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Introduction — Local Level Model

Program :
® |ntroduction
® | ocal level model
e Statistical dynamic properties
® Signal extraction, filtering and prediction
® Likelihood function and parameter estimation.

e Literature : J. Durbin and S.J. Koopman (2012), "Time
Series Analysis by State Space Methods”, Second Edition,
Oxford: Oxford University Press. Chapter 2.
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Time Series

A time series is a set of observations y;, each one recorded at a
specific time t.

The observations are ordered over time.
We assume to have n observations, t =1,...,n.
Examples of time series are:
® Number of cars sold, every year
® Gross Domestic Product, of a country, every quarter
® Stock price changes, tick-by-tick, within one trading day
® CO; emissions, of a country, every month

Time series modeling is relevant for a wide variety of tasks and
fields, including economic policy, financial decision making, climate
change monitoring, and forecasting
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Nile Data

14001
1300+
1200+
1100+
1000+

9001

8001

7001

600

500+

Il Il Il Il Il Il Il Il Il Il
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

4/52



Time Series
A time series for a single entity is typically denoted by

Yis--+5»Yn ~ Yt, t:]'v"',na

where t is the time index and n is time series length.

The current value is y;.

The first lagged value, or first lag, is y;—1.

The 7th lagged value, or 7-th lag, is y;— for T =1,2,3,....

The change between period t — 1 and period t is yy — yi—1.
This is called the first difference denoted by Ay; = y; — yi—1.

In economic time series, we often take the first difference of the
logarithm, or the log-difference, that is

Alogy: = logy: — logy:—1 = log(yt/yt-1),

is a proxy of proportional change, see Appendix.
Percentage change is then 100A log y;.
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Autoregressive model: AR(1)

The AR(1) model is given by
Yt = p+ Qyr-1+ e, er ~ NID(0,02),

with three parameter coefficients p, ¢ and o2 with 0 < 0. < oco.
Stationarity condition: |¢| < 1.
Statistical dynamic properties:
e Mean E(y;) = /(1 —¢); in case p =0, E(y:) = 0;
® Variance Var(y;) = 02 / (1 — ¢?);
® Autocovariance lag 1 is Cov(ys, yr—1) = ¢ 02 / (1 — ¢?);
® and for lag 7 =2,3,4,...is Cov(ys, yr_r) = ¢"0? / (1 — ¢?);
e Autocorrelation lag 7 =1,2,3,... is Corr(ys, yr—r) = ¢.
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Autoregressive model: AR(1)

The AR(1) model is given by

Ye = b+ Qyr—1 + &, Et NNID(O,UQ

with three parameter coefficients p, ¢ and o2 with 0 < 0. < co.

® Unconditional distribution:

E(y)=n/(1—-9¢),  Var(y) =0%/(1-¢%)

e Conditional distribution:
E(yt|Yec1) = p + dye-1, Var(ye| Yi-1) = o2

where Yy = {y1,..., ¢}
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Moving Average model: MA(1)

The MA(1) model is given by
yt:/,tﬂ-eﬁtf]_‘f‘ﬁt, 5tNNID(0,O'§),

with three parameter coefficients p, 6 and o2 with 0 < 0. < co.
Invertibility condition: |0| < 1.

Statistical dynamic properties:

® Mean E(y;) = p; in case 4 =0, E(y:) = 0;

® Variance Var(y;) = 02 (1 + 6?);

® Autocovariance lag 1 is Cov(y:, y:_1) = 0 02;

o .. forlag 7=2,3,4,...is Cov(yt,yt—r) =0;
Autocorrelation lag 1 is Corr(yz, y:—1) = 0 / (1 + 62).
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Moving Average model: MA(1)

The MA(1) model is given by

ye = p+ 0st_1 + €y, €t NNID(O,O’?),

with three parameter coefficients p, 6 and o2 with 0 < 0. < co.

® Unconditional distribution:
E(ye) =p,  Var(y) =0”(1+6)
¢ Conditional distribution:
E(ye| Yi—1) = p + Oce_1, Var(yt| Ye_1) = o2

where €;_1 can be reconstructed from Y;_1 and with g5 = 0.
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Example: Nile in levels and Nile in differences
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Local Level:

model formulation and statistical properties
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Constant vs Time Varying Mean Model

e Constant mean:
® fixed level u :

Yt :H+€t, Et NNID(O,U?)

® Time Varying mean: replace p by p; with
® deterministic function of time:

pr=a+bt4+ct’+...
® stochastic function of time, for example:

M = fe—1 + N, ne ~ NID(0, (7127)
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Local Level Model

Yt = Wt + €ty EtNNID(Oaag)
He+1 = fe + N, Nt ~ NID(OJ%)

Time-varying level is modelled as a random walk process;
Notice the updating in terms of t or t + 1;

The disturbances €, 75 are independent for all s, t;

The model is incomplete without initial specification for u1;

The process ji+ is nonstationary and y; is nonstationary.
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Local Level Model

The local level model or random walk plus noise model :

yt:Mt+5t, 6tNNID(O,O'§)
Bl = e + N, Nt ~ NID((),UE;)

® The level u: and irregular €; are both unobserved;
® We still need to define pu1;

® Parameters o2 and 0727 are unknown;

¢ Define g as the signal-to-noise ratio : q = 0’% /o2
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Local Level Model

The local level model or random walk plus noise model :

ye=pe+er, e ~NID(0,0?)
Ht+1 = ft + Nt ne ~ NID(0,07)

® Trivial special cases:
® 02=0 = y: ~NID(u1,02) (lID, global level);
*02=0 = yi=y:+m (random walk);

® | ocal Level model is basic illustration of state space model.

® |t is very easy to simulate data from the local level model.
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Simulated Local Level data, g = 10
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Simulated Local Level data, g =1
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Simulated Local Level data, g = 0.1
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Simulated Local Level data
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Statistical Properties

® |ocal Level Model, non-stationary y; :

Yt :,Ut‘i’gt, Et NNID(O,O'?),
pest = pe + e, e~ NID(0, 07).

e First difference of y;, stationary Ay;:
Ayr = Apr + Aer =ne—1 + ¢ — €¢-1.
¢ Dynamic properties of Ay;: E(Ay:) =0 and

v = E(Ay:Ay:) = O'% + 202,
N =E(Ay Ay 1) = —0?,
vr = E(Ay:Ay;—r) =0, for 7 > 2.
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Properties of Local Level model

Define theoretical autocorrelation function (acf)

,07—:')’7—/')’07 T:1,2,...

We have g as the signal-to-noise ratio : q = 0727 /o2,
We have vy = 0727 + 203, Y1 = —03, v =0 for 7 > 2.

The theoretical acf of Ay, in local level model is

—ag _ 1

- 02+ 202 T ogq+2
pTZO, 7—22

P1

This acf is the same as acf of AR(1) or MA(1) ?

We notice that
~1/2<p1 <0
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Properties of Local Level model (ctd)

The local level model implies that Ay; ~ MA(1) but with the
acf function p; = —1/(q + 2), it is restricted;

Hence y: ~ ARIMA(0,1,1).
An alternative representation for Ay, is the MA(1) model

Ay = & + 081, & ~ NID(0,05°).

The acf of an MA(1) process is p1 = 0 / (1 + 62).

When y; comes from a local level model, we have a restricted
parameter space for 0 : —1 < 6 < 0.

To express 6 as function of g, solve equality for the two p1’s:
1
927(\/q2+4q—2—q).

2
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Local Level Model

The Local Level model is given by
yt:Mt+Et7 Ht+1:/’6f+7]t7 t:]-a"'an'

® The parameters o2 and 0727 are unknown and need to be
estimated, typically via maximum likelihood estimation;

® Parameter estimation via maximum likelihood will be
discussed soon.

® When we treat parameters o2 and 0727 as known, how to
"estimate” the unobserved series p1, ..., tn ?

® This “estimation” is referred to as signal extraction.
® We base this “estimation” on conditional expectations.

® Signal extraction is the recursive evaluation of conditional
means and variances of the unobserved p; for t =1,...,n.
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What are the take-aways so far ?

e Statistical formulation of local level model
® Role of signal-to-noise ratio

e Statistical (dynamic) properties and relation to ARIMA model
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Signal extraction and prediction

some basics on the bivariate normal distribution
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Normal density

Consider a random variable x that is normally distributed
x ~ N(px, cri).
The density function for x is given by
1
f(x) = cexp(—5 Q)
where

c ! =o0,V2nm, Q= (x — ux)? /o2

The logdensity function for x is given by

1 1 1
log f(x) = —5 log 2 — 5 log o2 — EQX'
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Bivariate normal distribution

Consider two random variable x and y that are normally distributed
X ~ N(Mx: U)2<)7 y~ N(Nya 0')2/)7 (COV(Xa)/) = Oxy,

where we let oy, = o0, p with =1 < p < 1.

In case p = 0 and hence o,, = 0, the variables are independent or
uncorrelated. The joint normal density function is simply

f(x,y) = f(x) f(y).
Also,

E(xly) = E(x) = pux, Var(x|y) = Var(x) = 2.
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Bivariate normal distribution, ctd.

Consider two random variable x and y that are normally distributed
XNN(MX70>2<)7 yNN(,U'yvU)Z/)y (COV(Xa)/) = Oxy,

where oy, = oxo,p with —1 < p < 1.

In case —1 < p <1 and hence o, # 0, the variables are dependent
and hence correlated. The joint density function is normal and (to
avoid matrix algebra for now) it can be expressed by

f(x,y) = f(xly) f(y).

What are the expressions for E(x|y) and Var(x|y) ?
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Conditional mean and variance
Consider two random variable x and y that are normally distributed
XNN(N'X,UE)a yN-N’(,UyaU}%)a COV(XaY) = Oxy 7&07

where 0,, = 040, p. To obtain expressions for the conditional
mean [E(x|y) and variance Var(x|y), we define

Y =y +0y2Zy, X = pix + oxlpzy + V1 - p?zd],

where z,, z, ~ N(0,1) are independently distributed such that

1 1
f(o2) = 50 |32+ )]

Please verify that statistical properties of x and y (mean, var, cov)
are the same when based on the two expressions above.
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Conditional mean, derivation for bivariate A/

Given that

Y =y +0yZy, X = pix + oxlpzy + V1 - p?zd],

we have

E(x|y)

E |:,ux + ox (pzy +v1-— pzzx) ’)/}

pix +0x E [(ﬂy;My +V1- pzzx> Iy]
y

px + UXUy,Oy ;2,uy + V1 —p?E(z|z))
y

pix + 0y (y — py) / o3
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Conditional variance, derivation for bivariate N/
Given that

Yy =py +oyzy, X = pix + oxlpzy + V1 - p?z],

we have

Var(x|y) = Var _,uX + o <pzy +41- p2zx) |y}

= Var |ux + ox <py ; By o\ 1— pzzx> |}’]
I y

= Var _O'X\/]_ — pzzx\zy]

= oz(1-p?)
= 0)2(—0)20,/0)2,.
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Conditional mean and variance of bivariate \/

Consider two random variable x and y that are normally distributed
XNN(:U“X>O->2<)> yNN(Myao-}z/)v (COV(va) = Oxy 7&0

The conditional mean and variance are given by

E(xly) = px +oxy(y —py) /0y, Var(xly) = 0% — 0%, / 0}

Verify these results and get familiar with these basic principles.
Notice that (1) E(x|y) is a function of y but Var(x|y) is not;
(2) when o, = 0, E(x|y) = px and Var(x|y) = o2

x*
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Estimation Error / Prediction Error

Consider two random variable x and y that are normally distributed

x ~ N (ux, 02), y ~N(uy, 0}2,), Cov(x,y) = 0x # 0.

When considering the conditional mean E(x|y) as an estimate of
X, the estimation error is

e=X _E(X|y) = (X - Nx) - ny(y - My)/o'}zu
and its properties are
E(e) =0, Var(e) = 02 — 0%,/ 02 = Var(xly),

and
Cov(e,y) =E[e(y — py)] = 0xy — 05y = 0,

implying E(ely) = E(e) = 0 and Var(e|y) = Var(e) = Var(x|y).
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Signal extraction and prediction

back to local level model
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Signal Extraction for Nile Data: filtered estimate of level
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Local Level Model: signal extraction
Local Level model :

Yt = pt + €, 8tNN(070§)7 P+l = ft + N, ntNN(an-%)'

We are at time point t.

Assume we have collected observations for y1,..., y;—1 and that
the conditional density f(u¢|y1,-..,ye—1) is normal with known
mean a; and known variance p;, we have

,Ut|Y1> e Ye—1 7 f(,ut|}/17 ce >}/t—1) = N(ata Pt)-
We collect observation for y;, the conditional density of interest is
Fpelyr, - - ye),
This conditional density turns out to be normal as well
fluelyr, ... y) = N(at|t7 Pt|t),

What are the expressions for a;; and p;; ? This is next !
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Prediction error
Local Level model :

Ve =pe+ee, e~ N(0,02),  pes1 = pie+0ne, UtNN(OaUg)-

Given f(fue|y1,- -, Ye—1) = N(a¢, pt), we construct a forecast for
Ve, that is

Ye = E(ye| Yem1) = E(pe + ¢ Ye-1) = ar.
The corresponding prediction error is
Ve =Ye — Ve = Yt — ar,
with E(v¢) = E(y: — at) = E[(u+ — at) + €] = 0 and
Var(ve) = Var(y: — a;) = Var[(us — at) + €] = pe + 02,

see results in Slide “Estimation Error / Prediction Error”.
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Prediction error

We have prediction error
Ve = Yt — ar, with  E(v) =0, Var(vt) = pr + og.
It also follows from Slide “Estimation Error / Prediction Error” that
Cov(vt, yi—j) =0, for j=1,...,t—1.
Hence, we also have

E(Vt| Yj_-f]_) = E(Vt) = 0,
Var(ve| Y1) = Var(v;) = p; + 02,

and

fye|Ye1) = N(as, Pt+‘7§)7 f(ve) = f(ve]Ye—1) = N(0, Pt+03)~
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Local Level Model: signal extraction

To obtain an expression for a,; and py in f(pe| Yi) = N(age, pee),
we next make the point that we can “re-shuffle’ linearly the
conditional information set: we have f(a|b, c) = f(a|b, d), when,
for example, d = ¢ — b. Hence we can also have

fpelYe) = f(pee|ve, Y1)

since v¢ = y; — E(u¢| Yi—1) is a fixed linear function of Y:, more on
this below. Then we have

f(,Ut‘Vta Yt—l) = f(Mt; Vt‘ Yt—l)/f(vt’Yt—l)
= F(pe|Ye—1)f(velpee, Yeo1)/f(ve| Ye-1),

where all f()’s are normal densities.
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Local Level Model: signal extraction
We have
Fuelve, Yem1) = F(pe] Yemr)f (velpe, Yeo1)/f(ve| Vo),
with
f(pel Ye-1) = N(at, pr), f(velYe-1) = N(0, pe + 02),

but what about f(v|ue, Yi—1) 7

Given that v = y; — a; = ut + €+ — at, we have

E(Vt‘,ut, Yt—l) = Mt — at, Va"(VtWt, Yt—l) = 03-

and hence
f(velpe, Yeo1) = N(pe — an%z)-
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Local Level Model: signal extraction

It follows that

f(Mt|Vt7 Yt—l) = f(,Uft’Yt—l) X f(Vt’Mh Yt—l) / f(Vt’Yt—l)
= N(at, pt) X N(pe — 3t70§)/ N(O, p: + 052)-

Given the functional form of the normal density, we have
f(1e|Ye) = const. x exp ( — 3Q;) with

Qe = (pt — 3t)2/Pt + (Ve — pe + at)z/ffg - Vt2/(pt + Ug)-

After some algebra (" completing the square”), we have

pt—|—02 Pt Ve 2
Q: = £ —ar — .
' pt o2 (Nt ' Pt‘i‘Ug)
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Local Level Model: filter density

The filter density function f(u¢|Y:) is normal and has functional
form,

1
f(ue|Ye) = const. x exp ( — EQt)’

i pt + a§ Pt Vt 2
= pe 02 (e = ae - pt+a§) '
It implies that
fuelYe) = N(at|t7 Pt\t)7
with
at|t = ar + ke i, pt|t:ktgga ke = Pe 5-
pt + 0%

Presto ! We have expressions for a;|; and py;, congratulations !!
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Local Level Model: prediction
Local Level model :

ye =peter, e~ N(0,02), fier1 = pie + 1, ntNN(OaU%)-

In addition, we are typically interested in the predicted signal
density

f(/.l/t+]_’Yt) = N(at+l7 pt+1)7

where
art1 = E(per1] Ye) = E(ue +ne|Ye) = agpe,
pr+1 = Var(ue +ne|Ye) = pee + a%.

We have obtained the updating equations

— _ 2 2 _ Pt
ar41 = ar + kt Vts Pt+1 = kf O¢ +Una kt - pt + 0%

These are recursive equations.

5"
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Kalman filter for the Local Level Model

Local Level model :

Yt = Mt +eEr, Et NN(O,UE),

pesr = pe e e~ N(0,07).

For f(ut|Yi—1) = N(at, pt), with given values of a; and p;, the

Kalman filter update equation are given by

Ve = Yt — a, ke = pte/(pt+ Ug)’
3t = ar+ kew, Pije = ke 037
atr1 = a4, Pt+1 = Pttt 0727-
We repeat this for each t, starting with t =1: welet t=1,...,n.

What initial values for a; and p; should we consider ?

See Session 2 !l
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Signal Extraction: predicted estimates of local level
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Signal Extraction: filtered estimates of local level
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What are the take-aways here 7

We derived a way to estimate p; from the Local Level model.

The estimate a; is the mean of the predicted conditional
density f(ut|Yi—1) = N(at, pr).

The estimate a;; is the mean of the filtered conditional
density f(pe|Ye) = N(ag)e, pre)-

The estimates are computed using recursive equations.

The derivations rely on basic principles from the bivariate
normal distribution.
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APPENDICES
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Appendix — Taylor series
The Taylor expansion for function f(x) around some value x* is
f(x)=f(x=x")+f(x= X*)[X—X*]—I—%f”(X = xM)[x=x"P+...,
where o7 (x) 52f(x)
;o Of(x Wiy X
Fla) = ox ' F0) = IxOx ’
and g(x = x*) means that we evaluate function g(x) at x = x*.

Example: consider f(x) = log(1 + x) with f'(x) = (1 + x)~! and
f"(x) = —(1 + x)~2; the expansion of f(x) around x* = 0 is

log(1+x) :o+1.(x—0)+1(—1)-(x—0)2+... :x—%xz—i—...
Notice that f(x =0) =0, f/(x=0)=1and f"(x =0) = —1. For
small enough x (when x is close to x* = 0), we have

log(1 + x) =~ x.
Check: log(1.01) = .00995 ~ 0.01 and log(1.1) = 0.0953 ~ 0.1.
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Appendix — Percentage growth

Observation at time t is y; and observation at time t — 1 is y;_1.
We define rate r; as the proportional change of y; wrt y;_1, that is

_ Yt — Yit—1
Yi—1

It SVt —Ye-1=Ye-1 e = Ye = Ye-1- (L +rp).

We notice that r; can be positive and negative !
When we take logs of y; = y;—1 - (1 + r+), we obtain
log y: = log yt—1 + log(1 + rt) = log yt — log yr—1 = log(1 + r) =

Alogy: = log(1 + rt).

Since log(1 + r¢) &~ rt, see previous slide, when r; is small, we have
re &~ Alog y:.

The percentage growth is defined as 100 x r; = 100 - A log y;.
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Appendix — Lag operators and polynomials

Lag operator Ly; =yt 1, L'y = y4—r, for T =1,2,3, ...
Difference operator Ay = (1 — L)y = v+ — yr—1
Autoregressive polynomial ¢(L)y: = (1 — ¢L)yr = yr — dyr—1
Other polynomial §(L)e; = (1 4+ 0L)er = e+ + O

Second difference

A2Yt =A(Ay:) = Aye —Ye-1) =Yt —2¥t-1+ Yi-2
Seasonal difference Agy: = y; — y+—s for typical
s=2,47,12,52

Seasonal sum operator

S(L)y: =(1+L+ L2+...+ Ls_l))/t =yt+Yi—1+...+Yt-st1
Show that A S(L) = As.
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