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Two-bandgap superconductivity

Images from: 
P. Szabo et al. , Phys. Rev. Lett. 87, 137005 (2001).
H.-J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, Nature 418, 758-760 (2002).
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Two-bandgap superconductivity

Images from: 
X.C. Wang et al., Solid State Communications 148, 538 (2008).
http://www2.physics.ox.ac.uk/research/quantum-matter-in-high-magnetic-fields/fermi-surfaces
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Also the recently 
discovered iron pnictide
class of superconductors 
have multiple gaps
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The special case of MgB2 : type 1.5 superconductivity

Gaps[1]:
 = 2.2 meV
 = 7.1 meV

Fermi velocities[2]:
vF, = 5.4105 m/s
vF, = 4.4105 m/s

Coherence lengths:
 = 51 nm
 = 13 nm

SC Plasma frequencies[3]

p, = 551015 Hz
p, = 391015 Hz

Penetration depths:
 = 34 nm
 = 48 nm

GL paramater[4]:
 = 0.66     TYPE I

 = 3.68     TYPE II

1) H.-J. Choi et al., Nature 418, 758-760 (2002).
2) A. Brinkman et al., Phys. Rev. B 65, 180517(R) (2002).
3) I. I. Mazin et al., Phys. Rev. Lett. 89, 107002 (2002).
4) V. V. Moshchalkov et al., Phys. Rev. Lett. 102, 117001 (2009).
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Type 1.5 superconductivity

V. V. Moshchalkov, M. Menghini, T. Nishio, Q. H. Chen, A. V. Silhanek, V. H. Dao, 
L. F. Chibotaru, N. D. Zhigadlo, and J. Karpinski,Phys. Rev. Lett. 102, 117001 (2009).

Vortices made visible with bitter decoration, in
a field-cooled experiment

Compare NbSe2 (type II) to MgB2 :

10 m 10 m

Clustering in the case of MgB2 may point to an in 
interaction potential with both repulsive and attractive 
components.



Scanning Hall probe microscopy

J. Gutierrez, B. Raes, A. V. Silhanek, L. J. Li, N. D. Zhigadlo, J. Karpinski, 
J. Tempere, and V. V. Moshchalkov, Phys. Rev. B 85, 094511 (2012).

• Stripes rather 
than clusters

• Direction not 
related to crystal
lattice or edge

• Stripe direction 
maintained in 
successive field-
cooling runs, but 
vortex position in 
stripe is different
(no pinning)



Two-bandgap Ginzburg-Landau theory

1) M. E. Zhitomirsky and V.-H. Dao, Phys. Rev. B 69, 054508 (2004).
2) E. Babaev, J. Carlstrom, and M. Speight, Phys. Rev. Lett. 105, 067003 (2010).
3) V. G. Kogan and J. Schmalian, Phys. Rev. B 83, 054515 (2011).
4) A. A. Shanenko, M.V. Milosevic, and F. M. Peeters, Phys. Rev. Lett. 106, 047005 (2011).

Zhitomirsky and Dao[1] propose a two-bandgap extension to GL theory, with ad-hoc Josephson coupling, and
two length scales, and Babaev et al.[2] find that it can lead to the correct vortex behavior.

Kogan and Schmalian[3] contest the coupling, in that this term
lies outside the temperature validity of GL → only one length
scale, since gaps are always proportional to eachother.

Shanenko et al.[4] expand the free
energy to higher order in (1−T/Tc) and
find that the two length scales are
present and revealed through a hidden
criticality in / → two length scales.





Simplify life with a two-bandgap superfluid

g1

g2

g4

g4

g3

We consider a 4-component system with 
two “intraband” BCS channels and “interband” scattering:

The single-particle contributions to the action functional allow for population 
imbalances and interspecies mass imbalance: 



From Hubbard-Stratonovic to a Josephson coupling term

The thermodynamic potential is calculated in the functional integral formalism:



From Hubbard-Stratonovic to a Josephson coupling term

The four-fermion field interaction terms are decoupled using 2 Hubbard-Stratonovic fields

with



From Hubbard-Stratonovic to a Josephson coupling term

The four-fermion field interaction terms are decoupled using 2 Hubbard-Stratonovic fields

with

The effective coupling constants are

and are related to the scattering lengths through following renormalization:



Integration over the fermion fields → effective bosonic action

The integration over the fermion fields leads to an effective bosonic field action:

This action functional is given by

with and

In general, the sum over p cannot be taken analytically, except for  constant.
Here, we assume that the pair fields vary slowly in time and space.



Gradient expansion of the bosonic action

The gradient expansion in the effective action 

is performed by setting

In each term of the p summation we have 

with

The subsequent summation over p is performed for each of these three terms separately.

Zeroth-order term
Term with the time derivatives
Term with the gradients



Resumming the zeroth order terms gives:

with                        and  

Example: zeroth order term

The action, up to first order time derivatives and up to second order in the gradients:

matsubara frequencies

free fermion dispersion

(p even)



The gradient expansion of the pair fields 
+ complete summation  of the series in powers of 
lead to the extended TDGL-like functional

The coefficients Cj, Dj, Ej depend on the order parameters

and the single-component thermodynamic  potentials are

with                        and  

The (gradient-expanded) extended Ginzburg-Landau action



The (gradient-expanded) extended Ginzburg-Landau action

The functions fp(,,) are based on the Matsubara sums, and can be expressed using 
the recurrence relations 

The explicit forms of the 
other coefficients are:



Comparison with existing TDGL expansions

For single-band Fermi superfluids, time-dependent Ginzburg-Landau (TDGL) type equations 
have been proposed by 

1/ Sa de Melo, Randeria and Engelbrecht[1] :

In their seminal BEC-BCS crossover paper, these authors propose a fluctuation expansion around ||=0, 
which corresponds to setting Ek→k in our coefficients. In this limit, our coefficient C corresponds to their 
“c” and the coefficients of ||2 and ||4 in s correspond to their –a and b respectively.

2/ Huang, Yu and Yin[2]

1) C.A.R. Sa de Melo, M. Randeria, and J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993).
2) K. Huang, Z.-Q. Yu and L. Yin, Phys. Rev. A 79, 053602 (2009).

This more recent derivation for a
single-bandgap superfluid restricts
the summations to p  2

present theory

TDGL approach1



Comparison with two-band superconductors

For two-band superconductors, Shanenko et al. developed an extended Ginzburg-Landau
formalism[*] by expanding up to (1−T/Tc)

5/2. This agrees well (<5% error) with Bogoliubov-de
Gennes calculations at all T.

This different approach nevertheless gives qualitatively similar results as the present
approach, for the band gaps.



[*] A. A. Shanenko, M.V. Milosevic, and F. M. Peeters, Phys. Rev. Lett. 106, 047005 (2011); L. Komendova, Y. Chen, A.A. Shanenko, M.V. Milosevic, 
and F.M. Peeters, Phys. Rev. Lett. 108, 207002 (2012).

ext.TDGL (ref [*]) current formalism



Comparison with two-band superconductors

For two-band superconductors, Shanenko et al. developed an extended Ginzburg-Landau
formalism[*] by expanding up to (1−T/Tc)

5/2. This agrees well (<5% error) with Bogoliubov-de
Gennes calculations at all T.

This different approach nevertheless gives qualitatively similar results as the present
approach, for the band gaps, and the “gap susceptibility”.

[*] A. A. Shanenko, M.V. Milosevic, and F. M. Peeters, Phys. Rev. Lett. 106, 047005 (2011); L. Komendova, Y. Chen, A.A. Shanenko, M.V. Milosevic, 
and F.M. Peeters, Phys. Rev. Lett. 108, 207002 (2012).

ext.TDGL (ref [*]) current formalism



Including external potentials

An external potential is usually taken into account
through a local density approximation for the
chemical potential. Here we can also take it into
account either directly though Hj, or by adding a
term to the GL functional. For small order
parameters, these methods are equivalent.

Saddle point result + local chemical potential.

Current approach

Many-body diagrammatic technique
(from A. Perali, P. Pieri, L. Pisani, and G. C. Strinati, 
Phys. Rev. Lett. 92, 220404 (2004)).



Healing lengths & two-band superconductors

[1] V. G. Kogan and J. Schmalian, Phys. Rev. B 83, 054515 (2011).
[2] A. A. Shanenko, M.V. Milosevic, and F. M. Peeters, Phys. Rev. Lett. 106, 047005 (2011); L. Komendova, Y. Chen, A.A. Shanenko, M.V. Milosevic, 

and F.M. Peeters, Phys. Rev. Lett. 108, 207002 (2012).

Using variational trial functions with j the bulk order parameter and j

the variational parameter for the healing lengths, we find:

From [2] with BdG

No two length scales near Tc

as argued by [1]
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Conclusions

❖ The path-integral formalism for interacting fermions has been applied to the two-band system 
starting from the microscopic Hamiltonian

❖ The interband Josephson coupling is not introduced ad hoc. Instead, it is derived at the stage 
of the Hubbard - Stratonovich transformation. 

❖ A TDGL-like variational functional has been derived collecting all terms in powers of the order 
parameter, being therefore valid also when the order parameter is not small.

❖ The formalism can find a broad spectrum of applications (two-band superconductors, multi-
vortex states, …) . 

❖ The present formalism is applicable in the whole range of the BCS-BEC crossover and allows 
one to take into account the fluctuations.

❖ Open question: what is the parameter space for a two-band superfluid with intervortex
interactions that have both an attractive and a repulsive component and lead to vortex 
clustering?


