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Thank you

The Econometrics of
Time-Varying Parameters

2 / 51



Outline of Presentation

• Presentation is NOT a comprehensive review of literature !!

• It is just my limited view of the subject . . .

• We start with models in the class of dynamic
parameter-driven models

• Later we move on to models in the class of dynamic
observation-driven models

• Along the way we discuss different approaches to estimation

• Most focus is on univariate models, despite the fact that the
multivariate models are the way forward
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Outline of Presentation

• Much work to do . . .

• on this dark, late afternoon of the last November day in 2020.

• So much to discuss, there is the danger that it will all end in a
disaster at the end of the presentation

• But in the first three December Tuesdays, starting tomorrow,

• we have our lectures in the afternoon with much more time
for the detail !

• You are all invited and very welcome.

• In any case,

Let’s start !
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We start with the mean

We denote the observed values of a time series variable by

y1, y2, . . . , yn−1, yn,

where index n indicates the number of observations (or length of
the time series).

The statistical model for yt with a fixed mean µ is given by

yt = µ+ εt , εt ∼ p(εt), t = 1, . . . , n.

where µ is the unknown constant and εt is the remainder that is
assumed to be a stochastic variable with a probability density
function p(·). We further assume that E(εt) = 0.
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Nile Data
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Nile Data: what is signal, what is noise ?
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Constant: yt = µ + εt
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Is the constant mean a good signal ?

We can extend the model with time trend functions:

yt = µ+ β t + δ t2 + γ t3 + . . . + εt , t = 1, . . . , n.

This is a time-varying signal : µ+ β t + γ t2 + . . .
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Trend t: yt = µ + βt + εt
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Trend t2: yt = µ + βt + δt2 + εt
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Trend t3: yt = µ + βt + δt2 + γt3 + εt
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Constant vs Time-Varying Mean Model

• Constant mean:
• fixed level µ :

yt = µ+ εt , εt ∼ NID(0, σ2
ε)

• Time Varying mean: replace µ by µt with
• deterministic function of time:

µt = a + b t + c t2 + . . .

• stochastic function of time, for example:

µt = µt−1 + ηt , ηt ∼ NID(0, σ2
η)

13 / 51



Local Level Model

The local level model is given by

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• Time-varying level is modelled as a random walk process;

• The disturbances εt , ηs are independent for all s, t;

• The model is incomplete without initial specification for µ1;

• The process µt is nonstationary and yt is nonstationary.
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Local Level Model

The local level model or random walk plus noise model :

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• The level µt and irregular εt are both unobserved;

• Parameters σ2ε and σ2η are unknown;

• Define q as the signal-to-noise ratio : q = σ2η / σ
2
ε .
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Local Level Model

The local level model or random walk plus noise model :

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• Trivial special cases:
• σ2

η = 0 =⇒ yt ∼ NID(µ1, σ
2
ε) (IID, global level);

• σ2
ε = 0 =⇒ yt+1 = yt + ηt (random walk);

• Local Level model is basic illustration of state space model.
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Kalman filter for Local Level Model

Estimation of Time-Varying Level µt is via Kalman filter.
We have Local Level model given by

yt = µt + εt , µt+1 = µt + ηt .

We denote at = E(µt |Yt−1) and pt = Var(µt |Yt−1).
The Kalman filter is a recursion from t = 1 to t = n:

vt = yt − at , kt = pt / ft ,
at+1 = at + ktvt , pt+1 = kt σ

2
ε + σ2η.

where vt is the prediction error with its variance ft = pt + σ2ε .
Kalman filter only operational with initial values for a1 and p1.
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Signal Extraction: predicted estimates
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Time-Varying Regression Model

• Standard time series Regression Model:

yt = Xtβ + εt , εt ∼ NID(0, σ2ε)

where Xt is a row vector of explanatory variables and β is a
row-vector of unknown regression coefficients.

• Time-Varying Regression Model is obtained by replacing β by
βt which is modelled as a “stochastic function of time”, for
example, the vector random walk process

βt+1 = βt + ηt , ηt ∼ NID(0,Ση),

where ηt is a vector of disturbances which have mean zero,
the variance matrix of ηt is Ση.

19 / 51



Time-Varying Regression Model

The Time-Varying Regression Model is given by

yt = Xtβt + εt , εt ∼ NID(0, σ2ε)

with time-Varying coefficient vector

βt+1 = βt + ηt , ηt ∼ NID(0,Ση),

for t = 1, . . . , n.

The initial coefficient vector β1 needs to be provided (this is known
as the initialization problem).

We are effectively looking at the

Linear Gaussian State Space Model.
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State Space Model

Linear Gaussian State Space Model is defined in three parts:

→ Observation equation:

yt = Ztαt + εt , εt ∼ NID(0,Ht),

→ State transition equation:

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt),

→ Initial condition: α1 ∼ N (a1,P1).

• εs and ζt independent for all t, s, and independent from α1;
• observation variable yt (scalar or vector);
• state vector αt is unobserved;
• system matrices Tt ,Zt ,Rt ,Qt ,Ht are fixed at time t.
• system matrices determine (dynamic) structure of model.
• initial conditions : specify a1 and P1.
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State Space Model

• The important key variables in a state space model are the
observation variable yt and the state vector αt ;

• State vector αt contains all the dynamic features in the model;

• State vector αt can also represent other effects in the model
(fixed and regression effects);

• State space model is a convenient representation or
formulation for almost all linear Gaussian time series models;

• It is mostly used for the purpose of using the Kalman filter
and its related algorithms;
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Kalman Filter

Given the state space model αt+1 = Ttαt +Rtζt , yt = Ztαt + εt
with known system matrices :

Define

at+1 = E(αt+1|y1, . . . , yt), Pt+1 = Var(αt+1|y1, . . . , yt).

The next-period state vector αt+1 can be “estimated” using past
observations through the Kalman filter:

vt = yt − Ztat ,

Ft = ZtPtZ
′
t + Ht ,

Kt = TtPtZ
′
tF
−1
t ,

at+1 = Ttat + Ktvt ,

Pt+1 = TtPtT
′
t + RtQtR

′
t − KtFtK

′
t ,

for t = 1, . . . , n and starting with given values for a1 and P1.
23 / 51



Unobserved Components

The unobserved components time series model provides a
model-based approach to the decomposition of a time series into,
for example, trend and seasonal:

yt = µt + γt + εt .

where µt is trend, γt is seasonal and εt is remainder.
The seasonal component γt is subject to number of ‘seasons’ in
the data:

• s = 12 for monthly data,

• s = 4 for quarterly data,

• s = 7 for daily data when modelling a weekly pattern.

24 / 51



Unobserved Components

The unobserved components time series model (UCTSM) is

yt = µt + γt + εt .

• Different specifications for the trend and the seasonal
components can be considered.

• Other components of interest, like cycles, explanatory
variables, interventions effects, outliers, are easily added.

• For UCTSM, we model non-stationarity directly.

• For UCTSM, components have an explicit interpretation: the
model is not just a forecasting device.

• Estimation is done by maximum likelihood, Kalman filter
provides the likelihood function, see Harvey (1989)
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Seatbelt Law
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Seatbelt Law: decomposition

drivers Level+Reg 
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Seatbelt Law: forecasting

70 75 80 85

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

28 / 51



Other Time Series Models

There are many !!
• Autoregressive models
• Autoregressive moving average (ARMA) models
• ... unobserved components time series models ...
• Long memory models, fractional integration (ARFIMA)

models
• Dynamic regression models, error correction models
• Vector autoregressive models, cointegration, vector error

correction models
• ... state space models ...
• Regime-switching, Markov-switching, treshold autoregression,

smooth transitions models
• Generalized autoregressive conditional heteroskedasticity

(GARCH) models
• Autoregressive conditional duration models and related models
• ... stochastic volatility models ...
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Other Time Series Models

But we are discussing

Time-Varying Parameters

• Parameter-driven models
• Local level model
• Unobserved components time series models
• General state space models
• Stochastic volatility models

• Observation-driven models
• Single-source of error models
• Count time series models, ARMA-type
• Generalized autoregressive conditional heteroskedasticity

(GARCH) models
• Generalized autoregressive score (GAS) models
• Score-driven models
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Motivation Score-driven

Why Observation-driven or Score-driven models ?

• In a linear Gaussian world, classical and Bayesian inference
procedures are well in place;

• There are many important challenging cases where time series
clearly posses nonlinear and non-Gaussian features . . .

• State space analysis is numerically involved in such cases . . .

• Key example is Stochastic Volatility (SV) model versus
GARCH model

• Is there an analogue to general state space ?

• For this purpose we explore score-driven models.
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Outcomes of Boat Race: Cambridge – Oxford

Wins: 84 Cambridge vs 80 Oxford, next race is Sunday 29th March
2020, 4:44 PM (UK time), what do you predict ?
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Number of Earthquakes in a year, since 1900

https://en.wikipedia.org/wiki/Lists of 21st-century earthquakes
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Decomposition of Dynamics in Earthquakes
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Credit Rating Transitions for US companies
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Loss Given Defaults for US companies
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Goals scored by football teams in Bundesliga
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Goals conceded by football teams in Bundesliga
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A Day of tick-by-tick returns for IBM
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A Day of tick-by-tick returns for Verizon
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A Restart of Time-Varying Parameters

We can represent a statistical model with (partially) time-varying
parameters as

yt ∼ p(yt |ft ; θ),

with time-varying parameter

ft+1 = ω + βft + α× ” some innovation ”,

it is the ”some innovation” that determines whether we are having
a parameter-driven model or an observation-driven model:

• Parameter-driven : ”some innovation” is random noise, that is
ηt ∼ NID(0, σ2η), Kalman filter provides the “estimate”

• Observation-driven : ”some innovation” is function of data
yt , yt−1, yt−2, . . .
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Score Driven Models

Given the p.e.d., contribution to loglikelihood ` = log p(y |f ; θ) at
time t is

`t = log p(yt |y1, . . . , yt−1, f1, . . . , ft ; θ).

In an observation-driven model, f1, . . . , ft are functions of past
data.

In many cases, `t reduces to

`t = log p(yt |ft ; θ).

The parameter value for next period is then updated by

ft+1 = ω+βft+α×”some function of yt and possibly past data”,

Key proposal : set this innovation equal to score of `t with
respect to ft .

We label this approach as the

Generalized Autoregressive Score model

or the GAS model, see Creal, Koopman and Lucas (2013). 42 / 51



Generalized Autoregressive Score model

For the observation equation,

yt ∼ p(yt |Yt−1, ft ; θ), Yt = {y1, . . . , yt},

we propose the score updating scheme for ft based on

ft+1 = ω + βft + αst ,

where the innovation or driving mechanism st is given by

st = St · ∇t

where

∇t =
∂ log p(yt |Yt−1, ft ; θ)

∂ft
,

St = I−1t−1 = −Et−1

[
∂2 log p(yt |Yt−1, ft ; θ)

∂ft∂f ′t

]−1
.
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Illustration 1 : time-varying mean

Consider time-varying mean model yt ∼ NID(ft , σ
2) or

yt = ft + εt , εt ∼ NID(0, σ2),

for t = 1, . . . , n. For the score-driven solution, we have

ft+1 = ω + βft + αst , st = St · ∇t ,

where

∇t =
∂`t
∂ft

, St = −Et−1
[ ∂2`t
∂ft∂ft

]−1
with

`t = −1

2
log 2π − 1

2
log σ2 − 1

2σ2
(yt − ft)

2.

We obtain

∇t =
1

σ2
(yt − ft), St = σ2,

and we have simply, st = yt − ft as the prediction error.
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Illustration 1 : time-varying mean is ARMA model

For the time-varying mean model

yt = ft + εt , εt ∼ NID(0, σ2),

the score updating is

ft+1 = ω + βft + α(yt − ft), since st = yt − ft .

We can replace ft by yt − εt , then the score updating becomes

yt+1 = ω + βyt + εt+1 + (α− β)εt ,

and hence score updating implies the ARMA(1,1) model for yt

yt = ω + φyt−1 + εt + θεt−1,

where φ ≡ β and θ = α− β.

If α = β, we obtain the AR(1) model.
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Illustration 2: time-varying variance

For the time-varying variance model yt ∼ NID(µ, ft) or

yt = µ+ εt , εt ∼ NID(0, ft),

with t = 1, . . . , n, we set µ = 0. The predictive logdensity is

`t = −1

2
log 2π − 1

2
log ft −

y2t
2ft
,

∇t =
1

2f 2t
y2t −

1

2ft
=

1

2f 2t
(y2t − ft),

Et−1(∇t) = 0, Et−1(−∂∇t

∂ft
) = It−1 =

1

2f 2t
,

St = I−1t−1 = 2f 2t ,

we simply obtain

st = St · ∇t = y2t − ft .
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Illustration 2: time-varying variance is GARCH model

For the time-varying variance model

yt = µ+ εt , εt ∼ NID(0, ft),

with t = 1, . . . , n, we set µ = 0. The score updating is

ft+1 = ω + βft + α(y2t − ft), since st = y2t − ft ,

and hence score updating implies the GARCH(1,1) model:

ft+1 = ω + β∗ft + α∗y2t ,

where β∗ = β − α and α∗ ≡ α.

If α = β, we obtain the ARCH model. Generalizations to GARCH(p, q) are
obvious.
Generalizations to fat-tailed distributions, are they obvious ?
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Other volatility models

Volatility model is typically given by

yt = µ+ σ(ft)ut , ut ∼ pu(ut ; θ), t = 1, 2, . . . , n,

ft+1 = ω + βft + αst ,

where:

• σ() is some continuous function;

• pu(ut ; θ) is a standardized disturbance density;

• st is the scaled score based on ∂ log p(yt |Yt−1, ft ; θ) / ∂ft .

Some special cases

• σ(ft) = ft and pu is Gaussian : score ⇒ GARCH;

• σ(ft) = exp(ft) and pu is Gaussian : score ⇒ EGARCH;

• σ(ft) = exp(ft) and pu is Student’s t : score ⇒ t-GAS.
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Score-driven models

• The same principle of introducing time-varying parameters in
any model for nonlinear and non-Gaussian time series can be
applied: e.g. count data.

• Many applications of this have been developed, see
http://www.gasmodel.com

• Issues on inference require more attention.

• Multivariate versions also need further development.
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Thank you

• Still, much work to do !

• Thank you for providing me with the Francqui Chair.

• I am looking forward to work together on research !!
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