinov & Guglielmi & Kudryavtseva [BGK18, Remark 2.1].

Informally, a parabolic degenerate point can be thought of as a singular point where
the rank of all relevant operators is as maximal as possible without the point being non-
degenerate.

Being a parabolic point is invariant under the following changes of the involved integrals:

Proposition 2.39 (Bolsinov & Guglielmi & Kudryavtseva [BGK18, Proposition 7.1]). Let
p ∈M be a parabolic point of (M,ω, (f1, f2)) in the sense of Definition 2.37 (thus, in partic-
ular, df1(p) 6= 0) and let (J ,H) = g(f1, f2) where g is a local diffeomorphism of R2 such that
dJ (p) 6= 0. Then p is also parabolic with respect to (J ,H), i.e. (J ,H) satisfies conditions
(1)-(4) of Definition 2.37.

Sometimes parabolic singular points are also called cuspidal singular points. Parabolic/
cuspidal points were studied for instance by Efstathiou & Giacobbe [EG12], Bolsinov &
Guglielmi & Kudryavtseva [BGK18], Kudryavtseva & Martynchuk [KM21b, KM21a], and
Bolsinov & Fomenko [BF04]. We used the definition by Bolsinov & Guglielmi & Kudryavt-
seva [BGK18] since it is the best adapted to our situation.
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Remark 2.40. The complete symplectic invariants of parabolic points and parabolic orbits
are described in the analytic case by Bolsinov & Guglielmi & Kudryavtseva [BGK18] and later
extended to the smooth case by Kudryavtseva & Martynchuk [KM21a]. These invariants are
non-trivial and were found to be encoded in the affine structure of the base of the Lagrangian
fibration near the parabolic values.

Parabolic points do not admit a symplectic normal form, but they do admit a smooth
normal form:

Proposition 2.41 (Kudryavtseva & Martynchuk [KM21b, Theorem 3.1]). Let p ∈ M be a
parabolic singular point of an integrable system (M,ω, F = (f1, f2)) for which df1(p) 6= 0.
Then there exists a neighborhood U of p equipped with coordinates (x, y, t, θ) centered at p,
and a local diffeomorphism g = (g1, g2) of R2 around the origin with g1(x1, x2) = ±x1 +const
and d

dx2
(g2) 6= 0 such that

g ◦ F |U = (t, x3 + tx+ y2).

The analytic case of Proposition 2.41 was first proved by Bolsinov & Guglielmi & Kudryavt-
seva [BGK18, Proposition 2.1] before being extended to the smooth case in Kudryavtseva &
Martynchuk [KM21b, Theorem 3.1].

Example 2.42. The origin is a parabolic point for the integrable system given by the local
normal form F : R4 → R2, (x, y, t, θ) 7→ (t, x3 + tx+ y2) equipped with the symplectic form
ω = dx ∧ dy + dt ∧ dθ.

Here it is important to keep in mind that the coordinates (x, y, t, θ) in Proposition 2.41
are in general not canonical, i.e. the symplectic form does not always take the standard form
as in Example 2.42 after change of coordinates.

2.13. Parabolic points in presence of an effective S1-action. Now we want to show in
two steps that for compact systems (M,ω, (J,H)) where J induces an effective S1-action we
always have dJ 6= 0 at parabolic points, i.e., we can take the local diffeomorphism g from
Definition 2.37 to be the identity.

Lemma 2.43. Let (M,ω, F = (J,H)) be a compact integrable system for which the flow
of J generates an effective S1-action and let p ∈ M be a rank 1 singular point. Then, if
J(p) ∈ interior(J(M)), we have dJ(p) 6= 0. Therefore any rank 1 singular point q with
F (q) ∈ interior(F (M)) has dJ(q) 6= 0.

Proof. Assume that dJ(p) = 0. Then p is a fixed point of the S1-action generated by J and
all points in the orbit of p under the flow generated by H are also fixed points of the flow
generated by J . Since p is a rank 1 point it is not fixed by the flow generated by H, so p
is a non-isolated fixed point of the S1-action. By Lemma 2.1, this means that p belongs to
a fixed surface of the S1-action and J(p) is in the boundary of the interval J(M), and thus
F (p) is in the boundary of F (M). �

Corollary 2.44. Let (M,ω, (J,H)) be a compact integrable system such that J generates
an S1-action and let p ∈ M be a parabolic point. Then dJ(p) 6= 0. Therefore, the local
diffeomorphism g from Definition 2.37 can be taken to be the identity. That is, one can work
directly with the given integrals (J,H).
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Proof. The image of the parabolic point in the normal form given in Proposition 2.41 is the
point (0, 0) and g−1(0, 0) is an interior point of F (M), so F (p) lies in the interior of F (M).
By Lemma 2.43 this implies that dJ(p) 6= 0. �

Note that Corollary 2.44 applies in particular to hypersemitoric systems.

2.14. Whereabouts of parabolic points in integrable systems. Considering θ in Propo-
sition 2.41 as a parameter, we see that parabolic points come in one parameter families in
M , which project to a single point in F (M).

Furthermore, in a neighborhood of a parabolic point there are two surfaces of non-
degenerate singular points which meet at the parabolic point, one of hyperbolic-regular
points and one of elliptic-regular points. In the momentum map image this appears as a
curve of images of elliptic-regular points which meets at the image of the parabolic point
with a curve of images of hyperbolic-regular points. An example with two parabolic values
is sketched in Figure 2.7.

Definition 2.45. A flap in an integrable system (M,ω, F ) is a triangular region in the
interior of F (M) containing three families of rank 1 singular values, such that two of the
families of singular values correspond to families of elliptic-regular singular points and one of
the families of singular values correspond to a family of hyperbolic-regular singular points.
The point where the two families of elliptic-regular values meet is the image of an elliptic-
elliptic singular point and the other two corners of the triangle are the image of parabolic
singular points (cf. Figure 2.7).

In a flap, the fibers above the interior points of the triangle are the disjoint union of two
Lagrangian tori, outside of the triangle they are a single torus, above the elliptic-regular
values they are the disjoint union of a torus and a circle, above the elliptic-elliptic value it
is the disjoint union of a torus and a point, above the hyperbolic-regular values they are
double tori (cf. Figure 4.2a), and above the two degenerate values they are cuspidal tori (cf.
Figure 4.2c). A detailed discussion of the topological properties of parabolic singularities in
particular in the case of flaps can be found in Efstathiou & Giacobbe [EG12] where they
appear under the name cuspidal singular points.

The name flaps is motivated by their topological form in the base space B of the singular
Lagrangian fibration induced by F (as discussed in Section 2.7). The region around this
triangle in B can be obtained by gluing the triangle to the rest of the base space along the
curve of hyperbolic-regular points and parabolic degenerate points, so it is like a flap glued
onto the momentum map image. Example 3.1 and Example 3.2 have such flaps, as does the
system described in Example 3.5.

Remark 2.46. Parabolic points also appear in so-called pleats (which are also called swal-
lowtails) as sketched in Figure 2.8 (see also Le Floch & Palmer [LFP19, Section 6.6]). The
explicit definition can be found in Efstathiou & Giacobbe [EG12]. Pleats were studied from
a global viewpoint by Efstathiou & Sugny [ES10].

Remark 2.47. Parabolic points are also very common in physical systems, see for instance
Bolsinov & Rikhter & Fomenko [BRF00] and the references in Bolsinov & Guglielmi &
Kudryavtseva [BGK18].
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Figure 2.7. A flap in the momentum map image. Elliptic-elliptic values
are marked by black dots and parabolic values by green punctured dots.
Hyperbolic-regular values are sketched in red and elliptic-regular ones in blue.
Regular values are painted gray. A look at the fibers shows when cases overlap.
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(a) The types of singular values in the momen-
tum map image.

(b) The fibers over the momentum map image.

Figure 2.8. A momentum map image of an integrable system which includes
a pleat (or ‘swallow tail’) like the system from Le Floch & Palmer [LFP19, Sec-
tion 6.6]. Elliptic-elliptic values (EE) are marked by black dots and parabolic
values (D as in ‘degenerate’) by green punctured dots. Hyperbolic-regular val-
ues (HR) are sketched in red and elliptic-regular ones (ER) in blue. Regular
values are painted gray. A look at the fibers shows when cases overlap.
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2.15. Parabolic points and reduction. Parabolic points locally admit a natural S1-action,
and the coordinates from Proposition 2.41 can actually be extended to a tubular neighbor-
hood of the entire orbit of the parabolic point. The following result was first obtained in the
analytic case by Bolsinov & Guglielmi & Kudryavtseva [BGK18, Proposition 3.1] and later
extended to the smooth case by Kudryavtseva & Martynchuk [KM21b, Theorem 3.1].

Proposition 2.48 (Kudryavtseva & Martynchuk [KM21b, Theorem 3.1]). Let (M,ω, F ) be
a compact integrable system and let p ∈ M be a parabolic point. Let Λp be the connected
component of F−1(F (p)) which contains p. Then coordinates (x, y, t, θ) around p from Propo-
sition 2.41 can be extended to a tubular neighborhood of Λp, taking θ ∈ R/2πZ, such that in
these coordinates the symplectic form is given by

ω = A(x, y, t)dx ∧ dy + dt ∧ dθ +B(x, y, t)dt ∧ dx+ C(x, y, t)dt ∧ dy

for some functions A(x, y, t), B(x, y, t), C(x, y, t) such that A(x, y, t) > 0.

There is a local Hamiltonian S1-action in a neighborhood of p with Hamiltonian J(x, y, t, θ) =
t and Hamiltonian vector field ∂

∂θ
, and if the original integrable system admits a global

Hamiltonian S1-action it must equal this one up to sign. Notice that this S1-action is free
in a neighborhood of the parabolic orbit. In a neighborhood of the orbit of p, perform-
ing symplectic reduction with respect to this local S1-action at some level t yields a disk
with coordinates (x, y) and symplectic form ωt := A(x, y, t)dx ∧ dy. On this disk the other
Hamiltonian reduces to a function

(2.4) ft(x, y) = x3 + tx+ y2.

We can think of this as a family of functions on the disk parameterized by t. The graph of
ft and its level sets for various values of t can be seen in Figure 2.9. Notice:

• if t < 0 then ft has two non-degenerate critical points (of index 1 and 0). The

point (x, y) = (
√
−t/3, 0) is the index 1 critical point and it lies on the level set

f−1
t

(
−2
(−t

3

)3/2
)

which traces out a curve with a loop as sketched in Figure 2.9 on

the right. We call the region enclosed by this loop the teardrop region.
• if t > 0 then ft has no critical points;
• if t = 0 then ft has exactly one critical point, which is degenerate.

This family parameterizes the process of two non-degenerate critical points coming together
and annihilating as t increases, or being born as t decreases, and thus it is called a birth-
death singularity. In fact, Equation (2.4) is the typical such bifurcation in Morse theory, cf.
Cerf [Cer70].

Remark 2.49. In an integrable system with a flap, this one-parameter family of functions on
the reduced space at level J−1(j) produces a teardrop region which appears, grows, shrinks,
and disappears as j increases.

3. Examples of hypersemitoric systems

This section focuses on intuitive but essential examples of hypersemitoric systems (cf. Def-
inition 1.6) with which we

• explain intuitively a method how to obtain a hypersemitoric system from a semitoric
system by means of replacing a focus-focus point in a semitoric system by a flap;
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Figure 2.9. The function ft(x) = x3 + tx + y2 and its level sets for t = 1
(left), t = 0 (middle), and t = −1 (right). The teardrop region is the region
enclosed by the red curve in the right figure.
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Figure 3.1. Dullin & Pelayo [DP16] consider a semitoric systems with a
focus-focus singular point (sketched in (a)) and turn the focus-focus point into
a flap (sketched in (b)). For details on the fibers of a flap, see also Figure 2.7.

• give two explicit examples, Examples 3.5 and 3.6, for the original motivation to
introduce the class of hypersemitoric systems, namely being able to extend an effective
Hamiltonian S1-action that cannot be extended to a semitoric system to the ‘next
easiest and natural class of integrable system.’ The S1-space in Example 3.5 does
not extend to a semitoric system because of the presence of three Z2-spheres in a
single level set of J , while the S1-space in Example 3.6 does not extend since the
fixed surfaces have nonzero genus. We explicitly show how each of these examples
can be extended to a hypersemitoric system.

One way to obtain examples of hypersemitoric systems is the following technique by Dullin
& Pelayo [DP16]:

Example 3.1. Dullin & Pelayo [DP16] take a semitoric system (M,ω, (J,H)) that has at
least one focus-focus point and then perturb H near a focus-focus point p ∈ M to produce
a new integrable system in which p is no longer focus-focus but instead is the ellptic-elliptic
point of a flap, as sketched in Figure 3.1. More precisely, they define a function G : M → R
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supported in a neighborhood of p working in coordinates of the local normal form. Then they

replace the original integrable system (J,H) by (J, H̃ = H+G) and obtain a new system with
a flap as desired. Eventually, they give in [DP16, Section 8] the following explicit example
on M = S2 × R2 with ω being the product of the standard symplectic forms: Inducing
coordinates (x, y, z) on S2 via the inclusion S2 ⊂ R3 and using coordinates (u, v) on R2, they
set

J(x, y, z, u, v) :=
u2 + v2

2
+ z,

H(x, y, z, u, v) :=
xu+ yu

2
,

Gγ(x, y, z, u, v) := γz2,

where 0 ≤ γ ≤ 1. Note that they work in fact with a globally defined Gγ. Define H̃γ :=

H +Gγ, i.e., one has H̃0 = H.
Then (M,ω, (J,H)) is the so-called coupled spin oscillator as in Vũ Ngo.c [VN07], and

(M,ω, (J, H̃γ)) transitions from the coupled spin oscillator at γ = 0 into a system at γ > 1
2

which has hyperbolic singularities.

Note that Dullin & Pelayo’s [DP16] technique does not change J or (M,ω) and thus does
not change the underlying Hamiltonian S1-space. Moreover, if the original system was a
hypersemitoric system then this operation produces a hypersemitoric system, since the S1-
action is preserved and the only new singular points introduced are either non-degenerate or
parabolic (see [DP16, Remark 6.4]).

There is also an example where a system first displays a flap and eventually a pleat:

Example 3.2 (Le Floch & Palmer [LFP19]). On the first Hirzebruch surface, Le Floch &
Palmer [LFP19, Section 6.6] give an explicit example of a parameter-dependent integrable
system (J,Ht) with 0 ≤ t ≤ 1 which transitions from being toric for t = 0, to having a flap
of singular values for t ≈ 1

2
, to having a pleat for t ≈ 1.

Example 3.3. Gullentops [Gul22] gives explicit examples of integrable systems with hyper-
bolic singularities by perturbing a toric integrable system on S2 × S2 blown up four times
(whose associated Delzant polygon is an octagon).

Remark 3.4. Note that Dullin & Pelayo’s [DP16] technique can produce many examples of
hypersemitoric systems from semitoric systems, but not all hypersemitoric systems can be
formed this way: For instance hypersemitoric systems can have fixed surfaces which are not
spheres, in which case they could never come from a semitoric system via this technique.

Now we give two examples that illustrate the idea of our proof of Theorem 1.7 in Section 5.
They focus on systems where the given or underlying Hamiltonian S1-spaces cannot be
extended to semitoric systems, thus motivating the introduction of hypersemitoric systems.

Example 3.5. We will produce a Hamiltonian S1-space on CP2 blown up six times which
cannot be extended to a semitoric system but can be extended to a hypersemitoric system:
consider the Hamiltonian S1-space on Bl5(CP2) described in Example 2.27 whose Karshon
graph is shown in Figure 2.6d. Now, using the notation from Example 2.27, we perform an
additional blowup of size λ2 at the isolated fixed point which is not at the maximum value
of J . This yields the Karshon graph in Figure 3.2 which has three edges at the same time
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Figure 3.2. A Hamiltonian S1-space which cannot be obtained from an S1-
action underlying a toric or semitoric system.

g = 1 g = 1

(a) There are no Zk-spheres with k > 1
in the Karshon graph and the existing
fixed points occur in the fixed surfaces,
which are both tori.
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(b) The momentum map image with labelling HR
(hyperbolic-regular), HH (hyperbolic-hyperbolic), and
EE (elliptic-elliptic). The boundary consists entirely of
elliptic-regular points, except for the marked rank zero
points.

Figure 3.3. The Karshon graph and momentum map image for the system
from Example 3.6 defined on S2 × T2.

passing through a level set J−1(j). In order to underly a semitoric system, each edge in
the Karshon graph must be associated to a unique edge (or chain of edges) from the top
or bottom boundary of the semitoric polygon (cf. Hohloch & Sabatini & Sepe [HSS15]), so
there cannot be three edges in the Karshon graph which intersect in a single level set J−1(j).
Thus this system cannot be extended to a semitoric system.

We describe how to produce a hypersemitoric system to which this Hamiltonian S1-space
can be extended. The idea of the procedure is sketched in Figure 1.2. Start with the semitoric
system (J,H) on Bl5(CP2) and use the technique described in Example 3.1 around the unique

focus-focus point to create a new integrable system (J, H̃). The point p ∈ Bl5(CP2) that was
focus-focus in (J,H) was turned into an elliptic-elliptic singular point with hyperbolic-regular

points and two parabolic degenerate points nearby, i.e., the image of (J, H̃) now contains

a flap as sketched in Figure 3.1. Notice that (J,H) and (J, H̃) have the same underlying
Hamiltonian S1-space since the manifold, symplectic form, and J remain all unchanged.

Since p is an elliptic-elliptic singular point of (J, H̃) we can perform a toric blowdown of size
λ1 on p (assuming λ1 is sufficiently small), producing a new integrable system on Bl6(CP2)
which is a hypersemitoric system and has the desired underlying Hamiltonian S1-space.

Notice that in the general case (i.e. in the proof of Theorem 1.7) one difficulty that we
must deal with is to make sure that the flap can be made sufficiently large to accommodate
the required blowups. This is non-trivial and is the content of Proposition 5.11.
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Example 3.6. Consider the Hamiltonian S1-space given by M = S2 × T2 equipped with
the direct sum of the usual symplectic forms and Hamiltonian J given by the usual height
function on the sphere. Thus, the S1-action rotates the sphere fixing the poles and does
not effect the torus. Then MS1

is the disjoint union of two copies of T2. There are no
Zk spheres with k > 1, so the Karshon graph is as in Figure 3.3a. In toric or semitoric
systems the components of the fixed point set of the underlying S1-space are always isolated
points or embedded spheres (cf. Hohloch & Sabatini & Sepe [HSS15]), so this cannot be
extended to a semitoric system. Consider the torus presented as the surface of revolution
of the circle x2 + (y − 2)2 = 1 around the x-axis, and consider the function h(x, y, z) = z
restricted to this surface. Then h is the usual Morse function on T2, i.e. the (unperturbed)
height function when the torus is standing ‘on its end’ which has four critical points: one of
index 0, two of index 1, and one of index 2. Let πT2 : M → T2 be the projection and define
H := h ◦ πT2 : M → R.

Then, as already shown in Remark 2.21, (M,ω, (J,H)) is an integrable system with no
degenerate points. By considering the index of the critical points of the Morse functions, we
deduce that this integrable system has elliptic-elliptic, elliptic-regular, hyperbolic-regular,
and hyperbolic-elliptic points. Since J is proper and generates an effective S1-action (J,H)
is thus a hypersemitoric system. The image of (J,H) with the types of points is shown in
Figure 3.3b.

4. Properties of integrable systems with S1-actions

In this section we will make use of the local normal form theorem (Theorem 2.20) which
implies that in a neighborhood U of a rank 0 singular point p of an integrable system
(M,ω, F = (J,H)) there are coordinates ψ : U → R4, with coordinate functions ψ =
(x, ξ, y, η), such that there are functions f1, f2 : U → R depending on the singularity type
of p satisfying {fi, J} = {fi, H} = 0 for i ∈ {1, 2}. Note that the presence of hyperbolic
blocks in the singularities prevents the general existence of a local diffeomorphism g of R2

with g ◦ (J,H) = (f1, f2), cf. item (2) of Theorem 2.20. Since J Poisson commutes with each
fi (i.e. f1 and f2 are invariant under the flow of X J) the flow of X J stays on the level sets
of (f1, f2) — which will be sufficient for our proofs in the following.

4.1. Systems with S1-actions. In this section we prove some results about integrable
systems in which one of the two integrals generates an S1-action.

The following proposition is probably well-known to experts, but for the convenience of
the reader we include a short proof here. Item (2) also follows from the work of Zung [Zun96,
Zun03], in which he classifies the local symmetries of non-degenerate singular points without
depending on the local normal form theorem (Theorem 2.20). There he notes in particular
that hyperbolic-hyperbolic singularities do not admit a local S1-action, see Zung [Zun96,
Theorem 6.1].

Proposition 4.1. Let (M,ω, F = (J,H)) be an integrable system such that J generates an
effective S1-action. Then:

(1) If p ∈ M is a singular point of hyperbolic-elliptic type then p is a non-isolated fixed
point of the S1-action, and thus it lies in a fixed surface of the S1-action;

(2) (M,ω, F ) has no singular points of hyperbolic-hyperbolic type.
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Proof. Keep in mind that J : M → R generates an effective global S1-action and let p ∈ M
be a singular point of rank 0 of (J,H). Then the local normal form theorem (cf. Theorem
2.20) implies that in a neighborhood U of p there exist symplectic coordinates

ψ = (x, ξ, y, η) : U → R4

such that ψ(p) = (0, 0, 0, 0) and functions f1, f2 : U → R of a certain form (depending on the
type of p) such that {J |U , fi} = 0 for i ∈ {1, 2} in U . Since p is a rank zero singular point
of (J,H), in particular, we have dJ(p) = 0 so p is a fixed point of the S1-action.

(1) If p ∈ M is of hyperbolic-elliptic type then, up to reordering the integrals, we may
work with the functions

f1 = (x2 + ξ2)/2 and f2 = yη

defined on U . Consider the point p̃ = ψ−1(0, 0, Y, 0) ∈ U for some sufficiently small Y ∈ R
and let φJt be the flow of X J and φ1

t the flow of f1. Since φJt preserves f1 and f2 it follows that
φJt (p̃) ∈ ψ−1{(0, 0, z, 0) | z ∈ R} for small enough t. Thus, if the action on p̃ is non-trivial
then either the forward or backward flow has to approach the fixed point p contradicting the
fact that the flow is periodic. Thus, for all sufficiently small Y the point ψ−1(0, 0, Y, 0) is
fixed by the S1-action so p is not an isolated fixed point of the S1-action, and so by Lemma 2.1
it must lie on a fixed surface.

(2) If p ∈M is of hyperbolic-hyperbolic type then we may take

f1 = xξ and f2 = yη.

Let p′ = ψ−1(X, 0, 0, 0) ∈ U for some sufficiently small X. Then

dJ(p′) ∈ span{df1(p′), df2(p′)} = span{dξ}
so X J ∈ span{∂x}. If p′ is not fixed by the S1-action then either forward or backward flow of
X J must approach the fixed point p. This contradicts the fact that the flow of X J is periodic,
so p′ must be a fixed point of the S1-action. Thus, following similar reasoning we see that for
all sufficiently small X,Ξ, Y, P ∈ R the points ψ−1(X, 0, 0, 0), ψ−1(0,Ξ, 0, 0), ψ−1(0, 0, Y, 0),
and ψ−1(0, 0, 0, P ) are all fixed by the S1-action, so p is not an isolated fixed point and also

the component of MS1
containing p is not a surface. This contradicts Lemma 2.1. �

Let MHR,MHE,MD ⊂ M be the set of hyperbolic-regular singular points, hyperbolic-
elliptic singular points, and degenerate singular points, respectively.

Lemma 4.2. Let (M,ω, (J,H)) be an integrable system such that J generates an effective
S1-action and let C ⊂ M be a connected component of MHR. Then F (C) ⊂ R2 does not
have any vertical tangencies.

Proof. Suppose that p ∈ MHR and let C ⊂ MHR be the connected component of MHR

containing p. By Lemma 2.22, F (C) ⊂ R2 is a one-dimensional immersed submanifold.
Since rank(p) = 1 there are a, b ∈ R such that bX J(p)− aXH(p) = 0. According to Bolsinov
& Fomenko [BF04, Proposition 1.16], the tangent vector to the curve F (C) at F (p) is then
given by (a, b). Now assume that F (C) has a vertical tangent in p. Then we must have
a = 0 and b 6= 0, and therefore X J(p) = 0 and thus dJ(p) = 0. Since p is a rank 1 singular
point, by Lemma 2.43 we see that dJ(p) = 0 implies that F (p) ∈ ∂(F (M)), but the image of
hyperbolic-regular points must lie in the interior of the momentum map image according to
the local normal form in Theorem 2.20. Thus F (C) cannot have a vertical tangent in p. �
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(a) Possible. (b) Impossible. (c) Impossible.

Figure 4.1. The nature of the relationship between the existence of
hyperbolic-regular singularities and degenerate singularities in the presence
of a global S1-action has already been considered by Dullin & Pelayo in early
versions of [DP16]. (a) is a possible momentum map image of an integrable
system with a global S1-action. This example includes a flap, a pleat, and a
curve of hyperbolic-regular points whose two endpoints are both hyperbolic-
elliptic points; we have seen such behaviors in the systems from Section 3. (b)
is not possible for an integrable system with a global S1-action since a family of
hyperbolic-regular points cannot connect a fixed surface to itself, cf. Corollary
4.3. (c) is not possible for an integrable system with a global S1-action since
such a system cannot have a loop of hyperbolic-regular values, cf. Corollary
4.3.

We know that the image of a connected component of MHR is a smooth immersed curve
by Lemma 2.22, and Lemma 4.2 implies that in integrable systems (M,ω, (J,H)) such that
J generates an effective S1-action it is actually embedded (and is a graph over J). The
following result is illustrated in Figure 4.1.

Corollary 4.3. If C ⊂M is a connected component of MHR then F (C) is homeomorphic to
an open interval with distinct endpoints and each endpoint is either an element of F (MHE)
or F (MD). In particular, F (C) is not homeomorphic to a loop. Furthermore, F (C) is not
a curve which connects the image of a fixed surface back to itself.

Proof. By Lemma 4.2, F (C) does not have any vertical tangent so it cannot include a self-
intersection and cannot form a loop. Thus, F (C) is homeomorphic to an interval. Due
to the local normal forms result, Theorem 2.20, given any point p ∈ M which is regular or
singular of type elliptic-elliptic, elliptic-regular, or focus-focus, there exists a neighborhood of
p which does not include any hyperbolic-regular points. Thus, the end points of the interval
F (C) must be the image of the only other possible points in M , either hyperbolic-elliptic or
degenerate. Finally, π1 : F (C) → J(C) is injective by Lemma 4.2, so F (C) cannot connect
the image of a fixed surface back to itself (as in Figure 4.1b). �

Corollary 4.4. Let (M,ω, (J,H)) be an integrable system such that J generates an effective
S1-action. If the S1-action has strictly less than two fixed surfaces and (J,H) has a singularity
of hyperbolic-regular type, then (J,H) has at least one degenerate singular point.

Proof. Recall that hyperbolic-regular values come in one-parameter families. By Corol-
lary 4.3 this family terminates in two points, each of which are either the image of a degen-
erate or hyperbolic-elliptic point. By Lemma 4.1, hyperbolic-elliptic points always lie in a
fixed surface. Thus, if there is at most one fixed surfaces, not more than one end point can
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(a) The double torus. (b) The curled torus. (c) The cuspidal torus.

Figure 4.2. Some fibers which include hyperbolic-regular singular points.

be the image of hyperbolic-elliptic points since a single family of hyperbolic-regular points
cannot connect the same fixed surface to itself, cf. Corollary 4.3. �

Corollary 4.4 is the reason why we need to allow certain degenerate singular points when
we want to extend all possible Hamiltonian S1-spaces. In particular, any S1-action which
has less than two fixed surfaces and cannot be extended to a semitoric system must have at
least one degenerate point in any extension:

Corollary 4.5. Let (M,ω, J) be a Hamiltonian S1-space which has strictly less than two
fixed surfaces and has three or more Zk-spheres passing through a single level set of J . If
H : M → R is such that (M,ω, (J,H)) is an integrable system, then (M,ω, (J,H)) has at
least one degenerate singular point.

In particular, this implies that the Hamiltonian S1-space on CP2 blown up six times from
Example 3.5, sketched in Figure 3.2, cannot be extended to an integrable system with no
degenerate points. This justifies why we need to allow degenerate points in hypersemitoric
systems, since our goal is to show that all Hamiltonian S1-spaces can be extended to such a
system.

4.2. Fibers of hypersemitoric systems and isotropy. In this section we will discuss how
the topology of the fibers which contain hyperbolic-regular points is related to the isotropy
of the S1-action in certain cases. A common fiber which contains hyperbolic-regular points
is the double torus, which is homeomorphic to two tori glued along an S1, or, equivalently, to
a figure eight (i.e. an immersion of S1 with a single transverse self-intersection) crossed with
S1, as in Figure 4.2a. This fiber occurs in every example in Section 3, and in particular this
is the type of fiber that contains the hyperbolic-regular points produced by the technique of
Dullin & Pelayo [DP16].

The fibers of integrable systems for which one of the integrals generates an S1-action can
be more complicated than this, though. Another possibility, for instance, is the curled torus,
see Figure 4.2b. A curled torus fiber is homeomorphic to a figure eight crossed with the
interval [0, 1] modulo the relation (x, 0) ∼ (φ(x), 1), where φ is a map from the figure eight
to itself which switches the top and bottom teardrops (for instance rotation by π).

Proposition 4.6. Let (M,ω, F = (J,H)) be an integrable system such that J generates an
effective S1-action and consider a fiber F−1(c). Then

(1) if F−1(c) is a double torus then the S1-action generated by J acts freely on F−1(c);
(2) if F−1(c) is a curled torus then the S1-action generated by J acts freely on the regular

points of F−1(c) and acts with isotropy subgroup Z/2Z on the hyperbolic-regular points
of F−1(c).
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Proof. First suppose that F−1(c) is a double torus fiber. Using the local normal form around
any of the hyperbolic-regular points we can see that the period of the flow of X J is equal for
all points in a neighborhood of the hyperbolic-regular point in question. Similarly, the flow
of a hyperbolic-regular point in a curled torus fiber will have exactly half of the period of the
flow of the regular points in an open set around that point. Since an effective Hamiltonian
S1-action is free on a dense set this proves the claim. �

More complicated fibers are also possible. See Gullentops [Gul22] and the references
therein for a detailed discussion of the possible fibers in integrable systems with hyperbolic-
regular singularities. In the following Example 4.7 there are fibers which contain multiple
curves of hyperbolic-regular points. Note that the system also includes degenerate points
which are not of parabolic type, and thus this system is not a hypersemitoric system.

Example 4.7 (Martynchuk & Efstathiou [ME17], Section 4.2). Consider M = S2× S2 with
coordinates ((x1, y1, z1), (x2, y2, z2)) obtained from inclusion as the product of unit spheres
in R3 ×R3, the standard product symplectic form ω = ωS2 ⊕ ωS2 , and the integrable system
F = (J,H) : S2 × S2 → R2 given by

J = z1 + 2z2, H = Re
(
(x1 + iy1)2(x2 − iy2)

)
.

Let N = (0, 0, 1) denote the north pole and S = (0, 0,−1) denote the south pole of each
sphere. J generates an effective S1-action with four fixed points given by

A = (S, S), B = (N,S), C = (S,N), and D = (N,N),

and two Z2-spheres: one connecting A to C, consisting of points of the form (S, (x2, y2, z2)),
and one connecting B to D, consisting of points of the form (N, (x2, y2, z2)). Thus the
Karshon graph of (M,ω, J) is as shown in Figure 4.3a. The integrable system (M,ω, (J,H))
is not a hypersemitoric system since the points A and D are degenerate points that are not
parabolic since parabolic points are always in the interior of the momentum map. The image
of F is shown in Figure 4.3b. Given any c ∈ R2 on the open interval connecting F (A) to
F (B) or F (C) to F (D) the fiber F−1(c) is a curled torus, and given any c ∈ R2 on the open
interval connecting F (B) to F (C) the fiber F−1(c) is two curled torus fibers glued along
a regular orbit. Comparing Figure 4.3a to Figure 4.3b we see that the two Z2-spheres get
mapped to the same points in the image in the region between F (B) and F (C).

5. All Hamiltonian S1-spaces can be extended to hypersemitoric systems

In this section we prove Theorem 1.7, which states that any Hamiltonian S1-space can be
extended to a hypersemitoric system. We prove this making use of Karshon’s classification
of minimal models.

5.1. Preparations for the proof. First we will show that all of the minimal Hamiltonian
S1-spaces described by Karshon admit an extension to a hypersemitoric system.

Proposition 5.1. If (M,ω, J) is a four-dimensional compact Hamiltonian S1-space which
does not admit an S1-equivariant blowdown then there exists an H : M → R such that
(M,ω, (J,H)) is a hypersemitoric system with no degenerate singular points.
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2

(a) The Karshon graph.

F(A)
F(B) F(C)

F(D)

(b) A sketch of the image F (M).

Figure 4.3. The Karshon graph and momentum map image for the system
described in Example 4.7. In the momentum map image, the images of the
fixed points are indicated with dots, and the curves inside of the interior of
the image are the image of hyperbolic-regular points.

Proof. Due to Theorem 2.18 there are three classes of minimal Hamiltonian S1-spaces. The
first two classes are induced by toric actions, so by definition these extend to toric systems
which are in particular hypersemitoric systems.

The remaining minimal models are spaces (M,ω, J) with two fixed surfaces and no interior
points, which are thus S2-bundles over a closed surface Σ with an S1-action that fixes Σ and
rotates each fiber (i.e. ruled surfaces). Denote by πΣ : M → Σ the projection map. Given
such a space, let f : Σ→ R be any Morse function on Σ and define H : M → R by H = f ◦πΣ.
Notice that H is automatically invariant under the S1-action generated by X J , and therefore
J and H Poisson commute. Since f is regular almost everywhere we conclude that H and
J are linearly independent almost everywhere and thus (M,ω, F = (J,H)) is an integrable
system.

We will now show that (M,ω, F = (J,H)) is a hypersemitoric system. First recall from
Theorem 2.18 that the S1-action on the ruled surfaces is rotation of the S2, which locally is
thus generated by the height function on S2. This can also be seen in the explicit realization
of these minimal models described in [Kar99, proof of Lemma 6.15]. Thus, J is locally of the
following form: around any point p ∈M there is a neighborhood U of the form U = S2×UΣ

where UΣ ⊂ Σ is an open set and J |U = g ◦ πS2 , where g is the usual height function on
S2 and πS2 : U → S2 is the projection map. Thus, F |U = (g ◦ πS2 , f ◦ πΣ). Since g and f
are both Morse (cf. Remark 2.21) this implies that all singular points of F = (J,H) in U
are non-degenerate, and thus all singular points of F are non-degenerate, so the system is a
hypersemitoric system. �

Remark 5.2. The image of the hypersemitoric system constructed on a ruled surface in the
proof of Proposition 5.1 will always be a rectangle, and the images of the hyperbolic-regular
points of the system will be horizontal lines across the rectangle (as in Figure 3.3b). So there
are two vertical boundary components in the image corresponding to the two fixed surfaces
in these Hamiltonian S1-spaces, but even though these two edges of the image have the same
length this does not mean that the corresponding fixed surfaces have the same symplectic
area (in fact, they often do not). This is because the hypersemitoric system we construct
is not toric so there is no relationship between the length of the edges and the symplectic
volume of the corresponding submanifolds.
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Remark 5.3. In Proposition 5.1 we show that given a Hamiltonian S1-space with M =
S2 × Σg where Σg is a surface of genus g and J rotates the sphere, we can take a Morse
function f on Σ to produce a hypersemitoric system (M,ω, (J,H = f ◦ πΣ)). Notice that,
making use of action-angle coordinates, we may furthermore choose f so that XH has 2π-
periodic flow in a preimage of a neighborhood of the upper boundary of F (M), and therefore
on that neighborhood (J,H) forms an (open) toric system. This will be useful for us when
performing gluing in the proof of Lemma 5.7.

Let Γ be a Karshon graph. In the following, we call a connected component of Γ briefly
a component of Γ. The maximum component of Γ is the component of Γ which contains
the vertex corresponding to the maximum value of the momentum map and the minimum
component of Γ is the component of Γ which contains the vertex corresponding to the
minimum value of the momentum map.

Recall that the the four possible cases of the effect of S1-equivariant blowups on a Karshon
graph are described Section 2.4.3 and numbered as type (B1)-(B4).

Lemma 5.4. Let Γ be the Karshon graph of a Hamiltonian S1-space (M,ω, J) and let
Γmin denote the minimal Karshon graph from which Γ can be obtained by a sequence of
S1-equivariant blowups. Then one can in fact obtain Γ from Γmin as follows:

• Stage 1: Perform a sequence of blowups on isolated fixed points in the maximum
and minimum components to obtain a new graph Γ′ from Γmin. All blowups performed
in this stage are of types (B2), (B3), or (B4);
• Stage 2: Perform a sequence of blowups on points that lie in fixed surfaces to obtain

a new graph Γ′′ from Γ′. All blowups performed in this stage are of type (B1);
• Stage 3: Perform a sequence of blowups on isolated fixed points that correspond to

the components of Γ′′ which are not the maximum or minimum components to obtain
the desired graph Γ from Γ′′. All blowups performed in this stage are of type (B4).

Before we prove Lemma 5.4, let us briefly put it into context:

Remark 5.5. Lemma 5.4 provides the formal guideline for the order that we will perform
a sequence of blowups on a given Karshon graph in the proof of Theorem 1.7. The ex-
act blowups that we perform are described in the proof of Theorem 1.7. An example of
performing blowups in this order will be described in Section 5.2.

Proof of Lemma 5.4. This lemma is based on the fact that blowups in different components
of Karshon graph do not interact with each other. As long as this principle is observed one
can perform blowups in any order — thus also the preferred one given in the statement of
the lemma we are proving — without obtaining different spaces in the end.

Starting with Γmin we obtain a new Karshon graph Γ′ by performing blowups on only the
maximum and minimum components of Γmin to make them agree with the maximum and
minimum components of Γ (except possibly for the area labels on the fat vertices, if any).
This is Stage 1. For Stage 2, we perform blowups of type (B1) on the fat vertices of Γ′ to
produce a new graph Γ′′ which now has the same area labels on its fat vertices as Γ and has
the same number of components as Γ. Now the maximum and minimum components of Γ′′

agree with those of Γ, and thus Γ′′′ := Γ is obtained from Γ′′ by a sequence of blowups of
type (B4) on the components of Γ′′ which are not its maximum or minimum components.
This is Step 3.
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Notice that the only type of blowup from (B1)–(B4) which changes the number of com-
ponents of the Karshon graph is type (B1), which produces a new component containing
a single vertex. Thus, at the start of Step 3, as described in the statement of the lemma,
all of the non-extremal components of Γ′′ can only be single isolated vertices, since all non-
extremal components of the minimal models are single vertices and the only new components
that we produced in Steps 1 and 2 were also components of a single vertex. �

5.2. Following the proof on an example. In this section we will sketch the idea of the
proof of Theorem 1.7 by illustrating it on a specific example. Let Γ denote the graph sketched
in Figure 5.1i. We will demonstrate how a hypersemitoric system can be constructed which
has Γ as the Karshon graph of its underlying Hamiltonian S1-space. The entire process
is sketched in Figure 5.1. The Karshon graphs in Figures 5.1a, 5.1c, 5.1e, 5.1g, and 5.1i
correspond to the systems shown in Figures 5.1b, 5.1d, 5.1f, 5.1h, and 5.1j, respectively. The
eventual proof of Theorem 1.7 in Section 5.5 will follow the same idea in the general setting,
showing that this process works for all possible Karshon graphs Γ.

Let us now have a closer look at the various steps of the procedure: Given Γ, we know that
there is a minimal graph Γmin, shown in Figure 5.1a, from which Γ can be obtained by a
sequence of blowups. The graph Γmin here is the Karshon graph of the third Hirzebruch
surface with the standard S1-action (with scaling such that it has the Delzant polygon as
shown in Figure 5.1b), and can thus be extended to a toric system. The idea is to perform
the sequence of blowups on Γmin in three stages as discussed in Lemma 5.4, while showing
that the property of being able to be extended to a hypersemitoric system is preserved.

Let (Mmin, ωmin, Fmin) be the toric system associated with the minimal model Γmin of Γ,
so the image of F is the polygon shown in Figure 5.1b with vertices at (0, 0), (0, 4), (3, 4),
and (12, 0).

Stage 1: Performing a toric blowup of size λ1 = 1 at the far right fixed point produces
the toric system corresponding to the Delzant polygon shown in Figure 5.1d. Denote this
system by (M ′, ω′, F ′). The underlying Hamiltonian S1-space has Karshon graph Γ′ as shown
in Figure 5.1c.

Stage 2: Next we perform three semitoric blowups all of the same size λ2 = λ3 = λ4 = 1
at points on the fixed surface at the minimum of the momentum map. This produces three
new focus-focus points. Let (M ′′, ω′′, F ′′) be a semitoric system associated to the resulting
marked polygon invariant. A representative of the semitoric polygon of this system is shown
on the left in Figure 5.1f and the Karshon graph for the underlying Hamiltonian S1-space is
the graph Γ′′ shown in Figure 5.1e.

Stage 3: In order to perform a toric blowup on the three new focus-focus points we will now
use the technique described in Dullin & Pelayo [DP16] to transform them into elliptic-elliptic
points on small flaps without changing the underlying S1space (i.e. performing a supercrit-
ical Hamiltonian-Hopf bifurcation). The momentum map image of the resulting system

(M ′′, ω′′, F̂ ′′ = (J ′′, Ĥ ′′)) is shown on the right in Figure 5.1f. Since the technique of Dullin
& Pelayo does not change the underlying Hamiltonian S1-space (M ′′, ω′′, J ′′) (c.f. [DP16,
Theorem 1.2]), the associated Karshon graph shown in Figure 5.1g is still equal to the graph
Γ′′ in Figure 5.1e. Now two of the focus-focus points have been replaced by elliptic-elliptic
points, at which we can perform toric blowups.
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(a) Γmin.

12

3

4

(b) The Delzant polygon for (Mmin, ωmin, Fmin).

3 2

(c) Γ′.

3

11

4
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(d) The Delzant polygon for (M ′, ω′, F ′).

3 2

(e) Γ′′.

11

4

2

1

(f) The semitoric polygon for (M ′′, ω′′, F ′′).

3 2

(g) Γ′′ again.

11

(h) The momentum map image of (M ′′, ω′′, F̂ ′′).

2

2 3

3 2

(i) Γ.

11

(j) The momentum map image of (M,ω, F ).

Figure 5.1. The Karshon graphs (left) and corresponding Delzant polygons,
semitoric polygons, and momentum map images (right) for the systems dis-
cussed in the example from Section 5.2. The Karshon graphs are drawn over
lines representing integer values of the momentum map so the momentum map
labels can be easily read off of the graph.
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Now we perform a toric blowup of size λ5 = 1/2 on the top flap and a toric blowup of size
λ6 = 1/2 on the bottom flap. Finally, we perform one more blowup of size λ7 = 1/4 on one
of the two new elliptic-elliptic points formed on the bottom flap to produce a hypersemitoric
system (M,ω, F ). Throughout this process we have now performed the sequence of blowups
used to obtain Γ from Γmin on this integrable system, so the Karshon graph associated to
(M,ω, J) is Γ, as desired. The proof that these flaps can always be made large enough to
admit blowups of the desired size is the content of Section 5.4. This completes the example.

5.3. Semitoric blowups of hypersemitoric systems. Operations like blowups and blow-
downs on toric and semitoric systems can be done by mainly manipulating the associated
momentum polytopes since these systems are wholly or sufficiently determined by this invari-
ant according to the classifications of Delzant and Pelayo & Vũ Ngo.c. One of the difficulties
with hypersemitoric systems is that there is not yet any similar classification. Thus, when we
would like to perform a semitoric blowup on a minimal hypersemitoric system in the proof
of Theorem 1.7 we cannot work with a polygon invariant to define the semitoric blowup as
we did in Section 2.10.2, since there is not yet any such invariant established.

The strategy we will employ follows from the observation that the minimal Hamiltonian
S1-spaces on ruled surfaces can be obtained by gluing a Hirzebruch surface with a product
manifold S2 × Σg, where Σg is a surface of genus g. Thus, we may perform the semitoric
blowups on the Hirzebruch surface, which is a toric (and hence also semitoric) integrable
system, before gluing it with S2 × Σg, to obtain the desired Hamiltonian S1-space. This
technique allows us to be sure that the hyperbolic-regular points do not interact with the
semitoric blowups.

Roughly, the following lemma explains that a semitoric blowup can be performed without
changing the structure of the preimage of a neighborhood of the bottom boundary of the
momentum map image, which is the region we will use for the gluing, cf. Figure 5.2.

Lemma 5.6. Let (M,ω, F ) be a semitoric system and let [∆,~ci, (+1)sj=1] be its marked
polygon invariant. Assume that ∆ has no vertices along the interior of its bottom boundary.
Suppose that [∆′, (c1, . . . , c`−1, c, c`), (+1)s+1

j=1] is a semitoric blowup of [∆,~ci, (+1)sj=1] and

let (M ′, ω′, F ′) be a semitoric system having [∆′, (c1, . . . , c`−1, c, c`), (+1)s+1
j=1] as its marked

polygon invariant. Let g and g′ be the straightening maps such that ∆ = g◦F and ∆′ = g′◦F ′,
as in Section 2.8. Then there exist open sets U ⊂M and U ′ ⊂M ′ and a symplectomorphism
φ : U → U ′ such that

• F (U) is an open neighborhood of ∂−(F (M)) and F ′(U ′) is an open neighborhood of
∂−(F ′(M ′)), as subsets of F (M) and F ′(M ′) respectively,
• g ◦F (U) and g′ ◦F ′(U ′) do not intersect the cuts or marked points in ∆ = g ◦F (M)

and ∆′ = g′ ◦ F ′(M ′),
• φ is equivariant with respect to the T2-action induced by the toric momentum maps
g ◦ F |U and g′ ◦ F ′|U ′.

Proof. By the description of semitoric blowups of polygons in Section 2.10.2, notice that ∆
and ∆′ are equal as sets in a neighborhood of their common bottom boundary. Let Ṽ ⊂ R2

be a convex open neighborhood of the bottom boundary (for instance, Ṽ could be an ε-
neighborhood of the bottom boundary in R2 for sufficiently small ε > 0), sufficiently small
such that Ṽ ∩∆ = Ṽ ∩∆′. Since we have chosen representatives where all cuts are upwards
by taking Ṽ small enough we may assume that V does not intersect any cuts or marked
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points in ∆ or ∆′ . Let U = (g ◦F )−1(V ) and let U ′ = (g′ ◦F ′)−1(V ). Now (U, ω|U , (g ◦F )|U)
and (U ′, ω′|U ′ , (g′ ◦F ′)|U ′) are open toric systems, since (g ◦F )|U and (g′ ◦F ′)|U ′ each induce
a T2-action. By Karshon & Lerman [KL15, Proposition 6.5] open toric systems are classified
by their momentum map image if the momentum map is proper onto a convex open set.
Since (g ◦F )|U and (g′ ◦F ′)|U ′ are proper onto Ṽ they are isomorphic as open toric systems,
which means that there exists a T2-equivariant symplectomorphism φ between them, as in
the statement. The other two points of the theorem are automatic from the choice of V and
the construction of U and U ′. �

The next lemma is of importance for the proof of Theorem 1.7.

Lemma 5.7. Let (Mmin, ωmin, Jmin) be a minimal Hamiltonian S1-space which is a ruled
surface as in Theorem 2.18, and let (M,ω, J) be a Hamiltonian S1-space obtained by taking
a sequence of k ∈ Z>0 blowups of the system (Mmin, ωmin, Jmin) on fixed surfaces (i.e. those
of type (B1) in Lemma 2.13). Then there exists H : M → R such that (M,ω, (J,H)) is a
hypersemitoric system with exactly k focus-focus points and no degenerate points.

Figure 5.2. The strategy to obtain a hypersemitoric system with the desired
underlying Hamiltonian S1-space in the proof of Lemma 5.7. We start with a
Hirzebruch surface, perform the desired semitoric blowups on the Hirzebruch
surface, and then glue it to a system on S2×Σg, where Σg is a surface of genus
g, to obtain the desired genus of the fixed surfaces.

Proof. Let Γ denote the Karshon graph of (M,ω, J). We will construct a hypersemitoric
system whose underlying Hamiltonian S1-space also has Γ as its Karshon graph, and the
result will follow.

The Karshon graph for (Mmin, ωmin, Jmin) consists of two fat vertices a distance of s > 0
apart (for which we assume without loss of generality that the J-values are 0 and s), both
with genus g > 0, and area label a > 0 for the vertex at J = 0 and a+ns > 0 for the vertex
at J = s, for some n ∈ Z.

On the other hand, for some small ε > 0, consider the nth Hirzebruch surface with Delzant
polygon given by the convex hull of (0, 0), (s, 0), (s, a−ε+ns), (0, a−ε). The Karshon graph
of the underlying Hamiltonian S1-space of this toric system has two vertices at J-values 0
and s, which have area labels a− ε and a− ε+ ns, and are both labeled with genus 0.

By assumption, (M,ω, J) can be obtained from (Mmin, ωmin, Jmin) by a sequence of blowups

of type (B1) of sizes λleft
1 , . . . , λleft

kleft
on the left fixed surface and λright

1 , . . . , λright
kright

on the right

45



fixed surface. Notice that this implies that
∑kleft

i=1 λ
left
i − a > 0 and

∑kright

i=1 λright
i − (a +

ns) > 0. Assume ε > 0 to be smaller than both of these values. Now, perform semitoric
blowups of sizes λleft

1 , . . . , λleft
kleft

on the left fixed surface of the Hirzebruch surface and sizes

λright
1 , . . . , λright

kright
on the right fixed surface of the Hirzebruch surface. This yields a semitoric

system (M ′, ω′, F ′) whose Karshon graph Γ′ is exactly the same as Γ except for the labels
on the fat vertices: the area labels on Γ′ are both too small by ε, and both have genus 0
instead of the desired genus g.

We will now change this system by gluing another system along its bottom to obtain the
desired Karshon graph. Notice that by Lemma 5.6 this system is still toric in a neighborhood
of the bottom boundary.

By Proposition 5.1, there exists a hypersemitoric system on (Mε, ωε, Fε) with Mε = S2×Σg,
where Σg is a surface of genus g, whose Karshon graph consists of two fat vertices at J-values
0 and s, which both are labeled with area ε and genus g. Moreover, as in Remark 5.3 we
may assume that the system is toric in the preimage under Fε of a neighborhood of the
top boundary of F (M). To complete the proof, we will glue this system to the bottom of
the system described above, as sketched in Figure 5.2. This is essentially the simplest case
of symplectic gluing, we will describe it briefly here, but the full details and the general
situation can be found in Gompf [Gom95].

The system (M ′, ω′, F ′) is toric on the preimage U ′ ⊂M ′ of a neighborhood of the bottom
boundary of F ′(M ′), and in particular we can choose

U ′ = F−1({(x, y) ∈ R2 | 0 ≤ x ≤ s, 0 ≤ y < R})

for a suitable R > 0. Denote by DR ⊂ C the open disk of radius R and consider S2 × DR

with integrable system F ′′ := (z, ρ) where z is the height coordinate on S2 (appropriately
scaled) and ρ is the radial coordinate on DR. Then this system F ′′ on S2×DR has the same
moment map image as the open toric system on U ′ inherited from (M ′, ω′, F ′), and thus
by Karshon & Lerman [KL15, Proposition 6.5] they are T2-equivariantly symplectomorphic.
Similarly, the local model for the preimage of the top boundary of Fε(Mε) is Uε = S2 × Dr

with Fε = (zε,−ρε) where zε is the height coordinate on S2 (appropriately scaled) and ρε is
the radial coordinate on Dr. These two regions, after removing the center of each disk, may
be embedded into a region modeled by S1× ] − r, R[×S2 with momentum map F = (z, ρ)
where z is as before and ρ ∈ ] − r, R[. This can be used to glue the regions together, and
therefore glue together the integrable systems (M ′, ω′, F ′) and (Mε, ωε, Fε), to obtain a new
integrable system which is also a hypersemitoric system. This process does not introduce
any new Zk-spheres, and the fixed surfaces in the new system are the connected sum of the
fixed surfaces of the original two systems, and thus they are surfaces of genus g with areas
a and a+ ns. Therefore, this system has the desired Karshon graph. �

5.4. The size of flaps related to Hamiltonian-Hopf bifurcations. For the ‘model
proof’ in Section 5.2 to work in full generality we need to show that the necessary flaps (cf.
Definition 2.45) can be made large enough to contain the required blowups as in Stage 3 in
Section 5.2. The idea worked out in this section is as follows: first, we produce small flaps
using Dullin & Pelayo’s technique (cf. Example 3.1) and then we prove that we can enlarge
each small flap to the necessary size.
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5.4.1. Some notation on blowups. A vertex of a Karshon graph is isolated if it is a non-fat
vertex which is not connected to any edges. Note that in this case the absolute value of both
weights of the fixed point associated with this vertex is one. For instance, vertices associated
to focus-focus points are always isolated.

Let (M,ω, J) be a Hamiltonian S1-space, Γ the associated Karshon graph, and let v0 be an
isolated vertex in Γ which is not at the maximum or minimum value of J . Now set Γ0 := Γ
and suppose that Γ1 is a Karshon graph obtained from Γ0 by performing a blowup at v0.
Similarly, let Γ2, . . . ,Γk be Karshon graphs such that for each 1 ≤ ` ≤ k, Γ` is obtained
from Γ`−1 by a blowup. Further suppose that, at each step, the blowup is performed on one
of the new vertices created by this process. Note that therefore all blowups will effect the
same connected component of the graph. Thus, Γk is equal to Γ0 except that the vertex v0 is
replaced by a more complicated component. In such a situation we say that Γk is obtained
from Γ by a sequence of blowups at v0.

For ` ∈ {0, . . . , k − 1} let (M`, ω`, J`) be the Hamiltonian S1-space associated to Γ`. In
the remainder of this section, we will introduce an open set S ⊂ M which we will call a
blowup set of this sequence of blowups. The blowup set will be important for us because
when performing the sequence of blowups at v0 the symplectic manifold M is only changed
on the set S, the closure of the set S. That is, there is a natural symplectomophism from an
open dense subset of Mk onto M \S. Thus, any structure (such as an integrable system) on
M can be passed automatically to Mk away from S, and it is only around S that we must
worry about adapting the structure to the new manifold.

Now we will define the set S which can roughly be thought of in the following way: for each
blowup an equivariantly embedded ball is removed and S is the union of the images of these
balls mapped back to M . There is an example in Figure 5.3. Performing a blowup on Γ`
corresponds to an S1-equivariant blowup on (M`, ω`, J`) which (as discussed in Section 2.4)
is performed by removing an S1-equivariantly embedded ball from (M`, ω`, J`) and collapsing
the boundary. To make this more precise, for any r > 0 let B4(r) denote the ball of radius r,
and let φ` : B

4(r`) ↪→M` be a choice of such an S1-equivariant embedding (for some r` > 0)
and let

S` := φ`(B
4(r`)) ⊂M`.

Then, M`+1 is defined as the quotient space

M`+1 = (M` \ S`) / ∼`,

where ∼` is the identity relation on M` \ S` and identifies two points of ∂(S`) ∼= S3 if and
only if they are in the same fiber of a choice of Hopf fibration. Thus, for each 0 < ` ≤ k the
quotient map

(5.1) ψ` : M`−1 \ S`−1 →M`

is a continuous map and ψ−1
1 ◦ . . . ◦ ψ−1

` (S`) ⊂M . Now, define S ⊂M by

(5.2) S := S0,...,k := S0 ∪

(
k⋃
`=1

(ψ−1
1 ◦ . . . ◦ ψ−1

` )(S`)

)
.

We say in this situation that S = S0,...,k ⊂M is a blowup set at p associated to the sequence
of blowups used to obtain Γk from Γ = Γ0, and for each ` the set Σ` := (∂(S`)/ ∼`) ⊂
M` is called the exceptional divisor. Note that the blowup set depends on the choice of
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(a) A sequence of blowups on the first Hirzebruch surface represented by corner chops on
the associated Delzant polygon. The images of the elliptic-elliptic points (i.e. the vertices
of the polygon) are marked by black dots for better visibility.

j = a j = b

(b) The Delzant polygon for the first Hirzebruch surface with the image of the blowup set
for the blowups in Figure 5.3a shaded in. Notice that the shaded region is not a triangle,
it is a four-sided polygon (we have marked its vertices with black dots). The j parameter
from Lemma 5.9 parameterizes the image of the blowup set in the reduced space, and for
each fixed value of j the image in the reduced space is homeomorphic to a disk.

Figure 5.3. The blowup set of a sequence of blowups is essentially the set
of points removed during the blowing up process, as is shown in this example
on the first Hirzebruch surface.

S1-equivariant embeddings φ` used to perform the blowups, and there are different S1-
equivariant embeddings which produce isomorphic S1-spaces when using those embeddings
to perform S1-equivariant blowups.

5.4.2. Two technical lemmas. The following two statements formulate and prove technical
results that will be needed in the proof of Proposition 5.11. As in Section 2.11, we denote
the quotient of M by the S1-action by M̂ = M/S1 with quotient map π : M → M̂ , and

we denote the symplectic quotient at level J = j by M̂j = J−1(j)/S1. Furthermore, we let

smooth(M̂) be those points in M̂ which correspond to orbits in M on which S1 acts freely

(and thus smooth(M̂) inherits a smooth structure) and we set sing(M̂) = M̂ \ smooth(M̂).
Given an integrable system (M,ω, (J,H)) where J generates an S1-action, the intuition

behind the following lemma is that, as long as one stays away from the non-free orbits of
the S1-action, it is not difficult to change H by prescribing its behavior on the quotient M̂ .

Lemma 5.8. Let (M,ω, (J,H)) be a completely integrable system such that J generates an
effective S1-action. Then

(1) There exists a function Ĥ : M̂ → R such that Ĥ ◦π = H and such that the restriction

Ĥ|smooth(M̂) : smooth(M̂)→ R is smooth.
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(2) Let Û ⊂ M̂ be an open neighborhood of sing(M̂). Furthermore, let Ĥ ′ : M̂ → R be

a function which is smooth on smooth(M̂) and equal to Ĥ on Û , and assume that

dĤ ′ is non-zero almost everywhere on M̂ . Then, setting H ′ := Ĥ ′ ◦ π, the tuple
(M,ω, (J,H ′)) forms a completely integrable system.

Proof. The integral H descends to a map Ĥ on M̂ since H is constant under the flow of J ,
which generates the S1-action, and Ĥ is smooth on smooth(M̂) since the action of S1 is free

on smooth(M̂).

Next suppose that Û and Ĥ ′ are as in the statement and let H ′ := Ĥ ′ ◦ π. The conditions
for the function H ′ to form an integrable system with J are all local, so there is nothing
to check in π−1(Û) since H = H ′ in that set. By definition, the function H ′ := Ĥ ′ ◦ π is
constant on the orbits of the S1-action since they are the orbits of the flow of J , so H ′ and J
Poisson commute. For any p ∈M , note that dH ′∧dJ(p) = 0 implies that dĤ ′(π(p)) = 0. By

assumption, dĤ ′ is non-zero almost everywhere in M̂ , so dH ′ and dJ are linearly independent
almost everywhere in M . �

Denote by Dr := {z ∈ C | |z|2 < r2} the standard disk of radius r > 0. The purpose of
the following statement is to show that the blowup set of a sequence of blowups descends in
the reduced space to a set which can be parameterized as a disk times an open interval, in
which the radius of the disk varies along the interval and shrinks to a point at each endpoint
of the blowup set, see Figure 5.3. This result will enable us to work locally on the disk when
editing integrable systems near a blowup set in Proposition 5.11.

Lemma 5.9. Let (M,ω, J) be a Hamiltonian S1-space and let p ∈ M be a fixed point with
weights m and −n (where m,n ∈ Z>0) and set jp := J(p). Let S ⊂ M be a blowup set at p

as defined in Section 5.4.1. Let Ŝ := S/S1 and M̂ := M/S1. Then there exist a, b ∈ R such

that J(S) = ]a, b[. Moreover, for each j ∈]a, b[ there exists Rj > 0 so that Ŝ = ρ(A) where

A := A(a, b, {Rj}j∈]a,b[) := {(z, j) ∈ C× ]a, b[ | z ∈ DRj
}

and ρ : A → M̂ is a continuous map satisfying:

(1) ρ(z, j) ∈ J−1(j) for all (z, j) ∈ A;

(2) Ŝ ∩ smooth(M̂) = Ŝ \ {π(p)} and the restriction of ρ to A\ {(0, jp)} is a diffeomor-

phism onto Ŝ \ {π(p)};
(3) the assignment j 7→ Rj is continuous and piecewise smooth, and

lim
j→a
j>a

Rj = lim
j→b
j<b

Rj = 0.

Proof. We proceed by induction on the number of blowups.
Base case: Suppose that S is the blowup set of a single blowup of size r at a fixed

point of the S1-action with weights m and −n where m,n ∈ Z>0. Then S is the image
of an S1-equivariantly embedded ball. This embedding induces local coordinates (z, w) on
S which can be extended to some U ⊂ M with S ⊂ U , such that the S1-action is given
by λ · (z, w) = (λmz, λ−nw) for λ ∈ S1 with momentum map J(z, w) = 1

2
(m|z|2 − n|w|2).

Without loss of generality, we may assume the coordinates (z, w) to be centered at this ball,
meaning S = {(z, w) ∈ C2 | |z|2 + |w|2 < r2}.
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Choosing H(z, w) := 1
2
|w|2 yields a toric system (J,H) on U . Take some level set J−1(j).

For the remainder of the proof we assume without loss of generality that jp = 0. We will now

show that Ŝj := (J−1(j) ∩ S)/S1 ⊂ J−1(j)/S1 is diffeomorphic to a disk when j 6= 0 = jp.
It is sufficient to consider the case j > 0 since the case j < 0 goes analogously. By the

definition of J and j, we have m|z|2 − n|w|2 = 2j > 0 implying z 6= 0, since j 6= 0. Using
the S1-action we may assume that z ∈ R>0, which yields coordinates z ∈ R>0 and w ∈ C on

J−1(j)/S1. Solving for z under the assumption that J(z, w) = j yields z =
√

2j+n|w|2
m

. From

|z|2 + |w|2 < r2 we obtain eventually

0 ≤ |w|2 < Rj where Rj :=
r2 − 2j

m
n
m

+ 1
.

Notice that Rj varies continuously with j and Rj → 0 as j → 1
2
mr2. Let Aj>0 = {(z, j) ∈

A | j > 0}. We can now partially define ρ by defining its restriction ρ|Aj>0
: Aj>0 → Ŝ by

ρ(w, j) =

(√
2j + n|w|2

m
,w

)
,

which is surjective onto Ŝ ∩ J−1(R>0). The same technique can be used to define ρ for
j < 0. The same argument works when j = 0 except that the choice of coordinates will
not be smooth at z = 0 when j = 0. In these coordinates, z = 0 and j = 0 correspond to
π(p). Since ρ varies smoothly with j, we conclude that ρ|A\{(0,jp)} is a diffeomorphism onto

Ŝ \ {π(p)}. Therefore, the lemma is proved in the case that S is the blowup set of a single
blowup.

Inductive step: Now suppose that S̃ = S̃0,...,k is a blowup set obtained from taking k > 0
blowups and has the properties (1)-(3) described in the statement of this lemma.

Let S = S0,...,k,k+1 be a blowup set obtained by taking the same sequence of blowups as

for S̃ plus one additional blowup. We will prove that for each j ∈ J(S̃k+1) the image of
S̃k+1 in the reduced space at level j is diffeomorphic to a disk in a way that varies smoothly
with j, except at (z, j) = (0, jp). After performing the first k blowups, the (k + 1)st blowup
is done by removing an S1-equivariantly embedded ball, whose image Sk+1 has the desired
properties (1)-(3) as in the statement from the result of the base case. Let

ψ := ψk+1 ◦ . . . ◦ ψ1

be a composition of the maps from Equation (5.1), so that ψ map M to M blown up k + 1
times, and set S̃k+1 := ψ−1(Sk+1). Then, following Equation (5.2), the blowup set S is
obtained as the union S = S̃ ∪ S̃k+1. For any value of j such that S̃ ∩ J−1(j) = ∅ or
S̃k+1 ∩ J−1(j) = ∅ there is nothing to prove, since from the base case (respectively, by the
inductive hypothesis) we already know that such a set is a disk which varies smoothly with
j (i.e. it has properties (1)-(3) from the statement of the present lemma).

Now suppose that J−1(j) intersects both S̃ and S̃k+1. Since this sequence of blowups
started at a focus-focus point, both weights at a focus-focus point have absolute value 1.
Furthermore, S1-equivariant blowups on points with non-zero weights (which are necessarily
of type (B4)) always produce new fixed points which have one weight with a strictly higher
absolute value. Thus, we conclude that the (k + 1)st blowup must have occurred at a point
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for which one of the weights has absolute value strictly greater than 1, call it η ∈ Z. The Zη-
sphere emanating from that point is the exceptional divisor from one of the earlier blowups,
and since the Zk-spheres (for |k| > 1) emanating from a point are always included in the
interior of a blowup of that point, the set Sk+1 includes this exceptional divisor in its interior
at the level J = j. Taking the image in the reduced space at level j, this implies that the
image of S̃k+1 in the reduced space at level j is an annulus which is perfectly filled in by the
image of S̃ in the reduced space (which corresponds to the Zη-sphere), and thus it is a disk,
as desired. �

5.4.3. Resizing flaps. The aim of the following statement is to turn blowups happening
around a focus-focus point into blowups happening around an elliptic-elliptic point by trans-
forming the original system into a system which includes a flap. The main difficulty is making
sure that the flap is large enough to include the entire set on which the blowups occur.

Definition 5.10. Suppose that (M,ω, F ) is an integrable system which includes a flap (as
described in Definition 2.45) such that there is exactly one elliptic-elliptic singular point
p ∈ M on the flap. Let τ : M → B be the singular Lagrangian fibration induced by F as
defined in Section 2.7. Then an open connected set S ⊂M is on the flap if

(1) S does not contain any hyperbolic-regular or degenerate singular points, and

(2) τ(S) and p are in the same connected component of B \ τ(MHR), where MHR ⊂ M
denotes the set of hyperbolic-regular points of M .

Compare Figure 1.2 on the very right and Figure 5.1j, which show systems for which
blowups have been performed ‘on the flaps’.

Proposition 5.11. Let (M,ω, F = (J,H)) be a compact integrable system such that J
generates an effective S1-action and let Γ be the Karshon graph of the Hamiltonian S1-
space (M,ω, J). Let p ∈ M be a focus-focus singular point of (M,ω, F ) and let vp be the
corresponding isolated vertex in Γ. Suppose that a Karshon graph Γk is obtained from Γ =: Γ0

by a sequence of k > 0 blowups at vp. Let S := S0,...,k ⊂ M be a choice of blowup set (as in
Equation (5.2)) for this sequence of blowups, and further suppose that an open neighborhood
of S contains no degenerate singular points of the integrable system. Then for any open

neighborhood U of S there exists an integrable system (M,ω, F̃ = (J, H̃)) satisfying the
following items:

(1) H̃ and H coincide outside of U ,

(2) p is an elliptic-elliptic singular point for (M,ω, F̃ ),

(3) compared to (M,ω, F ), the system (M,ω, F̃ ) contains a new flap around p, and S
lies entirely on this new flap as defined in Definition 5.10.

Furthermore, if (M,ω, F ) was a hypersemitoric system, then (M,ω, F̃ ) is also a hypersemi-
toric system.

Proof. First we outline the structure of the proof. After setting up some notation and
arranging the system in a suitable way in Step 0 and Step 1, in Step 2 we use the technique
of Dullin & Pelayo to change the function H so that p is no longer a focus-focus point but
is instead an elliptic-elliptic point on a small flap. Then, in Step 3, we view the integrable
system in the reduced space of the S1-action locally around p as a family of Morse functions
on the disk (using Lemma 5.9). In Step 4 we edit these Morse functions in such a way that
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that when we lift them back up to an integrable system in Step 5, the flap has been enlarged
to include the entire blowup set. An important part of the strategy of the proof is that after
creating the small flap in Step 2, we only edit the system in regions where the S1-action is
free (in particular avoiding a neighborhood of p). This is because where the S1-action is free,
by Lemma 2.36, there is a straightforward relationship between the behavior at the singular
points of the integrable system and the behavior of the critical points of the induced function
on the reduced space.

Step 0: Set up and notation. Let p ∈ M be a focus-focus point, set jp := J(p), let
S = S0,...,k ⊂ M be a blowup set at p, and let S denote the closure of S. Let U be an
open neighborhood of S. Suppose that the blowups used to produce the set S have sizes
λ1, . . . , λk. Then there exists an ε > 0 such that the blowup set Sε for a sequence of blowups
of sizes λ1 + ε, . . . , λk + ε is still contained in the set U . Without loss of generality we may
shrink U so that U = Sε, and note that this means that U is closed under the S1-action.

As in Lemma 5.8, the function H : M → R induces a function Ĥj : M̂j → R on each

reduced space M̂j := (M//S1)j satisfying Ĥj ◦ πj = H. Set Ûj = (J−1(j) ∩ U)/S1 ⊂ M̂j.
The only Zk-spheres (with k > 1) which can occur in a blowup set at a point q are those
which emanate from q. Thus, since U is a blowup set around a focus-focus point, there are
no Zk-spheres (with k > 1) which intersect U and there are no fixed points of the S1-action
in U , with the exception of the focus-focus point p. Thus, for j 6= jp the action of S1 on
each point of J−1(j) ∩ U is free and by assumption U can be chosen to be small enough
so that there are no degenerate points of the integrable system in U so, by Lemma 2.36,
Ûj ⊂ smooth(M̂j) and the functions Ĥj|Ûj

are Morse.

Recall the projection π : M → M̂ = M/S1 and let [p] = π(p) ∈ M̂jp be the image of

the focus-focus point p in the reduced space. Then [p] /∈ smooth(M̂j), but Ûjp \ {[p]} ⊂
smooth(M̂jp), and Ĥjp |Ûjp\{[p]}

is Morse.

Step 1: We show that we may assume that the Morse functions have no critical points
when restricted to Ûj, for j 6= jp, or Ûjp \ {[p]}, for j = jp. Recall that U is a blowup set.

Thus, by Lemma 5.9, for j 6= jp the set Ûj is diffeomorphic to an open disk. Moreover, Ûjp is

homeomorphic to an open disk by a homeomorphism which is a diffeomorphism on Ûjp\{[p]}.
So we may view {Ĥj}j as a one parameter family of functions on a disk, which are Morse
except for at the point [p]. If U contained any elliptic-regular or hyperbolic-regular points

of F then, for some values of j, there will be a non-degenerate critical point of Ĥj inside Ûj.
Nevertheless, since focus-focus points admit a neighborhood containing only regular points
of the integrable system (see Theorem 2.20), there is a sufficiently small neighborhood of [p]

in M̂ such that each intersection of this neighborhood with M̂j does not contain any critical

points of Ĥj, not counting the point [p] at which Ĥj is not smooth.

Let Ŝ := π(S) and let Ŝj := πj(S). We will now change each Ĥj to move the critical

points of Ĥj (not counting [p]) into Ûj \ Ŝj without changing anything in a neighborhood of

[p]: let Φj : Ûj → Ûj be a smooth diffeomorphism which is the identity in a neighborhood
of [p] and in a neighborhood of the boundary, and which moves all critical points close to

the boundary. Denote the composition by Ĥ ′j := Ĥj ◦ Φj. Then there exists a set V with
S ⊂ V ⊂ U which, like U , can be assumed to be a blowup set such that, for each j, the
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function Ĥ ′j|V̂j is a Morse function with zero critical points for all j ∈ J(V ) \ {jp}, where

V̂j = (J−1(j) ∩ V )/S1. Moreover, Ĥ ′j|V̂jp\{[p]} is a Morse function with no critical points.

Now let H ′(q) := Ĥ ′J(q)([q]) for q ∈ M . By Lemma 5.8, we obtain an integrable system

F ′ = (J,H ′) which still has a focus-focus point at p since H and H ′ agree in a neighborhood
of p.

Step 2: Creating a flap with Dullin & Pelayo’s [DP16] technique. In Example 3.1, we
outlined Dullin & Pelayo’s [DP16] method how to turn a focus-focus point into an elliptic-
elliptic point at the ‘cost’ of creating a flap.

We now apply this technique to the focus-focus point p in the integrable system F ′ con-
structed in Step 1 and obtain a new integrable system F ′′ = (J,H ′′) in which p is an
elliptic-elliptic point. Since p is an elliptic-elliptic point, it is a consequence of the local
normal form (Theorem 2.20 that the point [p] is either a local maximum or local minimum
of H ′′ on the reduced space.

Without loss of generality, assume [p] to be a local minimum. Furthermore, we may assume
that, outside of the set V , the system F ′′ coincides with F ′ and hence with F . This new
integrable system F ′′ satisfies all of the desired properties except that the new flap produced
around the image of p is not necessarily large enough to contain all of S.

Step 3: A family of Morse functions on the disk. Recall Dr := {z ∈ C | |z|2 < r2} for

r > 0. Recall the set V constructed in Step 1, which is a blowup set, and let V̂ = π(V ) ⊂ M̂ .
Applying Lemma 5.9 to V and the image of the blowup set S in each reduced space, we
conclude that each are diffeomorphic to a disk except at the focus-focus point where it is only
homeomorphic to a disk but not diffeomorphic. So we can parameterize V̂ ⊂ M̂ as a disk
bundle over an interval, where Ŝ is a smaller (sub-)disk bundle over a smaller (sub-)interval.
More precisely, there exist

• intervals ]a, b[ and ]ã, b̃[ with ]ã, b̃[ ⊂ ]a, b[ ,

• real numbers Rj > 0 for each j ∈ ]a, b[ and rj > 0 for each j ∈ ]ã, b̃[ such that j 7→ Rj

and j 7→ rj are continuous and rj < Rj for all j ∈ ]ã, b̃[ ,
• sets A and B given by

A = {(z, j) ∈ C× ]a, b[ | z ∈ DRj
}, B = {(z, j) ∈ C× ]ã, b̃[ | z ∈ Drj}

which thus satisfy A ⊂ B and
• a homeomorphism ρ : A → V̂ which is a diffeomorphism when restricted to A \
{(0, jp)} and which satisfies ρ(z, j) ∈ J−1(j) for all (z, j) ∈ A and ρ(B) = Ŝ.

Step 4: Enlarging the flap. Recall from Section 2.15 and in particular Figure 2.9 that, on
the reduced space, a flap will correspond to the connected region below (or above) the level
set of a Morse function at the level of an index 1 singular point. This level set containing
the index 1 point has the shape of a curve with one self-intersection point, forming a loop
which encloses a teardrop shaped region. Our goal in this step is to edit this function to
expand the values of j for which the teardrop region exists (Step 4a), and increase the size
of the teardrop region (Step 4b), so that the image of the blowup set S in the reduced space
is contained in this teardrop region. Then the set S will lie on the new flap of the integrable
system, as desired. A sketch of this process on a single reduced space is shown in Figure 5.4.
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(a) (b) (c)

Figure 5.4. Note that a flap corresponds to a small ‘upward or downward
pointing nose’ of the reduced space which, being two dimensional, is a surface of
some genus g (with g = 0 in this figure). From left to right: (a) is the original
situation, (b) is obtained by creating a flap with the technique of Dullin &
Pelayo, and (c) is obtained by enlarging the flap to contain the blowup set as
described in Step 4 of the proof of Proposition 5.11.

In Step 2, we have produced a flap around [p] using Dullin & Pelayo’s technique outlined

in Example 3.1. Recall H ′′ from Step 2 and define Ĥ ′′ via Ĥ ′′ ◦π = H ′′. Moreover, recall the
map ρ : A → V̂ ⊂ M̂ from Step 3 and define f : A → R via f = Ĥ ′′ ◦ ρ and set fj := f(·, j).

Note that the function z 7→ fj(z) is Morse with two critical points (of index 1 and 0) for
all j in an open interval around jp, not including j = jp, and that z 7→ fj(z) is Morse with
no critical points outside of the closure of that interval. At the end points of the interval,
z 7→ fj(z) is not Morse since it includes one degenerate point, see Figure 2.9.

Step 4a: Enlarging the flap to exist for a larger interval of j-values. First, we want to
adapt j 7→ fj so that the function has precisely two critical points for a larger interval of

j-values that includes the interval ]ã, b̃[ , therefore producing a longer flap in the integrable
system. The idea is to reparameterize the j-parameter of fj, except that we have to be
careful not to change any of the fj in a neighborhood of the boundary of the disk so that
it can still be glued into the global function. Moreover actually can, and will, arrange that
fj can still be glued into the global function because of the general behavior of this function
outside of the teardrop region, see Figure 2.9.

Let D := D1 denote the disk of radius one. Let χ : D → [0, 1] be a smooth function
which is zero in the neighborhood of the boundary ∂D of the disk, but is identically one
in a neighborhood of the origin of the disk large enough so that after multiplying by Rj

we have that {Rjz | χ(z) = 1} ⊂ DRj
contains the teardrop shaped region for all fj. Let

µj : DRj
→ DRΨ(j)

be the scaling map given by µj(z) =
(
RΨ(j)

Rj

)
z. Let g̃j : DRj

→ R and

g̃ : A → R be given by

g̃j := (1− χ)fj + χ(fΨ(j) ◦ µj), g̃(·, j) := g̃j(·)

where Ψ: ]a, b[→ ]a, b[ is a smooth bijection such that the j-values for which f̃j has two

critical points have been reparameterized to contain the interval ]ã, b̃[, see parts (a) and (b)
of Figure 5.5. Denote by ]α, β[ the interval of j-values for which g̃j has two critical points.
Notice that g̃j = fj near the boundary of the disk. Moreover, we may assume that Ψ is the
identity in a neighborhood of jp so that g̃ = f in a neighborhood of (0, jp) ∈ A as well. Thus,
g̃ is nearly the function that we need, but in the intermediate region R = {χ 6= 1}∩{χ 6= 0}
the function g̃j may have unwanted critical points. We eliminate these critical points by
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shifting each g̃j in the region {χ 6= 0} by adding some function G : A → R, as sketched in

part (c) of Figure 5.5. Call the function obtained by this shifting f̃j : DRj
→ R, so

f̃j := (1− χ)fj + χ(fΨ(j) ◦ µj +G).

Let f̃ : A → R be given by f̃(·, j) := f̃j(·).

(a)

g̃j

fψ(j)

(c)

fj

fj

fψ(j)

(b)

fψ(j) +G

f̃j

Figure 5.5. From left to right: Removal of potentially newly arising critical
points.

Altogether, starting with f we have now produced the function f̃ which satisfies:

• f̃j is a Morse function with no critical points for a < j < α or β < j < b;

• f̃j is a Morse function with one critical point of index 1 and one critical point of index
0 for α < j < β with j 6= jp. By performing an affine transformation of coordinates
if necessary, we may, and do, assume that the rank zero critical point is the origin
for all j ∈ ]α, β[ \{jp};
• f̃α and f̃β are smooth functions with exactly one critical point (which is degenerate);

• f̃jp|DRjp
\{0} is Morse with one critical point of index 1. Moreover, 0 ∈ DRjp

is a local

minimum of z 7→ fjp(z);
• for all j ∈ ]a, b[ there is a neighborhood O of the boundary ∂DRj

of DRj
such that

f̃j|O is Morse with zero critical points.

Thus, f is of the form discussed in Section 2.15 and has a graph as shown in Figure 2.9.
Step 4b: Enlarging the flap to contain a larger set for each fixed j. Now that the teardrop

region exists for all desired values of j, we want to expand the teardrop region to contain
the blowup set. Recall from Step 3 that rj is the radius of the sub-disk corresponding to Ŝ.
For j ∈ ]a, b[, let ψj : DRj

→ DRj
be a diffeomorphism shrinking D(2rj+1)/3 and acting as the

identity outside of D(rj+2)/3 such that (z, j) 7→ ψj(z) is smooth. For α < j < β, the level set

of the index 1 point of f̃j ◦ ψj defines a teardrop region in DRj
as in Figure 2.9. Choose ψj

to shirk Drj enough so that Drj is contained in this teardrop region.
One of the simplest cases in the work of Cerf [Cer70] states that the birth and death of

critical points in families of Morse functions in two dimensions is generically of the form
given in Equation (2.4) from Section 2.15. Thus, we may assume that the degenerate points

of f̃j ◦ ψj are of the form (x, y) 7→ x3 + jx+ y2 for some local coordinates (x, y) on the disk

while retaining all of the other properties of f̃j ◦ ψj listed above.
Now, set

g(z, j) := f̃(ψj(z), j) : A → R
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and abbreviate gj := g(·, j).
Then g has the following properties:

• g = f̃ = f in a neighborhood of (0, jp) ∈ A;

• g = f̃ = f in a neighborhood of the boundary ∂A;
• gj is a Morse function with no critical points for j with a < j < α or β < j < b;
• gj is a Morse function with one critical point of index 1 and one critical point of index

0 for j with α < j < β with j 6= jp;
• all degenerate points can be locally modeled by (x, y, j) 7→ x3 ± (j − γ)x+ y2;

• for each j satisfying ã < j < b̃ the function gj has exactly one critical point q of index
1, and g−1

j (q) ∩ Drj = ∅ (i.e. the set Drj is in the teardrop region defined by gj).

Thus, g has all of the properties that we desired our integrable system to have in the
reduced space around the point p ∈ M . Most importantly, it defines a teardrop shaped
region (which will lift to a flap of the integrable system) which entirely contains the blowup
set.

Step 5: Completing the proof. Let g : A → R be as described in Step 4, let ρ : A → V̂ be
as defined in Step 3, and let Ĥ ′′ : M̂ → R be as defined in Step 4. Define Ĥ ′′′ : M̂ → R by

Ĥ ′′′(q) :=

{
g ◦ ρ−1(q), q ∈ V̂ ,
Ĥ ′′(q), q /∈ V̂ .

Notice that Ĥ ′′ and Ĥ ′′′ are equal in a neighborhood of [p] ∈ M̂ and outside of V̂ . So

in particular Ĥ ′′ and Ĥ ′′′ only differ at points of the reduced spaces which correspond to
free orbits of the S1-action, and H ′′′ is smooth at such points since it is the composition of
smooth functions (note the smoothness of ρ−1 at such points is guaranteed by Lemma 5.9).

Therefore, taking H̃ := Ĥ ′′′ ◦ π, the resulting pair (J, H̃) forms an integrable system on M
by Lemma 5.8.

Since the only degenerate points of Ĥ ′′′j for any j are of the form x3 + tx ± y2, the

degenerate points of (J, H̃) are parabolic as in Proposition 2.41. By Lemma 2.36, all of the

non-degenerate singular points of (J, H̃) are of the desired type for the statement of the
proposition we are proving. Finally, from the previous step we know that Drj lies in the

teardrop region of gj, and therefore Ŝj = ρj(Drj) lies below the value of the index 1 critical

point of Ĥ ′′′j (i.e. in the teardrop shaped region) for all relevant j. Thus, S lies entirely in
the new flap and so item (3) of the statement of the proposition is also satisfied. �

Proposition 5.11 can also be applied to multiple focus-focus points, producing an integrable
system which has one flap corresponding to each focus-focus point in a way that the new
flaps do not interfere with each other:

Corollary 5.12. Let (M,ω, F = (J,H)) be an integrable system such that J generates an
effective S1-action and such that all singular points of (J,H) are non-degenerate, and let Γ
be the Karshon graph of the Hamiltonian S1-space (M,ω, J). Suppose that p1, . . . , pm are
focus-focus points of (M,ω, F ) and let v1, . . . , vm be the corresponding isolated vertices of
Γ. Suppose that Γ′ is a Karshon graph which can be obtained from Γ by performing a finite
sequence of blowups at each of v1, . . . , vm. Then, for each i = 1, . . . ,m there exists a blowup
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set Si ⊂ M for the sequence of blowups at vi such that S
1
, . . . , S

m
are disjoint and for any

open neighborhood U of ∪mi=1S
i

there exists an integrable system (M,ω, F̃ = (J, H̃)) such that

(1) H̃ and H coincide outside of U ,

(2) p1, . . . , pm are each an elliptic-elliptic singular point of (M,ω, F̃ ),

(3) (M,ω, F̃ ) has m flaps and the images of S1, . . . , Sm each lie on a single flap.

Moreover, (M,ω, F̃ ) is a hypersemitoric system.

Proof. Since (M,ω, J) admits the blowups in question, there must exist blowup sets S1, . . . , Sm

such that S
1
, . . . , S

m
are disjoint and thus they admit open neighborhoods U i ⊃ S

i
such that

U1, . . . , Um are disjoint. Let U be any open neighborhood of ∪mi=1S
i
, and we may assume

that U = ∪mi=1U
i. Using induction, we will now show that we can apply Proposition 5.11 to

each of U1, . . . , Um in turn.
Since the original system (M,ω, F ) has no degenerate points, we now apply the proposition

in U1. Supposing that the proposition has already been applied to U1, . . . , U i−1, the only
degenerate points of the new system will lie in U1 ∪ . . . ∪ U i−1, which is disjoint from U i.
Thus, U i contains no degenerate points of the new system and we may apply Proposition 5.11.
Therefore, by induction, we conclude that we can apply Proposition 5.11 to all of U1, . . . , Um.

At the end of this process, we are left with a hypersemitoric system (M,ω, F̃ ) which has the
desired properties. �

5.5. Proof of Theorem 1.7. Now we are prepared to prove Theorem 1.7.

Proof of Theorem 1.7. Let (M,ω, J) be a Hamiltonian S1-space and let Γ := Γ(J) be the as-
sociated Karshon graph. Suppose that there exists a hypersemitoric system (M,Ω, (J ,H))
where the Karshon graph Γ(J ) of the underlying Hamiltonian S1-space (M,Ω,J ) satisfies
Γ(J ) = Γ. Then, by Karshon [Kar99], there exists an S1-equivariant symplectomorphism
Φ : (M,ω, J)→ (M,Ω,J ). Now define H := H◦Φ, and then (M,ω, (J,H)) is a hypersemi-
toric system that extends the Hamiltonian S1-space (M,ω, J), thus completing the proof of
Theorem 1.7. Thus, the remainder of the proof is devoted to finding a hypersemitoric system
whose underlying S1-space has Γ as its Karshon graph.

Case 1: Γ has no fat vertex. If Γ has no fat vertex then all fixed points of J are
isolated. By Lemma 2.7, the Hamiltonian S1-space (M,ω, J) then can be extended to a toric
system, which is in particular a hypersemitoric system, thus proving Theorem 1.7 in this
case.

Case 2: Γ has at least one fat vertex. Due to Theorem 2.18, we know that Γ can be
obtained from a minimal Karshon graph Γmin by a finite sequence of S1-equivariant blowups
which, according to Lemma 5.4, can be performed in three separate stages. By Karshon’s
classification of minimal Hamiltonian S1-spaces (cf. Theorem 2.18), Γmin either corresponds
to an S1-space which extends to a toric system (that lives on CP2 or on a Hirzebruch surface)
or corresponds to a ruled surface.

Case 2a: Γmin extends to a toric system. If Γmin extends to a toric system
(Mmin, ωmin, Fmin) on CP2 or on a Hirzebruch surface, we will show how to employ Lemma 5.4
to perform the necessary blowups to obtain a hypersemitoric system with the required
Karshon graph Γ. Before we explain the details below, let us briefly outline the steps we
will take. First, we will perform blowups on the components of Γ containing the vertices
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with maximal and minimal J-value. Recall that, by assumption, there is at least one fat
vertex, i.e. at least one fixed surface. Next we will use a fixed surface to perform blowups
which produce, for each remaining component of the graph Γ, one isolated fixed point. This
point will correspond to a focus-focus point in the associated integrable system. Finally,
we perform a sequence of blowups on each of these isolated points to obtain the remaining
components of Γ, carrying along the integrable system by replacing the focus-focus points
by elliptic-elliptic points on flaps and performing blowups on these elliptic-elliptic points.
For an example of this process, see Section 5.2 in which we apply this technique to a specific
S1-space.

Stage 1: Adjusting the connected components of the vertices with maximal and minimal
J-value. As in the first stage of Lemma 5.4, we perform blowups on the graph Γmin to
obtain a new graph Γ′ such that the connected components of the vertices with maximal and
minimal J-value of Γ′ are equal to those of Γ, with the possible exception of the normalized
area labels on the fat vertices. Since at most one of the maximal or minimal components is
not a fat vertex in this case, this produces at most two non-trivial chains of Zk-spheres and
thus, by Lemma 2.6, the graph Γ′ is the Karshon graph of a Hamiltonian S1-space which can
be extended to a toric system (M ′, ω′, F ′). This toric system has at least one fixed surface
since the graph Γ has at least one fat vertex.

Stage 2: Producing the focus-focus points. After achieving the same minimal and maximal
components for Γ′ and Γ in the previous stage, as in Stage 2 of Lemma 5.4, we now want
to adjust the remaining connected components, i.e., the components of Γ \ Γ′. Notice that
any minimal Karshon graph with at least one fat vertex has exactly two components, since
otherwise the additional component would have to be an isolated fixed point with weights +1
and −1 which could be removed by a blowdown of type (B1). Thus, the set of non-extremal
connected components of Γ is exactly the same as the set of connected components of Γ \Γ′.

Let l ∈ Z be the number of connected components of Γ \ Γ′. Each component of Γ which
does not contain a vertex with the maximal or minimal possible J-value (i.e. each element of
Γ\Γ′) is called an island. The aim of this stage is to perform blowups on the fixed surface(s)
of (M ′, ω′, F ′) to produce one focus-focus point corresponding to each island4. In the next
stage, we will then perform a sequence of blowups on those focus-focus points to produce
the missing components. But first we have to work backwards to determine the J-value that
these focus-focus points should have.

Note that any minimal model which has at least one fixed surface does not have any islands.
Thus, by performing a sequence of blowdowns on Γ, each island of Γ can be reduced to a
single isolated vertex and eventually removed. For each island, perform as many blowdowns
as necessary until it is an isolated vertex and denote the resulting graph by Γ′′.

We will now show that, on the other hand, Γ′′ can also be obtained from Γ′ by performing
blowups on the fixed surface(s) of the Hamiltonian S1-space (M ′, ω′, J ′) from Stage 1 as
described in Case (B1) from Section 2.4.3:

Consider first the situation that there is only one fixed surface Σ and assume without loss
of generality Σ = J−1(jmin). Denote the J-values of the isolated points in Γ′′ by jmin +λ` for
` = 1, . . . , l. Then Γ′′ is obtained from Γ′ by performing l blowups of sizes λ1, . . . , λl on points

4The technqiue of using semitoric blowups to produce focus-focus points in this way will also be used in
the upcoming Hohloch & Sabatini & Sepe & Symington [HSSS], first announced at Poisson 2014 by Daniele
Sepe.
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in the fixed surface Σ. Note that Σ is large enough to admit such blowups because Γ can be
obtained from Γmin by a sequence of blowups performed in the order specified in Lemma 5.4.
In case Σ = J−1(jmax), denote the J-values by jmax − λ` and proceed analogously.

Otherwise, (M ′, ω′, J ′) has two fixed surfaces Σmin = J−1(jmin) and Σmax = J−1(jmax).
Since Γ can be obtained from Γmin by a sequence of blowups performed in the order specified
in Lemma 5.4, we conclude that there exists an m such that blowups of size λ1, . . . , λm on
Σmin and blowups of size λm+1, . . . , λl on Σmax produce Γ′′ from Γ. Here the J-values of the
isolated points in Γ′′ are

jmin + λ1, . . . , jmin + λm, jmax − λm+1, . . . , jmax − λl.

Thus, we conclude that in both cases Γ′′ can be obtained from Γ′ by performing blowups
on the fixed surface(s) of (M ′, ω′, J ′). Since the integrable system (M ′, ω′, F ′) is toric, and
in particular semitoric, Lemma 2.34 implies that the blowups used to obtain Γ′′ from Γ′ can
be realized by performing semitoric blowups on the marked polygon invariant of (M ′, ω′, F ′).
Let (M ′′, ω′′, F ′′) be a semitoric system associated to the resulting marked polygon (see Re-
mark 2.31), and note that Γ′′ is the Karshon graph of the underlying S1-space of (M ′′, ω′′, F ′′).
Let p1, . . . , pl ∈ M ′′ be the resulting focus-focus points of this system. Note that we may,
and do, choose to perform the semitoric blowups in such a manner that each level set of
F ′′ : M ′′ → R2 contains at most one focus-focus point (so the fibers of F ′′ which contain
focus-focus points are all single-pinched tori).

Stage 3: Constructing the islands. Now we follow Stage 3 of Lemma 5.4. For ` = 1, . . . , l,
we will start with the focus-focus point p`, corresponding to a vertex v` of Γ′′, and construct
the `th island of Γ by performing a sequence of blowups. Since each island is connected in
Γ, they can be obtained from the corresponding focus-focus point (i.e. an isolated vertex in
Γ′′) by a finite sequence of blowups on that point and on the new fixed points produced by
this process (these are the inverses of the finitely-many blowdowns discussed in the previous
stage). This is exactly the setting of Proposition 5.11.

By Corollary 5.12, we may now apply the technique of Proposition 5.11 on each focus-focus

point p1, . . . , pk simultaneously and thus conclude that there exists a function H
′′

such that

the system (M ′′, ω′′, F
′′

= (J ′′, H
′′
)) is a hypersemitoric system, and the underlying S1-space

is still (M ′′, ω′′, J ′′) which has Karshon graph Γ′′.

Each p` is now an elliptic-elliptic singular point of (M ′′, ω′′, F
′′
). By Proposition 5.11, the

flap containing p` is large enough to admit the desired sequence of S1-equivariant blowups (of
the desired sizes) by performing toric blowups on the flap. After performing this sequence of
toric blowups on the flaps we are left with a hypersemitoric system of which the underlying
S1-space has the desired Karshon graph Γ. This completes the proof in this case.

Case 2b: The minimal model is a ruled surface. Recall that a ruled surface is a
sphere bundle over a surface Σ of genus g. Consider its graph Γmin. We may assume g > 0
since the minimal model in the case g = 0 extends to a toric system which we already treated
in Case 2a. Let Γmin denote the Karshon graph of this minimal model. We will follow nearly
the same stages as in Case 2a. Keep in mind that this minimal model has two fixed surfaces
corresponding to the north and south poles of the sphere (see Definition 2.17). Following
the description of the effect of a blowup on a Karshon graph from Lemma 2.13, we see that
S1-equivariant blowups cannot remove fixed surfaces of the S1-action completely (they can
only make them smaller), so Γ necessarily also has two fixed fat vertices corresponding to
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fixed surfaces of the related S1-space. Thus, there are no edges which connect to the maximal
or minimal vertices of Γ, so Stage 1 is trivial in this case, implying that the Karshon graph
Γ′ produced in Stage 1 satisfies Γ′ = Γmin.

For Stage 2, as in the previous case (and following Stage 2 of Lemma 5.4) we perform
a series of blowups of type (B1) on Γ′ = Γmin to produce a new Karshon graph Γ′′. By
Lemma 5.7, given any Γ′′ produced in that way from a ruled surface, there exists a hyper-
semitoric system (M ′′, ω′′, F ′′) which has Γ′′ as its Karshon graph.

Finally, Stage 3 works exactly the same as in the previous case, and the proof is complete.
�

From the algorithm in the above proof, we automatically have the following refined version
of Theorem 1.7.

Corollary 5.13. Let (M,ω, J) be a Hamiltonian S1-space. Then there exists a smooth
function H : M → R2 such that (M,ω, F = (J,H)) is a hypersemitoric system such that:

(1) every degenerate orbit of (M,ω, F ) lies in a cuspidal torus (see Figure 4.2c), and
every hyperbolic-regular point lies in a double torus (see Figure 4.2a);

(2) there is at most one focus-focus point in each fiber of F ;
(3) as long as k /∈ {0,±1}, all Zk-spheres of (M,ω, J) consist entirely of elliptic-regular

points of (M,ω, F );
(4) if (M,ω, J) has less than two fixed surfaces, or if it has two fixed surfaces which are

both diffeomorphic to spheres, then (M,ω, F ) has no singular points of hyperbolic-
elliptic type.

(5) (M,ω, F ) has no swallowtails (see Section 2.12).
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de la pseudo-isotopie. Inst. Hautes Études Sci. Publ. Math., (39):5–173, 1970.
[Cha13] M. Chaperon. Normalisation of the smooth focus-focus: a simple proof. Acta Math. Vietnam.,

38(1):3–9, 2013.
[Del88] T. Delzant. Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc.

Math. France, 116(3):315–339, 1988.
[DM91] J.-P. Dufour and P. Molino. Compactification d’actions de Rn et variables action-angle avec

singularités. In Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989),
volume 20 of Math. Sci. Res. Inst. Publ., pages 151–167. Springer, New York, 1991.
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