

DISTRIBUTION OF PROTEINS IN THE DIFFERENT PARTS OF THE SCHIRMER STRIPS

M. Akkurt Arslan, I. Kolman, S. Chardonnet, C. Pionneau, R. Magny,

C. Baudouin, F. Brignole-Baudouin, K. Kessal

1. INTRODUCTION

Tear Film	Collection method of choice?	Proteomics		
 Protection, lubrication, and <u>nutrition</u> of ocular surface (OS)¹ Optically smooth surface for good refraction ² Accessible and useful source for evaluation of OS diseases, inflammation³, prognosis and diagnostic purposes ¹ Tear protein profiles have been extensively investigated in multiple proteomic studies ^{4, 5}. 	 Schirmer strip (ScS) A standard clinical test for tear production, evaluation & collection ^{6, 7} Reliable, rapid ⁸ Collects both tear fluid and conjunctival cells ⁹ (More proteins 	 <u>TimsTOF Pro* mass spectrometry (MS)</u> LC-MS/MS can identify and quantify large numbers of tear proteins ¹⁰ Highly efficient and sensitive tool for tear proteome analysis ^{11, 12} Multidimensional proteomics (nano-LC**+ ion mobility + m/z ***+TOF) ¹² 		
	Bulb Rest	<pre>* timsTOF Pro: Trapped ion mobility spectrometry coupled with quadrupole time-of-flight ** nano-LC: Nalo- liquid chromatography *** m/z: Mass to charce ratio</pre>		

OBJECTIVE

To analyze and compare protein composition in different parts of the Schirmer strips by using a comprehensive proteomics approach based on timsTOF Pro, a highly sensitive mass spectrometry technology.

2. METHODS

Tear sample collection and processing

R, right eye; L, left eye; a.m., in the morning; p.m., in the afternoon; ¹, healthy subject-1; ², healthy subject-2

Steps to protein identification

*Ultra High Pressure Liquid Chromatography; ** Tandem mass spectrometry

3. **RESULTS (1)**

➢ Processing B and R separately, increased the NIPs by 49.6% more than processing the entire strip.

R

349

23.7%

3. RESULTS (2)

Gene Ontology Analysis of Identified Proteins

Except in catalytic activity, no important differences observed in the Gene Ontology analysis of W, B and R

Catalytic activity + Binding = ~80%

Cellular process + Metabolic process = ~50%

3. **RESULTS (3)**

Comparison of protein classes in different parts of the strip

Protein Class		В	R
metabolite interconversion enzyme		224	177
protein modifying enzyme		102	105
cytoskeletal protein		76	79
defense/immunity protein		63	63
protein-binding activity modulator		67	64
translational protein		83	84
calcium-binding protein		32	30
chaperone		28	31
membrane traffic protein		25	29
extracellular matrix protein	19	13	16
scaffold/adaptor protein	19	26	20
nucleic acid metabolism protein	17	29	42
transfer/carrier protein		17	19
transporter	16	15	24
transmembrane signal receptor	12	10	10
intercellular signal molecule	11	12	15
cell adhesion molecule	8	8	9
chromatin/chromatin-binding		15	13
gene-specific transcriptional regulator	5	6	6
structural protein		2	3
viral or transposable element protein		0	1
cell junction protein	0	1	1

Distribution of enzyme families in tear proteome

> 480 enzymes identified from W+B+R together

3. **RESULTS (4)**

Proteins involved in various signaling pathways

The number of total proteins from the whole strip (W), the bulb (B) and rest of the strip (R) involved in these pathways were: Apoptosis \rightarrow 61 Complement cascade \rightarrow 15 Interferon (IFN) \rightarrow 17

Matrix metalloproteinses (MMPs) → 18

Cell Junction \rightarrow 10

Lipid Metabolism \rightarrow 21

Each bar represents one protein except black bars . The black bars to separate the common proteins in different parts of ScS.

- ✓ A total of **1582 proteins** were identified by separately investigating the different parts of the Schirmer strips, with the identification of 49.6% additional proteins.
- ✓ This methodology could improve the pre-analytical steps before MS analysis.
- Enzymes formed the largest protein group of the tear proteome, with an identification of 480 enzymes particularly from hydrolase (47.5%) and oxidoreductase (22.1%) enzyme families.
- ✓ The dataset created can help to model and compare <u>multiple signaling pathways</u> associated with ocular surface pathologies.
- ✓ TimsTOF Pro could also add a technical improvement for the investigation of biomarkers in ocular diseases.

5. REFERENCES

- 1. Azkargorta, M., Soria, J., Acera, A., Iloro, I. & Elortza, F. Human tear proteomics and peptidomics in ophthalmology: Toward the translation of proteomic biomarkers into clinical practice. J. Proteomics 150, 359–367 (2017).
- 2. Versura, P. & Campos, E. C. Disease Update on Human Tear Proteome. *Eur. Ophthalmic Rev.* 07, 36 (2013).
- 3. Zhou, L. et al. In-depth analysis of the human tear proteome. J. Proteomics 75, 3877–3885 (2012).
- 4. Zhou, L. et al. Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren's syndrome-associated dry eye. Proteomics 13, 2469–2481 (2013).
- 5. Boehm, N. et al. Alterations in the tear proteome of dry eye patients-A matter of the clinical phenotype. Investig. Ophthalmol. Vis. Sci. 54, 2385–2392 (2013).
- 6. Selter, J. Schirmer Tests. in *Encyclopedia of Ophthalmology* 1–2 (StatPearls Publishing, 2014). doi:10.1007/978-3-642-35951-4_946-1.
- 7. Quah, J. H. M., Tong, L. & Barbier, S. Patient acceptability of tear collection in the primary healthcare setting. *Optom. Vis. Sci.* 91, 452–458 (2014).
- 8. Posa, A. et al. Schirmer strip vs. capillary tube method: Non-invasive methods of obtaining proteins from tear fluid. Ann. Anat. Anat. Anzeiger 195, 137–142 (2013).
- 9. Green-Church, K. B., Nichols, K. K., Kleinholz, N. M., Zhang, L. & Nichols, J. J. Investigation of the human tear film proteome using multiple proteomic approaches. *Mol. Vis.* **14**, 456–70 (2008).
- 10. Nättinen, J., Aapola, U., Jylhä, A., Vaajanen, A. & Uusitalo, H. Comparison of Capillary and Schirmer Strip Tear Fluid Sampling Methods Using SWATH-MS Proteomics Approach. *Transl. Vis. Sci. Technol.* **9**, 16 (2020).
- 11. Wuen Ma, J. Y., Sze, Y. H. O. N., Bian, J. F. & Lam, T. C. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). *Int. J. Mol. Med.* 47, (2021).
- 12. Meier, F. et al. Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteomics 17, 2534–2545 (2018).