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Introduction

Sjögren’s syndrome (SS) 

→ A chronic, progressive autoimmune disease causing severe dry eye 1, 2.

→ Destruction of lacrimal and salivary glands ˃ ˃˃˃ reduced secretion of 

tears and saliva  1, 3. 

→ Increased APCs* infiltration/maturation in conjunctiva & reduced 

goblet cell density  4.  

→ Mainly affects women (9-fold higher than men)5. 

Current diagnosis of SS 

Regularly→ Ro52/SSA, Ro60/SSA and La/SSB ˃˃˃˃ found only 77-90% of 

patients6

Occasionally → Rheumatoid factor (RF), Anti-nuclear antibodies (ANA) 7
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Unmet needs

→ SS has 4 stages: initiation, preclinical, asymptomatic and 

overt stage 8. 

→ Early diagnosis and management is challenging 8.

→ No effective therapy exists that can halt the progress 5.

→ Lack of highly specific and sensitive biomarker in SS 9. 

→ For more accurate, rapid diagnosis & stratification & 

treatment & follow-up of patients ˃˃˃˃ validated biomarkers 

are needed7. 

Omics studies are needed to develop new candidate 

biomarkers for rapid and effective diagnosis of SS.

*APCs: Antigen-presenting cells

Biomarkers in Sjögren´s syndrome



Objective
To investigate changes in  the tear
proteome of SS patients using a 

comprehensive proteomics approach
based on timsTOF Pro mass 

spectrometry.
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Mass Spectrometry -Proteomics Investigation

Mass spectrometry (MS) technology provides:

→ The largest proteomics datasets and reliable quantification 13. 

→ Proteomics technology enables analysis of biochemical changes 

in tear 14. 

timsTOF Pro*

→ Helps to identify differentially expressed proteins that involved

in critical signaling pathways in SS from a limited sample thanks to 

its improved spatial resolution, sensitivity, and specificity 15.  

*trapped-ion mobility spectrometry coupled quadrupole time-of-flight

Tear fluid (TF), a valuable source for biomarker 

Biological fluids for biomarkers exploration in SS:

Serum and Saliva →→ Too complex composition 10

TF →→ limited sample but less complex compared to 

saliva and serum 11

• TF reflects the physiological condition of ocular 

diseases 12. 

Introduction



Tear sample collection with the Schirmer strips and sample preparation for LC-MS/MS analysis

MS/MS data was processed using MaxQuant software for protein identification. Protein Gene Ontology classification was
performed by using Panther.

*UHPLC: ultrahigh-pressure liquid chromatography
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Tear proteins: from collection to identification 

6. Protein Identification 1. Schirmer strip collection

MaxQuant

timsTOF PronanoElute 
UHPLC*

5. LC-MS/MS analysis2. Protein elution

6 SS patients
6 healthy controls (HC)

3. Protein quantification

BCA Assay

 Reduction

 Alkylation

 Digestion

of proteins

4. Sample processing

Methods
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90 % common with HC

10% unique in SS

None of them were 
significantly regulated

68% common with SS

25 of these proteins were significantly  
modulated vs. SS

32% unique proteins

Healthy Controls (HC) SS patients

 150 proteins were significantly modulated among common proteins between HC and SS .

 25 of the unique proteins to HC were also significantly modulated versus SS

(fold-change ≥ 1.5, p-value ≤0.05)

Comparison of total identified proteins 

 In SS, total identified proteins was  
decreased by 23.9% versus HC.

23.9%↓

Results - 1
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 Significant proteome segregation between HC 
and SS 

 175 proteins significantly modulated in 
SS vs HC

Results - 2



Most Down-regulated  Proteins Fold change

1. Proline-rich protein 3 1703

2. Proline-rich protein 27 66

3. Perlecan 46

4. Mammaglobin-B 32

5. Proline-rich protein 1 27

Most Up-regulated  Proteins Fold change

1. Serotransferrin 7

2. Albumin 6

3. Protein S100-A9 5.5

4. Protein S100-A8 5

5. Aldehyde dehydrogenase 1-A3 4.4
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Binding (%38.5) 38 17

Catalytic activity (%46.9) 31 36

Molecular function regulator (7%) 8 2

Molecular Function

175 proteins

110 down 
regulated

65 up 
regulated

Significantly modulated proteins

175 proteins were regulated 
significantly (fold change ≤ 1.5, 

p value ≤ 0.05)

Cellular process (25.7%) 53 29

Metabolic process (15%) 29 24

Biological regulation (15%) 31 9

Response to stimulus (9%) 25 6

Biological Process
Number of regulated proteins Number of regulated proteins 

 Proteins involved in binding activity and entire groups of biological process were decreased

Results - 3



Down regulated oxidoreductases

Significantly down regulated in SS: 

• Sulfhydryl oxidase 1

• Lactoperoxidase

• Peroxiredoxin-1, -2, -5, -6

• Aldehyde dehydrogenase family 1 member A3

Only detected in HC

• Ketimine reductase mu-crystallin

• Peptidyl-glycine alpha-amidating monooxygenase

• Superoxide dismutase

• Thioredoxin-dependent peroxide reductase

• Aldehyde dehydrogenase family 16 member A1

• Glutathione peroxidase 3
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Down regulated cytosketon/actin-binding proteins 
Unique to HC

• Plastin-2 , -3 

• Coronin-1A 

• Twinfilin-1 

• Adseverin

• Tubulin beta chain

• Tubulin alpha-4A chain

• Tubulin alpha-1C chain

• Desmoplakin

• Septin-2 

• Filaggrin-2

Significantly down regulated in SS

• Actin, cytoplasmic 1 

• Cysteine-rich protein 1 

• Myosin light polypeptide 6 

• Tubulin alpha-1B chain 

• Tubulin beta-4B chain

• Cofilin-1, Coronin-1A 

• Destrin, Gelsolin

• Plastin-3 , Profilin-1 

• Transgelin-2

• Myosin-9 , -14

Significantly up-regulated proteins 

Enzymes

• Caspase-3

• Glutathione synthetase

• Transketolase

C alcium-binding protein

• Calmodulin-3

• Protein S100-A8

• Protein S100-A9 

Proteasomes

• Proteasome subunit alpha type-1, -3, -4, -5, -6, -7

• Proteasome subunit beta type-1, -4, -6, -8, -9, -10

Results - 4



 In SS patients 23.9% less proteins were detected and in total 175 were differentially regulated versus HC
(% UR DR) .

 Cytoskeleton/actin-binding proteins, Peroxiredoxin-1,-5,-6 and Lactoperoxidase were down-
regulated.

 Caspase-3, 12 Proteasomes, Glutathione synthase and Calmodulin-3 were up regulated significantly.

 Apoptotic and catalytic activity were increased.

 Balance in antioxidant activity and calcium binding was altered in SS patients.

 Advanced mass spectrometry technologies allow us profiling the tear proteome of SS patients to
understand better the disease mechanism.

 This study should be supported and validated by more studies and different techniques.

9

Conclusions
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