

ANALYSIS OF TEAR PROTEOME OF SJOGREN'S SYNDROME PATIENTS WITH TIMSTOF PRO

M. Akkurt Arslan, I. Kolman, S. Chardonnet, C. Pionneau, C. Baudouin,F. Brignole-Baudouin, K. Kessal

Congress Dec. 3-5, 2021 - Pre-congress Course Dec. 2, 2021

1. Introduction

2. Methods

Tear proteins: from collection to identification 1. Schirmer strip 2. Protein elution 3. Protein quantification collection 4. Sample processing 30 Reduction 50 S1= Alkylation Digestion of proteins BCA Assay 6 SS patients 6 healthy controls (HC) 6. Protein Identification 5. LC-MS/MS analysis MaxQuant timsTOF ** nanoElute UHPLC* Pro

Tear sample collection with the Schirmer strips and sample preparation for nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS) analysis

MS/MS data was processed using MaxQuant software for protein identification. Protein Gene Ontology classification was performed by using Panther.

*UHPLC: ultrahigh-pressure liquid chromatography **timsTOF: Trapped ion mobility quadrupole time of flight

Nano LC-MS/MS technology is a powerful tool to reveal DMTPs in SSp.

Sjögren's syndrome (SS)

- A chronic and progressive autoimmune disease
- \rightarrow Destruction of lacrimal & salivary glands
- \rightarrow Decrease in secretion of tears & saliva ^{1, 2, 3}.
- \rightarrow Lymphocytic infiltration in conjunctiva >>>> reduced goblet cell density ⁴.

Mainly affects women (9-fold higher than men)⁵.

Lack of validated biomarkers in Sjögren's syndrome

- \rightarrow Early diagnosis and management are challenging ⁶.
- \rightarrow No effective therapy that can hamper the progress ⁵.
- \rightarrow Lack of highly **specific** and **sensitive biomarker** in SS ⁷.
- \rightarrow For more accuracy, rapid diagnosis & stratification & treatment & follow-up of patients >>>> validated biomarkers are needed.

OBJECTIVE: To investigate differentially modulated tear proteins (DMTPs) in patients of Sjögren's syndrome (SSp).

References

[1] L. A. Aqrawi et al. al., PLoS One, vol. 13, no. 10, pp. 1 14, 2018
[2] L. Zhou et. al. Proteomics, vol. 13, no. 16, pp. 2469 2481, Aug. 2013
[3] L. Tong, V. Koh, and B. Y. H. Thong, J. Inflamm . Res., vol. 10, pp. 97 105, 2017
[4] S. C. Pflugfelder et al. Int. J. Mol. Sci. Sci., vol. 19, no. 9, pp. 1 9, 2018
[5] S. Brown et al. BMC Musculoskelet. Disord., vol. 15, no. 1, pp. 1 10, 2014,
[6] B. Wang et al. al., J. Autoimmun., vol. 117, no. October 2020, p. 102590, 2021
[7] W. Chen et al. Genomics, Proteomics Bioinforma., vol. 13, no. 4, pp. 219 223, 2015,

3. Results

1. Common and Unique Proteins between Healthy Controls and SS patients

Identified proteins in HC and SS

1000-

significantly (fold change ≤ 1.5 , p value ≤ 0.05)

3. Functional classification of modulated proteins

	Number of regulated proteins			Number of regulated proteins	
Molecular Function	\checkmark	\uparrow	Biological Process	\downarrow	\uparrow
Binding (%38.5)	38	17	Cellular process (25.7%)	53	29
Catalytic activity (%46.9)	31	36	Metabolic process (15%)	29	24
Molecular function regulator (7%)	8	2	Biological regulation (15%)	31	9
· · · · · · · · · · · · · · · · · · ·			Response to stimulus (9%)	25	6

 Proteins involved in binding activity and entire subgroups of biological process were decreased

> Fewer proteins were identified in SS patients

3. Results

Principal component analysis (PCA) analysis

Significant proteome segregation between 6 HC and 6 SSp

Changes in protein expression of SS patients versus HC

Significantly Modulated Protein Families

Oxidoreductases

Significantly down regulated in SS:

- Sulfhydryl oxidase 1
- Lactoperoxidase
- Peroxiredoxin-1, -2, -5, -6
- Aldehyde dehydrogenase family 1 member A3

Only detected in HC

- Ketimine reductase mu-crystallin
- Peptidyl-glycine alpha-amidating monooxygenase
- Superoxide dismutase

Enzymes

Caspase-3

Transketolase

Glutathione synthetase

- Thioredoxin-dependent peroxide reductase
- Aldehyde dehydrogenase family 16 member A1
- Glutathione peroxidase 3

Cytosketon / actin-binding proteins

- Unique to HC
- Plastin-2,-3
- Coronin-1A
- Twinfilin-1
- Adseverin
- Tubulin beta chain
 - Tubulin alpha-4A chain
- Tubulin alpha-1C chain
- Desmoplakin
- Septin-2
- Filaggrin-2

Significantly down regulated in SS

- Actin, cytoplasmic 1
- Tubulin alpha-1B chain
- Tubulin beta-4B chain
- Cofilin-1
- Destrin
- Gelsolin
- Plastin-3, Profilin-1
- Transgelin-2
- Myosin-9, -14

Significantly up-regulated proteins

Calcium-binding protein

- Calmodulin-3
- Protein S100-A8
- Protein S100-A9

Proteasomes

- Proteasome subunit alpha type-1, -3, -4, -5, -6, -7
- Proteasome subunit beta type-1, -4, -6, -8, -9, -10

➤ 175 proteins significantly modulated in SS vs HC

4. Conclusions

Several proteins were not detected or significantly modulated in SS patients vs. healthy control.

Cytoskeleton/actin-binding proteins were down-regulated.
 Caspase-3, 12 proteasomes were up regulated significantly.

Increased apoptotic and catalytic activityAlteration in actin cytoskeleton

S100A8, S100A9 and calmodulin-3 were up regulated.
 Peroxiredoxin-1,-5,-6, sulfhydryl oxidase-1, lactoperoxidase
 Alteration in oxidoreductase activity and glutathione peroxidase-3 were down regulated.

□ Nano LC-MS/MS allows us to:

➢ Profiling the tear proteome of SS patients to understand better the disease mechanism.

Detect the target of interests for candidate biomarkers.