
 

 

Faculty of Business and Economics 

Department of Transport and Regional Economics  

Customized airline offer management: 

solving the assortment problem through 

multi-dimensional segmentation 
Tailor-made luchtvaartaanbiedingen: het 

assortimentsprobleem oplossen door 

multidimensionale segmentatie  

Thesis submitted for the degree of Doctor of Applied 
Economics (Doctor in de toegepaste economische 
wetenschappen) at the University of Antwerp to be defended 
by Daniel SCHUBERT 

 

Supervisors: Prof. Dr. Christa Sys and Prof. Dr. Rosário 
Macário 

 
 

Antwerp, 2025 



ii 
 

The PhD researcher and supervisors declare that the PhD research was 

conducted according to the principles of scientific integrity, as mentioned in the 

general PhD regulations and charter for PhD researchers of UAntwerp and the 

integrity charter for PhD researchers and supervisors affiliated with the University 

of Antwerp. 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The author allows to consult and copy parts of this work for personal use. 

Further reproduction or transmission in any form or by any means, without the 

prior permission of the author is strictly forbidden. 



iii 
 

Doctoral committee members 

Supervisor: Prof. Dr. Christa Sys 

Supervisor: Prof. Dr. Rosário Macário 

Chair: Prof. Dr. Thierry Vanelslander 

Jury: Prof. Dr. Amalia Polydoropoulou 

Jury: Prof. Dr. Sascha Albers 

Jury: Dr. Florian Martin 

  



iv 
 

To my wife, Katharina 
 

To my son, Jacob 
  



v 
 

Executive summary 

This dissertation develops a novel solution for customized airline offer 

management with the aim to combine viability, usability, and feasibility. The 

solution is tested on real data from a major network airline. It expands the 

existing academic literature and practical applications as it suggests a cost-

effective and understandable way for airlines to significantly improve the 

prediction accuracy of customer choice models without the need for complex 

models, using existing data and simple forecasts. The research shows that high-

dimensional and data-driven segmentation, potentially aided by machine 

learning to solve data sparsity, can be combined with the traceability of discrete 

choice models. 

Introduction 

Airlines serve customers with different travel purposes and preferences, ranging 

from business travelers seeking a same day return flight between business 

cities to families with three children searching for their summer vacation or 

expats temporary relocating to a different part of the world for half a year. In 

response, airlines have customized their products, offering customers a wide 

selection of ancillary services on top of the mere aircraft seat. This development 

has been spurred by the increased competition due to the arrival of low-cost 

carriers (LCCs) in the early 2000s. The most popular ancillaries include 

baggage, seat reservation, flexibility, lounge access, increased legroom, and 

many more. Offering increasingly more ancillaries has enhanced the relevance 

of designing a customer journey that is both convenient and gives customers 

the option to customize the product to their specific needs. So far, airlines have 

solved this problem by creating branded fares, i.e. a static pre-selection of 

bundles recognizable to customers, which are aimed at solving for the most 
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typical customer needs. Typically, airlines show three to four of these branded 

fares in step 1 of the customer journey. In addition, airlines offer their customers 

to purchase additional ancillaries a la carte on top of these branded fares in 

step 2 of the customer journey. 

Due to the static pre-selection, some of the branded fares include ancillaries 

that are most likely not relevant to a particular customer making a search. For 

example, a business traveler browsing for a same day return flight is most likely 

not interested in check-in baggage. However, they might be interested in fast-

track through security or other less common ancillaries, which they only find in 

step 2 of the customer journey in a long list of ancillaries. This is not the most 

convenient customer experience. Can airlines not be smarter than that, and 

offer a customized bundle option that is tailored to the specific search in step 1 

of the customer journey?  

This is the research objective this dissertation aims to address. It is built on the 

hypothesis that any search for an airline product implicitly and explicitly provides 

information to the airlines that they can use to respond with a targeted, 

customized bundle in addition to the static branded fares. 

Problem statement 

Due to its relevance, this research objective has received ample attention both 

from academic and industrial scholars. Solving the customized offer 

management problem requires solving the various subproblems of 

segmentation (how can customers be grouped into distinct segments that 

behave differently from each other?), bundling (how to create a bundle in real-

time when a customer makes a search?), assortment (which of all possible 

products to display to a customer in step 1 of the customer journey?), and 

pricing (how to price the flight, the ancillaries, or the entire bundle?). 
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So far, existing literature and practical applications can be split into one of two 

categories. Either, they use discrete choice models catered to a single-digit 

number of segments. Most often, they distinguish the two classical segments of 

“Business” or “Leisure” travel, using the length of stay as the only criterion for 

segmentation These discrete choice models are simple to comprehend. 

However, they fail to capture the whole spectrum of customer preferences, and 

their prediction accuracy suffers from ignoring relevant information, such as 

when a customer searches or which channel the search comes through. 

Alternatively, they use machine learning models that can handle a much higher 

number of features and hence build significantly more segments, up to infinite 

segmentation where a customer search is not mapped to exactly one segment 

at all. These models are capable of catering to customer needs in a much 

broader way. However, they are typically difficult to understand as many 

complex machine learning models suffer from their black box character. When 

airline users cannot relate to how a model comes up with its segmentation, then 

the airline typically struggles with achieving adoption. 

This is the research gap this dissertation aims to fill. It develops and validates a 

novel solution that delivers on both higher prediction accuracy than existing 

discrete choice models, and usability due to a simple, transparent, and 

understandable logic to link searches to segments. It does so by segmenting 

customer searches in a data-driven way into thousands to millions of segments, 

based on data included in the customer searches and hence available to airlines 

at no additional cost. 

Methodology 

This dissertation starts with outlining a conceptual new Offer Management 

System (OMS) that holistically solves the problems of segmentation, bundling, 

assortment, and pricing. The proposed OMS is built on two fundamental 
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hypotheses that airline customers can be segmented into distinct segments that 

exhibit different purchase behavior, and that this segmentation can improve the 

prediction accuracy of customer choice probabilities for customer searches in 

the future. 

Both feasibility and viability of the proposed OMS are validated with real airline 

data as the author had access to hundreds of millions of booked airline coupons 

between September 2018 and September 2023. To test the two fundamental 

hypotheses, the validation is split into two parts and uses both inductive and 

deductive research. First, the inductive research makes empirical observations 

in the data, then generalizes these to find patterns, and develops a theory based 

on this generalization. The deductive research tests this new theory on new data 

and confirms its validity with new observations. 

Key findings and results 

This dissertation proves the proposed OMS can predict offers relevant to a 

specific search with significantly higher accuracy than existing discrete choice 

approaches. The high statistical significance is established with three different 

error metrics and for five different time periods. Specifically, the results show 

that – in this order of importance – sales channel (e.g., airline’s own website, or 

travel agency), customer loyalty status (different membership tiers, or no 

member), whether a flight is scheduled to run overnight or not, and booking 

weekday all have explanatory power which product, i.e. branded fare plus 

ancillaries, a customer purchases. The dissertation confirms that including 

these features increases the prediction accuracy of future customer choices 

with a statistical significance of 99.9%. Hence, it highly significantly helps 

airlines identify which customized bundle most likely resembles the specific 

customer’s preferences.  
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At the same time, the segmentation, despite its high dimensionality with 

thousands of segments, is arguably much more understandable than complex 

machine learning models. This is because every search is mapped to precisely 

one customer segment based on the sales channel, customer loyalty status, 

whether the flight runs overnight or not, and the weekday of the booking. 

Moreover, experiments on different time periods confirm that changes in 

customer behavior can be captured with monthly model retraining. Lastly, the 

proposed OMS does not require customers to reveal their personal identity, 

hence is in full compliance with data privacy regulation. 

From a methodological perspective, the dissertation tests four prediction models 

with increasing complexity. This has yielded an unexpected result. 99.9% of the 

improved prediction accuracy can be achieved with simple forecasts that 

assume the observed behavior in the training period continues for the future. 

More complex prediction models, using a novel application of the well-studied 

matrix factorization algorithm that has been proven extremely powerful in 

several applications including recommendation engines at Netflix and Amazon, 

only improved prediction accuracy for the last 0.1% of customer searches. 

These are the ones that map into infrequent segments that represent an 

infrequent combination of features like a rare sales channel, a rare loyalty status 

and an overnight flight. 

Conclusions and implications 

The results show that airlines do not need complex machine learning models to 

improve the prediction accuracy of which specific product a specific customer 

will likely purchase. The results do suggest however that airlines should use 

information they have already available in a customer search. Because the data 

is already available, this is a cost-effective way for airlines to significantly 

improve the prediction accuracy of their customer choice models with 99.9% 
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confidence. The proposed OMS is data-driven, can respond to searches in real-

time, and is designed in modules for gradual embedding into existing processes, 

workflows, and system. Also, it is built in a way that it both works with existing 

revenue/offer management systems as well as innovations like continuous 

pricing and new distribution capabilities that are strategic priorities for airlines. 

The findings recommend airlines to test the developed OMS and show 

customized bundle options next to the static branded fares in step 1 of the 

customer journey. These tests will answer whether the improved prediction 

accuracy leads to improved customer or business outcomes such as higher 

revenue or higher search-to-book conversion, and whether the solution is 

indeed understood and hence adopted. In addition to these online tests, future 

research can test the proposed OMS more holistically, test the prediction 

accuracy against complex machine learning models, and test generalization to 

other airlines or other sectors. 

Final remarks 

This dissertation adds to the academic literature on customized offer 

management. It is novel as it combines discrete choice and machine learning 

into a new offer management system that enhances transparency and improves 

prediction accuracy to help airlines show their customers a customized bundle 

in step 1 of the customer journey. As such, it would combine the convenience 

and recognizability of branded fares with the customizability and flexibility of a 

la carte ancillaries. The research highlights that using data that is available to 

airlines can achieve 99.9% of the benefits, whereas complex machine learning 

only improves the prediction accuracy of the last 0.1% of customer searches.  
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Samenvatting 

In dit proefschrift wordt een nieuwe oplossing ontwikkeld voor het beheer van 

op maat gemaakte prijsoffertes van luchtvaartmaatschappijen, met als doel de 

haalbaarheid, bruikbaarheid en uitvoerbaarheid ervan  te combineren. De 

oplossing wordt getest met real data van een grote netwerk 

luchtvaartmaatschappij. Het  proefschrift breidt de bestaande academische 

literatuur en praktische toepassingen uit. Het stelt een kosteneffectieve en 

begrijpelijke methode  voor luchtvaartmaatschappijen voor. Hiermee kunnen zij 

de voorspellingsnauwkeurigheid van klantkeuzemodellen aanzienlijk 

verbeteren. Dit gebeurt zonder de noodzaak van complexe modellen. De 

methode gebruikt bestaande gegevens en eenvoudige voorspellingen. Het 

onderzoek toont aan dat hoogdimensionaleen datagestuurde segmentatie, 

mogelijk geholpen door machine learning om dataschaarste op te lossen, 

gecombineerd kan worden met de traceerbaarheid van discrete 

keuzemodellen. 

Inleiding 

Luchtvaartmaatschappijen bedienen klanten met verschillende reisdoelen en 

voorkeuren, gaande van zakenreizigers die op dezelfde dag heen en terug 

willen vliegen tussen zakensteden tot gezinnen met drie kinderen op zoek naar 

hun zomervakantie of expats die tijdelijk voor een half jaar naar een ander deel 

van de wereld verhuizen. Als reactie hierop hebben luchtvaartmaatschappijen 

hun producten aangepast en bieden ze hun klanten een breed scala aan 

aanvullende diensten naast het boeken van de stoel in het vliegtuig. Deze 

ontwikkeling werd gestimuleerd door de toegenomen concurrentie als gevolg 

van de komst van low-cost carriers (LCC's) in het begin van de jaren 2000. De 

populairste aanvullende diensten zijn bagagebehandeling, stoelreservering 
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(plus meer beenruimte), flexibiliteit, en loungetoegang. Het aanbieden van 

steeds meer extra opties (bagage, reisverzekering, stoelkeuze) heeft de 

relevantie vergroot van het ontwerpen van een klantreis die zowel handig is als 

klanten de mogelijkheid geeft om het product aan te passen aan hun specifieke 

behoeften. Tot nu toe hebben luchtvaartmaatschappijen dit probleem opgelost 

door merktarieven te creëren, d.w.z. een statische voorselectie van bundels die 

herkenbaar zijn voor klanten en die gericht zijn op het oplossen van de meest 

typische behoeften van klanten. Gewoonlijk tonen luchtvaartmaatschappijen 

drie tot vier van deze merktarieven in stap 1 van het klanttraject. Daarnaast 

bieden luchtvaartmaatschappijen hun klanten in stap 2 van het klanttraject de 

mogelijkheid om bovenop deze merktarieven à la carte extra accessoires aan 

te schaffen. 

Door de statische voorselectie bevatten sommige merktarieven bijkomende 

kosten die waarschijnlijk niet relevant zijn voor een specifieke klant die zijn/haar 

zoekopdracht uitvoert. Bijvoorbeeld, een zakenreiziger die zoekt naar een 

retourvlucht op dezelfde dag is waarschijnlijk niet geïnteresseerd in 

ruimbagage. Ze kunnen echter wel geïnteresseerd zijn in een snelle doorgang 

bij de beveiliging of andere - minder gebruikelijke - bijkomstigheden die ze pas 

in stap 2 van het klanttraject en in een lange keuzelijst terugvinden . Dit is niet 

de meest handige klantervaring. Kunnen luchtvaartmaatschappijen niet slimmer 

zijn en een op maat gemaakte bundeloptie aanbieden die is afgestemd op de 

specifieke zoekopdracht in stap 1 van het klanttraject? 

Dit is het onderzoeksdoel van dit proefschrift. Het is gebaseerd op de hypothese 

dat elke zoekopdracht naar een luchtvaartproduct impliciet en expliciet 

informatie verschaft aan de luchtvaartmaatschappijen zodat zij deze informatie 

dan kunnen gebruiken om te reageren met een klantgerichte, op maat 

gemaakte bundel in aanvulling op de statische merktarieven. 
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Probleemstelling 

Vanwege de relevantie heeft deze probleemstelling veel aandacht gekregen 

van zowel academische als industriële wetenschappers. Het oplossen van het 

beheerprobleem van aangepaste aanbiedingen vereist het oplossen van de 

verschillende deelproblemen van  

• segmentatie (hoe kunnen klanten worden gegroepeerd in 

verschillende segmenten die zich verschillend van elkaar 

gedragen?),  

• bundeling  (hoe creëer je een bundel in realtime wanneer een klant 

een zoekopdracht uitvoert?), 

• assortiment (welke van alle mogelijke producten moet een klant 

zien te krijgen in stap 1 van het klanttraject?), en 

• prijsstelling (hoe bepaal je de prijs van de vlucht, de 

nevenproducten of de hele bundel?). 

Tot nu toe kunnen de bestaande literatuur en de praktische toepassingen in 

twee categorieën worden onderverdeeld. Soms gebruiken onderzoekers 

discrete keuzemodellen die gericht zijn op een ééncijferig aantal segmenten. 

Meestal maken ze een onderscheid tussen de twee klassieke segmenten van 

“Zakenreizen” of “Vrijetijdsreizen”, waarbij de verblijfsduur het enige criterium 

voor segmentering is. Ze slagen er echter niet in om het hele spectrum van 

klantenvoorkeuren vast te leggen en hun voorspelnauwkeurigheid lijdt onder 

het negeren van relevante informatie, zoals het tijdstip waarop de klant zoekt of 

via welk kanaal de zoekopdracht komt. Als alternatief gebruiken ze machine 

learning modellen die een veel hoger aantal kenmerken aankunnen en 

daardoor aanzienlijk meer segmenten kunnen opbouwen Dit kan gaan tot  

continue segmentatie waarbij een zoekopdracht van een klant helemaal niet in 

kaart wordt gebracht in discrete segmenten. Deze modellen kunnen op een veel 

bredere manier inspelen op de behoeften van de klant. Ze zijn echter meestal 
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moeilijk te begrijpen omdat veel complexe machine learning modellen lijden 

onder het black box-karakter. Als werknemers van een luchtvaartmaatschappij 

niet kunnen begrijpen hoe een model tot segmentatie komt, heeft de 

luchtvaartmaatschappij het meestal moeilijk om het te gebruiken. 

Dit is de onderzoeksleemte die dit proefschrift wil invullen. Het ontwikkelt en 

valideert een nieuwe oplossing die enerzijds een hogere 

voorspellingsnauwkeurigheid biedt dan bestaande discrete keuzemodellen en 

anderzijdsbruikbaarder is voor medewerkers van luchtvaartmaatschappijen en 

dit dankzij een eenvoudige en begrijpelijke logica om zoekopdrachten te 

koppelen aan segmenten. Dit gebeurt door zoekopdrachten van klanten op een 

datagestuurde manier te segmenteren in duizenden tot miljoenen segmenten 

Dit gebeurt op basis van gegevens die in de zoekopdrachten van klanten zijn 

opgenomen en dus zonder extra kosten beschikbaar zijn voor 

luchtvaartmaatschappijen. 

Methodologie 

Dit proefschrift begint met het schetsen van een conceptueel nieuw Offer 

Management System (OMS) dat de problemen van segmentatie, bundeling, 

assortiment en prijsstelling holistisch oplost. Het voorgestelde OMS is 

gebaseerd op twee fundamentele hypotheses, namelijk dat luchtvaartklanten 

kunnen worden gesegmenteerd in verschillende segmenten die verschillend 

aankoopgedrag vertonen en dat deze segmentatie de nauwkeurigheid van de 

voorspelling van de waarschijnlijkheid van klantkeuzes voor toekomstige 

zoekopdrachten van klanten kan verbeteren. 

Zowel de haalbaarheid als de levensvatbaarheid van het voorgestelde OMS 

worden gevalideerd met bestaande luchtvaartmaatschappijgegevens 

aangezien de auteur toegang had tot honderden miljoenen geboekte 
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luchtvaartcoupons tussen september 2018 en september 2023. Om de twee 

fundamentele hypothesen te testen, is de validatie opgesplitst in twee delen en 

wordt zowel inductief als deductief onderzoek gebruikt. Eerst doet het 

inductieve onderzoek empirische waarnemingen in de data, generaliseert deze 

vervolgens om patronen te vinden en ontwikkelt een theorie op basis van deze 

generalisatie Het deductieve onderzoek test deze nieuwe theorie op nieuwe 

data en bevestigt de geldigheid ervan met nieuwe waarnemingen. 

Belangrijkste bevindingen en resultaten 

Dit proefschrift bewijst dat het voorgestelde OMS aanbiedingen kan voorspellen 

die relevant zijn voor een specifieke zoekopdracht met een significant hogere 

nauwkeurigheid dan bestaande discrete keuzebenaderingen. De hoge 

statistische significantie wordt aangetoond met drie verschillende foutmaten en 

voor vijf verschillende tijdsperioden. Specifiek tonen de resultaten aan dat - in 

volgorde van belang – verklarend werken voor het product waarvoor de klant 

kiest:  het verkoopkanaal (bijv. de eigen website van de luchtvaartmaatschappij 

of een reisbureau), de loyaliteitsstatus van de klant (verschillende niveaus van 

lidmaatschap of geen lidmaatschap), of een vlucht al dan niet 's nachts wordt 

uitgevoerd en de boekingsweekdag, Het proefschrift bevestigt dat het opnemen 

van deze kenmerken de nauwkeurigheid van de voorspelling van toekomstige 

klantkeuzes verhoogt met een statistische significantie van 99,9%. Het helpt 

luchtvaartmaatschappijen dus in hoge mate om te bepalen welke aangepaste 

bundel het meest waarschijnlijk overeenkomt met de voorkeuren van de 

specifieke klant. 

Tegelijkertijd is de segmentatie, ondanks de hoge dimensionaliteit met 

duizenden segmenten, aantoonbaar veel begrijpelijker voor medewerkers van 

luchtvaartmaatschappijen dan continue segmentatie van complexe machine 

learning modellen. Dit komt omdat elke zoekopdracht wordt gekoppeld aan 
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exact één klantsegment op basis van het verkoopkanaal, de loyaliteitsstatus 

van de klant, of de vlucht al dan niet 's nachts wordt uitgevoerd en de weekdag 

van de boeking. Bovendien bevestigen experimenten met verschillende 

tijdsperioden dat veranderingen in klantgedrag kunnen worden vastgelegd met 

een maandelijkse hertraining van het model. Tot slot vereist het voorgestelde 

OMS niet dat klanten hun persoonlijke identiteit bekendmaken waardoor het 

volledig in overeenstemming is met de GDPR regelgeving. 

Vanuit methodologisch perspectief test het proefschrift vier 

voorspellingsmodellen met toenemende complexiteit. Dit leverde een 

onverwacht resultaat op. 99,9% van de verbeterde 

voorspellingsnauwkeurigheid kan worden bereikt met eenvoudige 

voorspellingen die ervan uitgaan dat het waargenomen gedrag in de 

trainingsperiode zich voortzet in de toekomst. Complexere 

voorspellingsmodellen, gebaseerd op een nieuwe toepassing van het bekende 

matrixfactorisatie-algoritme, verbeterden de nauwkeurigheid alleen bij de 

laatste 0,1% van klantzoekopdrachten. Dit algoritme is krachtig en wordt 

gebruikt in aanbevelingssystemen zoals die van Netflix en Amazon. Dit zijn de 

segmenten die in kaart worden gebracht in infrequente segmenten die een 

infrequente combinatie van kenmerken vertegenwoordigen, zoals een 

zeldzaam verkoopkanaal, een zeldzame loyaliteitsstatus en een overnachting. 

Conclusies en implicaties 

De resultaten laten zien dat luchtvaartmaatschappijen geen complexe machine 

learning-modellen nodig hebben om de nauwkeurigheid van de voorspelling te 

verbeteren van een specifiek product dat een specifieke klant waarschijnlijk zal 

kopen. De resultaten suggereren echter wel dat luchtvaartmaatschappijen 

gebruik moeten maken van informatie die ze al beschikbaar hebben bij het 

zoeken naar een klant. Omdat de gegevens al beschikbaar zijn, is dit een 
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kosteneffectieve manier voor luchtvaartmaatschappijen om de 

voorspellingsnauwkeurigheid van hun klantkeuzemodellen aanzienlijk te 

verbeteren met een betrouwbaarheid van 99,9%. Het voorgestelde OMS is 

datagestuurd, kan in realtime reageren op zoekopdrachten en is ontworpen in 

modules voor geleidelijke toepassing in bestaande processen, workflows en 

systemen. Het is ook zo gebouwd dat het zowel werkt met bestaande systemen 

voor inkomsten- en aanbodbeheer als met innovaties zoals continue prijsstelling 

en nieuwe distributiemogelijkheden die strategische prioriteiten zijn voor 

luchtvaartmaatschappijen. 

De bevindingen nodigen de luchtvaartmaatschappijen aan om het ontwikkelde 

OMS te testen en aangepaste bundelopties te tonen naast de statische 

merkprijzen in stap 1 van het klanttraject. Deze tests geven antwoord op de 

vraag of de verbeterde nauwkeurigheid van de voorspellingen leidt tot betere 

klant- of bedrijfsresultaten, zoals een hogere omzet of een hogere conversie 

van zoekopdrachten naar boekingen en of de oplossing inderdaad wordt 

begrepen en dus geaccepteerd door medewerkers van 

luchtvaartmaatschappijen. Naast deze online tests kan toekomstig onderzoek 

het voorgestelde OMS meer holistisch testen, de voorspellingsnauwkeurigheid 

toetsen aan complexe machine learning modellen met continue segmentatie en 

generalisatie testen naar andere luchtvaartmaatschappijen of andere sectoren. 

Slotopmerkingen 

Dit proefschrift draagt bij aan de academische literatuur over het beheer van 

gepersonaliseerde aanbiedingen. Het is vernieuwend omdat het discrete 

keuzemodellen en machine learning combineert in een nieuw 

aanbodbeheersysteem dat zowel transparant is als de nauwkeurigheid van 

voorspellingen verbetert. Dit helpt luchtvaartmaatschappijen om hun klanten 

een op maat gemaakte bundel aan te bieden in stap 1 van het klanttraject. Zo 
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combineert het de gebruiksvriendelijkheid en herkenbaarheid van merktarieven 

met de aanpasbaarheid en flexibiliteit van à la carte accessoires. Het onderzoek 

benadrukt dat het gebruik van beschikbare data bij luchtvaartmaatschappijen  

99,9% van de voordelen kan opleveren terwijl complexe machine learning 

alleen de nauwkeurigheid van de voorspelling van de laatste 0,1% van de 

zoekopdrachten van klanten verbetert. 
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1 Introduction 

Airlines serve many different customers and face the challenge of designing 

product and pricing strategies matching these diverse customer preferences. 

The business challenge of managing and optimizing offers tailored to the 

specific customer making a search – referred to in this text as the customized 

offer management problem – requires airlines to balance customer 

preferences and profitability. As such, customized offer management has 

become increasingly relevant to airlines as an instrument to maximize outcomes 

for their customers and their business.  

This dissertation starts with an overview of airline revenue management, 

pricing, distribution, ancillary services, bundling, assortment, and segmentation 

practices. It puts recent developments towards customized offer management 

in historical context. Based on that, the dissertation shall contribute towards the 

academic literature by conceptualizing and validating a solution to predict 

customer choice for airline products based on parameters of the particular 

customer search. It uses high-dimensional segmentation and machine learning 

to improve the prediction accuracy of discrete choice models. With that, it 

presents a step forward towards the airline industry’s long-term goal of 

customized offer management to combine both the simplicity of pre-select 

bundles, commonly termed branded fares, as well as the flexibility and 

customizability of a la carte ancillaries. 

Chapter 1 describes the research problem, provides the context of airline offer 

management, and derives the dissertation’s research objective. The chapter is 

structured as follows. Section 1.1 outlines the research problem and sets it into 

context of the recent Covid disruption and the rise of (Gen)AI facilitating usage 

of large amounts of data more cheaply and accessibly. Section 1.2 provides 

context on airline offer management with its various subproblems as well as 

definitions of the terminology used. Section 1.3 synthesizes the context into the 
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research objective and questions. Section 1.4 outlines the structure of the 

remaining dissertation. 

1.1 Research problem 

Airlines are confronted with the challenge to design product and pricing 

strategies in an environment characterized by three characteristics. First, 

customers differ with respect to both the services they demand and their 

willingness to pay (WTP) for these services. Second, the airline product is 

customizable with the base product – the mere aircraft seat – to be 

complemented with a multitude of ancillaries. These include seat reservation, 

baggage, flexibility, refundability, fast track through airport security, lounge 

access, inflight entertainment (wifi, etc.), ground transportation to/from the 

airport, pollution compensation, and potentially many more. Third, airlines’ 

retail-oriented business model results in many individual customer searches 

requiring real-time responses with a high level of automation. 

Naturally, airlines aim to maximize customer and business outcomes of every 

individual search. These can be customer satisfaction, search-to-book 

conversion, seat load factor, revenue, or profitability. To solve the offer 

management problem, it can be simplified by breaking it down into the 

subproblems of segmentation, bundling, pricing, and assortment. 

Segmentation aims to identify distinct groups of customers with similar 

behavior. The assumption is that customers in a segment have similar 

preferences, whereas the distinct segments represent distinct and different 

preferences (Teichert et al., 2008). Bundling refers to a product bundle, i.e. an 

unbreakable entity of base product plus ancillaries with one single price tag. 

Goal is to identify and create the bundle that most closely resembles individual 

customer preferences. Various studies demonstrate that bundling, under certain 
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conditions, can increase sellers’ profits (e.g., Stigler, 1963; Schmalensee, 

1984). In addition, offering unique bundles to every customer avoids potential 

conflicts with price discrimination laws (Adams & Yellen, 1976). Further, 

bundling enables more robust prediction of customers’ WTP since WTP 

estimation for bundles exhibits smaller variance than for single ancillaries 

(Bakos & Brynjolfsson, 1999). This makes price discrimination strategies more 

powerful and creates a link between bundling and pricing. Optimal pricing 

necessitates an understanding of the customer’s individual WTP. Many studies 

confirm the profitability of successful airline revenue management strategies 

(see Belobaba et al., 2016 for an overview). Finally, assortment optimizes the 

selection of all possible bundles to be displayed to the customer. 

This dissertation introduces the term “customized offer management” to 

describe the challenges of segmentation, bundling, pricing, and assortment, 

specifically applied to the airline context. The approach focuses on leveraging 

both explicit and implicit customer information from search behavior to develop 

bespoke product and pricing strategies for each individual search. This 

compares to airlines primarily relying on rule-based customer segmentation and 

pricing algorithms that categorize customers into a limited number of segments, 

often just two, with the most common criterion being travel purpose Business 

vs. Leisure. Most academic literature on offer management follows this practice 

and has developed models with single digits of customer segments. These rule-

based systems typically decompose the customer buying journey into two steps 

(Figure 1).  
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Figure 1: Typical airline customer journey. Customers select amongst 3-4 branded 
fares in step 1, and then select from a list of a la carte ancillaries in step 2 before 
proceeding to a booking. 

In the first step, customers are presented three to four pre-set bundle options, 

so-called branded fares. These branded fares are products designed to offer 

customers a convenient and recognizable purchase experience and to meet the 

assumed needs of the biggest customer segments. Within an airline, branded 

fares are typically the same, independent of what customers search for, why 

they search, and other characteristics of the search. Whilst recognizability is the 

advantage, this standardization leads to offering some customers branded 

fares, which include ancillaries that are irrelevant for their search. An intuitive 

example is offering checked-in baggage to a customer searching for a same-

day return flight between cities that are major business centers. For this search, 

fast-track through security or a taxi to/from the airport seem the more adequate 

offers, but are typically not part of airline branded fares. In the second step, 

customers are presented with a list of a la carte ancillaries to select from. With 

these, customers can truly customize their product. However, going through all 

these options is both time-consuming and might overwhelm customers.  
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Furthermore, given the sheer size of combinations of features that come with 

each customer search, hard-programmed rule-based approaches seem unlikely 

to produce optimal results. Optimality is not only difficult to achieve due to 

inherent analytical complexity, but also due to organizational, institutional and 

industry structures grown over decades. In particular, the multi-channel offering 

and, hence, interfaces with multiple distribution systems, has caused most 

legacy airlines to develop their offer management in gradual steps. However, 

new industry trends like new distribution capability (NDC) and One Order as 

well as direct distribution via airlines’ own websites have begun to open the door 

to more revolutionary new frameworks of dynamic offer generation and 

customized real-time offer management strategies. Even more, these trends 

necessitate airlines to respond to each customer search with instant and 

customized offers and prices (Mahendru et al., 2024). Moreover, recent 

advancements in data processing and (Generative) Artificial Intelligence make 

data availability, processing, storage, and manipulation cheaper and more 

easily accessible. At the same time, airlines need to fit these models into 

existing business processes and systems. Most importantly, airline users like 

Revenue Management Analysts need to understand and trust the models as 

well as learn how to use them. This challenges many AI applications, whose 

black box character is at odds with usability (Vinod, 2020). 

Solving the offer management problem is of paramount importance to the 

economic viability of airlines. An estimated benefit of 7 USD revenue increase 

per passenger (IATA, 2023; McKinsey, 2019) has inspired the International Air 

Transport Association (IATA) to structure Modern Airline Retailing as a program 

and drive it across the industry (IATA, 2025). Many leading airlines started 

implementation of airline retailing, including British Airways, Lufthansa Group, 

Turkish Airlines, Air India, Emirates, Air France – KLM, American Airlines, 

Singapore Airlines, United, and many more (IATA, 2025). An additional revenue 

of 7 USD per passenger sums up to 40 billion USD across the airline industry 

by 2030. This makes a significant difference for airlines, who, even before the 

Covid pandemic, struggled with profitability. IATA & McKinsey (2022) estimated 
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the pre-pandemic yearly total economic loss of airlines at 18 billion USD. The 

Covid-19 pandemic disrupted the airline industry with unprecedented declines 

in air travel demand and flight operations as well as hundreds of billions of 

economic impact. In 2020 and 2021, global airline traffic measured by revenue 

passenger kilometers (RPK) fell by 66% and 58%, respectively, compared to 

2019 levels (IATA & McKinsey, 2022). In revenue terms, 2020 set airlines back 

to 2004 levels with a 55% decline from pre-Covid 2019 (McKinsey, 2022). At 

the peak of the crisis, airlines reported reductions in capacity ranging from 80% 

to 95% during March and April 2020 (Avionics International, 2020). The 

economic losses for airlines worldwide were estimated at $168-175 billion in 

2020 and $104 billion in 2021 (IATA & McKinsey, 2022; McKinsey, 2022). Next 

to emphasizing the paramount importance of airlines to optimize expected 

profitability out of every search, the pandemic also highlighted that customer 

preferences can rapidly change. This poses an additional challenge to airlines 

when designing their customized offer management strategies of the future.  

In general, innovation projects to improve airline performance are spurred by 

either new value generation or cost reduction purposes, or both. Customized 

offer management should deliver on both these objectives. New value 

generation focuses on three strategic drivers. First, more relevant offers lead 

to both increased search-to-book conversion and higher customer WTP. 

Customized offers help airlines to differentiate against their competition and 

avoid the commodity trap. Second, higher customer satisfaction results in higher 

customer loyalty. Third, more robust WTP estimation helps airlines understand 

and capitalize on every customer search. Cost reduction follows from 

automation if any advancement becomes implemented at scale. This seems 

particularly conceivable if an advancement addresses the offer management 

problem as holistically as possible, i.e. comprises as many of the offer 

management subproblems as possible.  

Abstracting from the airline world and assuming a more general view on the 

transportation market, similar challenges can also be found in other 
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transportation companies, for which the three characteristics of differentiated 

customer needs, customizable product, and a high number of searches are 

fulfilled. These could be providers of high-speed or overnight trains, ferries or 

auto trains, and potentially even freight carriers like shipping lines or cargo train 

operators. Consequently, the audience of offer management research expands 

from airlines as primary research addressees to transportation providers in 

general. 

1.2 Context: airline offer management 

This section introduces the context of offer management with its various 

subproblems and defines relevant terminology. It starts with revenue 

management, pricing, and distribution in Section 1.2.1. Next, ancillary services 

are discussed in Section 1.2.2 before covering customer segmentation (Section 

1.2.3) as well as bundling and assortment (Section 1.2.4). Finally, Section 1.2.5 

puts these subproblems back together to define the customized airline offer 

management problem. Throughout the section, both groundbreaking academic 

research as well as existing applications to solve the airline offer management 

problem are covered.  

1.2.1 Revenue management, pricing, and distribution 

Revenue management (RM) is a strategic discipline to optimize revenue 

through the effective management of pricing and inventory. There are several 

prerequisites to deploy RM profitably, all of which are fulfilled in the airline 

industry. Inventory is perishable as unsold seats at departure present lost 

revenue opportunities. There is temporal variability in demand (seasonality). 

Customers differ in their trip purpose, required needs for services, and 

willingness to pay (WTP). Lead times vary as well. Some customers book long-
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time ahead, others shortly prior to departure. Further, the large amount of 

customer searches requires airlines to respond in real-time and with high level 

of automation. For these reasons, airlines were among the first to develop 

modern RM systems, which then also spread to other industries like hotels, 

rental cars and retail. Many studies confirm the profitability of successful airline 

RM strategies (see Belobaba et al., 2016, for an overview).  

Historically, RM goes back to Littlewood (1972) from the British Overseas 

Airways Corporation who proposed that airlines maximize revenues instead of 

passenger occupancy on a flight for the perishable seat inventory. A common 

definition of the primary goal of RM is to maximize overall revenue by selling the 

right seats to the right customers at the right time (Freiberger, 2024). RM 

involves analyzing historical data and forecasting future demand to dynamically 

adjust prices based on customer WTP, market conditions, available capacity, 

and competitive actions.  

Following this definition, pricing is a subset of RM problems along with others 

like capacity steering and demand forecasting. Optimal pricing matches 

individual customer WTP. To exploit individual WTP, airlines segment their 

customers and estimate price-response curves and elasticities for each 

segment. Restrictive fare rules play a crucial role in this segmentation. A 

common example is that lower-priced fare classes are reserved for customers 

willing to meet specific conditions, such as weekend stays, to deter business 

travelers from booking lower fares (Belobaba, 2011). The assumption of 

“perfect” fare restrictions led to the assumption of independent demand in each 

fare class in many early RM models. These include the expected marginal seat 

revenue (EMSR) models (Belobaba, 1987) that have been widely adopted in 

the airline industry (Van Ryzin & McGill, 2000) as well as the optimal booking 

limits (OBL) model (Curry, 1990; Brumelle & McGill, 1993). Also, these models 

assumed demand to arrive strictly in increasing order of WTP although this was 

relaxed with demand arrivals modeled as Markov decision process solved by 

dynamic programming (Lautenbacher & Stidham, 1999). 



9 
 

The effectiveness of differential pricing based on fare restrictions was 

significantly reduced when low-cost carriers (LCCs) entered the market with 

simplified and almost unrestricted fare structures (Belobaba, 2011). 

Competition with LCCs forced legacy airlines to adapt, weakening their ability 

to segment demand with fare restrictions and invalidating the assumption of 

independent demand between fare classes. Continued reliance on traditional 

RM systems with unrestricted fares led to a downward spiral in airfares (Cooper 

et al., 2006), necessitating adaptations in RM systems. An overview of 

adaptions is provided by Strauss et al. (2018).  

Airline distribution relies on both direct and indirect channels. Direct channels, 

mostly airline websites, are under direct airline control. This is not the case for 

indirect channels like Global Distribution Systems (GDSs), which processed 

almost 50% of global flight bookings in 2015 (Taubmann, 2016). These indirect 

channels limit airlines’ influence how their services are priced and offered. The 

power dynamics in airline distribution and their effects on industry evolution 

were studied by Albers et al. (2024). Further, technological limitations restrict 

the number of price points, and corresponding airline booking classes, to 

twenty-six, and airfares can only be updated in fixed intervals through 

organizations like the Airline Tariff Publishing Company (ATPCO). Most 

importantly, GDSs and flight comparison websites rank airline itineraries almost 

exclusively based on price and schedule. This severely limits airlines’ flexibility 

to differentiate themselves through different service offerings.  

Motivated by advancements in other industries, airlines began to explore 

opportunities to overcome the rigidity of twenty-six pre-defined price points 

(Golrezaei et al., 2014; Gallego et al., 2016). Wittman & Belobaba (2019) 

developed a definitional framework for two distinct approaches to dynamic 

pricing. First, dynamic price adjustments amend pre-defined published fares 

based on estimated WTP, trip purpose and competitor fares (Fiig et al., 2016). 

Second, continuous pricing leaves price points entirely behind, instead choosing 
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prices from a continuous and unlimited set. However, such differential pricing 

practices could raise regulatory implications (Wittman, 2018).  

The urgency to improve pricing capabilities intensified during the Covid-19 

pandemic and its drastic impact on air travel demand. When demand changes 

rapidly, airlines can no longer afford slow response times and long times to 

market resulting from the traditional distribution landscape. Compared to other 

transport domains like air cargo, ocean carriers, freight forwarding, and logistics, 

as well as most other sectors, passenger airline pricing practices can be viewed 

as advanced, though not at the forefront anymore (McKinsey, 2020a).  

In summary, RM plays a critical role in maximizing airline revenue through 

sophisticated pricing strategies that respond dynamically to market conditions 

and available capacity. As airlines navigate a rapidly changing landscape post-

pandemic, they must continue to innovate their RM practices by leveraging 

technology and data analytics to enhance their pricing, offering, and distribution 

strategies. This will be pivotal for airlines aiming to remain competitive in an 

increasingly complex market environment. 

1.2.2 Ancillary services 

Deregulation of air travel, initially started in the United States in 1978 before 

reaching nearly all parts of the world by the early 2000s (Belobaba et al., 2016), 

not only enabled competition and increased price pressure on airlines, but also 

spurred the development of the “no-frills” business model of LCCs. This caused 

the shift away from earlier all-inclusive airfares to today’s disentanglement of all 

kinds of ancillaries from the base fare for the mere aircraft seat. While many 

legacy airlines still position themselves as “premium” by including some 

services in their base fares, they too have had to follow the trend and reduced 

the services included in fares, offering them as add-on to customers instead.  
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Ancillary revenues can be defined as any airline revenue generated by activities 

and services beyond the simple transportation of customers from A to B 

(IdeaWorks, 2019). Ancillary revenues have grown over the last decades. They 

are estimated at over 100 billion USD worldwide for 2023, accounting for 15% 

of total airline revenue and reaching the previous pre-Covid all-time high from 

2019 (IdeaWorks, 2019; CarTrawler, 2023). This growth has helped airlines 

counter the long-term trend of decreasing airfares and maintain profitability. 

LCCs have continued to drive innovation in ancillary revenue, but legacy 

carriers have also increased their focus on it. Spirit Airlines made over 56% of 

their revenue from ancillaries in 2023 and Jet2.com achieved a new global 

record of 95.83 USD ancillary revenue per passenger in 2023. (IdeaWorks, 

2024). Delta Air Lines earned over 8 billion USD ancillary revenue in 2022, a 

37% increase from the previous year (Relay 42, 2024). Whilst initially most 

relevant on short-haul routes – in line with LCCs primarily operating short-haul 

– ancillaries are of increasing importance on long-haul as well. This has inspired 

research on customer WTP for ancillaries on long-haul flights (Chiambaretto, 

2021).  

Ancillary services can be grouped into various categories. There are airline-own 

services, such as check-in baggage, advanced seat reservation, increased 

legroom, priority boarding. etc. Typically, baggage fees are the most relevant, 

composing 60% of total LCC ancillary revenues (IdeaWorks & CarTrawler, 

2018). Other ancillaries concern ground facilities like lounge access or fast track 

through security. A third group includes third party services, for which airlines 

receive a commission. Examples are ground transportation, rental cars or hotel 

sales.  

While practically all airlines rely on quantitative models to price their seats, most 

employ static pricing for ancillary services. However, since ancillary sales 

mostly happen via direct distribution channels, airlines enjoy more pricing 

flexibility for them than for the seat itself. Therefore, airlines tend to use them as 

test cases for dynamic and continuous pricing (IdeaWorks & CarTrawler, 2018). 
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An example is US LCC Spirit Airlines, which analyzed the impact of dynamic 

baggage fees, varied based on search request, travel date, route and time of 

purchase (CAPA Centre for Aviation, 2019). In addition, Shukla et al. (2019) 

described the dynamic pricing model developed by Deepair solutions, providing 

machine learning (ML) based pricing recommendations specific to each 

customer interaction aimed to optimize expected revenue per customer. They 

conclude ML can outperform human rule-based approaches and achieve 36% 

higher conversion from offers to ancillary bookings and 10% higher revenue per 

offer. 

Bockelie & Belobaba (2017) distinguish two customer types, sequential and 

simultaneous consumers. Sequential consumers choose their flight first and 

evaluate ancillaries afterwards. This resembles the approach of most flight 

search engines and GDSs. Simultaneous consumers, on the contrary, select 

flight and ancillaries at the same time based on a combined overall WTP. For 

simultaneous consumers, ancillary pricing directly affects passengers’ choice 

for one airline over another. For that reason, seat and ancillary pricing need to 

be performed together to maximize overall revenue (Bockelie, 2019; Lu, 2019). 

Particular care needs to be taken with those ancillaries coming at variable 

and/or opportunity costs for airlines. Several approaches were proposed for joint 

seat and ancillary pricing. The optimizer increment (OI) model increases fare 

values in the RM optimizer by the expected ancillary revenue contribution of an 

incremental passenger (Hao, 2014). However, Bockelie (2019) showed OI only 

yields optimal results under limited conditions, and instead proposed the 

ancillary choice dynamic program (ACDP), which is an extension to the dynamic 

program in Talluri & van Ryzin (2004). Both OI and ACDP represent assortment 

optimization methods, selecting which combinations of pre-defined sets of fares 

and ancillary prices to display, rather than optimization methods for flights and 

ancillary prices themselves. On the other hand, Ødegaard & Wilson (2016) 

optimize flight and ancillary pricing, but ignore current reliance of airline 

distribution systems on pre-set flight and ancillary price points. 
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In summary, the literature highlights the growing importance of ancillary revenue 

for airlines, the various categories of ancillary services, and the need for 

sophisticated pricing strategies that optimize seat and ancillary revenue 

together. As the industry continues to evolve, airlines will need to further 

innovate and customize their ancillary offerings to meet the changing needs and 

preferences of their customers. 

1.2.3 Customer segmentation 

Airlines segment their customers to tailor their services, marketing efforts, and 

pricing models to meet the diverse needs of their passengers. Historically, 

customer segmentation in the airline industry relied on demographic factors 

such as age, gender, income, and business vs. leisure travel purpose (Belobaba 

et al., 2016; Camilleri, 2018; Avram, 2019). Goal was to understand how these 

variables help airlines recognize customer needs and preferences. An example 

is Skift (2017) comparing travel behavior of different generations. They report 

Millenials travel 35 days per year, compared to 29 days for Gen Z, 26 days for 

Gen X and 27 days for Baby boomers.  

Over the last two decades, and especially with the rise of LCCs, airlines shifted 

to more nuanced segmentation techniques. Behavioral segmentation 

considering factors like booking patterns, travel frequency, and price sensitivity 

has gained traction. It aims to help airlines understand which passengers are 

willing to pay more for flexibility or additional services. Teichert et al. (2008) 

identified that frequent flyers often exhibit different purchasing behaviors 

compared to leisure travelers. Their research is based on surveying 5800 

frequent flyers and concluded five market segments: efficiency/punctuality; 

comfort; price; price/performance; and catch all/flexibility. In their study, each 

segment chose their product based on different evaluations of variables like 

punctuality, flexibility, schedule, catering, price, and product. Wittmer & Hinnen 

(2016) analyzed psychographic segmentation focusing on criteria like trip 
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motivation, destination, length of flight, length of stay, travel class, frequency of 

flying, cultural passenger background, airline preference, loyalty program 

membership, seat preference within a compartment, and environmental 

considerations. Main challenge with many of these criteria is they are more 

difficult to measure than demographic segmentation variables. 

Over the last years, further trends have encouraged airlines to adopt a more 

dynamic approach to customer segmentation. Digitalization, environmental 

awareness, and lifestyle changes have increased complexity of consumer 

behavior. An example is the trend of “bleisure” travel as a mix of business and 

leisure travel (Wittmer & Hinnen, 2016). Moreover, leaps in data analytics have 

enabled airlines to collect and process vast amounts of customer data more 

efficiently, allowing for more effective personalized marketing campaigns and 

offerings tailored to specific customer segments. Enhanced segmentation also 

helps airlines capitalize on the increasing importance of ancillary revenues. If 

airlines understand which segments are likely to purchase which ancillary, then 

they can significantly improve their profitability. In particular, airlines can 

optimize their offering and enhance customer loyalty by identifying underserved 

segments (Avram, 2019). 

In summary, customer segmentation in the airline industry has evolved from 

simple demographic to more advanced behavioral analyses that consider a 

range of factors influencing passenger choices. This shift towards a more 

nuanced modeling of consumer preferences reflects broader trends and 

emphasizes the relevance of customization to improve customer satisfaction 

and increase revenue.  

1.2.4 Bundling and assortment 

Bundling refers to creating a product bundle, i.e. an unbreakable entity of base 

product plus ancillaries with one single price tag. Early studies into the 

economics of bundling were conducted by Stigler (1963), demonstrating that 
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bundling can increase profits under certain conditions, and Adams & Yellen 

(1976). Several types of bundling can be distinguished (see Kobayashi, 2005, 

for an overview). Mixed bundling describes bundles sold alongside the 

individual products, whereas in pure bundling, some products are only available 

as bundle component, but not for individual purchase. Schmalensee (1984) 

showed both mixed and pure bundling could be more profitable than unbundled 

(“a la carte”) sales. Bundling was found to be particularly effective when items 

with negatively correlated WTP are bundled together. Bundling is especially 

popular when marginal costs are low and inventories unlimited (Bakos & 

Brynjolfsson, 1999), with information goods and software products as examples.  

Later studies explored the psychological aspects of bundling, relaxing earlier 

assumptions of rational consumers and additive WTP. These psychological 

concepts influential in consumer decision-making include anchoring (Yadav, 

1994) and the center-stage effect, i.e. consumers’ tendency towards choosing 

the option presented in the middle (Raghubir & Valenzuela, 2006; Rodway et 

al., 2012). Methodologically, bundling enables more robust prediction of 

customers’ WTP with smaller variance than estimating WTP for single 

ancillaries (Bakos & Brynjolfsson, 1999). This can enhance the effectiveness of 

price discrimination strategies. Offering unique bundles to every customer can 

further help avoid potential conflicts with price discrimination laws (Adams & 

Yellen, 1976).  

Optimal product pricing also depends on alternative products available for 

purchase. For that reason, assortment optimization is closely related to 

bundling. Assortment optimization aims to optimize the selection which bundles 

to display to customers. It originated in the retail industry with an optimization of 

products on store shelves (Kök et al., 2008). In the context of bundling, joint 

optimization of pricing and assortment becomes crucial. This led to the 

development of integrated models, such as the product planning model by 

Ferreira & Wu (2011). Optimal bundling, pricing and assortment were further 

researched by Bulut et al. (2009) and Gürler et al. (2009). 
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To distinguish themselves from their competitors and to manage their ancillary 

service portfolio, airlines utilize both branded fares (bundling) as well as a la 

carte pricing (unbundling). Branded fares, i.e. offering customers pre-defined, 

static bundles, are easier for customers to comprehend than an overwhelming 

choice of a la carte ancillaries. On the contrary, a la carte sales provide more 

flexibility and enable customers to truly customize their product. Customized 

bundling can be viewed as a third strategy combining the best out of both 

branded fares and a la carte sales. The primary challenge for airlines is to 

identify which customized bundle most closely meets customer preferences for 

every individual search. If airlines succeed in this task, it might also help them 

move towards customized pricing at the same time, which arguably has become 

increasingly important with disruptions like Covid-19.  

In conclusion, customized and integrated pricing, segmentation, bundling, and 

assortment present the long-term vision for leading airline groups as they adapt 

to evolving consumer preferences and market conditions. 

1.2.5 Putting the pieces together: customized offer 

management 

The challenge to maximize expected customer or business outcomes of every 

individual customer search through pricing, segmentation, bundling, and 

assortment is aggregated as “customized offer management” in this 

dissertation. Further to the definitions in the previous sections, “Flight pricing” 

refers to pricing of the aircraft seat, whereas “ancillary pricing” refers to 

pricing of ancillaries and bundles. 

Customized offer management aims to use the information customers explicitly 

and implicitly provide in their request to develop product and pricing strategies 

bespoke to each individual search. More precisely, it optimizes the assortment 

which of all possible bundle combinations to be displayed to a particular 

customer search at which price. NDC, One Order, increasing direct distribution, 
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and advancements in data processing enable airlines to receive, extract and 

process more information about every single search request, and finally to 

respond to each search with a set of customized offers. More information about 

a customer search also facilitates better estimation of search-specific WTP. 

Moreover, NDC paves the way for effective deployment of continuous pricing, 

eliminating the concept of fare classes in the long run. Putting it all together, 

NDC in the limit enables customized offer management offering airlines entirely 

new possibilities to capitalize on. It introduces key features known from modern 

e-commerce with customer benefits of more transparency, flexible prices, and 

attractive offers in a digital environment (Lufthansa, 2018). 

Customized offers – consisting of the flight plus possibly one or more ancillary 

services (together defined as “product”), either as bundle or a la carte items – 

at customized pricing. This would enhance market relevance and customer 

satisfaction as well as airline profits through two levers. First, better offers 

increase customer WTP and help airlines escape the commodity trap. Second, 

WTP estimation would happen with greater precision due to an improved 

understanding of the particular customer making a search. Airlines have 

increasingly adopted dynamic pricing strategies that integrate bundled offerings 

tailored to specific customer segments. Also, they have progressively begun to 

use personalized bundling tactics, product suggestions, and dynamic pricing to 

offer ancillaries tailored to individual customer preferences and behaviors 

(Relay 42, 2024).  

Due to its practical relevance, customized offer management has recently 

attracted scientific attention. Madireddy et al. (2017) and Vinod et al. (2018) 

proposed solutions how airlines could transition from branded fares to 

customized dynamic offer generation by segmenting customers using trip 

characteristics. Shukla et al. (2019) extend this with the inclusion of temporal, 

market-specific, journey-specific and price-related features. Another approach 

is the dynamic offer generation project as part of the Passenger Origin-

Destination Simulator (PODS) at the Massachusetts Institute of Technology 
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(PODS, 2021). As described in Wang (2020), they developed new discrete 

choice optimization models and heuristics to price flight and ancillary offers. 

Moreover, they derived a framework to help airlines decide dynamically 

between pure bundling and unbundled ancillary sales. In addition, they showed 

how such models can be integrated with traditional airline RM systems. Building 

on the PODS project, Wang et al. (2023) suggested a Markov chain choice 

model for bundling and ancillary pricing. Fiig et al. (2018) outlined the 

unresolved scientific challenge of dynamic airline offers, but points towards 

potential enablers, such as NDC, availability of more shopping data and 

advancements in statistical data analysis and ML.  

Following the research problem and the context of airline offer management, 

the research objective and questions are discussed next. 

1.3 Research objective and questions 

The goal of the dissertation is to help advance both academia and airlines in 

solving the customized offer management problem. Working backwards from 

this goal, this research aims to deliver on two main criteria.  

First, customers should be presented offers relevant to their specific search 

in a convenient way, hence combining the simplicity of pre-select branded 

fares with the customization of a la carte ancillaries. Customers should be 

presented a customized bundle already in step 1 of the customer journey 

(Figure 2). This way, the customer will find what they are looking for already in 

step 1 and they will not have to browse through the a la carte ancillaries in step 

2 to proceed to a booking. 
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Figure 2: Customer journey with an additional branded fare option displayed in step 1, 
which is a customized option relevant to the specific customer making a search. 

This requires solving the assortment problem; and more specifically, solving it 

in a way customized to the respective customer search. Given the heterogeneity 

of customers, this requires high-dimensional segmentation that goes beyond 

the traditional Business/Leisure or single-digit number of segments in existing 

discrete choice models. The segmentation is deemed effective if it helps airlines 

predict customer preferences with higher accuracy and if the model 

continuously learns and captures potential changes in customer behavior. Also, 

the proposed solution must be able to respond to a customer search in real-

time. Finally, it should be applicable to all customer searches, independent 

whether the personal customer identity is declared or unknown to the airline. 

Second, the proposed solution should be usable to airlines. To help change 

management, it needs to fit into existing airline processes and systems. In 

particular, the solution needs to be transparent, trusted, and understood by 

airline users. Hence, its logic for customized offer management must not be 

perceived as black box like some machine learning approaches, but need to be 

kept as simple, tractable, and robust as possible. For that reason, segments 

should be clearly identifiable and MECE (mutually exclusive, collectively 

exhaustive). Further, the proposed solution should present a cost-effective 

option for airlines to enhance their offer management. Next to a high level of 
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automation, it should work with data readily available to airlines instead of 

requiring them to acquire external data. Also, the solution should be flexible and 

easily adapt to new settings such as new routes or new ancillary services. 

Lastly, the proposed solution needs to comply with data privacy regulation, i.e. 

work with anonymized data. 

Putting both criteria together, this research aims to suggest and validate a 

solution for high-dimensional customer segmentation that improves the 

prediction accuracy of airline customer choice in a way understandable to airline 

users.  

Concretely, the following research questions shall be answered: 

1. Can airlines segment their customers into a large (thousands-millions) 

but finite number of MECE customer segments that exhibit significantly 

different choice behavior? 

2. Can airlines use this segmentation to improve the prediction accuracy of 

future customer choices? 

3. Can potential data sparsity problems be solved? 

4. How much of the prediction accuracy improvements can be achieved in 

a disruptive event, such as the Covid-19 pandemic? 

5. How can airlines practically implement the solution, cognizant of the 

trade-off between effectiveness and cost/complexity? 

In Chapter 2, methods and existing solutions for the research problem will be 

presented. This includes an in-depth review of AI, ML and discrete choice 

models: their history and applicability to the customized offer management 

problem. With this additional context, the research questions will be refined, and 

the research contribution and novelty will be presented at the end of Chapter 2. 

Figure 3 visualizes this process of refining the research questions. 
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Figure 3: Logical flow to refine the research questions.1 

1.4 Structure of the dissertation 

The remainder of the dissertation is structured as follows and as shown in  

Figure 4. 

Chapter 2 reviews existing methodological solutions to solve the research 

problem in the fields of Artificial intelligence (AI), Machine learning (ML), and 

Discrete choice analysis (DC). To understand advantages and disadvantages 

of these approaches, historical development, theoretical foundation as well as 

practical applications are discussed. Based on this additional context, the 

research gap is identified, the research questions are refined, and research 

contribution and novelty are presented. 

Chapter 3 proposes a novel conceptual methodology to solve the research 

problem with a combination of machine learning and discrete choice analysis. It 

suggests a holistic offer management architecture and conceptualizes both 

high-dimensional segmentation and how to resolve data sparsity with a novel 

application of the established matrix factorization algorithm. Chapter 3 highlights 

the innovations of the proposed methodology and suggests how the conceptual 

architecture can be validated. It closes with a discussion of various practical 

 
1 In Section 2.3.2, the research questions from Section 1.3 are refined with additional 
context and gap from Sections 2.1, 2.2, and 2.3.1. 
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implementations. Chapter 3 is an evolution of a paper published in the Journal 

of Revenue and Pricing Management in 2021 (Schubert et al., 2021). 

Chapter 4 tests the first fundamental hypothesis to validate the methodology 

from Chapter 3 with inductive research of 496 million real airline coupons 

between 2018 and 2023. Observations are generalized to patterns and the 

results are discussed. The chapter concludes the first fundamental hypothesis 

can be accepted: different customer segments behave significantly differently 

in their product choice behavior. Chapter 4 is based on a paper written and 

approved by the airline partner for publication. 

Chapter 5 tests the second fundamental hypothesis to validate the methodology 

from Chapter 3 with deductive research. The 496 million real airline coupons 

are split into different time periods to run multiple experiments. The hypothesis 

is tested with three different prediction models of increasing complexity. Results 

are presented with three metrics, all of which support the conclusion that the 

second fundamental hypothesis can be accepted: choice probabilities of future 

customer searches can be predicted significantly more accurately when 

conducting high-dimensional segmentation with data readily available to 

airlines. Chapter 5 is based on a paper written and approved by the airline 

partner for publication. 

Chapter 6 synthesizes and reflects on the findings. It answers the research 

questions and discusses generalization to other airlines, other time periods, and 

other sectors. The chapter closes with a discussion of implications on both 

academia and the airline and wider transportation industry. 
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Figure 4: Building the argument in the dissertation. 

The dissertation is a cumulative manuscript with Chapters 3-5 as sequentially 

published or written standalone papers. For that reason, there is some repetition 

of literature review and context setting when reading the full thesis.  

Lists of tables, figures, and abbreviations are given in the beginning of the 

dissertation. References can be found at the end of this dissertation. An 

Appendix, if applicable, is included at the end of the respective chapter. 
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2 Methods, existing solutions, and 

gap 

Having defined the research objective, Chapter 2 reviews methods and existing 

attempts to solve the customized airline offer management problem. Both 

machine learning and discrete choice models have been proven extremely 

powerful in solving various problems. Both were originally built to solve different 

problems but have more and more expanded into other areas as well. This 

renders a comparison especially valuable. Section 2.1 introduces artificial 

intelligence (AI) with its subfield machine learning (ML). Section 2.2 covers 

discrete choice (DC) models. In both sections, historical developments, 

theoretical foundations, and practical applications are reviewed, and the 

methods are evaluated against the research objective. Advantages and 

disadvantages with respect to the customized offer management problem are 

synthesized to the research gap, refined research questions, research strategy 

and confidential airline data used, as well as the audience and relevance of this 

dissertation in Section 2.3. 

2.1 Artificial intelligence and Machine 

learning 

In a broad sense, AI describes the ability of machines to perform cognitive 

functions associated with humans like interacting with the environment, 

perceiving, reasoning, and learning. Several technologies have enabled AI to 

solve practical business problems, such as computer vision; language 

processing and translation; robotics and autonomous vehicles; and machine 

learning (ML). Before introducing the most important classes of ML algorithms 
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(Section 2.1.2), this section provides historical context on the evolution of AI 

(Section 2.1.1). Data strategies and model selection are discussed in Section 

2.1.3. The section closes with zooming in on the class of recommender systems 

(Section 2.1.4) and especially the matrix factorization algorithm (Section 2.1.5). 

2.1.1 Enablers of AI (r)evolution 

The evolution of AI has been enabled by three major developments, namely the 

advancement of algorithms, explosion of data available, and the exponential 

increase in computing storage and power. The first algorithm capable of 

learning independently was the perceptron algorithm developed by Rosenblatt 

(1958), which laid the groundwork for the later development of artificial neural 

networks (ANNs). One year later, Samuel (1959) coined the term “machine 

learning” as “a field of study that gives computer the ability to learn without being 

explicitly programmed". Model training advanced significantly with the 

introduction of backpropagation, allowing ANNs to optimize themselves without 

human intervention (Rumelhart et al., 1986; Werbos, 1990). The PageRank 

algorithm by Page et al. (1999) enabled the ranking of web pages. It was the 

initial prototype of Google’s search engine and paved the way for increased 

consumption of the internet. Deep learning techniques were further popularized 

by Hinton et al. (2006) facilitating efficient training of these models. 

In 1991, the European Organization for Nuclear Research (CERN) began 

opening the World Wide Web to the public. However, it was not until the early 

2000s that broadband adoption enabled widespread internet usage, surpassing 

one billion users in 2006 (McKinsey, 2020b). The Web 2.0 era shifted the focus 

from passive content absorption to interactive content creation. This enabled 

business models like Facebook and YouTube, which debuted in 2004 and 2005, 

respectively. The introduction of the iPhone in 2007 fueled the smartphone 

revolution and massively propelled data generation. Global smartphone sales 

reached 300 million in 2010, representing a nearly 2.5 times increase from 
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2007. Already by 2014, the number of global mobile devices surpassed the 

number of humans (McKinsey, 2020b). 

As early as 1965, Moore’s law (Moore, 1965) recognized the exponential growth 

in chip power. In 1997, increased computing power contributed to IBM’s Deep 

Blue defeat over world chess champion Garry Kasparov. The release of the 

world’s first graphics processing unit (GPU) by Nvidia in 1999 fundamentally 

increased computing speed compared to computer processing units (CPUs). 

The ability to leverage GPUs for ML tasks was further facilitated by Nvidia’s 

Compute Unified Device Architecture (CUDA) framework introduced in 2007. 

Another major advancement came with Google’s introduction of upgraded 

tensor processing unit (TPU) technology in 2016-2017 (McKinsey, 2020b). 

Boser et al. (1992) demonstrated how support vector machines (SVMs) can 

handle nonlinear problems through a technique known as the kernel trick, 

presenting a major step forward in natural language processing. Speech 

recognition emerged as the primary application for recurrent neural networks 

(RNNs) and long-short-term-memory (LSTM) models (Hochreiter & 

Schmidhuber, 1997). While word embeddings were already used in 2001, 

Google’s word2vec model (Mikolov et al., 2013) enabled faster training and 

paved the way for business applications such as analyzing survey responses 

and recommending products to consumers. Vaswani (2017) and Google AI’s 

introduction of bidirectional encoder representations from transformers (BERT) 

in 2018 further progressed natural language processing. The You Only Look 

Once (YOLO) algorithm by Redmon et al. (2016) enabled huge progress in real-

time object detection, paving the way for applications like self-driving cars, 

airport luggage scans, and intelligent traffic signals.  

Generative AI is a transformative subset of artificial intelligence focused on 

creating new content (text, images, audio, or video) based on learned patterns 

from existing data. This technology allows machines not only to learn from data 

but also to generate new information that resembles their training inputs. It has 
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led to significant advancements solving problems across various industries. 

One landmark development in this area was Goodfellow et al. (2014) who 

introduced generative adversarial networks (GANs) in 2014. GANs consist of 

two neural networks competing against each other to produce increasingly 

realistic data. GANs have proven particularly effective in addressing challenges 

related to insufficient training data. OpenAI's generative pre-trained (GPT) 

model released in October 2022 has facilitated improved natural language 

generation capabilities that enable near-human quality content creation across 

applications such as chatbots and automated writing tools. Further applications 

include creative fields like art and music composition through tools like DALL-E 

and Jukedeck, which generate unique visual content and musical compositions 

based on user prompts. Generative AI has begun to reshape healthcare by 

aiding in drug discovery and personalized medicine as well as marketing, where 

it enhances content creation and customer engagement strategies. As 

organizations increasingly adopt generative AI tools such as ChatGPT and 

Google's Gemini (previously named Bard until February 2024) for diverse 

applications ranging from text generation to visual art creation, it is projected 

that generative AI could add between $2.6 trillion to $4.4 trillion worth of value 

to the global economy by optimizing workflows and enhancing creativity across 

various domains (Turing, 2024). 

The introduction of Google’s MapReduce algorithm (Dean & Ghemawat, 2004) 

presented a breakthrough, which substantially increased the amount of data 

that can be processed. The launch of Amazon Web Services in 2004 enabled 

widespread access to powerful IT systems through cloud storage and 

computing solutions. With Microsoft Azure and Google Cloud Storage further 

cloud services entered the market in 2010. UC Berkeley’s Spark revolutionized 

real-time analytics capabilities by allowing seamless updates to big data 

(Zaharia et al., 2010). Google’s TensorFlow deep learning framework was open-

sourced in 2015 and enabled developers to collaboratively build scalable deep 

learning models. Similarly, Facebook open-sourced PyTorch, granting 

researchers access to even more deep learning algorithms. Many resources 
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offer open-source, built-in ML algorithms pre-programmed for implementations 

in Python or other programming languages. These developments have 

significantly accelerated innovation within AI. They foster an environment in 

which more models can be created and applied to an ever-growing array of 

problems. These problems include the transportation industry, where McKinsey 

(2020c) estimates hundreds of billions representing 1-8% of revenue potential 

from deploying AI across personalized offering as well as pricing and promotion. 

For passenger airlines, McKinsey (2024) estimates the potential net worth from 

implementation of improved retailing at 45 billion USD by 2030, equivalent to 2-

3% of revenue or 15% of EBITDA. 

In summary, the evolution of AI has been driven by advancements in algorithms, 

data availability, computing power that can process larger amounts of data, and 

more recently, generative AI reshaping industries and enhancing creative 

processes. As organizations continue to explore these innovations while 

navigating ethical considerations surrounding their implementation, generative 

AI stands at the forefront of transforming how humans and technology interact 

to solve increasingly complex problems.  

2.1.2 Machine learning (ML) 

Machine learning (ML) is generally defined as subset of AI (Alpaydin, 2020). ML 

algorithms detect patterns in datasets unable for human eyes to spot. This way, 

they learn to make predictions and give recommendations. In contrast to rule-

based approaches, ML algorithms do not need to receive explicit programming 

instructions. Instead, they adapt to new data, enabling them to improve 

accuracy and effectiveness over time. Different types of analytics in increasing 

order of complexity are descriptive, predictive, and prescriptive analytics 

(McKinsey, 2020b). Descriptive analytics describes what happened and is 

employed widely across industries. Predictive analytics aims to anticipate what 

will happen in a probabilistic manner. Data-driven organizations use predictive 
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analytics as crucial source of insight. Prescriptive analytics provides 

recommendations on how to achieve defined goals and is deployed by leading 

data and internet companies. ML focuses on predictive and prescriptive 

analytics. 

ML models have been proven to be powerful in solving several real-world 

business problems. To name just a few, some well-documented ML applications 

include face recognition (Kaur et al., 2020), computer vision (Szeliski, 2010), 

self-driving cars (Eliot, 2017), machine translation (Bahdanau et al., 2014), 

neuroscience (Mnih et al., 2015), social network analysis (De et al., 2012), 

personalized marketing (Mari, 2019), and online retailing (Weber & Schütte, 

2019). Designing customized offer management strategies for every individual 

airline search is methodologically similar to classification and recommendation 

tasks that have already been solved. ML algorithms are often categorized into 

supervised, unsupervised and reinforcement learning techniques, which will be 

subsequently discussed next. 

First, supervised learning (SL) processes labeled input data to detect the 

(latent) relation between given inputs and given outputs. Goal is to accurately 

predict the label/output of data not seen before. In an iterative process, SL 

algorithms automatically generate identifying characteristics from the examples 

fed into them without requiring the programmer to input task-specific rules. SL 

can be viewed as algorithm to approximate complex and hidden functions, 

making it very powerful for regression and classification tasks of new incoming 

data (Figure 5). Well-known SL algorithms include linear and logistic regression 

(Cramer, 2002); naïve Bayes (Joyce, 2003); linear and quadratic discriminant 

analysis (Cohen et al., 2003); decision trees and random forests (Fawagreh et 

al., 2014); support vector machines (SVM; Boser et al., 1992); and many more. 
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Figure 5: Supervised learning is powerful for classification tasks, labeling new incoming 

data as either a red minus or a green plus, separated by the black dashed line.2 

Second, unsupervised learning (UL) aims to provide a compact 

representation of unstructured data by detecting patterns that humans cannot 

see. UL models infer structure from the data by identifying groups of data with 

similar behavior (Figure 6). As opposed to SL, UL does not require human 

supervision in the form of labeled data, but autonomously develops meaningful 

classifications and reveals latent relationships instead. Popular UL algorithms 

include K-means and hierarchical clustering (Nagpal et al., 2013); recommender 

systems (Section 2.2.1.4); dimensionality reduction with various algorithms, 

such as autoencoders (Hinton & Zemel, 1994) or principal component analysis 

(PCA; Shlens, 2014); and many more.  

 
2 The black dashed line marks the boundary between the two classification outcomes. 

New data to the left and below the line is classified as a red minus. New data to the right 
and above the line is classified as a green plus. 
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Figure 6: Unsupervised learning groups data into clusters of similar behavior.3 

Third, reinforcement learning (RL) seeks to learn optimal behavior maximizing 

a reward function (Wang et al., 2016). At each state, the algorithm chooses 

amongst a set of potential actions and receives a (positive or negative) reward 

for the particular action chosen. Learning from experience, the algorithm is 

finally trained to follow an optimal policy of actions in each possible state. RL is 

applied in cases where training data is sparse and thus interacting with the 

environment presents the only strategy to learn. An important trade-off in RL is 

exploitation of known positive rewards vs. exploration of states not visited 

before. An interesting variant is inverse RL (Zhifei & Joo, 2012), which attempts 

to infer an unknown reward function from observing behavior. Inverse RL 

consequently helps detect those (unobservable) preferences most consistent 

with the (observable) choices people make. 

Deep learning is often viewed as further subfield within ML (Deng & Yu, 2014; 

Nvidia, 2016). Deep learning techniques were particularly brought forward by 

LeCun (1998), Hinton et al. (2006), and Krizhevsky et al. (2012). Deep learning 

progressively extracts signals from raw inputs through multiple steps, so-called 

 
3 In this example, each data point, represented by dots, is grouped into precisely one 
cluster, either the green, red, or black. 
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layers, thereby learning more and more complex structures in the data. Artificial 

neural networks (ANNs) are the basis of deep learning algorithms. They mimic 

the functioning of neurons in human brains (Lake et al., 2017). Often, deep 

learning outperforms traditional ML approaches with respect to accuracy 

(McKinsey, 2020b), but requires much more data for training and introduces the 

risk of over-engineering for simpler applications. Popular deep learning 

algorithms and respective use cases are convolutional neural networks (CNNs) 

used to infer information from images (Albawi et al., 2017); recurrent neural 

networks (RNNs) applied to learning from time-series data, text generation or 

language translation (e.g., Mikolov et al., 2010); generative adversarial 

networks (GANs) capable of creating artificial data representative of actual data 

(Bengio et al., 2014; Goodfellow et al., 2014); and many more.  

2.1.3 Data strategies and model selection 

Setting up ML algorithms splits into three phases, namely initial model training, 

cross-validation, and model testing with data unseen before. For this purpose, 

the data available need to be split. For example, in the specific application to 

customized airline offer management, initial model training could happen on 

data on past booking behavior. With these alone, unsupervised learning could 

detect patterns between various searches and to perform dimensionality 

reduction. Supervised learning would additionally require information on which 

product was purchased and at which price. To estimate the search-specific 

WTP, price paid could be viewed as lower bound. Including data on searches 

not successfully converted to bookings could improve training. For cross-

validation, a share of the training data would need to be eliminated from the 

set used for model training. Instead, the withheld data would be used to cross-

validate the model. Cross-validation is particularly important to compare several 

algorithms for the same application and can therefore be used to identify those 

models with the proper trade-off between overfitting and underfitting (see 

Raschka, 2018, for definitions and an overview). Finally, model testing 
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confronts the trained and cross-validated model with new data that have neither 

been used for training nor for cross-validation. Testing allows parameter fine-

tuning and can also facilitate continuous model improvements through 

periodical parameter updates. Parameter updating could deploy exponential 

smoothing (Gardner Jr, 1985) to prioritize more recent observations over older 

ones. In the airline offer management use case it might be able to capture 

potential changes in customer preferences and trends.  

Often, different models can be applied to the same business case. Deciding 

which algorithm to use carries important consequences and depends on the 

nature of the data available. Often, certain algorithms are precluded because of 

lacking adequate data. In this case, organizations could opt for systematic data 

collection in the future. The rise of ML has caused many organizations to rethink 

their data strategy, to pay more attention to what they could do with the data 

they have available, and how data from many different sources could be 

integrated into a common company-wide framework. With respect to the 

research objective at hand, model development, training and cross-validation 

initially would need to happen on past data. If the model looks promising and 

performs well in cross-validation, it might be possible to conduct live test runs 

for model testing. Such live test runs could happen in a well-defined subsample 

of distribution channels and/or routes. Furthermore, the test runs could be 

framed in a smart way to gain exactly the information and data desired. It is 

important to understand that many ML algorithms are likely to produce 

disappointing results in the real world at first. However, testing with actual data 

allows them to significantly improve over time and likely achieve high degrees 

of performance. 

Further starting points for algorithm selection are similar business problems that 

have been approached with ML in the past, or an analysis which models fit best 

with company strategy or culture. Identifying the “best” model for a particular 

application means resolving the trade-off between model simplicity and 

explanatory power. Therefore, this research suggests starting with simpler 
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approaches, assess their power, and then move on to more complex models. 

For the recommendation of customized bundles, the goal is to predict which 

of all possible bundle combinations best fits to the particular customer search. 

Learning happens based on specific characteristics, or features, included in the 

search. For this question, matrix factorization, an unsupervised recommender 

system technique, will be analyzed next. 

2.1.4 Recommender systems 

Recommender systems are crucial to the commercial success of platforms like 

YouTube, Amazon, Netflix, and are behind most of today’s webpages. They are 

deployed to recommend movies, articles or items based on preferences of other 

consumers with similar attributes (Frias-Martinez et al., 2006; Frias-Martinez et 

al., 2009; Kim et al., 2010). To identify the relevant data necessary to make a 

recommendation, these algorithms detect cluster behavior in user data. 

Purchase or like probabilities are estimated and used to suggest users content 

relevant to their specific characteristics. Ricci et al. (2011) provide a 

comprehensive overview of recommender systems in digital platforms. 

Recommender system algorithms split into two paradigms, namely content-

based and collaborative filtering. 

Content-based filtering (CB) methods infer user-specific recommendations of 

additional items of interest by analyzing the properties of previous items and 

their respective user ratings (Basu et al., 1998; Park et al., 2012). A well-known 

example is the Music Genome Project, in which an expert scores individual 

songs alongside a set of characteristics (Koren et al., 2009). However, CB 

methods can be costly due to the explicit expert involvement and may be prone 

to overspecialized recommendations including only items that are very similar 

to those a particular user is already aware of (Lopez-Nores et al., 2008).  

Initial research on recommender systems was spurred by advances in 

collaborative filtering (CF) in the mid-1990s (Resnick et al., 1994; Shardanand 
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& Maes, 1995). CF methods are based solely on past interactions between 

users and items, stored in a user-item interaction matrix. In this paradigm, the 

interaction matrix is deemed sufficient to detect similar users and products, and 

to derive predictions and new recommendations based on these estimated 

proximities (Breese et al., 2013). The properties of the items are not explicitly 

modeled. This way, data aspects can be adequately captured that would be 

elusive and difficult to profile with CB (Koren et al., 2009). In an e-commerce 

setting, the interaction matrix maps buyers to products via the probability of a 

particular type of buyer to purchase a particular type of product. However, CF 

methods have their own drawbacks, namely sparsity, scalability, and the cold 

start problem (Claypool et al., 1999; Koren et al., 2009; Sarwar et al., 2000a; 

Sarwar et al., 2000b). CF methods split into two primary strategies, 

neighborhood and latent factor models (Koren et al., 2009). Neighborhood 

models compute the relationships either between users or between items. 

Latent factor models, on the contrary, explain user preferences by 

characterizing both users and items on a third dimension, so-called factors, that 

are inferred from the rating patterns. This way, they provide a computerized 

alternative to expert scoring in CB methods.  

2.1.5 Matrix factorization 

Matrix factorization belongs to the class of latent factor models. Its initial idea is 

commonly ascribed to Funk (2006). Matrix factorization algorithms combine 

scalability, predictive accuracy, and flexibility, and are behind some of the most 

successful realizations of latent factor models, superior to neighbor techniques 

as demonstrated by the Netflix prize competition (Koren et al., 2009). The Netflix 

prize was a competition for the best algorithms to predict user ratings for movies, 

based solely on previous ratings. Whilst explicit feedback, such as persons’ 

ratings for Netflix movies, is the most desirable, it usually comes in very sparse 

form, because only few people have seen a particular movie. One strength of 

matrix factorization is the incorporation of implicit feedback, i.e. inferring user 
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preference from their observed behavior history. Since implicit feedback comes 

in the form of presence or absence of an event, i.e. whether a certain product is 

purchased by a certain customer or not, it typically results in a densely filled 

matrix (Koren et al., 2009). Matrix factorization decomposes the user-item 

interaction matrix into the product of two rectangular matrices of lower 

dimensionality by introducing latent factors stored in a vector 𝐹. This will be 

detailed for the research question of which airline customer segment purchases 

which airline product in the following. 

Fundamental idea behind matrix factorization is that dependencies exist on two 

dimensions. First, customer searches are (dis)similar to each other. Although 

many customers do not have a history of multiple purchases, all possible 

customer search types exhibit some (dis)similarity. Second, products, i.e. the 

set of possible bundles, are (dis)similar to each other. Both (dis)similarities 

combined can be used to predict preferences of new customer searches and/or 

new products. Instead of directly mapping customer search types to bundles, 

an intermediate latent factor vector 𝐹 is introduced. Typically, the number of 

latent factors 𝑓  is much smaller than both the number of customer search 

types 𝑐 , and the number of possible bundles available 𝑏  as shown in 

Equations (1) and (2): 

𝑓 ≪ 𝑐 (1) 

𝑓 ≪ 𝑏 (2) 

The relationship between the search type vector 𝐶 and the bundle vector 𝐵 is 

decomposed into the dot product of the relationships between 𝐶 and the latent 

factor vector 𝐹, and between the transpose 𝐹𝑇 and 𝐵, according to Equation (3).  

𝐶 ⋅ 𝐵 = (𝐶 ⋅ 𝐹) ⋅ (𝐹𝑇 ⋅ 𝐵) (3) 

Factorization requires estimation of much fewer model parameters due to the 

properties established in (1) and (2). The number of possible search types is 
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exponential in the number of features and further depends on the number of 

values each can assume. Assuming ten features, each of which can take five 

possible values, results in approx. 9.8 million search feature combinations (510). 

Further assuming eight ancillary services results in 256 possible bundles (28). 

Factorization reduces the number of entries to be estimated and stored from 2.5 

billion to less than 98 million (Figure 7). 

 

Figure 7: Schematic depiction of the idea behind matrix factorization. 

The entries in 𝐹 do not need to have an intuitive interpretation, although they 

could be thought of as some underlying customer preferences like convenience, 

flexibility, vacation, value of time, comfort, connectivity, entertainment, etc. 

During training, the algorithm learns the links from search types to the factors 

and from factors to the bundles. Learning happens via definition of an error 

function comparing model-predicted purchase decisions with actual ones, and 

subsequent minimization of the error function with the stochastic gradient 

descent method, which can be traced back to the Robbins-Monro algorithm of 
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the 1950s (Bottou, 1998). The number of latent factors represents a 

hyperparameter, and the best choice needs to be determined during cross-

validation. 

The search type vector 𝐶 contains one row for every possible combination of 

search feature. Such highly dimensional input space requires a large set of 

training data. This phenomenon is known as “curse of dimensionality”, an 

expression coined by Bellman (1957). Depending on how many features shall 

be included in the model and how many values each can assume, addressing 

the curse of dimensionality with dimensionality reduction strategies might be 

required before training the actual matrix factorization algorithm. The basic idea 

of dimensionality reduction is to compactly summarize data in fewer dimensions 

whilst preserving as much explanatory power as possible. Subsequently, the 

created compact description can be used as input to the actual matrix 

factorization model. A well-documented algorithm for dimensionality reduction 

is principal component analysis (PCA; Shlens, 2014). PCA projects each 

data point onto a new dimension of maximum variance. Afterwards, it serially 

projects each data point on additional, orthogonal dimensions. This 

transformation maintains dimensionality by simply sorting the new (and mutually 

orthogonal) parameters according to descending variance. With that 

information, one can then do filtering through feature selection, i.e. ignore all 

features with sufficiently low variance. 

Given the power of matrix factorization to predict the attractiveness of all 

possible product combinations for new incoming searches, it is a candidate to 

enable customized offer management at much higher levels of granularity than 

existing approaches. All products could be ranked, and this ranking could be 

used as assortment optimization criterion. This way, the best out of both 

branded fares and a la carte ancillary offerings could be combined. Whilst 

branded fares are inflexible and unlikely to provide the best fit for most customer 

searches, a well-trained matrix factorization algorithm might be able to output 

customized bundle recommendations much closer to the actual preference of 
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the incoming search. Also, as opposed to a la carte sales, customized bundle 

recommendations avoid overwhelming the customers. After all, customized 

airline offer management follows the logic of e-commerce platforms or movie 

recommendations. Matching consumers with their preferences is hence not only 

key to the success of Amazon, Netflix, YouTube, and many more, but possibly 

also to airlines or transportation companies in general. 

After reviewing the history of AI and ML as well as possible applicability to the 

research question, the next section will review discrete choice models, how they 

could be applied to the research question, and how they compare to machine 

learning.  

2.2 Discrete choice (DC) analysis 

Discrete choice (DC) models are statistical models to explain choice behavior 

from a set of discrete and mutually exclusive alternatives. The clear definition 

of possible choices distinguishes the concept from standard regression models. 

Classic DC literature includes McFadden (1973), McFadden (1974), Domencich 

& McFadden (1975), Winston (1985) and Boyer (1998). DC models have a long 

history in transportation planning for mode choice modeling and demand 

analysis (Train, 1978), the choice of airports for cargo airlines (Kupfer et al., 

2016) or customer preferences for mobility as a service (Polydoropoulou et al., 

2020). Other applications include labor market economy and education choices 

(Fuller et al., 1982), conjoint analysis for market research (Train, 1986), 

recreation (Train, 1998) and energy systems (Goett et al., 2002; Revelt & Train, 

1998). DC models aim to characterize the utility function for the population to 

allow statistical inference about the functional parameters. 

This section starts with DC model setup and fitting (Section 2.2.1), continues 

with a discussion of the applicability to the customized airline offer management 
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problem (Section 2.2.2) and closes with a comparison of DC and ML models 

(Section 2.2.3). 

2.2.1 Discrete choice model setup and fitting 

DC models estimate 𝑈𝑖𝑗, i.e. the (latent) utility of choice 𝑗 to person 𝑖, based on 

observed characteristics of the person 𝑋𝑖 , observed characteristics of the 

choice 𝑍𝑗, and an error term 𝜀𝑖𝑗 representing unobservable influences. Equation 

(4) shows the generic DC model: 

𝑈𝑖𝑗 = 𝐹(𝑋𝑖 , 𝑍𝑗, 𝜀𝑖𝑗) (4) 

𝐹 can assume several functional forms. Many empirical studies rely on logit 

models commonly estimated with maximum likelihood iterative processes 

(Blauwens et al., 2016). A simple structure of a logit model is given by 

Equation (5): 

ln (
𝑃𝑖

1
− 𝑃𝑖) = 𝛽0 +  ∑ 𝛽𝑘 ∙ 𝑋𝑘𝑖

𝑛

𝑘=1

+ 𝜀𝑖 
(5) 

𝑃𝑖 represents the probability that person 𝑖 chooses a certain alternative based 

on several explanatory variables 𝑋 and estimated parameters 𝛽. Probabilities 

are introduced to account for the randomness of individual utilities.  

Individuals are assumed to rationally choose the alternative with highest utility. 

To obtain the functional form, a specific distribution of the error term needs to 

be assumed. If errors are assumed to be distributed according to the extreme 

value distribution, the multinomial logit (MNL) model results, which is the most 

applied form in demand analysis (Fisher, 2000). MNL was originally introduced 

by Luce (1959) with McFadden (1973) popularizing its practical use. An 

overview of common MNL applications is provided by Winston (1985). If instead 

errors are assumed to follow the normal distribution, the multinomial probit 
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model results. Recent advances in DC models have been driven by growth in 

computer power and the use of simulation, allowing for unprecedented flexibility 

in model form (Walker & Ben-Akiva, 2011). 

DC models implicitly assume independence from irrelevant alternatives (IIA). If 

IIA holds, the choice set presented to individuals does not influence their 

behavior. However, IIA is often violated in practice, with important implications 

on assortment optimization. Details on model fitting to handle situations in which 

IIA is deemed too strong can be found in Bruch & Mare (2012).  

To obtain data of customer behavior, researchers can use stated (SP) or 

revealed preferences (RP) studies (Zamparini & Reggiani, 2007; Blauwens et 

al., 2016). In SP studies, researchers infer people’s real-world behavior from 

their responses to specifically designed surveys in laboratory settings. As such, 

SP studies can help collect data on settings that do not exist in reality (yet). On 

the contrary, RP studies detect preferences directly from actual decisions 

people make, but RP data might not be available for completely new choice 

sets. In some settings, RP and SP can also be combined to improve accuracy 

(Zamparini & Reggiani, 2007). 

2.2.2 Applicability to the customized airline offer 

management problem 

With their history and previous applications, DC models are obvious candidates 

to be applied to customized airline offer management. Ben-Akiva & Gershenfeld 

(1998) provided examples for realistic DC models of customers choosing 

among different bundle options. Vulcano et al. (2012) applied MNL models 

explicitly in an RM context, and Ratliff & Gallego (2013) evaluated the sales and 

profitability impacts of airline branded fares and their pricing using a customer 

choice framework. In particular, the PODS research consortium has developed 

and applied DC to airline passenger choice behavior (PODS, 2021).  
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With this research objective, search features are assumed to represent the 

characteristics of the decision-maker. In the case of modeling choice for airline 

branded fares, the choice set typically includes three to four alternatives. In the 

case of modeling choice for all possible airline products, the choice set can 

include hundreds of potential bundles. In this case, data might become sparse, 

rendering statistical modeling more time-consuming or even impossible. To 

address, several techniques are available for the selection of choice subsets 

(Guo & Loo, 2013; Wang, 2020). However, selecting choice subsets implicitly 

assumes validity of the IIA assumption, which was shown to be violated due to 

various psychological effects that impact consumer choices (Jannach et al., 

2010). 

2.2.3 Comparing Discrete choice and Machine learning 

Generally, literature reports that both DC and ML methods are suitable for both 

prediction and inference although there are some important differences 

(synthesized in Table 1). DC models aim to draw population inferences from 

samples focusing on explanation of the relationship between variables. They 

are widely used to explain how preferences impact a decision (Paredes et al., 

2017). DC models create and fit a problem-specific probability model, which 

provides researchers with confidence that the discovered relationships 

adequately describe the “true” effect (Bzdok et al., 2018). If sufficient data are 

available, the underlying assumptions can be verified. ML models rather focus 

on prediction, trying to find generalizable patterns in rich and unstructured data 

(Bzdok, 2017; Bzdok et al., 2017; Feldman et al., 2018; Paredes et al., 2017). 

ML employs general-purpose learning algorithms not specifically designed for a 

particular problem. 

To achieve representability, DC models deploy precisely designed data 

collection strategies. ML, on the contrary, makes minimal assumptions about 

the data generation process and does not require data gathering with carefully 
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controlled experimental designs (Bzdok et al., 2018). ML mainly ignores 

potential sampling issues, whilst still implicitly assuming representability of the 

data. However, cross-validation and out-of-sample testing are integral part of 

ML, but often ignored in DC models (Paredes et al., 2017). 

ML often achieves convincing prediction results (Bzdok et al., 2018). Feldman 

et al. (2018) compared an MNL model and recommender system algorithms for 

optimal product assortment on Alibaba’s online marketplace. They found MNL 

to outperform recommender systems. Due to its generic nature, ML fails to 

capture critical problem-specific nuances, whereas MNL models are specifically 

built for the purpose of capturing customer purchasing behavior, and to model 

substitution patterns in particular. Paredes et al. (2017) compared MNL to 

various ML algorithms (random forest and support vector machines) for the 

prediction of car ownership. They reported that ML can be both inferior and 

superior to DC, depending on which features are used. Wang & Ross (2018) 

studied travel mode choice modeling. They concluded overall higher prediction 

accuracy for the ML model with the extreme gradient boosting (XGB) algorithm 

compared to MNL.  

Strict statistical assumptions can limit MNL models, despite their closed-form 

mathematical structure with interpretable estimation results and solid foundation 

in random utility theory. ML, on the other hand, lacks explicit theoretical 

foundation, sound behavioral theory, and often interpretability (Bzdok et al., 

2018; Paredes et al., 2017). Also, Kleinberg et al. (2015) criticize that the 

outperformance of ML over traditional econometric models on prediction often 

comes at the cost of explainability. The black box character of many AI 

applications makes it difficult to understand why a machine makes a certain 

decision. Since machines are unable to explain their thoughts and actions to 

human users, “explainable AI” has emerged as research strand over the last 

years. For further development of ever-more complicated AI applications, it 

becomes more and more essential that users understand, trust, and effectively 

manage AI (Gunning, 2017). Samek et al. (2017) proposed two approaches to 
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explain predictions of deep learning models. The first method computes the 

sensitivity of the prediction with respect to changes in certain inputs, and the 

second method decomposes the decision in terms of various input variables. 

Table 1: Synthesis of academic literature comparing discrete choice analysis and 

machine learning. 

 Discrete choice Machine learning 

Original 

purpose 

Population inference from 

samples by explaining relationship 

between variables: how do 

preferences impact a decision? 

Prediction by identifying 

generalizable patterns in rich 

and unstructured data. 

Pros Problem-specific model increases 

confidence the “true” effect is 

captured. 

Closed-form mathematical 

structure with interpretable results. 

Verifiable if sufficient data 

available. 

Can handle large and 

unstructured data. 

Minimal assumptions about the 

data generation process, hence, 

does not require carefully 

controlled experiment design. 

Often achieves high prediction 

accuracy. 

Cons Require precisely defined data 

collection. 

Strict statistical assumptions can 

limit applicability. 

Typically, no cross-validation or 

out-of-sample testing. 

General-purpose algorithms, 

typically not designed for a 

particular problem. Often fails to 

capture problem-specific 

nuances. 

Ignores potential sampling 

issues. 

Can be perceived as black box 

lacking interpretability. 
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The reviews have highlighted mixed results in the literature whether ML or 

statistical models like DC should be preferred. The discussion seems to suggest 

that ML might represent cases of over-engineering for simple problems, and 

that for these sound statistical methods underpinned by strong theoretical 

support could be the better choice. On the other hand, ML methods offer 

superior predictive power and the ability to handle large and unstructured data. 

For these reasons, it is unclear which of the two is better suited to solve the 

research problem of this dissertation of customized offer management. This 

substantiates the question whether and how to combine both DC and ML; or 

specifically, how ML could enhance DC models by improving their prediction 

accuracy, and whether this also holds true in disruptive times such as the first 

global wave of the Covid-19 pandemic in the first quarter of 2020.  

2.3 Research gap, strategy, and relevance 

This section synthesizes the research problem, the context of airline offer 

management, the research objective, and the review of AI, ML and DC. The 

section starts with the research gap (Section 2.3.1). Subsequently, the research 

questions from Section 2.1 are refined based on the additional context (Section 

2.3.2). The research strategy with a proposed solution and two validation steps 

on real airline data is presented next (Section 2.3.3). The section closes with 

the audience and relevance of the research in Section 2.3.4. 

2.3.1 Research gap 

Previous literature and practical airline implementation can be categorized into 

one of two categories. Either they segment customers into single digit distinct 

segments, typically deploying discrete choice or other statistical models. Or they 

use machine learning models that can facilitate segmentation with many more 
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segments but present a black box character that airline users struggle to 

understand, trust, and ultimately adopt. For instance, Shukla et al. (2019) 

expand beyond single-digit customer segments. Instead, they model them with 

various machine learning models based on temporal, market-specific, journey-

specific and price-related features. However, this might be viewed as black box 

by users. Visibility and interpretation of the customer segments is however 

important to achieve adoption and increase the likelihood of embedding into 

existing business process workflows and methods (Vinod, 2020). 

To propose a novel solution to the customized airline offer management 

problem, this research develops a solution that meets the two criteria defined in 

Section 1.3. First, offers need to be relevant to the specific customer search and 

displayed in a convenient way. Due to the heterogeneity of airline customers, 

single digits of segments are not sufficient. Pure discrete choice models are not 

granular enough. Second, the solution needs to be usable to airlines. Because 

of the increased dimensionality, full-scale automation and change management 

within airline organizations are required (Daft et al., 2021). To gain trust from 

airline users, the solution must not be perceived as untransparent and 

unexplainable black box. Hence, many complex machine learning models do 

not seem to fit well with existing airline processes and users as they are likely 

not easily understandable and interpretable.  

Putting both together, this research aims for discrete segmentation with a large 

number of segments. DC models are designed for discrete segmentation. To 

also achieve a large number of segments, the research tests whether ML can 

help identify these granular segments and solve potential data sparsity 

problems.  
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Table 2: Selected contributions of the customized offer management literature since 

2010. 

Paper Problem 

addressed 

Method used Number of 

segments 

Ratliff & Gallego 

(2013) 

Bundling, Ancillary 

/ Bundle pricing 

Discrete choice 4-5 

Fiig et al. (2016) Flight pricing Discrete choice 2 

Madireddy et al. 

(2017) 

Bundling, Ancillary 

/ Bundle pricing 

Various machine 

learning models 

7 

Bockelie & 

Belobaba (2017) 

Flight pricing, 

Ancillary / Bundle 

pricing 

Discrete choice 2 

Wittman & 

Belobaba (2018) 

Flight pricing Discrete choice 2 

Shukla et al. 

(2019) 

Ancillary / Bundle 

pricing 

Various machine 

learning models 

Infinite 

Wang et al. (2023) Bundling, Ancillary 

/ Bundle pricing 

Markov chain 

choice model 

2 

This dissertation Bundling, 

Assortment 

Various machine 

learning models in 

Discrete choice 

Thousands to 

millions 

 

Table 2 visualizes the research gap this dissertation aims to fill: thousands to 

millions of segments, with a discrete segmentation logic that is still easily 

understood by airline users (e.g., Airline Pricing or Ancillary Managers), who 

can 1:1 map and trace every customer search into precisely one distinct 
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customer segment. To facilitate segmentation in this order of magnitude, 

segmentation no longer builds on fare rules and booking classes, but on 

identifying structure in customer searches and bookings. This structure shall 

help estimating customer choice probabilities for all possible products, which 

ultimately allows airlines to display relevant customized products bespoke to the 

particular customer search. Methodologically, the gap is to combine the 

flexibility of machine learning for high-dimensional segmentation with the 

understandability of discrete choice model with clearly identifiable segments. 

2.3.2 Refining the research questions 

With the additional context, the five research questions from Section 2.1 can be 

refined: 

1. Can airlines segment their customers into thousands to millions of 

distinct, clearly identifiable and MECE segments that exhibit significantly 

different choice behavior? 

2. Can airlines use this segmentation to significantly improve the prediction 

accuracy of customer choice probabilities for searches in the future? 

3. Can matrix factorization help solve the data sparsity problems when 

segmenting customers into thousands to millions of segments? 

4. Can changes in customer behavior be captured, or how much of the 

prediction accuracy improvements can be achieved in a disruptive event 

like Covid-19 pandemic? 

5. What is practical advice to balance cost and effectiveness: Which 

features should airlines train on? How complex should the prediction 

model be? How many segments should airlines use? How long should 

the training period be? How often should airlines retrain their model? 

Answering these five research questions shall help airlines discuss practical 

implementation as well as indicate future research avenues for academic 

scholars. 
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2.3.3 Research strategy and data 

With the research gap identified, this dissertation proposes a novel solution to 

the customized airline offer management research problem in Chapter 3. To 

validate the proposed solution, the dissertation uses a combination of inductive 

(Chapter 4) and deductive (Chapter 5) research as outlined in Table 3 and 

Figure 8. Real airline data is used for validation in both the inductive and 

deductive research. The author had access to hundreds of millions of bookings 

from a major network airline between 2018 and 2023. Compared to LCCs, 

network airline customers can be assumed to be more heterogeneous, hence 

segmentation offers larger opportunities and is of higher relevance. 

These bookings cover global customers; however, due to the airline’s network 

structure, its home markets constitute the biggest geographical share. The 

period between 2018 and 2023 allows validation in both stable and disruptive 

times considering the Covid-19 pandemic. This facilitates insights into how the 

solution performs when the market environment changes drastically and rapidly. 

The airline data include information on trip-specific features like route (origin, 

destination), travel weekday and season of the intended travel. Further, 

customer- or search-specific features include days before departure, search 

weekday, season of the search, number of travelers requested, and sales 

channel. Due to data confidentiality, no detailed descriptive statistics are shown. 
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Table 3: Comparing inductive and deductive research as used in this dissertation. 

 
Inductive research Deductive research 

Aim Validate viability of proposed 

conceptual solution 

Substantiate validation of the 

viability of the conceptual solution 

Method Find structure in the data. 

Generalize empirical 

observations to patterns 

Test specific hypotheses on new 

data (out-of-sample test) 

Outcome Confirm fundamental 

hypothesis 1: different segments 

exhibit significantly different 

choice behavior 

Theorizing about patterns leads 

to tentative hypothesis to be 

tested in the follow-up deductive 

research 

Confirm fundamental 

hypothesis 2: segment-specific 

choice probabilities help airlines 

predict future customer choice 

with significantly higher accuracy 

 

Inductive research (Chapter 4) starts with empirical observations of the data. 

Then, it seeks to identify patterns in those observations. Theorizing about these 

patterns leads to generalizable hypotheses, which are then tested in the follow-

up deductive research. In this dissertation, the goal of the inductive validation is 

to test the first fundamental hypothesis of the proposed conceptual methodology 

from Chapter 3, namely that different customer segments exhibit significantly 

different choice behavior. 

The deductive research (Chapter 5) starts with the theory from the inductive part 

and tests the hypothesis on new data in out-of-sample tests. In this dissertation, 

the specific goal of the deductive validation is to test the second fundamental 

hypotheses of the proposed conceptual methodology from Chapter 3, namely 
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that segment-specific choice probabilities help airlines predict customer choice 

behavior in the future significantly more accurately. 

 

Figure 8: Comparing inductive and deductive research and how they together validate 

the proposed solution. 

In summary, inductive and deductive research are designed as two-step 

validation of the two fundamental hypotheses of the conceptual methodology 

developed in Chapter 3. 

2.3.4 Audience and relevance 

Primary research audience are academic scholars as well as airline executives 

and managers in offer management or the subproblems segmentation, 

bundling, ancillaries, pricing, or revenue management. If airlines can improve 

prediction accuracy of discrete choice probabilities for future customer 

searches, then they can improve their assortment decision. Displaying more 

relevant offers can be expected to optimize customer or business outcomes. 

These outcomes can be higher search-to-book conversion, increased customer 

satisfaction, higher seat load factor, higher expected revenue, or higher 

expected profit per customer search.  
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Similar challenges are also present in other transportation companies. This was 

confirmed by an “Industrial Committee”, which the author consulted at the 

beginning of the PhD research project in January 2021. The Industrial 

Committee was comprised of representatives of passenger airlines, cargo 

airlines, ocean carriers, car rental companies, passenger train operators and 

mixed passenger/cargo ferry companies. Its representatives confirmed the offer 

management problem at their respective companies can also be described by 

the three characteristics identified in Section 1.1, though likely at different 

intensity. First, their customers are heterogeneous with respect to the product 

they are looking for as well as their willingness to pay. Second, the companies 

can customize their product to meet these diverse needs. And third, they are 

confronted with a large number of searches, which requires an automated and 

real-time response. 

Hence, the research implications extend beyond airlines to scholars and 

practitioners of these transportation sectors as secondary audience. Potential 

research generalizations include studies on applications in these further 

transport modes like ferry operators, auto trains, high-speed rail, and possibly 

even pure freight carriers or logistics companies.  
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3 Conceptual methodology4
 

Revenue management has been a strategic priority for airlines for decades. 

More recently, ancillary revenues and targeted offers for diverse customers 

have become increasingly relevant. Hence, airlines need to evolve their revenue 

management into offer management, complementing flight pricing with dynamic 

bundling, ancillary pricing and assortment. This chapter designs a conceptual 

architecture for customized real-time offer management, expanding on existing 

literature in several directions. It proposes a machine learning framework for 

highly granular customer segmentation, whilst addressing three potential 

challenges of data sparsity, curse of dimensionality, and model 

understandability. The goal is to enhance customer satisfaction through 

customized offers and to improve pricing decisions by accurately predicting 

customers’ willingness to pay. Embracing this approach shall position airlines to 

better meet customer needs and maximize revenue potentials. 

In the context of the dissertation, Chapter 3 suggests a conceptual methodology 

to solve the customized offer management problem. It starts with an introduction 

and research objective in Section 3.1. Section 3.2 reviews academic and 

practical advancements that have enabled customized offer management. 

Section 3.3 describes the research contribution. Section 3.4 conceptualizes the 

high-level offer management system architecture proposed. Section 3.5 and 3.6 

outline the two streams of the architecture, namely Product choice and Flight 

pricing. Section 3.7 summarizes innovations of the proposed architecture. 

Section 3.8 suggests strategies to validate and disseminate the conceptual 

architecture. Section 3.9 discusses practical implementation for airlines. Section 

3.10 concludes the conceptual methodology. 

 
4 This chapter is an evolution of a paper published in the Journal of Revenue and Pricing 
Management (2021): Schubert, D., Sys, C. and Macário, R., 2021. Customized airline 
offer management: A conceptual architecture. Journal of Revenue and Pricing 
Management, pp.1-11. 
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3.1 Introduction and research objective 

Airline customers behave differently with respect to both the services they 

demand and their willingness to pay (WTP) for these services. In response, 

airlines customize their product, complementing the mere seat with a multitude 

of ancillaries. These include seat reservation, baggage, flexibility, fast lane 

through airport security, lounge access, inflight entertainment, ground 

transportation, pollution compensation, and many more. Identifying which of 

these to be displayed to a given customer request at which price poses a 

challenge with various subproblems, namely bundling, pricing, and assortment. 

Bundling refers to creating a product bundle, i.e. an unbreakable entity of airline 

seat plus ancillaries with one single price tag. Pricing should match the 

individual customer WTP and can be decomposed into flight and ancillary 

pricing. Assortment refers to the selection of offers to be presented to the 

customer.  

This chapter uses the term “customized offer management” to group the 

challenges of bundling, flight pricing, ancillary pricing, and assortment. 

Customized offer management processes the information customers explicitly 

and implicitly provide in their booking request to develop product and pricing 

strategies responsive to the particular request in real-time. Combining the 

convenience and simplicity of branded fares with the flexibility of unbundled 

ancillary sales, it expands on traditional rule-based segmentation, pricing and 

differentiation. More relevant offers might increase both customer satisfaction 

and WTP as well as help airlines escape the commodity trap. In addition, more 

precise WTP estimation could increase airline profits. Customized offer 

management requires new methods integrated into existing airline systems. 

Airlines need to evolve revenue management systems (RMS), focusing on flight 

pricing, into comprehensive offer management systems (OMS) including 

ancillary pricing, bundling and assortment.  

This research develops a conceptual OMS architecture. It proposes machine 

learning (ML) for segmentation with much higher granularity than existing 



57 
 

models, to support product and pricing strategies as customized as possible. To 

overcome resulting data sparsity problems and increase robustness, this 

research suggests application of the matrix factorization algorithm in a novel 

way. To address the curse of dimensionality 5  and improve both model 

understandability and applicability, the OMS is developed in modular form and 

breaks down segmentation into various subdimensions. Consequently, the 

proposed OMS aims to define a new balance between granularity/complexity 

and applicability/robustness of the segments identified.  

The OMS is structured into two main streams, product choice and flight pricing. 

Product choice, i.e. which ancillaries which customers purchase at which prices, 

comprises bundling, ancillary pricing and assortment (Figure 9). Both streams 

could be independently embedded into existing airline RMS. To maximize 

practical relevance, the OMS processes data available to airlines and is 

consistent with the booking class logic of existing RMS. At the same time, it 

includes future-oriented developments such as continuous pricing that may 

eventually leave the booking class logic behind. 

 
5 Bellman (1957) coined the term “curse of dimensionality”. It refers to the observation 
that the volume space of numerous problems increases faster than the dimensionality 
of the inputs. Consequently, the amount of data required for sound analysis often grows 
exponentially with dimensionality. 
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Figure 9: Overview of the proposed offer management system (OMS). 

This chapter is structured as follows. Section 3.2 reviews existing research on 

different factors facilitating customized offer management to develop the 

research contribution in Section 3.3. Section 3.4 outlines the two-stream 

proposed OMS architecture, which is then detailed in the following Sections 3.5 

for product choice and Section 3.6 for flight pricing, respectively. Section 3.7 

highlights how the research expands on existing literature. Section 3.8 

describes next steps for validation with actual airline data. Section 3.9 analyzes 

points of discussion for application in airline systems and potential extensions 

of the architecture. Section 3.10 summarizes the findings. 

3.2 Enablers of customized offer 

management 

Customized offer management builds on advancements in flight pricing, 

ancillary pricing, bundling, assortment, and distribution, as successively 

reviewed in the following. 
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3.2.1 Flight pricing 

The origin of airline revenue management (RM) can be credited to Littlewood 

(1972) suggesting airlines to maximize revenue instead of load factors. Since 

then, both scholars and practitioners have constantly refined RM models (Vinod, 

2021a). This chapter defines flight pricing to govern pricing of airline seats. 

To match individual WTP, airlines segmented their customers with restrictive 

fare rules, leading to the assumption of independent demand in early RM 

models (Belobaba, 1987). The arrival of low-cost carriers (LCC) with 

unrestricted fares significantly reduced the effectiveness of restricted fares, 

requiring legacy airlines to adapt their RMS (Belobaba, 2011). Closely linked to 

advancements in “Distribution”, leading airlines began to explore opportunities 

to overcome the rigidity of pre-defined price points. Fiig et al. (2016) proposed 

dynamic pricing responsive to airline strategy, real-time competitor information, 

and two different customer segments (“business” and “leisure”). Wittman and 

Belobaba (2018, 2019) noted that traditional airline pricing aims to optimize 

availability of given price points with rule-based segmentation instead of 

optimizing prices themselves. They developed a choice-based heuristic to 

dynamically amend pre-defined fares dependent on certain passenger and 

request characteristics. Continuous pricing, leaving price points entirely behind, 

is the ultimate vision of dynamic pricing (e.g., Lufthansa, 2018). It requires 

fundamental rethinking of airline RMS.  

3.2.2 Ancillary pricing 

Deregulation of air travel in the United States in 1978, before reaching nearly 

all parts of the world (Belobaba et al., 2016), fostered competition and 

stimulated the “pay-for-extras” business model of LCCs. Increased price 

competition led to uncoupled pricing of airline seats and ancillary services 

(termed “flight pricing” and “ancillary pricing”, respectively) instead of earlier all-

inclusive fares. This also concerns legacy airlines though many still position as 
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“premium” by including some ancillaries in their base fares. Ancillary revenues, 

i.e. any airline revenue from services beyond the simple transportation of 

customers, have grown to 12% of total airline industry revenue pre-Covid 

(IdeaWorks, 2019). Ancillary services can be grouped into various types. Airline-

own services include check-in baggage, seat reservation, increased legroom, 

priority boarding, and catering. Typically, baggage fees are the most relevant, 

composing 60% of total LCC ancillary revenues (IdeaWorks and CarTrawler, 

2018). Other ancillaries concern facilities on the ground such as lounge access 

or fast lane through security. Finally, airlines sell third party services on 

commission. Examples are ground transportation, rental cars or hotel sales.  

In contrast to quantitative models for flight pricing, most airlines employ static 

pricing for ancillary upsells. However, they have begun to experiment with 

dynamic ancillary pricing. An example is US LCC Spirit Airlines analyzing the 

impact of dynamic baggage fees based on search request, travel date, route 

and time of purchase (CAPA Centre for Aviation, 2019). Various providers 

developed dynamic pricing models with ML-driven pricing recommendations 

responsive to various request attributes. Examples are Shukla et al. (2019) and 

Kolbeinsson et al. (2021) reporting significant improvements in conversion and 

revenue over human rule-based approaches without processing any 

personalized information that might violate customer privacy. Since ancillary 

pricing might directly affect passengers’ choice for one airline over another, 

researchers designed joint models for flight and ancillary pricing (Bockelie, 

2019; Hao, 2014; Ødegaard and Wilson, 2016).  

3.2.3 Bundling 

To differentiate from competitors and to manage their ancillary portfolio, airlines 

apply two strategies. First, unbundling with a la carte ancillaries offers maximal 

flexibility. Second, bundling with pre-defined branded fares is convenient and 

easier to comprehend for customers. The profitability of suitable bundling 

strategies goes back to early studies by Stigler (1963) and Schmalensee (1984). 
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Further, differential bundling, as opposed to differential pricing, might 

circumvent problems with anti-discrimination laws (Adams & Yellen, 1976). 

Ratliff & Gallego (2013) evaluated airline branded fares for four to five distinct 

customer segments in a discrete choice framework. They reported significant 

profitability differences across various branded fare design and pricing 

strategies. To improve comparability across airlines, Szymanski and Darrow 

(2021) developed a framework categorizing airline-specific branded fares into 

utility levels. 

As a third strategy, dynamic bundling aims to combine convenience and 

flexibility. It requires methods to detect which specific bundle most closely 

resembles customer preferences for every individual request. Vinod (2020) 

proposed a combination of segmentation and personalization to create a 

“segment of ONE”. He drafted a three-step framework to create personas, build 

recommendation engines, and adjust recommendations in case customer 

identity is declared. To integrate feedback effects and capture behavior 

changes, Vinod (2020, 2021a) advocated application of reinforcement learning 

techniques. 

3.2.4 Assortment 

Assortment aims to select a subset of all products to display to customers. It 

originated in the retail industry with the optimization of products on store shelves 

(Kök et al. 2008). Assortment optimization rests on the observation that 

consumers deviate from perfect rationality due to several psychological 

influences including framing, priming, positioning, and defaults (Jannach et al., 

2010). Optimal pricing might also depend on which other products are made 

available for purchase, calling for integrated models (e.g., Ferreira & Wu, 2011). 
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3.2.5 Distribution 

The relevance of traditional distribution through Global Distribution Systems 

(GDS) limits the ability of airlines to control the entire offer generation process 

and restricts pricing to 26 booking classes. However, the increased adoption of 

IATA’s New Distribution Capability (NDC, IATA, 2020) and higher shares of 

direct distribution enable airlines to receive and process more information about 

every single search request, and finally to respond to each request with 

customized offers. Moreover, NDC paves the way for effective deployment of 

continuous pricing, eliminating the concept of fare classes in the long-term. 

Leading airlines consequently view NDC as important strategic pillar (e.g., 

Lufthansa, 2018). 

3.3 Contribution: customized offer 

management 

Due to high practical relevance, customized offer management has attracted 

scientific attention in the recent years. Table 4 summarizes relevant literature 

since 2013. 
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Table 4: Summary of offer management literature since 2013. 

Paper Bundling Ancillary / Bundle 

pricing 

Flight pricing 

Ratliff and 

Gallego (2013) 

Discrete choice  Discrete choice  - 

Fiig et al. (2016) - - Discrete choice  

Madireddy et al. 

(2017) 

Various machine 

learning models 

Various machine 

learning models 

- 

Bockelie and 

Belobaba (2017) 

- Discrete choice  Discrete choice  

Wittman and 

Belobaba (2018) 

- - Discrete choice  

Fiig et al. (2018) - A/B testing and 

machine learning 

Discrete choice  

Shukla et al. 

(2019) 

- Various machine 

learning models 

- 

Vinod (2020) Various machine 

learning or 

statistical models 

- - 

Srinivasan and 

Komirishetty 

(2021) 

- Deep neural 

networks 

- 

Kumar (2021) - Reinforcement 

learning 

- 

Ratliff (2021) Machine learning Machine learning - 
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Most contributions either focused on bundling with given ancillary prices, 

ancillary pricing, or flight pricing. Notably, the PODS Research Project (PODS, 

2021) develops discrete choice optimization models to integrate ancillary, 

itinerary and fare class choice. As part of this project, Bockelie & Belobaba 

(2017) distinguished two types of customers, namely simultaneous consumers 

selecting flight and ancillaries at the same time, and sequential consumers 

choosing flights first and evaluating ancillaries afterwards. This is how most 

flight search engines and the GDS work. Madireddy et al. (2017) studied offer 

construction for sequential customers, suggesting clustering algorithms for 

customer segmentation based on trip characteristics and, if available, past 

customer behavior. Comprehensive OMS were drafted by Vinod et al. (2018) 

with rule-based trip-purpose segmentation, and Fiig et al. (2018) propagating 

discrete choice models for flight pricing and ML for ancillary pricing.  

In conclusion, some studies advocate discrete choice or generally statistical 

models, whereas others propose and/or apply different ML algorithms. 

Compared to problem-specific choice models, ML might be less theoretically 

sound and less comprehensible; however, ML could be more flexible to find 

generalizable patterns in unstructured high-dimensional data than assumption-

driven choice models that require low-dimensional attributes for meaningful 

analyses (Bzdok et al., 2018; Fiig et al., 2018). Therefore, ML has various 

potential applications in travel, including customer segmentation with more 

segments than would be possible in choice models, upsell management, 

recommendation engines, and seat-based pricing (Dadoun et al., 2021; Vinod, 

2021a, 2021b).  

This research develops a conceptual OMS architecture comprising bundling, 

ancillary pricing, flight pricing, and assortment. It sequentially applies two ML 

algorithms, clustering and matrix factorization, to support segmentation with 

much higher granularity than existing research. At the same time, the modular 

design of the architecture ensures data sparsity, curse of dimensionality and 

model understandability are adequately addressed. The next section will 

describe the proposed OMS. 
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3.4 Offer management system architecture 

Both streams introduced in Figure 9, product choice and flight pricing, are 

composed of various modules. Figure 10 shows the modules and how they 

interact with existing elements of airline RMS.  

 

Figure 10: Schematic overview of the modules contributing to the two streams 

(vertically), divided into the offline and online parts of the proposed OMS (horizontally). 

Both streams build on historical booking and ticket data including real-time 

request parameters assumed to have predictive power for product choice and 

prices paid. In all analyses, branded fares are treated as combination of flight 
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plus all ancillaries included though this might raise some problems as 

addressed in “Practical airline implementation”. 

For product choice, an ML-based segmentation model granularly clusters all 

booking requests with respect to ancillary purchases. To avoid curse of 

dimensionality and to keep the model understandable, segmentation is broken 

down into subdimensions. Subsequently, the segments are mapped to ancillary 

purchase probabilities and average ancillary spend, enhanced by ML to 

overcome data sparsity problems. Then, segment-specific bundle purchase 

probabilities and ancillary upsell prices are calculated. These modules run in 

the background with periodical updates (offline). In real-time, every incoming 

booking request runs through these steps (online). Together with ancillary bid 

prices, if existent, all possible bundles are ranked by expected upsell 

profitability. Finally, the assortment optimization module decides in real-time 

which of all possible bundles shall be displayed at which upsell prices to the 

particular segment. 

Conceptually, the same two ML-driven optimization steps are performed for 

flight pricing. The segmentation model clusters with respect to booking classes 

purchased, and segments are mapped to nested booking class purchase 

probabilities. These are combined with price points for all origin-destination (O-

D) pairs to determine the request-specific revenue-optimal booking class flight 

price for all O-Ds. Online, every new request runs through these steps. Together 

with flight bid prices and an additional module for continuous pricing, if 

applicable, the request-specific flight price is determined in real-time. 

Together, the outputs of both streams govern the offers and corresponding 

prices to be returned to each incoming request in real-time through the 

distribution channels (direct sales, (online) travel agency, etc.). 

The next two sections consecutively detail the modules of both streams, product 

choice and flight pricing. 
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3.5 Stream 1: Product choice 

This stream refers to the left side of Figure 10 and sequentially details the 

modules shown from top to bottom. It aims to facilitate segment-specific bundle 

assortment at segment-specific upsell prices in real-time. 

3.5.1 ML-based granular segmentation (Product) 

Goal of this module is segmenting all booking requests with respect to product 

choice, i.e. ancillary purchase. This research proposes unsupervised ML to 

compactly represent unstructured data by identifying groups of similar behavior 

to enable much higher granularity than would be feasible for rule-based or 

choice models. 

The different parameters, which are attached to each booking request and could 

predict customer choice, are categorized into 𝐶  features, representing 

segmentation subdimensions. Figure 11 illustrates a representation with nine 

features. These fall into one of three categories. One, information that 

customers explicitly provide when searching for flights on airline websites 

(origin, destination, departure date, travelers, return dates). Two, information 

that implicitly comes with the search (weekday and time of day of search, sales 

channel, loyalty). Three, information related to the product (flight). Four, 

information airlines already collect and use for pricing or product decisions today 

(holidays, length of stay). Each feature can assume 𝑉𝑐 possible values. This 

results in exponential scaling of the total number of possible request 

combinations 𝑟. 
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Figure 11: Illustration of the granular request segmentation based on product choice. 

𝑉𝑐 might be small for some features, e.g. “length of stay”, because a request is 

either made for one-way travel, same-day return, weekend, workweek, or full-

week stay. However, 𝑉𝑐  could be much larger for other features, such as 

“booking timestamp”. For example, 7 weekdays and 24 hourly intervals result in 

𝑉1 = 168  timestamp combinations. To bring 𝑟  to a tractable number of 

segments 𝑠 , 𝑉1  needs to be reduced to a much smaller number 𝐾1 . Two 

algorithms that seem suitable for this purpose are k-means and hierarchical 

clustering. K-means clusters requests into 𝐾 distinct groups (Jain, 2010) based 

on similarity with respect to ancillary choice. Major benefit is that choosing 𝐾 is 

left to the user. With 𝐶 = 9 features and 𝐾 = 5 possible values for each, there 

are still almost 2 million segments (𝐾𝐶). Assuming 𝐾 = 4 would already reduce 

this number to 262,144, which needs to be compared to the total number of 

airline bookings over the time period feeding the model, realistically 1-3 years. 

𝐾𝑐 can vary from feature to feature and needs to be optimized during validation 

on airline data. Advantage of hierarchical clustering is that the user can specify 

the maximum distance until which objects are clustered together instead of 

specifying the total number of clusters to form (Murtagh & Contreras, 2012). To 

capture changes in customer behavior, the segmentation model should be 
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periodically recalibrated (e.g., monthly or quarterly). Also, higher weights can 

be put on recent observations with exponential smoothing techniques (Gardner 

1985). 

In real-time, any incoming request is clustered for each feature, i.e. a new 

request might be mapped to “booking timestamp cluster 1”, “origin & holidays 

cluster 2”, etc. A segment is the combination of clusters for all features, hence 

every incoming request gets mapped to precisely one segment. 

3.5.2 ML-enhanced mapping: segments to ancillaries 

For each segment, observed ancillary purchase probabilities and average 

ancillary spend form a segment-ancillary interaction matrix. Exponential 

smoothing can be applied to prioritize recent observations. Due to the highly 

granular segmentation in comparison to overall bookings, however, data 

sparsity problems may occur. To overcome, this research propagates a novel 

application of the well-studied matrix factorization algorithm. The initial idea 

behind this algorithm is ascribed to Funk (2006) in the context of the Netflix prize 

competition. So far, matrix factorization has mostly been applied to fill blanks in 

the user-item interaction matrix, i.e. to predict preferences of identified users for 

new movies. This research suggests application of matrix factorization on 

segments instead of individual users and ancillaries instead of movies. Goal is 

not to fill blanks, but to overcome data sparsity and increase prediction 

robustness for repeated interaction by updating the observed segment-ancillary 

matrix through factorization (Figure 12).  
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Figure 12: Application of factorization to overcome data sparsity problems by updating 

the observed segment-ancillary interaction matrix. 

Mathematically, matrix factorization decomposes the relation between the 

segment vector 𝑆 and the ancillary vector 𝐴 into the dot product of the relations 

between  𝑆  and a factor vector 𝐹 , and between the transpose 𝐹𝑇  and 𝐴      

(Figure 13).  

 

𝑆 ⋅ 𝐴 = (𝑆 ⋅ 𝐹) ⋅ (𝐹𝑇 ⋅ 𝐴) 

 

(6) 

The number of factors 𝑓 to be introduced is found during validation. It needs to 

be smaller than the number of ancillaries 𝑎 and significantly smaller than 𝑠. Next 

to overcoming data sparsity, factorization offers the additional advantage of 

factor interpretation as underlying preferences such as convenience, flexibility, 

vacation, value of time, comfort, connectivity, or entertainment.  
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Figure 13: Matrix factorization decomposes the mapping of segments to ancillaries. 

Starting with arbitrary initial values for the cells of both factor matrices (𝑆 ⋅ 𝐹) 

and (𝐹𝑇 ⋅ 𝐴), the matrix factorization algorithm iterates on these to minimize the 

differences between the originally observed matrix and the one resulting from 

factorization. Details on optimization techniques for iterative improvement can 

be found in Aggarwal (2016). The magnitude of the factorization update is 

inversely related to the number of observations for any particular segment. This 

is precisely what is intended. Segments with many observations are updated 

only slightly. Segments with few observations, i.e. those for which data sparsity 

can be problematic, are updated more heavily. Frequent recalibration of the 

factorization model and exponential smoothing can ensure capturing changes 

in customer behavior.  

Any incoming request retrieves segment-specific ancillary purchase 

probabilities and average ancillary spend – updated with factorization – in real-

time. These two outputs are independently processed in the next two modules. 
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3.5.3 Further modules 

All possible bundles are all possible combinations of ancillaries. Segment-

specific bundle purchase probabilities are obtained by multiplication of the 

segment-specific purchase probabilities of all ancillaries included and counter-

probabilities of all ancillaries not included. These calculations are updated 

periodically. 

Due to static ancillary pricing, many airlines lack data on how customers 

respond to dynamic ancillary prices. To generate such data, this chapter 

suggests making a very simple yet intuitive assumption to establish segment-

specific ancillary upsell prices. The more a particular segment spends on 

ancillaries on average, the higher the ancillary WTP of that segment. Segments 

that do not spend much on ancillaries need cheap prices to be attracted to 

ancillary purchases. Segments that do spend much on ancillaries, are willing to 

pay more for additional services. In addition, airlines might want to specify floors 

and/or caps to restrict ancillary prices to reasonable ranges. This simplified logic 

assists first steps towards moving from static to segment-specific ancillary 

pricing. Once specific data is generated from actual testing, feedback effects 

can be collected. This would enable application of the same logic as suggested 

in “Stream 2: Flight pricing” to ancillary pricing as well. In the presented 

architecture, the optimal upsell price of each bundle equals the sum of the 

optimal ancillary prices of all ancillaries included. To ensure price consistency, 

airlines might choose to price any unbundled ancillary consistently as well. 

The next module conflates bundle purchase probabilities and ancillary upsell 

prices to enable ranking of all possible bundles by expected profitability, 

responsive to each incoming request in real-time. In addition, airlines need to 

ensure that each ancillary at least covers its ancillary bid prices, i.e. ancillary 

opportunity costs on all flight legs traversed. These present an ongoing field of 

innovation and might not yet be available to most airlines. 

After ranking, the segment-specific assortment optimization module decides 

in real-time which of all possible bundles are displayed to an incoming request 
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at which upsell prices. Goal is to consider customers’ purchase behavior driven 

by the psychological factors mentioned in “Assortment”. Airlines can display 

some customized bundle options, e.g. the one with highest expected 

profitability, or the one with highest purchase probability, or a “premium” bundle 

including many ancillaries. In addition, airlines might want to display (some of) 

their established branded fares or the cheapest “no-frill” option to attract 

customers comparing airline offers for the cheapest price. 

3.6 Stream 2: Flight pricing 

This stream relates to the right side of Figure 10 and sequentially details the 

modules shown from top to bottom. Goal is real-time request-specific flight 

pricing.  

Methodologically, this research proposes the same ML-based request 

segmentation as described in “Stream 1: Product choice” (Figure 11). 

However, requests are clustered with respect to booking class purchased. 

Notably, continuous pricing is often implemented through discounting and/or 

incrementing booking class prices to reach the continuous price. Such data-

driven ML-based segmentation presents a major deviation from most airlines’ 

practices with rule-based models. Whilst the clustering algorithm shall be 

updated periodically, every incoming request is mapped to precisely one 

segment in real-time. 

In the next module, segments are mapped to nested booking class 

purchase probabilities. This research proposes updating observed booking 

class purchase probabilities with matrix factorization to increase prediction 

robustness. This resembles the methodology introduced in “Stream 1: Product 

choice” (Figure 12 and Figure 13). This update is performed periodically. For 
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every incoming request, nested booking class purchase probabilities are 

retrieved from the matrix in real-time. 

The subsequent modules of the stream process information from existing airline 

RMS elements. The segment-specific revenue-optimal booking class flight 

price for all O-D pairs is periodically calculated from segment-specific nested 

booking class purchase probabilities and pre-defined booking class price 

points for all O-Ds. For any new request, the corresponding booking class 

flight price is retrieved in real-time. If no continuous pricing adjustment exists 

with an airline (see below), nested probabilities could be interpolated between 

booking classes. 

Flight bid prices represent seat opportunity costs on all flight legs traversed in 

a requested O-D. These are combined with the revenue-optimal booking class 

flight price and, if applicable, any continuous pricing adjustment, to obtain 

the optimal continuous request-specific flight price in real-time. The exact 

strategy to incorporate continuous pricing might vary from airline to airline, but 

generally follows the logic to adjust booking class prices to ensure consistency 

with existing RM practices. 

As final step, the outputs of both streams determine the segment-specific set of 

offers and their corresponding request-specific prices, returned via the 

distribution channels to each incoming request in real-time. Bundle prices 

equal the sum of request-specific flight price and segment- and bundle-specific 

upsell price.  

3.7 Innovations 

The presented OMS architecture extends existing research and innovates 

airline RMS/OMS in various directions.  
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It combines real-time bundling, ancillary pricing, flight pricing, and assortment 

into a conceptual solution aimed at high practicality. First, the modularity allows 

incremental and independent embedding into existing RMS and processes data 

that already exist. Controllable modules conceivably support understandability 

and circumvent curse of dimensionality issues, both of which might occur with 

more complex deep learning models. Second, frequent recalibrations and 

exponential smoothing aim at timely adaptation to behavior changes. Feedback 

effects from actual live tests could further foster continuous model learning. 

Third, the separation of segmentation for product choice and flight pricing allows 

ancillary and flight WTP to behave differently. Still, correlations seem implicitly 

captured as both rely on the same data. 

Most importantly, ML – as opposed to choice models – might enable data-driven 

highly granular and high-dimensional segmentation. Potentially resulting data 

sparsity problems could be addressed with the novel application of matrix 

factorization. Instead of relying on identified users, it focuses on repeated 

interaction between segments and ancillaries or booking classes to improve 

prediction robustness through learning over time.  

Both streams are designed to independently add value to airlines. “Stream 1: 

Product choice” could combine the flexibility of unbundled ancillaries with the 

simplicity and convenience of branded fares. Whilst the bundling logic could 

already be implemented with static ancillary pricing, this research offers a 

simple intuitive logic as first steps towards customized ancillary pricing. “Stream 

2: Flight pricing” aims to facilitate revenue optimization through customer 

segmentation and price-elasticity estimation with much higher granularity than 

existing approaches. The models can be trained with existing systems based 

on booking classes but enable integration of continuous pricing logic.  
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3.8 Validation and dissemination 

The conceptual OMS architecture outlined in this chapter can be followed by 

several validation steps. First, a prediction model can be trained, validated and 

tested on actual airline data. Second, small-scope real-live testing could be 

attained through application on small route subsamples. This would enable 

incorporation of feedback effects and deployment of reinforcement learning 

techniques to enhance adaptability to possible behavior changes. Third, 

successful small-scope testing could result in gradual embedding into existing 

airline RMS/OMS, either of whole streams or selected modules only, allowing 

comparison to existing models. Fourth, application outside of passenger 

aviation, perhaps slightly adapted to the specific case, can yield valuable 

insights into the generalizability of the proposed architecture. Potential use 

cases include high-speed railways, ferry operators, or air cargo carriers. 

3.9 Discussion for practical implementation 

This section sketches points of discussion for practical airline implementation. 

It examines the impact of implicit OMS assumptions and proposes solutions. In 

addition, it outlines potential extensions of the proposed OMS and touches upon 

change management aspects. 

The presented OMS makes several implicit assumptions. Practitioners should 

be aware of their impacts and how these could be addressed. First, “Stream 2: 

Flight pricing” assumes customers always choose the lowest offered booking 

class. This only holds true if product choice and booking class are independent, 

i.e. existing branded fares and ancillaries are offered in all booking classes. If 

not, an explicit correction might be required. Second, the OMS treats branded 

fares as if they represented independent customer choices for all ancillaries 

included. However, customers might not have purchased all branded fare 



77 
 

components if offered unbundled, leading to inflated purchase probabilities of 

those ancillaries included in branded fares. The issue could be addressed with 

actual live tests. Third, different bundles might be displayed when otherwise 

identical requests are repeated with different time stamps. Airlines could think 

about an additional module able to store the requests and their respective 

returned bundles for some time. Alternatively, one might argue that airline 

customers are already used to dynamic flight pricing (and even some first 

attempts of dynamic ancillary pricing), so they might also familiarize themselves 

with being offered different products at different points in time. Fourth, in cases 

of new feature values (e.g., new destinations) or new ancillaries, no historical 

data exist for ML-based segmentation. Potential solution could be to manually 

cluster new destinations/ancillaries temporarily with existing ones until sufficient 

data is generated.  

The modular OMS architecture allows extension with various modules. First, 

the OMS could process requests for which the no-purchase option was chosen 

in addition to those successfully converted into bookings. Second, third party 

ancillaries (hotels, rental cars, etc.) could be included, requiring interfaces to 

third party inventory and pricing systems. Third, some existing research 

(Bockelie & Belobaba, 2017; Fiig et al., 2016; PODS, 2021) explicitly model 

competition. The proposed OMS could be extended to include competitive 

pricing and offers. So far, it models competitive effects only indirectly as 

reflected in the booking data, which might work as long as competition intensity 

is constant for a given segment and/or O-D. Fourth, many leading airlines 

investigate into personalization although often the majority of requests remain 

anonymous. Clear focus of the proposed OMS is to segment requests 

independent of whether customer identity is declared. This also circumvents the 

problem of the same individual assuming different roles. However, one could 

think of enhancing the OMS with an additional personalization module similar 

to Vinod (2020) suggesting an adjustment of recommended offers for declared 

customers. Fifth, the ML-segmentation could be combined with discrete choice 
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and/or econometric models to benefit from both the flexibility and adaptability of 

ML as well as the theoretical soundness of statistics. 

Both streams could be independently integrated into airline RMS. Whereas 

“Stream 1: Product choice” would constitute novel elements to complement 

existing RMS for most airlines, “Stream 2: Flight pricing” would present a 

significant change from established practices. Both would require thorough 

change management initiatives within the RM organization including close 

coordination with Sales, Marketing, and Distribution departments. The same 

holds true to raise acceptance for ML adoption. The more understandable ML 

models are, the higher their acceptance. The proposed architecture appears 

more intuitive than deep learning models or artificial neural networks. 

3.10 Conclusion 

This research combines request-specific real-time bundling, ancillary pricing, 

flight pricing, and assortment into a conceptual architecture for customized 

airline offer management. To facilitate higher granularity than existing models, 

the proposed offer management system (OMS) leaves request segmentation 

entirely up to machine learning supported pattern recognition in booking data 

instead of applying customer choice models. The design of the OMS addresses 

three potential problems that might result from such segmentation with high 

granularity. First, a novel application of the well-studied matrix factorization 

algorithm could overcome data sparsity problems. Second, segmenting 

requests alongside subdimensions might circumvent curse of dimensionality 

issues. Third, the modularity of the architecture supports model 

understandability. Hence, the OMS might enable a new solution to the 

fundamental trade-off between granularity/complexity and model 

applicability/robustness. 
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The OMS is structured alongside two streams, both of which could be 

independently integrated into airline revenue management systems (RMS). 

“Stream 1: Product choice” would support the evolution of RMS into OMS to 

enhance customer satisfaction being presented more relevant offers. “Stream 

2: Flight pricing” could facilitate willingness to pay estimation for highly granular 

segments to potentially improve pricing decisions and increase airline revenue. 

Further academic research could either contribute to validation of the OMS or 

investigate into potential practical extensions as indicated.  
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4 Inductive research: first 

validation6
 

Airlines serve different customers. Developing customized offer and pricing 

strategies have become a strategic priority to airlines and have attracted 

operations research accordingly. This chapter tests the first fundamental 

hypothesis of the offer management system architecture of Chapter 3 that aims 

to combine the simplicity of branded fares with the flexibility of unbundled 

ancillaries. The hypothesis is that the wealth of data available to airlines enables 

segmentation orders of magnitude more granular than existing models based 

on anonymous features of a particular customer search. 

The hypothesis is tested through inductive research based on 202 million flight 

coupons of a major network airline between 2018 and 2023. Chapter 4 observes 

customer choice probabilities differ depending on the weekday of the booking. 

Next, it identifies a pattern. Customer choice probabilities also differ based on 

sales channel, flight characteristics, and customer loyalty status. Generalizing 

these findings, this research suggests airlines can improve prediction accuracy 

of customer choices and hence display more relevant offers when segmenting 

on these search features. If true, it presents a low-cost process to increase 

prediction accuracy with data readily available to airlines. The findings are 

relevant to both airline practitioners and researchers for follow-up studies alike. 

Section 4.1 briefly summarizes literature context, motivation, and contribution. 

Section 4.2 describes the research approach and provides details on the 

496 million airline coupons used. Section 4.3 discusses a first observation, 

namely that the weekday of a booking affects customer choice. Building on that, 

Section 4.4 identifies a pattern. Not only booking weekday, but multiple features 

included in customer searches affect customer choice probabilities. Section 4.5 

 
6 This chapter is based on a paper that is written and approved by the airline partner for 
publication. 
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summarizes and discusses results. Section 4.6 concludes the validation of the 

first fundamental hypothesis of the dissertation. 

4.1 Literature context, motivation, and 

contribution 

In the last two decades, the evolution from revenue management (RM) to offer 

management (OM) and customization of offers have been two key themes for 

airlines. First, the rise of low-cost carriers has increased the importance of 

ancillary revenues. This has fueled the shift from RM aiming to optimize pricing 

to OM aiming to jointly optimize pricing and product decisions. In this notion, an 

offer is defined as the product plus the price. Second, advancements in pattern 

recognition through machine learning (ML) and online distribution enabled 

customization, or even personalization, of offers, with e-commerce 

spearheading innovation (Bakos, 2001; Kashyap et al., 2022). Airlines aim for 

similar personalized or customized pricing and product strategies as well.  

Due to their practical relevance, both these themes have received ample 

attention in passenger air transport from operations research perspective. The 

same holds true for customer segmentation as key enabler. 

4.1.1 Customers are different and want different things 

Different customers demand different things. Firstly, because customers 

themselves are different from each other. These differences manifest 

themselves in their search behavior. Examples are customers searching on 

different weekdays or through different sales channels. Also, customers have 

different loyalty behavior and status. In addition, some customers shop for 
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flights one year before departure, whereas others search flights that depart on 

the same day. 

Secondly, because customers search for different products. They depart from 

different origins and want to go to different destinations. They look for different 

flight compartments, from Economy to First. Some customers travel alone, 

whereas others travel with a partner, with a family, with infants, or with a group. 

Customers might search for one-way options or return flights with length of stay 

varying between few hours and multiple months. Length of stay is among the 

oldest customer segmentation fences used in flight pricing (Belobaba, 2016). It 

aims to segment by travel purpose, assuming leisure travelers stay longer at 

their destination than business travelers. 

4.1.2 Airlines differentiate their offers 

Airlines aim to serve their differentiated customers with differentiated offers. To 

study differentiated OM, researchers and practitioners distinguish between 

personalization and customization. Personalization aims for offers catering to 

the individual person searching. This typically requires the customer to reveal 

themselves, e.g. by logging into the airline website or loyalty program. In this 

case, airlines can consider the past shopping history of the individual customer. 

On the contrary, customization does not require knowledge of the personal 

identify. Instead of past shopping behavior of this individual, it aims to identify 

patterns in customer searches. Goal is to respond with customized offers based 

on what customers with similar search behavior purchased in the past. 

Advantage of customization over personalization is that it is not in conflict with 

data privacy rules (Millet 2023). Also, it is more universally applicable precisely 

because it also works when customers do not declare their personal identify. 

Airlines have multiple levers to differentiate, i.e. personalize or customize, their 

OM. Flight pricing is the oldest lever in traditional airline RM. Starting with 

Littlewood (1972) suggesting airlines to maximize revenue instead of load 
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factors, airlines have gained decades of experience. Transitioning from RM to 

OM, product choice has become more relevant. It comprises which ancillaries 

customers purchase at which price on top of the mere seat. Within product 

choice, the differentiation levers can be expanded to bundling, ancillary pricing, 

and assortment as visualized in Figure 14.  

 

Figure 14: Different levers to differentiate offer management.7 

Bundling refers to combining single ancillaries into unbreakable packages and 

was first academically researched by Stigler (1963). Bundling strategies can 

also result in some ancillaries or combinations of ancillaries being only available 

as part of bundles. Ancillary pricing comprises pricing of single ancillaries as 

well as bundles. In 2023, ancillary revenues were estimated at 15% of total 

airline revenues (IdeaWorks & CarTrawler, 2023). Finally, assortment refers to 

selecting which of the possible combinations of products to show to customers 

and in which order. It builds on several psychological behaviors that cause 

consumers to deviate from rational behavior (Jannach et al., 2010). 

 
7 Source: Schubert et al. (2021). 
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4.1.3 Models to optimize offers for a given search 

Both academia and practitioners have applied different classes of models to use 

these levers in a way that maximizes customer or business outcomes for a given 

customer search. Customer outcomes can be offer relevance and satisfaction. 

Business outcomes can be conversion, revenue, seat load factor, and 

profitability. Broadly, the models can be categorized into statistical models like 

discrete choice analysis, and model-free ML algorithms. Established airline OM 

examples are Ratliff & Gallego (2013) and Wittman & Belobaba (2019) for 

discrete choice models, as well as Madireddy et al. (2017) and Shukla et al. 

(2019) for ML algorithms. Discrete choice models offer the advantage of 

theoretical soundness, whereas ML is more flexible to generalize patterns from 

unstructured and high-dimensional data (Bzdok et al., 2018; Fiig et al., 2018).  

Chapter 3 presented a comprehensive OM architecture that aims to improve 

prediction accuracy of discrete choice models through application of different 

ML algorithms. The comprehensive architecture is visualized in Figure 15. To 

improve model understandability and applicability, they proposed a modular OM 

system, which is structured into two main streams for product choice and flight 

pricing. Both streams could be independently embedded into existing airline 

systems.  
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Figure 15: Conceptual architecture put forward in this dissertation. 

The ability to improve prediction accuracy of customer discrete choice 

probabilities rests on the feasibility of highly granular segmentation to achieve 

a new balance between granularity/complexity and applicability/robustness of 

the segments. This would enable airlines to respond to customer searches with 

context-specific offers to increase outcomes for customers and business. It 

would combine the flexibility of unbundled ancillaries with the convenience and 

simplicity of branded fares. To resolve data sparsity, they conceptualized a 

novel application of the well-studied matrix factorization algorithm first 

introduced by Funk (2006) for the Netflix price competition. Matrix factorization 

belongs to the family of recommender system algorithms that are widely used 
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to tailor offerings to individual customers or customer segments. Prominent use 

cases besides Netflix are Amazon, Spotify, and many more (Alamdari et al., 

2020). 

The viability of the proposed OM architecture rests on the following fundamental 

hypothesis: 

Through a combination of ML algorithms, airlines can achieve segmentation 

orders of magnitude more granular and high-dimensional than previous 

models because of the wealth of data available to airlines included in 

customers searches. 

Testing this hypothesis on the product choice levers requires zooming in on the 

red oval in Figure 15. Goal is to map search characteristics, representing 

customer segments, to products, thereby detecting segment-specific customer 

choice probabilities.  

4.1.4 Research contribution 

This chapter conducts inductive research on this hypothesis. It studies 

202 million coupons of actual airline booking data from a major network airline, 

identifies patterns, and confirms the hypothesis. As such, it is the first proof-of-

concept of the viability of the solution presented in Chapter 3. Customer choice 

behavior is investigated based on three customer and one product 

characteristics. The three customer characteristics are booking weekday, sales 

channel, and loyalty status. The product characteristics is whether a searched 

flight leg is an overnight flight or not. The scope of the research is limited to 

Economy searches and bookings.  

The inductive research conducted is independent of personalized data, hence 

compliant with data privacy rules such as GDPR in Europe 8 . Instead of 

 
8 GDPR (General Data Protection Regulation) is an EU regulation governing information 
privacy in the European Union since 2018. Similar regulations exist in other parts of the 
world. 
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personalized OM, the research investigates the proposed solution for highly 

granular customized OM. Customer segments are clustered without using 

sensitive personal data, and the context of a search is used to connect a specific 

customer to one of the segments. The presented research is novel and 

innovative as the first to analyze the potential of highly granular segmentation 

with such comprehensive actual airline data.  

4.1.5 Structure of the chapter 

The remainder of the chapter is structured as follows: Section 4.2 describes the 

airline data and approach underlying this inductive research. Section 4.3 

investigates customer choice probabilities based on the weekday their bookings 

were placed. It also details the methodology and metrics to quantify the 

differences between different choice probability distributions. Section 4.4 

expands the analysis to customer choice probabilities based on sales channel, 

flight characteristics, and customer loyalty status. Section 4.5 generalizes the 

inductive findings. Section 4.6 summarizes and suggests how future research 

can validate these. 

4.2 Research approach and data 

This inductive research analyzes actual customer choice behavior of a major 

network airline in a period of five years between September 2018 and 

September 2023. Customer choice probabilities are investigated based on 

booking weekday, sales channel, flight characteristics, and customer loyalty 

status.  

The customer choice process underlying the data follows the two-step process 

visualized in Figure 16. This chapter comprises the airline’s customer journey 

with four branded fares (A, B, C, D) and five paid ancillaries (I, II, III, IV, V). The 
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branded fare (BF) and ancillary names are anonymized to protect data 

confidentiality of the network airline. 

This research focuses on airline-own ancillaries, i.e. excludes those offered by 

third parties such as hotels and rental cars. Some more expensive branded 

fares include some of the ancillaries that are available for a la carte purchase 

for cheaper branded fares (e.g., seat reservation and additional check-in 

baggage). Other value-added services (e.g., rebooking and cancellation 

options) are only available in more expensive branded fares, but cannot be 

purchased as a la carte ancillaries. Finally, not all combinatorial possibilities can 

be combined in practice. All possible combinations span a total of 100 products 

that customers can select from. A product is defined as a distinct combination 

of BF selection and zero, one or more paid ancillaries. 

 

Figure 16: Customer choice process, selecting branded fares in step 1 and amongst a 

list of a la carte ancillaries in step 2. 

The research is conducted based on 496 million coupons of a major network 

airline between September 2018 and September 2023. The data used is 

confidential information of the major network airline. The data is anonymized to 

comply with data privacy rules. After removing all compartments but Economy 

(i.e., removing First, Business, Premium Economy), 359 million coupons 

remained. To ensure data quality, additional cleansing removed coupons that 

did not have a branded fare associated, a create date, a coupon leg number, 

an operating airline, an origin airport, a destination airport, and/or any ticketed 

gross price information. After these cleansing steps, 202 million coupons 

remained. A coupon refers to one passenger and one flight leg. A booking can 
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comprise multiple coupons. Geographically, the data spans origins and 

destinations worldwide. The hub structure of the airline is reflected in 

geographical concentration on its home markets.  

Table 5 shows customer choice behavior with respect to BF and ancillary 

selection. The vast majority (89%) of all bookings did not purchase any paid 

ancillary. This is especially true for BF A, C and D. Only customers purchasing 

BF B exhibit a somewhat higher probability of paying for additional ancillaries. 

Also, there is strong concentration on ancillaries I and II. Any combination 

involving paid ancillaries III, IV or V was purchased by less than 0.5% of 

customers for all four branded fares. 

Table 5: Exploratory data analysis of 202 million coupons, showing the observed choice 

frequencies of customers (in %) based on their branded fare selection. 

Branded 

fare (BF) 

No paid 

ancillary 

Paid 

ancillary I 

Paid 

ancillary II 

Paid 

ancillaries 

I and II 

Other paid 

ancillaries 

BF A 97% <0.5% 3% <0.5% <0.5% 

BF B 81% 11% 6% 2% <0.5% 

BF C 94% <0.5% 6% <0.5% <0.5% 

BF D 94% <0.5% 6% <0.5% <0.5% 

Total 89% 6% 4% 1% <0.5% 

 

The analysis in this chapter covers a subset of the features presented in the 

conceptual architecture of Chapter 3 (Figure 17). Booking timestamp, sales 

channel, flight, and loyalty were selected as features for the inductive validation 

for two reasons. First, they are data readily available for airlines. Second, they 

are not used for segmentation, pricing, or product decisions by most airlines, 

unlike origin, destination, days before departure or length of stay. Additionally, 

these features comply with anti-discrimination laws.  
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Figure 17: Four features selected for validation of the conceptual solution. 

Figure 18 and Figure 19 visualize the distribution of booking weekdays and 

sales channels. For example, 8% of all bookings were made on a Saturday, 

which makes Saturday the day of the week with the lowest customer booking 

activity. These 8% on a Saturday compare to 17% of all bookings placed on 

Monday and another 17% on Tuesday, which are the two busiest days of the 

week with respect to customers placing their bookings. For sales channels, the 

real names of the channels are not included due to data confidentiality. 

However, the chart still shows interesting trends. For instance, 41% of all 

bookings are placed through one channel (“Channel 4”), which is by far the 

highest share. In contrast, five channels are used for less than 5% of all 

bookings. 

Due to data confidentiality, further descriptive statistics, such as the distributions 

by flight type and loyalty status, are not included in the thesis. The same applies 

to descriptive statistics on other potential features, such as origin or destination 

countries or the number and type of travelers (adults, children, infants).  
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Figure 18: Distribution of booking weekdays in the entire dataset used. 

 

Figure 19: Distribution of sales channels in the entire dataset used. 

In the next sections, first observations will be presented on different choice 

probabilities based on booking weekday. Thereafter, the three other 

characteristics sales channel, overnight flight yes/no, and customer loyalty 

status are sequentially analyzed, thereby generalizing to a pattern and building 

increasingly more confidence. 

Figure 20 visualizes the sequence of the analyses. 
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Figure 20: Sequence of the analyses in this chapter. 

4.3 First observation 

In this section, customer choice probabilities are analyzed based on booking 

weekday. The goal is to identify by how much customer choice probability 

distributions differ based on the weekday the booking was made. 

Table 6 shows customer choice behavior depending on booking weekday. It 

shows observed customer choice probabilities for the four branded fares without 

paid ancillaries, and the four most often selected products that include paid 

ancillaries. Most notable is a change in customer behavior between weekdays 

(Monday-Friday) and weekend days (Saturday-Sunday). Although further 

details are not included in the thesis due to data confidentiality, this pattern may 

be explained by the different travel purposes of customers. Leisure travelers 

tend to book flights on all days of the week, whereas business travelers rarely 
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do so on weekends. On weekdays, the most often selected product is BF A 

without paid ancillaries, whereas it is BF B without paid ancillaries on weekends. 

The weekdays vs. weekend days difference seems to come predominantly from 

BF A vs. BF B, both without ancillaries. The choice probabilities of other 

products seem less dependent of the weekday of the booking. An exception is 

the choice probability for BF D without paid ancillaries, which is more than 

double on weekdays compared to weekend days. 

Table 6: Observed product choice probabilities (in %) for different booking weekdays.  

Week-

day 

BF A 

+ no 

anc. 

BF B 

+ no 

anc. 

BF C 

+ no 

anc. 

BF D 

+ no 

anc. 

BF B 

+ 

anc. I 

BF A 

+ 

anc. 

III 

BF B 

+ 

anc. 

III 

BF B 

+ 

anc. 

II 

Other 

Mon 46% 36% 0.2% 3.3% 5.0% 2.7% 1.1% 2.4% 2.9% 

Tue 46% 37% 0.2% 3.4% 5.1% 2.6% 1.0% 2.4% 2.9% 

Wed 45% 37% 0.2% 3.3% 5.1% 2.5% 1.0% 2.4% 3.1% 

Thu 46% 37% 0.2% 3.4% 5.1% 2.5% 1.0% 2.4% 3.0% 

Fri 46% 37% 0.2% 3.4% 5.1% 2.5% 1.0% 2.4% 3.0% 

Sat 37% 46% 0.2% 1.4% 7.3% 1.2% 1.0% 3.2% 2.9% 

Sun 37% 45% 0.2% 1.4% 7.4% 1.3% 1.1% 3.3% 2.9% 

Note: Darker blue indicates higher product choice probabilities. Lighter gray indicates 

lower product choice probabilities. BF indicates branded fares. Anc. indicates 

ancillaries. 

 

Next goal is to quantify differences in observed product choice probabilities 

between different weekdays. To establish the relationship between two 

probability distribution, a statistical distance metric is needed, termed 

divergence in information theory. Different divergence metrics exist (for a 

review, see Lin, 1991, and Taneja et al., 1989). Also, the metric definitions have 

evolved over time.  

This chapter uses three divergence metrics. First, the Kullback-Leibler 

divergence (KL divergence) first introduced by Kullback & Leibler (1951). 
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Second, the Symmetrized divergence first used by Jeffreys (1948). Third, the 

Jensen-Shannon divergence (JS divergence) as symmetric and bound 

extension of the KL divergence with intuitive interpretability (Lin, 1991). 

Definitions of the three metrics will follow. 

The KL divergence DKL for discrete probability distributions P and Q on the 

sample space X is defined according to Equation (7) (MacKay, 2003): 

𝐷𝐾𝐿 (𝑃 || 𝑄) = ∑ P(x) 𝑙𝑜𝑔 (
𝑃(𝑥)

𝑄(𝑥)
 )

𝑋

𝑥=1
    (7) 

DKL is non-negative and can be interpreted as the information gain when using 

P instead of the currently used distribution Q. In the language of Bayesian 

inference, DKL is the amount of information lost when P is approximated by Q.  

With these properties, KL divergence is asymmetric as shown in Equation (8): 

𝐷𝐾𝐿 (𝑃 || 𝑄) ≠ 𝐷𝐾𝐿 (𝑄 || 𝑃)     (8) 

This means the amount of information lost when approximating customer 

purchase behavior on Mondays with the customer choice probabilities observed 

on Tuesdays is different from the amount of information lost when 

approximating purchase behavior on Tuesdays with choice probabilities 

observed on Mondays. For that reason, Kullback & Leibler (1951) calculated the 

symmetrized divergence DS, which was already introduced by Jeffreys (1948), 

as symmetrized and non-negative function according to Equation (9): 

𝐷𝑆 = 𝐷𝐾𝐿 (𝑃 || 𝑄) + 𝐷𝐾𝐿 (𝑄 || 𝑃)    (9) 

 

Table 7 visualizes DS between the different booking weekdays with the 

logarithm in Equation (1) calculated to the base two. In addition, it includes 

customer choice probabilities over all weekdays. Table 7 confirms the 

observations made in Table 6. The symmetrized divergences between 

weekdays (Mon-Fri) and weekend days (Sat-Sun) are 0.10-0.12. In contrast, all 

symmetrized divergences between one weekday and another weekday, as well 

as between Saturday and Sunday, are practically zero. In conclusion, customer 
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purchase behavior seems different between weekdays and weekend days, but 

not within either weekdays or weekend days. As can be seen from symmetrized 

divergences with the probability distribution over all weekdays, weekdays 

dominate the entire population. This has the practical implication that hardly any 

information is lost when not using weekday-specific probability distributions on 

weekdays, whereas there is some information lost when doing the same on 

weekend days. 

Table 7: Symmetrized divergence between customer choice probability distributions on 

different booking weekdays, and between the different weekdays and the entire 

population (all weekdays).  

Weekday Mon Tue Wed Thu Fri Sat Sun All 

Mon 0.00        

Tue 0.00 0.00       

Wed 0.00 0.00 0.00      

Thu 0.00 0.00 0.00 0.00     

Fri 0.00 0.00 0.00 0.00 0.00    

Sat 0.12 0.11 0.11 0.11 0.11 0.00   

Sun 0.11 0.11 0.10 0.11 0.11 0.00 0.00  

All  0.01 0.00 0.00 0.00 0.00 0.08 0.07 0.00 

Note: Darker blue indicates higher symmetrized divergences. Lighter gray indicates 

lower symmetrized divergences. 

 

The symmetrized divergence is symmetric but lacks easy interpretability. It is 

not obvious whether a value of 0.12 is high or low. The JS divergence offers an 

intuitive interpretation as it is bound between zero and one if the logarithm for 

calculating the KL divergences is to the base two. Zero means the two 

probability distributions are identical, and one means the two probability 

distributions are maximally different, i.e. the two distributions have disjoint 

support (Lin, 1991). The JS divergence is calculated according to Equation (10): 

𝐷𝐽𝑆 =
1

2
𝐷𝐾𝐿 (𝑃 || 𝑀) +

1

2
𝐷𝐾𝐿 (𝑄 || 𝑀)    (10) 
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M is the average of the two distributions P and Q according to Equation (11): 

𝑀 =
1

2
 (𝑃 + 𝑄)       (11) 

 

Table 8 visualizes DJS between the different booking weekdays with the 

logarithm in Equation (7) calculated to the base two. 

Table 8: Jensen-Shannon divergence (in %) between customer choice probability 

distributions on different booking weekdays, and between the different weekdays and 

the entire population (all weekdays). 

Week-

day 
Mon Tue Wed Thu Fri Sat Sun All  

Mon 0.0%        

Tue 0.0% 0.0%       

Wed 0.0% 0.0% 0.0%      

Thu 0.0% 0.0% 0.0% 0.0%     

Fri 0.0% 0.0% 0.0% 0.0% 0.0%    

Sat 1.5% 1.4% 1.3% 1.4% 1.4% 0.0%   

Sun 1.4% 1.3% 1.2% 1.3% 1.3% 0.0% 0.0%  

All  0.1% 0.0% 0.0% 0.0% 0.0% 1.0% 0.9% 0.0% 

Note: Darker blue indicates higher Jensen-Shannon divergences. Lighter gray indicates 

lower Jensen-Shannon divergences. 

 

Using the JS divergence instead of the symmetrized divergence does not 

change the ordinality within the table. The JS divergence, however, shows that 

probability distributions between weekdays and weekend days are different, but 

they are much closer to being the same than to being disjoint. 

This section has observed that customers booking on different weekdays have 

different choice probabilities, at least those booking Monday-Friday compared 

to those booking Saturday and Sunday. Next follows an investigation whether 

there is a pattern, i.e. whether customer choice probabilities depend on multiple 

features of their search, of which booking weekday is just one example. 
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4.4 More observations and pattern 

recognition 

Having shown customer choice probabilities differ based on the weekday of 

their booking, this section expands the analysis to multiple features: sales 

channel (4.4.1), flight characteristics (4.4.2), and customer loyalty status (4.4.3). 

The analysis focuses on the JS divergence due to its intuitive interpretability 

established in the previous section. 

4.4.1 Sales channels 

Airlines distribute their offers through different sales channels. These can be 

grouped into airline-own (e.g., own website, own offices) vs. third parties (e.g., 

third party websites or comparison portals like skyscanner.com). Another 

differentiation can be made between online vs. offline distribution. The network 

airline analyzed distinguishes between eleven sales channels. 

The analysis starts with observed customer choice probabilities for bookings 

placed through different sales channels.  

Table 9 shows these for the four branded fares without paid ancillaries, and the 

four most often selected products that include paid ancillaries. This is the same 

choice set as analyzed for booking weekdays before, though now separating 

choice probabilities based on eleven different sales channels. The channel 

names are anonymized to protect data confidentiality of the network airline. 
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Table 9: Observed product choice probabilities (in %) for different sales channels. 

Sales 

ch. 

BF A 

+ no 

anc. 

BF B 

+ no 

anc. 

BF C 

+ no 

anc. 

BF D 

+ no 

anc. 

BF B 

+ 

anc. 

I 

BF A 

+ 

anc. 

III 

BF B 

+ 

anc. 

III 

BF B 

+ 

anc. 

II 

Other 

1 58% 32% 0.2% 1.6% 4.6% 0.9% 0.3% 1.2% 1.7% 

2 61% 14% 0.1% 11% 0.7% 8.7% 1.1% 0.3% 4.0% 

3 42% 43% 0.1% 2.0% 4.9% 1.6% 1.2% 3.0% 2.5% 

4 41% 41% 0.1% 2.0% 6.0% 2.1% 1.7% 3.2% 3.5% 

5 64% 18% 0.1% 7.3% 2.1% 4.4% 0.5% 0.6% 3.1% 

6 9% 79% 4.6% 1.1% 2.2% 0.2% 0.3% 3.0% 1.1% 

7 19% 61% 0.3% 0.3% 12% 0.2% 0.4% 4.2% 2.6% 

8 61% 27% 0.2% 4.1% 3.0% 1.9% 0.4% 1.1% 1.7% 

9 78% 12% 0.0% 7.2% 1.1% 1.0% 0.2% 0.3% 0.9% 

10 82% 11% 0.2% 2.0% 1.8% 1.1% 0.1% 0.4% 1.6% 

11 5% 90% 0.3% 0.6% 1.0% 0.2% 0.2% 2.1% 0.3% 

Note: Darker blue indicates higher product choice probabilities. Lighter gray indicates 

lower product choice probabilities. BF indicates branded fares. Anc. indicates 

ancillaries. Ch. indicates (sales) channels. 

 

There seem to be substantial differences in customer choice behavior 

depending on sales channel. A notable example is BF D without paid ancillaries, 

which is selected 10.7% of bookings from Channel 2, whereas it is only selected 

0.3% of bookings from Channel 7. BF B plus ancillary I is however selected 

12.2% of bookings from Channel 7, but only 0.7% from Channel 2. Also, the 

choice probability with respect to the two most often selected products, i.e. BF 
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A and BF B without paid ancillaries, vary considerably between sales channels: 

between 5.3% and 81.8% for BF A without paid ancillaries, and between 11.0% 

and 90.0% for BF B without paid ancillaries. 

As with booking weekdays, the JS divergence is used to quantify differences in 

observed product choice probabilities between different sales channels as well 

as across all channels. 

Table 10 visualizes the JS divergence between the different sales channels. 

The biggest JS divergences are measured between channel 11 and channels 2, 

9 and 10. In these cases, the two respective probability distributions are closer 

to having disjoint support than being identical, indicated by JS divergences 

greater than 0.5 (50%). Channels 3 and 4 seem to exhibit very similar customer 

choice behavior with their JS divergence close to zero. Further, the last row 

shows airlines incur the biggest error for Channel 11 when not differentiating 

choice probabilities based on sales channel. 
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Table 10: JS divergence (in %) between customer choice probability distributions of 

bookings made through different sales channels, and between the different channels 

and the entire population (all channels). 

Sales 

ch. 
1 2 3 4 5 6 7 8 9 10 11 

1 0%           

2 10% 0%          

3 2% 14% 0%         

4 3% 13% 0% 0%        

5 5% 1% 8% 8% 0%       

6 25% 45% 16% 17% 39% 0%      

7 13% 35% 7% 7% 27% 7% 0%     

8 1% 6% 4% 4% 2% 29% 19% 0%    

9 7% 5% 15% 15% 3% 49% 36% 4% 0%   

10 6% 7% 14% 14% 4% 48% 35% 4% 1% 0%  

11 31% 52% 21% 22% 46% 3% 10% 36% 56% 56% 0% 

All 2% 11% 0% 0% 6% 18% 8% 3% 13% 12% 24% 

Note: Darker blue indicates higher Jensen-Shannon divergences. Lighter gray indicates 

lower Jensen-Shannon divergences. Ch. indicates (Sales) channels. 

 

Interestingly, JS divergences on sales channels are orders of magnitude higher 

than those on booking weekdays. Whereas most products, except for BF A and 

BF B without paid ancillaries, exhibit fairly similar choice probabilities 

independent of booking weekday, this is not the case for sales channels. On the 

one hand, this presents an argument to airlines to differentiate their offers based 

on sales channels. On the other hand, the JSD between all channels and the 

most frequently used sales channel, Channel 4, is 0%. This is not surprising 

given the fact that Channel 4 dominates the choice probability distribution for all 

channels more than any other channel, precisely because it is the most 

frequently occurring one. On the contrary, Channels 11, 6 and 9, which exhibit 

the largest JSD when compared to all channels, are used relatively infrequently. 

Whilst Channels 6 and 9 are used for only 1% and 0%, respectively, of all 
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bookings, Channel 11 is used for 4% of all bookings. Still, it exhibits the highest 

JSD compared to all Channels. This suggests airlines gain much in terms of 

prediction accuracy when modeling customer choice behavior specifically for 

Channel 11 when they know a search comes through this channel, as opposed 

to ignoring the sales channel information. 

4.4.2 Flight characteristics 

Flights can be very different from one another. Flight lengths vary between few 

minutes and more than 15 hours. This analysis differentiates customer choice 

probabilities based on whether the flight leg was an overnight flight or not. 

Overnight flights are defined to leave before midnight (local time at origin) and 

arrive after midnight (local time at destination). 

Table 11 shows observed customer choice probabilities based on whether the 

flight leg was an overnight flight or not. There seem to be notable differences in 

customer choice behavior between the two. For example, the choice 

probabilities of BF B plus ancillary I, and BF B plus ancillary II are 91% and 

146% higher, respectively, when a flight leg is an overnight flight. 

Table 11: Observed product choice probabilities (in %) for different flight characteristics 

(overnight flight yes/no). 

Over-

night 

flight? 

BF A 

+ no 

anc. 

BF B 

+ no 

anc. 

BF C 

+ no 

anc. 

BF D 

+ no 

anc. 

BF B 

+ 

anc. I 

BF A 

+ 

anc. 

III 

BF B 

+ 

anc. 

III 

BF B 

+ 

anc. 

II 

Other 

No 45.0% 37.5% 0.2% 3.1% 5.3% 2.3% 1.1% 2.4% 3.0% 

Yes 16.7% 61.7% 0.0% 0.9% 10.1% 0.3% 0.4% 5.9% 4.0% 

Note: Darker blue indicates higher product choice probabilities. Lighter gray indicates 

lower product choice probabilities. BF indicates branded fares. Anc. indicates 

ancillaries. 
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Table 12 shows the JS divergences between overnight flight and no overnight 

flight, and between both these categories and the entire population of all flights. 

Table 12: JS divergence (in %) between customer choice probability distributions based 

on flight characteristics (overnight flight yes/no), and between the flight characteristics 

and the entire population (all flights). 

Overnight flight? 
No overnight 

flight 
Overnight flight All flights 

No 0.0%   

Yes 9.5% 0.0%  

All flights 0.0% 8.9% 0.0% 

Note: Darker blue indicates higher Jensen-Shannon divergences. Lighter gray indicates 

lower Jensen-Shannon divergences. 

 

Separating customer choice probabilities based on overnight flight yes/no, the 

JS divergence is higher than between any booking weekdays, but lower than 

between some sales channels. 

4.4.3 Customer loyalty status 

Most airlines use loyalty programs to incentivize customer loyalty. Depending 

on how many flights a customer makes with the respective airline or airline 

group, distances flown, how much they pay, and in which compartment they 

travel, customers earn loyalty points. The more points they earn, the higher their 

loyalty category. At the same time, not all customers participate in loyalty 

programs. Table 13 shows observed customer choice probabilities based on 

customer loyalty status. There seem to be large differences in customer choice 

behavior depending on their loyalty status. For example, ancillary III is selected 

much more frequently in loyalty categories 2, 3 and especially 4. Also, these 

categories select uncommon choices with much higher likelihood, as indicated 



104 
 

by the column “Other”. The names of the loyalty categories are anonymized to 

protect data confidentiality of the network airline. 

Table 13: Observed product choice probabilities (in %) for different loyalty categories. 

Loyalty 

cat. 

BF A 

+ no 

anc. 

BF B 

+ no 

anc. 

BF C 

+ no 

anc. 

BF D 

+ no 

anc. 

BF B 

+ 

anc. I 

BF A 

+ 

anc. 

III 

BF B 

+ 

anc. 

III 

BF B 

+ 

anc. 

II 

Other 

None 44.7% 41.5% 0.2% 2.4% 6.2% 0.0% 0.0% 2.8% 2.2% 

1 44.8% 33.2% 0.1% 3.5% 4.6% 5.1% 2.6% 2.2% 3.9% 

2 40.0% 23.3% 0.1% 6.0% 1.3% 14.9% 6.8% 1.1% 6.5% 

3 32.2% 14.2% 0.1% 8.6% 0.7% 21.4% 6.9% 0.8% 15.1% 

4 22.2% 16.5% 0.1% 7.5% 0.5% 24.2% 12.0% 0.8% 16.2% 

5 41.9% 42.2% 0.1% 2.5% 7.6% 0.1% 0.1% 2.8% 2.7% 

Note: Darker blue indicates higher product choice probabilities. Lighter gray indicates 

lower product choice probabilities. BF indicates branded fares. Anc. indicates 

ancillaries. Cat. indicates (loyalty) category. 

 

Table 14 reports the JS divergences between different loyalty categories. It 

shows the biggest differences in observed customer choice behavior can be 

found between “no loyalty status” and loyalty categories 3 and 4, which also are 

most different from the entire population. 
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Table 14: JS divergence (in %) between customer choice probability distributions from 

customers with different loyalty categories, and between the loyalty categories and the 

entire population (all loyalty categories). 

Loyalty 

category 
None 1 2 3 4 5 All 

None 0.0%       

1 4.5% 0.0%      

2 15.6% 4.6% 0.0%     

3 27.3% 12.9% 3.1% 0.0%    

4 32.6% 17.2% 5.4% 1.3% 0.0%   

5 0.2% 4.1% 15.3% 26.7% 31.7% 0.0%  

All 1.4% 1.2% 9.8% 20.2% 25.1% 1.2% 0.0% 

Note: Darker blue indicates higher Jensen-Shannon divergences. Lighter gray indicates 

lower Jensen-Shannon divergences. 

 

This section has identified a pattern. Customer choice behavior seems to differ 

based on multiple features of their search. The investigated features in this 

chapter include booking weekday, sales channel, flight characteristics, and 

customer loyalty status. Based on JS divergences, the relative importance 

between these can be ranked in descending order as sales channel, loyalty 

status, overnight flight yes/no, and booking weekday. The next section 

generalizes these findings. 

4.5 Results and discussion 

The fundamental hypothesis from Chapter 3 can be confirmed. The wealth of 

data available to airlines in customer searches enables highly granular and 

high-dimensional segmentation. The inductive research in this chapter shows 

the distribution of customer choice probabilities differs based on features of their 
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search like sales channel, customer loyalty status, flight characteristics, and 

booking weekday during the tested period from September 2018 to September 

2023. 

Theorizing about the identified pattern, the inductive validation suggests a new 

hypothesis: 

If airlines know and process search features like sales channel, customer 

loyalty status, flight characteristics, and booking weekday, then they can 

predict customer choice probabilities significantly more accurately. This way, 

and if this pattern continues to hold in the future, airlines could increase 

customer relevance by including these features in their assortment decision 

which customized offer to display. 

Airlines need to solve several practical challenges to achieve differentiated offer 

management based on these features. Amongst others, airlines need to decide 

whether to differentiate by single features or multiple of them, and whether to 

move to real-time or repository-based offer management, or to develop a hybrid 

approach. As suggested by the findings of the inductive study, offer 

management differentiated by sales channel is an attractive starting point. 

Further differentiating features could then be iteratively added. 

The next section concludes and outlines how future research can build on these 

findings. 

4.6 Conclusion 

Airlines serve a diverse range of customers but have not implemented effective 

and scalable strategies to differentiate their offer management with high degree 

of granularity. To solve this problem, a conceptual architecture has been 

proposed in Chapter 3 based on the fundamental hypothesis that airlines have 
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a wealth of data in customer searches, which can enable highly granular and 

high-dimensional segmentation. 

This chapter validates this hypothesis through an inductive study of 202 million 

coupons from a network airline spanning from 2018 to 2023. It calculates 

differentiated customer choice probabilities based on booking weekday, sales 

channel, whether the flight leg is overnight or not, and customer loyalty status. 

The key metric used to measure the statistical (dis)similarity between choice 

probability distributions is the Jenson-Shannon divergence, which is bound 

between zero (probability distributions are the same) and one (probability 

distributions are maximally different).  

The inductive validation finds choice probabilities differ strongest based on 

sales channel. The Jensen-Shannon divergence is larger than 0.5 between 

some sales channels, indicating customer choice probabilities are more 

different than similar between these. Second strongest indicator of customer 

choice is loyalty status. Flight characteristics, concretely if a flight leg is an 

overnight flight or not, rank third. Booking weekday is the fourth strongest 

predictor with different customer behavior depending on whether a booking is 

made on a weekday (Monday-Friday) or weekend day (Saturday-Sunday). 

Generalizing from these inductive findings, the chapter suggests airlines can 

improve prediction of customer choice probabilities, and hence display more 

relevant customized offers, when considering the features sales channel, loyalty 

status, flight characteristics, and booking weekday – in that order of importance 

– in their assortment decision.  

Further academic research should seek a second validation of the results of this 

research. This could be done in different ways. First, the new hypothesis could 

be validated in deductive studies through offline or online tests. These studies 

could use different models ranging from simple forecasts to complex prediction 

models based on machine learning. Second, the inductive research could be 

repeated with other airlines or data from different time periods, or even in other 
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industries that might exhibit similar behavior. These could include high-speed 

railways, ferry operators, air cargo or ocean carriers. 

If confirmed from such follow-up studies, this research has important 

implications for airlines who want to display customized offers that are likely to 

match the need of the specific customer making a search. Notably, the 

segmentation method presented uses data readily available to airlines and 

included in customer searches, promising a low-cost process to increase 

prediction accuracy. Furthermore, the method developed is agnostic to 

individual customers. Instead, individuals are segmented based on anonymous 

characteristics of their search. As such, it can be applied to both customers that 

declare their identity and those that do not. 
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5 Deductive research: second 

validation9  

Developing customized offer and pricing strategies have become a strategic 

priority to airlines and have attracted operations research accordingly. This 

chapter demonstrates feasibility of an offer management system architecture 

that aims to combine the simplicity of branded fares with the flexibility of 

unbundled ancillaries. Methodologically, it shows how discrete choice prediction 

accuracy can be improved with machine learning.  

Chapter 5 confirms granular segmentation with data readily available to airlines 

and simple forecast models can significantly increase the prediction accuracy 

for future customer choice situations. These findings support a new balance 

between effectiveness and robustness of data-driven customer segmentation, 

increasing the number of segments from single digits in most traditional choice 

models to the magnitude of thousands. 

Section 5.1 briefly summarizes literature context, motivation, and contribution. 

Section 5.2 describes a typical airline customer choice process and details on 

the real airline data used. It builds on the findings from Chapter 4 that search 

features like sales channel, customer loyalty status, flight characteristics, and 

booking weekday affect customer choice probabilities. Section 5.3 describes 

the methodology with three metrics to quantify prediction accuracy for future 

customer choices, three prediction models of increasing complexity, and five 

time periods analyzed. Section 5.4 contains results of the analysis. Section 5.5 

discusses practical implementation for airlines. Section 5.6 suggests avenues 

for future research. Section 5.7 concludes the validation of the second 

fundamental hypothesis of the dissertation. Section 5.8 serves as an appendix, 

detailing the steps for the matrix factorization algorithm used. 

 
9 This chapter is based on a paper that is written and approved by the airline partner for 
publication. 
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5.1 Literature context, motivation, and 

contribution 

The evolution from revenue management (RM) to offer management (OM) and 

customization of offers have been two key themes for airlines in the last two 

decades. RM aims to optimize airline revenue through flight pricing, whereas 

OM aims to optimize airline offers holistically. In this notion, an offer is defined 

as the price plus the product, which is the seat on an aircraft plus zero, one, or 

more ancillaries. The rise of low-cost carriers has increased the importance of 

ancillary revenues.  

Moreover, advancements in pattern recognition through machine learning (ML) 

and online distribution enabled customization or personalization of offers, with 

e-commerce (Amazon) at the forefront of innovation (Bakos, 2001; Kashyap et 

al., 2022). Airlines aim for similar personalized or customized pricing and 

product strategies, responding to customer searches with context-specific offers 

that combine the flexibility of unbundled ancillaries with the convenience and 

simplicity of branded fares (BF). BF are pre-select bundles shown to customers 

including the flight ticket plus one or more ancillaries 

5.1.1 Literature context and motivation 

Both academia and practitioners have applied different classes of models to 

solve offer management to maximize customer or business outcomes for a 

given customer search. Customer outcomes can be offer relevance, i.e. to what 

degree the product offered matches customers’ needs, and satisfaction, i.e. how 

satisfied customers are with the process of buying the product. Business 

outcomes can be search-to-book conversion, revenue, seat load factor, and 

profitability. The models can be categorized into statistical models like discrete 

choice analysis, and model-free ML algorithms. Established airline OM 

examples are Ratliff & Gallego (2013) and Wittman & Belobaba (2019) for 
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discrete choice models, as well as Madireddy et al. (2017) and Shukla et al. 

(2019) for ML algorithms. Statistical models aim to draw inference from a 

sample, whereas ML aims to find generalizable patterns for prediction in high-

dimensional data (Bzdok et al., 2018).  

The novel OM architecture developed in Chapter 3 aims to define a new balance 

between effectiveness and robustness of high-dimensional segmentation. It 

goes beyond the traditional segmentation with travel purpose as one feature 

allowing airlines to distinguish two segments (Business vs. Leisure), by instead 

including up to nine features. The idea of the novel OM architecture is to improve 

prediction accuracy of discrete choice models through application of different 

ML algorithms, thereby allowing segmentation in an order of magnitude of 

thousands. The architecture rests on two key hypotheses: 

• Hypothesis 1: The wealth of information in customer searches allows 

airlines to segment granularly and high-dimensionally, and the customers 

in the respective segments exhibit significantly different choice behavior. 

• Hypothesis 2: Estimating segment-specific choice probabilities 

significantly increases the prediction accuracy of future customer choices. 

With an inductive study of 202 million coupons from a major network airline 

between 2018 and 2023, Chapter 4 confirmed Hypothesis 1. Using the Jenson-

Shannon divergence (Lin, 1991) to quantify differences between choice 

probability distributions, customer choice probabilities for 100 products seem to 

depend on all four features tested, in that order of priority: sales channel, 

customer loyalty status, whether the flight runs overnight or not, and booking 

weekday.  

5.1.2 Contribution, aim, and research questions 

The contribution of this chapter is to build on the inductive study through 

validation of Hypothesis 2 with deductive research with hundreds of millions of 
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real airline coupons between 2018 and 2023. If airlines can improve prediction 

accuracy of discrete choice probabilities for future customer searches, then they 

can improve their assortment decision, display more relevant offers, and 

maximize expected business outcomes. 

Specifically, five methodological research questions (RQ) will be tested. 

• RQ A: Can segment-specific choice prediction, due to the informational 

value in customer searches, significantly improve prediction accuracy 

compared to a baseline of segment-agnostic choice prediction? 

• RQ B: Can the inclusion of price, due to the informational value in prices 

paid, significantly improve segment-specific prediction accuracy even 

further? 

• RQ C: Can a novel variant of the well-studied matrix factorization 

algorithm (Funk, 2006), due to overcoming data sparsity problems, 

significantly improve prediction accuracy of infrequent customer 

segments with less than ten bookings in the training data even further? 

• RQ D: Can training the prediction model on the most recent month 

ensure, due to the high number of searches airlines generate, that 

changes in market and customer dynamics are captured timely, resulting 

in the highest prediction accuracy? 

• RQ E: Can airlines even during the most disruptive times (training pre-

Covid and testing in the beginning of Covid), achieve significant 

improvements in prediction accuracy? 

These five RQ will be tested with three metrics of prediction accuracy, four 

prediction models with increasingly complex choice probability forecasts, and 

five experiments covering different time periods. With that, this chapter aims to 

suggest both the most accurate, and the most practical choices for airlines. This 

research is the first to substantiate an OM methodology with segmentation in 

the order of magnitude of thousands, validated on hundreds of millions of real 
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airline coupons. The research is independent of personalized data, hence 

compliant with data privacy rules such as GDPR in Europe.  

The remainder of the chapter is structured as follows: Section 5.2 describes the 

assumed customer choice process and provides explanatory statistics of the 

data used. Section 5.3 details the methodology with three metrics, four 

prediction models, and five experiments. Section 5.4 provides an in-depth view 

into the results of the three error metrics in the five experiments and for the four 

prediction models. Section 5.5 discusses the implications for practical airline 

implementation. Section 5.6 describes strands for future academic research 

building on top of this chapter. The chapter closes with a conclusion in 

Section 5.7. 

5.2 Airline customer choice process and data  

This section describes the assumed customer choice process, and the data 

used. 

5.2.1 Customer choice process 

The customer choice process is assumed to follow Figure 21, in line with the 

customer journey of the airline with four branded fares (A, B, C, D) and five paid 

ancillaries (I, II, III, IV, V) that can be combined. Except for the cheapest branded 

fare, they include some of the ancillaries that are available for a la carte 

purchase. Most airlines offer checked-in bags and seat reservation as part of 

some branded fares. Other value-added services, such as rebooking and 

cancellation options, are only available in more expensive branded fares but 

cannot be purchased as a la carte ancillaries. All possible combinations span a 

total of 100 products that customers can select from. A product is defined as a 
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distinct combination of branded fare selection and zero, one or more paid 

ancillaries. 

 

Figure 21: Customer choice process, selecting branded fares in step 1 and amongst a 

list of a la carte ancillaries in step 2. 

5.2.2 Data preparation 

The deductive research is based on 496 million coupons of a major network 

airline between September 2018 and September 2023 and actual customer 

purchase behavior. The data is anonymized to comply with data privacy rules.  

72% of the airline coupons refer to Economy class. To validate whether airlines 

have sufficient data for high-dimensional segmentation, Economy is therefore 

the first class to be tested. After removing all compartments but Economy (i.e., 

removing First, Business, Premium Economy), 359 million coupons remained. 

A coupon refers to one passenger and one flight leg. To ensure data quality, 

additional cleansing removed coupons that did not have a branded fare 

associated, a create date, a coupon leg number, an operating airline, an origin 

airport, a destination airport, and/or any ticketed gross price information. After 

these cleansing steps, 202 million coupons remained. A booking can comprise 

multiple coupons. An example is a customer flying from Brussels to Montreal 

via London. This itinerary includes two coupons. Geographically, the data spans 

origins and destinations worldwide. The hub structure of the airline is reflected 

in geographical concentration on its home markets.  
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5.2.3 Exploratory data analysis 

Table 15 shows customer choice behavior with respect to branded fare (BF) 

and ancillary selection. 89% of all bookings did not purchase any paid ancillary. 

This is especially true for BF A, C and D. Only customers purchasing BF B 

exhibit a somewhat higher probability of paying for additional ancillaries. Also, 

there is strong concentration on ancillaries I and II. Any combination involving 

paid ancillaries III, IV or V was purchased by less than 0.5% of customers for 

all four BF (see last column). 

Table 15: Exploratory data analysis of 202 million coupons, showing the observed 

choice frequencies of customers (in %) based on their branded fare selection. 

Branded 

fare (BF) 

No paid 

ancillary 

Paid 

ancillary I 

Paid 

ancillary II 

Paid 

ancillaries 

I and II 

Other paid 

ancillaries 

BF A 97% <0.5% 3% <0.5% <0.5% 

BF B 81% 11% 6% 2% <0.5% 

BF C 94% <0.5% 6% <0.5% <0.5% 

BF D 94% <0.5% 6% <0.5% <0.5% 

Total 89% 6% 4% 1% <0.5% 

 

In addition, the data allow observation of choice behavior depending on specific 

characteristics, or features, of the customer searches.  

Table 16 shows substantial differences in customer choice behavior depending 

on sales channel. A notable example is BF D without paid ancillaries, which is 

selected 10.7% of bookings from Channel 2, whereas it is only selected 0.3% 

of bookings from Channel 7. BF B plus ancillary I is however selected 12.2% of 

bookings from Channel 7, but only 0.7% from Channel 2. Also, the choice 
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probabilities with respect to the two most often selected products, i.e. BF A and 

BF B without paid ancillaries, vary considerably between sales channels. 

Table 16: Product choice probabilities (in %) for different sales channels. 

Sales 

ch. 

BF A 

+ no 

anc. 

BF B 

+ no 

anc. 

BF C 

+ no 

anc. 

BF D 

+ no 

anc. 

BF B 

+ 

anc. I 

BF A 

+ 

anc. 

III 

BF B 

+ 

anc. 

III 

BF B 

+ 

anc. 

II 

Other 

1 57.6% 31.9% 0.2% 1.6% 4.6% 0.9% 0.3% 1.2% 1.7% 

2 60.7% 13.7% 0.1% 10.7% 0.7% 8.7% 1.1% 0.3% 4.0% 

3 41.9% 42.8% 0.1% 2.0% 4.9% 1.6% 1.2% 3.0% 2.5% 

4 40.9% 40.5% 0.1% 2.0% 6.0% 2.1% 1.7% 3.2% 3.5% 

5 64.2% 17.7% 0.1% 7.3% 2.1% 4.4% 0.5% 0.6% 3.1% 

6 8.7% 78.8% 4.6% 1.1% 2.2% 0.2% 0.3% 3.0% 1.1% 

7 18.7% 61.1% 0.3% 0.3% 12.2% 0.2% 0.4% 4.2% 2.6% 

8 61.1% 26.5% 0.2% 4.1% 3.0% 1.9% 0.4% 1.1% 1.7% 

9 77.8% 11.5% 0.0% 7.2% 1.1% 1.0% 0.2% 0.3% 0.9% 

10 81.8% 11.0% 0.2% 2.0% 1.8% 1.1% 0.1% 0.4% 1.6% 

11 5.3% 90.0% 0.3% 0.6% 1.0% 0.2% 0.2% 2.1% 0.3% 

Note: Darker blue indicates higher product choice probabilities. Lighter gray indicates 

lower product choice probabilities. BF indicates branded fares. Anc. indicates 

ancillaries. Ch. indicates (sales) channels. 

 

To quantify differences between choice probabilities, the inductive study of 

Chapter 4 used the Jensen-Shannon divergence (JSD, Lin 1991). The JSD is 

bound between zero and one, with zero meaning two probability distributions 

are identical, and one meaning they are maximally different. Table 17 shows 
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the JSD between some sales channels – e.g., between Channel 11 and both 

Channels 9 and 10 – is greater than 0.5. This means the respective probability 

distributions are closer to being maximally different than to being identical. On 

the contrary, Channels 3 and 4 have a JSD of only 0.2%, indicating customers 

booking through both these channels exhibit very similar choice behavior. 

With a similar analysis, the inductive research concluded sales channel, 

customer loyalty status, overnight flight yes/no, and booking weekday all impact 

customer choice probabilities, in that order of priority.  

Table 17: JS divergence (in %) between customer choice probability distributions of 

bookings made through different sales channels, and between the different channels 

and the entire population (all channels). 

Sales 

ch. 
1 2 3 4 5 6 7 8 9 10 11 

1 0%           

2 10% 0%          

3 2% 14% 0%         

4 3% 13% 0% 0%        

5 5% 1% 8% 8% 0%       

6 25% 45% 16% 17% 39% 0%      

7 13% 35% 7% 7% 27% 7% 0%     

8 1% 6% 4% 4% 2% 29% 19% 0%    

9 7% 5% 15% 15% 3% 49% 36% 4% 0%   

10 6% 7% 14% 14% 4% 48% 35% 4% 1% 0%  

11 31% 52% 21% 22% 46% 3% 10% 36% 56% 56% 0% 

All 2% 11% 0% 0% 6% 18% 8% 3% 13% 12% 24% 

Note: Darker blue indicates higher Jensen-Shannon divergences. Lighter gray indicates 

lower Jensen-Shannon divergences. Ch. indicates (sales) channels. 

 

Building on these findings, this chapter tests whether airlines can use this 

knowledge to improve the prediction accuracy of customer choice probabilities 



118 
 

for future customer searches. The next section presents the deductive 

methodology used. 

5.3 Methodology 

This section details the methodology used to predict choices of customized 

offers through highly granular segmentation and develops five methodological 

RQ to substantiate Hypothesis 2 holistically. Improvements in prediction 

accuracy are measured as a decrease in the error between predicted and 

observed choice probabilities, measured with three metrics. Four models 

consecutively refine the prediction from a segment-agnostic baseline to simple 

forecasts based on product and price to ML-enhanced prediction. The models 

are evaluated in an offline test with five experiments capturing five different time 

periods. In all analyses, choice probabilities are predicted and evaluated for the 

100 products customers can select from.  

5.3.1 Metrics 

Prediction accuracy is evaluated with three metrics, all of which measure the 

prediction error between predicted and observed customer choice probabilities: 

Prediction Error (PE), Weighted Average Percentage Points Error (WAPPE), 

and Jensen-Shannon divergence (JSD).  

First, the PE measures the error when predicting the most often selected 

product per segment for all customer searches of that segment. PE is calculated 

according to Equation (12): 

𝑃𝐸𝑡𝑒𝑠𝑡 𝑣𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = ∑ 𝑤𝑠 (1 − 𝑥𝑠_𝑚𝑎𝑥,𝑡𝑒𝑠𝑡  )
𝑆

𝑠=1
   (12) 

s denotes the segments, w denotes the weights of the segments (relative 

occurrence of segment s in the test dataset), s_max refers to the product with 
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highest prediction probability in the respective segment s, and x denotes the 

choice probabilities in the test data. 

Second metric is the WAPPE. It extends PE by calculating the error when 

predicting choice probabilities for all products per segment. The WAPPE is 

calculated according to Equation (13): 

𝑊𝐴𝑃𝑃𝐸𝑡𝑒𝑠𝑡 𝑣𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = ∑ 𝑤𝑠 ∑ 𝐴𝑏𝑠(𝑥𝑠,𝑝,𝑡𝑒𝑠𝑡 − 𝑥𝑠,𝑝,𝑝𝑟𝑒𝑑𝑖𝑐𝑡  )
𝑃

𝑝=1

𝑆

𝑠=1

 (13) 

In Equation (13), s also denotes the segments, while p denotes the products, w 

denotes the weights of the segments (relative occurrence of segment s in the 

test dataset), and x denotes the choice probabilities in the test data and as 

predicted, respectively. 

Third metric is the JSD, which is a statistical distance metric termed divergence 

in information theory. The JSD is a symmetric and bound extension of the 

Kullback-Leibler divergence and offers intuitive interpretability (Lin, 1991). It is 

calculated according to Equation (14): 

𝐽𝑆𝐷𝑡𝑒𝑠𝑡 𝑣𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =
1

2
𝐷𝐾𝐿 (𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 || 𝑀) +

1

2
𝐷𝐾𝐿 (𝑃𝑡𝑒𝑠𝑡  || 𝑀) (14) 

The Kullback-Leibler divergence DKL for discrete probability distributions Ppredict 

and Ptest on the sample space X is defined according to Equation (15) (MacKay 

2003): 

𝐷𝐾𝐿 (𝑃𝑡𝑒𝑠𝑡 || 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡) = ∑ 𝑃𝑡𝑒𝑠𝑡(x) 𝑙𝑜𝑔 (
𝑃𝑡𝑒𝑠𝑡(𝑥)

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥)
 )

𝑋

𝑥=1

 (15) 

Furthermore, M is the average of the two distributions Ppredict and Ptest according 

to Equation (16): 

𝑀 =
1

2
 (𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  +  𝑃𝑡𝑒𝑠𝑡  )     (16) 

With the logarithm in Equation (15) calculated to the base of two, the JSD shows 

is bound between zero and one, with zero meaning both probability distributions 
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Ppredict and Ptest are identical, and one meaning Ppredict and Ptest are maximally 

different, i.e. they have disjoint support.  

5.3.2 Prediction models 

This research applies three consecutive models to improve prediction accuracy 

from simple forecasts to more complex prediction models based on machine 

learning (ML): segment-specific choice prediction (Model 1), segment-

specific choice prediction with price information (Model 2), and ML-

enhanced segment-specific choice prediction with price information for 

scarce segments (Model 3). In addition, results are compared to a baseline 

(Model 0) as a benchmark for no segmentation. 

With that analysis, the first three methodological RQ will be validated: 

• RQ A: Can segment-specific choice prediction (Model 1), due to the 

informational value in customer searches, significantly improve 

prediction accuracy compared to the baseline (segment-agnostic choice 

prediction)? 

• RQ B: Can the inclusion of price (Model 2), due to the informational 

value in prices paid, significantly improve segment-specific prediction 

accuracy compared to Model 1? 

• RQ C: Can a novel variant of matrix factorization (Model 3), due to 

overcoming data sparsity problems, significantly improve prediction 

accuracy of infrequent customer segments with less than ten bookings 

in the training data compared to Model 2? 

Prediction in the four models works as follows: 

Model 0: In the baseline, predicted customer choice probabilities are equal to 

observed probabilities during training period. There is no segmentation, i.e. 

predicted choice probabilities are the same for all searches. 
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Model 1: In the segment-specific choice prediction, customer bookings are 

classified into segments based on four features: 7 booking weekdays, 11 sales 

channels, 2 flight characteristics (overnight flight yes/no) and 6 loyalty 

categories result in 924 segments (= 7 * 11* 2 * 6). Predicted choice probabilities 

are segment-specific and ignore price information. Model 1 predicts segment-

specific observed probabilities during the training period when applied to the 

test period. Reductions in PE, WAPPE and JSD when going from the baseline 

to Model 1 allow inference on RQ A.  

Model 2: In the segment-specific choice prediction with price information, 

segmentation is additionally done on four price buckets (very low, moderately 

low, moderately high, very high). Together with the previous four features from 

Model 1, this results in 3,696 segments (= 924 * 4). The bucketing is done by 

calculating the 25%, 50%, and 75% percentiles of total gross prices paid by the 

customers in the training dataset. Like Model 1, predicted segment-specific 

choice probabilities are equal to segment-specific observed probabilities during 

the training period. Reductions in PE, WAPPE and JSD when going from Model 

1 to Model 2 allow inference on RQ B. 

Model 3: In the ML-enhanced segment-specific choice prediction with 

price information for scarce segments, the number of segments is kept at 

3,696 with the same features as with Model 2. As opposed to Model 2, for 

segments that occurred less than ten times in the training set, the predicted 

choice probabilities are updated through a novel application of the well-studied 

matrix factorization algorithm, originally proposed by Funk (2006). In this 

research, matrix factorization is applied for several reasons. First and foremost, 

Chapter 3 proposed applying it to improve choice probability prediction in the 

presence of data scarcity. The intuition is that one wants to use matrix 

factorization to update choice probabilities for infrequent segments, 

hypothesizing that these suffer from overfitting when predicting observed 

probabilities in the training set when applying on the testing set. Matrix 

factorization addresses this data sparsity problem by exploiting similarities 

between segments and products with four latent factors that are correlated to 
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both segments and products. For segments that occurred at least ten times in 

the training set, no update is made to the predicted choice probabilities, i.e. 

these are exactly predicted like in Model 2.  

Next to increasing prediction accuracy and model robustness, matrix 

factorization offers various additional benefits. One, factors can have 

interpretational value, such as value of time, convenience, business vs. leisure, 

etc. Two, matrix factorization reduces storage space required. Three, as 

opposed to Models 1 and 2, matrix factorization helps estimation of choice 

probabilities of new segments or for new products from day one. Whereas 

Models 1 and 2 can only give a data-based estimate for these once sufficient 

training data of the new segment or the new product have been generated. This 

is because matrix factorization can infer choice probability estimates for new 

segments or new products from the similarities identified between segments as 

well as between products. This ability to fill blanks in the segment-product matrix 

is precisely where matrix factorization has been shown extremely powerful in 

the case of movie, video, or product recommendation at Netflix, Youtube, and 

Amazon, respectively.  

The run time of matrix factorization algorithms depends on multiple factors like 

the learning algorithm used, the hyperparameters such as the learning rate, the 

efficiency of the code and code libraries, as well as the hardware used. Also, it 

depends on the number of latent factors (set to 4 in this chapter), the number of 

columns (100 products), and the number of rows (3,696 segments). Section 5.8 

describes an example configuration of the matrix factorization algorithm used. 

During the research, different configurations with different hyperparameters 

were tested in Python. Their results did not significantly differ. Resulting run 

times were between 5 and 30 seconds. Google Research (2022) provides 

details about computing times and how these scale when increasing the number 

of latent factors, columns, rows, or hyperparameters. Full optimization of the 

configuration is out of scope of this dissertation. It depends on many factors and 

will likely vary depending on how the using airline evaluates the complexity vs. 

effectiveness trade-off. For discussions how to optimize matrix factorization 
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algorithms, the reader is referred to Aggarwal (2016) and Google Research 

(2022). 

Reductions in PE, WAPPE and JSD when going from Model 2 to Model 3 allow 

inference on RQ C. 

5.3.3 Time periods (experiments) 

The entire five years span across both Covid and pre-Covid with potential major 

changes to customer behavior. To validate the methodology across different 

time periods and to test adaptability to changes in customer behavior, the whole 

period of five years is decomposed into five experiments: Whole period; Pre-

Covid; Covid; Disruption (training on pre-Covid data and testing on Covid data); 

and Recent month. Experiments Covid and Disruption are specifically designed 

to analyze performance during times with rapidly changing customer behavior 

(see Yeoman, 2022, and Garrow et al., 2022, for an overview of how customer 

behavior changed with Covid).  

Testing is conducted through an out-of-sample offline test, i.e. by training a 

prediction model on actual airline data and applying the predictions on different 

airline data not used for training. Table 18 summarizes the respective data split 

into training and test period for each experiment. Figure 22 in addition visualizes 

the timeline. With exception of the Recent month experiment, the training period 

includes at least 58 million airline coupons for each experiment. 
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Table 18: Details of the experiments. 

Experiment Training period; 

#observations 

Test period;  

#observations 

Whole period Sep 1, 2018 – Mar 31, 2023; 

171m 

Apr 1, 2023 – Sep 30, 2023; 

31m 

Pre-Covid Sep 1, 2018 – Aug 31, 2019; 

58m 

Sep 1, 2019 – Feb 29, 2020; 

4m 

Covid Mar 1, 2020 – Mar 31, 2023; 

109m 

Apr 1, 2023 – Sep 30, 2023; 

31m 

Disruption Sep 1, 2018 – Feb 29, 2020; 

62m 

Mar 1, 2020 – Aug 31, 2020; 

6m 

Recent month Aug 1, 2023 – Aug 31, 2023; 

5m 

Sep 1, 2023 – Sep 30, 2023; 

5m 

 

 

Figure 22: Details of experiments, visualizing training and testing periods as well as the 

number of coupons in each.10 

With these five experiments, two further methodological RQ will be validated: 

 
10  Boxes in light blue and with dashed outlines indicate the training periods of the 

respective experiment. Boxes in dark blue with solid outlines indicate the test periods of 
the respective experiment. 
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• RQ D: Can training the prediction model on the most recent month 

ensure, due to the high number of searches airlines generate, that 

changes in market and customer dynamics are captured timely, resulting 

in the highest prediction accuracy? 

• RQ E: Can airlines, even during the most disruptive times (training pre-

Covid and testing on Covid periods), achieve significant improvements 

in prediction accuracy? 

In the next section, results of the five experiments, four models, and three error 

metrics will be presented.  

5.4 Results  

This section presents results for PE, WAPPE and JSD for the four models and 

five experiments.  

5.4.1 Model 0: segment-agnostic baseline 

In Model 0 (baseline), predicted customer choice probabilities equal observed 

choice frequencies during the training period. As there is no segmentation, 

predicted choice probabilities are segment-agnostic and the same for all 

searches.  

Table 19  compares the resulting PE, WAPPE and JSD in the five experiments. 
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Table 19: Error metrics (PE, WAPPE and JSD, in %) without segmentation vary 

depending on experiment. 

Experiment PE Model 0 

(baseline) 

WAPPE Model 0 

(baseline) 

JSD Model 0 

(baseline) 

Whole period 64.5% 51.4% 7.5% 

Pre-Covid 55.8% 55.0% 8.3% 

Covid 54.1% 49.6% 7.0% 

Disruption 58.5% 51.6% 6.7% 

Recent month 50.4% 48.5% 6.7% 

 

All three metrics PE, WAPPE and JSD are lowest for the Recent month 

experiment. This indicates validation of RQ D. There seems to be sufficient 

data when training for one month only, and this seems to capture dynamics in 

customer and market trends best. 

5.4.2 Model 1: segment-specific choice prediction 

In Model 1, customer searches are classified into 924 segments based on 

booking weekday, sales channels, flight characteristics, and customer loyalty. 

Model 1 uses a simple forecast. For each segment, segment-specific predicted 

customer choice probabilities equal segment-specific observed frequencies 

during the training period. Table 20, Table 21 and Table 22 report on this 

product-based segmentation, comparing PE, WAPPE and JSD between 

Models 0 and 1 for the five experiments. 
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Table 20: Error metric PE (in %) with segment-specific choice prediction vs. segment-

agnostic baseline. 

Experiment PE Model 0 

(baseline) 

PE Model 1 Relative change 

PE  

Whole period 64.5% 51.1% -20.7%*** 

Pre-Covid 55.8% 45.8% -18.0%*** 

Covid 54.1% 50.1% -7.4%*** 

Disruption 58.5% 51.0% -12.8%*** 

Recent month 50.4% 41.3% -18.0%*** 

Note: *** indicates significance at 99.9% confidence. 

 

Table 21: Error metric WAPPE (in %) with segment-specific choice prediction vs. 

segment-agnostic baseline. 

Experiment WAPPE Model 0 

(baseline) 

WAPPE Model 1 Relative change 

WAPPE  

Whole period 51.4% 25.4% -50.7%*** 

Pre-Covid 55.0% 26.9% -51.1%*** 

Covid 49.6% 25.2% -49.2%*** 

Disruption 51.6% 32.2% -37.6%*** 

Recent month 48.5% 21.7% -55.3%*** 

Note: *** indicates significance at 99.9% confidence. 
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Table 22: Error metric JSD (in %) with segment-specific choice prediction vs. segment-

agnostic baseline. 

Experiment JSD Model 0 

(baseline) 

JSD Model 1 Relative change 

JSD  

Whole period 7.5% 1.2% -84.3%*** 

Pre-Covid 8.3% 1.3% -84.8%*** 

Covid 7.0% 1.1% -84.9%*** 

Disruption 6.7% 1.1% -83.5%*** 

Recent month 6.7% 0.3% -96.3%*** 

Note: *** indicates significance at 99.9% confidence. 

 

The results confirm RQ A. There is highly significant error reduction when 

going from Model 0 (segment-agnostic baseline) to Model 1 (segment-specific 

choice prediction). This effect is consistent across experiments and error 

metrics with 7.4%-20.7% relative PE, 37.6%-55.3% relative WAPPE, and 83.5-

96.3% relative JSD decrease. For all three metrics, Model 1 performs strongest 

when trained on very recent data (Recent month), substantiating the previous 

finding to RQ D. 

5.4.3 Model 2: enhancing predictions by inclusion of price 

In Model 2, customer searches are classified into 3,696 segments based on 

booking weekday, sales channels, flight characteristics, customer loyalty, and 

price paid for the flight. For the latter, all bookings are categorized into four price 

buckets: very low, moderately low, moderately high, and very high. Each bucket 

is equally big, representing 25% of all bookings. In this analysis, the price paid 

is not adjusted for different origins, destinations, or distances. 



129 
 

The inclusion of price is motivated by observed differences in customer choice 

behavior depending on how expensive their flight ticket is. For example, over 

the entire 5 years, 70% of customers in the lowest 25% of price paid purchased 

the cheapest branded fare. This compares to 36% of customers in the highest 

25% of price paid. On the contrary, the two most expensive branded fare options 

were chosen by customers with a likelihood 9 times higher when the flight was 

very expensive, compared to when the flight was very cheap. A detailed table 

of the branded fare choice probabilities depending on the price paid is not 

included in the thesis due to data confidentiality. 

Like Model 1, Model 2 also uses a simple forecast. For each segment, segment-

specific predicted customer choice probabilities equal segment-specific 

observed frequencies during the training period. Table 23, Table 24 and      

Table 25 report on this price-based in addition to product-based segmentation, 

comparing PE, WAPPE and JSD between Models 1 and 2 for the five 

experiments. 

Table 23: Error metric PE (in %) with segment-specific forecast that includes price 

information (Model 2) vs. Model 1. 

Experiment PE Model 1 PE Model 2  Relative change 

PE 

Whole period 51.1% 45.5% -11.1%*** 

Pre-Covid 45.8% 40.7% -11.2%*** 

Covid 50.1% 43.9% -12.5%*** 

Disruption 51.0% 43.2% -15.4%*** 

Recent month 41.3% 40.8% -1.4%*** 

Note: *** indicates significance at 99.9% confidence. 
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Table 24: Error metric WAPPE (in %) with segment-specific forecast that includes price 

information (Model 2) vs. Model 1. 

Experiment WAPPE Model 1 WAPPE Model 2  Relative change 

WAPPE 

Whole period 25.4% 19.0% -25.2%*** 

Pre-Covid 26.9% 18.0% -33.2%*** 

Covid 25.2% 17.4% -30.8%*** 

Disruption 32.2% 17.4% -45.9%*** 

Recent month 21.7% 7.3% -66.2%*** 

Note: *** indicates significance at 99.9% confidence. 

 

Table 25: Error metric JSD (in %) with segment-specific forecast that includes price 

information (Model 2) vs. Model 1. 

Experiment JSD Model 1 JSD Model 2  Relative change 

JSD 

Whole period 1.2% 0.2% -81.2%*** 

Pre-Covid 1.3% 0.3% -77.9%*** 

Covid 1.1% 0.2% -76.8%*** 

Disruption 1.1% 0.3% -73.0%*** 

Recent month 0.3% 0.1% -51.7%*** 

Note: *** indicates significance at 99.9% confidence. 

 

The results confirm RQ B. There is highly significant error reduction when 

including price information, i.e. going from Model 1 to Model 2. This effect is 

consistent across experiments and for all three metrics with 1.4%-15.4% relative 

PE, 25.2%-66.2% relative WAPPE, and 51.7-81.2% relative JSD decrease. The 

strongest relative WAPPE decrease is observed for Recent month, whereas for 
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both JSD and PE the relative decrease is weakest in Recent month. Just like 

Model 1, also Model 2 by far achieves the lowest WAPPE and JSD (and also 

almost lowest PE) when trained on very recent data (Recent month). In this 

case, it achieves WAPPE of 7.3% and JSD of 0.1%, which are less than half 

the WAPPE and JSD from the other experiments. 

5.4.4 Model 3: resolving data sparsity with matrix 

factorization 

In Model 3, customer searches are classified into the same 3,696 segments as 

in Model 2. For segments that occurred at least ten times in the training set, 

Model 3 uses the same forecast as Model 2, i.e. predicted customer choice 

probabilities equal segment-specific observed frequencies during the training 

period. The difference between Models 3 and 2 is the prediction for those 

segments that occurred less than 10 times in the training set. Whereas Model 2 

still uses observed frequencies for those, Model 3 predicts choice probabilities 

based on the matrix factorization algorithm with four latent factors.  

Table 26, Table 27 and Table 28 compare the resulting PE, WAPPE and JSD 

for 3,696 segments between Models 2 and 3 for the five experiments for those 

segments that occurred no more than nine times in the training set. Because 

Table 26, Table 27, and Table 28 report metrics for these infrequent segments 

only, Model 2 PE, WAPPE and JSD are different from Table 23, Table 24, and 

Table 25, in which the metrics were calculated for all segments. 
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Table 26: Reducing error metric PE (in %) with matrix factorization (Model 3) for scarce 

segments vs. Model 2, calculated for the share of segments indicated (in %). 

Experiment MF updates:  

% of segments;  

% of bookings  

PE Model 2 PE Model 3 Relative 

change PE 

Whole period 18.7%; 

0.001% 

71.2% 68.6% -3.6% 

Pre-Covid 25.8%; 

0.01% 

39.4% 28.7% -27.0%*** 

Covid 22.2%; 

0.002% 

59.9% 62.9% +5.0% 

Disruption 24.9%; 

0.01% 

53.9% 45.5% -15.7%** 

Recent month 50.1%; 

0.1% 

53.8% 57.2% +6.3%*** 

Note: ** and *** indicate significance at 99.0% and 99.9% confidence, respectively. No 

asterisk indicates no statistical significance of the relative change. 

 



133 
 

Table 27: Reducing error metric WAPPE (in %) with matrix factorization (Model 3) for 

scarce segments vs. Model 2, calculated for the share of segments indicated (in %). 

Experiment MF updates:  

% of segments;  

% of bookings  

WAPPE 

Model 2 

WAPPE 

Model 3 

Relative 

change 

WAPPE 

Whole period 18.7%; 

0.001% 

114.1% 71.9% -37.0%* 

Pre-Covid 25.8%; 

0.01% 

104.8% 64.8% -38.2%*** 

Covid 22.2%; 

0.002% 

111.6% 82.9% -25.8% 

Disruption 24.9%; 

0.01% 

102.3% 55.9% -45.3%*** 

Recent month 50.1%; 

0.1% 

96.8% 93.0% -3.9%*** 

Note: * and *** indicate significance at 95.0% and 99.9% confidence, respectively. No 

asterisk indicates no statistical significance of the relative change. 
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Table 28: Reducing error metric JSD (in %) with matrix factorization (Model 3) for scarce 

segments vs. Model 2, calculated for the share of segments indicated (in %). 

Experiment MF updates:  

% of segments;  

% of bookings  

JSD Model 2 JSD Model 3 Relative 

change JSD 

Whole period 18.7%; 

0.001% 

44.0% 28.3% -35.7%*** 

Pre-Covid 25.8%; 

0.01% 

38.5% 22.1% -42.6%*** 

Covid 22.2%; 

0.002% 

43.2% 30.1% -21.9%** 

Disruption 24.9%; 

0.01% 

36.9% 18.8% -51.3%*** 

Recent month 50.1%; 

0.1% 

36.6% 32.8% -10.5%* 

Note: *, ** and *** indicate significance at 95.0%, 99.0% and 99.9% confidence, 

respectively. 

 

The results answer RQ C and indicate there can be improvements in prediction 

accuracy for infrequent segments when going from Model 2 to Model 3. Except 

for JSD, the effect is however not consistent across experiments, neither 

directionally nor with respect to significance. Especially interesting is the Recent 

month experiment reporting a highly significant increase in PE and significant 

decrease in WAPPE when going from Model 2 to Model 3. Looking at the five 

experiments, there are two (Pre-Covid and Disruption) for which all error metrics 

are significantly reduced in Model 3 compared to Model 2. There is one 

experiment (Whole period) with an indication of reduced error, one inconclusive 

experiment (Covid) and one experiment (Recent month) with the 

aforementioned conflicting result.  
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In summary, there is an indication that the matrix factorization can reduce the 

error for infrequent segments. However, since infrequent segments only 

account for 18.7%-50.1% of all segments representing 0.001%-0.1% of all 

bookings, airlines need to balance additional complexity from Model 3 

compared to Model 2 vs. the gains in prediction accuracy for these infrequent 

segments. 

5.4.5 Results summary 

Table 29 summarizes the results for the five methodological RQ: 
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Table 29: Summary of results for the five methodological research questions. 

 Methodological RQ Results 

A Can segment-specific choice prediction 

(Model 1), due to the informational value 

in customer searches, significantly 

improve prediction accuracy compared to 

the baseline (segment-agnostic choice 

prediction)? 

Yes. Product-based segmentation 

consistently and highly significantly 

decreases error metrics across all 

experiments by 7-21% (PE), 38-

55% (WAPPE), and 84-96% (JSD). 

B Can the inclusion of price (Model 2), due 

to the informational value in prices paid, 

significantly improve segment-specific 

prediction accuracy compared to 

Model 1? 

Yes. Price-based segmentation 

consistently and highly significantly 

decreases error metrics across all 

experiments by 1-15% (PE), 25-

66% (WAPPE), and 52-81% (JSD).  

C Can a novel variant of matrix factorization 

(Model 3), due to overcoming data 

sparsity problems, significantly improve 

prediction accuracy of infrequent 

customer segments with less than ten 

bookings in the training data compared to 

Model 2? 

Inconsistent results with 

indication of error reduction, 

although not consistent and not 

significant across all experiments. 

However, infrequent segments 

account for only 0.001-0.1% of all 

bookings. 

D Can training the prediction model on the 

most recent month ensure, due to the high 

number of searches airlines generate, 

that changes in market and customer 

dynamics are captured timely, resulting in 

the highest prediction accuracy? 

Yes. The results suggest training 

on the recent month only. This 

gives consistently lowest errors for 

all three metrics for Models 0-2. 

E Can airlines, even during the most 

disruptive times (training Pre-Covid and 

testing during Covid), achieve significant 

improvements in prediction accuracy? 

Yes. Across all five experiments, 

prediction accuracy can 

significantly be increased from 

Model 0 to 1 and Model 1 to 2. 
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In summary, the results suggest airline managers should adopt product- and 

price-based segmentation to capitalize on more accurate customer insights, 

they need to carefully evaluate whether the complexity of matrix factorization for 

sparse segments pays off in terms of additional accuracy, and they should 

continuously update their models with the latest data. Frequent model updates 

are particularly crucial during disruptive times.  

In the next section, the practical implementation of the presented results will be 

discussed. 

5.5 Discussion for practical implementation 

This section discusses relevance and implications of the results for practical 

airline implementation and bridges to future research avenues. 

The methodology presented is implementable as it only relies on data that are 

readily available to airlines as part of customer searches. Notably, the 

methodology does not require airlines to know the personal identity of a 

customer. Hence, it arguably presents a low-cost opportunity for airlines to 

significantly increase prediction accuracy of customer choice models. 

Specifically, airlines might consider the following questions for practical 

implementation: 

Which prediction model should airlines use? The results show there are 

significant benefits for airlines going from Model 0 to Model 1, and from Model 

1 to Model 2. The combined effect going from Model 0 to Model 2 is reported as 

relative PE decrease of 19.0%-29.5%, relative WAPPE decrease of 63.1%-

84.9%, and relative JSD decrease of 95.5-98.2% depending on the experiment. 

This proves granular segmentation with simple forecast can be very effective in 

reducing prediction error. Going from Model 2 to Model 3 seems to bring further 

benefits, but only for max. 0.1% of customer bookings and not consistently 
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across experiments. Due to the complexity of the matrix factorization performed, 

it seems questionable whether this pays off for airlines. The simple forecast 

could be the most practical trade-off between complexity and effectiveness. In 

addition, its simplicity can likely help navigate change management. 

Is matrix factorization then to be neglected? Not necessarily. Matrix 

factorization could become more relevant if and when airlines further increase 

the number of segments to a magnitude of millions as suggested in Chapter 3. 

In this case, many more segments would become infrequent and there are 

indications that matrix factorization can indeed reduce the prediction error for 

these. 

How many segments should airlines use? Airlines have a wealth of data 

available that enables highly granular and high-dimensional segmentation. This 

chapter confirms this for 3,696 segments, which is orders of magnitudes higher 

than previous models. It remains an open question whether the number of 

segments should be increased further. The results of the deductive validation 

suggest a risk of overfitting. Even with Model 3, JSD for infrequent segments 

are 18.8%-32.8%, whereas Model 2 achieves JSD of 0.1%-0.3% for all 

segments. For WAPPE and PE, it looks similar. When increasing the number of 

segments further, a higher share of them becomes infrequent, which might in 

turn lead to inferior prediction accuracy. 

What time period should airlines train their prediction on? Model 2 results 

suggest major network airlines should train their prediction on the most recent 

month. This is the case in all three error metrics used. Both WAPPE and JSD 

are less than half of the other experiments with longer training periods for 

Model 2. Due to the wealth of searches major network airlines receive, the 

benefit from training on more data, i.e. going back in time six instead of one 

month, are outweighed by the advantage that recent month data allows airlines 

to capture changes in customer or market dynamics in a timely way.  

How often should the prediction model be retrained? Whilst the results 

suggest training on the recent month, retraining the model once per week or 
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once per day seems the appropriate trade-off. Various scholars (Shukla et al., 

2019; Wittman & Belobaba, 2019) suggested transitioning from daily training to 

retraining on every event (e.g., customer transaction). For the use case at hand 

though, it seems practical that airlines keep predicted choice probabilities in a 

repository as part of their offline OM system and update the repository every 

week or day. Daily updates are also consistent with most network airlines’ 

practice of recalculating bid price vectors every night. Only the application to 

actual customer searches happens in the online part of their OM system. 

5.6 Future research 

This research opens four main future research avenues, to (1) refine the 

methodology to achieve higher prediction accuracy, (2) expand to more 

comprehensive analysis of the conceptual architecture of Chapter 3, (3) derive 

policy and test effects on customer and business outcomes with live online 

tests, and (4) validate findings on other airlines or other sectors. 

Improve methodology to achieve higher prediction accuracy. First, different 

features can be tested. This dissertation uses only select data available to 

airlines. One could either use different airline-own data (e.g., shopping context) 

or external contextual data (e.g., social media trends). Second, more features 

can be tested. This would increase the number of segments and reveal insights 

into improved prediction accuracy vs. overfitting, and whether matrix 

factorization could effectively resolve the resulting more severe data sparsity 

problems. Third, instead of deterministically assigning searches to segments, 

algorithms like Naïve Bayes could be used to model a probability distribution 

over all segments for each search. Fourth, a personalization module on top of 

the segmentation approach presented might increase prediction accuracy, as 

indicated by Vinod (2020). Fifth, techniques like exponential smoothing giving 

larger weight to more recent observations might improve prediction accuracy. 
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Sixth, for practical implementation airlines could refine matrix factorization, e.g. 

change the hyperparameter of latent factors to test whether consistent and 

significant error reduction can be achieved for infrequent segments. 

Expand to more comprehensive analysis of conceptual architecture from 

Chapter 3. First, studies could target “Stream 1: Product choice” holistically 

through joint optimization of segmentation, bundling, ancillary/bundle pricing, 

and assortment strategies. Second, the “Flight pricing” stream could be 

independently analyzed with the segmentation approach presented in this 

dissertation to assess whether highly granular segmentation can lead to 

improved business outcomes from flight pricing decisions. Third, studies could 

aim to jointly optimize product choice and flight pricing, building on the simple 

first steps taken in Model 2. 

Derive policy and test effects on outcomes with online tests. The deductive 

research proves prediction accuracy can be increased. However, only live tests 

with an assortment module will show whether airlines can derive a policy from 

this that improves customer (satisfaction) and business outcomes (conversion, 

revenue), and by how much customer discrete choice probabilities change 

based on how offers are presented to them. It would be especially interesting to 

measure whether a customized branded fare option will significantly decrease 

the probability of customers purchasing a la carte ancillaries after having 

selected their branded fares. 

Validate findings on other airlines or other sectors. First, tests on smaller 

airlines could reveal whether less data is still sufficient to ensure frequent 

recalibration on one month of data whilst avoiding data sparsity problems. 

Second, research could investigate applicability on other transport modes, e.g. 

on high-speed railways, ferry operators, air cargo or ocean carriers. 
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5.7 Conclusion 

Airline customers are different. Over the last decades, airlines have customized 

their offering to address different needs and to monetize ancillary revenues. At 

the same time, airlines aim to make the purchase experience convenient for 

their customers, which has led to the emergence of pre-selected bundles, so-

called branded fares. To combine both customization and convenience, 

customer segmentation has become more relevant. Most existing airlines still 

today work with two segments, Business and Leisure, partly to avoid data 

sparsity problems when estimating customer choice probabilities. 

This chapter proves segmentation orders of magnitude more granular than 

existing models can improve discrete choice probabilities of future customer 

choices. First, it proves product- and price-based segmentation with thousands 

of segments and simple forecasts without any machine learning can effectively 

and highly significantly lower prediction error for future customer choice 

probabilities compared to a baseline of no segmentation Second, for large 

airlines and segmentation in the magnitude of thousands, there seems positive 

yet limited benefit moving from simple forecast to machine learning with a novel 

application of matrix factorization. When further increasing the number of 

segments to the magnitude of millions, it will be an interesting research question 

whether matrix factorization can then reduce prediction error more significantly. 

Third, there is significant indication large airlines have sufficient data without 

incurring substantial data sparsity problems for at least 99.9% of all customer 

bookings. Fourth, because of the large number of data generated, the results 

suggest airlines to train their models on one month of past data as opposed to 

longer time periods to capture behavior changes in a timely way.  

The findings support a new balance between effectiveness and robustness of 

the segments identified, and hence present an alternative approach to 

traditional customer choice models with typically two or single-digit numbers of 

segments and restrictive assumptions, such as the independence of irrelevant 

alternatives (IIA). It allows airlines to present their customers more relevant 



142 
 

offers with simple segmentation approaches in a data-driven, automated, and 

cost-effective way. This allows airlines to combine the convenience and 

simplicity of branded fares with the flexibility of unbundled ancillaries. Notably, 

the models only process anonymous data readily available to airlines and in 

compliance with data privacy rules.  

Further academic research could either refine the methodology to achieve 

higher prediction accuracy, expand to more comprehensive analysis of the 

conceptual architecture, derive a policy and test effects on customer and 

business outcomes with live online tests, or validate the findings on other 

airlines or other transport sectors. 
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5.8 Appendix: matrix factorization in Model 3 

Step 1: Define the number of latent factors, rows, and columns. 

 Step 1.1: Define the number of latent factors as 𝑓 = 4. 

Step 1.2: Define the number of rows (customer segments) as 𝑠 = 3,696. 

 Step 1.3: Define the number of columns (products) as 𝑝 = 100. 

Step 2: Create the matrices. 

 Step 2.1: Matrix (𝑆 ⋅  𝐹) spanning rows and latent factors of size 𝑠 𝑋 𝑓. 

 Step 2.2: Matrix (𝑃 ⋅  𝐹) spanning rows and latent factors of size 𝑝 𝑋 𝑓. 

Step 3: Initialize the matrices. 

 Step 3.1: Factor matrices (𝑆 ⋅  𝐹) and (𝑃 ⋅  𝐹) are initialized with the absolute 

of random values drawn from a Gaussian distribution, multiplied by 0.1.  

 Step 3.2: Calculate the initial factorized matrix (𝑆′ ⋅  𝑃′) = (𝑆 ⋅ 𝐹) ⋅ (𝐹𝑇 ⋅ 𝑃) 

Step 4: Set hyperparameters. 

 Step 4.1: Set the learning rate 𝛼 = 0.05. 

 Step 4.2: Set the regularization parameter 𝛽 = 0.01. 

 Step 4.3: Set the number of epochs 𝑛 = 50. 

Step 5: Define the error function to be minimized. 

 Step 5.1: The error function 𝜀 measures the difference between the originally 

observed segment-product matrix (𝑆 ⋅  𝑃)  and the segment-product matrix 

from factorization (𝑆′ ⋅  𝑃′). It is calculated as 𝜀 = 𝐴𝑏𝑠((𝑆 ⋅  𝑃) − (𝑆′ ⋅ 𝑃′)). 

Step 6: Iterate through the training loop for each epoch. 

 Step 6.1: Alter the entries in the factor matrices (𝑆 ⋅  𝐹) and (𝐹 ⋅  𝑃). 

 Step 6.2: Compute the new error function 𝜀. 

 Step 6.3: Update the matrices (𝑆 ⋅  𝐹) and (𝐹 ⋅  𝑃) with stochastic gradient 

descent to minimize the error function 𝜀. 
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6 Discussion and synopsis of the 

research 

This chapter synthesizes and reflects on the findings of the dissertation. The 

main insight is that machine learning can help improve prediction accuracy in 

discrete choice analysis. However, most of the benefit does not come from 

advanced machine learning models, but simply from high-dimensional 

segmentation using data readily available to airlines. 

Section 6.1 answers the five PhD research questions introduced in 

Section 2.3.2, showing the path from problems to solutions. Section 6.2 

discusses generalization of the findings to other airlines, other time periods, and 

other sectors. Section 6.3 summarizes implications for academic offer 

management literature and suggests future academic research avenues. 

Section 6.4 highlights practical implications for the airline industry and how 

airlines could capitalize on the research findings when implementing the 

proposed offer management system (OMS). 

6.1 From research questions to answers 

This section synthesizes the research results to answer the five distinct 

research questions from Section 2.3.2. The answers are explained in the 

subsections below. Each time, the research question is stated followed by the 

findings from this dissertation. 
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6.1.1 Can airlines identify distinct granular customer 

segments? 

Research question 1: Can airlines segment their customers into thousands to 

millions of distinct, clearly identifiable and MECE segments that exhibit 

significantly different choice behavior? 

This question was answered for both thousands and millions of segments. 

Firstly, for thousands of segments, this question can be clearly answered with 

yes as confirmed by the inductive research of Chapter 4. The distinct segments, 

built exclusively on data available to airlines in customer searches, exhibit highly 

significantly different customer choice behavior in the period analyzed from 

September 2018 to September 2023. Specifically, the distribution of choice 

probabilities significantly differed based on the four features tested, in this order 

of significance. First, sales channels matter most. Measured by the Jensen-

Shannon divergence of larger than 0.5, there are sales channels whose choice 

probability distributions are more different than identical. Second, customer 

loyalty status has a significant impact on customer choice behavior. Third, 

whether a flight is scheduled to run overnight or not impacts customer choice 

as well. Fourth, the weekday of the booking matters significantly between 

weekdays (Mondays-Fridays) and weekend days (Saturdays and Sundays). 

Secondly, for millions of segments: this question cannot be answered with the 

research yet. It requires a follow-up study that increases the number of 

segments by increasing the number of features used. Due to the high 

significance for the magnitude of thousands of segments, it seems conceivable 

that customer choice probability distributions might also be significantly different 

for segments in the magnitude of millions. 
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6.1.2 Do granular segments improve future choice 

prediction? 

Research question 2: Can airlines use this segmentation to significantly 

improve the prediction accuracy of customer choice probabilities for searches 

in the future? 

Based on the deductive analysis presented in Chapter 5, the answer to this 

question is unequivocally affirmative. The prediction accuracy of customer 

choice probabilities, compared to a baseline of no segmentation, can be 

significantly improved when segmenting customer searches into thousands of 

segments. The results are highly significant across various experiments that 

cover five different time periods and the three error metrics Prediction error, 

Weighted average percentage point error, and Jensen-Shannon divergence.  

With this, the research proves that segmentation on product choice alone, with 

thousands of segments, and using simple forecasts without any machine 

learning can effectively and highly significantly decrease the prediction error of 

future customer choice probabilities compared to a baseline of no segmentation. 

This holds true for all five experiments and all three error metrics.  

Furthermore, expanding the segmentation model from product choice alone to 

include both product- and price-based segmentation can further significantly 

decrease the prediction error. This enhancement is consistent across all five 

experiments and all three error metrics. 

6.1.3 Does matrix factorization solve the data sparsity 

problem? 

Research question 3: Can matrix factorization help solve the data sparsity 

problems when segmenting customers into thousands to millions of segments? 
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This question can neither be answered with a clear yes nor a clear no. The 

results are inconsistent and not significant across experiments and error 

metrics, though there is an indication of error reduction. Still, the research allows 

insights into the potential of matrix factorization. These benefits can only be 

achieved for less than 0.1% of all bookings since the majority 99.9%+ do not 

suffer from data sparsity problems, at least not for the major network airline 

tested. This means there seems positive yet limited and not consistently 

significant benefit moving from simple forecast to machine learning with the 

novel application of the well-studied matrix factorization algorithm. 

When further increasing the number of segments to the magnitude of millions, 

this research brings forward a new hypothesis that the number of segments 

suffering from data sparsity increases, the number of customers falling into a 

segment with data sparsity increases, and hence the error reduction with matrix 

factorization will be more significant. 

6.1.4 Are changes in customer behavior captured timely? 

Research question 4: Can changes in customer behavior be captured, or how 

much of the prediction accuracy improvements can be achieved in a disruptive 

event like the Covid-19 pandemic? 

The Disruption experiment in Chapter 5 proves that, even in the most disruptive 

time training a model on pre-Covid and applying it on Covid data, significant 

improvements in customer choice prediction accuracy can be achieved. This is 

true for the thousands of segments tested. 

Further, the different experiments show that training a model on only the recent 

month of data yields the highest prediction accuracy improvements. This did not 

come at the cost of data sparsity. Airlines as large as the major network airline 

tested seem to have more than enough data to allow segmentation in the 

magnitude of thousands even when only training on one month of data. 
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6.1.5 How should airlines implement the solution? 

Research question 5: What is practical advice to balance cost and 

effectiveness: Which features should airlines train on? How complex should the 

prediction model be? How many segments should airlines use? How long 

should the training period be? How often should airlines retrain their model? 

This research question includes various subquestions, which will be answered 

separately below.  

In general, there is the obvious trade-off between complexity and effectiveness. 

The answers are intended to provide guidance for practical advice. If airlines 

evaluate the complexity-effectiveness trade-off differently, their optimal solution 

might vary. 

Which features should airlines train on? This research has specifically 

investigated the explanatory power of four features, namely sales channel, 

customer loyalty status, whether a flight is scheduled to run overnight or not, 

and booking weekday. For the major network airline, these have been 

demonstrated to be significant in explaining customer choice behavior in this 

order of sequence mentioned. Additionally, the inclusion of price has been 

shown to highly significantly improve prediction accuracy further. Whilst the 

methodology itself is reproducible, other airlines who consider testing the model 

themselves may likely get different results in terms of which features can 

improve prediction accuracy and by how much. In general, it is recommended 

to first test potential features separately, and then build more complex models 

with multiple features. 

How complex should the prediction model be? The results in this research 

prove that granular segmentation with simple forecasts can be very effective in 

increasing the prediction accuracy of customer choice probabilities. These 

simple forecasts predict that the past behavior will also hold true in the future. 

Machine learning, more precisely the novel application of the matrix 
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factorization algorithm, seems to further improve on these simple forecasts. 

However, this was only shown for the last 0.1% of customer bookings, and even 

there the effect cannot be consistently and significantly measured across 

experiments and metrics. Based on this research, it seems questionable 

whether this justifies the much higher complexity of the matrix factorization 

model, at least as long as the goal is to enable segmentation in the magnitude 

of thousands as tested in this research. In this case, simple forecasts look like 

the most practical trade-off between complexity and effectiveness. Its simplicity 

will likely also help with change management within airlines. For segmentation 

in the magnitude of millions, however, many more of the segments will suffer 

from data sparsity, and matrix factorization will likely become more effective. 

How many segments should airlines use? In the case of the major network 

airline tested, the wealth of data available in customer searches suggests 

thousands of segments are not necessarily the limit. The analysis in Chapter 5 

proves that increasing the number of segments from 924 to 3,696 by including 

the price as additional feature, further improves the prediction accuracy. 

However, the research also emphasizes the risk of overfitting when increasing 

the number of segments. This in turn might lead to inferior prediction accuracy. 

In summary, answering this question critically depends on how many customer 

searches airlines have. 

How long should the training period be? The results in this research are clear 

and suggest airlines to train their model on one month only of data. This has 

been shown to lead to higher prediction accuracy as changes in customer 

behavior are captured. In the case of the major network airline, this advantage 

clearly outweighs the disadvantage of fewer data to train on. Large network 

airlines simply have more than enough customer searches within just one 

month. Training the model on even shorter periods than one month has not 

been studied in this research. 
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How often should airlines retrain their model? Various academic scholars, 

e.g. Shukla et al. (2019) and Wittman & Belobaba (2019) suggest retraining the 

model after every event, i.e. every customer search or booking. Whilst this 

intuitively makes sense, as every new event carries new informational value, it 

would also come at high cost. An appropriate trade-off could be to retrain the 

model every night. This would be consistent with most network airlines’ practice 

to recalculate bid price vectors every night.  

Table 30 summarizes the key learnings for airline managers considering 

practical implementation of the solution based on the findings of this 

dissertation. 

Table 30: Summary of key learnings for practical airline implementation. 

Question Key learnings 

Which features should airlines 

train on? 

Sales channel, customer loyalty status, 

overnight flight yes/no, booking weekday, and 

price. 

How complex should the prediction 

model be? 

Simple forecasts are effective. Matrix 

factorization slightly improves accuracy but 

adds complexity. 

How many segments should 

airlines use? 

Depends on the number of customer 

searches. Trade-off between accuracy and 

overfitting. 

How long should the training period 

be? 

Train on one month of data to capture changes 

in customer behavior. 

How often should airlines retrain 

their model? 

Retrain the model every night to balance the 

arrival of new informational value with 

retraining cost. 
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After answering these five research questions, the next section will discuss 

generalization of the research and its findings outside of major passenger 

network airlines. 

6.2 Research generalization 

This dissertation has shown the value of the suggested solution to the major 

network airline tested on. This section discusses whether the findings will likely 

generalize to other time periods, other airlines, or other transport sectors. 

With respect to other time periods, the prediction accuracy improvement has 

been demonstrated for five different time periods. This makes it likely the 

research will generalize to a sixth, seventh, or n-th different time period. 

With respect to other airlines or other transport sectors, it makes sense to first 

evaluate why it works for the major network airline, i.e. why it can solve the 

research problem for them. One, the tremendous number of searches and 

bookings generate tremendous amounts of data to train the model on. Two, 

customer preferences are heterogenous and can be split into distinct segments 

with significantly different purchase behavior. Three, this segmentation can be 

performed based on explicit or implicit information in the search. Four, network 

airlines control their own offer, but only do so when distributing via direct 

channels or using the NDC and One Order standards. 

Another angle was given in Section 1.1 introducing three characteristics that 

define the customized offer management problem. First, customers differ with 

respect to both the product they demand and their WTP. This seems to be a 

main criterion to focus on. For example, it seems intuitive that freight companies 

likely have less heterogenous customers, and price likely plays a bigger role in 

their decision-making for or against certain products. The latter is likely also true 
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for LCCs. Second, the product is customizable as base product plus ancillaries. 

This is likely true for other transport sectors as well. Third, there is a large 

amount of customer searches and bookings. This obviously depends on the size 

of the respective company analyzed. 

Table 31 takes these criteria and hypothesizes about research generalization. 

These hypotheses are derived from relative comparisons to the presented 

results for the major network airline analyzed in the dissertation. These 

hypotheses will need to be tested before one can conclude they are actually 

true. The line of argumentation for how the hypotheses are derived is further 

detailed after the table. 
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Table 31: Hypothesizing about generalization of the research findings to other transport 
sectors. 

Transport 

sector 

Hetero-

genous 

customers 

(product) 

Hetero-

genous 

customers 

(WTP) 

Custom-

izable 

product 

Many 

searches 

and 

bookings 

Hypothesis: 

will findings 

generalize? 

Network 

airline 

analyzed 

Yes Yes Yes Yes n/a 

Other big 

network 

airlines 

Yes Yes Yes Yes Very well 

Smaller 

network 

airlines 

Likely Likely Yes Maybe Likely well 

Large LCCs Likely Much less Yes Yes Likely well 

Smaller 

LCCs 

Somewhat Much less Yes Maybe Unclear 

High-speed 

rail 

Likely Yes Rather yes Yes (if big 

enough) 

Likely well 

Long-

distance 

buses 

Likely Much less Yes Yes (if big 

enough) 

Unclear-

likely 

Car rentals Yes Yes Yes (even 

more) 

Yes (if big 

enough) 

Likely very 

well 

Passenger 

ferries 

Somewhat Likely Somewhat Yes (if big 

enough) 

Maybe 

Air cargo 

carriers 

Limited Rather not Somewhat Yes (if big 

enough) 

Very unclear 

Ocean 

carriers 

Somewhat Rather not Somewhat Yes (if big 

enough) 

Unclear 
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Other major network airlines: There is no indication the proposed solution will 

not work with other major network airlines. It can be expected that all criteria are 

met: their customers are different with respect to the services they demand as 

well as their WTP for these services, they can customize their product, and they 

receive a large number of searches and bookings. 

Smaller network airlines: The main difference to major network airlines is the 

number of searches and bookings. The practical implication might be that these 

airlines would need longer training periods than the suggested recent month. 

This will likely come at the cost of less fast adaptation to changing customer 

preferences. Still, the prediction accuracy improvements were also highly 

significant when training on longer periods. Also, customer heterogeneity might 

be less with smaller network airlines due to their concentration on certain 

geographies, markets, or customer segments. In conclusion, most of the 

research findings can likely be expected to generalize well. 

Large LCCs: LCCs typically have customers that are much less heterogeneous 

with respect to their WTP. Also, they might be less heterogeneous with respect 

to the services they demand. For example, the LCC customer travel purpose is 

mostly leisure, whereas most network airlines cater to both leisure and business 

travelers. In summary, the presented findings can be expected to generalize 

when it comes to suggesting customized bundle options to LCC airline 

customers. This is conceivably true even though the benefit of a more 

convenient customer experience is arguably less important when selling to LCC 

customers. One aspect not included in Table 31 is distribution. LCCs often have 

a higher share of direct distribution. One of the biggest LCCs, Ryanair, for 

example exclusively distributed via their own website before signing a GDS 

agreement with Amadeus in late 2022 (Aviation Direct, 2022). Lastly, while the 

proposed solution might be more directly applicable to network airlines, LCCs 

are more dependent on ancillary revenues, and hence, would profit more from 

their optimization (CarTrawler, 2023; IdeaWorks, 2024). 
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Smaller LCCs: In addition to the discussion on large LCCs, smaller LCCs likely 

have less heterogenous customers and fewer searches and bookings to train 

their models on. This renders a hypothesis about research generalization 

unclear. 

High-speed rail: Compared to major network airlines, the product might be less 

customizable. For example, rail operators typically do not charge for luggage. 

Otherwise, it can be hypothesized the research will likely generalize well to 

larger operators with sufficiently many searches and bookings. Hypothesizing 

further, search features might help operators to predict which customer 

browsing for tickets in second class might be open to an upgrade to first class 

at which price. 

Long-distance buses: Similar to LCCs, customers can be assumed to be 

much more homogenous in their quest for low fares. This renders the value of 

the research to long-distance bus operators anything between unclear and likely 

yes. 

Car rentals: Car rentals exhibit characteristics that make generalization of the 

findings highly likely. The product is arguably more customizable with all the 

different types of cars on offer. Car rental companies could define the smallest, 

cheapest car as equivalent to a seat on a flight, with anything bigger, faster, or 

more expensive an ancillary. Customers are heterogeneous from business to 

leisure and from looking for small all the way to luxury cars.  

Passenger ferries: It seems conceivable that customers are less 

heterogeneous in their preferences for product, and passenger ferries have less 

ancillaries to differentiate their offers. This makes it difficult to hypothesize in 

favor of or against research generalization.  

Air cargo carriers: Cargo customers are typically B2B, as opposed to all the 

sectors discussed before. B2B customers are typically very price-sensitive and 

also know the market price. Also, most air cargo customers likely choose this 
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option because of its unmatched speed as single most important criterion. 

These characteristics make it very unclear whether a similar solution as 

presented in this dissertation generalizes to air cargo carriers. 

Ocean carriers: Like air cargo carriers, but customers could be more 

heterogeneous. Generalization to ocean carriers seems more likely than for air 

cargo carriers, but still unclear. It could still add value when considering different 

routing options to customers. 

6.3 Implication on academia 

This section concludes the implication of the research on the academic offer 

management literature. It starts with the contribution made (Section 6.3.1) 

before discussing limitations of the proposed solution and suggesting future 

research avenues (Section 6.3.2). 

6.3.1 Contribution to the academic literature 

This research fills the gap between single digits of segments in existing 

(discrete) choice models, and infinite segmentation in some machine learning 

models. The research is novel as the proposed solution combines viability, 

usability and feasibility, validated with hundreds of millions of real airline data. 

First, viability has been established as data-driven cost-effective segmentation 

leads to significantly higher prediction accuracy for future customer choices that 

is able to adapt to changes in customer behavior. Second, it is usable due to 

the transparency, understandability, and explainability from mapping each 

search to precisely one segment. Third, the proposed solution is feasible as it 

can be implemented on data that already exists for airlines and is compliant with 

data privacy regulation. The results of this research are based on hundreds of 
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millions of coupons from a major network airline between September 2018 and 

September 2023. With this, the proposed solution delivers on the criteria 

postulated in Section 1.3 when backwards engineering from the goal of solving 

the customized offer management problem. 

Methodologically, it combines the strengths of the existing approaches by 

addressing the existing models’ respective limitations: Existing DC models are 

not granular enough to represent the full heterogeneity of airline customers. And 

infinite segmentation with ML is not easily understandable, interpretable, and 

explainable, hence might struggle to get adoption from airline users. This 

research has developed a proposed solution for discrete, explainable 

segmentation with many segments that adequately represent customer 

heterogeneity. Specifically, the research has demonstrated the proposed 

solution can highly significantly increase prediction accuracy for a magnitude of 

thousands of segments, and it can do so for all customer searches, independent 

whether the personal identity of the customer is declared or not. Further, the 

research has shown that ML, more precisely a novel application of matrix 

factorization, can help solve data sparsity problems, and hence improve DC in 

high-dimensional spaces. However, for the major network airline, data sparsity 

problems only affected at most 0.1% of all customer bookings. 

Zooming out from the customized airline offer management problem, there 

could be an implication for the wider academic community. The research has 

developed and tested a new use case for matrix factorization. Previously, this 

algorithm has been proven to successfully and highly effectively solve the 

problem of filling a sparsely populated user-item matrix for Netflix and other 

companies who want to recommend relevant content to their customers. Now, 

the algorithm has been shown to improve prediction robustness through 

repeated interactions. Here, the matrix is not sparse with many missing entries, 

but some entries are based on a handful of actual observations only. With the 

latent factors, this research has given an indication that matrix factorization can 

improve the robustness of these infrequent segments. 
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In summary, the academic contribution of this dissertation is that high-

dimensional and data-driven segmentation, potentially aided by machine 

learning to solve data sparsity, can be combined with the understandability of 

discrete choice models with clearly identifiable segments. These findings have 

implications on the different subproblems in the offer management literature, as 

will be discussed next. 

Segmentation. The goal of segmentation is to identify groups of customers with 

similar behavior. The proposed solution has shown this in a data-driven way 

using revealed instead of stated preferences. Instead of asking customers what 

they want, their actual behavior is measured. Customers are not assigned to a 

segment based on few manual rules, but purely based on features of their 

search. This is particularly beneficial when customer preferences and behavior 

change quickly. For example, in the beginning of the Covid pandemic, many 

airlines gave full flexibility with refund options to all their branded fares. In result, 

the main value proposition of the more expensive branded fares lost its value. 

The proposed solution has been shown to learn quickly and adapt. It can be 

expected that it would have suggested customized bundles based on other 

attributes. 

Bundling. The goal of bundling is to create a product (bundle) that most closely 

resembles customer preferences. This goal has not directly been addressed in 

this research due to the assumption that all possible product combinations 

offered by the airline are always available with the a la carte ancillaries. 

Methodologically, this is not real-time bundling, although it might appear so for 

airline customers. It is also not pure bundling (Kobayashi, 2005), which would 

offer certain ancillaries as part of bundles only. 

Pricing. The goal of pricing is to match customer WTP. The conceptual solution 

of Chapter 3 is aimed to help airlines achieve that. However, this hypothesis 

has not been validated in this dissertation. It remains to be tested in follow-up 

research. 
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Assortment. The goal of assortment is to optimize the selection of products to 

be displayed to a customer search. That is at the core of this dissertation. 11% 

of customers of the major network airline purchased a product that includes at 

least one ancillary in addition to their branded fare selection. Out of these 11%, 

more than two thirds purchased the product with the highest purchase 

probability in their respective segments when excluding branded fares. Put 

differently, these 7.5% of the total customers chose a product that was not 

displayed in step 1 of the customer journey but would have been when 

additionally displaying the most likely product as customized bundle in step 1. 

These 7.5% are the primary target group for which this research can make their 

customer journey more pleasant. They would see their preferred product 

already in step 1 as customized bundle, instead of having to navigate through 

the list of a la carte ancillaries in step 2. This can be hypothesized to increase 

customer satisfaction, which can be hypothesized to increase search-to-book 

conversion. The actual effect on customer and business outcomes remains to 

be tested with online tests in the airline’s customer journey. 

Customized offer management. The goal of customized offer management is 

to solve the subproblems in a way that allows airlines to use the information 

customers implicitly and explicitly provide in their search to develop customized 

product and pricing strategies. This research contributes to solving this problem 

by showing that assortment can be improved through data-driven, high-

dimensional segmentation. 

In conclusion, the OMS proposed and validated in this research has been 

demonstrated to increase prediction accuracy for future customer choices. What 

remains to be tested is whether this increased prediction accuracy leads to 

improved outcomes for customers and airlines. 
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6.3.2 Limitations and future research avenues 

The research described in this dissertation has limitations. The findings indicate 

seven avenues for future research. These include testing the prediction 

accuracy against other models; refining the methodology; relaxing some of the 

assumptions; designing and conducting online tests; validating the findings on 

other airlines or other sectors in line with the generalization hypotheses 

developed in Section 6.2; testing the proposed solution to improve flight pricing 

decisions; and validating and testing the conceptual architecture from Chapter 

3 in a holistic way. These seven pathways will be discussed in the following. 

Test prediction accuracy against other models. Whilst the research has 

shown the proposed solution can significantly increase prediction accuracy 

compared to the base case of no segmentation on the features sales channel, 

customer loyalty status, overnight flight yes/no, and booking weekday, it has not 

tested prediction accuracy against models other than the baseline of no 

segmentation based on these features. This should happen on the same data. 

Three other models seem particularly interesting. First, deep learning ML 

models like neural networks can achieve the same magnitude of segments, or 

maybe even perform infinite segmentation like in Shukla et al. (2019). However, 

these often suffer from a lack of explainability as well as transparency, and 

hence lack of usability.. Despite this black box character, if these deep learning 

models outperform the proposed solution with simple forecasts in this 

dissertation, then it becomes a trade-off for airline executives to resolve. 

Second, DC models with single digits of segments are explainable, transparent, 

and hence usable by airline users. However, the findings from this dissertation 

suggest the DC models’ prediction accuracies to be inferior to the proposed 

solution as the DC models neglect a large amount of the informational value 

explicitly and implicitly provided in customer searches. In other words, they do 

not make use of characteristics or features that this research has shown to have 

explanatory power for customer choice. Third, simpler ML models like Naïve 

Bayes would model probability distributions over all segments for each search, 
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instead of deterministically assigning each search to precisely one segment. 

This arguably again comes at the cost of explainability, hence would be 

interesting to conclude whether their prediction accuracy would be higher than 

the solution proposed in this dissertation. 

Refine the methodology. Validation in this dissertation has been performed on 

four features and based on customers who have converted their search into a 

booking. There are various conceivable strategies to refine this methodology. 

First, the no-purchase option could be included in the choice set. This would 

increase the number of searches that can be tested on and improve the 

understanding of customers who do not proceed from a search to making a 

booking. Second, different or more features could be tested than sales channel, 

customer loyalty status, overnight flight yes/no, and booking weekday. These 

could be airline-own features or external contextual data such as social media 

trends or weather forecasts. Adding more features will likely reveal important 

insights into the trade-off between prediction accuracy and the risk of overfitting. 

Third, the weighting of recent observations could be improved. The validation in 

this research simply defines a distinct training period. Either a booking is part of 

the training set, or it is not. Bookings that are part of the training set have all 

received the same weight. There are techniques, such as exponential 

smoothing, who give observations different weights. For example, more recent 

observations could be weighted higher, whilst those from the more distant past 

are still not completely discarded. Finally, the matrix factorization approach 

could be improved. For instance, the hyperparameter of the number of latent 

factors could be tweaked. Tuning hyperparameters is a typical step in refining 

ML models. 

Relax some of the assumptions. The proposed solution makes various 

assumptions. Solving how to relax them and testing a new solution could add 

value to the scientific community. Two of these assumptions are that customers 

always choose the lowest-price booking class, and that branded fares represent 

an independent customer choice for all ancillaries included. It seems likely that 
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the latter assumption is not true in reality. In the proposed solution, this would 

lead to an overestimation of customer choice probability of branded fares. Since 

the core goal is to offer a customized bundle that is not a branded fare, this 

however has no implication as long as the ordinality of the products that are not 

branded fares is unchanged. 

Design and conduct online tests. Online tests would display the customized 

bundle in step 1 of the customer journey. Only then it can be proven that 

customer and business outcomes can in fact be improved from showing a 

customized bundle in addition to the static branded fares in step 1 of the 

customer journey. The basic hypothesis would be that showing customized 

bundles significantly decreases the selection of a la carte ancillaries in step 2 of 

the customer journey, precisely because the relevant product for the specific 

customer is already displayed as customized bundle in step 1. There are more 

research questions: Will this lead to higher revenues, higher search-to-book 

conversion, and higher customer satisfaction? Can the airline increase its 

market share because its product is perceived superior by its customers? Will it 

lead to higher customer loyalty? Also, will it lead to higher customer WTP? This 

last question might be more difficult to test as it is not directly observable though. 

In addition, it remains to be tested whether automation benefits from increased 

productivity hence cost saving can be achieved.  

Validate on other airlines or other sectors. To expand the relevance of the 

research beyond major passenger network airlines, the analyses presented in 

this dissertation could be repeated with other airlines or other transport sectors. 

Potential candidates were discussed in Section 6.2 alongside with hypotheses 

how well the research might generalize. Three questions are of particular 

scientific interest. First, do smaller airlines have sufficient data to effectively train 

the model? Second, do LCCs have sufficiently heterogeneous customers? Due 

to their higher dependency on ancillary revenues than legacy carriers, this 

would be highly relevant to study. And third, does the proposed solution 

generalize beyond passenger airlines? 
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Test the proposed solution to improve flight pricing. Validation in this 

dissertation has been performed for the product choice stream, i.e. the left side 

of Figure 10. Future academic research could test the solution on revenue 

optimization potential from better flight pricing decisions. Research question 

would be whether segment-specific WTP estimates can outperform existing 

WTP estimation methods. This is also an interesting question with respect to 

potential automation benefits. Could it suffice if airlines, in the long term, 

estimate only one WTP band for each flight type instead of defining and 

manually maintaining a large number of price points? Flight types could for 

instance be a combination of origin-destination, flight weekday, and season. 

Validate and test the conceptual architecture holistically. This is likely the 

biggest untapped research field. In addition to testing the proposed solution on 

flight pricing separately, the conceptual architecture can also be tested 

holistically, i.e. for joint optimization of product and price. Utilizing detected 

patterns for customized offer management rests on the assumption that 

customers have an overall WTP for the entire product instead of single WTPs 

for specific ancillary services. As such, it is congruent to the “simultaneous 

consumer” according to Bockelie & Belobaba (2017). If predictive power of such 

models turns out high, this could greatly reduce complexity of airline RM model 

landscapes, since cross-elasticities between different ancillary WTPs and 

substitution probabilities would not need to be explicitly modeled. Whilst the 

proposed models could already allow some derivations into customized WTP 

estimation, an explicit prediction of customized WTP could extend the proposed 

research. Whilst this dissertation does not detail out the final path to be taken, 

one could think of final model outputs as probability scores for each product and 

WTP point. This can be represented by a two-dimensional product space that 

contains all possible combinations of product at all possible WTP points. For 

each possible combination, the model would estimate the probability that this is 

the optimal one for the particular customer search. This can be visualized as 

three-dimensional product surface (Figure 23). 
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Figure 23: Stylized example of the three-dimensional product space, which is defined 

by a combination of product, price point, and optimality probability.  

The product surface could allow for multi-modal distributions with various peaks. 

This could be plausible in case of “ambiguous” searches consistent with more 

than one segment. Going further, this could offer airlines the opportunity to think 

of resolving the ambiguity by asking customers bespoke questions or offering 

them a specific ancillary very cheaply. The customer’s reaction to such bespoke 

question or cheap ancillary offering could then help detect which of the various 

consistent segments is prevalent. 

Finally, applying the holistic architecture can be hypothesized to contribute to 

automation benefits from simplifying airline processes and workflows. The 

proposed conceptual architecture largely eliminates the need to price specific 

ancillaries, branded fares, or upsells since WTP methodologically would be 

treated in the same fashion as product choice. 
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6.4 Implication on the airline industry 

Airlines clearly had been at the forefront of revenue management decades ago. 

However, with respect to offer management, the airline industry has rather 

moved slowly for a while. This is partly due to airlines’ dependency on legacy 

systems like Global Distribution Systems (GDS). In addition, it would not be 

uncommon that previous frontrunners exhibit some hesitation to experiment 

with novel approaches since the problem is perceived to be well-understood. 

Hence, the opportunity cost is assessed as greater than the potential value 

gained from experimentation.  

The OMS proposed in this dissertation is different from industry practice and 

innovations propagated by academic and industrial scholars. Doing something 

differently from their competitors obviously poses a risk to airlines who consider 

experimenting with and implementing the proposed OMS. The demonstrated 

higher prediction accuracy has not been proven yet to lead to improved 

customer and business outcomes. On the other hand, it also presents an 

opportunity to gain a competitive advantage over other airlines in a cost-

effective way. 

From a methodological point of view, this dissertation aims to solve an 

operations research (OR) problem. For that reason, the implications on 

academia from Section 6.3 are also relevant to the airline industry, and their OR 

experts in particular. In addition, this section discusses practical implementation 

with benefits (Section 6.4.1), limitations (Section 6.4.2), and concluding remarks 

highlighting trade-off decisions to be made when implementing (Section 6.4.3). 

6.4.1 Benefits for practical implementation 

This subsection discusses four main benefits for airlines who decide to 

implement the proposed solution into their Offer Management System (OMS). 



167 
 

First, the proposed OMS combines the convenience of branded fares with 

the flexibility of a la carte ancillaries. If implemented, customers could benefit 

from both an intuitive and seamless customer journey that is still fully 

customizable to their needs. Airlines can gain this benefit at low cost since the 

proposed OMS only processes data that are readily available to airlines. Airlines 

do not need to purchase external data or set up completely new data 

infrastructure. The segmentation logic rests on customers’ actual purchase 

decisions instead of customer surveys. This saves both cost to the airlines and, 

when available, revealed preferences are to be preferred over surveys asking 

customers how they would react in a hypothetical setting (Zamparini & Reggiani, 

2007). 

A second major advantage is that the conceptual architecture is designed in a 

way to fit into existing RMS. For distribution via direct channels, it is 

implementable right away. The holistic OMS is designed in modules to allow for 

simple and gradual embedding into RMS. The solution is also robust to work 

with both existing limitations (for example, twenty-six booking classes) and 

innovations (for example, continuous pricing). Due to its modularity, the 

architecture can support loosely coupled Application programming interfaces 

(APIs). Adding to its cost-effectiveness, the proposed solution uses a repository-

based offer management instead of requiring real-time computation with fast 

response at the time of a customer search. When a customer searches, the 

corresponding customized bundle is simply read from the stored matrix. This is 

a relevant difference to true real-time bundling or complex deep learning 

models, in which the actual bundle is only calculated when a customer 

searches. 

Usability to airline users like Revenue Analysts, Ancillary Analysts, or Offer 

Management Specialists is a third benefit. The segmentation of searches into 

segments is traceable and visible to airline users. This is of paramount 

importance to achieve adoption and embedding into existing business 

processes, workflows, and methods (Vinod, 2020). Further, users can be given 
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steering opportunities within the proposed solution. The customer choice matrix 

is stored offline, which offers explainability as a key advantage over deep 

learning models. At the same time, airlines are advised to be deliberate about 

how much steering they want to give to users and balance the steering benefits 

with their cost in terms of lower automation and potential over-steering due to 

human biases.  

As a fourth advantage, the proposed solution is agnostic to individual 

customers. It does not require customers to reveal their identity but works 

equally well with customers that do declare their identity and those that do not. 

Also, the proposed solution is adaptable to changing customer preferences. 

This dissertation has shown that significant prediction accuracy improvements 

can be achieved even in the most disruptive times, such as training the model 

on pre-Covid and applying the model on Covid data. Lastly, the model is also 

flexible to incorporate new ancillaries. These can initially be added as a la carte 

ancillaries. Over time, the model will learn which ones to display to which 

customer segment as part of the customized bundle. 

6.4.2 Limitations for practical implementation 

There are various limitations airlines need to be aware of when considering 

implementation of the proposed solution. 

First, in the current distribution landscape for most airlines, and legacy carriers 

in particular, the full value of the proposed solution can only be realized for 

direct channels, or once NDC and One Order are implemented. Similarly, 

the full value of the conceptual architecture for flight pricing assumes full-fledged 

continuous pricing capabilities. 

Second, the proposed solution maps each customer search into precisely one 

segment. In general, this greatly increases explainability and understandability, 

both substantially removing the barriers to adopt. At the same time, there might 
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be customer searches who could fit into several segments. This problem 

might be solvable by designing the customer journey in a way to extract targeted 

information from the search. This could mean search-specific questions or 

ancillary offerings, hypothesizing that the customer’s reaction to those will 

reveal the true segment. 

Third, the proposed OMS models flight pricing, ancillary pricing, and product 

choice probabilities separately. This is a deliberate choice to keep the overall 

problem and solution tractable. Also, correlations between customer WTP for 

the mere flight seat and ancillaries, or between WTP and product choice 

decisions might be implicitly captured because the modules are trained on the 

same data. Still, it seems likely this leads to suboptimization when comparing 

to the hypothetical scenario of an integrated optimization. 

Fourth, as mentioned in Section 6.3.2, airlines should be aware of the 

assumption that branded fares represent independent customer choices 

for the ancillaries included in the branded fares. Which is likely not true in reality. 

It is also likely not a major problem if the ordinality of products that include 

ancillaries does not change. 

Fifth, airlines need to pay attention to the risk of customers playing the 

airline. For displaying customized bundles, there is no obvious incentive for 

customers to do so. They profit from being presented more relevant offers. 

However, when airlines use the proposed solution also to differentiate flight 

and/or ancillary prices, then customers have an incentive to pretend to belong 

to a segment with low WTP. 

Sixth, airlines are obliged to comply with anti-discrimination laws. When the 

proposed OMS is implemented for bundling and assortment, there does not 

seem to be a potential conflict with these laws as long as all customer segments 

can still purchase the exact same products. The difference is only how the exact 

same products are presented to them, i.e. whether in step 1 or 2 of the customer 

journey. When the proposed OMS is implemented for flight and/or ancillary 
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pricing, then airlines need to ensure adherence with price discrimination laws. 

They need to monitor which features airlines are allowed to price-differentiate 

on and which they are not. And they need to ensure this for each jurisdiction 

they operate in. The proposed OMS has taken various measures of precaution. 

It does not rely on personalization. The used features sales channel, loyalty 

status, flight characteristics, and booking weekday are less sensitive than 

personal data like nationality, age or gender. There might, however, be 

correlations between these sensitive criteria and the features mentioned. 

Airlines need to manage this risk. 

6.4.3 Concluding remarks 

In summary, the findings of this research support a new balance between 

effectiveness and robustness of customer segmentation, and how this can be 

used to improve assortment decisions. The proposed OMS presents an 

alternative approach to traditional customer choice model with typically two or 

single-digit numbers of segments and restrictive assumptions, for example the 

independence of irrelevant alternatives (IIA). It allows airlines to present their 

customers more relevant offers, using simple, understandable segmentation in 

a data-driven, automated, and cost-effective way. In particular, the usability and 

explainability differentiate this research from previously proposed ML models. 

The proposed OMS only processes anonymous data readily available to airlines 

and in full compliance with data privacy rules. Hence, the proposed OMS allows 

airlines to combine the convenience and simplicity of branded fares with the 

flexibility of unbundled, a la carte ancillaries. 

Airlines could gain their own first experiences with the proposed OMS by 

starting with single features. Subsequently, more features can be tested and, if 

proven effective, added to the model. Based on the findings from the inductive 

research, this dissertation suggests starting with sales channel as the first 

feature. 
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For concrete practical implementation, airlines need to solve various trade-offs. 

Is the simple forecast good enough and maybe the better deal than matrix 

factorization to balance prediction accuracy with cost, complexity, and effort? In 

the dissertation it does 99.9% of the job, whereas complex matrix factorization 

might only improve on the last 0.1% of customer bookings. If the matrix 

factorization is implemented, then how many latent factors should be modeled? 

How often should airlines retrain their model, balancing frequent retraining with 

longer training periods, hence more data? Should airlines include more or fewer 

features, leading to a higher or lower number of segments? Should airlines 

maybe evaluate these two decisions together, and trade-off thousands of 

segments with monthly retraining versus millions of segments with half-yearly 

retraining? When and how should users have the option to steer parameters of 

the model or to overwrite the model’s output? Examples could be when adding 

new ancillaries, or when existing ones should be promoted to a wider target 

audience. Another example could be when the competitive situation changes, 

for instance when a competitor publishes a new schedule, or introduces a new 

product or pricing model. 

Zooming out from these methodological questions, the findings of this research 

can encourage airline senior leaders to rethink their organizational structure. 

The subproblems of assortment, segmentation, bundling and pricing are linked. 

How customers are segmented, how flights and ancillaries are priced, and how 

offers are presented to customers all together determine whether customers like 

the offer and ultimately convert their search into a booking, and how much 

revenue the airline can generate from this customer search. This research has 

not studied the organizational setup in detail. However, the link between these 

subproblems hints towards a close organizational alignment with a single-

threaded leader accountable for converting customer searches into maximum 

possible outcomes, thereby using the different levers of how to segment 

customers, how to price flights, ancillaries, and bundles, and which product to 

offer to which customer at which step of the customer journey at which price. 
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Lastly, airline leaders are recommended to closely follow the ongoing (Gen)AI 

(r)evolution. (Gen)AI has the potential to stand at the forefront of transforming 

how humans and technology interact and jointly solve increasingly complex 

problems. For instance, it does not seem unthinkable that airline customers in 

the future enter their search request in a free text instead of pre-defined fields 

like origin, destination, departure date, length of stay, etc. And then a GenAI 

engine translates this unstructured text into the structured information required 

for the airline offer management to process. To capitalize on these 

developments, airlines will likely need to constantly rethink and upgrade their 

OMS to stay at the leading front of innovation. 
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