

EuDEC ID: e-P10

TEAR PROTEOME ANALYSIS OF SJOGREN'S SYNDROME PATIENTS USING TIMSTOF PRO

M. Akkurt Arslan, I. Kolman, S. Chardonnet, C. Pionneau, R. Magny, C. Baudouin,

F. Brignole-Baudouin, K. Kessal

La science pour la santé _____ From science to health

Introduction

Biomarkers in Sjögren's syndrome

Sjögren's syndrome (SjS)

- An autoimmune disease causing severe aqueous deficient dry eye¹².
- Functional impairment of the lacrimal and salivary glands ¹.
- Reduced goblet cell density and increased APCs* infiltration/maturation in conjunctiva³.
- Higher prevalence in women (almost 10-fold) ¹.

Diagnosis of SjS from serum

- <u>Regularly</u> → Ro52/SSA, Ro60/SSA and La/SSB >>>> found only
 77-90% of patients⁴
- Occasionally → Rheumatoid factor (RF), Anti-nuclear antibodies (ANA)⁵

*APCs: Antigen-presenting cells

Literature overview and the unmet needs

- SjS has 4 stages: initiation, preclinical, asymptomatic and overt stage ⁶.
- Early diagnosis and management is challenging ⁶.
- Lack of specific, sensitive biomarker in SjS⁷.
- For rapid, accurate, early diagnosis and
- Stratification & treatment & follow-up of patients validated biomarkers are needed ⁵.

More omics studies are needed to reveal key

molecular networks in SjS!!

Introduction

Tear fluid (TF), a valuable source for biomarker

Mass Spectrometry - Proteomics Investigation

Biological fluids for biomarkers exploration in SjS:

Serum and Saliva $\rightarrow \rightarrow$ Too complex composition⁸

TF \rightarrow **→** limited sample but less complex compared to saliva and serum⁹

- Tears reflects the physiological condition of ocular diseases ¹⁰.
- Tear proteins' concentrations show higher accuracy for diagnosis¹¹

Mass spectrometry (MS) technology provides: The largest proteomics datasets in TF and reliable quantification ¹².

timsTOF Pro*

Helps to identify **differentially expressed proteins** that involved in important biological processes in SjS from a limited sample thanks to its improved **spatial resolution**, **sensitivity**, **and specificity**¹³.

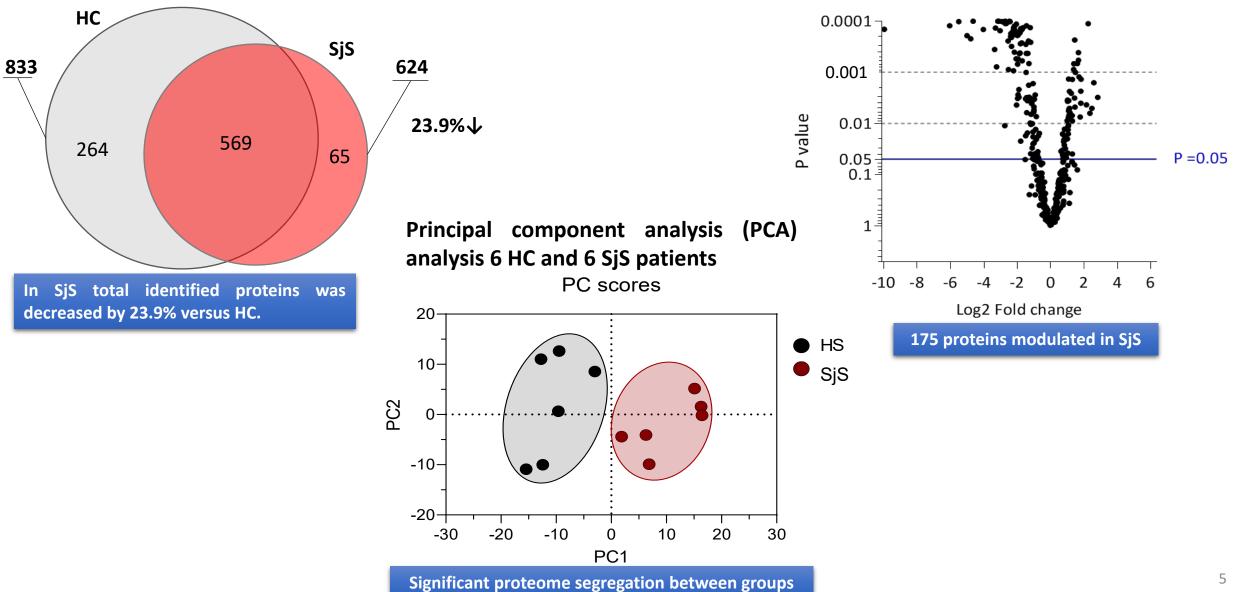
*trapped-ion mobility spectrometry coupled quadrupole time-of-flight

Objective

To investigate tear proteome of SjS patients using a comprehensive proteomic approach based on timsTOF Pro.

Methods

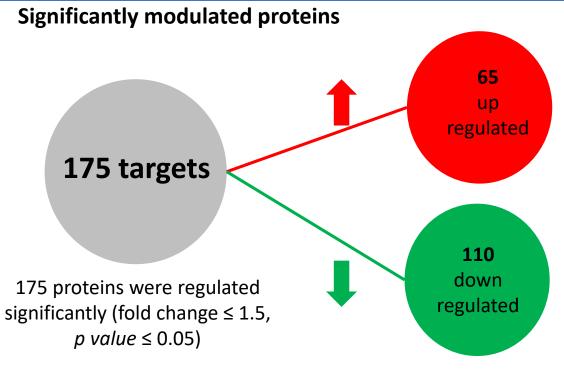
Tear proteins: from collection to identification


Tear sample collection with the Schirmer strips and sample preparation for LC-MS/MS analysis

MS/MS data was processed using MaxQuant software for protein identification. Protein Gene Ontology classification was performed by using Panther.

*UHPLC: ultrahigh-pressure liquid chromatography

Results


Number of common and specific proteins in HS and SjS patients.

Volcano plot showing all the gene expression

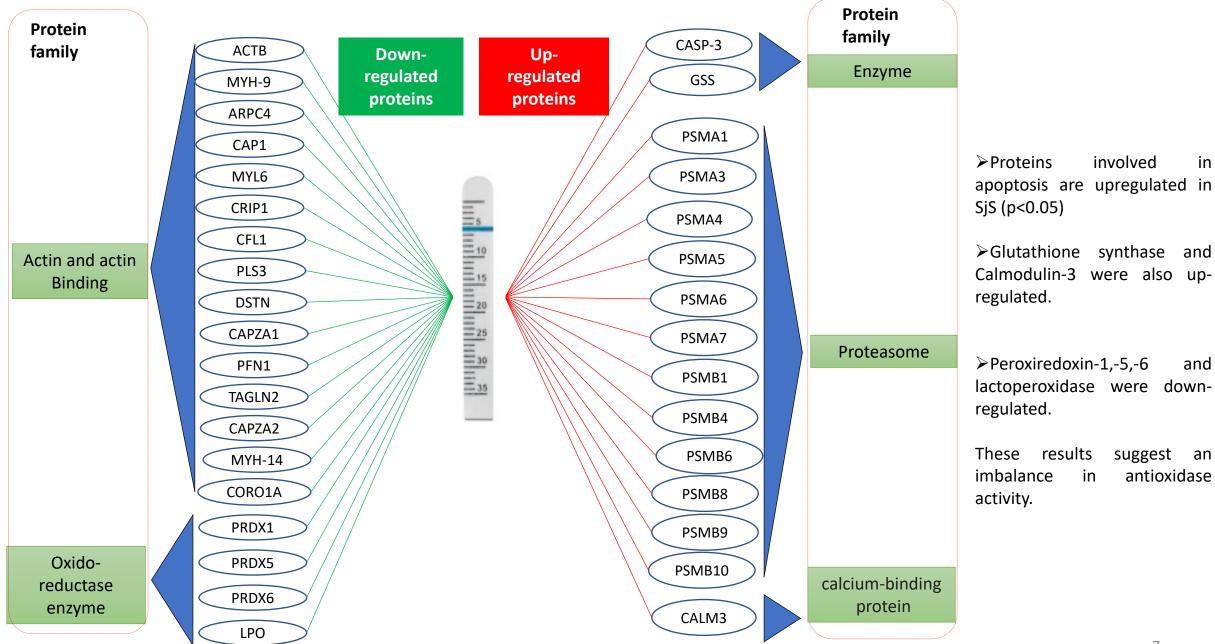
changes in SjS patients versus HS

Results

Molecular Function

N	umber of regulated proteins		
Binding	38	17	
Catalytic activity	31	36	
Molecular function regulator	8	2	

Most Up-regulated Proteins	Fold change
1. Serotransferrin	7
2. Albumin	6
3. Protein S100-A9	5.5
4. Protein S100-A8	5
5. Aldehyde dehydrogenase 1-A3	4.4


Most Down-regulated Proteins	Fold change
1. Proline-rich protein 3	1703
2. Proline-rich protein 27	66
3. Perlecan	46
4. Mammaglobin-B	32
5. Proline-rich protein 1	27

Biological Process

Diological i loccos	Number of regulated proteins		
Cellular process	53	29	
Metabolic process	29	24	
Biological regulation	31	9	
Response to stimulus	25	6	

✓ Proteins involved in biological process and binding protein were decreased

Results

Conclusions

□ More proteins were down-regulated and fewer were up-regulated in SjS patients.

- Actin and numerous actin-binding proteins, Peroxiredoxin-1,-5,-6 and Lactoperoxidase were down-regulated.
- Caspase-3, 12 Proteasomes, Glutathione synthase and Calmodulin-3 were up regulated significantly.
- Apoptotic and catalytic activity were increased.
- Balance in antioxidant activity and calcium binding was altered in SjS patients.

Profiling tear proteome of SjS patients using advanced mass spectrometry can help understanding better the disease mechanism.

□ This study should be supported and validated by more studies and different techniques.

REFERENCES

- 1. Aqrawi, L. A. *et al.* Severity of clinical dry eye manifestations influences protein expression in tear fluid of patients with primary Sjögren's syndrome. *PLoS One* **13**, 1–14 (2018).
- Zhou, L. *et al.* Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren's syndrome-associated dry eye. *Proteomics* 13, 2469–2481 (2013).
- 3. Pflugfelder, S. C. *et al.* Severity of sjögren's syndrome keratoconjunctivitis sicca increases with increased percentage of conjunctival antigenpresenting cells. *Int. J. Mol. Sci.* **19**, 1–9 (2018).
- 4. Baldini, C., Ferro, F., Elefante, E. & Bombardieri, S. Biomarkers for Sjögren's syndrome. *Biomark. Med.* **12**, 275–286 (2018).
- 5. Jonsson, R., Brokstad, K. A., Jonsson, M. V., Delaleu, N. & Skarstein, K. Current concepts on Sjögren's syndrome classification criteria and biomarkers. *Eur. J. Oral Sci.* **126**, 37–48 (2018).
- 6. Wang, B. *et al.* Early diagnosis and treatment for Sjögren's syndrome: current challenges, redefined disease stages and future prospects. *J. Autoimmun.* **117**, 102590 (2021).
- Chen, W., Cao, H., Lin, J., Olsen, N. & Zheng, S. G. Biomarkers for Primary Sjögren's Syndrome. *Genomics, Proteomics Bioinforma*. 13, 219–223 (2015).
- 8. Deutsch, O. *et al.* Identification of Sjögren's syndrome oral fluid biomarker candidates following high-abundance protein depletion. *Rheumatol.* (United Kingdom) 54, 884–890 (2014).
- 9. Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea. 1998 Nov;17(6):584-9. doi: 10.1097/00003226-199811000-00002. PMID: 9820935.
- 10. Azkargorta, M., Soria, J., Acera, A., Iloro, I. & Elortza, F. Human tear proteomics and peptidomics in ophthalmology: Toward the translation of proteomic biomarkers into clinical practice. *J. Proteomics* **150**, 359–367 (2017).
- 11. Versura, P. et al. Predictive role of tear protein expression in the early diagnosis of Sjögren's syndrome. Ann. Clin. Biochem. 55, 561–570 (2018).
- 12. Wuen Ma, J. Y., Sze, Y. H. O. N., Bian, J. F. & Lam, T. C. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). *Int. J. Mol. Med.* 47, (2021).
- 13. Spraggins, J. *et al.* High Performance Molecular Imaging with MALDI Trapped Ion Mobility Time-of-Flight (timsTOF) Mass Spectrometry. doi:10.26434/chemrxiv.9210059.v2.