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Introduction – Local Level Model

Program :

• Introduction

• Local level model

• Statistical dynamic properties

• Signal extraction, filtering and prediction

• Likelihood function and parameter estimation.

• Literature : J. Durbin and S.J. Koopman (2012), ”Time
Series Analysis by State Space Methods”, Second Edition,
Oxford: Oxford University Press. Chapter 2.
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Time Series

A time series is a set of observations yt , each one recorded at a
specific time t.

The observations are ordered over time.
We assume to have n observations, t = 1, . . . , n.

Examples of time series are:

• Number of cars sold, every year

• Gross Domestic Product, of a country, every quarter

• Stock price changes, tick-by-tick, within one trading day

• CO2 emissions, of a country, every month

Time series modeling is relevant for a wide variety of tasks and
fields, including economic policy, financial decision making, climate
change monitoring, and forecasting
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Nile Data
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Time Series
A time series for a single entity is typically denoted by

y1, . . . , yn ⇔ yt , t = 1, . . . , n,

where t is the time index and n is time series length.
The current value is yt .
The first lagged value, or first lag, is yt−1.
The τ th lagged value, or τ -th lag, is yt−τ for τ = 1, 2, 3, . . ..

The change between period t − 1 and period t is yt − yt−1.
This is called the first difference denoted by ∆yt = yt − yt−1.

In economic time series, we often take the first difference of the
logarithm, or the log-difference, that is

∆ log yt = log yt − log yt−1 = log(yt/yt−1),

is a proxy of proportional change, see Appendix.
Percentage change is then 100∆ log yt .
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Autoregressive model: AR(1)

The AR(1) model is given by

yt = µ+ φyt−1 + εt , εt ∼ NID(0, σ2ε),

with three parameter coefficients µ, φ and σ2ε with 0 < σε <∞.

Stationarity condition: |φ| < 1.

Statistical dynamic properties:

• Mean E(yt) = µ / (1− φ); in case µ = 0, E(yt) = 0;

• Variance Var(yt) = σ2 / (1− φ2);

• Autocovariance lag 1 is Cov(yt , yt−1) = φσ2 / (1− φ2);

• and for lag τ = 2, 3, 4, . . . is Cov(yt , yt−τ ) = φτσ2 / (1− φ2);

• Autocorrelation lag τ = 1, 2, 3, . . . is Corr(yt , yt−τ ) = φτ .
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Autoregressive model: AR(1)

The AR(1) model is given by

yt = µ+ φyt−1 + εt , εt ∼ NID(0, σ2ε),

with three parameter coefficients µ, φ and σ2ε with 0 < σε <∞.

• Unconditional distribution:

E(yt) = µ / (1− φ), Var(yt) = σ2 / (1− φ2)

• Conditional distribution:

E(yt |Yt−1) = µ+ φyt−1, Var(yt |Yt−1) = σ2

where Yt = {y1, . . . , yt}.
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Moving Average model: MA(1)

The MA(1) model is given by

yt = µ+ θεt−1 + εt , εt ∼ NID(0, σ2ε),

with three parameter coefficients µ, θ and σ2ε with 0 < σε <∞.

Invertibility condition: |θ| < 1.

Statistical dynamic properties:

• Mean E(yt) = µ; in case µ = 0, E(yt) = 0;

• Variance Var(yt) = σ2 (1 + θ2);

• Autocovariance lag 1 is Cov(yt , yt−1) = θ σ2;

• ... for lag τ = 2, 3, 4, . . . is Cov(yt , yt−τ ) = 0;

• Autocorrelation lag 1 is Corr(yt , yt−1) = θ / (1 + θ2).

8 / 52



Moving Average model: MA(1)

The MA(1) model is given by

yt = µ+ θεt−1 + εt , εt ∼ NID(0, σ2ε),

with three parameter coefficients µ, θ and σ2ε with 0 < σε <∞.

• Unconditional distribution:

E(yt) = µ, Var(yt) = σ2 (1 + θ2)

• Conditional distribution:

E(yt |Yt−1) = µ+ θεt−1, Var(yt |Yt−1) = σ2

where εt−1 can be reconstructed from Yt−1 and with ε0 = 0.
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Example: Nile in levels and Nile in differences
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Local Level:

model formulation and statistical properties

11 / 52



Constant vs Time Varying Mean Model

• Constant mean:
• fixed level µ :

yt = µ+ εt , εt ∼ NID(0, σ2
ε)

• Time Varying mean: replace µ by µt with
• deterministic function of time:

µt = a + b t + c t2 + . . .

• stochastic function of time, for example:

µt = µt−1 + ηt , ηt ∼ NID(0, σ2
η)
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Local Level Model

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• Time-varying level is modelled as a random walk process;

• Notice the updating in terms of t or t + 1;

• The disturbances εt , ηs are independent for all s, t;

• The model is incomplete without initial specification for µ1;

• The process µt is nonstationary and yt is nonstationary.
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Local Level Model

The local level model or random walk plus noise model :

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• The level µt and irregular εt are both unobserved;

• We still need to define µ1;

• Parameters σ2ε and σ2η are unknown;

• Define q as the signal-to-noise ratio : q = σ2η / σ
2
ε .
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Local Level Model

The local level model or random walk plus noise model :

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• Trivial special cases:
• σ2

η = 0 =⇒ yt ∼ NID(µ1, σ
2
ε) (IID, global level);

• σ2
ε = 0 =⇒ yt+1 = yt + ηt (random walk);

• Local Level model is basic illustration of state space model.

• It is very easy to simulate data from the local level model.
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Simulated Local Level data, q = 10
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Simulated Local Level data, q = 1
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Simulated Local Level data, q = 0.1
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Simulated Local Level data
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Statistical Properties

• Local Level Model, non-stationary yt :

yt = µt + εt , εt ∼ NID(0, σ2ε),

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η).

• First difference of yt , stationary ∆yt :

∆yt = ∆µt + ∆εt = ηt−1 + εt − εt−1.

• Dynamic properties of ∆yt : E(∆yt) = 0 and

γ0 = E(∆yt∆yt) = σ2η + 2σ2ε ,

γ1 = E(∆yt∆yt−1) = −σ2ε ,
γτ = E(∆yt∆yt−τ ) = 0, for τ ≥ 2.
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Properties of Local Level model

• Define theoretical autocorrelation function (acf)

ρτ = γτ / γ0, τ = 1, 2, . . .

• We have q as the signal-to-noise ratio : q = σ2η / σ
2
ε .

• We have γ0 = σ2η + 2σ2ε , γ1 = −σ2ε , γτ = 0 for τ ≥ 2.

• The theoretical acf of ∆yt in local level model is

ρ1 =
−σ2ε

σ2η + 2σ2ε
= − 1

q + 2
,

ρτ = 0, τ ≥ 2.

• This acf is the same as acf of AR(1) or MA(1) ?

• We notice that
−1/2 ≤ ρ1 ≤ 0
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Properties of Local Level model (ctd)

• The local level model implies that ∆yt ∼ MA(1) but with the
acf function ρ1 = −1/(q + 2), it is restricted;

• Hence yt ∼ ARIMA(0, 1, 1).

• An alternative representation for ∆yt is the MA(1) model

∆yt = ξt + θξt−1, ξt ∼ NID(0, σ2).

• The acf of an MA(1) process is ρ1 = θ / (1 + θ2).

• When yt comes from a local level model, we have a restricted
parameter space for θ : −1 < θ < 0.

• To express θ as function of q, solve equality for the two ρ1’s:

θ =
1

2

(√
q2 + 4q − 2− q

)
.
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Local Level Model

The Local Level model is given by

yt = µt + εt , µt+1 = µt + ηt , t = 1, . . . , n.

• The parameters σ2ε and σ2η are unknown and need to be
estimated, typically via maximum likelihood estimation;

• Parameter estimation via maximum likelihood will be
discussed soon.

• When we treat parameters σ2ε and σ2η as known, how to
”estimate” the unobserved series µ1, . . . , µn ?

• This “estimation” is referred to as signal extraction.

• We base this “estimation” on conditional expectations.

• Signal extraction is the recursive evaluation of conditional
means and variances of the unobserved µt for t = 1, . . . , n.
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What are the take-aways so far ?

• Statistical formulation of local level model

• Role of signal-to-noise ratio

• Statistical (dynamic) properties and relation to ARIMA model
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Signal extraction and prediction

some basics on the bivariate normal distribution
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Normal density
Consider a random variable x that is normally distributed

x ∼ N (µx , σ
2
x).

The density function for x is given by

f (x) = c exp(−1

2
Qx),

where
c−1 = σx

√
2π, Qx = (x − µx)2 / σ2x .

The logdensity function for x is given by

log f (x) = −1

2
log 2π − 1

2
log σ2x −

1

2
Qx .
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Bivariate normal distribution

Consider two random variable x and y that are normally distributed

x ∼ N (µx , σ
2
x), y ∼ N (µy , σ

2
y ), Cov(x , y) = σxy ,

where we let σxy = σxσyρ with −1 ≤ ρ ≤ 1.

In case ρ = 0 and hence σxy = 0, the variables are independent or
uncorrelated. The joint normal density function is simply

f (x , y) = f (x) f (y).

Also,

E(x |y) = E(x) = µx , Var(x |y) = Var(x) = σ2x .
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Bivariate normal distribution, ctd.

Consider two random variable x and y that are normally distributed

x ∼ N (µx , σ
2
x), y ∼ N (µy , σ

2
y ), Cov(x , y) = σxy ,

where σxy = σxσyρ with −1 ≤ ρ ≤ 1.

In case −1 ≤ ρ ≤ 1 and hence σxy 6= 0, the variables are dependent
and hence correlated. The joint density function is normal and (to
avoid matrix algebra for now) it can be expressed by

f (x , y) = f (x |y) f (y).

What are the expressions for E(x |y) and Var(x |y) ?

28 / 52



Conditional mean and variance

Consider two random variable x and y that are normally distributed

x ∼ N (µx , σ
2
x), y ∼ N (µy , σ

2
y ), Cov(x , y) = σxy 6= 0,

where σxy = σxσyρ. To obtain expressions for the conditional
mean E(x |y) and variance Var(x |y), we define

y = µy + σyzy , x = µx + σx [ρzy +
√

1− ρ2zx ],

where zx , zy ∼ N (0, 1) are independently distributed such that

f (zx , zy ) =
1

2π
exp

[
1

2
(z2x + z2y )

]
.

Please verify that statistical properties of x and y (mean, var, cov)
are the same when based on the two expressions above.
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Conditional mean, derivation for bivariate N

Given that

y = µy + σyzy , x = µx + σx [ρzy +
√

1− ρ2zx ],

we have

E(x |y) = E
[
µx + σx

(
ρzy +

√
1− ρ2zx

)
|y
]

= µx + σx E
[(
ρ
y − µy
σy

+
√

1− ρ2zx
)
|y
]

= µx + σxσyρ
y − µy
σ2y

+
√

1− ρ2 E(zx |zy )

= µx + σxy (y − µy ) / σ2y .
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Conditional variance, derivation for bivariate N

Given that

y = µy + σyzy , x = µx + σx [ρzy +
√

1− ρ2zx ],

we have

Var(x |y) = Var
[
µx + σx

(
ρzy +

√
1− ρ2zx

)
|y
]

= Var

[
µx + σx

(
ρ
y − µy
σy

+
√

1− ρ2zx
)
|y
]

= Var
[
σx
√

1− ρ2zx |zy
]

= σ2x(1− ρ2)

= σ2x − σ2xy / σ2y .
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Conditional mean and variance of bivariate N

Consider two random variable x and y that are normally distributed

x ∼ N (µx , σ
2
x), y ∼ N (µy , σ

2
y ), Cov(x , y) = σxy 6= 0.

The conditional mean and variance are given by

E(x |y) = µx + σxy (y − µy ) / σ2y , Var(x |y) = σ2x − σ2xy / σ2y .

Verify these results and get familiar with these basic principles.

Notice that (1) E(x |y) is a function of y but Var(x |y) is not;
(2) when σxy = 0, E(x |y) = µx and Var(x |y) = σ2x .
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Estimation Error / Prediction Error

Consider two random variable x and y that are normally distributed

x ∼ N (µx , σ
2
x), y ∼ N (µy , σ

2
y ), Cov(x , y) = σxy 6= 0.

When considering the conditional mean E(x |y) as an estimate of
x , the estimation error is

e = x − E(x |y) = (x − µx)− σxy (y − µy ) / σ2y ,

and its properties are

E(e) = 0, Var(e) = σ2x − σ2xy / σ2y = Var(x |y),

and
Cov(e, y) = E[e (y − µy )] = σxy − σxy = 0,

implying E(e|y) = E(e) = 0 and Var(e|y) = Var(e) = Var(x |y).
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Signal extraction and prediction

back to local level model
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Signal Extraction for Nile Data: filtered estimate of level
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Local Level Model: signal extraction
Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

We are at time point t.
Assume we have collected observations for y1, . . . , yt−1 and that
the conditional density f (µt |y1, . . . , yt−1) is normal with known
mean at and known variance pt , we have

µt |y1, . . . , yt−1 ∼ f (µt |y1, . . . , yt−1) ≡ N (at , pt).

We collect observation for yt , the conditional density of interest is

f (µt |y1, . . . , yt),

This conditional density turns out to be normal as well

f (µt |y1, . . . , yt) ≡ N (at|t , pt|t),

What are the expressions for at|t and pt|t ? This is next !
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Prediction error
Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

Given f (µt |y1, . . . , yt−1) ≡ N (at , pt), we construct a forecast for
yt , that is

ŷt = E(yt |Yt−1) = E(µt + εt |Yt−1) = at .

The corresponding prediction error is

vt = yt − ŷt = yt − at ,

with E(vt) = E(yt − at) = E[(µt − at) + εt ] = 0 and

Var(vt) = Var(yt − at) = Var[(µt − at) + εt ] = pt + σ2ε ,

see results in Slide “Estimation Error / Prediction Error”.
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Prediction error

We have prediction error

vt = yt − at , with E(vt) = 0, Var(vt) = pt + σ2ε .

It also follows from Slide “Estimation Error / Prediction Error” that

Cov(vt , yt−j) = 0, for j = 1, . . . , t − 1.

Hence, we also have

E(vt |Yt−1) = E(vt) = 0,

Var(vt |Yt−1) = Var(vt) = pt + σ2ε ,

and

f (yt |Yt−1) = N (at , pt+σ2ε), f (vt) = f (vt |Yt−1) = N (0, pt+σ2ε).
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Local Level Model: signal extraction

To obtain an expression for at|t and pt|t in f (µt |Yt) = N (at|t , pt|t),
we next make the point that we can “re-shuffle” linearly the
conditional information set: we have f (a|b, c) ≡ f (a|b, d), when,
for example, d = c − b. Hence we can also have

f (µt |Yt) ≡ f (µt |vt ,Yt−1)

since vt = yt −E(µt |Yt−1) is a fixed linear function of Yt , more on
this below. Then we have

f (µt |vt ,Yt−1) = f (µt , vt |Yt−1)/f (vt |Yt−1)

= f (µt |Yt−1)f (vt |µt ,Yt−1)/f (vt |Yt−1),

where all f ()’s are normal densities.
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Local Level Model: signal extraction

We have

f (µt |vt ,Yt−1) = f (µt |Yt−1)f (vt |µt ,Yt−1)/f (vt |Yt−1),

with

f (µt |Yt−1) = N (at , pt), f (vt |Yt−1) = N (0, pt + σ2ε),

but what about f (vt |µt ,Yt−1) ?

Given that vt = yt − at = µt + εt − at , we have

E(vt |µt ,Yt−1) = µt − at , Var(vt |µt ,Yt−1) = σ2ε .

and hence
f (vt |µt ,Yt−1) = N (µt − at , σ

2
ε).
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Local Level Model: signal extraction

It follows that

f (µt |vt ,Yt−1) = f (µt |Yt−1)× f (vt |µt ,Yt−1) / f (vt |Yt−1)

= N (at , pt)×N (µt − at , σ
2
ε) / N (0, pt + σ2ε).

Given the functional form of the normal density, we have
f (µt |Yt) = const.× exp

(
− 1

2Qt

)
with

Qt = (µt − at)
2/pt + (vt − µt + at)

2/σ2ε − v2t /(pt + σ2ε).

After some algebra (”completing the square”), we have

Qt =
pt + σ2ε
pt σ2ε

(
µt − at −

pt vt
pt + σ2ε

)2
.
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Local Level Model: filter density

The filter density function f (µt |Yt) is normal and has functional
form,

f (µt |Yt) = const.× exp
(
− 1

2
Qt

)
,

with

Qt =
pt + σ2ε
pt σ2ε

(
µt − at −

pt vt
pt + σ2ε

)2
.

It implies that
f (µt |Yt) ≡ N (at|t , pt|t),

with

at|t = at + kt vt , pt|t = kt σ
2
ε , kt =

pt
pt + σ2ε

.

Presto ! We have expressions for at|t and pt|t , congratulations !!
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Local Level Model: prediction
Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

In addition, we are typically interested in the predicted signal
density

f (µt+1|Yt) ≡ N (at+1, pt+1),

where

at+1 = E(µt+1|Yt) = E(µt + ηt |Yt) = at|t ,

pt+1 = Var(µt + ηt |Yt) = pt|t + σ2η.

We have obtained the updating equations

at+1 = at + kt vt , pt+1 = kt σ
2
ε + σ2η, kt =

pt
pt + σ2ε

.

These are recursive equations.
43 / 52



Kalman filter for the Local Level Model

Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

For f (µt |Yt−1) = N (at , pt), with given values of at and pt , the
Kalman filter update equation are given by

vt = yt − at , kt = pt / (pt + σ2ε),
at|t = at + ktvt , pt|t = kt σ

2
ε ,

at+1 = at|t , pt+1 = pt|t + σ2η.

We repeat this for each t, starting with t = 1: we let t = 1, . . . , n.
What initial values for a1 and p1 should we consider ?
See Session 2 !!
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Signal Extraction: predicted estimates of local level
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Signal Extraction: filtered estimates of local level
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What are the take-aways here ?

• We derived a way to estimate µt from the Local Level model.

• The estimate at is the mean of the predicted conditional
density f (µt |Yt−1) = N (at , pt).

• The estimate at|t is the mean of the filtered conditional
density f (µt |Yt) = N (at|t , pt|t).

• The estimates are computed using recursive equations.

• The derivations rely on basic principles from the bivariate
normal distribution.
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APPENDICES
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Appendix – Taylor series
The Taylor expansion for function f (x) around some value x∗ is

f (x) = f (x = x∗)+f ′(x = x∗)[x−x∗]+
1

2
f ”(x = x∗)[x−x∗]2+. . . ,

where

f ′(x) =
∂f (x)

∂x
, f ”(x) =

∂2f (x)

∂x∂x
,

and g(x = x∗) means that we evaluate function g(x) at x = x∗.

Example: consider f (x) = log(1 + x) with f ′(x) = (1 + x)−1 and
f ”(x) = −(1 + x)−2; the expansion of f (x) around x∗ = 0 is

log(1 + x) = 0 + 1 · (x − 0) +
1

2
(−1) · (x − 0)2 + . . . = x − 1

2
x2 + . . .

Notice that f (x = 0) = 0, f ′(x = 0) = 1 and f ”(x = 0) = −1. For
small enough x (when x is close to x∗ = 0), we have

log(1 + x) ≈ x .

Check: log(1.01) = .00995 ≈ 0.01 and log(1.1) = 0.0953 ≈ 0.1.
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Appendix – Percentage growth
Observation at time t is yt and observation at time t − 1 is yt−1.

We define rate rt as the proportional change of yt wrt yt−1, that is

rt =
yt − yt−1

yt−1
⇒ yt − yt−1 = yt−1 · rt ⇒ yt = yt−1 · (1 + rt).

We notice that rt can be positive and negative !

When we take logs of yt = yt−1 · (1 + rt), we obtain

log yt = log yt−1 + log(1 + rt)⇒ log yt − log yt−1 = log(1 + rt)⇒

∆ log yt = log(1 + rt).

Since log(1 + rt) ≈ rt , see previous slide, when rt is small, we have

rt ≈ ∆ log yt .

The percentage growth is defined as 100× rt ≈ 100 ·∆ log yt .
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Appendix – Lag operators and polynomials

• Lag operator Lyt = yt−1, Lτyt = yt−τ , for τ = 1, 2, 3, . . .

• Difference operator ∆yt = (1− L)yt = yt − yt−1
• Autoregressive polynomial φ(L)yt = (1− φL)yt = yt − φyt−1
• Other polynomial θ(L)εt = (1 + θL)εt = εt + θεt−1

• Second difference
∆2yt = ∆(∆yt) = ∆(yt − yt−1) = yt − 2yt−1 + yt−2
• Seasonal difference ∆s yt = yt − yt−s for typical
s = 2, 4, 7, 12, 52

• Seasonal sum operator
S(L)yt = (1 +L+L2 + . . .+Ls−1)yt = yt +yt−1 + . . .+yt−s+1

• Show that ∆S(L) = ∆s .
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