# **DISCOVERY OF NOVEL, DRUG-LIKE FERROPTOSIS INHIBITORS** WITH IN VIVO EFFICACY

<u>Camilla Scarpellini</u>,<sup>1\*</sup> Lars Devisscher,<sup>1</sup> Samya Van Coillie,<sup>2,3</sup> Sam Hofmans,<sup>1</sup> Dries Van Rompaey,<sup>1</sup> Kenneth Goossens,<sup>1</sup> Eline Meul,<sup>2,3</sup> Louis Maes,<sup>4</sup> Hans De Winter,<sup>1</sup> Pieter Van Der Veken,<sup>1</sup> Peter Vandenabeele,<sup>2,3,5</sup> Tom Vanden Berghe,<sup>2,3</sup> Koen Augustyns<sup>1</sup>

<sup>1</sup> Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium, <sup>2</sup> Molecular Signalling and Cell Death Unit, VIB Center for Inflammation Research, Ghent, Belgium, <sup>3</sup> Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium, <sup>4</sup> Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium, <sup>5</sup> Methusalem Program, Ghent University, Ghent, Belgium

#### \*e-mail contact: camilla.scarpellini@uantwerpen.be **New series of Fer-1 analogues:** Introduction design and synthesis Cystine Glutamate \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* iron-catalyzed, Ferroptosis an IS \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* $NH_2$ nonapoptotic form of regulated necrosis System X, Erastin that results in oxidative lipid damage in cell membranes. Ferroptosis may thus Glutamate Cystine play a key role in several diseases where CR lipid hydroperoxide has been implicated. Interestingly, this form of cell death can Cysteine **Novel inhibitors** Ferrostatin-1 **UAMC-2418** inhibited by different class of GCL be







molecules.[1] Between those, Ferrostatin-1 (Fer-1) emerged as a novel potent radical-trapping antioxidant (RTAs) suffered from solubility issues.[2] The aim of this study is the design, synthesis and biological evaluation of a more stable and readily soluble series of Fer-1 analogues that potently inhibit ferroptosis enhancing the solubility.[3]



### *in vitro* results

**Table 1.** Synthesized Fer-1 analogues and their antiferroptotic activity in response to Erastin-induced Ferroptosis in IMR-32 neuroblastoma cells

| compd     | R <sub>1</sub> or R <sub>3</sub> | R <sub>2</sub> | IC <sub>50</sub><br>(nM) <sup>a</sup> | solubility<br>(µM) <sup>b</sup> |
|-----------|----------------------------------|----------------|---------------------------------------|---------------------------------|
| 1 (Fer-1) | -                                | -H             | 33                                    | >200                            |
| UAMC-3240 | morpholine                       | benzyl         | 24                                    | 50-100                          |
| UAMC-3234 | -NH(Me)                          | benzyl         | 3                                     | >200                            |
| UAMC-3206 | -NH2                             | benzyl         | 12                                    | >200                            |
| UAMC-3203 | piperazine                       | benzyl         | 10                                    | >200                            |

<sup>a</sup> Reported IC50 values are calculated from measurements in triplicate. <sup>b</sup> Final test compound concentration range between 3.125 and 200 µM [4 µM DMSO solution in 196 µM buffer solution (10 mM PBS pH 7.4)].

#### **Design of novel compounds:**

- 1) The replacement of the labile ester moiety with a sulfonamide greatly improve stability as well as potency;
- 2) The cyclohexyl moiety was deemed to be the most ideal substituent with regard to both potency and lipophilicity;
- 3) The introduction of an aromatic group on the 3-amino position greatly improved potency but also further decreased the solubility of the compounds;
- 4) Solubility enhancing groups were introduced in the terminal position of the aliphatic chain on the sulfonamide moiety (R<sub>a</sub>) because these molecules have to act in the highly lipophilic environment of membranes.



#### Table 2. <u>ADME assays</u>: Microsomal and plasma stability

| compd            | microsomal stability (t1/2) (h) <sup>a</sup> |                   |                  | plasma stability<br>(% recovery after 6h) <sup>b</sup> |      |       |
|------------------|----------------------------------------------|-------------------|------------------|--------------------------------------------------------|------|-------|
|                  | human                                        | rat               | mouse            | human                                                  | rat  | mouse |
| 1 (Fer-1)        | $0.109 \pm 0.003$                            | 0                 | 0                | 47.3                                                   | 1.1  | 0     |
| <b>UAMC-3240</b> | $0.98 \pm 0.35$                              | $0.173 \pm 0.007$ | 0.051 ± 0.002    | 100                                                    | 100  | 100   |
| <b>UAMC-3234</b> | $13.21 \pm 4.10$                             | $0.35 \pm 0.01$   | $0.45 \pm 0.02$  | 90.3                                                   | 65.8 | 100   |
| <b>UAMC-3206</b> | 17.71 ± 2.04                                 | 2.05 ± 0.21       | $13.00 \pm 4.15$ | 100                                                    | 100  | 100   |
| <b>UAMC-3203</b> | $20.53 \pm 5.49$                             | $16.48 \pm 4.66$  | 3.46 ± 1.37      | 84.2                                                   | 85.8 | 100   |

<sup>a</sup> Metabolism by microsomes (CYP450 and other NADP-dependent enzymes) was monitored and expressed as half-life (h). <sup>b</sup> Percentage of remaining parent compound

#### *in vivo* results

 
 Table 3. Pretreatment with the compounds significantly decreases LDH levels after acute
 iron poisoning <sup>a</sup>

| trigger           | vehicle   | plasma LDH (U/L) |
|-------------------|-----------|------------------|
|                   | vehicle   | 484 ± 72         |
| FeSO <sub>4</sub> | vehicle   | 3572 ± 185       |
| FeSO <sub>4</sub> | 1 (Fer-1) | 2898 ± 178       |
| FeSO <sub>4</sub> | UAMC-3234 | 2093 ± 90        |
| FeSO <sub>4</sub> | UAMC-3206 | 2293 ± 148       |
| FeSO <sub>4</sub> | UAMC-3203 | 2346 ± 99        |

**<u>Reagents and conditions</u>**: (a) aliphatic amine analogue, triethylamine, THF, 1 h,  $-40^{\circ}$  C; (b) cyclohexylamine, K<sub>2</sub>CO<sub>3</sub>, DMSO, 18 h, 60  $^{\circ}$  C; (c) palladium hydroxide on carbon,  $H_2$ , methanol, 18 h, rt; (d) benzyl bromide or 4-(bromomethyl)pyridine hydrobromide,  $K_2CO_3$ , DMF; (e) HCI in dioxane, DCM, in case Boc protection was present.

Conclusion

- Novel ferroptosis inhibitors have been synthesized by introducing a solubility enhancing group and a sulfonamide moiety to the Fer-1 scaffold;
- The new series of molecules are more potent than Fer-1 while improving solubility and stability compare to Fer-1;
- Compounds UAMC-3206 and UAMC-3203 showed great recovery from plasma after 6 h, with microsomal half lives of multiple hours across three species; • Compounds UAMC-3234, UAMC-3206 and UAMC-3203 were significantly more potent than Fer-1 against multiorgan injury in mice, which illustrate their efficacy in vivo; • No toxicity was observed in mice after daily injection of UAMC-3203 for 4 weeks. [4] This novel compounds represent novel lead compounds with therapeutic potential in relevant ferroptosis-driven disease models.

<sup>a</sup> Vehicle, Fer-1, compound UAMC 3234 – 3206 - 3203 was injected intravenously (20 µmol/kg) 15 min before intraperitoneal injection with 300 mg/kg iron sulfate. Two hours after IP injection, mice were sacrificed and blood was taken. Plasma levels of LDH are shown. Vehicle = 2% DMSO in 0.9% NaCl.

**Table 4.** Tissue distribution profile of compound UAMC-3203 in various organs (iv dose at 5 mg/kg; the internal organs were collected at necropsy at 24 h.) <sup>a</sup>

|                                                             | compd | liver | kidney | lung |
|-------------------------------------------------------------|-------|-------|--------|------|
|                                                             | Rat1  | 0.23  | 0.20   | 0.19 |
|                                                             | Rat2  | 0.22  | 0.35   | 0.48 |
|                                                             | Rat3  | 0.15  | 0.38   | 0.53 |
| <sup>a</sup> Analysis of the samples was conducted by LC-MS |       |       |        |      |

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 765608.

## University of Antwerp



- Dixon, S. J. et al., *Cell Death. Cell* **2012**, 149 (5), 1060–1072.
- Skouta, R., et al., *J. Am. Chem. Soc.* **2014**, 136 (12), 4551–4556.
- Hofmans, S., et al., *J. Med. Chem.* **2016**, 59 (5), 2041–2053
- Devisscher, L et al., *J. Med. Chem.* **2018**, 61, (22), 10126-10140.