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State Space Model and Kalman Filter
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State Space Model
Linear Gaussian state space model is defined in three parts:

→ State transition equation:

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt),

→ Observation equation:

yt = Ztαt + εt , εt ∼ NID(0,Ht),

→ Initial condition: α1 ∼ N (a1,P1).

• ζt and εs independent for all t, s, and independent from α1;
• observation yt can be a vector;
• state vector αt is unobserved;
• system matrices Tt ,Zt ,Rt ,Qt ,Ht are fixed at time t.
• system matrices are known functions of parameter vector.
• system matrices determine (dynamic) structure of model.
• initial conditions : specify a1 and P1.
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State Space Model

• state space model is linear and Gaussian: therefore properties
and results of multivariate normal distribution apply;

• state vector αt evolves as a VAR(1) process;

• system matrices usually contain unknown parameters;
• estimation has therefore two parts:

• measuring the unobservable state (prediction, filtering and
smoothing);

• estimation of unknown parameters (maximum likelihood
estimation);
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Local level model in State Space

We have state space model

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt),

yt = Ztαt + εt , εt ∼ NID(0,Ht),

with some initialisation for the state vector, that is α1.

The local level model yt = µt + εt with µt+1 = µt + ηt is in state
space form with

Tt = 1, Rt = 1, Zt = 1, Qt = σ2η, Ht = σ2ε ,

and with αt ≡ µt and ζt ≡ ηt , for all t = 1, . . . , n.

The unknown variances are treated as parameters and are in
system matrices Qt and Ht .

We discuss initialisation issues below.
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Signal plus noise model

Also other unobserved components time series models can be
formulated in state space, see next week.
They can be viewed as a signal plus noise model

yt = θt + εt ,

where θt is the unobserved dynamic signal with θt = Ztαt and the
state vector contains all dynamic structures in the time series.

The signal can consist of

• non-stationary trend (level)

• stationary autoregressive processes

• seasonal effects

• cyclical process

or any combination of these !!
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ARMA models in state space form: AR(1) model
Consider AR(1) model yt+1 = φyt + ζt , in state space form:

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt),

yt = Ztαt + εt , εt ∼ NID(0,Ht).

with scalar state vector αt and system matrices

Zt = 1, Ht = 0,

Tt = φ, Rt = 1, Qt = σ2

we have

• Zt = 1 and Ht = 0 imply that αt = yt ;

• State equation implies yt+1 = φyt + ζt with ζt ∼ NID(0, σ2);

• This is the AR(1) model !

• To obtain AR(1) plus noise model, simply have Ht > 0.

7 / 57



Time Series Models in state space form

We have reviewed some standard models that can be formulated in
state space form:

• unobserved components time series models

• autoregressive integrated moving average models

• dynamic regression models

We can also treat

• sums of linear dynamic components

• any linear Gaussian dynamic process
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Initial conditions : stationary process

Consider AR(1) plus noise model

yt = µt + εt , µt+1 = φµt + ηt ,

In state space form, with state vector αt = µt , we have

Zt = 1, Ht = σ2ε , Tt = φ, Rt = 1, Qt = σ2η.

What about the initial condition α1 ∼ N (a1, p1) ?
Here a1 is the unconditional mean and p1 is the unconditional
variance of the stationary process of µt .

The state αt ≡ µt follows autoregressive process of order 1.

Hence a1 = 0 and p1 = σ2η / (1− φ2).

This solution leads to a general solution for all stationary elements
in the state vector.
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Initial conditions : non-stationary process

Consider AR(1) plus noise model

yt = µt + εt , µt+1 = φµt + ηt ,

What about the initial condition α1 ∼ N (a1, p1) when state
process αt = µt is non-stationary, that is φ→ 1 ?
We obtain the Local Level model,

yt = µt + εt , µt+1 = µt + ηt ,

Here a1 is the unconditional mean and p1 is the unconditional
variance of the non-stationary process of µt .

Then a1 = 0 and p1 = σ2η / (1− φ2)→∞ as φ→ 1.

We have a1 = 0 and p1 →∞; this is generally the solution for
non-stationary elements.
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Kalman Filter

Given the state space model αt+1 = Ttαt +Rtζt , yt = Ztαt + εt
with known system matrices :

• The Kalman filter calculates the mean and variance of the
unobserved state, given the observations.

• The state is Gaussian: the complete distribution is
characterized by the mean and variance.

• The filter is a recursive algorithm; the current best estimate is
updated whenever a new observation is obtained.

• To start the recursion, we need a1 and P1, which we assume
given. There are various ways to initialize the Kalman filter.

• Assumption is known system matrices; later we discuss
estimation of parameter vector.
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Kalman Filter
Given the state space model αt+1 = Ttαt +Rtζt , yt = Ztαt + εt
with known system matrices :

The unobserved state αt can be “estimated” from the observations
with the Kalman filter:

vt = yt − Ztat ,

Ft = ZtPtZ
′
t + Ht ,

Kt = TtPtZ
′
tF
−1
t ,

at+1 = Ttat + Ktvt ,

Pt+1 = TtPtT
′
t + RtQtR

′
t − KtFtK

′
t ,

for t = 1, . . . , n and starting with given values for a1 and P1.

• Writing Yt = {y1, . . . , yt},

at+1 = E(αt+1|Yt), Pt+1 = Var(αt+1|Yt).
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Kalman Filter : discussion

• Our best prediction of yt is Ztat . When the actual
observation yt arrives, calculate the prediction error
vt = yt − Ztat and its variance Ft = ZtPtZ

′
t + Ht .

• The best estimate at+1 is based on both the old estimate at
and the new information vt :

at+1 = Ttat + Ktvt ,

with its variance

Pt+1 = TtPtT
′
t + RtQtR

′
t − KtFtK

′
t .

• The Kalman gain
Kt = TtPtZ

′
tF
−1
t

is the optimal weighting matrix for the new evidence.
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Kalman filter for the Local Level Model

For the special case of the Local Level model,

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η),

in state space formulation we have Tt = Rt = Zt = 1, Qt = σ2η
and Ht = σ2ε , and the Kalman filter equations are given by

vt = yt − at , ft = pt + σ2ε ,

kt = pt / ft ,

at+1 = at + ktvt , pt+1 = kt σ
2
ε + σ2η,

for t = 1, . . . , n with initialisation a1 = 0 and p1 = σ2ε × 107 or
p1 →∞.
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Kalman Filter prediction
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Kalman Filter prediction, at the start
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Signal Extraction for Nile Data: filtered estimate of level
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Observation weights

The predicted estimate at and the filtered estimate at|t of the state
vector αt , both obtained from the Kalman filter, can both be
expressed as linear, weighted functions of the past observations
(for filtering, including yt).

For example, we have

at|t = E(αt |Yt) =
t−1∑
j=0

wt,j yt−j ,

where wt,j are the observation weights.

The weight function, the weights wt,j against j , can be compared
with the kernel function in nonparametric (regression) analysis.
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Signal Extraction for Nile Data: observation weights
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Maximum Likelihood Estimation and
Time Series Analysis
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Prediction error decomposition
System matrices are function of the unknown parameter vector ψ.

For a known ψ, we evaluate the likelihood function based on the
joint observation density via prediction decomposition.

For two observations n = 2, we have

f (y1, y2;ψ) = f (y1;ψ)f (y2|y1;ψ).

For three observations n = 3, we have

f (y1, y2, y3;ψ) = f (y1, y2;ψ)f (y3|y1, y2;ψ)

= f (y1;ψ)f (y2|y1;ψ)f (y3|y1, y2;ψ).

More generally, for any n,

f (y1, . . . , yn;ψ) = f (y1;ψ)
n∏

t=2

f (yt |Yt−1;ψ).
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Loglikelihood function

The loglikelihood function is given by

log L(ψ) =
n∑

t=1

log f (yt |Yt−1;ψ), Y0 ≡ {},

where

f (yt |Yt−1;ψ) ≡ N (Ztat ,Ft), t = 1, . . . , n.

It follows that:

log L(ψ) = −n#(yt)

2
log 2π − 1

2

n∑
t=1

log |Ft | −
1

2

n∑
t=1

v ′tF
−1
t vt ,

where #(yt) is the dimension of yt and vt = yt − Ztat .

Estimation proceeds by numerically maximising log L(ψ) wrt ψ.
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Parameter Estimation for the Local Level model

The Kalman filter for the Local Level model is given by

vt = yt − at , ft = pt + σ2ε ,

kt = pt / ft ,

at+1 = at + ktvt , pt+1 = kt σ
2
ε + σ2η,

for t = 1, . . . , n with initialisation a1 = 0 and p1 = σ2ε × 107.

The loglikelihood function is given by

log L(ψ) = −n

2
log 2π − 1

2

n∑
t=1

log ft −
1

2

n∑
t=1

v2t / ft .

Estimation is done by maximising log L(ψ) wrt ψ = (σ2ε , σ
2
η)′.
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Local Level Estimates for q ∈ {0.0, 0.01, q̂, ∞}
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Goodness-of-Fit and Diagnostics

• Under correct model specification, the standardised residuals
have property

vt /
√
F t ∼ NID(0, 1),

for t = 1, . . . , n. In Local Level case, we have vt /
√
ft .

• Apply standard test for Normality, heteroskedasticity, serial
correlation;

• A recursive algorithm is available to calculate smoothed
disturbances (auxilliary residuals), which can be used to detect
breaks and outliers;

• Model comparison and parameter restrictions: use likelihood
based procedures (LR test, AIC, BIC);

• So much more to say, if only time permits . . .
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Nile Data Residuals Diagnostics
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Smoothing

• The filter calculates the mean and variance of the state vector
variable conditional on Yt−1 (prediction) or Yt (filtering);

• Smoothing refers to the computation of the mean and
variance of the state vector variable conditional on the full set
of observations Yn;

• After the predicted/filtered estimates are calculated by the
Kalman filter, the smoothing recursion starts at the last
observation and runs until the first.
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Signal Extraction for Nile Data: Smoothed Estimates
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Prediction and Smoothed Estimates
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Filtered and Smoothed Estimates
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Filtered and Smoothed Weight Functions
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Kalman Filter and Missing Observations
Given the state space model αt+1 = Ttαt +Rtζt , yt = Ztαt + εt
with known system matrices :

The unobserved state αt can be “estimated” from the observations
with the Kalman filter:

vt = yt − Ztat ,

Ft = ZtPtZ
′
t + Ht ,

Kt = TtPtZ
′
tF
−1
t ,

at+1 = Ttat + Ktvt ,

Pt+1 = TtPtT
′
t + RtQtR

′
t − KtFtK

′
t ,

for t = 1, . . . , n and starting with given values for a1 and P1.

• Writing Yt = {y1, . . . , yt},

at+1 = E(αt+1|Yt), Pt+1 = Var(αt+1|Yt).
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Missing Observations
Missing observations are very easy to handle in the Kalman filter:

vt = yt − Ztat , Ft = ZtPtZ
′
t + Ht , Kt = TtPtZ

′
tF
−1
t ,

with update

at+1 = Ttat + Ktvt , Pt+1 = TtPtT
′
t + RtQtR

′
t − KtFtK

′
t .

• suppose yj is missing, its value is not known

• put vj =?? and let Fj →∞ in the Kalman filter

• it follows that Kj → 0

• proceed further calculations as normal

Update : aj+1 = Tjaj and Pj+1 = TjPjT
′
j + RjQjR

′
j .

The Kalman filter extrapolates the state vector until a new
observation arrives. The backwards smoother interpolates between
observations.
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Local Level Model for Nile Data with Missing Observations
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Missing Observations, Filter and Smoother
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Climate Change: Nile Volume Predictions over Centuries
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Filtering and Smoothing in Political Polling at Politico

https://www.politico.eu/europe-poll-of-polls/united-kingdom/
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Forecasting

Forecasting requires no extra theory: just treat future observations
as missing:

• put vj =?? and Fj →∞ for j = n + 1, . . . , n + k

• have Kj → 0

• proceed further calculations as normal

• forecast for yj is Zjaj and is provided by the Kalman filter

• the forecast itself as well as its standard error

• also forecasts for any function of state vector
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Forecasting
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Macroeconomic time series
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Gross Domestic Product Growth 1947Q1 – 2019Q4
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Trend-Cycle Decomposition
Macroeconomic time series are often decomposed into trend and
cycle components:

yt = µt + ψt + εt ,

where the trend component is µt with growth component νt :

µt+1 = µt + νt , νt+1 = νt + ηt ,

where the cycle component is ψt and can be modelled as the
stationary autoregressive process:

ψt+1 = φ1ψt + φ2ψt−1 + κt ,

with disturbances

εt ∼ NID(0, σ2ε), ηt ∼ NID(0, σ2η), κt ∼ NID(0, σ2κ),

which are serially and mutually independent noise series.
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GDP Growth: Trend, Cycle and Noise

1950 1960 1970 1980 1990 2000 2010 2020

0

10

20

1950 1960 1970 1980 1990 2000 2010 2020

-5

0

5

10

1950 1960 1970 1980 1990 2000 2010 2020

-5

0

5

10

43 / 57



Trend-Cycle Decomposition

For macroeconomic time series, the trend-cycle decomposition is
effective and useful:

yt = µt + ψt + εt ,

with trend µt and cycle ψt .

• The unobserved cycle process ψt can be modelled as an
AR(2) process, as it can represent a cyclical process.

• Conditions for stationarity are well-known and can be derived.

• Conditions for cyclicality are less known, it requires the roots
of the AR polynomial to be within the complex range.

• We can enforce cyclicality in autoregressive processes within
state space models, see next slide.
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Business Cycle component

An ARMA(2,1) model for which the autoregressive polynomial is
enforced to have complex roots is given by(

ψt+1

ψ†t+1

)
= ρ

[
cosλ sinλ
− sinλ cosλ

](
ψt

ψ†t

)
+

(
κt
κ†t

)
,

with damping factor ρ and frequency λ, and disturbances

κt , κ
†
t ∼ NID(0, σ2κ),

which are serially and mutually independent series.

• The stationary cycle has 0 < ρ < 1 and period 2π /λ.

• Business cycle length is typically between 1.5 and 12 years.
For example, when we have a quarterly time series, we restrict
λ such that 6 < 2π /λ < 48.
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US Industrial Production, SA, monthly 1970-2019
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Decomposition of Industrial Production
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The take-aways on time series decompositions

The trend-cycle decomposition model for macro time series:

• introduces a novelty in time series modelling;

• exploits the flexibility of the state space framework;

• combines stationary and non-stationary features into one
model.

What is relevant here ?

• statistical formulation of trend-cycle model;

• the state space representation of a trend-cycle model;

• initial conditions for the state vector;
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Financial Time Series: Volatility
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Standard and Poor’s 500 index/volume, daily, from 2010
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Standard and Poor’s 500 returns, daily, from 2010
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Stochastic Volatility (SV) model

The stochastic volatility (SV) model for a time series of financial
(daily) returns yt = log(Pt)− log(Pt−1) is given by

yt = µ+ σtεt , log σ2t = ht , ht+1 = ω + φht + σηηt ,

where µ is the overall mean of returns (positive for S&P500),
σ2t is the stochastically time-varying (daily) volatility,
εt ∼ NID(0, 1),
ht is the log-volatility, φ is the persistence in log-volatility,
ω/(1− φ) is the unconditional mean in log-volatility, and
ση determines the overall scale of volatility, known as vol-of-vol.

First example of NOT having a dynamic process in the mean
equation, but in the variance equation.

Full treatment of the SV model in the next weeks.
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The Stochastic Volatility (SV) model

Given the SV model

yt = µ+ σtεt , log σ2t = ht , ht+1 = ω + φht + σηηt ,

and after transformation xt = log(yt − µ)2, we obtain a stationary
linear decomposition model for xt

xt = ht + ut , ht+1 = ω + φht + σηηt ,

where ut = log ε2t .

In effect, we have a linear AR(1) plus noise model for xt , with ht
now in the mean equation but disturbance ut is not necessarily
Gaussian !!
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S&P 500 returns transformation xt
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Quasi-ML method for Stochastic Volatility model
For the extraction of volatility, we can base the analysis on the
linear decomposition model for xt = log(yt − µ)2, that is

xt = ht + ut , ht+1 = ω + φht + σηηt ,

where ut = log ε2t . Notice: we replace µ by the sample mean of yt .

Sure, it is empirically challenging to assume normally distributed
ut ’s, but let’s do it anyways, but we also account for possible
assumption εt ∼ NID(0, 1). We have

ut ∼ NID(c, d), t = 1, . . . , n,

where c and d are mean and variance of logχ2(1) distribution,
respectively.

In this case, we can apply all state space methods to the model for
xt , including parameter estimation: quasi-ML method.

55 / 57



Volatility extraction

Based on the model

xt = ht + ut , ht+1 = ω + φht + σηηt ,

we can extract ht by using Kalman filter and smoothing methods.

However, we are interested in the signal extraction of

σ2t = exp ( ht ), t = 1, . . . , n.

We are also aware of the notion that

σ̂2t 6= exp
(
ĥt
)
, t = 1, . . . , n,

where σ̂2t = E(σ2t |Yn) and ĥt = E(ht |Yn), for t = 1, . . . , n.

This problem can be tackled, but it is another meeting !!
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S&P 500 volatility signal extraction
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