

DELTA-9-TETRAHYDROCANNABINOL (THC) INCREASES CORNEAL WOUND HEALING *EX-VIVO* AND *IN-VIVO*

European Dry Eye Society Congress

June 18-19th 2021

Author: Bao Tran, Martina Maaß, Gwen Musial, Michael E. Stern, Uta Gehlsen, Philipp Steven

Financial disclosure

M.E. Stern: Employee of ImmunEyez LLC, Irvine, CA, USA

P. Steven, U.Gehlsen, B.Tran: Planing for a patent application

Others: none

Dry eye disease and endocannabinoid system

Dry eye disease: A multifactorial

disease with vicious circle

Endocannabinoid system & Cannabinoid receptor (CBR): Activation & inhibition of receptors have effects on:

- Inflammation
- •Pain and neuro-abnormalities
- •Wound healing

(DEW 2017, adapted from Baudouin et al. 2015)

A new eye-drop: Breaking the vicious cycle?

3

Cannabinoid receptors (CBR) are present at the ocular surface

Conjunctiva

In-situ hybridization image

RT-qPCR results

- Cannabinoid receptors (CBR) are present at the ocular surface,
- Using THC (a CBR ligand) to activate the receptors?

Ex-vivo corneal wound healing: Alkali-burned model

Experimental strategy and methods

- Eye-nucleus were excluded from the animal
- Wound induction: Placing a NaOH-soaked filter

• 2 groups (Untreated & treated)

Treated: THC (different concentrations) in the culture media (DMEM:F12, penstreps)
Untreated: The culture media (without THC)

• Wounds were imaged with fluorescein every 6 hours for 36 hours

Bright field

(Representative fluorecein images)

THC Biphasic effect: THC improved the re-epithelialization at 0.5µM

In-vivo desiccating stress model:

Cannabinoid receptor 1 & 2 increased during DED-induction

THC treatment reduced CBR expression after 10 days of treatment

The THC eye-drop reduced corneal epithelial damage and inflammation

IL-1 β in cornea

Summary

1. DED animal model and expression of cannabinoid receptors (CBR 1 and 2)

CBR 1 and 2 are present at the ocular surface CBRs expression increase during the DED

2. Effects of CBR ligands:

Effects of CBR ligands		DED phenotypes and readouts						
		CBRs	FL score	IL-1β	Cornea sensitivity	Nerve Morphology	Wound healing "Biphasic" effects	
1	THC	Ļ	↓	↓	Maintained	Maintained	Increase (0.5µM)	Delay (10µM)

	Epithelial damage	Inflammation
Conclusion	Neuro-sensory	
The data indicates that THC is a promis	abnormalities	

THANK YOU FOR YOUR ATTENTION

- Augenklinik, Uniklinik Köln
- IT-DED³ is funded by the EU H2020-MSCA programme

Universitei

(C) Institut Organi

NIVERSIT

iBET

