

Post-ASCO 2021: Thoracic Oncology Highlights

Prof. Dr. V. Surmont 26 juni 2021

Outline

- early stage
- unresectable stage III
- metastatic: non-oncogene addicted
- metastatic: oncogene addicted
- **SCLC**
- take home messages

Disclosures

- honoraria advisory boards:
 - Astra-Zeneca, Pfizer, MSD, Roche

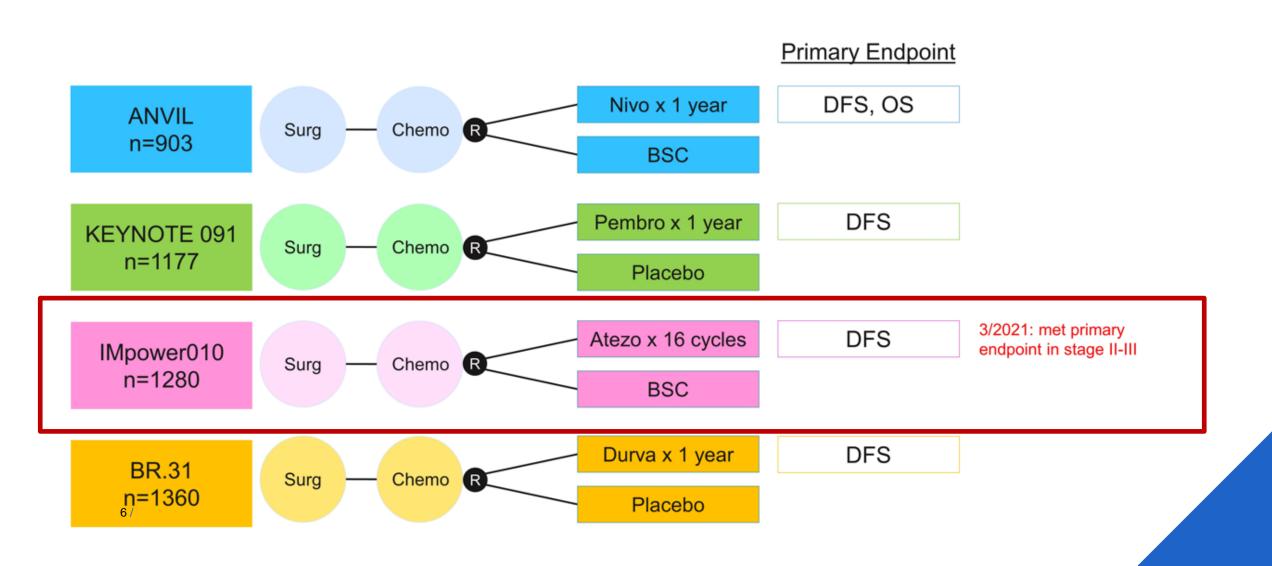
Early stage NSCLC:

(Neo)adjuvant strategies

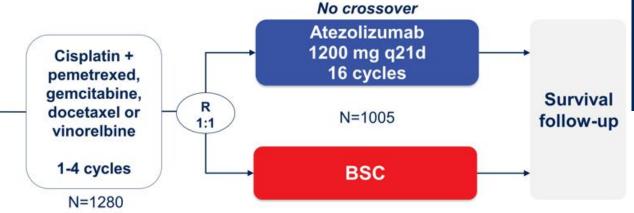
IMpower010 Checkmate 816 IMPACT/CTONG1103

Local treatment modalities

VIOLET STARS



(neo)adjuvant strategies


Phase III trials of adjuvant checkpoint inhibitors

Study design IMpower010

Completely resected stage IB-IIIA NSCLC per UICC/AJCC v7

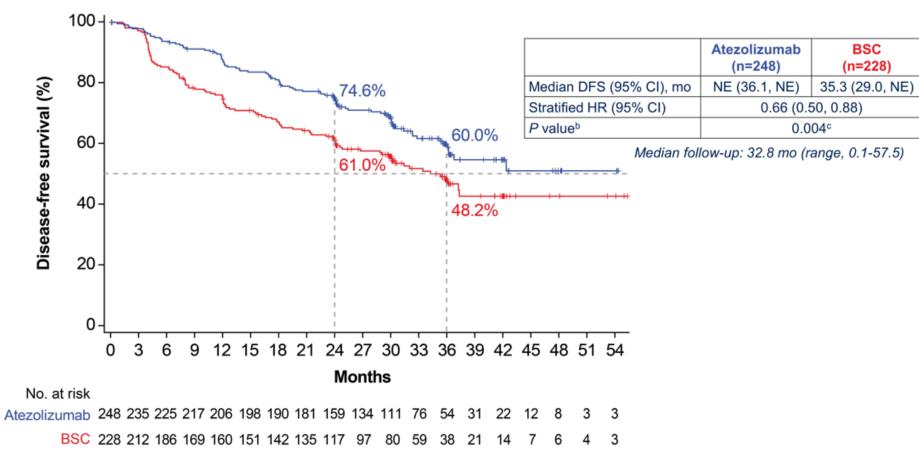
- Stage IB tumors ≥4 cm
- ECOG 0-1
- Lobectomy/pneumonectomy
- Tumor tissue for PD-L1 analysis

KEY POINTS:

- Overall a well designed and robust study
- · AJCC 7th edition staging
- All randomized pts received adjuvant chemo
- SP263 assay used for efficacy analyses of PD-L1¹
- 54.6% of patients had PDL1 ≥ 1%, slightly lower than in other studies (67% in PACIFIC²)

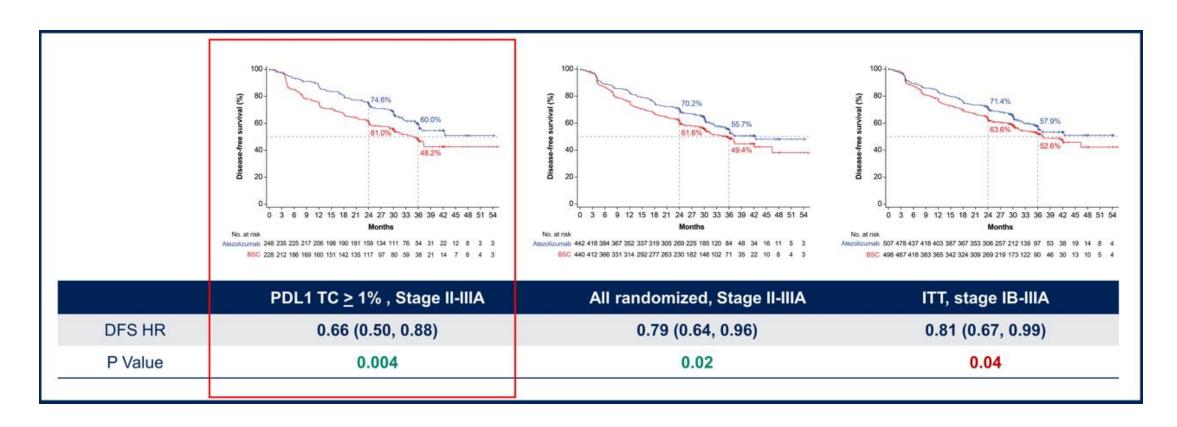
Stratification factors

- Male/female
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 tumor expression status^a: TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1

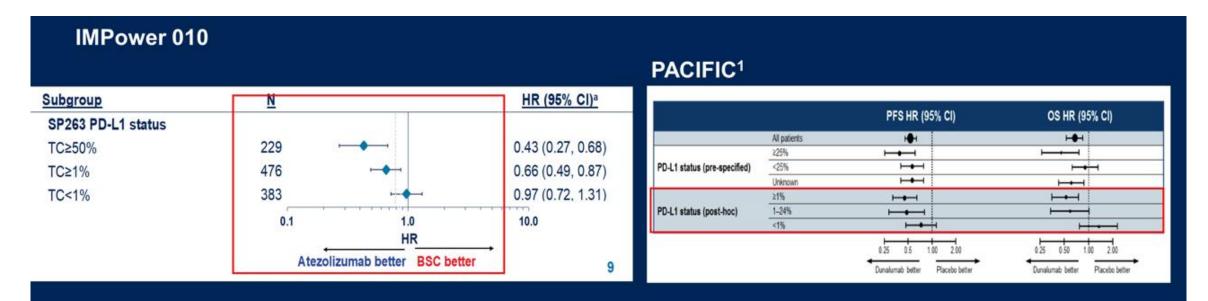

Primary endpoints

- Investigator-assessed DFS tested hierarchically:
 - PD-L1 TC ≥1% (per SP263) stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

Key secondary endpoints


- OS in ITT population
- DFS in PD-L1 TC ≥50% (per SP263) stage II-IIIA population
- 3-y and 5-y DFS in all 3 populations

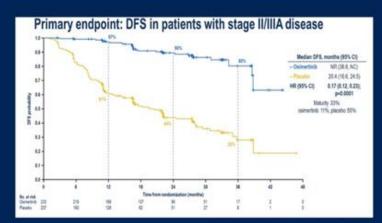
DFS in stage II-IIIA in PD-L1 TC ≥ 1 % (PE)


Clinical cutoff: January 21, 2021. CI, confidence interval; HR, hazard ratio; NE, not evaluable. a Per SP263 assay. 5 Stratified log-rank. Crossed the significance boundary for DFS.

Magnitude of benefit

Abstract #8500

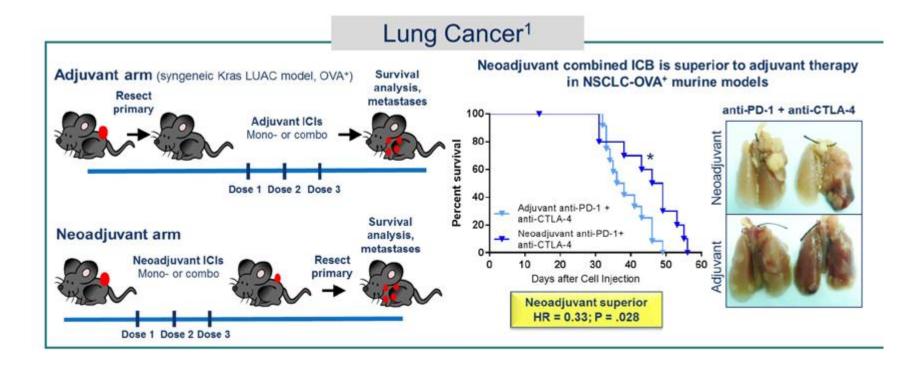
Biomarker selection



- As with other immunotherapy studies, the magnitude of benefit of adjuvant atezolizumab is greatest in patients with the highest levels of PD-L1.
- Among pts with PDL1 ≥ 50%, DFS HR 0.43
- Patients with negative PD-L1 did NOT benefit from adjuvant atezolizumab.

Atezolizumab: first IC with clinically meaningful benefit in adjuvant setting in PD-L1 positive stage II-IIIA NSCLC after chemo

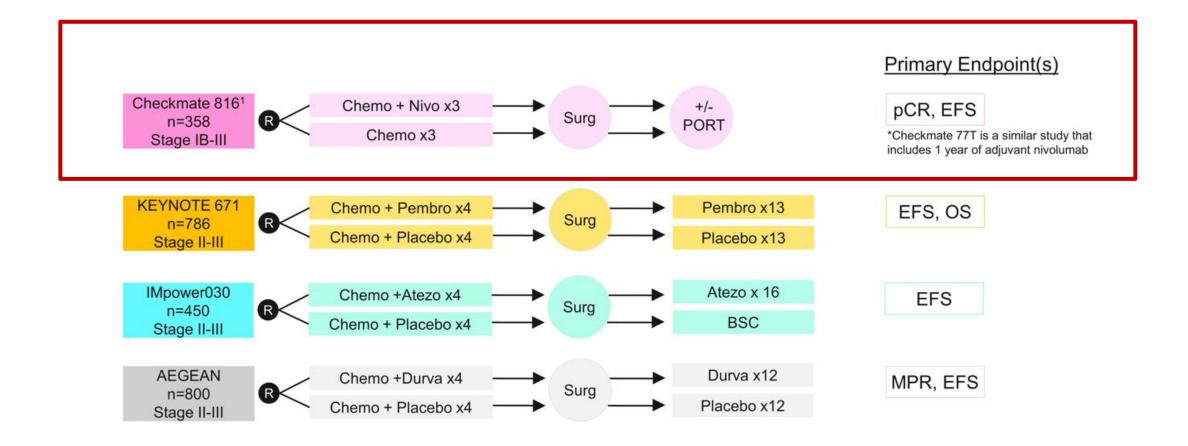
Is DFS sufficient to change clinical practice?


- OS has historically been considered the "gold standard" for adjuvant studies, yet many ongoing studies are powered for DFS endpoints.
- OS data takes years to mature and, in the meantime, we (clinicians) have to make decisions based on available data.
- For patients and caregivers, improvements in disease free may translate into patient benefit, whether or not OS is improved.
- Recently, several adjuvant therapies (osimertinib, durvalumab) have received FDA approval based on DFS benefit, suggesting this is viewed as a clinically meaningful endpoint.

ADAURA (Herbst R, ASCO 2020)

Trial ¹	Drug	n	1º Endpoint	Estimated Completion Date	NCT
IMPower110	Atezolizumab	1005	DFS	December 2027	NCT02486718
ANVIL (EA5142)	Nivolumab	903	DFS + OS	January 2024	NCT02595944
KEYNOTE-091	Pembrolizumab	1177	DFS	February 2024	NCT02504372
BR.31	Durvalumab	1360	DFS	January 2024	NCT02273375

Rationale for neoadjuvant strategy

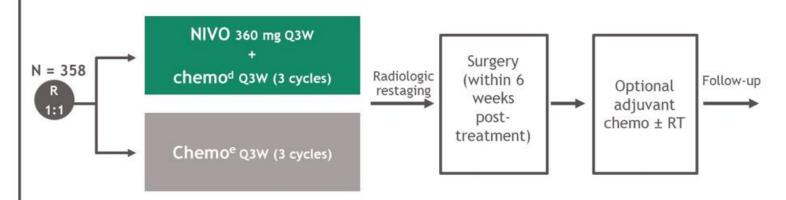


¹Cascone ASCO 2019, ²Liu Cancer Dis

Administering immunotherapy with the primary tumor intact = larger burden of endogenous tumor antigens, potentially:

- (1) Enhancing tumor-specific T cell priming and trafficking
- (2) Leading to more robust activation of the immune system
- (3) Improving surveillance against micrometastatic disease

Phase III trials neoadjuvant chemo and PD(L)1 inhibitor


Surgical outcomes from the phase 3 CheckMate 816 trial: nivolumab + platinum-doublet chemotherapy vs chemotherapy alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer

<u>Jonathan Spicer</u>, ¹ Changli Wang, ² Fumihiro Tanaka, ³ Gene B. Saylors, ⁴ Ke-Neng Chen, ⁵ Moishe Liberman, ⁶ Everett Vokes, ⁷ Nicolas Girard, ⁸ Shun Lu, ⁹ Mariano Provencio, ¹⁰ Tetsuya Mitsudomi, ¹¹ Mark M. Awad, ¹² Enriqueta Felip, ¹³ Patrick M. Forde, ¹⁴ Scott J. Swanson, ¹² Julie R. Brahmer, ¹⁴ Keith Kerr, ¹⁵ Cécile Dorange, ¹⁶ Junliang Cai, ¹⁶ Stephen Broderick ¹⁴

Key eligibility criteria

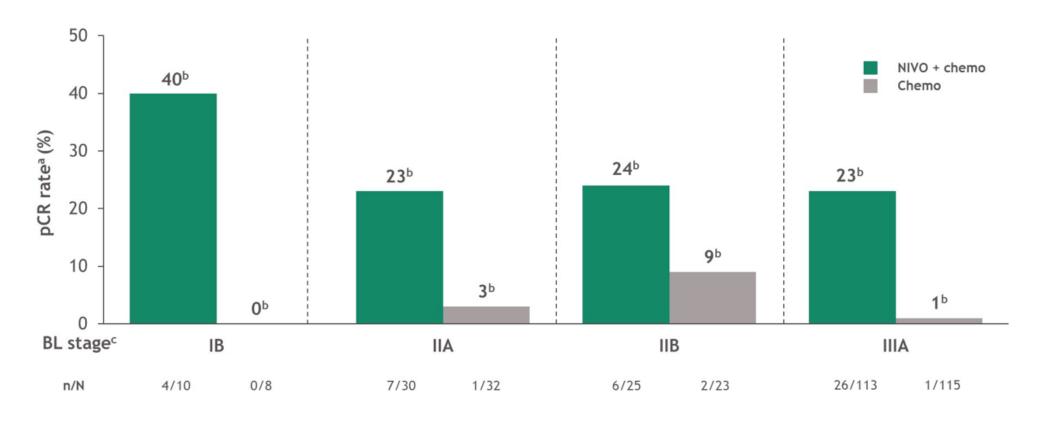
- Newly diagnosed, resectable, stage IB (≥ 4 cm)-IIIA NSCLC (per TNM 7th edition)
- ECOG PS 0-1
- No known sensitizing EGFR mutations or ALK alterations

Stratified by stage (IB/II vs IIIA), PD-L1^b (≥ 1% vs < 1%^c), and sex

Primary endpoints

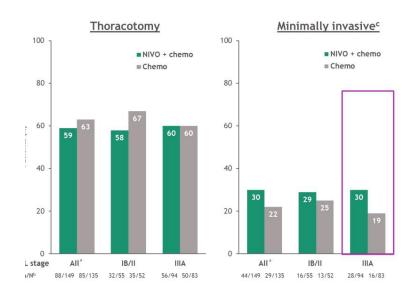
- pCR by BIPR
- EFS by BICR

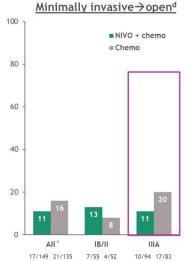
Key secondary endpoints

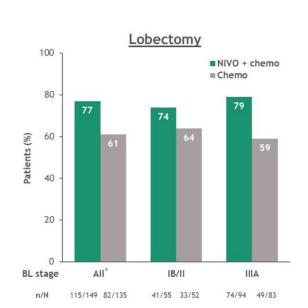

- MPR by BIPR
- OS
- · Time to death or distant metastases

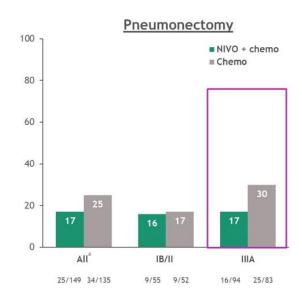
Key exploratory endpoints included

- · ORR by BICR
- Feasibility of surgery; peri- and post-operative surgery-related AEs


Abstract #8503

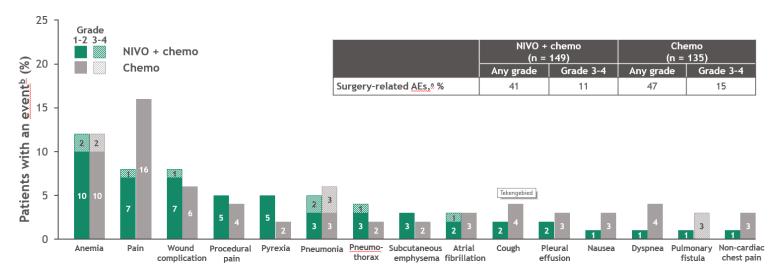

pCR by baseline disease stage




pCR improvement with NIVO + chemo vs chemo was observed regardless of radiologic down-staging^d

Surgical approach

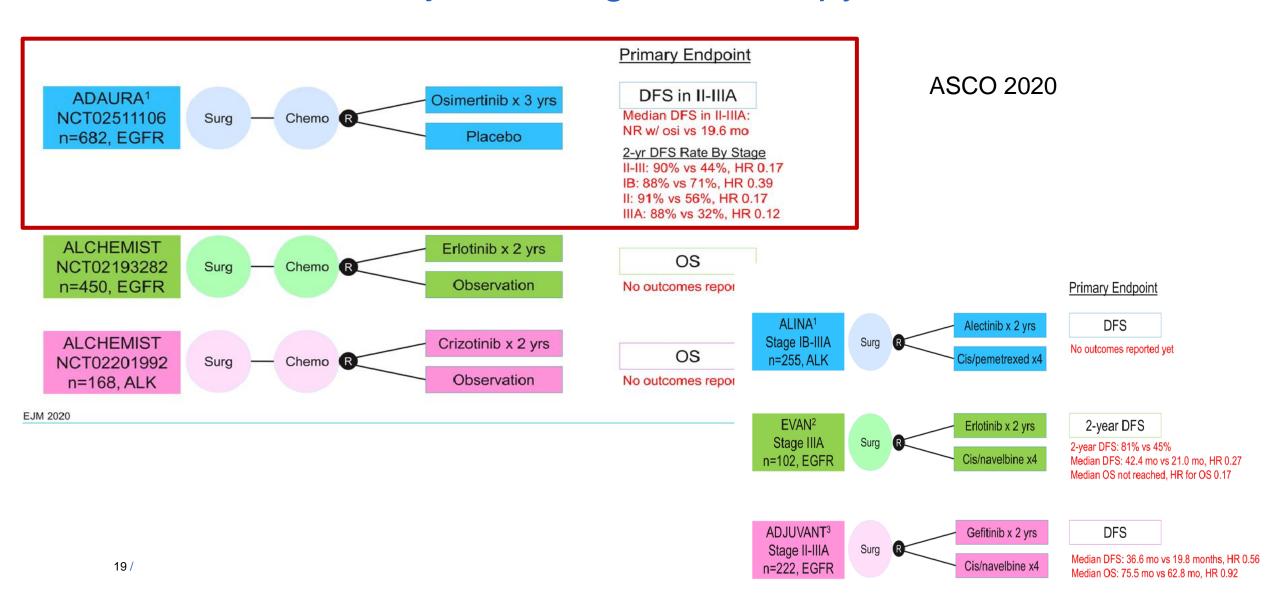
In the chemolO arm:


- More patients had the operation via a minimally invasive approach (VATS or robotic), including the patients with stage IIIA tumors at baseline
- Fewer patients required a pneumonectomy
- More patients had R0 resection

	All stages		Stage IB/II		Stage IIIA	
	NIVO + chemo (n = 149)	Chemo (n = 135)	NIVO + chemo (n = 55)	Chemo (n = 52)	NIVO + chemo (n = 94)	Chemo (n = 83)
Patients with delayed <u>surgery, b.c.</u> n (%) AE	31 (21) 6 (4)	24 (18) 9 (7)	9 (16) 2 (4)	13 (25) 7 (13)	22 (23) 4 (4)	11 (13) 2 (2)
Length of delay in surgery, weeks Median (IQR)	2.0 (0.6-3.0)	2.4 (1.0-3.7)	2.1 (0.9-2.9)	2.1 (1.3-3.6)	1.9 (0.6-3.0)	2.6 (0.6-4.9)
Of patients with delayed surgery, proportion n (%) with delay of						
≤ 2 weeks > 2 and ≤ 4 weeks > 4 and ≤ 6 weeks > 6 weeks	17 (55) 8 (26) 3 (10) 3 (10)	11 (46) 8 (33) 2 (8) 3 (12)	4 (44) 4 (44) 0 1 (11)	6 (46) 5 (38) 0 2 (15)	13 (59) 4 (18) 3 (14) 2 (9)	5 (46) 3 (27) 2 (18) 1 (9)

no delay in surgery

• Median (IQR) time from last neoadjuvant dose to definitive surgery was 5.3 (4.6-6.0) weeks with NIVO + chemo and 5.0 (4.6-5.9) weeks with chemo for all patients with definitive surgery


no increase in 90-day surgical toxicity

- Grade 5 surgery-related AEs (within 24 hours of AE onset) were reported in 2 patients in the NIVO + chemo arm and were deemed unrelated to study drug per investigator (1 each due to pulmonary embolism and aortic rupture)^c
- 30-day and 90-day mortality rates are planned to be evaluated when survival endpoints are available

- no delay in surgery
- no impairment of surgery
- ▶ no reduction in completeness of resection
- ▶ no increase in 90-day surgical toxicity
- more event-free and OS data are needed for CM816 to become practice changing

Phase III trials adjuvant targeted therapy

Adjuvant gefitinib versus cisplatin/vinorelbine in Japanese patients with completely resected, EGFR-mutated, stage II–III non-small-cell lung cancer (IMPACT: WJOG6410L): a randomized phase 3 trial.

Hirohito Tada,¹ Tetsuya Mitsudomi,² Takeharu Yamanaka,³ Kenji Sugio,⁴ Masahiro Tsuboi,⁵ Isamu Okamoto,⁶ Yasuo Iwamoto,⁷ Noriaki Sakakura,⁸ Shunichi Sugawara,⁹ Shinji Atagi,¹⁰ Toshiaki Takahashi,¹¹ Hidetoshi Hayashi,² Morihito Okada,¹² Hidetoshi Inogawa,¹³ Hiroshige Yoshioka,¹⁴ Kazuhisa Takahashi,¹⁵ Masahiko Higashiyama,¹⁶ Ichiro Yoshino,¹⁷ Kazuhiko Nakagawa,² West Japan Oncology Group

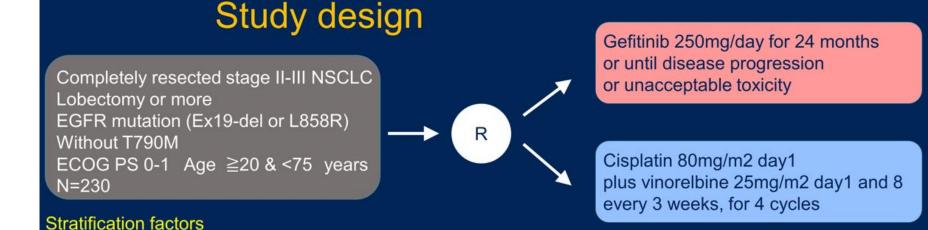
institute

gender

every 6 months:

stage II vs. III

age <65 or ≥65


Efficacy assessment schedules

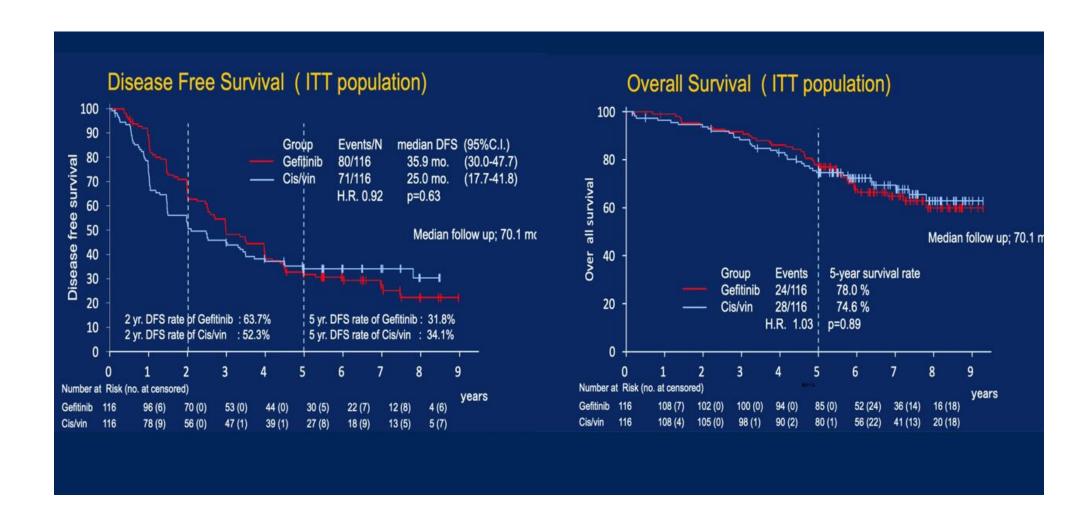
UICC TNM classification (7th version)

contrast chest/abdominal CT

every 12 moths: brain MRI. PET/CT or bone scan

Phase 3 RCT (IMPACT)

Primary endpoint:

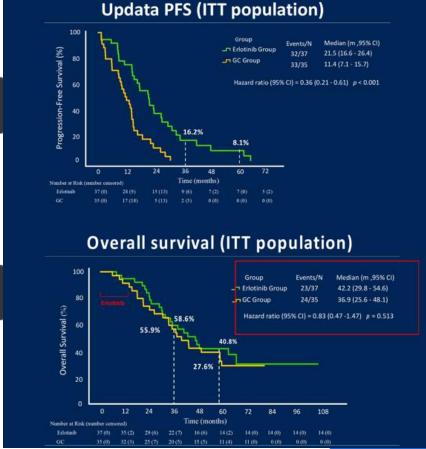

Secondary endpoint

Overall survival

Relapse pattern

Safety and tolerability

Disease free survival by BICRC.


DFS: numerically longer with gefitinib, but HR 0.92

OS: not significantly different, HR 1.03

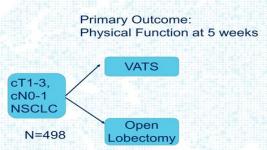
Phase 2 RCT (CTONG1103)

Study objective

 To evaluate the long-term efficacy and safety of neoadjuvant erlotinib in patients with stage IIIA-N2 EGFRmutant NSCLC in CTONG1103 Neoadjuvant Adjuvant Non-PD Erlotinib 150 mg/day Erlotinib 150 mg/day PD/ for 42 days Key patient inclusion criteria for up to 12 months toxicity (n=37) Stage IIIA-N2 NSCLC R EGFR mutation (exon 19 Stratification or exon 21) G · LN status, histology, smoking status, gender Treatment naïve Ε Cisplatin 75 mg/m² + ECOG PS 0–1 R Cisplatin 75 mg/m² D1 + gemcitabine 1250 mg/m² PD/ (n=72)gemcitabine 1250 mg/m² → toxicity q3w for 2 cycles D1, 8 q3w for 2 cycles (n=35)Primary endpoint Secondary endpoints ORR (RECIST v1.1) pCR, downstaging, PFS, OS, safety 22 / Abstract #8502

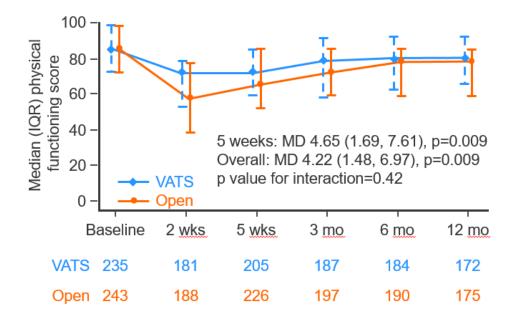
- ▶ 3 RCT on (neo)adjuvant EGFR-TKI with mature OS data
- ▶ TKI for up to 2 years compared to 4 cycles of cis-based chemo
- initial DFS advantage, no OS benefit
- follow-up results of osimertinib in ADAURA are needed

Local treatment modalities



VIDEO-ASSISTED THORACOSCOPIC VERSUS OPEN LOBECTOMY IN PATIENTS WITH EARLY-STAGE LUNG CANCER: ONE-YEAR RESULTS FROM A RANDOMIZED CONTROLLED TRIAL (VIOLET)

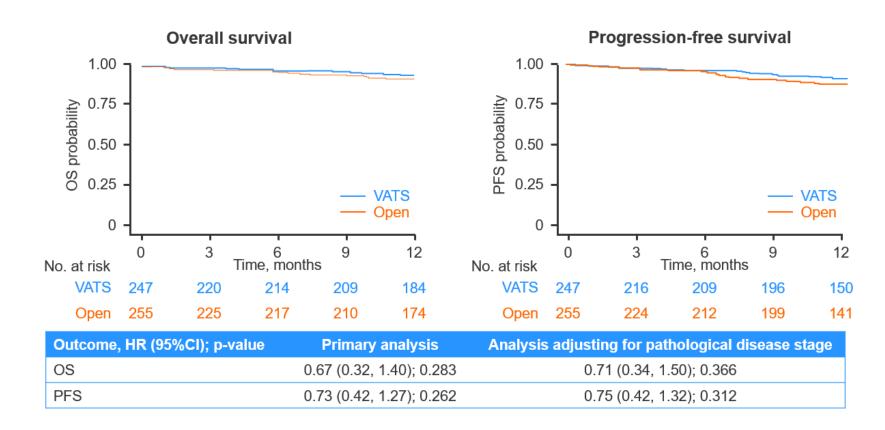
Eric Lim, Tim JP Batchelor, Joel Dunning, Michael Shackcloth, Vladimir Anikin, Babu Naidu, Elizabeth Belcher, Mahmoud Loubani, Vipin Zamvar, Rosie A Harris, Lucy Dabner, Holly E McKeon, Sangeetha Paramasivan, Alba Realpe, Daisy Elliott, Paulo De Sousa, Jane Blazeby, Chris A Rogers on behalf of The VIOLET Trialists



Royal Brompton & Harefield NHS

Imperial College London

Physical function at 1 year

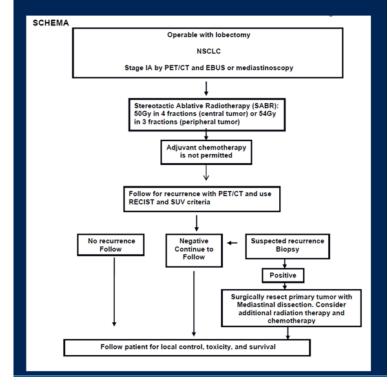


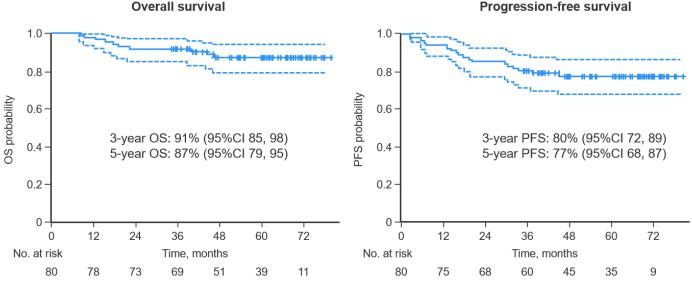
VIOLET (QoL)

Outcome, MD (95%CI); p-value	Primary analysis	Analysis excluding benign patients
QLQ-C30 physical function at 5 weeks	4.65 (1.69, 761); 0.0089	4.66 (1.71, 7,62); 0.0089
In-hospital pain	-0.02 (-0.46, 0.41)	-0.54 (-0.99, -0.09)

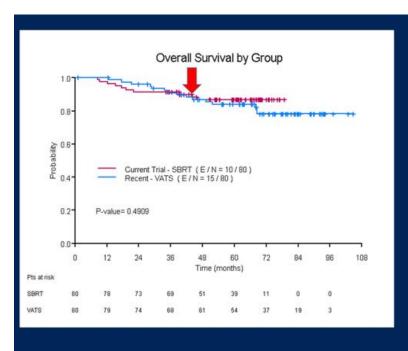
Outcome	VATS (n=247)	Open surgery (n=255)	RR (95%CI); p-value		
In-hospital before disch	narge, n (%)				
Any AE	81 (32.8)	113 (44.3)	0.74 (0.66, 0.84); <0.001		
Any SAE	20 (8.1)	21 (8.2)	0.98 (0.59, 1.63); 0.948		
After discharge following surgery, events/patients (%)					
Readmissions	117/70 (29.0)	141/88 (35.9)			
SAE	142/75 (30.7)	207/94 (37.8)	0.81 (0.66, 1.00); 0.053		

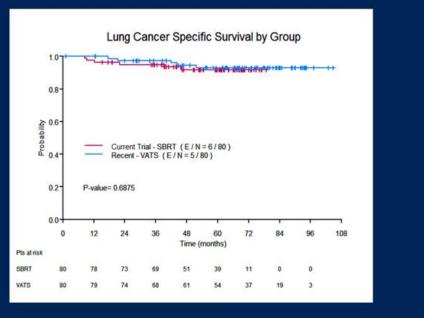
VIOLET (oncological outcomes)



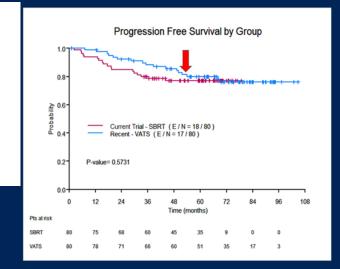

reinforce the paradigm shift in surgical approach improved results without compromising oncological outcomes

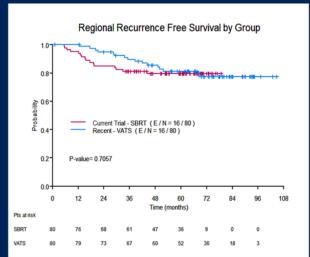
2021 ASCO ANNUAL MEETING STEREOTACTIC ABLATIVE RADIOTHERAPY IN OPERABLE STAGE I NSCLC PATIENTS: LONG-TERM RESULTS OF THE EXPANDED STARS CLINICAL TRIAL Joe Y. Chang, Reza J Mehran, Lei Feng, Stephen McRae, Peter Balter, Donald Berry and Jack A Roth On behalf of The STARS Lung Cancer Clinical Trials Group


Expanded single-arm trial in operable stage IA risk-factor matched comparison with historical VATS data (n=229)


PE: OS at 3 years

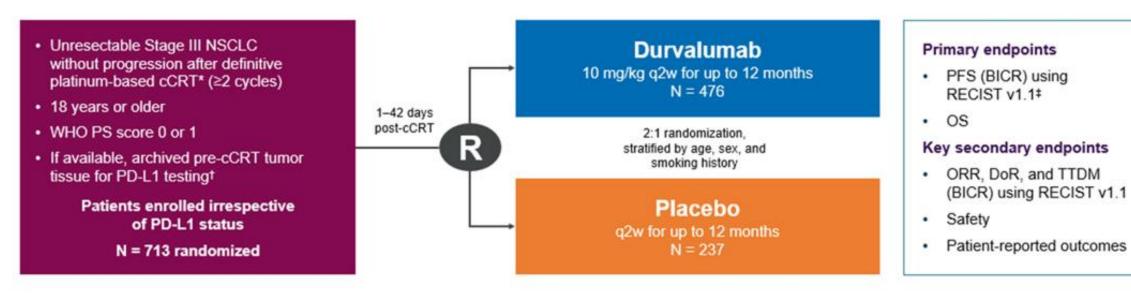
OS/PFS data SABR and VATS


OS: 3-Y: 91% vs 91% 5-Y: 87% vs 84%

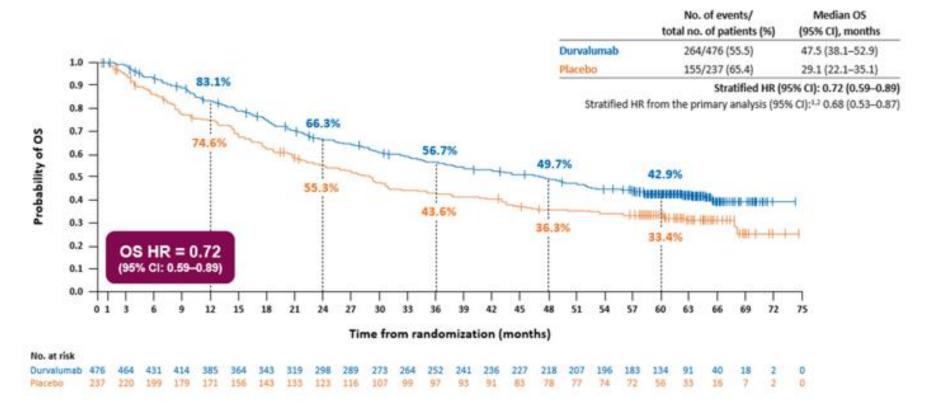

HR: 0.78 (95% CI: 0.35~1.76; p=0.55)

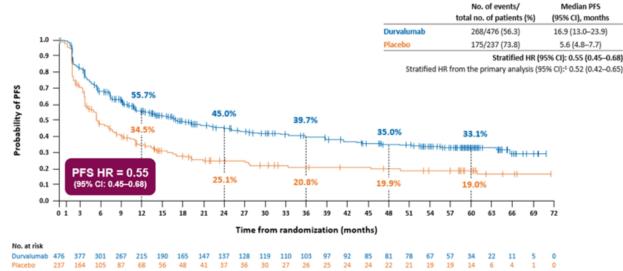
Non-inferiority is claimed

HR: 1.29 (95% CI 0.66-2.53, p= 0.46)


Unresectable stage III

Update PACIFIC





PACIFIC (5-year mature OS analysis)

• Updated analyses of OS and PFS, assessed ~5 years after the last patient was randomized (data cutoff: 11 January 2021; exploratory, post-hoc analysis)

Unresectable stage III: clinical trial landscape

IO combinations

-- Atezolizumab + Tiragolumab SKYSCAPER-03 (NCT04294810)

-- Pembrolizumab + Olaparib

KEYLYNK-012 (NCT04380636)

-- Nivolumab + Ipilimumab

CheckMate 73L (NCT04026412)

Optimal Timing of IO

-- Concurrent IO

PACIFIC 2 (NCT03519971)

EA5181 (NCT04092283)

NRG LU004 (NCT03801902)

KEYNOTE 799 (NCT0363178/Abstract 8512

Unresectable Stage III NSCLC

Special Populations

-- PS 2

S1933 (NCT04310020)

PACIFIC 6 (NCT03693300)

DUART (NCT04249362)

-- EGFR mutated

LAURA (NCT03521154)

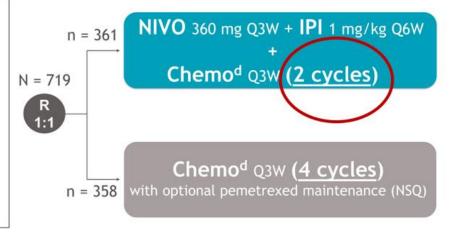
Advanced Technologies

-- Protons

RTOG 1308 (NCT01993810)

Metastatic NSCLC non-oncogene addicted

CheckMate-9LA CheckMate-227



CheckMate 9LA

Key eligibility criteria

- Stage IV or recurrent NSCLC
- · No prior systemic therapy
- No sensitizing EGFR mutations or known ALK alterations
- ECOG PS 0-1

Stratified by PD-L1^b (< 1%^c vs ≥ 1%), sex, and histology (SQ vs NSQ)

Until disease progression, unacceptable toxicity, or for 2 years for immunotherapy

Primary endpoint

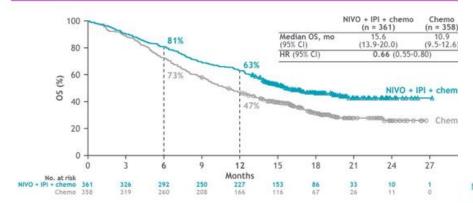
OS

Secondary endpoints

- PFS by BICR^e
- · ORR by BICRe
- · Efficacy by tumor PD-L1 expression

Exploratory endpoints

Safety


DBL: February 18, 2021; minimum / median follow-up for OS: 24.4 months / 30.7 months.

aNCT03215706; betermined by the PD-L1 IHC 28-8 pharmDx assay (Dako); Patients unevaluable for PD-L1 were stratified to PD-L1 < 1% and capped to 10% of all randomized patients; dNSQ: pemetrexed + cisplatin or carboplatin; SQ: paclitaxel + carboplatin; Hierarchically statistically tested.

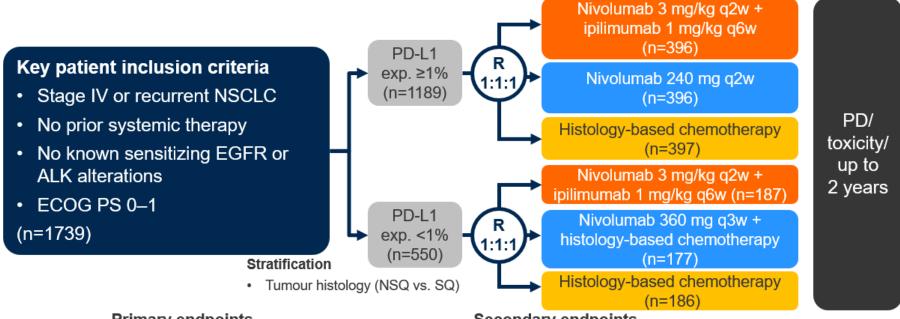
Additional follow-up

CheckMate 9LA; NIVO + IPI + 2 cycles of

Primary endpoint (updated): Overall survivala

2-Year update: OS in all randomized patients

Minimum follow-up 12.7 months


ASCO 2020

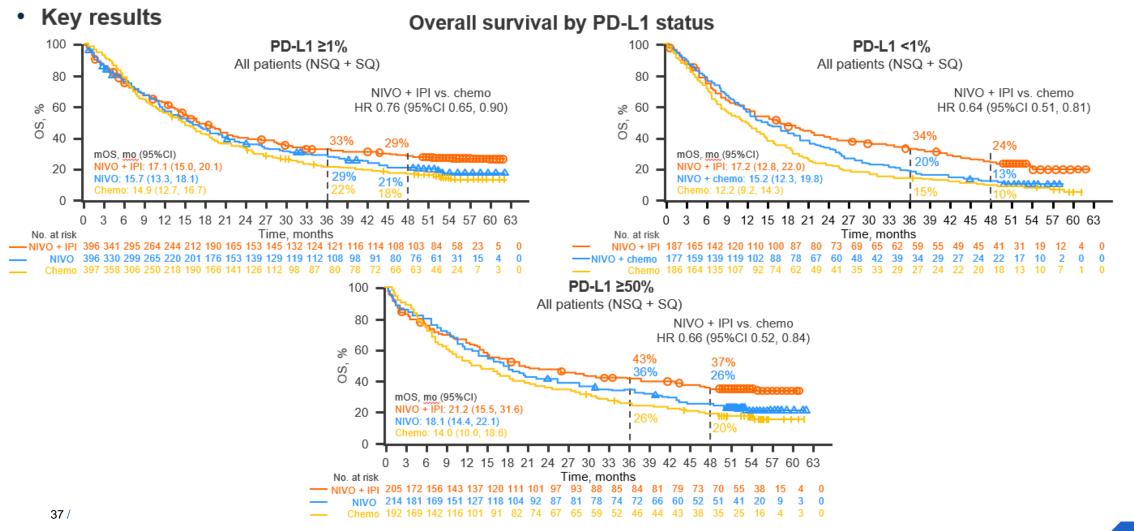
ASCO 2021

	Median OS, mo			
	NIVO + IPI + chemo	Chemo		
Subgroup	n = 361	n = 358	Unstratified HR	Unstratified HR (95% CI)
All randomized (N = 719)	15.8	11.0	0.73	→ ¦
< 65 years (n = 354)	15.9	10.7	0.64	
≥ 65 to < 75 years (n = 295)	19.0	11.9	0.78	
≥ 75 years (n = 70)	8.5	11.5	1.04	
Male (n = 504)	14.2	9.8	0.72	 -
Female (n = 215)	22.2	15.9	0.75	
ECOG PS 0 (n = 225)	27.1	14.1	0.54	
ECOG PS 1 (n = 492)	13.6	9.7	0.83	_
Never smoker (n = 98)	14.1	14.4	1.08	
Smoker (n = 621)	16.2	10.4	0.68	 !
SQ (n = 227)	14.5	9.1	0.63	
NSQ (n = 492)	17.8	12.0	0.78	 i
Liver metastases (n = 154)	10.2	8.1	0.85	
No liver metastases (n = 565)	19.3	12.4	0.72	→ ¦
Bone metastases (n = 207)	11.9	8.3	0.73	
No bone metastases (n = 512)	19.7	12.4	0.74	 ;
CNS metastases (n = 123)	19.9	7.9	0.47	
No CNS metastases (n = 596)	15.6	11.8	0.79	i
PD-L1 < 1% (n = 264)	17.7	9.8	0.67	Reeks No" Punt "0,95"
DD 14 - 10/ (407)		10.0	0.70	(0,95,
PD-L1 ≥ 1% (n = 407)	15.8	10.9	0.70	
PD-L1 2 1% (n = 407) PD-L1 1-49% (n = 233)	15.8 15.2	10.9 10.4	0.70	

4-year OS CheckMate-227

 To evaluate the longer term efficacy and safety of first-line nivolumab + ipilimumab in patients with advanced NSCLC in CheckMate 227

Primary endpoints


- OS in PD-L1 ≥1% population
- PFS in high TMB (≥10 mut/Mb) population

Secondary endpoints

OS and PFS in patients with PD-L1 expression <1%,
 OS in patients with PD-L1 ≥50%

Paz-Ares LG, et al. J Clin Oncol 2021;39(suppl):Abstr 9016

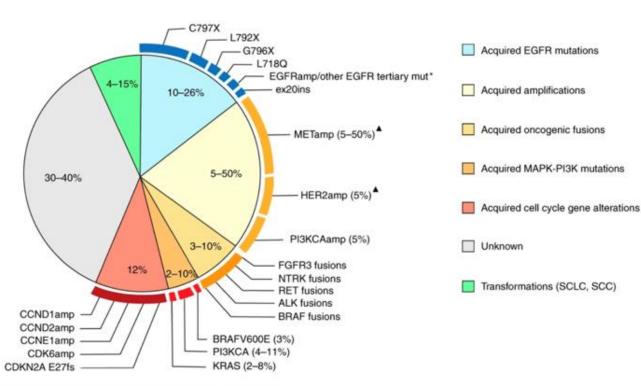
OS benefit regardless of PD-L1 or histology

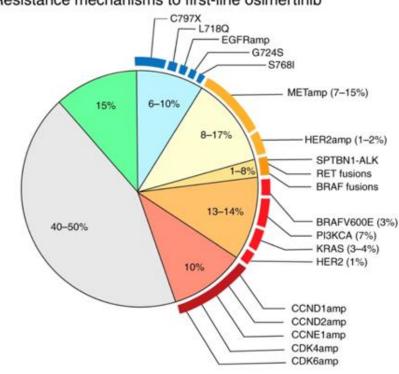
CheckMate-9LA and 227

standard arm no longer in line with current practice (chemo-immuno)

- ▶ chemo-immuno or dubble checkpoint inhibition + 2 cycles of chemo?
 - longer follow-up
 - decisions based on histology, PD-L1 expression, co-morbidities, smoking status

Metastatic NSCLC: oncogene addicted


- overcoming osimertinib resistance: promising strategies
- KRAS (G12C)
- updated results for EGFR exon 20, HER2 exon 20, MET, RET

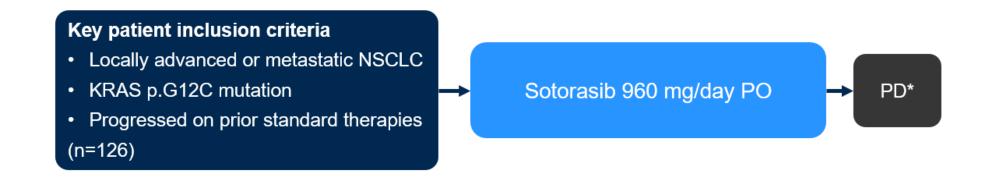


Resistance mechanisms to osimertinib

Resistance mechanisms to second-line osimertinib

Resistance mechanisms to first-line osimertinib

Other EGFR tertiary mutations include G719X, G724S AND S768I


Mutations have also been reported

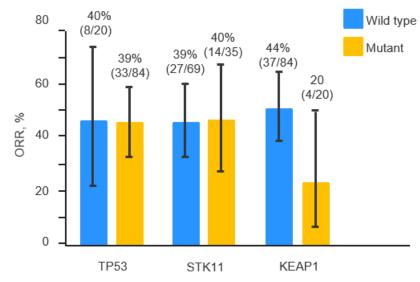
Amivantamab + lazertinib Patritumumab-deruxtecan (HER3-DXd) (abstract #9007) (abstract #9006) Trial Phase I dose escalation and expansion CHRYSALIS phase I dose escalation and expansion population **EGFR** mutation Osimertinib relapsed (n=45) progression on prior TKI ORR 39% (26-52) 36% (22-51) AE ILD (7%) Rash (78%) Platelet count decrease Paronychia (49%)

Update and mature OS phase 2 CodeBreak 100 trial

· Study objective

 To evaluate the efficacy and safety of sotorasib in previously treated patients with KRAS p.G21C-mutant NSCLC in CodeBreaK 100

Primary endpoint


• ORR (RECIST v1.1, ICR)

Secondary endpoints

DoR, DCR, TTR, PFS, OS, safety

	Sotorasib 960 mg	
	(n=124)	
ORR, % (95%CI)	37.1 (28.6, 46.2)	
BOR, n (%)		
CR	4 (3.2)	
PR	42 (33.9)	
SD	54 (43.5)	
PD	20 (16.1)	
NE/missing	4 (3.2)	
Disease control rate, % (95%CI)	80.6 (72.6, 87.2)	
mDoR, months (95%CI)	11.1 (6.9, NE)	
Median time to response, months (95%CI)	1.35 (1.2, 10.1)	
mPFS, months (95%CI)	6.8 (5.1, 8.2)	
mOS, months (95%CI)	12.5 (10.0, NE)	

ORR by co-occurring mutations in TP53, STK11 or KEAP1 (n=104)

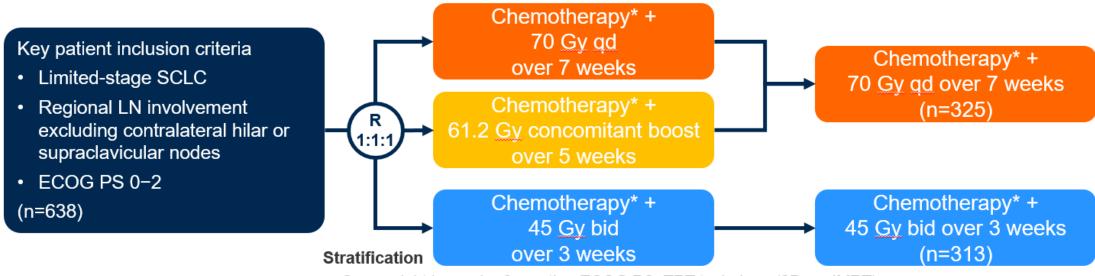
Efficacy in molecular subroups

a phase III trial CodeBreak 200 sotorasib vs. docetaxel (2/3L) is ongoing

Updated results on EGFR exon 20, HER2 exon 20, MET and RET

	EGFR exon 20 (#9014)	HER2 exon 20 (#9015)	MET (#9020)	MET (#9021)	RET (#9089)
agent	Mobocertinib 160 mg QD	Trastuzumab-pertuzumab-docetaxel	Capmatinib 400 mg BID FDA approval EMA awaited	Tepotinib 500 mg QD	Pralsetinib 400 mg QD
ORR	28%	29%	67% (first line) 44% (pretreated)	71% (first line) 42% (pretreated)	62%
mPFS	7.3 m	6.8 m	10.8 m	4.2 m	16.5 m
Tox	TRAEs dis 17%	grade ≥ 3: neutropenia (33%) diarrhea (13%) anemia (9%)	peripheral edema GI effects	grade ≥ 3 TRAEs 29%	TRAEs dis. 6%

SCLC



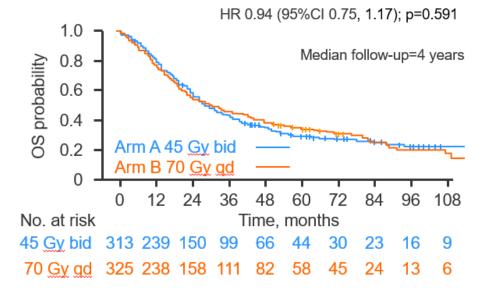
CALGB 30610/RTOG 0538 phase 3 RCT trial

Study objective

 To evaluate the efficacy of high-dose thoracic radiotherapy (TRT) compared with standard TRT in patients with limited-stage SCLC

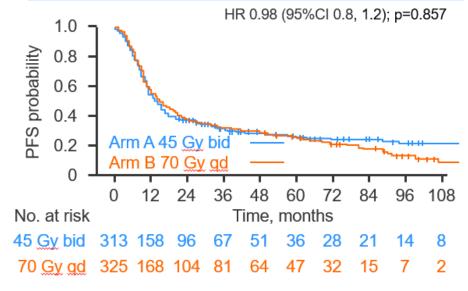
Sex, weight loss prior 6 months, ECOG PS, TRT technique (3D vs. IMRT)

Primary endpoint


OS

Secondary endpoint

Safety


Overall survival

	mOS, <u>mo</u> (95%CI)	2-years OS, % (95%CI)	5-years OS, % (95%CI)
45 Gy bid	28.5 (25.4, 35.5)	58 (53, 64)	29 (23, 35)
70 Gy gd	30.5 (25.4, 41.1)	56 (51, 62)	34 (23, 35)

Progression-free survival

	mPFS, <u>mo</u> (95%CI)	2-years PFS, % (95%CI)	5-years PFS, % (95%CI)
45 Gy bid	13.5 (11.7, 15.8)	36 (31, 42)	25 (20, 31)
70 <u>Gy qd</u>	14.2 (11.9, 17.7)	36 (31, 42)	24 (20, 30)

45 Gy BID TRT continues to be standard of care

Take home messages

Early stage

- ▶ Atezo (IMpower010):
 - ▶ first IC with clinically meaningful benefit (DFS) in adjuvant setting
 - OS needed
 - what in case of relapse?
- ▶ Nivo + platinum doublet (CheckMate816):
 - promising
 - more EFS data and OS data needed before practice changing
- ▶ TKI for 2 years compared to chemo:
 - ▶ DFS advantage, no OS benefit
- VATS lobectomy: standard of care
- ▶ SABR vs. VATS in stage IA:
 - PFS and OS not inferior
 - ▶ SABR good approach in this population
 - multidisciplinary board decisions

Unresectable stage III

PACIFIC:

first trial improving cure rate (5-y OS)

trials with IO combinations and RT ongoing

Metastatic non-oncogene addicted first line

- nivo-ipi+ 2 cycles of chemo (CheckMate-9LA)
 - ▶ an efficacious 1L treatment
 - we can reduce the number of cycles chemo

nivo-ipi up to 2 years (CheckMate-227)

▶ chemo-immuno or dubble checkpoint inhibition + 2 cycles of chemo?

Metastatic: oncogene addicted

- new strategies to overcome osimertinib resistance:
 - ▶ HER3-Dxd
 - amiyantamab + lazertinib

- **KRAS** (G12C)
 - sotorasib
 - phase III trial is ongoing (second line)

▶ new agents for EGFR exon 20, HER2 exon 20, MET exon 14, RET

SCLC (LD)

- ▶ high dose 70 Gy once daily vs. standard 45 Gy (BID) RCT phase III trial
 - ▶ 45 Gy BID TRT continues to be standard of care

