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“Non fare mai nulla con precisione maggiore dello stretto necessario.”

“Never do anything with more precision than strictly necessary.”

Enrico Fermi
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Abstract
Superfluidity in exciton bilayer systems: Josephson effect and collective modes as

definitive identification-markers

This thesis investigates key fingerprints of superfluidity in exciton bilayer systems. Ex-
citon bilayer superfluidity is a novel quantum phenomenon in semiconductor systems
with two very thin conducting layers, one doped with electrons and the other with holes
and separated by only a few nanometers. Recent theoretical predictions have outlined a
very rich phase diagram for exciton bilayer systems, with superfluid, supersolid, exciton
normal solid, and Wigner crystal phases.

With the expanding interest in the excitonic condensed phases together with the dif-
ficulties in practice of establishing their existence through transport measurements, it is
crucial to identify clear markers that unambiguously signal superfluidity and coherent
condensation in these systems. This thesis explores two phenomena that can identify
such markers: the Josephson effect and the density collective modes.

For the Josephson effect, we propose an exciton bilayer Josephson junction in double
monolayer Transition Metal Dichalcogenides. We propose an experimental measurement
for the exciton Josephson current using the Shapiro method, and we propose a feasible
experimental approach for fabricating the device with a tunable potential-barrier height.
We investigate the system in the high and low potential-barrier regions, finding distinct
behaviour in the gap energy and superfluid critical velocity. This can help delineate
the boundary between the BEC and BCS-BEC crossover regimes. In the low potential-
barrier region, the exciton superfluid can flow over the barrier. In the high potential-
barrier region, however, the superfluid flow is driven purely by quantum tunnelling of
the electron-hole pairs through the barrier. We find that the superfluid flow smoothly
connects from the high to the low potential-barrier regions.

For the density collective modes, we explore their low-temperature behaviour to iden-
tify unambiguous fingerprints of the normal-superfluid transition as a function of den-
sity. At high density, the system is in the normal state and it responds to small external
density perturbations with low energy optic and acoustic modes. Decreasing the density
to enter the superfluid phase, the system-response changes dramatically. The propaga-
tion of the acoustic and optic modes is blocked by the presence of the superfluid gap in
the single-particle dispersion relation. We expect that due to the finite-range nature of
the Coulomb interaction, pair-breaking collective modes will appear at the onset of the
exciton superfluidity considering the only density fluctuations. This is in contrast with
the standard BCS theory where the contact interaction makes necessary the inclusion of
the amplitude fluctuations of the superfluid order parameter to observe pair-breaking
collective modes.

Our investigation is carried out using mean-field. The theoretical model, developed
from a path-integral approach and the Hartree-Fock approximation, includes the effects
of screening and intralayer correlations. The gap and number equations governing the
superfluid phase behaviour are calculated, and we demonstrate that intralayer correla-
tions enhance screening. The enhancement is particularly strong in the BCS-BEC crossover
regime. The result is a reduction in the superfluid gap, a shift of the BEC to BCS-BEC
crossover boundary to significantly lower densities, and the vanishing of a predicted
minimum in the electron-hole pair size as a function of density.

iii



This study advances the understanding of superfluidity in exciton bilayer systems
and provides theoretical predictions and experimental proposals for future investiga-
tions. By identifying clear markers of superfluidity, the work contributes to the broader
effort of realizing and characterizing excitonic condensed phases in realistic systems.
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Samenvatting
Superfluiditeit in exciton-bilaagsystemen: Josephson-effect en collectieve modi als

definitieve identificatiemarkers

Deze thesis onderzoekt de belangrijkste kenmerken van superfluiditeit in excitoon dubbel-
laag systemen. Excitoon bilayer superfluiditeit is een nieuw kwantumfenomeen in halfgelei-
dersystemen met twee zeer dunne geleidende lagen, waarvan één gedoteerd is met elek-
tronen en de andere met gaten, gescheiden door slechts enkele nanometers. Recente the-
oretische resultaten voorspellen een zeer rijk fasediagram voor excitoon bilayersystemen,
met superfluïde, supersolid, excitoon normale vaste stof en Wigner kristalfasen.

Met de groeiende interesse in de excitonische gecondenseerde fasen, samen met de
moeilijkheden om hun bestaan vast te stellen door middel van transportmetingen, is het
cruciaal om duidelijke markers te identificeren die ondubbelzinnig superfluiditeit en co-
herente condensatie in deze systemen signaleren. Deze thesis onderzoekt twee fenome-
nen die dergelijke markers kunnen identificeren: het Josephson-effect en de dichtheid-
scollectieve modi.

Voor het Josephson-effect stellen we een excitoon bilayer Josephson-junctie voor in
dubbele monolayer overgangsmetaaldichalcogeniden. We stellen een experimentele met-
ing voor van de excitoon Josephson-stroom met behulp van de Shapiro-methode, en we
stellen een haalbare experimentele benadering voor om het apparaat te fabriceren met
een regelbare potentiaalbarrièrehoogte. We onderzoeken het systeem in de hoge en lage
potentiaalbarrière-regio’s en vinden distinct gedrag in de gapenergie en de superfluïde
kritische snelheid. Dit kan helpen om de grens tussen de BEC- en BCS-BEC crossover-
regimes af te bakenen. In de lage potentiaalbarrière-regio kan het excitoon superfluïdum
over de barrière stromen. Echter, in de hoge potentiaalbarrière-regio, wordt de super-
fluïde stroom puur aangedreven door kwantumtunneling van de elektron-gatenparen
door de barrière. We vinden dat de superfluïde stroom vloeiend overgaat van de hoge
naar de lage potentiaalbarrière-regio’s.

Voor de dichtheidscollectieve modi onderzoeken we hun gedrag bij lage temperatuur
om ondubbelzinnige kenmerken van de normaal-superfluïde overgang als functie van
de dichtheid te identificeren. Bij hoge dichtheid bevindt het systeem zich in de normale
staat en reageert het op kleine externe dichtheidsstoornissen met lage energie optische
en akoestische modi. Bij het verlagen van de dichtheid om de superfluïde fase binnen
te gaan, verandert de systeemrespons drastisch. De propagatie van de akoestische en
optische modi wordt geblokkeerd door de aanwezigheid van de superfluïde gap in de
enkelvoudige deeltjesdispersierelatie. We verwachten dat, door de eindige afstands-
bereik aard van de Coulomb-interactie, paarbrekende collectieve modi zullen verschij-
nen bij het begin van de exciton-superfluiditeit, waarbij alleen rekening wordt gehouden
met de dichtheidsfluctuaties. Dit is in contrast met de standaard BCS-theorie, waar de
contactinteractie het noodzakelijk maakt om de amplitude-fluctuaties van de superfluïde
ordeparameter op te nemen om paarbrekende collectieve modi te kunnen waarnemen.

Ons onderzoek wordt uitgevoerd met behulp van mean-field. Het theoretische model,
ontwikkeld vanuit een padintegraalmethode en de Hartree-Fock benadering, omvat de
effecten van afscherming en intralaagcorrelaties. De gap- en nummervergelijkingen die
het gedrag van de superfluïde fase bepalen, worden berekend, en we tonen aan dat in-
tralaagcorrelaties de afscherming versterken. De versterking is bijzonder sterk in het
BCS-BEC crossover-regime. Het resultaat is een vermindering van de superfluïde gap,
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een verschuiving van de BEC naar BCS-BEC crossover-grens naar aanzienlijk lagere dichthe-
den, en het verdwijnen van een voorspeld minimum in de elektron-grootte van het gaten-
paar als functie van dichtheid.

Deze studie bevordert het begrip van superfluiditeit in excitoon bilayersystemen en
biedt theoretische voorspellingen en experimentele voorstellen voor toekomstig onder-
zoek. Door duidelijke markers van superfluiditeit te identificeren, draagt dit werk bij aan
de bredere inspanning om excitonische gecondenseerde fasen in realistische systemen te
realiseren en te karakteriseren.
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Sommario
Superfluidità nei sistemi a doppio strato di eccitoni: effetto Josephson e modi

collettivi come marcatori di identificazione definitivi

Questa tesi indaga le principali impronte digitali della superfluidità nei sistemi a doppio
strato di eccitoni. La superfluidità a doppio strato di eccitoni è un fenomeno quantis-
tico innovativo nei sistemi con due strati semiconduttivi molto sottili, uno drogato con
elettroni e l’altro con lacune, separati da soli pochi nanometri. Previsioni teoriche re-
centi hanno delineato un diagramma di fase molto ricco per i sistemi a doppio strato di
eccitoni, con fasi superfluide, supersolide, di solido normale di eccitoni e di cristallo di
Wigner.

Con l’interesse crescente per le fasi condensate eccitoniche insieme alle difficoltà pratiche
di stabilire la loro esistenza attraverso misurazioni di trasporto, è cruciale identificare
marcatori chiari che segnalino in modo inequivocabile la superfluidità e la condensazione
coerente in questi sistemi. Questa tesi esplora due fenomeni che possono identificare tali
marcatori: l’effetto Josephson e i modi collettivi di densità.

Per l’effetto Josephson, proponiamo una giunzione Josephson a doppio strato di ec-
citoni in diclogenuri di metalli di transizione a doppio monostrato. Proponiamo una
misurazione sperimentale della corrente Josephson di eccitoni utilizzando il metodo di
Shapiro, e proponiamo un approccio sperimentale fattibile per la fabbricazione del dis-
positivo con un’altezza della barriera potenziale regolabile. Esaminiamo il sistema nelle
regioni di barriera potenziale alta e bassa, trovando comportamenti distinti nell’energia
della gap e nella velocità critica superfluida. Questo può aiutare a delineare il confine tra
i regimi di crossover BEC e BCS-BEC. Nella regione di barriera potenziale bassa, il super-
fluido di eccitoni può fluire sopra la barriera. Nella regione di barriera potenziale alta,
tuttavia, il flusso superfluido è guidato puramente dal tunneling quantistico delle cop-
pie elettrone-lacuna attraverso la barriera. Troviamo che il flusso superfluido si connette
senza problemi dalle regioni di barriera potenziale alta a quelle basse.

Per le modalità collettive di densità, esploriamo il loro comportamento a bassa tem-
peratura per identificare impronte digitali inequivocabili della transizione normale- su-
perfluida in funzione della densità. Ad alta densità, il sistema è nello stato normale e
risponde a piccole perturbazioni esterne di densità con modalità ottiche e acustiche a
bassa energia. Diminuendo la densità per entrare nella fase superfluida, la risposta del
sistema cambia drasticamente. La propagazione delle modalità acustiche e ottiche è bloc-
cata dalla presenza del gap superfluido nella relazione di dispersione della particella sin-
gola. Ci aspettiamo che, a causa della natura a raggio finito dell’interazione di Coulomb,
modalità collettive di rottura delle coppie appaiano all’inizio della superfluidità di ec-
citoni considerando le sole fluttuazioni di densità. Ciò è in contrasto con la teoria BCS
standard dove l’interazione di contatto rende necessaria l’inclusione delle fluttuazioni
dell’ampiezza del parametro d’ordine superfluido per osservare i modi collettivi di rot-
tura di coppie.

La nostra indagine è condotta utilizzando il campo medio. Il modello teorico, svilup-
pato da un approccio di integrazione sui cammini e dall’approssimazione di Hartree-
Fock, include gli effetti di screening e le correlazioni intra-strato. Le equazioni della
gap e del numero di particelle che governano il comportamento della fase superfluida
sono calcolate, e dimostriamo che le correlazioni intra-strato incrementano lo screening.
L’incremento è particolarmente forte nel regime di crossover BCS-BEC. Il risultato è una
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riduzione della gap superfluida, uno spostamento del confine di crossover da BEC a BCS-
BEC a densità significativamente più basse e la scomparsa di un minimo previsto nella
dimensione della coppia elettrone-lacuna in funzione della densità.

Questo studio avanza la comprensione della superfluidità nei sistemi a doppio strato
di eccitoni e fornisce previsioni teoriche e proposte sperimentali per indagini future.
Identificando marcatori chiari della superfluidità, il lavoro contribuisce allo sforzo più
ampio di realizzare e caratterizzare le fasi condensate eccitoniche in sistemi realistici.
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Chapter 1

Electron-Hole superfluidity

Recent experimental observations of strongly correlated phases in dipolar bilayer exci-
ton systems, even in the absence of magnetic fields, have sparked widespread interest
among researchers [1–7]. This phenomenon holds great promise for the formation of a
stable superfluid in equilibrium. In bilayers, electron-hole recombination can be sup-
pressed by confining the electrons and holes in separate adjacent layers [8, 9]. Excitonic
bilayer semiconductor systems have emerged as particularly intriguing platforms for ex-
ploring such phenomena. Strong Coulomb binding of the electron-hole pairs, and con-
sequent expected high superfluid transition temperatures, make it an attractive platform
for exploring novel quantum phenomena. The tunability of the system, achieved through
variations in the layer separation and charge-carrier density, is predicted to lead to a rich
phase diagram encompassing superfluid [10], supersolid [7], dipolar crystal [11], and
independent Wigner crystal phases [12].

In this chapter, we describe the distinct properties and advantages of exciton bilayer
superfluidity compared to conventional superfluidity. We will delve into the latest ex-
perimental techniques used to achieve and investigate exciton bilayer superfluidity. Ad-
ditionally, we will discuss the current challenges and propose potential solutions.

1.1 Indirect excitons

The study of superconductivity and superfluidity has profoundly influenced the field of
physics throughout the last century. Beginning with H. K. Onnes’ discovery of charged
superconductivity in 1911 [13] and the subsequent observation of neutral superfluidity in
liquid helium-4 by P. Kapitsa [14] and J. F. Allen and A. D. Misener [15], these phenomena
presented intriguing challenges and opportunities for physicists and the then newborn
quantum mechanics.

By extending a calculation by S. N. Bose [16], A. Einstein found that below a critical
temperature Tc, a gas of atoms obeying “Bose-Einstein statistics” should accumulate in a
single quantum state [17]. In basic terms, all atoms start behaving identically below Tc,
forming a macroscopic state of indistinguishable atoms.

The superfluidity of helium was first explained by L. Tisza and L. Landau [18, 19] with
a macroscopic two-liquid model: superfluid helium as a surprising mixture of two fluids
with independent velocity fields. F. London in 1938 [20] was the first to hypothesize
the microscopic mechanism behind superfluidity of helium: a condensation of bosons
described by Bose-Einstein condensation.

Since the mid-20th century there have been dramatic advances. For charged super-
conductors we have to wait until 1957 for the BCS theory by J. Bardeen, L. Cooper and
R. Schrieffer [21] before we have a microscopic explanation of superconductivity. BCS
proposed that the binding blocks of standard superconductivity are electron pairs, called

3



Chapter 1. Electron-Hole superfluidity

Cooper pairs. These pairs form due to an attractive interaction between electrons medi-
ated by lattice vibrations (phonons) [22].

Below the critical temperature Tc, in both superfluidity and superconductivity, the
phase coherence of the condensate wave function leads to long-range order, and this
enables coherent motion of particles without dissipation.

Starting from the 1960s, several authors proposed that electron-hole pairs, called ex-
citons, can exhibit properties characteristic of bosonic system [23, 24] and that they can
undergo Bose-Einstein condensation and show superfluidity [25, 26].

To realize a system of electron-hole pairs, researchers initially thought to use semi-
conductors. In semiconductors, the energy gap between the valence and the conduction
band is typically of the order of a few electron volts. This easily allows optical excita-
tion of electrons from the valence to the conduction band leaving behind a hole in the
valence. An attractive Coulomb interaction acts between the negatively charged electron
and positively charged hole, leading to formation of an electron-hole bound state, the
exciton. The exciton is a composite boson with integer spin 0 or 1 since it is formed by
two fermions of spin 1/2.

Experimental realization of this stable excitonic system, however, proved to be very
difficult. A small band gap is needed to guarantee a sufficiently strong attractive Coulomb
interaction needed to form the electron-hole pair, but at the same time if the band gap is
too small, electrons and holes tend to recombine with the emission of a photon. In addi-
tion, to be able to observe a stable exciton system, the exciton lifetime should be longer
than the exciton cooling time [27, 28].

As a first attempt, semiconductors with an indirect band gap were proposed to ad-
dress this issue [29, 30]: in the momentum space between the top of the valence band
and the bottom of the conduction band, a mismatch W0, Fig. 1.1 reduces the electron-hole
recombination probability. This ensures the presence of electron-hole pairs with lifetimes
long enough to form excitons in equilibrium.

FIGURE 1.1: Indirect band structure of a semiconductor model, [29].

However, in Ref. [29, 30] it was shown that by introducing a mismatch between the
valence and the conduction bands, the superfluidity disappears; the system loses its su-
perfluid off-diagonal-long-range order and acquires a crystal diagonal-long-range-order.
Thus, for exciton superfluidity a direct band gap, W0 = 0, is necessary.

To meet the requirements of direct band gap together with sufficiently long lifetimes,
a bound state formed from spatially separated electrons and holes was proposed for the
first time in 1976 by Y. E. Lozovik and V. I. Yudson [9]. This exciton is called a spatially
indirect exciton. The lifetime of indirect excitons in bilayer systems can be orders of mag-
nitude longer than those of conventional excitons, even when choosing direct band gap
semiconductor layers [31].

The device to host indirect excitons can be a double quantum well system [32] or a
double layer system [33]. The latter consists of two bidimensional layers close to each
other and separated by a distance d, Fig. 1.2. In one layer there are electrons and in the
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1.2. BCS-BEC crossover in exciton bilayers

other holes. The space between the layers is filled with an insulator to prevent recombi-
nation processes. This is also called a van der Waals heterostructure. A strong interlayer
Coulomb interaction Veh leads to the formation of electron-hole pairs. The advantage of
a bilayer system with respect to a double quantum well system is the diminished dimen-
sionality, which leads to a much stronger attraction between electrons and holes.

FIGURE 1.2: Schematization of a double layer system with electrons in the top layer
and holes in the bottom layer. The d is the interlayer distance, and Veh is the inter-

layer attractive Coulomb interaction.

Exciton bound states are hydrogen-like states of electron-hole pairs bound by the
Coulomb interaction. The binding energy and the radius of an isolated exciton are deter-
mined by an effective Rydberg energy Ry∗ and Bohr radius a∗B,

Ry∗ =
e2

4πϵϵ0

1
2aB

(1.1)

a∗B =
h̄24πϵϵ0

mre2 (1.2)

where ϵϵ0 is the dielectric constant of the mediumand mr = m∗
e m∗

h/(m∗
e + m∗

h) is the
reduced effective mass. m∗

e and m∗
h are the effective electron and hole masses. The con-

dition for superfluidity can be satisfied in general terms when the interlayer distance d is
smaller than the effective Bohr radius a∗B so that the binding energy εB of the exciton in
the bilayer system is larger than the effective Rydberg R∗

y.
It is fundamental and challenging to identify optimal combinations of the bilayer ma-

terials, the insulator, and the interlayer distance to have the strongest, most stable exciton
system.

1.2 BCS-BEC crossover in exciton bilayers

In 1985, P. Nozières and S. Schmitt-Rink [34] proposed that a system of electron pairs can
be continuously tuned from a weakly interacting regime described by the BCS theory to
a strongly interacting regime described by Bose-Einstein condensation (BEC). This phe-
nomenon is called BCS-BEC crossover. In the BCS regime, the Cooper pair radius rpair
is larger than the average interparticle distance. The Cooper pairs greatly overlap and
what prevails in the system is the fermionic behaviour of the single particles. In the BEC
regime, the pair radius is smaller than the interparticle distance, the pairs are compact
and do not overlap. Two compact bounded fermions can be treated as a composite boson
so the pairs satisfy Bose-Einstein statistics.
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Chapter 1. Electron-Hole superfluidity

It is possible to smoothly evolve the system from the BCS to the BEC regime, the two
sides of the BCS-BEC crossover (Fig. 1.3). The system will pass through an intermediate
Crossover regime.

FIGURE 1.3: The weakly interacting BCS regime, the intermediate crossover regime
and the strongly interacting BEC regime as a function of the s-wave scattering length

a.

The BCS-BEC crossover regime has been extensively studied in three-dimensional
ultracold gas atoms [35], especially using 6Li and 40K. In a system of attractive fermions,
the interaction strength is described by the s-wave scattering length a. In the BCS regime
with its weak attractive interactions, a is small and negative. In ultracold gas atoms, it
is possible to change the value of a, and even its sign, through a mechanism called the
Feshbach resonance [36], using an external magnetic field [37] or optical traps [38]. When
a bound state appears and becomes resonant with the energy of the scattering state, the
scattering length a diverges. This is called the unitarity regime. Crossing over to the
other side of the resonance, the scattering a has now become positive and the bound
state energy gets lower, leading to tightly bound molecules in the BEC regime [39]. The
tuning of a can continuously drive the system from the BCS regime where a < 0, to
the BEC regime where a > 0 [40]. Superfluidity in the BCS-BEC crossover has been
unambiguously demonstrated by visualising the lattice of singly-quantized vortices that
form when the system is rotated [41].

In 2D exciton bilayer systems, the parameter that characterizes the relative strength of
the interaction is rs = ⟨Vee⟩/⟨K⟩, where ⟨Vee⟩ is the average potential energy and ⟨K⟩ the
average kinetic energy. When ⟨Vee⟩ > ⟨K⟩, the correlations are important and the system
is characterised by well-separated and strongly bound pairs, the BEC regime. When
⟨Vee⟩ < ⟨K⟩, correlations are negligible and the system is characterised by overlapping
and weakly bound pairs, the BCS regime. This means that by tuning rs in bilayer exciton
systems, we can tune through the BCS-BEC crossover [12].

We can write rs more explicitly:

rs =
⟨Vee⟩
⟨K⟩ =

e2

4πϵϵ0⟨r0⟩
1

EF
=

e2√πn
4πϵϵ0

1
EF(n)

(1.3)

where r0 is the interparticle distance and EF is the Fermi energy, given in 2D by EF(n) =
h̄2πn/m∗. The rs can be tuned by:

• Tuning the kinetic energy by modifying the electronic dispersion and the effective
mass using an external magnetic field, gating, or applying strain.
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• Tuning the interlayer interaction by modifying the interparticle distance r0, or by
changing the dielectric ϵ of the system.

In the exciton bilayer system it is possible to tune the particle density n in the two
conducting layers, and thus the interparticle distance r0, n = 1/πr2

0, through external
metal gates [42]. At very low density n (large interparticle distance r0) the excitons barely
interact with each other. The excitons are compact so the system is in the strongly coupled
BEC regime. At high density n (small interparticle distance r0) the pair size rpair > r0, so
the excitons overlap. The system would be in the weakly interacting regime, the BCS
regime [43, 44].

FIGURE 1.4: The BEC and BCS regimes of the BCS-BEC crossover in bilayer system.

Unlike BCS superconductivity, in the electron-hole system, the interlayer electron-
hole attraction and the intralayer electron-electron repulsion are Coulombic and not short-
ranged. Hence the screening of the interactions must be taken into account[45, 46]. At
low density, where the excitons are compact and well-spaced, they behave as neutral
pairs and the screening is negligible, but at high density where the excitons are over-
lapping, the screening becomes crucially important [46, 47]. The screening weakens the
interlayer interactions and thus weakens the superfluid phase. Above a certain value of
the density, called the onset density, the detrimental effect of the screening is too strong
and the superfluidity disappears [48]. Screening makes it impossible for the system to
enter the weakly interacting BCS regimes, thus the exciton superfluidity survives only in
the BEC and crossover regimes of the BCS-BEC crossover.

1.3 Experimental Techniques

Different experimental techniques have been implemented to identify the presence of
stable excitons and exciton superfluidity in bilayer systems. Some of these are based on
transport measurements (Coulomb drag and counterflow measurement), some on the
tunnelling conductance between the layers and others on optical observation of exciton
luminescence.

Coulomb drag

Coulomb drag measures the friction between the spatially separated electrons and holes.
An electric current is driven in one layer, the drive current, and this drags carrier in the
other layer, generating a drag current. This happens because the attractive interlayer
Coulomb interaction allows momentum transfer between layers.

The drag resistivity ρD is defined as the ratio between the induced potential in the
drag layer and the drive current [49]. This measures how much the charges in one layer
are dragged by the charges in the other layer. The ρD is sensitive to how the momentum
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Chapter 1. Electron-Hole superfluidity

is exchanged between electrons and holes and thus to the phase of the exciton bilayer
system.

Below the critical temperature, when exciton transport dominates over the free carrier
transport, perfect Coulomb drag Idrive/Idrag = 1 is expected because a steady current of
electrons driven through one layer must be accompanied by an equal current of holes in
the other layer. The drag resistivity grows as the temperature decreases and it diverges
at the limit of zero temperature [50].

In a bilayer electron-hole system with no condensate, only a small frictional drag
is expected, Idrive/Idrag < 1. In the case of Fermi liquids, the phase space of electrons
and holes available for Coulomb drag increases with temperature, the drag current ratio
Idrive/Idrag scales quadratically with temperature and the drag resistance ρD is generally
smaller than the isolated layer resistivity [51–55]. The transition from normal state to
superfluid exciton state is predicted to be characterized by a jump in the behaviour of the
drag resistance ρD.

The key requirement for this technique is to have independent electrical contacts be-
tween the electron and hole layer [56]. A recent very high-quality Coulomb drag ex-
periment in double-layer Transition Metal Dichalcogenides system showed for the first
time the perfect Coulomb drag [6]. However, there is no definite claim of superfluidity
because of a lack of dissipationless transport due to the large contact resistance.

Interlayer tunnelling

In Sec. 1.1 we have discussed how the interlayer distance is a fundamental parameter
for stable and long-lived excitons. Even in the presence of the insulator between the
two spatially separated electron and hole layers, if the interlayer distance is too small
the strongly interacting electron-hole pairs have a probability of quantum mechanically
tunnelling through the insulator and recombining with the emission of a photon.

In interlayer tunnelling experiments a voltage bias is applied between the two layers
and the interlayer conductance is measured [57].

Recently an enhancement of interlayer tunnelling has been observed in a double-
bilayer graphene system [1] and in a double-layer Transition Metal Dichalcogenides sys-
tem [58]. Such enhancement is explained by the presence of strongly correlated excitons
in the system. This favours the recombination of a macroscopic number of excitons under
a voltage bias which effectively electrically shorts the distance between the layers [59].

Counterflow measurements

A fundamental property of a superfluid is the zero-resistance coherent flow of particles
under a critical temperature. The measurement of the flow of particles in a system is
referred to as counterflow measurement.

In bilayer excitons, in the counterflow measurement, equal current is sent through
both layers, flowing in the opposite direction, while measuring longitudinal resistance
in each layer. Researchers have struggled to perform this measurement because of the
difficulty (i) in controlling the density of the electrons and holes in the separated layers
[42] and (ii) in maintaining a stable exciton flow [60].

A top and bottom metal gates are independently connected to the top and bottom
layer of the system, as shown in Fig. 1.2. A bias voltage between the two layers can
be induced: above a threshold value, the effective band gap between the conduction
and valence band of the system is reduced to zero, so that electrons are induced in the
conduction band of one layer, and holes in the valence band of the adjacent layer. Thus,
by tuning the bias voltage, one controls the density of electrons and holes.
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At the electrical contacts, a significant drop in the bias voltage has been detected. A
large interlayer tunnelling current accompanies the injection of excitons, inducing non-
negligible recombination between electrons and holes. Because of this, the electron/hole
layer cannot be maintained at the same chemical potential as the contacts. The exciton
density is thus determined by balancing the pumping rates and recombination rates of
excitons. They are non-equilibrium exciton fluids, and the leakage current between the
bilayers strongly influences the transport steady state [42].

This problem has been solved by using a new contact configuration (Fig. 1.5) [3]. The

FIGURE 1.5: Dual-gated double-layer devices. The symmetric gating Vg shifts the
electron and hole chemical potentials and tunes their density difference. Vb is the
bias voltage, and ∆ is the bottom gate voltage, top gate voltage difference divided

by 2 [3].

new device manages to stop the recombination close to the contacts and equilibrium
electron and hole density can be achieved.

As for the second problem, Ref. [60] shows how a steady-state dissipationless current
cannot be induced simply by connecting the two layers in series to guarantee opposite
currents in electron and hole layers. This method increases the interlayer tunnelling prob-
ability and electron-hole recombination. To prevent this the electron current should be
injected into and removed from one layer, and another electron current, in the opposite
direction, should be injected into and removed from the other layer.

In the presence of a superfluid exciton phase, the counterflow resistance should be
zero. Up to now, clear measurements of a very low counterflow resistance have been
reported only in the presence of an external magnetic field in the quantum Hall regime
[61, 62].

Optical measurements

Several techniques have been proposed to optically identify macroscopic spatial coher-
ence in exciton systems using various traps. These include electrostatic traps [63], strain-
induced traps [64], laser-induced interdiffusion traps [65], magnetic traps [66], and laser-
induced traps [67, 68]. Optical identification methods involve:

• Observing bright localized spots with enhanced luminescence at fixed points on the
sample in photoluminescence measurements [69].

• Detecting a sharp inter-well exciton line abruptly appearing in the photolumines-
cence spectra [70].

• Noting an abrupt increase in the amplitude of interference fringes using shift-interferometry
measurements, indicating enhanced exciton coherence length [71].
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However, pre-2007 optical measurements were inconclusive because they overlooked
the role of dark excitons in Bose-Einstein condensates [72, 73]. Dark excitons, which are
optically inactive due to the same spin of their electron and hole, have lower energy
than bright excitons and are not affected by repulsive interband Coulomb processes like
photon emission. The internal spin structure of the exciton condensate, influenced by
exchanges between excitons, allows bright excitons to enter the condensate at high den-
sities. Thus, at high density, the exciton condensate radiates weak photoluminescence,
which can be used as a signature of macroscopic spatial coherence [74].

1.4 Materials

In this section, we give an overview of the materials proposed for observing electron-hole
superfluidity and the main experimental results.

1.4.1 GaAs Double Quantum-Wells

One of the first systems proposed to study electron-hole superfluidity was a Gallium
Arsenide (GaAs) Double Quantum-Well (DQW) structure [75]. This setup consists of
two GaAs quantum wells where electrons and holes are confined in separate wells by
a static electric field. The quantum wells are separated by a thin insulating barrier of
AlxGa1−xAs, which prevents recombination (Fig. 1.6). The strength of electron-hole pair-
ing is controlled by the barrier thickness dB and the widths of the quantum wells dW
[76]. Experimental configurations for these structures are challenging due to scattering

FIGURE 1.6: Conduction and valence bands for a GaAs DQW with quantum well
widths dW = 15nm and Al0.9Ga0.1As barrier thickness dB = 10nm [76]. The dashed
green line is the Fermi level εF. The vertical back dotted lines mark the centres of
the wells. ϕe(z) and ϕh(z) are the resulting electron and hole single-particle wave-

functions confined in the wells.

issues that lower mobilities if the wells are too narrow. In a stable exciton sample with
dB = 15nm quantum wells and dW = 10nm barriers, the average distance between elec-
tron and holes is d = 12nm. Because of the large separations the electron-hole interaction
is weak and the superfluidity is predicted only at low densities (n < 1010cm−2) and low
temperature T < 1K, which are difficult to achieve experimentally.
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In Ref. [32, 77] an initial increase in Coulomb drag resistivity at temperatures around
0.5K was observed in GaAs Double Quantum-Wells. These results are not definitive
enough to claim superfluidity since they cannot keep lowering the temperature due to
excessive noise in the Coulomb drag measurement but they strongly probe the presence
of a stable exciton system.

While definitive observations of superfluidity in GaAs DQWs are still lacking, this
system remains promising due to the significant difference in electron and hole effec-
tive masses, potentially leading to a rich phase diagram of exotic superfluid phases [78].
These include the Fulde–Ferrell–Larkin–Ovchinnikov phase [79], the Sarma phase [80]
and a superlattice quantum solid [81]. Similar phases have been explored in ultracold
atomic gases, but at much lower temperatures, Tc ≃ 50nK [82].

From Double-Monolayer to Double-Bilayer Graphene

After the discovery of graphene [83], a bidimensional atomic layer of carbon atoms, and
hexagonal Boron Nitride (hBN) [84, 85], an effective insulating layer, a van der Waals con-
figuration (Fig. 1.2) consisting of a top layer of graphene doped with electrons and a bot-
tom layer of graphene doped with holes, separated by few layers of hBN, was proposed
as a candidate for high-temperature exciton superfluidity [33, 77]. The main advantages
of Double-Monolayer-Graphene (DMG) respect GaAs double quantum-wells are:

• Carrier confined in a single thin layer. It overcomes the problem of the large well
widths dB in DQW.

• Insulating barrier consisting in trilayers of hBN, corresponding to dB ≃ 1nm. It is
one order of magnitude smaller than the barrier width dB in DQW.

Because of this minimum distance between electrons and holes, it is reasonable to expect
a very strong attractive interlayer Coulomb interaction in double-monolayer graphene.

Unfortunately however, since the energy bands follow a linear dispersion, the kinetic
energy decreases linearly with the interparticle spacing r0, making rs independent of den-
sity and always rs < 1. This means that the strongly interacting regime is not accessible
even at small densities and temperatures. For this reason, no exciton superfluidity is ex-
pected in DMG [45]. This result has been confirmed in a Coulomb drag experiment in
DMG [86, 87].

Double-bilayer graphene (DBG) was proposed to access the strongly interacting regime
and realize exciton bilayer superfluidity [46, 88]. In this configuration the van der Waals
heterostructure is composed of two top graphene layers vertically stacked doped with
electrons and two bottom graphene layers vertically stacked doped with holes, separated
by a few layers of hBN (Fig. 1.7). Unlike monolayer graphene, the single-particle disper-
sion in bilayer graphene is parabolic (Fig. 1.7), as conventional semiconductors, with an
effective mass m∗

e = m∗
h = 0.05me.

Two research groups independently fabricated and characterized double graphene
bilayer devices [89, 90]. Both measured the Coulomb drag resistivity, ρD, as a function
of carrier density, controlled via voltages applied between the bilayers and metallic gates
[91]. Unlike double monolayer graphene, for equal carrier densities in both bilayers,
the drag resistance was nearly as high as the bilayer graphene resistance itself, pointing
toward the presence of a stable exciton system. A second surprising observation is neg-
ative drag. This behaviour was linked to multi-band effects in bilayer graphene [92, 93].
Recently, tunnelling current measurements confirmed the presence of a stable exciton
system in DBG systems, with enhanced interlayer tunnelling around 1.5K [1].
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FIGURE 1.7: (a) Schematization of double-monolayer-graphene (Ref. [33]). On the
right is the linear dispersion relation of single-layer graphene. (b) Schematization
of double-bilayer graphene. On the right is the parabolic dispersion relation of the

double-bilayer graphene.

Double Monolayer Transition Metal Dichalcogenide

In recent years, 2D semiconductors from the group-VI Transition Metal Dichalcogenides
(TMDs) have garnered attention due to their large effective masses and high exciton bind-
ing energies. These TMD monolayers, with the formula MX2 (where M is a transition
metal like Molybdenum or Tungsten, and X is a chalcogen like Sulfur or Selenium), fea-
ture a hexagonal structure. High-quality TMD hetero-bilayers consist of two different
TMD monolayers, one electron-doped and the other hole-doped, directly coupled and
separated by a few layers of hBN [94]. The main advantages of this device are:

• Electron and hole effective mass m∗
e = m∗

h ≃ 0.5me, one order of magnitude larger
than in bilayer graphene, which guarantees a high exciton binding energy of εB =
1eV [95, 96].

• Band gap Eg > 1.5eV between the electron and the hole band. This is enough to
prevent the electron-hole recombination [97].

• Combining two different TMDs in the top and bottom layers results in a type-II band
alignment [98]. In this setup, the conduction band minimum and valence band
maximum are in different layers but at the same k-point in reciprocal space (Fig.
1.8). This configuration strengthens exciton formation and weakens recombination.

For these reasons, double monolayer TMDs are interesting platforms to host strong
interlayer excitons [99, 100]. Furthermore, high transition temperature, Tc ≃ 150K in
double monolayer TMDs have been predicted [101, 102].

A possible signature of exciton superfluidity was reported using interlayer tunnelling
and electroluminescence measurements [2]. Enhancement of electroluminescence is ob-
served up to 100K. However, the claim has been disproved by showing that the system
was in the non-equilibrium excitons regime.
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FIGURE 1.8: Type-II band alignment in the double monolayer transition metal
dichalcogenide system made of a MoSe2 layer doped with electrons and a WSe2

layer doped with holes used in Ref. [6].

A recent very high-quality Coulomb drag experiment in MoSe2-hBN-WSe2 showed
for the first time the perfect Coulomb drag, Idrive/Idrag ≃ 1 up to 20K [6]. However,
Ref. [6] could make no definite claim of superfluidity because of a lack of dissipationless
transport due to the large contact resistance.

1.5 Motivation of the Thesis

The richness of the excitonic physics and the experimental progress achieved in two-
dimensional materials in the last few years [59, 103], make the exciton bilayer systems
particularly attractive.

In this first chapter, we have mainly examined the predictions of the exciton super-
fluid phase when the interlayer distance is small enough and the density is low enough.
However, over different ranges of density and interlayer distance, exciton bilayer systems
can host an extremely rich diagram of phases [7].

Tuning the interlayer d and average interparticle r0 distance, it is possible to explore
different regimes of the intralayer repulsive and interlayer attractive interactions. When
the interlayer distance is much larger than the average separation between the carri-
ers, d ≫ r0, the repulsive Coulomb interaction dominates over the attractive interlayer
Coulomb interaction, leading to a ground state of decoupled Fermi liquids. However,
when r0 > d so that the attractive interlayer interaction dominates, the electrons and
holes will form bound excitonic states. For r0 > d at low densities, r0 large, when the
interlayer distance d is small, the superfluid phase is predicted to be the ground state [43,
46, 104]. Still with r0 > d, but for large d, the ground state is predicted to be a normal
state crystal phase [11, 12, 105, 106]. Finally, in the region of the phase diagram at low
densities and intermediate distances, a variational approach has predicted a supersolid
phase with one exciton per site, in which, remarkably, superfluid spatial off-diagonal
long-range order coexists with the periodic order of the solid [7], Fig. 1.9.

From a theoretical point of view, a unified model capable of fully disentangling all the
phases is still missing. The mean-field theory model used to describe exciton bilayer at
zero temperature [45–48, 78] neglects the correlations within the layers, and incorrectly
predicts that the superfluid phase extends into the d > r0 region at large interlayer dis-
tances, Fig. 1.9. Approaching the r0 − d diagonal from below, the intralayer repulsion
becomes more and more important and the intralayer correlations cannot be neglected.

From an experimental viewpoint, there exists no technique which provides an un-
ambiguous signature of exciton superfluidity. Coulomb drag, interlayer tunnelling, and
electron luminescence measurements have established the presence of a stable exciton
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FIGURE 1.9: Phase diagram at zero temperature of a bilayer exciton system as a
function of the interlayer distance d and the interparticle distance r0 [7]. The black
dashed line is the diagonal d = r0. The green solid line "Condensate collapse" is
obtained in the mean-field approximation without the inclusion of the intralayer

correlations.

phase. The counterflow measurements could reveal a dissipationless current in the sys-
tem. However, the presence of stable excitons or non-dissipative currents is not sufficient
by themselves to claim superfluidity. Measurement of very low resistances is always ac-
companied by uncertainties associated with the experimental equipment, for example
electrical contacts [107]. The conventional criterion used to identify superconductivity,
a combination of dissipationless conduction with the Meissner effect (perfect diamag-
netism under an external magnetic field) cannot of course be employed here because the
excitons are neutral [60].

In view of the recent explosion of interest in the exciton condensed phases, the inabil-
ity of transport measurements to directly establish the existence of these phases makes it
important, timely, and extremely interesting to search for and identify fingerprints that
can unambiguously identify superfluidity and coherent condensation in exciton systems.

This thesis accordingly aims to investigate and identify such fingerprints, to unam-
biguously identify exciton superfluidity and to characterize it. We aim to answer several
important open questions:

• Which phenomena can be experimentally explored in exciton bilayer systems to
work around the current experimental problems in probing the existence of exciton
superfluidity?

• Which are the major ingredients needed in a unified theoretical model to describe
the different phases of the exciton phase diagram?

We seek fingerprints of exciton superfluidity within the observables of the Joseph-
son effect and collective modes. We have developed a sophisticated theoretical model
for exciton superfluidity, one in which the effects of both screening and the intralayer
correlations are fully accounted for.
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Josephson Effect

In 1962, B. D. Josephson predicted that a static tunnelling supercurrent IJ could exist
between two superconductors separated by a thin insulating barrier [108]. Observation of
a dissipationless supercurrent IJ through the barrier in the absence of a driving potential
is regarded as an optimal direct experimental technique to confirm the existence of a
quantum condensed state [109, 110]. The magnitude of this supercurrent is :

IJ = Ic sin(∆ϕ) , (1.4)

where ∆ϕ is the difference in the phases of the two superconductor order parameters,
∆ϕ = ϕL − ϕR (Fig. 1.10), and the maximum current Ic is called Josephson critical current.
Josephson further predicted that if a voltage difference V were maintained across the
junction, the phase difference evolves in time according to:

d(∆ϕ)

dt
=

2eV
h̄

, (1.5)

so the supercurrent is an alternating current of amplitude Ic and frequency ν = 2eV/h̄.
The energy h̄ν is the tunnelling energy of a Cooper pair across the junction [111].

FIGURE 1.10: Schematic representation of the Josephson junction consisting of a
left and a right superconductor (white) separated by an insulating barrier (red). A
current of Cooper pairs without external driving potential flows between the super-

conductors.

Josephson’s prediction was based on a theoretical study of the tunnelling of electrons
through an insulating barrier, but it is now known that the Josephson effect is much more
general. The effect is seen whenever two superconductors are connected by a "weak link".
The weak link can be the insulating barrier as originally proposed by Josephson, a nor-
mal metal barrier that becomes weakly superconductive through the so-called proximity
effect, or a constriction barrier linking two superconductors [112].

Existence of a dissipationless current through a Josephson barrier without any driv-
ing potential confirms the existence of the single amplitude and phase of the macroscopic
wave function characterizing a quantum condensed state. In conventional superconduc-
tors, the Josephson effect is widely used to establish the presence of superconductivity.

Investigations have been extended to superfluid ultracold gas atoms [113–115] through-
out the BCS-BEC crossover [116, 117]. The critical Josephson current and its evolution in
time depend on where the system is located in the BCS-BEC crossover [109, 110]. In the
BEC regime, the critical Josephson current is driven by the sound velocity of the bosonic
excitation of the entire Cooper pair, described by the Bogoliubov-Anderson dispersion
relation [118, 119]. In the BCS regime, the critical Josephson current is driven by the pair-
breaking velocity of the fermionic excitations of the single particles, described by the BCS
pair-breaking dispersion relation [110, 116].
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Advances in Josephson-junction technology have made possible the development of
a variety of sensors for detecting ultralow magnetic fields and weak electromagnetic ra-
diation [120]. For example, Superconducting Quantum Interference Devices (SQUID)
are very sensitive magnetometers based on superconducting loops containing Josephson
junctions [121], and are widely used in hospitals and biology laboratories to improve
the precision of magnetic resonance imaging (MRI) [122]. This heightened sensitivity
improves the quality of imaging, aiding in better diagnosis and monitoring of medical
conditions.

A first theoretical and qualitative attempt at studying the Josephson effect in an exci-
ton bilayer system was made in Ref. [123]. The direct and alternating Josephson current
was studied in an exciton Josephson junction made up of two DMG systems separated
by a generic "tunnelling barrier". The exciton current was created in the junction by a
density and phase imbalance between the left and right bilayer exciton systems. By con-
necting the two layers in series, the same current flows in one layer in one direction, and
in the opposite direction in the other layer. The phenomenon was theoretically described
by a mean-field approach neglecting screening.

In this Thesis, we report a theoretical study of the Josephson effect in exciton bilayer
systems, taking screening into account. Unlike Ref. [123], this study is based on a realistic
experimental setup.

Collective Modes

Collective modes describe the cooperative response to an external perturbation acting
on a many-body system. We will exploit the fact that the dispersion and lifetime of the
collective modes of the exciton bilayer system vary dramatically depending on which
phase the system is in.

Collective modes have been widely studied theoretically in superconductors, ultra-
cold gases and neutron stars [124–128]. Recently, interest in collective excitations in
superfluids and superconductors has been reinforced by experiments to study their re-
sponse properties [129, 130].

The response functions of macroscopic observables, the density, or in the case of a
coherent condensed system, the order parameter can be measured by externally perturb-
ing the system at a given wavenumber q and drive frequency ω. In the theoretical case,
the collective mode is undamped, so an infinitely narrow resonance (a Dirac peak) in the
response function is expected when the perturbation energy coincides with the collective
mode energy. The peak corresponds to a real pole in the response function, lying outside
the continuum.

However, in reality, collective modes are damped and coupled with each other. The
system response is then less abrupt, a broadened resonance. The resonance peak cor-
responds to an imaginary pole of the response function in the continuum region at the
complex frequency Ω(q) = ω(q)− iΓ(q) [131]. Γ(q) is the damping parameter, reflecting
the lifetime of the collective mode and the (−) sign is for the stability of the collective
modes.

The response function in the continuum is a non-analytical function. Nozières used
analytic continuation to move the non-analytic points from the real Ω axis to the imagi-
nary semi-plane [132, 133].

Superfluid Fermi gases can be described using the Random-Phase Approximation
(RPA) by investigating the fluctuations of three collective fields: the total density n of
particles and the phase and modulus of the superfluid order parameter.
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• Collective modes associated with density fluctuations. These plasma modes ap-
pear in the normal state [131]. In the long-wavelength limit, the plasma modes are
q-independent in a 3D system, while in a 2D system they are proportional to

√
q

[134].

• Collective modes associated with phase fluctuations of the order parameter. In
neutral superfluid systems, these are gapless soundlike modes [133, 135–137], the
Anderson–Bogoliubov modes. In the long-wavelength limit, they are linear in q. In
charged systems, the gapless modes are affected by the Coulomb interaction and
they are pushed up to the plasma mode [138, 139].

• Collective modes associated with amplitude fluctuations of the order parameter.
These modes are gapped. They are the so-called pair-breaking modes. They lie in
the continuum. Their dispersion relation is characterized by a damping parameter.

In the general case, the fluctuations of the fields are coupled, so the collective modes have
components in all three fields.

The collective modes can be used to identify the boundary between the normal and
superfluid phases and to map the BCS-BEC crossover. The collective modes at zero tem-
perature are as follows:

• BCS regime. Amplitude collective modes appear in the amplitude response func-
tion. Phase collective modes appear in the phase and in the density response func-
tion and as a Dirac peak at zero temperature [140].

• BCS-BEC crossover regime. In the crossover regime, neither the plasma, nor the
Anderson–Bogoliubov, nor the pair-breaking mode can be attributed exactly to am-
plitude or phase responses, because there is amplitude-phase mixing.

• BEC regime Phase collective modes appear in the phase response function. The
amplitude modes are observable in the amplitude response channel and also in the
density response channel.

Throughout the BCS-BEC crossover, the density fluctuations are sensitive to the fluctu-
ations of the order parameter, so that both amplitude and phase collective modes are
visible in the density response, but the opposite is not true. The amplitude and phase
fluctuations of the order parameter are not sensitive to density fluctuations.

For neutral atomic Fermi superfluid systems, the spectra of both Anderson–Bogoliubov
and pair-breaking modes have been studied experimentally using two-photon Bragg
spectroscopy [130]. For charge superconductors, pair-breaking has only recently been
identified experimentally [129] by performing terahertz pulse excitation on the system.
The density can be excited by a Bragg pulse [130] or by shaking the confinement walls
[141].

A systematic investigation of the collective modes in exciton systems is needed and
can help to disentangle all the predicted exciton phases.

Collective modes in a superfluid exciton bilayer system have recently been investi-
gated by De Palo et al. [142]. The authors focus on density collective modes in a bilayer
exciton system adopting a "quasi-localized particle approximation" [143] in which elec-
trons and holes are assumed to be highly localized. They demonstrate the presence of
acoustic and optic collective modes as in the normal exciton phase [144], and they show
that the modes are gapped in the superfluid phase. Physically, the quasi-localized parti-
cle model is a good approximation for low densities and large interlayer distances where
the particles interact only weakly with each other. The picture is consistent with results in
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Chapter 1. Electron-Hole superfluidity

Ref. [145] for a dilute exciton solid, in which the excitons organize into a crystal structure,
making the electrons and holes highly localized.

In this Thesis, we present a theoretical investigation of the collective modes in an exci-
ton bilayer system, basing it on a model that realistically describes the exciton superfluid
phase.

1.6 Organization of the thesis

The thesis is organized as follows.
In the second chapter we introduce a theoretical model for electron-hole superfluid-

ity in bilayer systems that includes intralayer correlations via the Hartree-Fock approxi-
mation, and Coulomb screening effects in both the interlayer and intralayer interactions
using a self-consistent Random Phase Approximation (RPA). We use a path-integral ap-
proach to derive the gap and number equations for superfluidity across the BCS-BEC
crossover. Existing models neglect the intralayer correlations. The chapter sets the foun-
dation for further exploration of these correlations in the BCS-BEC crossover, with the
aim of a unified electron-hole theory.

In the third chapter, we explore the static Josephson effect in an electron-hole su-
perfluid bilayer Transition Metal Dichalcogenides (TMD) heterostructure. We propose
a design for a bilayer Josephson junction in which it is possible to control the potential
energy barrier, and we discuss experimental techniques for fabricating it. We analyze
the superfluid characteristics and crossover physics for a rectangular Josephson junction.
We determine the superfluid properties and the critical current across Josephson junc-
tions with varying potential barrier heights. For low potential barriers, we investigate
the BCS-BEC crossover physics of the Josephson current. For high potential barriers, we
calculate the exciton pair tunnelling in order to study the Josephson current. By exploring
the physics of the junction, we are able to identify for the first time in a semiconductor
system, an experimental method to locate the boundary between the BEC and BCS-BEC
crossover regimes in the BCS-BEC crossover phenomenon.

In the fourth chapter, we investigate the intralayer correlations acting within the lay-
ers in the superfluid phase of electron-hole spatially separated layers. We establish that
the Hartree-Fock approximation is everywhere valid for treating the intralayer repulsive
interaction in electron-hole bilayer superfluids. We investigate the effect of the intralayer
correlations on the superfluid properties as a function of the density. We benchmark the
results with quantum Monte Carlo numerical simulations in the case of double-bilayer
graphene. We explore the effect of intralayer correlation in the BCS-BEC crossover, by
tuning the interlayer distance for fixed density. Finally, we study the effect of intralayer
correlations on the exciton pair size as a function of the density. We find in the BCS-
BEC crossover regime that the superfluid gap is significantly weakened by the intralayer
correlations, but that in the BEC regime, superfluid properties are insensitive to the in-
tralayer correlations.

In the fifth chapter, we explore the collective modes in the exciton bilayer system.
Our aim is to identify a fingerprint for the presence of the superfluid exciton phase. We
focus on collective modes associated with density fluctuations within the Random Phase
approximation. We compare results in the normal and superfluid states. We discuss the
major differences between the collective modes originating from the long-range Coulomb
interactions in an exciton bilayer compared with the collective modes originating from
the contact interaction in cold atom gases. Finally, we discuss qualitatively, the collective
modes associated with fluctuations in the amplitude and phase of the superfluid order
parameter.
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In the sixth chapter we summarize our new results. The thesis ends with an overview
of some potential extensions in future work.

1.7 Collaboration and publications

The research presented in this thesis is the result of the joint PhD project born from the
collaboration between the University of Camerino (Italy) and the University of Antwerp
(Belgium). The thesis is inspired by many discussions, research notes and joint pub-
lications. The research was supervised by Prof. Andrea Perali from the University of
Camerino, and by Prof. Jacques Tempere and Prof. David Neilson from the University
of Antwerp. The research presented in this thesis was performed in collaboration with
FWO Postdoctoral Fellow Sara Conti at the University of Antwerp. During the work on
the thesis, there have been the following publications and other collaborations :

• Chapter 2: The theoretical approach was further refined thanks to discussions with
Gaetano Senatore and Stefania De Palo (University of Trieste ).

• Chapter 3: A manuscript was published in Physical Review B [146].

• Chapter 4: A manuscript was published in Physical Review B [44].

• Chapter 5: The discussion and interpretation of the results were further refined
thanks to discussions with Hadrien Kurkjian and Sergei Klimin. A manuscript is in
preparation.

The future outcomes presented in Chapters 3 and 5 are included in the Project that
was successfully chosen by the Research Foundation - Flanders "Fonds Wetenshappelijk
Onderzoek" (FWO).
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Chapter 2

Model and method

In this chapter we introduce the theoretical approach used to describe electron-hole superfluidity in
bilayer systems, including intralayer correlations. The effect of the Coulomb screening in the at-
tractive interlayer and repulsive intralayer interaction are considered through the Random Phase
approximation. For the first time, the complete and extensive calculation of the Random Phase
approximation in exciton bilayer systems based on the evaluation of the Green’s functions equa-
tion of motion has been reported. With a path-integral approach, we calculate the fundamental
equations to describe the superfluidity throughout the BCS-BEC crossover.

The mean-field model with the inclusion of only the RPA-screened interlayer interac-
tion wrongly predicts that the superfluid phase also survives in the r0 > d region [7, 46,
147], for large d, as reported in the r0 − d phase diagram Fig. 1.9. Approaching the r0 − d
diagonal from below the intralayer repulsion becomes more and more important and the
intralayer correlation can not be neglected.

In this chapter, we aim to build a theoretical model able to describe exciton superfluid-
ity with the inclusion of the intralayer correlation. We explicitly calculate the mean-field
gap and number equations of a bilayer electron-hole system as a function of the exciton
density and interlayer distance through a path-integral approach [148–152]. In partic-
ular, we extend the existing theoretical mean-field approach [46, 153] by including the
screened repulsive interaction between electrons (holes) within the same layer using the
Hartree-Fock approximation.

We will further investigate the effect of the intralayer correlations throughout the
BCS-BEC crossover in Chapter 4. We will show that their inclusion is a first and fun-
damental step toward an electron-hole unified theory.

2.1 Path Integral Approach for Electron-Hole superfluidity

To study the phenomena of spatially separated electrons and holes binding together in
bilayer systems in the superfluid phase the particle-hole transformation is adopted. For
the p-doped layer characterized by empty electron states in the valence band, the valence
band is mapped to a conduction band populated by positive charges up to the hole Fermi
level.
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Chapter 2. Model and method

The system is described by the total grand-canonical Hamiltonian for electron-hole
gas in second quantization:

Ĥ = ∑
λ

∫
dx Ψ†

λ(x)Tλ(x)Ψλ(x) +
1
2 ∑

λ

∫
dx
∫

dx′ Vλλ(x, x′)Ψ†
λ(x)Ψ

†
λ(x

′)Ψλ(x′)Ψλ(x)

+
1
2 ∑

λ ̸=λ′

∫
dx
∫

dy Vλλ′(x, y)Ψ†
λ(x)Ψ

†
λ′(y)Ψλ′(y)Ψλ(x)

(2.1)

where Ψ and Ψ† are the annihilation and creation field operators for an electron (λ = e)
or an hole (λ = h). In Eq. (2.1), Tλ is the electron and hole kinetic energy, Vλλ is the
intralayer repulsive interaction between same charges and Vλλ′ is the attractive interlayer
interaction between electrons and holes. The spatial coordinate x refers to the electron
layer while y refers to the hole layer.
Noticing that:

Veh(x, y)Ψ†
e (x)Ψ

†
h(y)Ψh(y)Ψe(x) = Vhe(y, x)Ψ†

h(y)Ψ
†
e (x)Ψe(x)Ψh(y) , (2.2)

the Hamiltonian states:

Ĥ = ∑
λ

∫
Ψ†

λ(x)Tλ(x)Ψλ(x)dx +
1
2 ∑

λ

∫
Vλλ(x, x′)Ψ†

λ(x)Ψ
†
λ(x

′)Ψλ(x′)Ψλ(x)dxdx′

+
∫

Veh(x, y)Ψ†
e (x)Ψ

†
h(y)Ψh(y)Ψe(x)dxdy. (2.3)

Because the carriers are strongly confined to 2D layers, the field operator Ψe(x) (Ψh(y))
is separable in the in-plane x (y) and out-plane x⊥ (y⊥) spatial coordinate.

Ψe(x, x⊥) = ψe(x)ϕe(x⊥) , (2.4)
Ψh(y, y⊥) = ψh(y)ϕh(y⊥) . (2.5)

The kinetic energy Tλ can be separated in the in-plane and out-plane spatial components:

Te(x) = Te(x) + Te(x⊥)− µe (2.6)
Te(y) = Th(y) + Th(y⊥)− µh (2.7)

where µe (µh) is the electron (hole) single-particle chemical potential.
Here will we assume that each layer is in the quasi-2D regime, meaning that only a

single mode ϕλ(x⊥) in the perpendicular direction is occupied, for the electron layer as
well as the hole layer. Since

∫
dx⊥ ϕ∗

λ(x⊥)ϕλ(x⊥) = 1, we obtain for the kinetic energy

K̂ = ∑
λ

∫
dx Ψ†

λ(x)Tλ(x)Ψλ(x)

= K⊥ + ∑
λ

∫
dx ψ†

λ(x)(Tλ(x)− µλ)ψλ(x), (2.8)

where
K⊥ = ∑

λ

∫
dx⊥ ϕ∗

λ(x⊥)Tλ(x⊥)ϕλ(x⊥) (2.9)

is a constant energy shift, due to the confinement in the perpendicular direction. As it is
merely a constant shift, we will drop this term.
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2.1. Path Integral Approach for Electron-Hole superfluidity

Taking the expectation value of the interlayer interaction, Veh(x − y) over the per-
pendicular wave functions yields an effective interaction depending on the interlayer
separation and the in-plane distance |x − y|:∫

dx⊥
∫

dy⊥ ϕ∗
e (x⊥)ϕ∗

h(y⊥)Veh(x − y)ϕe(x⊥)ϕh(y⊥) ≈ Veh

(√
d2 + (x − y)2

)
. (2.10)

Here, and for the rest of the thesis, we will assume that the confinement in the electron
layer and in the hole layer is strong enough such that the above expression holds. This
implies that the interlayer distance d should be larger than the confinement lengths

ℓλ,⊥ =
∫

dx⊥ ϕ∗
λ(x⊥)(x⊥ − ⟨x⊥⟩)2ϕλ(x⊥), (2.11)

In a typical experimental setup, for example, double-bilayer-graphene, d ≃ 1− 2 nm and
the confinement length in the perpendicular direction is ℓλ,⊥ ≈ 0.5 nm, so this assump-
tion is satisfied. Using this assumption, the contribution of the interlayer interaction to
the Hamiltonian becomes

Vinter =
∫

dx
∫

dy Veh

(√
d2 + (x − y)2

)
ψ†

e (x)ψ†
h(y)ψe(y)ψe(x). (2.12)

The quasi-2D approximation can also be made for the intralayer interaction. Here,
the underlying assumption is that the distance between the electrons (or holes) is larger
than the effective 2D confinement length. If this condition is violated, one can no longer
assume that only a single perpendicular mode is occupied. This restricts the results to
rs > ℓλ,⊥ (and we already required d > ℓλ,⊥). Both conditions are well met in the exper-
imental realizations. The contribution of intralayer interactions to the Hamiltonian then
becomes

Vintra =
1
2 ∑

λ

∫
dx
∫

dx′ Vλλ(x − x′)ψ†
λ(x)ψ†

λ(x′)ψλ(x′)ψλ(x). (2.13)

In 1948, after the matrix formulation of quantum mechanics by Werner Heisenberg, Max
Born and Pascual Jordan [154] and the wave function formulation of quantum mechanics by
Erwin Schrödinger [155], a third interpretation of quantum mechanics was introduced by
Richard Feynman [148], building on the work previously done by Paul Dirac [156]. The
new development is called path integral formulation of quantum mechanics. The interpre-
tation of quantum mechanics by Feynman can be summarized as follows. The quantum
mechanical amplitude K(B, t|A, 0) to find a particle at time t in a final state B, given that it
was in an initial state A at time t = 0, is given by a weighted sum over all possible paths
going from A to B in state space, in a time t, where the weight a path is given by to eiS/h̄,
with S the classical action computed along the path. This amplitude also called the path
integral propagator, is linked to the density matrix in thermal equilibrium at tempera-
ture T = 1/(kBβ). One finds that the density matrix ρβ(B, A) = ⟨B|ρ̂β|A⟩ is equal to the
imaginary time propagator K(B,−ih̄β|A, 0) which can be found by analytic continuation
of the dynamical propagator. Although it might be easier to use other methods to study
quantum systems, Feynman’s path integral approach has benefits in evaluating thermo-
dynamic properties and in providing physical insights by looking at the structure of the
action S. A detailed description of the path integral method can be found in refs. [148–
152].
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Chapter 2. Model and method

The path integral approach for quantum statistical field theory relies on the calcula-
tion of the partition function of the system:

Z =
∫

D[ψ†
λ, ψλ] exp

{
−S[ψ†

λ, ψλ]/h̄
}

. (2.14)

The sum (integral) now runs over all possible field configurations rather than all paths of
individual particles. The transition to imaginary time τ = it provides each field config-
uration with a weight e−S/h̄ where S is the euclidean action [148]. In the case of bilayer
electron-hole system the action S is given by:

S[ψ†
λ, ψλ] =

∫ β

0
dτ

[
∑
λ

(∫
dx ψ†

λ,τ(x)(∂τ + Tλ − µλ)ψλ,τ(x)

+
1
2

∫
dx
∫

dx′Vλλ(x, x′)ψ†
λ,τ(x)ψ†

λ,τ(x′)ψλ,τ(x′)ψλ,τ(x)
)

+
∫

dx
∫

dy Veh(x, y)ψ†
e,τ(x)ψ†

h,τ(y)ψh,τ(y)ψe,τ(x)
]

, (2.15)

in the partial derivative over the imaginary time, τ is needed to turn the Hamiltonian
into a Lagrangian, and the integral over τ of the Lagrangian yields the Euclidean action.
As before, β = 1/kBT is the inverse temperature with kB Boltzmann constant.

The interaction terms, both interlayer and intralayer, are quartic in the fermionic field,
making analytical integration over the fermionic field ψ impossible. To tackle this issue,
the Hubbard-Stratonovich transformation is widely used [157–159]. This transformation
effectively decouples the four fermionic terms into two fermionic terms coupled to an
auxiliary bosonic field, enabling Gaussian functional integration. This leaves the choice
of which pairs of fermionic operators to select open. For the intralayer term, possible
combinations of fermionic operators include: ψ†

e (x)ψe(x), termed the Hartree or direct
channel; ψ†

e (x)ψe(x′), termed the Fock or exchange channel; and ψ†
e (x)ψ†

e (x′), termed the
Bogoliubov pair channel.

Importantly, regardless of the chosen channel, the action remains exact, no approxi-
mations are applied with the Hubbard-Stratonovich transformation. However, perform-
ing the path integral over the auxiliary Hubbard-Stratonovich field in any channel is
challenging, often requiring additional approximations. In our system, we adopt the
mean-field approximation [159], leading to three potential outcomes:

(a) Applying mean-field to the direct channel results in the loss of Fock exchange en-
ergy, leaving only the direct Hartree correlation term. Considering a uniform neu-
tralizing background in each layer cancels out the Hartree term. This gives a zero
contribution.

(b) Applying mean-field to the pairing channel eliminates both the Fock and Hartree
terms, leaving only the Bogoliubov pairing term. Given the unlikelihood of in-
tralayer electron-electron or hole-hole pairing in this system, the pairing channel is
excluded. This gives a zero contribution.

(c) Applying mean-field to the exchange channel retains only the Fock exchange en-
ergy correlation term [160]. This gives a non-zero contribution and represents the
only viable choice for the intralayer interaction.
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(b)

(c)

FIGURE 2.1: The Feynman diagrammatic representation of the mean-field Hartree
channel (a), pairing channel (b) and Fock channel (c) to decouple the intralayer in-

teraction term through the Hubbard-Stratonovic transformation.

The Hubbard-Stratonovich transformation of the intralayer term in the exchange chan-
nel reads:

exp

[
−1

2 ∑
λ

∫
dτ
∫

dx
∫

dx′Vλλ(x, x′)ψ†
λ,τ(x)ψ†

λ,τ(x′)ψλ,τ(x′)ψλ,τ(x)

]

=
∫

D[Γλ,τ] exp

[
−1

2 ∑
λ

∫
dτ
∫

dx
∫

dx′
(

Γλ,τ(x, x′)ψ†
λ,τ(x)ψλ,τ(x′)

+ Γλ,τ(x′, x)ψ†
λ,τ(x′)ψλ,τ(x)− Γλ,τ(x, x′)Γλ,τ(x′, x)

Vλλ(x, x′)

)]
, (2.16)

where Γλ,τ(x, x′) = Vλλ(x, x′)ψ†
λ,τ(x′)ψλ,τ(x) is the bosonic auxiliary field introduced by

the Hubbard-Stratonovic transformation to decouple the intralayer term. The mean-field
approximation can be performed by taking the mean expectation value of the bosonic
field,

ΓMF
λ (x, x′) = ⟨Vλλ(x, x′)ψ†

λ,τ(x′)ψλ,τ(x)⟩ = Vλλ(x, x′)nλ(x, x′), (2.17)

where nλ,τ(x, x′) is the density matrix. Eq. (2.16) becomes:

∫
D[nλ] exp

[
− 1

2 ∑
λ

∫
dτ
∫

dx
∫

dx′
(

Vλλ(x, x′)nλ(x, x′)ψ†
λ,τ(x)ψλ,τ(x′)

+ Vλλ(x′, x)nλ(x′, x)ψ†
λ,τ(x′)ψλ,τ(x)− nλ(x, x′)nλ(x′, x)Vλλ(x, x′)

)]
.

(2.18)
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Since Vλλ(x, x′) = Vλλ(x′, x) the intralayer term simplifies to:

∫
D[nλ] exp

[
−1

2 ∑
λ

∫
dτ
∫

dx
∫

dx′
(

2Vλλ(x, x′)nλ(x, x′)ψ†
λ,τ(x)ψλ,τ(x′)

− nλ(x, x′)nλ(x′, x)Vλλ(x, x′)
)]

. (2.19)

For the interlayer term instead the transformation is performed in the pairing channel
Ψe(x)Ψh(y) [158, 159], and the mean-field approximation results in the introduction of
the bosonic pair field ∆τ(x, y), which represents the order parameter of exciton superfluid
phase. The Hubbard-Stratonovic transformation of the interlayer term results:

exp
[
−
∫ β

0
dτ
∫

dx
∫

dy Veh(x, y)ψ†
e,τ(x)ψ†

h,τ(y)ψh,τ(y)ψ†
e,τ(x)

]
=∫

D[∆, ∆†] exp
[
−
∫ β

0
dτ
∫

dx
∫

dy
(
|∆τ(x, y)|2
Veh(x, y)

+ ∆†
τ(x, y)ψe,τ(x)ψh,τ(y) + ∆τ(x, y)ψ†

e,τ(x)ψ†
h,τ(y)

)]
. (2.20)

Replacing Eq. (2.20) in the partition function one obtains:

Z =
∫

D[ψ†, ψ, ∆†, ∆, n] exp [−S(ψ†, ψ, ∆†, ∆, n)/h̄]

=
∫

D[ψ†, ψ, ∆†, ∆, n] exp

{
− ∑

λ

∫ β

0
dτ
∫

dx

[
ψ†

λ,τ(x)
(

∂τ + Tλ − µλ

)
ψλτ(x)

+
1
2

∫
dx′ Vλλ(x, x′)nλ(x, x′)

(
2ψ†

λ,τ(x)ψλ,τ(x′)− nλ(x′, x)
)

+
∫

dy
(
|∆τ(x, y)|2
Veh(x, y)

+ ∆†
τ(x, y)ψe,τ(x)ψh,τ(y) + ∆τ(x, y)ψ†

e,τ(x)ψ†
h,τ(y)

)]}
. (2.21)

The partition function is now quadratic in the fermionic field ψ. Before proceeding with
the Gaussian integration it is useful to change the momentum space representation, by
introducing the Fourier transformation of the fermionic and bosonic fields:

ψλ,τ(x) =
1√
βS ∑

k,n
e−iωnτ+ikxψλ,n(k), (2.22)

ne(x, x′) =
1√
βS ∑

p,m
eip(x−x′)ne(p), (2.23)

∆τ(x, y) =
1√
βS ∑

q,l
e−iω̃mτ+iq(x−y)∆m(q), (2.24)

Vee(z) =
1
S ∑

q
eiqzVee(q), (2.25)

Veh(z) =
1
S ∑

q
eiqzVeh(q), (2.26)

where ωn = 2π(n + 1)/β and ω̃m = 2πm/β are the fermionic and bosonic Matsubara
frequencies, respectively. For simplicity, we use the same prefactor 1/

√
βS for Ψ, n and
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∆. After the Fourier transformation, we will fix the dimensionality of each quantity. The
(Dirac and Kronecker) deltas are given by:

1
βS

∫ β

0
dτ
∫

dxe−i(ωn−ωn′ )τ+i(k′−k)x = δ(k − k′)δnn′ . (2.27)

The Fourier transformation of the kinetic term is given by:

K̂ = ∑
λ

∫ β

0
dτ
∫

dx
1√
βS ∑

k,n
eiωnτ−ikxψ†

λ,n(k)

(
∂τ −

h̄2∇2

2m
− µλ

)
1√
βS ∑

k′,n′
e−iωn′τ+ik′xψλ,n′(k′)

= ∑
λ

1
βS ∑

n,k
n′,k′

∫ β

0
dτ e−iτ(ωn−ωn′ )

∫
dx e−i(k−k′)ψ†

λ,n(k)

(
−iωn′ +

h̄2k′2

2m
− µλ

)
ψλ,n′(k′)

= ∑
λ

∑
n,k

n′,k′

δn,n′δ(k − k′)ψ†
λ,n(k)

(
−iωn′ +

h̄2k′2

2m
− µλ

)
ψλ,n′(k′)

= ∑
λ

∑
k,n

ψ†
λ,n(k)

(
−iωn +

h̄2k2

2m
− µλ

)
ψλ,n(k) . (2.28)

For the intralayer interaction term, the Fourier transform is divided into the two terms
of Eq.(2.19). The first term reads:

1
2 ∑

λ

∫ β

0
dτ
∫

dx
∫

dx′ 2Vλλ(x, x′)nλ(x, x′)ψ†
λ(x)ψλ(x′)

=
1

2(βS)
3
2

∑
λ

∑
n1,k1
n2,k2

∑
m,p

∫ β

0
dτ
∫

dx
∫

dx′ eiω1τ−ik1xψ†
λ,n1

(k1)

× 2Vλλ(x − x′)e−ip(x−x′)nλ(p)e−iω2τ+ik2x′ψλ,n2(k2) , (2.29)

where z = x − x′, so replacing x′ = x − z this expression reduces to:

1

2(βS)
3
2

∑
λ

∑
n1,k1
n2,k2

∑
p

∫ β

0
dτ e−iτ(ω2−ω1)

∫
dx eix(k2−k1)

∫
dz 2Vλλ(z)eiz(p−k2)

× ψ†
λ,n1

(k1)nλ(p)ψλ,n2(k2) , (2.30)

The first two integrals are the definition of Dirac delta Eq. (2.27), and the third one is the
Fourier transform of the intralayer Coulomb repulsion. Thus:

1
2
√

βS ∑
λ

∑
n1,k1
n2,k2

∑
p

δω2−ω1 δ(k2 − k1)2Vλλ(p − k2)ψ
†
e,n1(k1)

nm(p)ψe,n2(k2) =

=
1√
βS ∑

λ
∑
n,k

ψ†
λ,n(k)

(
∑

p
Vλλ(p − k)nλ(p)

)
ψλ,n(k) . (2.31)
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The Fourier transform of the second term of the Eq. (2.19) is:

1
2 ∑

λ

∫ β

0
dτ
∫

dx
∫

dx′ nλ(x, x′)nλ(x′, x)Vλλ(x, x′)

=
1

2S ∑
λ

∑
p1
p2

∫
dx
∫

dx′ Vλλ(x − x′)eip1(x−x′)nλ(p1)eip2(x′−x)nλ(p2)

=
1

2S ∑
λ

∑
p1,p2

∫
dx
∫

dzVλλ(z)eiz(p2−p1)nλ(p1)nλ(p2)

=
1
2 ∑

λ
∑

p2,p1

Vλλ(p2 − p1)nλ(p1)nλ(p2) . (2.32)

The intralayer interaction term in momentum space reads:

Vintra = ∑
λ

1√
βS ∑

n,k
ψ†

λ,n(k)

(
∑

p
Vλλ(p − k)nλ(p)

)
ψλ,n(k)

−1
2 ∑

p2,p1

Vλλ(p2 − p1)nλ(p1)nλ(p2) . (2.33)

For the interlayer interaction term, the Fourier transform of Eq. (2.12) is:

Vinter =
∫

dτ
∫

dx
∫

dy Veh(x, y)ψ†
e (x)ψ†

h(y)ψh(y)ψe(x) =

=
1

(βS)2 ∑
n1k1
n2k2

∑
n3k3
n4k4

∫
dτ
∫

dx
∫

dy Veh(x − y)eiω1τ−ik1xψ†
ek1n1

eiω2τ−ik2yψ†
hk2n2

× e−iω3τ+ik3yψhk3n3 e−iω4τ+ik4xψek4n4 , (2.34)

replacing x = z + y one obtains:

Vinter =
1

(βS)2 ∑
n1,k1
n2,k2

∑
n3,k3
n4,k4

∫
dτeiτ(ω2+ω1−ω3−ω4)

∫
dy e−iy(k2−k3−k4+k1)

×
∫

dz Veh(z)e−iz(k1−k4)ψ†
e,n1

(k1)ψ
†
h,n2

(k2)ψh,n3(k3)ψe,n4(k4) .

(2.35)

The first two integrals give the delta Dirac functions while the third one is the Fourier
transform of the attractive interlayer Coulomb interaction. Thus:

Vinter =
1

βS ∑
n1,k1
n2,k2

∑
n3,k3
n4,k4

δ(ω2 + ω1 − ω3 − ω4)δ(k2 − k3 − k4 + k1)Veh(k1 − k4)

× ψ†
e,n1

(k1)ψ
†
h,n2

(k2)ψh,n3(k3)ψe,n4(k4) . (2.36)

The dependence on four different momenta is simplified by imposing that electron-hole
pairs have zero centre of mass, as in BCS theory [111]. This means that the interacting
electrons and holes must have opposite momenta, as shown in Fig. 2.2.
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2.1. Path Integral Approach for Electron-Hole superfluidity

FIGURE 2.2: a) Generic electron-hole scattering through an attractive Coulomb in-
teraction Veh. b) Electron-hole scattering imposing zero centre of mass electron-hole

pair condition.

With the notation k3 = k, k4 = −k, k2 = p, k1 = −p, and the same notation for the
Matsubara indices, the interlayer term states:

Vinter =
1

βS ∑
n,k
l,p

Veh(k − p)ψ†
e,−n(−p)ψ†

h,n(p)ψh,−l(k)ψe,l(−k) . (2.37)

With this condition, the Fourier transform on the intralayer term after the Hubbard-
Stratonovic transformation, Eq.(2.20) is:

Vinter =
|∆τ(x, y)|2
Veh(x, y)

+ ∆†
τ(x, y)ψe,τ(x)ψh,τ(y) + ∆τ(x, y)ψ†

e,τ(x)ψ†
h,τ(y)

= ∑
n,k,p

√
S
β

(
∆†(k)ψh,−n(k)ψe,n(−k) + ∆(p)ψ†

e,−n(p)ψ†
h,n(−p) + S2 ∆†(k)∆(p)

Veh(k − p)

)
.

(2.38)

The partition function after the Fourier transform becomes:

Z =
∫

D[ψ, n, ∆] exp

[

− ∑
λ

∑
kn

ψ†
λ,n(k)

[(
−iωn +

h̄2k2

2m
− µλ

)
− 1√

βS ∑
p

Vλλ(p − k)nλ(p)

]
ψλ,n(k)

− ∑
λ

∑
p2 p1

Vλλ(p2 + p1)nλ(p1)nλ(p2)

2

+ ∑
n,k,p

√
S
β

(
∆†(k)ψh,−n(k)ψe,n(−k) + ∆(p)ψ†

e,−n(p)ψ†
h,n(−p)

)
+ S2 ∆†(k)∆(p)

Veh(k − p)

]
,

(2.39)

We fix the dimensionality Ψ, n and ∆ as follows: ∆(q) → ∆(q)
√

β/S and n(q) →
n(q)

√
β/S.

The action in the momentum space is quadratic in the fermionic field, allowing the
Gaussian field integration. To do so, we rewrite the action in a matrix form using the
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Chapter 2. Model and method

Nambu spinors [161]:

ηn(k) =
(

ψe,−n(−k)
ψ†

h,n(k)

)
ηn(k) =

(
ψ†

e,−n(−k) ψh,n(k)
)

(2.40)

Eq. (2.39) in Nambu formalism reads:

Z =
∫

D[η, n, ∆] exp

[
− ∑

k,n
ηn(k)(−G−1)ηn(k)−

β

S ∑
λ

∑
p2,p1

Vλλ(p2 − p1)nλ(p1)nλ(p2)

2

+ βS ∑
k,p

∆†(k)∆(p)
Veh(k − p)

]
. (2.41)

where −G−1 is the Gor’kov single-particle propagator:

−G−1 =

(
−iωn + ξe(k) −∆(k)

−∆†(k) −iωn − ξh(k)

)
, (2.42)

Eq. (2.42) is formally identical to the single-particle propagator in BCS theory [159]. The
intralayer correlation in the Hartree-Fock approximation acts like a deformation of the
single-particle parabolic dispersion relation. Here, ξλ(k) = ϵλ(k) − µλ − 1

S ∑p Vλλ(p −
k)nλ(p). In Chap. 4 we will explore the effect of the Vλλ term in ξλ(k) on the superfluid
properties.

The Gaussian integral over the spinor ηn(k) results in:

Z =
∫

D[n, ∆] exp[−Se f f [∆, ∆†, n]/h̄] =

=
∫

D[n, ∆] exp

[
∑
k,n

ln
[
− det(G−1)k,n

]
− β

S ∑
λ

∑
p2,p1

Vλλ(p2 − p1)nλ(p1)nλ(p2)

2

+ βS ∑
k,p

∆†(k)∆(p)
Veh(k − p)

]
, (2.43)

where Se f f is the effective action: the action of the system after the Hubbard-Stratonovic
transformation and the integration of the fermionic fields.

The result still contains a path integral over the bosonic pair fields ∆ and n. This
integral cannot yet be done analytically, however, with the action in this form, we have
access to additional information about the bosonic fields.

Why go through all the trouble of introducing these bosonic fields, if in the end the
result is another path integral that cannot be done exactly? The advantage of having
the action written with the bosonic fields is that we can use our interpretation of these
collective fields to introduce saddle-point approximations. For example, if we assume
that the pairs form a Bose-Einstein condensate, then the mode in which they condense is
macroscopically occupied, and this ’classical’ field configuration will provide the domi-
nant contribution to the path integral. A judicious choice of saddle point configurations
allows to add gaussian fluctuations and perform the approximated integral analytically.

In general, the saddle point values of the fields are obtained by minimizing the effec-
tive action. For the pair field, this leads to the following gap equation for the saddle point
∆(q) :
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2.1. Path Integral Approach for Electron-Hole superfluidity

∂Se f f

∂∆†(q)
= 0

∑
k,n

1
det(−G−1)k,n

∂(det(−G−1))k,n

∂∆†(q)
+ βS ∑

k,p

1
Veh(k − p)

∂∆†(k)∆(p)
∂∆†(q)

= 0

∑
n

−∆(q)
(−iωn + ξe(q)) (−iωn − ξh(q))− |∆(q)|2 + βS ∑

p

∆(p)
Veh(q − p)

= 0

∑
n

−∆(q)
−ω2

n − iωn (ξe − ξh)− ξeξh − |∆(q)|2 + βS ∑
p

∆(p)
Veh(q − p)

= 0

∑
p

∆(p)
Veh(q − p)

=
1

βS ∑
n

∆(q)

−ω2
n − 2iωn∆ξ(q)− ξ

2
(q) + ∆ξ2(q)− |∆(q)|2

. (2.44)

In the most general case of unequal electron and hole effective masses me ̸= mh and
single-particle chemical potential µe ̸= µh it is convenient to introduce the following
notation:

ξ(k) =
ϵ(k)− µ − U(k)

2
and ∆ξ(k) =

∆ϵ(k)− ∆µ − ∆U(k)
2

(2.45)

with:

ϵ(k) = ϵh(k) + ϵe(k) and ∆ϵ(k) = ϵe(k)− ϵh(k) , (2.46)
µ = µh + µe and ∆µ = µe − µh , (2.47)

U(k) = Ve,e(k)ne(k) + Vh,h(k)nh(k) and ∆U(k) = Ve,e(k)ne(k)− Vh,h(k)nh(k) . (2.48)

Eq. (2.44) can then be rewritten as [159, 162]:

∆(k) =
1

βS ∑
q,n

Veh(q − k)
∆(q)

(−ω2
n − 2iωn∆ξ(q)− ξ

2
(q) + ∆ξ2(q)− |∆(q)|2)

. (2.49)

After summing over the fermionic Matsubara frequency ωn:

∆(k) = −1
S ∑

q
Veh(q − k)

∆(q)
2E(q)

(1 − f−(q, T)− f+(q, T)) , (2.50)

where E(q) =
√

ξ
2
(q) + |∆(q)|2 and f+(q, T) = nF(E(q)+∆ξ(q), T), f−(q, T) = nF(E(q)−

∆ξ(q), T) are the Fermi distribution functions at temperature T. At zero temperature
T = 0 :

f−(q, 0) =

{
1 for E(q) < ∆ξ(q)
0 for E(q) > ∆ξ(q) ,

(2.51)

f+(q, 0) =

{
1 for E(q) < −∆ξ(q)
0 for E(q) > −∆ξ(q) .

(2.52)
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Combining Eq.(2.51) and Eq.(2.52) one obtains:

1 − f−(q)− f+(q) =

{
1 for E(q) > |∆ξ(q)|
0 for E(q) < |∆ξ(q)| .

(2.53)

If |ξh − ξe| is too large it is not possible to form pairs. This value depends on the density,
effective mass and chemical potential differences between the particles in the two layers.
A similar effect appears in conventional BCS theory: if the Fermi energies of the two
pairing partners differ by more than the gap, pairing is suppressed. This is called the
Clogston limit [163], and has been generalized to the BEC-BCS crossover where it has
been observed [164].

When |ξh − ξe| < E(q), the gap equation Eq. (2.50) at zero temperature reduces to:

∆(k) = −1
S ∑

q
Veh(q − k)

∆(q)
2E(q)

(2.54)

This relation is equivalent to the one obtained through the Bogoliubov amplitudes [75].
By imposing ∆(k) = ∆0(k) in the partition function, we can remove the functional

integral over ∆ field, and Eq.(2.43) reads:

Z =
∫

D[n] exp[−Se f f [n]/h̄] =
∫

D[n] exp

[
∑
k,n

ln
[
−det(−G−1(n))k,n

]
+ βS ∑

k,p

∆†
0(k)∆0(p)

Veh(k − p)
− β

S ∑
λ

∑
p2,p1

Vλλ(p2 + p1)nλ(p1)nλ(p2)

2

]
. (2.55)

The same procedure is adopted for the density n field. In the generic case of ne ̸= nh
the action must be minimised for both densities.

For the density field ne(q):

∂Se f f

∂ne(q)
= 0

∑
k,n

1
det(−G−1)k,n

∂(det(−G−1))k,n

∂ne(q)
− β

S ∑
λ

∑
p1,p2

Vλλ(p2 − p1)

2
∂nλ(p1)nλ(p2)

∂ne(q)
= 0

∑
k,n

(−iωn − ξh(k))
(−iωn + ξe(k))(−iωn − ξh(k))− |∆(q)|2

∂ξe(k)
ne(q)

− β

S ∑
p

Vee(p − q)ne(p) = 0

∑
k,n

(iωn + ξh(q))
(−iωn + ξe(q))(−iωn − ξh(q))− |∆(q)|2

1
S

Vee(k − q)− β

S ∑
p

Vee(p − q)ne(p) = 0

∑
k,n

1
β

(iωn + ξh(q))
(−iωn + ξe(q))(−iωn − ξh(q))− |∆(q)|2 Vee(k − q) = ∑

k
Vee(k − q)ne(k)

∑
n

1
β

(iωn + ξh(q))
(−iωn + ξe(q))(−iωn − ξh(q))− |∆(q)|2 = ne(k) . (2.56)

Introducing ξ and ∆ξ, the equation for the electron density of states reads:

ne(k) = ∑
n

1
β

(iωn + ξ(q)− ∆ξ(q))

−ω2
n − 2iωn∆ξ(q)− ξ

2
(q) + ∆ξ2(q)− |∆(q)|2)

. (2.57)
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2.2. Gap and number equation at zero temperature and equal electron-hole layers

After summing over the fermionic Matsubara frequencies, one obtains:

ne(k) =
1
2

[(
1 +

ξ(k)
E(k)

)
f+(k) +

(
1 − ξ(k)

E(k)

)
(1 − f−(k))

]
. (2.58)

By minimizing instead respect to nh(k) the result is:

nh(k) =
1
2

[(
1 +

ξ(k)
E(k)

)
f+(k) +

(
1 − ξ(k)

E(k)

)
(1 − f+(k))

]
. (2.59)

Replacing ne(k) and nh(k) in the partition function one obtains the saddle-point partition
function of the system:

Zsp = exp

[
∑
kn

ln
[
det(−G−1(n))k,n

]
+ βS ∑

k,p

∆†
0(k)∆(p)

Veh(k − p)

− β

2S ∑
λ

∑
p2,p1

Vλλ(p2 + p1)nλ(p1)nλ(p2)

]
. (2.60)

The set of equations that regulate the saddle-point partition function of a generic
electron-hole superfluid system at finite temperature are the following:

∆(k) = −1
S ∑

q
Veh(q − k)

∆(q)
2E(q)

(1 − f−(q)− f+(q)) (2.61)

ne =
1
2 ∑

k

[(
1 +

ξ(k)
E(k)

)
f+(k) +

(
1 − ξ(k)

E(k)

)
(1 − f−(k))

]
(2.62)

nh =
1
2 ∑

k

[(
1 +

ξ(k)
E(k)

)
f−(k) +

(
1 − ξ(k)

E(k)

)
(1 − f+(k))

]
(2.63)

E(q) =
√

ξ
2
(q) + |∆(q)|2 (2.64)

ξ(k) =
1
2

[
ϵe(k)− µe + ϵh(k)− µh −

1
S ∑

p
[Vee(p − k)ne(p) + Vhh(p − k)nh(p)]

]
(2.65)

Equation (2.61) is the so-called gap equation and Eq. (2.62)-(2.63) are the electron and
hole number equations respectively. Solving this coupled set of equations one gets the
behaviour of the gap energy, the chemical potential and the carrier densities for the sys-
tem in the mean-field superfluid ground state at finite temperature.

2.2 Gap and number equation at zero temperature and equal
electron-hole layers

For this thesis, we will restrict the calculation to the case of zero temperature, equal effec-
tive masses, and equal densities between the electron and hole layer. With me = mh = m,
and thus µe = µh = µs, Vee = Vhh = VS, Vhe = Veh = VD and T = 0 the gap and number
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equations read:

∆(k) = −1
S ∑

q
VD(|q − k|) ∆(q)

2E(q)
, (2.66)

n =
gsgv

S ∑
p

n(p) . (2.67)

Where:

E(q) =
√

ξ2(q) + |∆(q)|2 , (2.68)

ξ(q) =
h̄2q2

2m
− µs −

1
S ∑

p
VS(|p − q|)n(p) , (2.69)

n(p) =
1
2

(
1 − ξ(p)

E(p)

)
, (2.70)

where gs and gv are the spin and valley degeneracy.
The interlayer, VD, and intralayer, VS, interactions in the exciton gap and number

equations are Coulomb long-range interactions, thus screening is an important ingredi-
ent to consider. In the next section, we calculate the effective screened intralayer and
interlayer interaction for the gap and number equations in the Random Phase approxi-
mation.

2.3 Intralayer and Interlayer screened interaction

The formation of excitons in bilayer systems is due to the attractive finite-range Coulomb
interaction between the opposite charged electrons and holes. Thus, unlike standard
superconductors, the interaction originating superfluidity cannot be approximated with
a contact-like interaction.

Due to the long-range nature of the interactions, the presence of other particles in
the system strongly affects the interactions through screening processes. Increasing the
particle density reduces the interparticle distance r0. Screening becomes important when
r0 becomes smaller than the interlayer distance d. A particle in one layer induces a charge
density response, both in the same layer and in the opposite layer, thus both intralayer
and the interlayer Coulomb interactions are strongly affected by screening.

Accounting for screening in the interlayer interaction is fundamental for a realistic
description of bilayer exciton systems throughout the BCS-BEC crossover [48, 165]. The
coupled BCS mean-field equations for the superfluid gap ∆k and density n, remain a
good approximation in the BCS-BEC crossover and BEC regimes at zero temperature
also in 2D [166, 167]. However, the effect of the intralayer interaction with screening has
not yet been studied.

Here we report for the first time a detailed and complete Random Phase approxi-
mation (RPA) calculation of both the screened interlayer and intralayer interactions, for
a bilayer electron-hole system in the superfluid state. The calculation is based on the
equation of motion of the Green’s function.
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2.3. Intralayer and Interlayer screened interaction

2.3.1 Random Phase Approximation for the Screening: Green’s function equa-
tion of motion approach

The screened interactions can be described by a Dyson equation [168]: a self-consistent
equation which provides a relation between the bare interaction V(q) and the dressed
screened W(q, ω) interaction in a many-body system. It states:

W(q, ω) = V(q) + V(q)Π∗(q, ω)W(q, ω) , (2.71)

where Π∗(q, ω) is the complete proper polarization consisting of an infinite series of all
the orders, of all the interactions involved in the system. Π∗(q, ω) is generally simplified
adopting approximations, depending on the type of system and interactions.

In the bilayer exciton system a comparison of the good agreement of zero-temperature
superfluid properties calculated using the Random Phase approximation approach [169],
with corresponding results calculated using diffusion quantum Monte Carlo [43], indi-
cated that the Random Phase approximation approach should be a quantitatively good
approximation for the effective screened interactions. In the Random Phase approxima-
tion, electrons respond as mutually non-interacting particles to a sum of the external
potentials plus the mean-field Hartree potentials from the charge densities induced by
the electrons [131].

The Dyson equation in the Random Phase approximation is:

WRPA(q, ω) = V(q) + V(q)Π0(q, ω)WRPA(q, ω) , (2.72)

where Π0(q, ω) is the zero-order non interacting polarization function. The dressed RPA
interaction WRPA(q, ω) reads:

WRPA(q, ω) =
V(q)

1 − V(q)Π0(q, ω)
. (2.73)

In equal mass and equal density electron-hole bilayer systems:

WRPA(q, ω) =

(
Vsc

S (q, ω) Vsc
D (q, ω)

Vsc
D (q, ω) Vsc

S (q, ω)

)
, (2.74)

where Vsc
ee (q) = Vsc

hh(q) = Vsc
S (q) is the screened intralayer interaction and Vsc

eh (q) =
Vsc

he (q) = Vsc
D (q) is the screened interlayer interaction. The bare interaction matrix is

V(q) =
(

VS(q) VD(q)
VD(q) VS(q)

)
, (2.75)

where the bare intralayer Vee(q) = Vhh(q) = VS(q) and interlayer Veh(q) = Vhe(q) =
VD(q) interactions [170] are given by:

VS(q) =
2πe2

ϵϵ0q
, (2.76)

VD(q) = −2πe2e−qd

ϵϵ0q
, (2.77)
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with d the interlayer distance, ϵ0 the vacuum electric permittivity and ϵ is the dielectric
insulator permittivity. Then,

Π0(q, ω) =

(
ΠN

0 (q, ω) ΠA
0 (q, ω)

ΠA
0 (q, ω) ΠN

0 (q, ω)

)
(2.78)

where Πee
0 (q, ω) = Πhh

0 (q, ω) = ΠN
0 (q, ω) is the normal polarization function and Πeh

0 (q, ω) =
Πhe

0 (q, ω) = ΠA
0 (q, ω) is the anomalous polarization function. Replacing Eq. (2.74), Eq.

(2.75), and Eq. (2.78) in Eq. (2.73) one gets:

Vsc
S (q, ω) =

VS(q)− ΠN
0 (q, ω)Aq

1 − 2(ΠN
0 (q, ω)VS(q) + ΠA

0 (q, ω)VD(q)) + BqAq
(2.79)

Vsc
D (q, ω) =

VD(q) + ΠA
0 (q, ω)Aq

1 − 2(ΠN
0 (q, ω)VS(q) + ΠA

0 (q, ω)VD(q)) + BqAq
(2.80)

where Aq = VS(q)2 − VD(q)2 and Bq = ΠN
0 (q, ω)2 − ΠA

0 (q, ω)2.
Diagrammatically it means that with the Random Phase approximation, all the orders

of only the ring diagrams are taken into account in the proper polarization. In Appendix
A the Feynman diagrams up to second order for the screened interlayer and intralayer
interaction are reported.

To self-consistently solve the gap and number equation, Eqs. (2.66)-(2.69), VS(p − q)
and VD(q − k) are replaced with the static screened intralayer interaction Vsc

S (p − q, 0)
and the static screened interlayer interaction Vsc

D (q − k, 0) respectively.
The zero-order polarization function can be evaluated [134] as:

Πλλ′
0 (r, t) = iθ(t)⟨[nλ(r, t), nλ′(0, 0)]⟩, (2.81)

where ⟨[nλ(r, t), nλ′(0, 0)]⟩ is the expectation value of the commutator [nλ(r, t), nλ′(0, 0)] =
nλ(r, t)nλ′(0, 0)− nλ′(0, 0)nλ(r, t).

The Fourier expansion of the density operators is:

nλ(r, t) =
1
S ∑

q
eiqrnλ(q, t) , (2.82)

where, for λ = e:
ne(q, t) = ∑

k
c†

k(t)ck+q(t) , (2.83)

and for λ = h
nh(q, t) = ∑

k
d†

k(t)dk+q(t) , (2.84)

where c†, c are the fermionic creation and annihilation operators of electrons in the electron-
doped layer and d†, d are the fermionic creation and annihilation operators of holes in the
hole-doped layer. Replacing Eq. (2.82) in Eq. (2.81), one gets:

Πλλ′
0 (r, t) = iθ(t)

1
S2 ∑

q,q′
eiqr⟨[nλ(q, t); nλ′(q′, 0)]⟩ . (2.85)
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2.4. Polarization functions with Green’s function equation of motion in exciton
superfluid phase

The Fourier expansion of the zero-order polarization function is:

Πλλ′
0 (r, t) =

1
S ∑

q
eiqrΠλλ′

0 (q, t) . (2.86)

Thus, by comparing Eq. (2.85) with Eq. (2.86), it appears that the Fourier transform of the
zero-order polarization function is:

Πλλ′
0 (q, t) = iθ(t)

1
S ∑

q′
⟨[nλ(q, t); nλ′(q′, 0)]⟩ . (2.87)

We introduce the density retarded Green’s function GR
nλ(q,t),nλ′ (q′,0)

= iθ(t)⟨[nλ(q, t); nλ′(q′, 0)]⟩
(times -1), so that

Πλλ′
0 (q, t) =

1
S ∑

q′
GR

nλ(q,t),nλ′ (q′,0)
. (2.88)

The retarded Green’s function can be evaluated using its equation of motion [171]:

i∂tGR
A,B(t) = δ(t)⟨[A; B]⟩+ GR

[A;H],B(t) , (2.89)

where A and B are generic bosonic operators an H is the non-interacting Hamiltonian. In
this case, A and B are the bosonic density operators of the two layers.

To simplify the notation, we will from here omit on the time index t. All the operators
evaluated in k and q are implicitly evaluated in t, while all the operators in k′ and q′ are
implicitly evaluated at zero time.

The equations of motion of the electron-electron and electron-hole retarded two-body
density Green’s functions are

i∂tGR
ne(q),ne(q′) = δ(t)⟨[ne(q); ne(q′)]⟩+ GR

[ne(q);H0],ne(q′) , (2.90)

i∂tGR
ne(q),nh(q′)

= δ(t)⟨[ne(q); nh(q′)]⟩+ GR
[ne(q);H0],nh(q′)

. (2.91)

From these equation we can obtain GR
ne(q),ne(q′)

and GR
ne(q),nh(q′)

to evaluate the zero-order

polarization functions ΠN
0 (q, t) and ΠA

0 (q, t) respectively.
We report the calculation of the zero-order polarization functions in the normal state

of the exciton bilayer system in Appendix B. This gives insights into the Green’s func-
tion equation of motion approach. In the next section, we extend the calculation to the
superfluid case.

2.4 Polarization functions with Green’s function equation of mo-
tion in exciton superfluid phase

In the superfluid phase, electrons and holes are bound together and form a coherent
macroscopic state, thus the creation or destruction of particles in one layer strongly affects
the density response of the particles in the other layer. This effect is accounted for when
evaluating both the normal and the anomalous polarization in the superfluid phase.
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To describe the superfluid exciton phase we introduce the Bogoliubov transforma-
tions of the electron and hole creation and annihilation operators:

ck = ukαk − vkβ†
−k (2.92)

c†
k = ukα†

k − vkβ−k (2.93)

dk = vkα†
−k + ukβk (2.94)

d†
k = vkα−k + ukβ†

k (2.95)

where α, α† (β, β†) are the quasi-particle (quasi-anti-particle) annihilation and creation
operators respectively. The uk, vk are the Bogoliubov amplitudes defined as:

u2
k =

1
2

(
1 +

ξ(k)
E(k)

)
, (2.96)

v2
k =

1
2

(
1 − ξ(k)

E(k)

)
, (2.97)

E(k) =
√

ξ(k)2 + ∆(k)2 . (2.98)

The quasi-particle operators are fermionic operators and the only anticommutators which
are different from zero are:

{α†
k ; αk′} = δ(k, k′) (2.99)

{β†
k ; βk′} = δ(k, k′) . (2.100)

The non-interacting electron-hole Hamiltonian correspond to the BCS Hamiltonian HBCS
in terms of the Bogoliubov operators:

HBCS = ∑
k

E(k)(α†
k αk + β†

k βk) (2.101)

Normal Polarization in the superfluid state

The normal polarization function in the superfluid phase is:

ΠN
0 (q, t) = iθ(t)

1
S ∑

q′
⟨[ne(q, t); ne(q′, 0)]⟩ (2.102)

= iθ(t)
1
S ∑

q′
∑
k,k′

⟨[c†
k+qck; c†

k′+q′ck′ ]⟩

= iθ(t)
1
S ∑

q′
∑
k,k′

⟨[(uk+qα†
k+q − vk+qβ−k−q)(ukαk − vkβ†

−k); (2.103)

(uk′+q′α
†
k′+q′ − vk′+q′ β−k′−q′)(uk′αk′ − vk′ β

†
−k′)]⟩ .
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Expanding the products inside the commutator, results in:

ΠN
0 (q, t) = iθ(t)

1
S ∑

q′
∑
k,k′

(2.104)

uk+qukuk′+q′uk′⟨[α†
k+qαk; α†

k′+q′αk′ ]⟩ − uk+qukuk′+q′vk′⟨[α†
k+qαk; α†

k′+q′ β
†
−k′ ]⟩

−uk+qukvk′+q′uk′⟨[α†
k+qαk; β−k′+q′αk′ ]⟩+ uk+qukvk′+q′vk′⟨[α†

k+qαk; β−k′−q′ β
†
−k′ ]⟩

−uk+qvkuk′+q′uk′⟨[α†
k+qβ†

k ; α†
k′+q′αk′ ]⟩+ uk+qvkuk′+q′vk′⟨[α†

k+qβ†
−k; α†

k′+q′ β
†
−k′ ]⟩

+uk+qvkvk′+q′uk′⟨[α†
k+qβ†

−k; β−k′+q′αk′ ]⟩ − uk+qvkvk′+q′vk′⟨[α†
k+qβ†

k ; β−k′−q′ β
†
−k′ ]⟩

−vk+qukuk′+q′uk′⟨[β−k−qαk; α†
k′+q′αk′ ]⟩+ vk+qukuk′+q′vk′⟨[β−k−qαk; α†

k′+q′ β
†
−k′ ]⟩

+vk+qukvk′+q′uk′⟨[β−k−qαk; β−k′+q′αk′ ]⟩ − vk+qukvk′+q′vk′⟨[β−k−qαk; β−k′−q′ β
†
−k′ ]⟩

+vk+qvkuk′+q′uk′⟨[β−k−qβ†
k ; α†

k′+q′αk′ ]⟩ − vk+qvkuk′+q′vk′⟨[β−k−qβ†
−k; α†

k′+q′ β
†
−k′ ]⟩

−vk+qvkvk′+q′uk′⟨[β−k−qβ†
−k; β−k′+q′αk′ ]⟩+ vk+qvkvk′+q′vk′⟨[β−k−qβ†

k ; β−k′−q′ β
†
−k′ ]⟩ .

Each expectation value can be written as a retarded Green’s function, leading to 16 Green’s
functions equations of motion, Eq. (2.89).

Using the quasi-particle commutator rules, the commutators [α†
k+qαk; β−k′−q′ β

†
−k′ ] =

[β−k−qαk; β−k′−q′αk′ ] = [β−k′−q′ β
†
−k′ ; α†

k+qαk] = [α†
k+qβ†

−k; α†
k′+q′ β

†
−k′ ] = 0, and their expec-

tation values are zero.
Then, for the conservation of the number of particles, the expectation values of the

terms in which the same operator appears an odd number of times are also zero.
Thus:

ΠN
0 (q, t) = iθ(t)

1
S ∑

q′
∑
k,k′

(2.105)

uk+qukuk′+q′uk′⟨[α†
k+qαk; α†

k′+q′αk′ ]⟩ − uk+qukuk′+q′vk′((((((((((
⟨[α†

k+qαk; α†
k′+q′ β

†
−k′ ]⟩

−uk+qukvk′+q′uk′((((((((((
⟨[α†

k+qαk; β−k′+q′αk′ ]⟩+ uk+qukvk′+q′vk′(((((((((((
⟨[α†

k+qαk; β−k′−q′ β
†
−k′ ]⟩

−uk+qvkuk′+q′uk′((((((((((
⟨[α†

k+qβ†
k ; α†

k′+q′αk′ ]⟩+ uk+qvkuk′+q′vk′(((((((((((
⟨[α†

k+qβ†
−k; α†

k′+q′ β
†
−k′ ]⟩

+uk+qvkvk′+q′uk′⟨[α†
k+qβ†

−k; β−k′+q′αk′ ]⟩ − uk+qvkvk′+q′vk′(((((((((((
⟨[α†

k+qβ†
k ; β−k′−q′ β

†
−k′ ]⟩

−vk+qukuk′+q′uk′((((((((((
⟨[β−k−qαk; α†

k′+q′αk′ ]⟩+ vk+qukuk′+q′vk′⟨[β−k−qαk; α†
k′+q′ β

†
−k′ ]⟩

+vk+qukvk′+q′uk′(((((((((((
⟨[β−k−qαk; β−k′+q′αk′ ]⟩ − vk+qukvk′+q′vk′((((((((((((

⟨[β−k−qαk; β−k′−q′ β
†
−k′ ]⟩

+vk+qvkuk′+q′uk′(((((((((((
⟨[β−k−qβ†

k ; α†
k′+q′αk′ ]⟩ − vk+qvkuk′+q′vk′

((((((((((((
⟨[β−k−qβ†

−k; α†
k′+q′ β

†
−k′ ]⟩

−vk+qvkvk′+q′uk′((((((((((((
⟨[β−k−qβ†

−k; β−k′+q′αk′ ]⟩+ vk+qvkvk′+q′vk′⟨[β−k−qβ†
k ; β−k′−q′ β

†
−k′ ]⟩ .

Only 4 terms remain. The first term being:

⟨[α†
k+qαk; α†

k′+q′αk′ ]⟩ = ⟨α†
k+qαk′δ(k′ + q′, k)− α†

k′+q′αkδ(k + q, k′)⟩
= ⟨α†

k+qαk′δ(k′ + q′, k)− α†
k+qαk′δ(k′ + q′, k)⟩

= ⟨0⟩ = 0 . (2.106)

The same happens for the last term in Eq. (2.105), ⟨[β−k−qβ†
k ; β−k′−q′ β

†
−k′ ]⟩ = 0.
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Thus only two terms remain. The normal polarization function in the superfluid
phase is given by:

ΠN
0 (q, t) = iθ(t)

1
S ∑

q′
∑
k,k′

uk+qvkvk′+q′uk′⟨[α†
k+qβ†

−k; β−k′−q′αk′ ]⟩ (2.107)

+vk+qukuk′+q′vk′⟨[β−k−qαk; α†
k′+q′ β

†
−k′ ]⟩ .

We rewrite it as:

ΠN
0 (q, t) = ΠN

0A(q, t) + ΠN
0B(q, t) . (2.108)

The two terms of the normal polarization function can be written as retarded Green’s
function as follows:

ΠN
0A(q, t) = iθ(t)

1
S ∑

q′
∑
k,k′

uk+qvkvk′+q′uk′⟨[α†
k+qβ†

−k; β−k′−q′αk′ ]⟩ =
1
S ∑

q′
GR,A

ne(q),ne(q′)
,

(2.109)

ΠN
0B(q, t) = iθ(t)

1
S ∑

q′
∑
k,k′

vk+qukuk′+q′vk′⟨[β−k−qαk; α†
k′+q′ β

†
−k′ ]⟩ =

1
S ∑

q′
GR,B

ne(q),ne(q′)
.

(2.110)

The two retarded Green’s functions are evaluated using the Green’s function equation of
motion:

i∂tGR,A
ne(q),ne(q′)

= δ(t)⟨[α†
k+qβ†

−k; β−k′−q′αk′ ]⟩+ GR,A
[ne(q);HBCS],ne(q′)

, (2.111)

i∂tGR,B
ne(q),nh(q′)

= δ(t)⟨[β−k−qαk; α†
k′+q′ β

†
−k′ ]⟩+ GR,B

[ne(q);HBCS],nh(q′)
. (2.112)

For Eq. (2.111), evaluating the δ(t)-term:

δ(t)⟨[α†
k+qβ†

−k; β−k′−q′αk′ ]⟩ = δ(t)
(
⟨α†

k+qβ†
−kβ−k′−q′αk′⟩ − ⟨β−k′−q′αk′α

†
k+qβ†

−k⟩
)

. (2.113)

The two expectation values can be evaluated by rewriting the quasi-particle operators
using the creation and annihilation electron (c†

k , ck) and hole (d†
k ,dk) operators [172, 173].

At zero temperature:

δ(t)⟨[α†
k+qβ†

−k; β−k′−q′αk′ ]⟩ = −δ(t)δ(−q′, q)δ(k′, k + q) . (2.114)

The H-term of the GR,A
ne(q),ne(q′)

equation of motion Eq. (2.111) is:

GR,A
[ne(q);HBCS],ne(q′)

= iθ(t)
〈[

[α†
k+qβ†

−k; HBCS]; β−k′−q′αk′
]〉

. (2.115)
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The commutator with HBCS is given by:

[α†
k+qβ†

−k; HBCS] = ∑
s

Es[α
†
k+qβ†

−k; α†
s αs + β†

s βs]

= ∑
s

Es

(
[α†

k+qβ†
−k; α†

s αs] + [α†
k+qβ†

−k; β†
s βs]

)
= ∑

s
Es

(
−α†

s β†
−kδ(k + q, s) + β†

s α†
k+qδ(−k, s)

)
= ∑

s
Es

(
−α†

s β†
−kδ(k + q, s)− α†

k+qβ†
s δ(−k, s)

)
= −E(k + q)α†

k+qβ†
−k − E(k)α†

k+qβ†
−k

[α†
k+qβ†

−k; HBCS] = (−E(k + q)− E(k)) α†
k+qβ†

−k . (2.116)

Replacing Eq. (2.116) in the the H-term of Eq.(2.111) one gets:

GR,A
[ne(q);HBCS],ne(q′)

= iθ(t)
〈[

[α†
k+qβ†

−k; HBCS]; β−k′−q′αk′
]〉

(2.117)

= ∑
k,k′

iθ(t) (−E(k + q)− E(k)) ⟨[α†
k+qβ†

−k, β−k′−q′αk′ ]⟩

= ∑
k,k′

(−E(k + q)− E(k))GR,A
e,e (k, k′, q, q′, t)

where GR,A
e,e (k, k′, q, q′, t) = iθ(t)⟨[α†

k+qβ†
−k; β−k′−q′αk′ ]⟩. The time derivative term on the

left-hand side of Eq. (2.111) corresponds to Eq. (B.21). Thus the equation of motion of
GR,A

e,e (k, k′, q, q′, ω) states:

GR,A
ee (k, k′, q, q′, ω)ω = −δ(q,−q′)δ(k′, k + q)uk+qvkvk′+q′uk′

+ GR,A
ee (k, k′, q, q′, ω)(−E(k)− E(k + q))

GR,A
ee (k, k′, q, q′, ω)(ω + E(k) + E(k + q)) = −δ(q,−q′)δ(k′, k + q)uk+qvkvk′+q′uk′

GR,A
ee (k, k′, q, q′, ω) = −

δ(q,−q′)δ(k′, k + q)uk+qvkvk′+q′uk′

ω + E(k) + E(k + q)
. (2.118)

Following the same procedure for Eq. (2.112):

GR,B
ee (k, k′, q, q′, ω) =

δ(q,−q′)δ(k, k′ + q′)uk+qvkvk′+q′uk′

ω − E(k)− E(k + q)
(2.119)

Replacing Eq. (2.118) in Eq. (2.109) and Eq. (2.119) in Eq. (2.110) the normal polarization
function ΠN

0 (q, ω), (Eq. (2.108)) becomes:

ΠN
0 (q, ω) = ΠN

0,A(q, ω) + ΠN
0,B(q, ω) =

1
S ∑

q′
∑
k,k′

(
GR,A

ee (k, k′, q, q′, ω) + GR,B
ee (k, k′, q, q′, ω)

)
=

1
S ∑

q′
∑

k

(
δ(q,−q′)u2

k+qv2
k

ω + iη + E(k) + E(k + q)
−

δ(q,−q′)u2
kv2

k+q

ω + iη − E(k)− E(k + q)

)

ΠN
0 (q, ω) =

1
S ∑

k

(
u2

kv2
k+q

ω + iη − E(k)− E(k + q)
−

u2
k+qv2

k

ω + iη + E(k) + E(k + q)

)
. (2.120)
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This is the zero-order normal polarizability at zero temperature in the superfluid phase
of an electron-hole bilayer system.

Anomalous Polarization in the superfluid state

The anomalous polarization function in the superfluid phase is:

ΠA
0 (q, t) = iθ(t)

1
S ∑

q′
⟨[ne(q, t); nh(q′, 0)]⟩

= iθ(t)
1
S ∑

q′
∑
k,k′

⟨[c†
k+qck; d†

k′+q′dk′+]⟩

= iθ(t)
1
S ∑

q′
∑
k,k′

⟨[(uk+qα†
k+q − vk+qβ−k−q)(ukαk − vkβ†

−k), (2.121)

(vk′+q′α−k′−q′ − uk′+q′ β
†
k′+q′)(vk′α

†
−k′ + uk′ β

†
k′)]⟩ .

The procedure is the same as for the normal polarizability. The product of the commuta-
tor once again results in 16 terms of expectation values. The commutators in which the
same operators appear an odd number of times are and the zero expectation values are
cancelled, remaining with only two terms different from zero:

ΠA
0 (q, t) =− iθ(t)

1
S ∑

q′
∑
k,k′

vk+qukuk′+q′uk′⟨[β−k−qα†
k ; β†

−k′−q′α
†
−k′ ]⟩

+ uk+qvkvk′+q′uk′⟨[α†
−k−qβ−k; α−k′−q′ βk′ ]⟩

= ΠA
0A(q, t) + ΠA

0B(q, t) . (2.122)

As for the normal polarization, the anomalous polarization function can be separated
in two terms ΠA

0A(q, t) and ΠA
0B(q, t). They can be rewritten by introducing a retarded

Green’s function as follows:

ΠA
0A(q, t) = iθ(t)

1
S ∑

q′
∑
k,k′

vk+qukuk′+q′uk′⟨[β−k−qα†
k ; β†

−k′−q′α
†
−k′ ]⟩ =

1
S ∑

q′
GR,A

ne(q),ne(q′)
,

(2.123)

ΠA
0B(q, t) = iθ(t)

1
S ∑

q′
∑
k,k′

uk+qvkvk′+q′uk′⟨[α†
−k−qβ−k; α−k′−q′ βk′ ]⟩ =

1
S ∑

q′
GR,B

ne(q),ne(q′)
.

(2.124)

The evaluation of the two retarded Green’s functions using the Green’s function equation
of motion is analogous to the case of the normal polarization function.

The anomalous polarization function ΠA
0 (q, t) results in:

ΠA
0 (q, t) =

1
S ∑

k

(
uk+qvk+qukvk

ω + iη − E(k)− E(k + q)
−

uk+qvk+qukvk

ω + iη + E(k) + E(k + q)

)
. (2.125)

The expressions for ΠN
0 (q, t) (Eq. (2.120)) and ΠA

0 (q, t) (Eq. (2.125)) are substituted
in Eq. (2.80) and Eq. (2.79) to obtain the screened interlayer and intralayer interactions.
Those are then used to evaluate the gap and number equations of the system to obtain
the behaviour of the gap energy, density and single-particle chemical potential of the
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bilayer exciton system including density fluctuations in the interactions between the par-
ticles. Details about the numerical resolution of the gap and number equations are in
Appendix.C.
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Chapter 3

Josephson Effect in exciton bilayer
systems

In this chapter, we explore the static Josephson effect in an electron-hole superfluid bilayer Transi-
tion Metal Dichalcogenides (TMD) heterostructure at zero temperature. We focus on designing a
bilayer Josephson junction to control the energy of the potential barrier and discuss experimental
techniques for its fabrication. We analyze the superfluid characteristics and crossover physics for
a rectangular Josephson junction, determining the superfluid properties and the critical current
across junctions with varying potential barrier heights. In the low potential barrier region, we
investigate the BCS-BEC crossover physics of the Josephson current, finding a maximum critical
velocity when excitations transition from bosonic to fermionic. Notably, we identify for the first
time in a semiconductor system an experimental way to locate the boundary between the BEC
and the crossover regime of the BCS-BEC crossover phenomenon. In the high potential barrier
region, we solve the exciton pair tunnelling problem to study the Josephson current. Our results
demonstrate good agreement between the outcomes of both barrier regions as they converge. The
results reported in this chapter have been published in Ref. [146].

In the first chapter, we have reviewed the main experimental techniques and the ma-
terials used to probe the presence of a macroscopic superfluid phase in exciton bilayer
systems. However, to date, these works have been able to establish the existence of a
strongly correlated excitonic phase but not to make definitive claims for the existence of
a superfluid state. This would require observation of dissipationless currents and addi-
tional measurements of phase coherence. It is particularly challenging because the exci-
tons are neutral.

In conventional superconductors, the Josephson effect is widely used to establish the
presence of superconductivity. The Josephson effect consists of a coherent dissipation-
less flow of pairs without a driving potential, between two superconductors separated
by an insulating barrier (Josephson junction), Fig. 1.10. The Josephson effect establishes
the presence of a quantum coherent macroscopic state, and thus the existence of a super-
conducting or superfluid state.

In this chapter, as a proof-of-concept, we investigate for the first time in exciton bi-
layers the static Josephson effect paradigm at zero temperature throughout the BCS-BEC
crossover. The study is based on a realistic and feasible experimental proposal for the fab-
rication of an exciton bilayer Josephson junction and for the measurement of a Josephson
current in a bilayer junction.
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3.1 Experimental proposal

In the exciton bilayer Josephson junction the left and right superconductors in Fig. 1.10
are replaced with a left and a right exciton bilayer system.

We want to study the static Josephson effect throughout the BCS-BEC crossover and
the behaviour of the Josephson critical current in different regimes of potential barrier
height. It has been shown that interesting insights related to the BCS-BEC crossover
physics occur when the Josephson current is studied as a function of the potential barrier
height [110].

In conventional superconductors, one of the most used experimental techniques to
create a junction between two materials is the Electron-Beam Lithography (EBL). Electron-
beam lithography consists of scanning a focused beam of electrons to draw custom shapes
on a surface covered with an electron-sensitive film [174]. For bilayer systems, the grooves
created by the EBL are naturally filled up by the dielectric that surrounds the two layers
[2, 10, 90]. The dielectric used to separate the conducting layers and the metal gates is
commonly hexagonal Boron Nitrate (hBN) and since hBN is an insulator, this will result
in an infinite and non-tunable potential barrier.

To overcome this issue, here we propose an alternative and feasible Josephson junc-
tion bilayer configuration in which it is possible to control the potential barrier height,
Fig. 3.1(a).

hh h h

FIGURE 3.1: (a) Schematic of Josephson junction with the different layers labelled
TMD1–TMD4. d is layer separation, db the barrier thickness, and L1 and L2 the
transverse and longitudinal layer lengths. Electron-hole pairs are shown. (b) Energy

band alignments at the type-II TMD1/TMD2 interface.

The device consists of a left and a right exciton bilayer system obtained from the
vertical stacking of two different TMD monolayers, TMD1 and TMD2. They are separated
by a barrier region made of two different undoped TMD monolayers vertically stacked,
TMD3 and TMD4, and attached to the left and right bilayer system with lateral stitching.

The advantages of this proposed configuration are:

• The doped TMD1 and TMD2 of the vertical stacking can be chosen to have a type-II
interface, with the edges of the conduction and valence band at different energies
(Fig. 3.1(b)). This keeps the electrons and holes spatially separate without the ne-
cessity for an insulating barrier.

• The bilayer junction can be fabricated using a combination of lateral stitching and
vertical stacking of TMD heterostructures [98, 175–177]. The potential barrier height
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3.1. Experimental proposal

of the junction is determined by the difference in energy of the conduction (valence)
bands in the doped TMDs and the undoped TMDs of the barrier [178]. The barrier
height V0 can be varied by suitable material choice of TMDs. Table 3.1 gives ex-
amples. As a final example, WS2|WSe2—MoSe2|WSe2, the barrier is inserted only
in the electron monolayer, a configuration which may be more straightforward to
fabricate.

TMD1|TMD2 — TMD3|TMD4 a∗B[nm] Ry∗[meV] εB[meV] V0[εB]

MoS2|MoSe2 — MoSe2|WSe2 1.3 100 140 0.04
MoS2|WSe2 — MoTe2|WTe2 1.7 77 108 0.05
WS2|WSe2 — MoTe2|MoTe2 1.8 71 99 0.10
MoS2|WS2 — WS2|MoSe2 1.7 77 108 0.20
MoSe2|MoTe2 — MoS2|MoSe2 1.1 116 162 0.33
MoS2|MoSe2 — WTe2|WSe2 1.3 100 140 0.71
WS2|WSe2 — MoSe2|WSe2 1.9 71 99 0.33

TABLE 3.1: Material parameters: effective Bohr radii a∗B, effective Rydberg Ry∗, ex-
citon binding energies εB and barrier heights V0.

For lateral stitching, there are two possible techniques: two-step edge epitaxy and
lithographic patterning. The edge epitaxy technique relies on the growth of a TMD crys-
tal on the active edge of a dissimilar TMD crystal. The resulting lateral heterostructure is
characterized by a sharp junction, of the order of the angstrom [175]. The disadvantage
is that this method works, with an acceptable quality of the resulting junction, only with
specific shapes: triangles and hexagonal samples. The procedure is facilitated if the two
TMDs differ only for the Chalcogen atom, as shown in Fig. 3.2.

FIGURE 3.2: Schematic illustration of the two-step edge epitaxy for the synthesis of
MX2 − MX′

2 lateral heterostructure [175].

The other technique is the lithographic patterning. In this case, a portion of the TMD
layer is covered with a mask and the uncovered part is subjected to the lithographic
process in which atoms are replaced (Fig. 3.3).
The main advantage of lithographic pattering is the possibility of having junctions of
arbitrary shapes. The disadvantage is that the junctions are not as sharp as with the
edge epitaxy. Indeed, this method is characterized by an intermediate region of a few
nanometers in which there is a mix between the TMD1 and TMD2 atoms. This is mainly
due to the mask that does not perfectly cover the TMD.
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Chapter 3. Josephson Effect in exciton bilayer systems

FIGURE 3.3: Schematic illustration of the lithographic pattering for the synthesis of
MX2-MX′

2 lateral heterostructure [175].

The vertical heterostructure can be obtained through chemical vapour deposition
(CVD). In its simplest form, metal oxides are vaporized at high temperatures to react
with a chalcogen vapour that is provided via the mild annealing of a powder source, as
shown in Fig. 3.4.

FIGURE 3.4: Schematic representation of a furnace used for the CVD growth of ver-
tical WS2/MoS2 heterostructures using solid-phase metal precursors and S powders

[175].

A possible way to fabricate the bilayer Josephson junction is to start with the lateral
stitching TMD2-TMD4-TMD2 for one layer, and then use it as a substrate for the chem-
ical vapour deposition. The TMD2 regions can be covered with a mask and then CVD
depositing TMD3 only on the TMD4 region. For the TMD1 deposition just repeat the
procedure covering only the TMD4 region. In this way, combining the lateral and the
vertical heterostructures it is possible to obtain the bilayer Josephson junction reported
in Fig. 3.1(a).

The critical Josephson current can be measured using the method of Anderson [179]
and Shapiro [180]. A stable dissipationless exciton current is injected in the device using
in a counter-flow configuration [60] with two independent currents flowing in the two
layers in opposite directions. Then, the voltage drop across the barrier in one of the two
layers is measured. If the current injected is a dissipationless coherent current and it is
less than the superfluid critical current Ic the voltage drop is zero. Increasing the current,
when the Ic value is overcome the superfluidity suddenly disappears and the voltage
drop across the barrier jumps to a finite value V0, characteristic of the electron current in
a metal in the normal state.

3.2 Model of exciton superfluid system in the presence of a po-
tential barrier

We consider a generic TMD bilayer with equal electron and hole densities ne = nh = n,
equal effective masses m∗

e = m∗
h = m∗ = 0.5me, dielectric constant ϵ = 5.5ϵ0 and inter-

layer distance d = 0.46a∗B. The binding energy of the electron-hole pair in the vacuum
evaluated solving the hydrogen-like Schrödinger equation is εB = 1.42 Ry∗. We use ef-
fective Rydbergs Ry∗ for the energy scale, and effective Bohr radii a∗B for the length scale.
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3.2. Model of exciton superfluid system in the presence of a potential barrier

In this chapter we investigate the Josephson effect as a proof of concept without the
intralayer correlations, to get a first look at the Josephson current behaviour for different
potential barrier heights.

We solved the zero temperature gap and number equation, as derived in Sec. 2.2,
considering an RPA-screened interlayer interaction (Eq. (2.80)) throughout the BCS-BEC
crossover:

∆0(k) = −1
S ∑

q
Vsc

D (|q − k|)∆0(q)
2E(q)

, (3.1)

n0 =
gsgv

S ∑
p

1
2

(
1 − ξ(p)

E(p)

)
. (3.2)

where gsgv = 2, for single-particle parabolic bands εk = h̄2k2/2m∗ [98, 181]. The exci-

tation energy is E(k) =
√

ξ2
k + ∆2

k , with ξk = εk − µs and µs the single-particle chemical
potential.

We consider sufficiently wide barriers, db > ξ, where ξ = h̄/m∗vc is the superfluid
healing length [118, 182]. We will provide an estimation of the numerical value of this
quantity in the next section. The characteristic length with which the superfluid phase
answers to the bilayer exciton-barrier interface is negligible with respect to the exten-
sion of the rest of the barrier, in which the effect of the barrier will be constant. In the
barrier region, under this condition, we can use the Thomas-Fermi approximation, i.e.
the single-particle chemical potential µb

s and the superfluid chemical potential µb
sf are re-

duced compared with their values outside the barrier,

µb
s = µs − V0 ,

µb
sf = µsf − 2V0 = 2(µs − V0) + εB . (3.3)

Using µb
s in the dispersion relation ξ(k) in Eq. (3.1) and Eq. (3.2) gives the superfluid gap

∆b
k and the density nb inside the barrier region.

Figure 3.5(a) shows for different barrier heights V0 in the low barrier region, the su-
perfluid density in the barrier nb as a function of the µs outside the barrier, which we
remember can be changed experimentally tuning the particle density through external
metal gates. The BEC regime is characterised by negative values of µs. As µs increases
and becomes positive, the system enters the BCS-BEC crossover regime, but µs remains
well below the Fermi energy. Only in the weak-coupled BCS limit would µs approach
the Fermi energy. However, for sufficiently large µs, strong screening of the electron-hole
pair interaction in the superfluid outside the barrier region suppresses the superfluidity
leading to a first-order phase transition in the mean-field approximation [46] (the shaded
regions in Fig. 3.5).

The colour-coded dots indicate the value µs = −εB/2 + V0 below which nb is zero. It
means that below this value of µs the potential barrier is too high and the excitons do not
have enough energy to penetrate the barrier, we define this regime as high potential barrier
region.

The V0 = 0 curve in Fig. 3.5(a) gives as a reference the superfluid density n in the
absence of a barrier. This reaches a maximum at the value µs = 0.31 Ry∗ for density
n = nb = 0.105(a∗B)

−2. This defines the onset density n0 for the superfluidity.
Figure 3.5(b) shows the maximum of the superfluid gap ∆b inside the barrier as a

function of µs. The curve for V0 = 0, also gives the maximum of the superfluid gap
∆k in the superfluid regions outside any barrier and, like n, this gap vanishes when µs
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Chapter 3. Josephson Effect in exciton bilayer systems

FIGURE 3.5: (a) Density nb inside the barrier as a function of the single-particle
chemical potential µs outside barrier. V0 is barrier height and εB is the exciton bind-

ing energy. (b) Superfluid gap ∆b inside the barrier.

reaches −εB/2. For V0 > 0, ∆b for the barrier vanishes at the same value of µs at which
nb vanishes. As V0 increases, we find a suppression of the gap energy for µs < 0, in the
BEC regime, and an amplification of the ∆b for µs > 0, in the crossover-BCS regime. This
is due to the screening. In the BCS-crossover regime, at high density, the detrimental
effect screening is important. In the barrier, the density is reduced, so the screening is
weakened. In the BEC regime, we do not see this effect because here the screening is al-
ready negligible outside the barrier region. Above the onset density, the strong screening
suppresses the superfluidity and the system enters the normal fluid area.

3.3 Josephson critical current

We investigate the Josephson critical current in the two opposite barrier regions.

Low potential barrier region

For a low potential barrier region, V0 < µsf /2, the density in the barrier is different from
zero and the injected exciton current can flow through the barrier with density nb. In this
case, the barrier acts as an impurity that probes the current, like an electric resistance in a
circuit. The exciton superfluid flows over the barrier and can be described by the simple
hydrodynamic relation:

Ib
c = nbL1vb

c . (3.4)

where L1 is the transverse length of the junction and vc is the superfluid critical velocity
of the system.

The Landau criterion gives the critical velocity of the superfluid [19],

vc = min
k

Ek

h̄k
. (3.5)

In the simplest picture, there are two types of excitation energy Ek in this system:
Anderson-Bogoliubov modes [135] associated with bosonic behaviour of the pairs, and
the fermionic modes associated with pair-breaking excitations [118].
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3.3. Josephson critical current

In the bosonic excitation branch, Ek is given by the dispersion relation Ek =
√

h̄2c2
sf k2 + ε2

k

[118, 183], where csf =
√

µsf /2m [184] is the speed of sound, with superfluid chemical
potential µsf = 2µs + εB. From Eq. (3.5), the critical velocity for bosonic excitations is thus
the speed of sound,

v(BEC)
c = csf =

√
µsf

2m
. (3.6)

For single-particle fermionic excitations Ek = E(k) =
√

ξ2
k + ∆2

k , and the critical ve-
locity is the pair-breaking (p-b) velocity [118],

v(p−b)
c = min

k

√
(εk − µs)2 + ∆2

k

h̄k
(3.7)

is numerically evaluated for given values of µs and ∆k to determine the value of k =
kmin that minimises Eq. (3.7) (details of the calculation of the Landau critical velocity in
Appendix D).

The critical velocity vb
c in the barrier is the lesser of vb(BEC)

c and vb(p−b)
c , obtained from

Eq. (3.6) and Eq. (3.7) with µb
sf and ∆b

k. As the density is increased and the superfluid
regimes are scanned from BEC to BCS-BEC crossover to BCS, the critical velocity should
switch from v(BEC)

c to v(p−b)
c , whichever is the lesser.

With the critical velocity, we can evaluate the healing length ξ to determine the db for
which is possible to apply the Thomas-Fermi approximation.

FIGURE 3.6: The healing length ξ as a function of the density n for the TMD bilayer
system we are considering.

Fig. 3.6 shows that, similar to the ultracold atom gas case, the ξ has a minimum be-
tween the low-density BEC regime and the crossover onset density [185]. However, in
contrast with the ultracold atom gas, the largest healing length is in the BEC regime.
This is because the screening suppresses the superfluid phase before it reaches the BCS
regime, where the healing length increases exponentially. For our TMD bilayer system,
the max healing length is ξmax = 6nm. We take a barrier width of db = 15nm, more than
double ξmax, to safely use the Thomas-Fermi approximation.
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Chapter 3. Josephson Effect in exciton bilayer systems

High potential barrier region

For high potential barriers, V0 ≥ µs f /2, µb
s < −εB/2 and nb = 0. The excitons do not have

enough energy to cross the barrier V0 and the supercurrent is given purely by quantum
tunnelling of the electron-hole pairs [186, 187].

h̄Ib
c = nc tsf (µsf ) L1L2 . (3.8)

nc = Cn is the density of the superfluid condensate, with C the condensate fraction of the
superfluid state, which can be calculated as [188, 189]

C =
∑k u2

kv2
k

∑k v2
k

=
1

2n ∑
k

∆2
k

E(k)2 . (3.9)

The Eq. (3.9) is calculated from the two-body density matrix and in the BEC regime it
corresponds to the fraction of bosonic excitons in the ground state [190]. Replacing in Eq.
(3.9) ∆b

k, nb and µb
s we obtain the condensate fraction Cb in the barrier region for the low

potential barrier.
The transfer matrix element in (3.8) [186],

tsf (µsf ) = f (V0/µsf )
µsf

kµsf L1
e−kµsf db , (3.10)

is related to the probability for an electron-hole pair to tunnel across the barrier, where

k−1
µsf

= h̄/
√

2m(V0 − µsf ) is the wave-function decay length in the barrier. The expression
for f (V0/µs f ) is derived in Ref. [186],

f (V0/µsf ) =

1 − V0

µsf
−

√(
V0

µsf

)2

− 1

2

. (3.11)

So for V0 > µsf /2, the final expression for the critical current is,

Ib
c =

nc µsf f (V0/µsf )e
−kµsf db L2

h̄kµsf

. (3.12)

Figure 3.7(a) shows the critical current in the barrier Ib
c as a function of the density n

outside the barrier. The coloured dots again mark the value of n at which nb drops to zero
and the switch occurs from predominantly flow over to tunnelling. Figure 3.7(b) shows
in detail the critical current in the tunnelling region. We took a safety interval around
the coloured dots, corresponding to V0 = µs f , in which neither the low potential barrier
current, described by Eq. (3.4), nor the high potential barrier current Eq. (3.12) work. The
high potential barrier current is seen to connect smoothly (dashed lines) with the critical
current in the flow-over region. We recall that the existence of a non-zero tunnelling
current in this region is accepted as a clear signature of superfluidity. The flattening of Ib

c
at high densities reflects the drop in ∆b

k from the strong screening (Fig. 3.5(b)). We note
that Ib

c is everywhere less than the critical current outside the barrier Ic = nL2vc, shown
by the V0 = 0 curve. For this reason, the overall critical current in the system is given
by Ib

c . Thus the BCS-BEC crossover physics in the barrier region controls the transport
properties of the entire device.
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3.3. Josephson critical current

FIGURE 3.7: (a) Critical current in the barrier Ib
c (Eq. (3.4)) for barrier height V0, as a

function of density n. (b) Details of Ib
c at very low densities; solid lines in the upper

part are a zoom-in of the panel (a), solid lines in the lower part are obtained with
Eq. (3.12), dashed lines interpolate high-barrier and low barrier results.

*

FIGURE 3.8: (a) Critical velocity vb
c in barrier (Eq. ((3.5)). (b) Condensate fraction Cb

in the barrier (Eq. (3.9)). The asterisk symbols in panel (b) match the position of the
maximum of the critical velocity vb

c in panel (a).
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Chapter 3. Josephson Effect in exciton bilayer systems

Figure 3.8(a) shows the critical velocity vb
c across the barrier. The maxima in vb

c re-
sult from the switch from Anderson-Bogoliubov bosonic excitations to single-particle
fermionic excitations, v(p−b)

c increasing with density while v(BEC)
c decreases with density

[113].
As expected, the position of the maxima is sensitive to the barrier height. Fig. 3.8(b)

shows that the maximum of vb
c for each value of V0 matches the density at which the

condensate fraction Cb = 0.8. Remarkably, this value also agrees with the conventional
criterion used to identify the crossover to BEC boundary given by the vanishing of the
single-particle chemical potential [43, 191].

It is an attractive concept and relevant for experiments, that the switchover from
bosonic excitations to single-particle fermionic excitations lines up with the BEC and
BCS-BEC crossover regime boundary. In contrast to the condensate fraction which is
not observable, the critical velocity vb

c = Ib
c /n is a directly experimentally measurable

quantity in these electron-hole Josephson devices: Ib
c = Ic, the overall critical current of

the system, and the density n is precisely controlled by gate potentials. This remarkable
result provides a way of experimentally locating the BCS-BEC crossover boundary in 2D
exciton systems.

Figure 3.9, shows the nature of the driving mechanisms of Ib
c for different V0 and n.

The density n is capped at the superfluid onset density, nb. For very small V0, as we
increase density, we go from bosonic excitations to fermionic pair-breaking excitations.
By increasing V0, a region of tunnelling of electron-hole pairs appears at small n. When
V0 > 0.3εB, strong screening preempts vb

c from reaching the maximum, so there are no
pair-breaking fermionic excitations.

For high potential barriers, V0 > 0.7εB, there are no bosonic excitations, and only tun-
nelling through the barrier remains.

FIGURE 3.9: Driving mechanisms for the Josephson critical current at different
barrier heights V0. In the fermionic excitation area, the critical current is deter-
mined by the pair-breaking branch, in the bosonic excitation area it is determined
by the Anderson-Bogoliubov branch. The tunnelling area corresponds to the high-

potential barrier region.
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3.4 Conclusions

We have demonstrated that measurements of the critical current across a Josephson-
junction barrier can yield significant additional information on electron-hole superfluid
properties in a double-layer TMD heterostructure. The barrier can be fabricated and its
height adjusted by suitable combinations of TMD layers.

The additional information is as follows.

• The existence of a Josephson effect below a critical tunnelling current is per se a
direct signature of superfluidity. We note that this could be used to distinguish
between a phase of excitons in a normal or superfluid state. Up to now, this has
required painstaking analysis to merge Coulomb drag resistance and counterflow
experimental data [192].

• For low barriers, the crossover physics in the barrier region controls the transport
properties of the entire device.

• One can experimentally observe the maximum of the critical velocity at the density
where excitations switch from bosonic to fermionic, the density in this system con-
trolling the coupling strength. This maximum can be used to identify the boundary
separating the BEC and BCS-BEC crossover regimes of the electron-hole superflu-
idity, and in fact, remarkably, the density at the maximum matches the density at
which the condensate fraction passes through 0.8.
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Chapter 4

Effects of intralayer correlations on
electron-hole bilayer superfluidity

In this chapter, we investigate the intralayer correlations acting within the layers in the super-
fluid phase of electron-hole spatially separated layers. In this system, superfluidity is predicted
to be almost exclusively confined to the BEC and crossover regimes where the electron-hole pairs
are well localized. We show that the system is in the weak intralayer correlation region and the
Hartree-Fock is an excellent approximation to treat intralayer correlations. We find in the BEC
regime that the effect of the intralayer correlations on superfluid properties is negligible, but in the
BCS-BEC crossover regime, the superfluid gap is significantly weakened by the intralayer correla-
tions. This is caused by the intralayer correlations boosting the number of low-energy particle-hole
excitations that drive the screening. We further find that the intralayer correlations suppress the
predicted phenomenon in which the average pair size passes through a minimum as the crossover
regime is traversed. The results we present here have been published in Ref. [44].

Theoretical investigations of excitonic superfluidity in two-layer systems have mainly
focused on the interlayer electron-hole correlations needed to generate the electron-hole
pairs. Reference [75] was the first attempt to include the effect of intralayer correlations
on superfluidity in this system by including an unscreened repulsive intralayer inter-
action term in the Hamiltonian. However, there is no comparison of results with and
without these correlations, so the role of the intralayer correlation is not yet clear. In
addition, Ref. [46] showed that screening plays a central role in exciton superfluidity,
particularly at high density where the intralayer correlation is expected to be stronger.
Thus intralayer correlation should be included side by side with screening. Finally, Refs.
[12, 104] show Quantum Monte Carlo (QMC) simulations where all correlations, and in
fact all vertex corrections, are included. These can yield no information about the vertex
corrections separate contributions, nor where in the phase diagram the intralayer corre-
lations become significant.

In this chapter, we show that the Hartree-Fock approximation is a valid approxima-
tion to treat the intralayer repulsive interaction in electron-hole bilayer superfluids. Then,
we investigate the effect of the intralayer correlation on the superfluid properties as a
function of the density, benchmarking the results with QMC simulations in the case of
double-bilayer graphene. Finally, we explore the effect of intralayer correlation explor-
ing the BCS-BEC crossover by fixing the density and tuning the interlayer distance.
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Chapter 4. Effects of intralayer correlations on electron-hole bilayer superfluidity

4.1 Hartree-Fock correlations in bilayer exciton system

Superfluidity of spatially indirect excitons has been predicted at low density, where the
average separation between the excitons is much greater than the layer spacing separat-
ing the electrons and holes. The excitons are then well approximated by particles with
dipole moments perpendicular to the layers and mutually interacting through weak re-
pulsive dipole-dipole interactions acting parallel to the layers [11, 106].

For a dipolar system, at low density, the kinetic energy effects exceed the dipole-
dipole correlations, and the system is in the region of weak correlations [131]. At high
density, the dipole system enters the strong correlation region in which the dipole-dipole
correlations exceed the kinetic energy [193].

This is in striking contrast to Wigner crystallization in double-layer coulombic sys-
tems, where at low densities the intralayer correlations from the Coulomb interactions
are dominant over kinetic energy effects, and the system is in the region of strong corre-
lations [105], while at high density is in the weak correlation region [134].

Here we want to identify the regions of intralayer correlations for an exciton bilayer.
We evaluate the expectation value of the kinetic energy ⟨K⟩ and of the intralayer repulsive
interaction ⟨Vsc

S ⟩ [131]:

⟨K⟩ = 1
S ∑

λ
∑

k
ξλ(k)n(k) , (4.1)

⟨Vsc
S ⟩ = 1

2S ∑
λ

∑
k,q

Vsc
S (k − q)n(q)n(k) , (4.2)

with ξk = εk − µs and n(k) density of state. We use the RPA self-consistent screened
intralayer interaction Vsc

S , Eq. (2.79).
For equal electron and hole layers, the sum over the layer index λ = e, h gives equal

contributions:

⟨K⟩ = 2
S ∑

k
ξλ(k)n(k) , (4.3)

⟨Vsc
S ⟩ = 1

S ∑
k,q

Vsc
S (k − q)n(q)n(k) . (4.4)

We consider a Double bilayer graphene with single-particle parabolic bands with εk =
h̄2k2/2m∗, with equal effective masses m∗ = m∗

e = m∗
h = 0.04. For the spin and valley

degeneracy, we consider gsgv = 2. We take hBN as the insulator between the layers with
dielectric constant ϵ = 2. We consider equal electron and hole layer densities, n = ne =
nh, corresponding to an average interparticle spacing in the layers of r0 = (πn)−1/2.

We evaluate Eqs. (4.3)-(4.4) both in the normal and superfluid state as a function of
the density. In the superfluid state, we solve the gap and number equations of the sys-
tem at zero temperature (Eq. (2.66)-(2.70)) without the intralayer correlation term in ξ(k).
We obtain the behaviour of the density of states n(k), the chemical potential µs and the
screened intralayer interaction Vsc

S (Eq. (2.79)) as a function of the density. Because of
strong screening, there is a maximum onset density for the superfluidity that corresponds
to r0 ≃ a∗B.

Figure 4.1 shows the ratio between the kinetic energy ⟨K⟩ and the intralayer interac-
tion ⟨Vsc

S ⟩ expectation values as a function of the intralayer distance r0. In the superfluid
regime, for r0/ron > 1, ⟨K⟩ is larger than ⟨Vsc

S ⟩, the system is in the superfluid state with
weak correlations region. As r0 approaches ron, at onset density, the interlayer attractive
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4.1. Hartree-Fock correlations in bilayer exciton system

interaction is strongly suppressed by the screening and the particle-particle intralayer
Coulomb interaction takes over the exciton-exciton dipole interaction. Above the onset
density r0/ron < 1, when the superfluidity suddenly disappears, the ratio ⟨K⟩/⟨Vsc

S ⟩ >
increases to greater than 1, resembling a Coulomb-like behaviour at large density. The
exciton bilayer system is in the normal state characterized by a weak correlations region.

We conclude that for a DBG, in the density interval where superfluidity is predicted
[43, 46], the system is always in the weak correlation region. In this region, an expansion
of the corrections due to the intralayer correlations will be dominated by the Hartree-
Fock contribution [194].

FIGURE 4.1: The ratio between the kinetic energy ⟨K⟩ and the intralayer interaction
⟨Vsc

S ⟩ expectation values as a function of the intralayer distance r0 for a fixed inter-
layer distance d = 0.2. r0 is in unit of the onset interparticle distance ron. The four
regions identify the Normal State with Weak Correlation (NS-WC), Superfluid State
with Weak Correlation (SS-WC), Normal State with Strong Correlation (NS-SC), and

Superfluid State with Strong Correlation (SS-SC).

We have shown in Chap. 2 that with the inclusion of the Hartree-Fock term the cou-
pled mean-field equations for the superfluid gap ∆k and layer density n are given by:

∆(k) = −1
S ∑

k′
Vsc

D (k − k′)
∆(k′)

2EHF(k′)
, (4.5)

n =
gsgv

S ∑
k

1
2

(
1 − εk − µs

EHF(k)

)
. (4.6)

where EHF(k) =
√

ξHF2

k + ∆2
k is the excitation energy, ξHF

k = εk − µs − Σ(k) with Σ(k) =
1
S ∑p Vsc

S (p − k)np, and the density of states nk = 1
2 (1 − ξHF

k /EHF
k ) [131, 195]. We consid-

ered screened RPA interlayer and intralayer interactions, Eqs. (2.79)-(2.80).
We express lengths in units of the effective Bohr radius, a∗B = ϵa0me/m∗

r = 5.3 nm,
where m∗

r = m∗/2 is the reduced mass. Energies are expressed in effective Rydberg
Ry∗ = 68 meV.

Figure 4.2(a) shows the resulting superfluid energy gap ∆k for a layer separation d =
0.2.

The intralayer distance r0 can be tuned using gate voltage exploring the BCS-BEC
crossover. We span the full range for superfluidity: r0 = 3.0 deep BEC regime, r0 = 2.0
crossover regime, r0 = 1.5 close to onset density. As the onset density is approached, we
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Chapter 4. Effects of intralayer correlations on electron-hole bilayer superfluidity

see that the Hartree-Fock correlations have a strong effect on the superfluidity, reducing
the gap ∆k by as much as a factor of 2 (Fig. 4.2(a)).

Figure 4.2(b) demonstrates that this suppression of ∆k comes from the effect of the
Hartree–Fock correlations weakening the self-consistent electron-hole screened interac-
tion, Vsc

D (q). The weakening is due to the Hartree-Fock corrections boosting the number
of the low-energy particle-hole excitations that drive the screening (see Fig. 4.2(c)). The
effect of the intralayer correlations on the superfluidity weakens with decreasing density,
and for r0 ≳ 3 the correlations have negligible effect.

FIGURE 4.2: (a) Superfluid gap ∆k in effective Rydberg Ry∗ units at densities with
average interparticle spacing r0. Layer separation d = 0.2. Solid red: ∆k within the
mean field including intralayer correlations. Dashed blue: ∆k within the mean-field
but neglecting intralayer correlations. (b) Ratio of self-consistent screened electron-
hole attraction Vsc

eh (k) to the bare attraction Veh(k) for the same densities. (c) Corre-
sponding density of states nk.

Figure 4.3 compares our results with Diffusion Quantum Monte Carlo (DQMC) nu-
merical simulations [43] with the same physical parameters.

Figure 4.3(a) shows that including the Hartree–Fock correlations significantly im-
proves the agreement with DQMC for both the height and position of the maximum
of the superfluid peak ∆max.

Figures 4.3(b) and (c) compare the condensate fraction CF and the QMC single-particle
chemical potential µs (see Appendix E), respectively. We see that the Hartree-Fock correc-
tions are significant and move these quantities closer to the benchmark DQMC results.

Note that the condensate fraction in Ref. [43] is a quantity that does not rely on any
fitting procedure or model, therefore it offers an unfiltered way to compare the qualitative
and the quantitive effects of the different correlations.

DQMC shows a brief entrance into the BCS regime, specified by CF < 0.2, whereas
our onset density preempts entry into the BCS regime. This is associated with static
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4.1. Hartree-Fock correlations in bilayer exciton system

screening underestimating the onset density. Corrections from dynamical screening have
been shown to increase this density [196].
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FIGURE 4.3: (a) Maximum superfluid gap ∆max as function of r0, the average inter-
particle distance within a layer. Solid red: ∆max within mean-field with intralayer
correlations. Dashed blue: ∆max within the mean-field but without intralayer corre-
lations. Shown for comparison (dash-dot green), the ∆max from Diffusion Quantum
Monte Carlo numerical simulations [43]. (b) The corresponding condensate fraction

CF. (c) The corresponding single-particle chemical potential µs.

During the last decade, different materials with different interlayer distances have
been found to host stable exciton systems. The smallest separation experimentally at-
tained to date, in units of their effective Bohr radii, are: in Gallium Arsenide (GaAs)
double quantum wells d ≃ 1.0 (10 nm) [56, 197, 198], in double bilayer graphene (DBG)
d ≃ 0.2 (1 nm) [1], and in double layer Transition Metal Dichalcogenide (TMD) d ≃ 0.45
(0.6 nm) [2, 3].

In Fig. 4.4 we report the ratio between the expectation value of the kinetic energy and
intralayer interaction for those interlayer distances d. As d increases, the ratio ⟨K⟩/⟨Vsc

S ⟩
decreases because the intralayer interaction Vsc

S is less screened, and so it is stronger. This
results in the system being able to enter the strong correlations region ⟨K⟩/⟨Vsc

S ⟩ < 1 in
the superfluid state close to onset density.

By increasing the density above the onset density, the ratio ⟨K⟩/⟨Vsc
S ⟩ increases, and

the system goes from normal state strong correlations to normal state weak correlations
region. This means that there is a density interval around the onset density in which the
Hartree-Fock approximation is not a good approximation for the intralayer correlations,
neither for the superfluid nor for the normal state.

We find that with the inclusion of the Hartree-Fock intralayer correlations the onset
density is reduced, and this reduction increases as d increases, as reported in Fig. 4.5.
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Chapter 4. Effects of intralayer correlations on electron-hole bilayer superfluidity

FIGURE 4.4: The ratio between the kinetic energy ⟨K⟩ and the intralayer interaction
⟨Vsc

S ⟩ expectation values as a function of the intralayer distance r0 for different inter-
layer distances: d = 0.2 (black points), d = 0.4 (red points), d = 0.5 (green points),
d = 0.7 (blue points). Here the interparticle and interlayer distances are in units of

the onset interlayer distance ron.

Figure 4.5 maps out the superfluidity and its regimes at very low temperatures in the
r0-d phase space with the inclusion of Hartree-Fock correlations.

The boundary between the BEC and the BCS-BEC crossover regimes as a function
of the interlayer distance in Fig. 4.5(a), corresponds to when the chemical potential µs
changes sign from negative to positive (Fig. 4.3(b)) [191, 199]. Fig. 4.5(b) shows that this
boundary corresponds to ∆max/EF ≃ 5.

Figure 4.5 shows that the inclusion of intralayer correlations strongly reduces the re-
gion of the r0 − d space in which superfluidity survives. This leads to the whole super-
fluid phase, from low density up to the onset density, being always in the weak correla-
tions regions ⟨K⟩/⟨Vsc

S ⟩ > 1.

b)

FIGURE 4.5: a) BEC and BCS-BEC crossover regimes are individuated when the
single-particle chemical potential µs changes sign as a function of the layer separa-
tion d and average interparticle spacing r0. The BCS regime is preempted by strong
screening that suppresses superfluidity at small r0 and large d. b) Max gap energy
∆max divided by the Fermi energy εF The black dash-dotted line delimits the bound-
ary between the BEC and the crossover regime reported in panel (a). In both panels
marked are the points in r0-d phase space used in Fig. 4.4 and Fig. 4.6. The black
dashed line in both panels is the boundary of the superfluid phase without the in-

tralayer correlations.
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4.1. Hartree-Fock correlations in bilayer exciton system

We compare in Fig. 4.6(a) for a fixed value of the layer interparticle spacing r0 = 3,
the evolution of the superfluid gap energy ∆k when the Hartree–Fock correlations within
the layers are either included or neglected, for different layer separations d. The corre-
sponding (r0-d) points are marked on the phase diagram, Fig. 4.5. Figure 4.6(b) compares
the corresponding ratios of screened electron-hole attraction Vsc

D (k) to the bare attraction
VD(k).

The layer spacing d = 0.2 lies deep in the BEC regime and Fig. 4.6(b) confirms that
screening is indeed negligible there.

Since the Hartree-Fock corrections primarily affect the screening, the correlations
have almost no effect on ∆k for d = 0.2. However, d = 0.4 lies on the BCS-BEC crossover
boundary, and we see at that point that screening is no longer negligible, and as a conse-
quence, ∆k starts to develop a sensitivity to the Hartree-Fock corrections. As d is further
increased and the crossover regime is traversed, both the screening and ∆k become in-
creasingly sensitive to the Hartree-Fock corrections. By d = 0.7, the correlations boost
the low-lying density of states so much that the screening is strongly enhanced. This
in turn strongly suppresses ∆k. d = 0.7 is close to the superfluid threshold where the
screening kills the superfluidity.
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FIGURE 4.6: (a) Superfluid gap ∆(k) for a fixed density corresponding to r0 = 3,
at different d points in the BEC and BCS-BEC crossover regimes (refer Fig. 4.5).
Solid red: ∆(k) within mean-field with intralayer correlations included. Dashed
blue: ∆(k) within mean-field but neglecting intralayer correlations. (b) Ratio of self-
consistent screened electron-hole attraction Vsc

D (k) to the bare attraction VD(k) for
the same r0-d points spanning the BEC and BCS-BEC crossover regimes.

Figure 4.7 compares, with intralayer correlations included or neglected, the spatial
size of the electron-hole pairs [191, 200],

ξpair =

[
∑k |∇kukvk|2

∑k u2
kv2

k

]1/2

, (4.7)

as a function of r0 for layer separation d = 0.2.
Without the intralayer correlations, starting from the low-density BEC regime, ξpair

initially decreases as the density increases. In the BEC regime, the pairs act as well-spaced
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Chapter 4. Effects of intralayer correlations on electron-hole bilayer superfluidity

composite bosons interacting primarily through exchange, thus, as the interparticle spac-
ing decreases, exchange effects strengthen causing the pairs to shrink [201]. In contrast,
in the crossover regime, the bosonic nature of the pairs is lost because there is a significant
overlap of the single-fermion wave functions. Thus ξpair will grow exponentially as the
density is further increased. Reference [201] pointed out that this competing behaviour
leads to a minimum in ξpair. In Fig. 4.7 this minimum is clearly visible when intralayer
correlations are omitted.

However, we find that when intralayer correlations are included, the resulting build-
up of screening strength with increasing density greatly weakens the shrinkage of ξpair
and effectively eliminates the minimum. Then at higher densities, the very strong screen-
ing further weakens the superfluidity, causing the ξpair to grow exponentially. ξpair di-
verges at the onset density for superfluidity. For d > 0.2, there is no minimum when in-
tralayer correlations are included, and the minimum without correlations rapidly weak-
ens. Our results can be compared with the Cooper pair radii from Diffusion Quantum
Monte Carlo (DQMC) reported in Ref. [43]. We found that the inclusion of intralayer
correlations improves the agreement with the results for the Cooper pair radius from
DQMC.
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FIGURE 4.7: The pair size of the exciton ξpair as a function of r0, the average inter-
particle spacing in each layer. The layer separation is d = 0.2. Solid red: within
mean-field with intralayer correlations included. Dashed blue: within mean-field

but neglecting intralayer correlations.

4.2 Conclusions

We have demonstrated that the primary effect of the Hartree-Fock correlations on the su-
perfluid properties of an exciton bilayer system is an increase in the strength of screening
caused by a boost in the density of the low-lying states. Screening plays a crucial role in
determining superfluid properties because the pairing interaction is long-range [45, 46],
and we find that the strength of the screening can be as much as doubled by the Hartree-
Fock corrections. Effects of screening on the superfluidity are negligible in the deep BEC
regime [48] and therefore Hartree-Fock has minimal effect in that regime, but in the BCS-
BEC crossover regime, where screening plays a crucial role in determining the superfluid
properties, the increased screening strength results in:
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4.2. Conclusions

• A diminution of the superfluid gap ∆ by up to a factor of two within the BCS-BEC
crossover regime, leading to a better agreement with the DQMC simulations.

• A shift to lower densities of the boundary between the BEC and crossover regimes.

• A disappearance of the minimum in the electron-hole pair-size as a function of
density.
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Chapter 5

Density Collective Modes

In this chapter, we explore collective modes in the exciton bilayer system as a fingerprint of the
presence of the superfluid exciton phase. We focus on collective modes originated by density fluc-
tuations treated with Random-Phase approximation. We compare results in the normal state and
superfluid state to identify unambiguous fingerprints of the presence of the superfluid phase in the
bilayer exciton system. In addition, we discuss the main differences between the collective modes
associated with the long-range Coulomb interaction in an exciton bilayer with respect to and the
collective modes associated with the contact interaction in cold atom gases. Finally, we qualita-
tively discuss the collective modes originating from fluctuations in the amplitude and phase of the
superfluid order parameter.

The experimental investigation of collective modes has been widely used in supercon-
ductors and ultracold gas atoms to study how systems respond to external perturbations.
A variety of collective modes associated with the perturbation of different quantities of
the system has been found. Different collective modes appear and characterize different
phases of the system. Thus collective modes are a powerful tool that can be used as an
unambiguous fingerprint of exciton superfluidity in a bilayer system.

A recent study [142] described density collective modes in a bilayer exciton superfluid
using a "quasi-localized particle approximation," where electrons and holes are highly
localized. They identified acoustic and optic modes similar to those found in the normal
state of the exciton bilayer. However, these are gapped in the superfluid phase. This
approximation is valid in low-density and large interlayer distance regimes with weak
interactions. Similar results were found in an exciton solid bilayer system using the same
approximation, where excitons are organized in a crystal structure [145].

We propose here a complete description of density collective modes in the bilayer ex-
citon system in the superfluid phase through the BCS-BEC crossover. We use the super-
fluid model reported in Chapter 1 without any restriction on the localization of electrons
and holes. We compare the results in the superfluid phase and in the normal state looking
for unambiguous fingerprints of the normal-superfluid phase transition.

5.1 Exciton bilayer density response function

We investigate the collective modes originated by density fluctuations.
In Chap. 2 we have evaluated the screened interlayer and intralayer interactions to

account for the effect of density fluctuations in the bilayer exciton system. Using these
screened interactions in the gap and number equation, rather than the bare ones, sig-
nificantly impacts the gap energy, the single-particle chemical potential, and the density
behaviour [44, 46–48, 202, 203].

In Sec. 2.3 we have reported how from the RPA Dyson equation for the screened inter-
action WRPA(q, ω) (Eq. (2.72)) it is possible to get the RPA screened interaction Eq. (2.73).
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Chapter 5. Density Collective Modes

Equation (2.72) can be rewritten also with the dressed polarization function ΠRPA(q, ω)
[134]:

WRPA(q, ω) = V(q) + V(q)ΠRPA(q, ω)V(q) . (5.1)

Comparing Eq. (2.72) and Eq. (5.1) one gets:

ΠRPA(q, ω) =
Π0(q, ω)

1 − Π0(q, ω)V(q)
. (5.2)

This is the RPA polarization function corresponding to the density response function of
the system [158].

In a bilayer exciton system of equal electrons and holes, we have:

ΠRPA(q, ω) =

(
ΠRPA

ee (q, ω) ΠRPA
eh (q, ω)

ΠRPA
eh (q, ω) ΠRPA

ee (q, ω)

)
, (5.3)

The diagonal element ΠRPA
ee (q, ω) is the electron-electron response function which de-

scribes the particle density response in one layer due to a density perturbation in the
same layer. The off-diagonal element ΠRPA

eh (q, ω) is the electron-hole response function
which describes the particle density response in one layer due to a density perturbation
in the opposite layer. The V(q) is the 2 × 2 bare interaction matrix and Π0(q, ω) is the
2 × 2 zero-order polarization function matrix defined as:

V(q) =
(

VS(q) VD(q)
VD(q) VS(q)

)
, (5.4)

Π0(q, ω) =

(
ΠN

0 (q, ω) ΠA
0 (q, ω)

ΠA
0 (q, ω) ΠN

0 (q, ω)

)
, (5.5)

where VS(q) and VD(q) are the bare intralayer repulsive and interlayer attractive in-
teraction and ΠN

0 (q, ω) and ΠA
0 (q, ω) are the normal and anomalous zero order polariza-

tion:

ΠN
0 (q, ω) =

1
S ∑

k

u2
kv2

k+q

ω − E(k)− E(k + q)
−

u2
k+qv2

k

ω + E(k) + E(k + q)
, (5.6)

ΠA
0 (q, ω) =

1
S ∑

k

uk+qvk+qukvk

ω − E(k)− E(k + q)
−

uk+qvk+qukvk

ω + E(k) + E(k + q)
, (5.7)

where uk and vk are the Bogoliubov amplitudes defined in Eq. (2.96)-(2.97).
Replacing Eq. (5.3), Eq. (5.4) and Eq. (5.5) in Eq. (5.2) one gets:

ΠRPA
ee (q, ω) =

ΠN
0 (q, ω)− VS(q)B(q, ω)

1 − 2
(
ΠN

0 (q, Ω)VS(q) + ΠA
0 (q, ω)VD(q)

)
+A(q)B(q, ω)

, (5.8)

ΠRPA
eh (q, ω) =

VD(q)B(q, ω) + ΠA
0 (q, ω)

1 − 2
(
ΠN

0 (q, ω)VS(q) + ΠA
0 (q, ω)VD(q)

)
+A(q)B(q, ω)

, (5.9)

where B(q, ω) = ΠN
0 (q, ω)2 − ΠA

0 (q, ω)2 and A(q) = VS(q)2 − VD(q)2.
The poles in the electron-electron and the electron-hole RPA response functions re-

veal the presence of collective modes. These modes represent a coordinated motion of
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5.1. Exciton bilayer density response function

particles characterized by a certain momentum q and energy ω, in response to a den-
sity perturbation acting on the system [194]. The energy spectra of the density collective
modes are obtained by looking for combinations of [q, ω] to make the denominator of the
response functions zero.

In a system with equal electron and hole layers, the electron-electron and the electron-
hole response functions share the same denominator. The energy spectra of the density
collective modes are given by:

1 − 2(ΠN
0 (q, ω)VS(q) + ΠA

0 (q, ω)VD(q)) +A(q)B(q, ω) = 0 . (5.10)

The collective modes are stable if there is a real solution ω(q) of Eq. (5.10). If there is a
complex Ω(q) = ω(q) + iΓ(q) the collective mode associated is unstable, and Γ(q) is the
damping parameter which characterises the lifetime of the collective modes.

Note that both the normal ΠN
0 (q, ω) and the anomalous ΠA

0 (q, ω) superfluid polar-
ization functions, Eqs. (5.6) and (5.7), have poles for real ω. The region in the (ω − q)
space where these zero-order polarization functions have poles is known as the ampli-
tude excitation or continuum region.

In Appendix F is reported how the normal polarization ΠN(q, ω), Eq. (F.2), has poles
in the normal exciton state for ω = E(k + q)− E(k).

In the normal state, the continuum is defined by the geometry of the Fermi sur-
faces of the two Fermi liquids and accounts for the possible excitation energies of quasi-
particle/quasi-anti-particle pairs. A perturbation with ω(q) in the normal state promotes
a particle from an occupied state (which then remains empty, referred to as the quasi-anti-
particle) with wave vector k to an empty state with wave vector k + q (the quasi-particle)
[131].

In the BEC superfluid regime, most electron-hole pairs are condensed in the system
ground state. A density perturbation with energy ω and momentum q can excite an entire
electron-hole pair from the ground state. If the perturbation energy is sufficiently high,
the exciton breaks, promoting the electron to an energy state E(k) and the hole to a state
E(k+ q), or vice versa. Therefore, the normal and anomalous polarization functions have
poles when the perturbation energy ω equals E(k) + E(k + q).

In both cases, the excitations have a finite lifetime, ultimately resulting in the recom-
bination of the quasi-particle and quasi-anti-particle with photon emission in the normal
state or the reformation of the exciton pair in the ground state for the superfluid case.
Within the continuum, the polarization functions are complex.

Since Eq. (5.10) is invariant under the change Ω to −Ω we impose Re[Ω] = ω > 0.
The branch cut in which the zero-order polarization functions diverge is given by ω ∈
Cq = {E(q + k) + E(k), k ∈ R2}, originating from the denominator ω − E(k)− E(k + q)
of the polarization functions. The behaviour of the dispersion relation E(k), and thus the
position of the continuum in the energy spectrum ω(q), depends on the system location
within the BCS-BEC crossover region.

5.1.1 Density collective modes in BEC regime

We consider the same system of the previous chapter with the interlayer distance d =
0.2a∗B and we set the interparticle distance r0 = 3a∗B, in the BEC. As shown in the previous
chapter, intralayer correlations are negligible in the deep BEC regime for this (d − r0).
Thus, ξ(k) = ε(k)− µs with ε(k) = h̄2k2/2m∗.
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We rewrite the normal and anomalous polarization functions, Eq. (F.2)-(5.7), in the
superfluid exciton phase replacing the sum over k with the integral:

ΠN
0 (q, ω) =

1
π

∫
dk k

∫ 2π

0
dθ

u2
kv2

k+q

ω − E(k)− E(k, q, θ)
−

u2
k+qv2

k

ω + E(k) + E(k, q, θ)
, (5.11)

ΠA
0 (q, ω) =

1
π

∫
dk k

∫ 2π

0
dθ

uk+qvk+qukvk

ω − E(k)− E(k, q, θ)
−

uk+qvk+qukvk

ω + E(k) + E(k, q, θ)
, (5.12)

where E(k, q, θ) = E(
√

k2 + q2 + 2kqcos(θ)). The polarization functions are in the unit of
the 2D density of states per unit volume at the Fermi surface of a non-interacting system
N0 = me/2πh̄2, the momenta k and q in unit of the Fermi wavevector kF and the energies
E(k), ω in unit of the Fermi energy εF.

We minimize E(k, q, θ) + E(k) as a function of k and θ finding the boundary ω of the
pair-breaking excitation area.

II
(a) SF

FIGURE 5.1: The pair-breaking continuum region (grey area) is shown for the in-
terlayer distance d = 0.2a∗B in the exciton deep BEC superfluid state (SF) at the
interparticle distance r0 = 3a∗B (a) and the normal state (NS) at the interparticle dis-
tance r0 = 0.5a∗B (b). In the BEC regime, the boundary is defined by the energy ω.
In the normal state, the top and bottom boundaries are defined by the energies ω+

and ω−, respectively.

In Fig. 5.1, we show the pair-breaking continuum region (grey area) for the exciton
deep BEC superfluid state and the normal state. In the superfluid phase for ω > ω
the system is in the pair-breaking region and it has no upper boundary, (Fig. 5.1(a)) In
contrast, in the normal state, (Fig. 5.1(b)), the continuum has a bottom (ω−) and an upper
(ω+) energy boundary.

In the normal state, the zero temperature Fermi step functions in the numerator of the
normal polarization function ΠN

0 (q, ω), Eq. (F.3), impose a cut-off to the integral in k. For
a fix q and ω > ω+ or ω < ω−, there is no value of k for which the denominator of the
normal polarization Eq. (F.3) is zero.

In contrast, in the superfluid state, the Bogoliubov amplitudes smoothly approach
zero for large momenta in the numerator of the superfluid polarisation functions. There
is no cutoff on the integral and thus for any q and ω, there is always a value of k and θ for
which the denominator of the normal and anomalous polarization functions is zero.

Figure 5.2 shows the real and imaginary part of the normal polarization function
ΠN

0 (q, ω) for q = kF.
The imaginary part of the polarization function is zero for ω < ω, while the real

part is negative. Entering the pair-breaking excitation region the imaginary part presents
maximum and the real part becomes suddenly positive, then they both decrease for large
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FIGURE 5.2: Real (red solid line) and imaginary (blue solid line) component of the
normal polarization function ΠN

0 (ω, q) as a function of ω for q = kF. N0 = m/2πh̄2

is the 2D density of states unit volume at the Fermi surface and ω is the energy
boundary of the superfluid continuum.

ω. This behaviour is similar to the one reported in Fig. F.2 for the normal polarization
function ΠN

0 (q, ω) in the normal state for q > 2kF where there is a stable excitation region
of the (ω − q) space which precedes the continuum. The difference is that in the normal
state for q > 2kF, when ω > ω+, the imaginary part is zero while the normal part remains
positive.

In Appendix F we show how in the normal state there are stable collective modes only
if ΠN

0 (q, ω) > 0. This happens if ω > ω+, so in the region of the (ω − q) space above the
continuum region.

In the superfluid phase, it is possible to show that Eq. (5.10) has real stable solutions
only if ΠN

0 (q, ω)− ΠA
0 (q, ω) > 0.

The normal and anomalous polarization functions in the BEC regime cancel out each
other as a function of q and ω. For ω < ω the difference ΠN

0 (q, ω) − ΠA
0 (q, ω) is very

small and slightly negative, making it impossible to have a real solution for Eq. (5.10).
In the BEC region, there are no real values of [ω, q] for which Eq. (5.10) is solved (Fig.

5.3), thus there are no stable density collective modes outside the continuum.
The effect of density fluctuations on the screening interaction is negligible because

the excitons are well-spaced (large r0) and they interact minimally with each other [147].
Consequently, density fluctuations do not induce a stable collective response in the sys-
tem.

5.1.2 Density collective modes in the Crossover regime

Increasing the density and entering the crossover regime of the BCS-BEC crossover, the
interlayer and intralayer interactions are significantly affected by density fluctuations
and the screening process [44].

Setting d = 0.2a∗B and r0 = 1.5a∗B the system is in the crossover regime close to onset
density. We have shown in the previous chapter that the effect of the intralayer correla-
tions is important as onset density is approached. Thus, ξ(k) = ε(k)− µs − Σ(k), where
Σ(k) = 1/S ∑k′ Vsc

S (k − k′)n(k′) is the Hartree-Fock correlation energy. We evaluate the
boundary of the pair-breaking excitation area in the crossover regime, including the in-
tralayer correlations.

73



Chapter 5. Density Collective Modes
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FIGURE 5.3: Heat map of the denominator Den(q, ω) of the normal and anomalous
polarization function, Eq. (5.10), outside the continuum, ω < ω, as a function of the

momentum q and energy ω in the BEC regime.

Figure 5.4(a) shows that the intralayer correlation lowers ω because the gap energy
is significantly suppressed near the onset density when the intralayer correlations are
included. The recess of ω around kF reflects the fact that the system is in the crossover-
BCS regime and so the gap energy ∆(k) has a maximum around kF. For q < 2kmin, where
kmin is the momentum in which E(k) has a minimum, ω(q) = 2∆(q) like in ultracold gas
atoms [204].

The normal polarization function ΠN
0 (q, ω) for ω < ω is negative and keeps decreas-

ing as q or ω increases. The difference between the normal and the anomalous polar-
ization function, ΠN

0 (q, ω)− ΠA
0 (q, ω) is negative and increases in modulus as q and ω

increase (Fig. 5.4(b)). In the crossover regime, as in the BEC regime, there are no real so-
lutions for Eq. (5.10) outside the continuum (Fig. 5.4(c)) and no maximum in the density
response function.

This is strikingly different from what we find in the normal state, where the op-
tic and acoustic modes appear outside the continuum (See Appendix F) [144]. In the
BEC and crossover regime, the superfluid phase always features a large order parameter
∆(k) > εF. It is because of this large energy gap in the single-particle excitation spectra,
that low-energy excited states are inaccessible for the optic and acoustic modes found in
the normal state. The macroscopic coherent phase of condensed excitons halts the prop-
agation of stable density collective modes. The disappearance of the acoustic and optic
branch outside the continuum lowering the density is a striking signal of the transition
from normal to superfluid phase in the exciton bilayer system.
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FIGURE 5.4: (a) Boundary of the continuum (grey area) in the (ω − q) space with
the inclusion of the intralayer correlations (red solid line) and without (blue dashed
line). (b) The normal polarization functions ΠN

0 (solid lines), the anomalous po-
larization function ΠA

0 (dashed lines) and the difference ΠN
0 − ΠA

0 (dashed-dotted
lines) with the inclusion of intralayer correlations for three different values of q:
q = 0.5kF (red), q = kF (blue) and q = 2kF (green). (c) Heat map of the denominator
Den(q, ω) of the normal and anomalous polarization function, Eq. (5.10), outside the
continuum, ω < ω, as a function of the momentum q and energy ω in the crossover-

BCS regime. Here d = 0.2a∗B and r0 = 1.5a∗B with ∆max = εF.

75



Chapter 5. Density Collective Modes

5.2 Differences and analogies with cold atoms

We found no stable density collective modes in the superfluid phase of an exciton bilayer
system. To properly discuss these results, we must recall some features related to the
presence of collective modes in the density response function in ultracold gas atoms.

On collective modes in ultracold gas atoms

Superfluid ultracold atom systems are characterized by attractive contact interactions be-
tween fermions, leading to Cooper pair formation [205]. The collective modes, associated
with amplitude and phase perturbations of the order parameter and with density pertur-
bations, have been extensively studied throughout the BCS-BEC crossover using linear
response theory [206].

These collective modes in ultracold gas atoms are identified by evaluating the ampli-
tude, phase, and density response functions, using the gap energy and chemical potential
derived from the gap and number equations, while including fluctuations in the order
parameter and density.

Fluctuations of the order parameter can be incorporated through a path-integral ap-
proach [133, 137], where Gaussian fluctuations are represented as ∆(q) = ∆0 + δ(q)eiθ(q),
with ∆0 as the mean-field energy gap, δ(q) as the amplitude fluctuation, and θ(q) as the
phase fluctuation of the superfluid order parameter. Alternatively, these fluctuations can
be included in the BCS Hamiltonian via driven fields that couple with the amplitude and
phase of the order parameter and the particle density [139, 207].

It is crucial to note that the density response function is sensitive to phase and ampli-
tude fluctuations, but the reverse is not true [204]. This is evident from the amplitude-
density, phase-density, and density-density response functions (Eq. 43-46 in Ref. [204]).
By considering only the matrix elements deriving from density fluctuations, the ampli-
tude and phase response functions disappear but the opposite is not true. Density fluctu-
ations do not affect the amplitude and phase response functions because of the RPA and
the form of the normal and anomalous polarization functions.

In a 3D system within the BCS regime, the density response function shows a max-
imum outside the continuum, resulting from the coupling of the phase and density re-
sponse functions and related to stable Anderson-Bogoliubov modes [135, 136].

In a 3D neutral system [133], the Anderson-Bogoliubov modes is gapless, ωθ(q =
0) = 0. For a charged system, because of the presence of a repulsive Coulomb interaction
between the fermions [139, 140], the phase mode acquires a gap ωθ(0) = ωpl , where

ωpl =
√

2πh̄2ne2/m∗ϵϵ0 is the plasma frequency, constant in q for 3D systems. In a 2D
neutral system the gapless nature of the Anderson-Bogoliubov modes is preserved [208].
However, a study of this mode in a 2D charged system is missing. Because, in 2D systems

the plasma frequency ωpl =
√

2πqh̄2ne2/m∗ϵϵ0 is zero at q = 0 (Fig. F.3), it is reasonable
to say that also the 2D Anderson-Bogoliubov mode for a charged system is gapless in the
crossover-BCS regime. One expects this to appear in the density response function for
small q and ω outside the continuum.

On collective modes in exciton bilayer systems

In exciton bilayer systems, the density response functions ΠRPA
ee (q, ω) and ΠRPA

eh (q, ω)
evaluated in Sec. 5.1 take into account only density fluctuations. The resulting gap energy,
single-particle chemical potential and density do not include the effect of the order pa-
rameter fluctuations. As a net result, there are no poles in the denominator or maximum
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in the density response function. Thus, there is no trace of stable Anderson-Bogoliubov
modes outside the continuum just considering density fluctuations.

By including fluctuations of the order parameter phase θ(q), we expect the appear-
ance of acoustic Anderson-Bogoliubov modes. In ultracold gas atoms, there is a smooth
passage from the first sound collective mode in the normal state at T > Tc to the Anderson-
Bogoliubov mode in the superfluid phase at T < Tc. They both coincide with the hydro-
dynamic sound of the system given by mc2

s = ndµ/dn. We have demonstrated that in
electron-hole bilayer systems, due to the screening, the propagation of the acoustic and
optic collective modes in the normal state is halted by the presence of a macroscopic su-
perfluid order parameter. The disappearance of the optic branch characterizes the transi-
tion from normal to superfluid phase in electron-hole systems.

In addition, in contrast with the contact interaction of cold atom systems, the finite-
range interlayer Coulomb interaction Veh(q) in the gap equation, strongly depends on the
screening and thus on the particle density. For this reason, the amplitude of the exciton
order parameter ∆(q) is sensitive to density fluctuations near onset density even with the
Random Phase Approximation. We expect the presence of unstable amplitude collective
modes in the continuum.

In the continuum, the energy of the collective modes acquires an imaginary part
Ω(q) = ω(q) + iΓ(q). Approaching the real axis of the Ω complex plane the normal and
the anomalous response functions show non-analytical behaviour. The Nozières analytic
continuation method is generally adopted [132] to solve the non-analyticity problem. In
Appendix B we show how to perform this analytic continuation in the normal state. In
the superfluid state, this procedure has been applied only for a contact interaction case
[133, 139]. The investigation of the behaviour of collective modes in the continuum is
beyond the scope of the present study, and we leave it for future works.

5.3 Conclusions

We have investigated density collective modes in the superfluid phase of an exciton bi-
layer system.

In the normal state, at high density, exciton bilayer systems respond to small external
density perturbations through low-energy optic and acoustic density collective modes.
However, as the density decreases and the system enters the superfluid phase, the re-
sponse changes significantly.

The superfluid exciton phase features large gap energy ∆(k) in the single-particle dis-
persion, preventing the propagation of stable acoustic and optic density collective modes.

In contrast with ultracold gas atoms, the long-range attractive interaction between
electrons and holes in exciton bilayers likely causes a coupling between density fluctu-
ations and the order parameter amplitude response function, resulting in unstable am-
plitude collective modes in the continuum at the transition from normal to superfluid
phase.

Both the absence of the acoustic and optic modes outside the continuum and the ap-
pearance of amplitude modes in the continuum can be experimentally detected and thus,
can be regarded as unambiguous signatures of the superfluid phase in the exciton bilayer
system.
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Chapter 6

Conclusion and Future perspectives

6.1 Conclusion

We have developed a theoretical model to describe the exciton bilayer system at zero tem-
perature, with screening and intralayer correlations included. With this method, we have
identified and investigated fingerprints of superfluidity in the exciton bilayer system. We
focused on two very different phenomena:

• The Josephson effect. This simultaneously probes the presence of a dissipationless
current and a macroscopic coherent state through the transport properties of the
system.

• The density collective modes. These describe the collective response of the system
to an external density perturbation. The behaviour of the collective modes strongly
depends on the phase in which the system is.

In Chapter 2, through a path-integral approach, we have calculated the gap and num-
ber equations at zero temperature. These describe the behaviour of the gap energy of the
superfluid phase, the single-particle chemical potential, and the particle density of a bi-
layer exciton system. We have included in the model the intralayer correlations, using
the Hartree-Fock approximation which inserts an additional term in the single-particle
dispersion relation of the system. In Sec. 2.3 we have reported the calculation to include
the screening with a self-consistent Random-Phase-Approximation in the interlayer and
intralayer interactions. We showed, for the first time, the derivation of the anomalous and
normal polarization functions in the superfluid phase using a Green function equation of
motion approach.

In Chapter 3 we report our proposal for experimentally measuring, in an exciton-
bilayer Josephson junction, the neutral exciton Josephson current. The junction linking
the two superfluid bilayer exciton systems is designed with a potential barrier which
is tunable in height. We provide pointers for the practical fabrication of the proposed
junction in a system of double monolayer Transition Metal Dichalcogenides. The device
could be fabricated with a combination of lateral stitching and vertical stacking of the
Transition Metal Dichalcogenide monolayers. The Josephson current measurement itself
could use the Shapiro method.

We studied separately the high potential and low potential regions. For low potentials,
the excitons have sufficient energy to pass through the barrier region, and here we have
solved the gap and number equations with a potential barrier included. With increasing
potential barrier height, we find that the gap energy in the BEC regime is suppressed but,
because of screening, the gap energy in the crossover-BCS regime is amplified.

In the low potential-barrier region, the exciton superfluid flows over the barrier and
can be described by the simple hydrodynamic relation Ib

c = nbL1vb
c . The superfluid criti-

cal velocity in the barrier vb
c is evaluated according to the Landau criterion. However in
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the high potential-barrier region, the excitons have insufficient energy to cross the barrier,
so the supercurrent is given purely by quantum tunnelling of the electron-hole pairs. The
high potential-barrier current and the critical current in the low potential-barrier region
are found to connect smoothly.

In studying the superfluid critical velocity as a function of density, we found a max-
imum. It is remarkable that the density at the maximum exactly matches the density at
which the chemical potential changes sign and the condensate fraction passes through
the value of 0.8, well-known indicators of the boundary separating the BEC and BCS-
BEC crossover regimes. Thus for electron-hole superfluidity, this maximum can be used
to locate this boundary. One can experimentally observe the maximum of the critical
velocity which occurs at the density where excitations switch from bosonic to fermionic.
For this system, the density controls the coupling strength.

In Chapter 4, we investigated the effect of intralayer correlations in exciton bilayer
systems. In the superfluid phase where the system is dilute the nature of the interac-
tions between the widely spaced excitons is dipolar. Hence at these low densities the
intralayer correlations are weak, making the Hartree-Fock approximation excellent. In-
creasing the density, the correlations become stronger. However, the development of
screening prevents entrance into the strong correlation region. When the density exceeds
the onset density, the screening completely suppresses superfluidity making the system
normal. At high densities in the normal state, the pairs break up and the intralayer inter-
actions are no longer dipolar. Thus the correlations become weak at high density and the
Hartree-Fock approximation is again valid.

We demonstrate that the primary effect of the Hartree-Fock correlations on the super-
fluid properties in the exciton bilayer system is an increase in the strength of screening.
This is caused by a boost in the density of low-lying states. Effects of screening on the
superfluidity are negligible in the deep BEC regime [48] and therefore Hartree-Fock has
minimal effect in that regime. However, in the BCS-BEC crossover regime where screen-
ing plays a crucial role in determining the superfluid properties, we find that the strength
of the screening can be as much as doubled by the Hartree-Fock corrections and that this
increase in the screening strength results in a diminution of the superfluid gap by up to
a factor of two. With Hartree-Fock included, there is good agreement with results from
diffusion Monte Carlo numerical simulations also in the BCS-BEC crossover regime. The
Hartree-Fock intralayer correlations shift the boundary between the BEC and BCS-BEC
crossover regimes to lower densities, and they eliminate a predicted minimum in the
electron-hole pair size as a function of density.

In Chapter 5 we explored the low-temperature behaviour of the density collective
modes to identify unambiguous fingerprints of the transition from the normal state to
the superfluid.

In the normal state at high densities, low-energy optic and acoustic density collective
modes characterise the response of exciton bilayer systems to small external density per-
turbations. Lowering the density and entering the superfluid phase, the response of the
system changes dramatically.

The superfluid exciton phase is characterized by the presence of a large gap energy
in the single-particle energy dispersion relation, since static screening blocks access to
exciton superfluidity in the BCS regime where the gap energy is much smaller than the
Fermi energy. The large energy gap in the BEC and BCS-BEC crossover regimes makes
the low-energy excited states inaccessible for density fluctuations, so a macroscopic co-
herent phase of condensed excitons blocks the propagation of stable density collective
modes.
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In contrast with ultracold gas atoms, the long-range attractive interaction between
electrons and holes in exciton bilayers likely causes a coupling between density fluctu-
ations and the order parameter amplitude response function, resulting in unstable pair-
breaking amplitude collective modes in the continuum at the transition from normal to
superfluid phase. Both the absence of the acoustic and optic modes outside the con-
tinuum and the appearance of pair-breaking amplitude modes in the continuum can be
experimentally detected and thus, can be regarded as unambiguous signatures of the
superfluid phase in the exciton bilayer system.

6.2 Future Prospectives

In this Thesis, we have opened the way for systematic studies in exciton bilayer systems,
of the Josephson effect and of collective modes in order to definitively probe the existence
of superfluidity. In carrying out our investigations of these two phenomena, we have
paid particular attention to suitable materials and experimental techniques to validate the
results. The recently predicted very rich phase diagram (Fig. 1.9) makes our investigation
of fingerprints of exciton bilayer superfluidity results even more timely.

Regarding further exploration in the exciton bilayer system of the Josephson effect,
collective modes and other quantum many-body phenomena, there is a great deal still to
be done, discovered and clarified. Below are possible research lines we plan to pursue in
the future.

1st Research Line: Superfluid order parameter collective modes

In Chapter 5 we studied density collective modes. As yet there are no theoretical stud-
ies of the order-parameter collective modes. Chapter 5 concluded with a comparison
between the results for the long-range interaction bilayer exciton system and contact
interaction ultracold gas atoms. We made certain predictions on the behaviour of the
order-parameter collective modes in the bilayer exciton system, and one future research
line will be to investigate the amplitude and phase order parameter in bilayer excitons at
finite temperature using the path-integral approach discussed in Chapter 1.

2nd Research Line: Drag-Josephson measurement

Recently, perfect Coulomb drag measurements have been performed in a double-monolayer-
TMD system [6], probing for the presence of stable excitons in the device at temperatures
up to 20K. The authors carried out high-quality measurements of the drag current down
to 1.5K. They succeeded in limiting the noise effects from interlayer tunnelling and de-
fects in the electrical contacts. We propose combined experiments as follows:

• Perform a Coulomb drag measurement by injecting the driving current Idrive in one
layer and measuring the drag current in the other layer Idrag to probe for the pres-
ence of excitons. Drag can distinguish exciton flow from the flow of independent
electrons and holes.

• Perform a Josephson effect measurement, to determine the voltage drop across the
barrier using the Shapiro method [180]. The Josephson effect identifies the presence
of a dissipationless current and the existence of phase coherence

This new combined Josephson and Coulomb drag technique can provide a defini-
tive picture of the phase space regions as a function of density and temperature of (i)
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the exciton superfluid, (ii) the exciton normal fluid, and (iii) the decoupled electron and
hole normal-liquid state. The superfluid phase is characterized by perfect Coulomb drag
(Idrive = Idrag) combined with the existence of a Josephson critical current Ic. Increasing
the temperature and approaching the superfluid critical temperature, Ic will decrease.
Above the superfluid critical temperature, the system will be in the exciton normal state,
and Ic will be zero, while the drag ratio is expected to be Idrive ≤ Idrag. Then when the
temperature is further increased in the decoupled electron and hole normal liquid state,
the excitons are dissociated and the drag ratio will steadily decrease.

3nd Research Line: Pseudogap

An important feature that is investigated in the normal state of superconductors and
ultracold atomic gases is the pseudogap phenomenon, a high-temperature precursor of
the superconducting or superfluid phase. In this phenomenon, there is a suppression of
spectral weight in the single-particle Green function in the excitation spectra above the
superfluid critical temperature, in 2D given by TBKT [209]. This suppression resembles
a gap opening (pseudogap), even though the system in the normal state as yet does not
possess global coherence. Notwithstanding this, local pairs with finite lifetimes can exist
in pockets of superfluidity [210], and they persist up to the mean-field superfluid critical
temperature TMF [211]. Above TMF, the excitons lose degeneracy and the system becomes
a classical exciton gas.

The theoretical predictions [212] of the opening of a pseudogap in the excitation spec-
tra in superconductors and ultracold atomic gases have been confirmed by ARPES and
STM experiments [213]. In exciton bilayers, the existence of such a region in the phase
diagram has been predicted [71, 88, 214]. However, there has still not been an in-depth
investigation of the pseudogap phenomenon in the normal state of electron-hole systems.
This we propose to do.

4nd Research Line: Unified model phase diagram

The supersolid phase recently predicted [7] in the exciton bilayer system has further en-
riched the predicted rich phase diagram that already contained the superfluid phase, the
exciton crystal state, and the Wigner crystal. Different theoretical approaches have been
adopted to investigate these phases. There exists as yet no unified theory able to describe
this rich exciton bilayer phase diagram.

In Chapter 2-4 we have made a step in this direction by inserting intralayer correla-
tions in the mean-field approach at zero temperature. With this extra term in the Hamil-
tonian, the superfluid phase as a function of the interlayer distance d and interparticle
distance r0 always lies below the diagonal r0 = d in the phase space, as would be ex-
pected.

As a next step, the model can be extended to treat the normal exciton, the superfluid,
and the supersolid phase. For the superfluid exciton phase, we have been using a plane
wave expansion of the single-particle wave function. This does not allow for any trans-
lational symmetry breaking.

A future research line will use a Bloch wave expansion:

Ψλ,τ(x) =
1√
βS ∑

k,n
e−iωnτ+i(k−K)xΨλ,n(k − K) , (6.1)

where K is the reciprocal lattice vector. This allows for the possibility of the existence
of periodic electron and hole lattices in the layers. Equation (6.1) for Ψλ,τ(x) would be
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substituted into the partition function Eq. (2.21). To obtain the gap equation, the effective
action would be minimised with respect to the gap energy ∆ and the reciprocal lattice
vector K. The idea is to describe the transition from the superfluid phase characterized
by the macroscopic order parameter with K = 0 (no periodicity), to a supersolid phase
characterized by macroscopic order parameter with K = 2π/aSS, with aSS the triangular
lattice constant predicted in Ref. [7]. We expect the transition from the superfluid to
the supersolid phase will be smooth and mediated by a region of the (r0− d) diagram
characterized by clusters of excitons.
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Appendix A

Electron-Hole Feynman Diagrams in
Self-Consistent Random Phase
Approximation

We treat the Feynman diagrams of screened intralayer and interlayer interaction, up to
the second order interaction in the self-consistent Random Phase Approximation.

The self-consistent Dyson equation for the dressed interaction W(q, ω) is given by:

W(q, ω) = V(q) + V(q)Π∗(q, ω)W(q, ω). (A.1)

, ω

, ω

, ω

FIGURE A.1: Feynman diagram representation of the Dyson equation. The thick-
wavy line represents the dressed interaction W(q, ω), the thin-wavy line is the
bare interaction V(q), and the thick-bubble line is the complete proper polariza-

tion Π∗(q, ω).

In the Random-Phase Approximation the Dyson equation becomes:

WRPA(q, ω) = V(q) + V(q)Π0(q, ω)WRPA(q, ω). (A.2)

We want to show the RPA Feynman diagrams up to second-order interactions, so we
expand WRPA(q, ω) to second-order:

WRPA(q, ω) = V(q) + V(q)Π0(q, ω)(V(q) +
(((((((((((((
V(q)Π0(q, ω)WRPA(q, ω)) , (A.3)

WRPA(q, ω) = V(q) + V(q)Π0(q, ω)V(q) . (A.4)

We study a two-component system in which W(q, ω), Π(q, ω) and V(q) are 2 × 2
matrices defined as:

V(q) =
(

VS(q) VD(q)
VD(q) VS(q)

)
(A.5)

Π0(q, ω) =

(
ΠN

0 (q, ω) ΠA
0 (q, ω)

ΠA
0 (q, ω) ΠN

0 (q, ω)

)
(A.6)
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W(q, ω) =

(
Vsc

S (q, ω) Vsc
D (q, ω)

Vsc
D (q, ω) Vsc

S (q, ω)

)
(A.7)

Using these 2 × 2 matrices in Eq.(A.4) one gets:

Vsc
S (q, ω) = VS(q) + VS(q)ΠN

0 (q, ω)VS(q) + VD(q)ΠA
0 (q, ω)VS(q) + VS(q)ΠA

0 (q, ω)VD(q)

+ VD(q)ΠN
0 (q, ω)VD(q) (A.8)

Vsc
D (q, ω) = VD(q) + VS(q)ΠN

0 (q, ω)VD(q) + VD(q)ΠA
0 (q, ω)VD(q) + VS(q)ΠA

0 (q, ω)VS(q)

+ VD(q)ΠN
0 (q, ω)VS(q) . (A.9)

In Fig. A.2 we report the Feynman diagrams for the interaction terms of Eq. (A.8) and
Eq. (A.9) for the screened interlayer and intralayer interaction.
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FIGURE A.2: First and second-order Feynman diagrams for the repulsive intralayer
Vsc

S (q, ω) and the attractive intralayer Vsc
D (q, ω).
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Appendix B

Polarization function with Green’s
function equation of motion in
normal state

The Hamiltonian of the electron-hole bilayer system, in the normal state, in second quan-
tization is:

H0 = ∑
k

E(k)c†
k ck + ∑

k
E(k)d†

k dk (B.1)

where E(k) = h̄k2/2m − µs. We consider equal electron and hole layers, Ee(k) = Eh(k) =
E(k).

In the normal state the only anticommutators different from zero of the creation (c†, d†)
and annihilation (c, d) operators are:

{c†
k , ck′} = δ(k − k′) , (B.2)

{d†
k , dk′} = δ(k − k′) . (B.3)

The electron-electron Green’s function equation of motion, Eq. (2.90):

i∂tGR
ne(q),ne(q′) = δ(t)⟨[ne(q); ne(q′)]⟩+ GR

[ne(q);H0],ne(q′) , (B.4)

is composed of three terms.
We evaluate each term of Green’s function equation of motion separately.
The δ(t)-term of Eq. (B.4) in the normal state is:

δ(t)⟨[ne(q); ne(q′)]⟩ = δ(t)∑
k,k′

⟨[c†
k+qck; c†

k′+q′ck′ ]⟩ . (B.5)

The commutator of fermionic operators [c†
k+qck; c†

k′+q′ck′ ] follows the general rule of com-
mutators:

[AB; CD] = A[B; C]D + [A; C]BD + CA[B; D] + C[A; D]B (B.6)
[A; B] = {A; B} − 2BA (B.7)

where A and B are fermionic operators. The right-hand side commutator in Eq. (B.5)
reads:

[c†
k+qck; c†

k′+q′ck′ ]

= c†
k+q[ck; c†

k′+q′ ]ck′ + [c†
k+q; c†

k′+q′ ]ckck′ + c†
k′+q′c

†
k+q[ck; ck′ ] + c†

k′+q′ [c
†
k+q; ck′ ]ck
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= c†
k+q

(
δ(k, k′ + q′)− 2c†

k′+q′ck

)
ck′ − 2c†

k′+q′c
†
k+qckck′ − 2c†

k′+q′c
†
k+qck′ck

+ c†
k′+q′

(
δ(k + q, k′)− 2ck′c†

k+q

)
ck

= c†
k+qck′δ(k, k′ + q′) + c†

k′+q′ckδ(k + q, k′)− 2c†
k+qc†

k′+q′ckck′ − 2c†
k′+q′c

†
k+qckck′

− 2c†
k′+q′c

†
k+qck′ck − 2c†

k′+q′ck′c†
k+qck

= c†
k+qck′δ(k, k′ + q′) + c†

k′+q′ckδ(k + q, k′)−
��������
2c†

k+qc†
k′+q′ckck′ +��������

2c†
k+qc†

k′+q′ckck′

− 2c†
k′+q′c

†
k+qck′ck − 2c†

k′+q′ck′c†
k+qck (B.8)

= c†
k+qck′δ(k, k′ + q′) + c†

k′+q′ckδ(k + q, k′)− 2c†
k′+q′c

†
k+qck′ck − 2c†

k′+q′ck′c†
k+qck

= c†
k+qck′δ(k, k′ + q′) + c†

k′+q′ckδ(k + q, k′)− 2c†
k′+q′c

†
k+qck′ck

− 2c†
k′+q′

(
δ(k′, k + q)− c†

k+qck′
)

ck

= c†
k+qck′δ(k, k′ + q′)− c†

k′+q′ckδ(k + q, k′)− 2
�������c†

k′+q′c
†
k+qck′ck +��������

2c†
k′+q′c

†
k+qck′ck

= c†
k+qck′δ(k, k′ + q′)− c†

k′+q′ckδ(k + q, k′) . (B.9)

The expectation value of Eq. (B.9) is:

⟨c†
k+qck′δ(k, k′ + q′)− c†

k′+q′ckδ(k + q, k′)⟩ = ⟨c†
k+qck′δ(k, k′ + q′)⟩ − ⟨c†

k′+q′ckδ(k + q, k′)⟩
= ⟨c†

k+qck−q′⟩ − ⟨c†
k+q+q′ck⟩

= δ(q,−q′)( f (E(k + q))− f (E(k))) ,

where we used the definition ⟨c†
k ck⟩ = f (E(k)) = 1/(eE(k)/kBT + 1) of the Fermi-Dirac

statistics distribution function.
The δ(t)-term of Eq. (2.90) results in:

δ(t)⟨[ne(q); ne(q′)]⟩ = ∑
k

δ(t)δ(q,−q′) ( f (E(k + q)− f (E(k)) . (B.10)

The H-term on the right-hand side of Eq. (B.4) is:

GR
[ne(q,t);H0],ne(q′,0)(t) = iθ(t)⟨[ne(q, t); H0], ne(q′, 0)⟩ . (B.11)

As for the δ(t)-term we first evaluate the commutator between the electron density oper-
ator ne(q, t) and the Hamiltionian H0 reported in Eq. (B.1):

[ne(q, t); H0(t)] = ∑
k,s
[c†

k+qck; E(s)(c†
s cs + d†

s ds)] , (B.12)

which can be separated into two commutators:

[ne(q, t); H0(t)] = A + B , (B.13)
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where:

A = ∑
k,s
[c†

k+qck; E(s)c†
s cs] , (B.14)

B = ∑
k,s
[c†

k+qck; E(s)d†
s ds] . (B.15)

Working out A:

A = ∑
k,s
[c†

k+qck; E(s)(c†
s cs)] (B.16)

= ∑
k,s

E(s)[c†
k+qck; c†

s cs]

= ∑
k,s

E(s)
(

c†
k+q[ck; c†

s ]cs + [c†
k+q; c†

s ]ckcs + [c†
s ; c†

k+q]ckcs + c†
s [c

†
k+q; cs]ck

)
= ∑

k,s
E(s)

(
c†

k+q(δ(k, s)− 2c†
s ck)cs − 2c†

s c†
k+qckcs − 2c†

k+qc†
s ckcs + c†

s (δ(k + q, s)− 2csc†
k+q)ck

)
= ∑

k,s
E(s)

(
c†

k+qcsδ(k, s) + c†
s ckδ(k + q, s)− 2�����c†

k+qc†
s ckcs +������2c†

k+qc†
s ckcs − 2c†

k+qc†
s ckcs

− 2c†
s csc†

k+qck

)
= ∑

k,s
E(s)

(
c†

k+qcsδ(k, s) + c†
s ckδ(k + q, s)− 2c†

k+qc†
s ckcs − 2c†

s csc†
k+qck

)
= ∑

k,s
E(s)

(
c†

k+qcsδ(k, s) + c†
s ckδ(k + q, s)− 2c†

s c†
k+qcsck − 2c†

s (δ(s, k + q)− c†
k+qcs)ck

)
= ∑

k,s
E(s)

(
c†

k+qcsδ(k, s)− c†
s ckδ(k + q, s)−������2c†

s c†
k+qcsck +������2c†

s c†
k+qcsck

)
= ∑

k,s
E(s)

(
c†

k+qcsδ(k, s)− c†
s ckδ(k + q, s)

)
= ∑

k
E(k)c†

k+qck − E(k + q)c†
k+qck,

A = ∑
k
(E(k)− E(k + q))c†

k+qck (B.17)

For the term B:

B = ∑
k,s
[c†

k+qck; E(s)d†
s ds] (B.18)

= ∑
k,s

E(s)[c†
k+qck; d†

s ds]

= ∑
k,s

E(s)
(

c†
k+q[ck; d†

s ]ds + [c†
k+q; d†

s ]ckds + d†
s c†

k+q[ck; ds] + d†
s [c

†
k+q; ds]ck

)
=

= ∑
k,s

E(s)
(
− 2c†

k+qd†
s ckds − 2d†

s c†
k+qckds − 2d†

s c†
k+qdsck − 2d†

s dsc†
k+qck

)
=

= ∑
k,s

E(s)
(
�������−2c†

k+qd†
s ckds +������2c†

k+qd†
s ckds +������2d†

s dsc†
k+qck −������2d†

s dsc†
k+qck

)
= 0

B = 0 (B.19)
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Then Eq. (B.11) becomes:

GR
[ne(q);H0],ne(q′) = −iθ(t)⟨[ne(q); H0], ne(q′)⟩

= ∑
k,k′

iθ(t) (E(k)− E(k + q)) ⟨c†
k+qck, c†

k′+q′ck′⟩

= ∑
k,k′

(E(k)− E(k + q)) GR
ee(k, k′, q, q′, t) (B.20)

where GR
ee(k, k′, q, q′, t) = iθ(t)⟨c†

k+qck, c†
k′+q′ck′⟩.

To evaluate the imaginary-time partial derivative term in the left-side of Eq. (B.4) we
perform the time Fourier expansion of the retarded Green’s function:

GR
ne(q),ne(q′) = ∑

k,k′
GR

ee(k, k′, q, q′, t)

= ∑
ω

∑
k,k′

e−iωtGR
ee(k, k′, q, q′, ω) (B.21)

Thus, the time-partial derivative term reads:

i∂tGR
ne(q),ne(q′) = i∂t

(
∑
ω

∑
k,k′

e−iωtGR
ee(k, k′, q, q′, ω)

)
= ∑

ω
∑
k,k′

i∂t

(
e−iωtGR

ee(k, k′, q, q′, ω)
)

= ∑
ω

∑
k,k′

ωe−iωtGR
ee(k, k′, q, q′, ω) (B.22)

After replacing Eq. (B.22) in the time-partial derivative term, Eq. (B.10) in the δ-term
and Eq. (B.20) in the H-term of Eq. (B.4), the equation of motion of the electron-electron
retarded Green’s function reads:

∑
ω

∑
k,k′

ωe−iωtGR
ee(k, k′, q, q′, ω) =∑

k,k′
δ(t)δ(q,−q′)( f (ϵk+q)− f (ϵk))

+ ∑
ω

∑
k,k′

(E(k)− E(k + q))e−iωtGR
ee(k, k′, q, q′, ω) (B.23)

The sum ∑k,k′ appears in every term, thus:

∑
ω

ωe−iωtGR
ee(k, k′, q, q′, ω) = δ(t)δ(q,−q′)( f (ϵk+q)− f (ϵk))

+ ∑
ω

(E(k)− E(k + q))e−iωtGR
ee(k, k′, q, q′, ω)

∑
ω

e−iωtGR
ee(k, k′, q, q′, ω)(ω − E(k) + E(k + q)) = δ(t)δ(q,−q′)( f (ϵk+q)− f (ϵk))

∑
ω

e−iωtGR
ee(k, k′, q, q′, ω)(ω − E(k) + E(k + q)) = ∑

ω

e−iωtδ(ω)δ(t)δ(q,−q′)( f (ϵk+q)− f (ϵk))

(B.24)

Now, the sum ∑ω e−iωt appears in every terms, thus:

GR
ee(k, k′, q, q′, ω)(ω − E(k)e + E(k + q)e) = δ(q,−q′)( f (ϵk+q)− f (ϵk)) (B.25)

94



Appendix B. Polarization function with Green’s function equation of motion in normal
state

GR
ee(k, k′, q, q′, ω) =

δ(q,−q′)( f (ϵk+q)− f (ϵk))

ω − E(k) + E(k + q)
(B.26)

The last step to obtain the normal polarization function in the normal phase is to
perform the time Fourier expansion of Eq. (2.87):

ΠN
0 (q, t) =

1
S ∑

q′
GR

ne(q,t)ne(q′,0)

=
1
S ∑

q′,k,k′
GR

ee(k, k′, q, q′, t)

=
1
S ∑

ω,q′,k,k′
e−iωtGR

ee(k, k′, q, q′, ω) (B.27)

Replacing Eq. (B.26) in Eq. (B.27), one gets:

ΠN
0 (q, ω) =

1
S ∑

k,q′

δ(q,−q′)( f (εk+q)− f (εk))

ω + iη − E(k) + E(k + q)

=
1
S ∑

k

f (εk+q)− f (εk)

ω + iη − E(k) + E(k + q)
(B.28)

where ω → ω + iη is extended to the imaginary space because the polarization function
has poles on the real axis. We show how to evaluate the polarization function in this
non-analytic branch cut in Appendix G.

The zero temperature, static, normal polarization function in the normal state of an
exciton bilayer system is:

ΠN
0 (q) =

1
S ∑

k

θ(εF − ϵk+q)− θ(εF − ϵk)

E(k + q)− E(k)
(B.29)

where εF is the Fermi energy. Eq. (B.29) is the Stern-Lindhard function of the non-
interacting electron gas [131].

The anomalous polarization function in the normal phase is obtained by evaluating
the equation of motion of the electron-hole retarded Green’s function, Eq. (2.91). The
δ(t)-term in this case results in:

δ(t)⟨[ne(q); nh(q′)]−⟩ = ∑
k,k′

δ(t)⟨[c†
k+qck; d†

k′+q′dk′ ]⟩ (B.30)

=∑
k,k′

δ(t)
(
⟨c†

k+q[ck; d†
k′+q′ ]dk′ + [c†

k+q; d†
k′+q′ ]ckdk′ + d†

k′+q′c
†
k+q[ck; dk′ ] + d†

k′+q′ [c
†
k+q; dk′ ]ck⟩

)
=∑

k,k′
δ(t)

(
⟨−2c†

k+qd†
k′+q′ckdk′ − 2d†

k′+q′c
†
k+qckdk′ − 2d†

k′+q′c
†
k+qdk′ck − 2d†

k′+q′dk′c†
k+qck⟩

)
=∑

k,k′
δ(t)

(
⟨
��������
2d†

k′+q′c
†
k+qckdk′ −��������

2d†
k′+q′c

†
k+qckdk′ +��������

2d†
k′+q′dk′c†

k+qck −��������
2d†

k′+q′dk′c†
k+qck⟩

)
δ(t)⟨[ne(q); nh(q′)]−⟩ = 0 (B.31)

The δ(t)-term of the Green’s function equation of motion corresponds to the numerator
of the polarization function, thus ΠA

0 (q, ω) = 0 in the normal phase, as expected. There
are processes driving a coherent electron-hole response to density fluctuations.
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Self-consistent solution of the Gap
and Number Equations

At zero temperature the gap and number equations of an electron-hole bilayer system
are given by:

∆(k) = −1
S ∑

q
VD(|q − k|) ∆(q)

2E(q)
, (C.1)

n =
gsgv

S ∑
p

n(p) . (C.2)

Where:

E(q) =
√

ξ2(q) + |∆(q)|2 , (C.3)

ξ(q) =
h̄2q2

2m
− µs −

1
S ∑

p
VS(|p − q|)n(p) , (C.4)

n(p) =
1
2

(
1 − ξ(p)

E(p)

)
, (C.5)

where gs and gv are the spin and valley degeneracy.
The gap and number equations are numerically solved in a self-consistent procedure.

The value of the single-particle chemical potential µs is fixed and a trial order parameter
∆0(k) and density of states n0(k) is chosen. Then the normal and anomalous polarization
functions are computed and used to define the screened interlayer V0

D(q) and intralayer
V0

S (q) interactions. The right-hand side of the gap equation and number equation are
evaluated finding the new profile for ∆1(k) and n1(k). The new gap energy and density
of state are then used to update the polarization functions and the screened interactions,
V1

S (q) and V1
S (q). The updated functions of the gap energy, density of state and screened

interactions are then replaced in the right-hand side of the gap and number equation
to obtain new profiles. The procedure is iteratively repeated until the gap energy, the
density of state and the polarization functions converge.
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Superfluid critical velocity

The pair-breaking superfluid critical velocity is defined by the Landau criterion:

vc = min(k)
E(k)

k
, (D.1)

where E(k) =
√
(ε(k)− µs)2 + ∆(k)2 is the pair-breaking BCS dispersion relation. To

find kmin which minimizes the ratio E(k)/k we solve the equation:

dE(k)/k
dk

∣∣∣
kmin

= 0(
dE(k)

dk
k − E(k)

)
1
k2 = 0

1
2

((
ε(k)2 − µs

)2
+ ∆(k)2

)−1/2
(

2(ε(k)− µs)
dε(k)

dk
+ 2∆(k)

d∆(k)
dk

)
k − E(k) = 0

1
2

(
2(ε(k)− µs)

dε(k)
dk

+ 2∆(k)
d∆(k)

dk

)
k − E(k)2 = 0 ,

where, replacing
dε(k)

dk
=

h̄k
m

=
2ε(k)

k
. (D.2)

one obtains,

(ε(k)− µs)2ε(k) + ∆(k)k
d∆(k)

dk
− E(k)2 = 0

2ε(k)2 − 2ε(k)µs + ∆(k)k
d∆(k)

dk
−
[
(ε(k)− µs)

2 + ∆(k)2] = 0

2ε(k)2 − 2ε(k)µs + ∆(k)k
d∆(k)

dk
− ε(k)2 − µ2

s + 2ε(k)µs − ∆(k)2 = 0

ε(k)2 + ∆(k)k
d∆(k)

dk
− µ2

s − ∆(k)2 = 0 .

In a system with contact interaction, ∆ is k-independent and the solution of Eq. (D)
is analytical. In the exciton system with finite-range interaction, ∆(k) depends on k, and
the solution for k of Eq. (D) can be derived analytically. We find that kmin decreases as the
density n increases. Close to the onset density, kmin approaches the Fermi wave-vector kF.
This is a reasonable result since moving toward the BCS regime, the condensed excitons
are mostly localized around the Fermi surface, with k = kF.

The critical velocity throughout the BCS-BEC crossover corresponds to Ekmin /kmin
with kmin obtained from the solution of Eq. (D) as a function of the density n.
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Appendix E

Chemical potential with intralayer
correlations

The single-particle chemical potential µ of a many-body fermionic system is the mini-
mum energy required to add or remove a particle of the system. In BCS theory, introduc-
ing the Bogoliubov transformation, the chemical potential is the energy ε(k) = h̄2k

2
/2m∗

evaluated in the momentum k in which the Bogoliubov amplitudes v2
k

and u2
k

are equals,

u2
k =

1
2

(
1 +

ξ(k)
E(k)

)
(E.1)

v2
k =

1
2

(
1 − ξ(k)

E(k)

)
(E.2)

E(k) =
√

ξ(k)2 + ∆(k)2 (E.3)

The Bogoliubov amplitude v2
k represents the particle-excitation density, while u2

k is the
vacancy-excitation density. It is possible to prove that the equality v2

k
= u2

k
implies ξ(k) =

0.
Without intralayer correlations, ξ(k) = ε(k) − µs, thus the equality v2

k
= u2

k
stands

when:

ξ(k) = 0

ε(k) = µs (E.4)

and µ = ε(k) = µs.
Including intralayer correlations, the single-particle dispersion relation becomes ξ(k) =

ϵ(k) − µs − Σ(k), where Σ(k) = 1/S ∑k′ Vsc
N (k − k′)n(k′) is the correlation Fock energy.

From the condition ξ(k) = 0 one gets:

µ = ϵ(k) = µs + Σ(k) (E.5)

The chemical potential µ is shifted respect to µs by a factor Σ(k).
Fig. E.1 shows that for µs = −0.2, the chemical potential with intralayer correlations

is µ = 0.38.
Decreasing the µs also the µ decreases, and at a certain negative µs the µ = 0. Below

this µs, there is no k in which v2(k) = u2(k) and so the definition Eq. (E.5) is no longer
valid. In other words, Eq. (E.5) is valid until there is a Fermi surface that guarantees the
presence of particle and vacancy excitations. When µ < 0 (BEC regime), most of the pairs
are condensed in the lowest energy state k = 0 thus our guess is in this regime to define
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(�F)

FIGURE E.1: The Bogoliubov amplitudes v2
k (solid line) and u2

k (dashed line) for
µs = −0.2 (green curves) and µs = −0.4 (red curves).

the chemical potential as:
µ = µs + Σ(0) (E.6)

The idea is to use Eq. (E.5) for µ > 0 and Eq. (E.6) for µ < 0,{
µs + Σ(0) → µ ≤ 0
µs + Σ(k) → µ > 0 .

(E.7)

The two branches join at µ = 0.
As proof of the validity of this definition of the chemical potential, we evaluate kmin:

the wave vector in which E(k) has the minimum. The value of kmin tracks the collapse of
the Fermi surface. In the BEC, µ < 0, kmin = 0. By increasing the density, the first value
for which kmin ̸= 0 is when the chemical potential becomes positive [43]. This condition
is satisfied using our definition of µ instead of µs.

The µs in ξ(k) is the single-particle chemical potential of the non-interacting system
while the µ we define here is the single-particle chemical potential of the system including
the effect of the intralayer correlations. This latter is the one evaluated in Ref. [43].
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Density collective modes in exciton
bilayer normal state

The RPA electron-electron and electron-hole response functions of a bilayer system in the
normal states are obtained by setting to zero ΠA

0 (q, ω) in Eqs. (5.8)-(5.9):

ΠRPA
ee (q, ω) =

ΠN
0 (q, ω)− VS(q)ΠN

0 (q, ω)2

1 − 2ΠN
0 (q, ω)VS(q) + (VS(q)2 − VD(q)2)ΠN

0 (q, ω)2
(F.1)

ΠRPA
eh (q, ω) =

VD(q)ΠN
0 (q, ω)2

1 − 2ΠN
0 (q, ω)VS(q) + (VS(q)2 − VD(q)2)ΠN

0 (q, ω)2
(F.2)

where ΠN
0 (q, ω) is the 2D dynamic Lindhard function, Eq. (B.29):

ΠN
0 (q, ω) =

1
S ∑

k

θ(kF − k)− θ(kF − |k + q|)
ω + ξ(k)− ξ(k + q)

(F.3)

The electron-electron and the electron-hole response function have the same denomi-
nator because we are considering equal electron and hole layers. Thus, the energy spectra
of the density collective modes in the normal exciton bilayer phase are obtained by solv-
ing the following equation:

1 − 2ΠN
0 (q, ω)VS(q) +

(
VS(q)2 − VD(q)2)ΠN

0 (q, ω)2 = 0 . (F.4)

ΠN
0 (q, ω) has poles making impossible to solve Eq. (F.4) in the poles region. The polar-

ization function ΠN
0 (q, ω) diverges in the interval in the real axis for ω ∈ Cq = {ξ(q +

k)− ξ(k), k ∈ R2}.
In the normal state the boundaries of the brunch cut are given by the following rela-

tion [131]:

max(0, ω−(q)) < ω < ω+(q) (F.5)

h̄ω± =
h̄2q2

2m
± h̄vFq (F.6)

where vF = h̄kF/m∗ is the Fermi velocity.
The ω(q) region enclosed between ω−(q) and ω+(q) is called "continuum". A pertur-

bation with ω(q) in the continuum induces a promotion of a particle from an occupied
state (which then remains empty and is referred to as the quasi-anti-particle) with wave-
vector k to an empty one with wave vector k + q, quasi-particle, that is not stable. This
excitation is characterized by a lifetime and eventually results in the recombination of
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FIGURE F.1: The continuum region (grey area) in the exciton normal state. The top
and bottom boundaries of the continuum are defined by the energies ω+ and ω−,

respectively.

the quasi-particle and quasi-anti-particle, with the emission of a photon of energy h̄vFq.
Possible collective modes in the continuum are unstable.

For q < 2kF (left panel in Fig. F.2), the imaginary part of the polarization is different
from zero for 0 < ω < ω+ , and it is characterized by the "shark tail" shape [131]. For
q > 2kF the lower boundary of the continuum region moved up to ω+ different from zero.
As reported in the right panel of Fig. F.2 there is a small interval close to zero frequency
in which the imaginary part of the polarization is zero.

It is possible to prove that Eq. (F.4) has real solutions only if ΠN
0 (q, ω) > 0. Stable

collective modes must be searched only for ω > ω+. In Ref. [144, 215] stable collective
modes have been found at very low density, rs > 20, for ω < ω−.

The intralayer correlations are vital for observing collective modes below the con-
tinuum area. At low density in the normal state, the system experiences strong corre-
lations, making the Hartree-Fock approximation insufficient. A T-matrix approach or
quasi-localized-charge approximation is used to account for these correlations. Unlike
Ref. [144, 215], which considered the bilayer exciton system in the normal state, we also
account for the presence of a superfluid exciton phase. In a bilayer exciton system, the
normal state only occurs at high density (weak correlation region), while at low density,
the ground state is the superfluid phase. Although we have included the Hartree-Fock
term in our formalism, it showed no significant effects, since at high density the Hartree-
Fock correlation energy is much smaller than the Fermi energy and thus negligible (Fig.
4.1).

ω+

ω- ω+

FIGURE F.2: The real (red solid line) and imaginary part (blue dashed line) of the
zero-order normal polarization function ΠN

0 (q, ω) in units of the 2D density of states
N0 as a function of ω for q = 0.5kF (left panel) and q = 2.5kF (right panel).
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We solve Eq. (F.4) outside the continuum, for ω > ω+ as a function of q.

(  )

( 
 )

FIGURE F.3: Energy spectra of the acoustic (solid line) and optic (dashed lines)
collective modes as a function of the momentum for different interlayer distance:
d = 0.2 (red curves) and d = 1.0 (blue curves). The black solid line is the energy

spectra of the plasma mode for an isolated electron single layer.

There are two different branches of solutions for Eq. (F.4) as a function of the mo-
mentum q. They correspond to the acoustic and optic density collective modes. In the
acoustic brunch, the relative electron and hole motion is in phase while in the optic mode
is out of phase. In both cases, at a certain q they approach the continuum and disappear,
like plasma collective modes in an isolated 2D electron layer [131]. Indeed, as reported in
Fig. F.3, increasing the interlayer distance the two brunches merge in the plasma brunch.
Decreasing the d the energy of the acoustic brunch decreases and disappears in the con-
tinuum at always smaller q. The interlayer interaction is getting stronger so the in-phase
electron-hole collective modes require less energy. Analogously, the energy of the optic
brunch increases. In the long-wave limit (q → 0) for d → 0 the optic brunch goes as
h̄ωop =

√
2h̄ωpl , where ωpl is the 2D plasma frequency. This is the plasma frequency of a

single particle layer with electric charge 2e and effective mass 2m∗. Increasing the density,
the energy of the acoustic, optic and plasma collective modes increases, in particular, for
small q they go as

√
n.

The real part of the polarization function becomes positive increasing the ω, before
exiting the continuum, Fig. F.2. In the continuum, the normal polarization function, Eq.
(F.3), has poles for real frequency ω so it is not possible to find a real solution of Eq.
(F.4). Possible solutions of Eq. (F.4) are imaginary, Ω(q) = ω(q) + iΓ(q) where Γ is the
damping parameter and provides information about the lifetime of collective modes in
the continuum.

FIGURE F.4: Real (left panel) and imaginary (right panel) of the normal polarization
function ΠN

0 (q, ω + iΓ) for q = kF and ω = 1.5ϵF as a function of the damping
parameter Γ.

105



Appendix F. Density collective modes in exciton bilayer normal state

The solution of Eq. (F.4) depends on which direction of the complex Ω plane the real
axis is approached. As reported in Fig. F.4, in the continuum there is a jump in the imag-
inary part and a cusp in the real part of the normal polarization ΠN

0 (q, ω + iΓ) function
at Γ = 0.

To solve this issue the polarization function is analytically continued. We adopt the
Nozières analytic continuation method, explained in Appendix. G, to evaluate an analyt-
ical normal polarization function ΠN

C (q, ω + iΓ) in the normal state of the bilayer exciton
system (see detailed calculation in Appendix G.1). The analytic continuation results in
moving the poles from the real axis to the negative imaginary semi-plane of Ω.

FIGURE F.5: Real (left panel) and imaginary (right panel) of the analytically con-
tinued normal polarization function ΠC

N(q, ω + iΓ) as a function of the damping
parameter Γ for the same momentum q and energy ω of Fig. F.4.

Figure F.5 shows the normal and imaginary part of the analytically continued nor-
mal polarization function ΠN

C (q, ω + iΓ) for the same q and ω of Fig. F.4. The jump
in the imaginary part and the cusp in the real part of the normal polarization func-
tion disappeared after the analytic continuation. Replacing the analytically continued
normal polarization function ΠC

N(q, ω + iΓ) is it possible to search complex solution
Ω(q) = ω(q) + iΓ(q) of Eq. F.4 in the continuum.

We start with d = 0.2 and q = 0.35kF, close to the momentum in which the acoustic
brunch disappears. No solution of Eq. F.4 exists in the continuum for q = 0.35kF, as
reported in Fig. F.6, or for any other momenta q. The real and imaginary parts of Eq. F.4
are zero for some values of ω and Γ separately but never the absolute value.
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Re[Den(0.35kF, , )] Im[Den(0.35kF, , )]

|Den(0.35kF, , )|

FIGURE F.6: Real (a), imaginary (b) and absolute value (c) of Eq. F.4 for d = 0.2 and
q = 0.4kF in the continuum. The green dashed line follows the zeros.
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Appendix G

Nozières Analytic Continuation
procedure

Let’s suppose to have the following function:

f (z) =
∫ ∞

0
dε

ρ(ε)

z − ε
. (G.1)

The ρ(ε) is called the spectral function with ε real. The f (z) is analytic for complex
z = ω + iδ while it has a branch cut for real z. For z = ε, f (z) has poles. The value
of the function approaching the poles changes depending on whether the branch cut is
approached from a positive or negative imaginary semi-plane.

To remove the non-analiticity in the real axis we use here the Nozières analytic con-
tinuation procedure [132].

The f (z) in the negative imaginary semi-plane is replaced with:

f (ω − iδ) → f (ω − iδ) + ( f (ω + iδ)− f (ω − iδ)) . (G.2)

In the limit δ → 0, the term f (ω + iδ)− f (ω − iδ) adjusts the function in the proximity of
the real branch cut so that f (z) from the negative semi-plane smoothly evolves into f (z)
from the positive semi-plane, without any discontinuity. Using Eq. (G.2), the poles are
shifted from the real axis to the negative imaginary semi-plane, allowing the function to
be evaluated on the real axis. The term limδ→0 f (ω + iδ)− f (ω − iδ) can be evaluated as:

limδ→0 f (ω + iδ)− f (ω − iδ) = limδ→0

∫ ∞

0
dερ(ε)

( 1
ω + iδ − ε

− 1
ω − iδ − ε

)
. (G.3)

Using the following property of the Dirac delta function:

limδ→0
1

x + iδ
=

1
x
− iπδ(x) , (G.4)

then,

limδ→0 f (ω + iδ)− f (ω − iδ) =
∫ ∞

0
dερ(ε)

(
1

ω − ε
− iπδ(ω − ε)− 1

ω − ε
− iπδ(ω − ε)

)
=− 2iπ

∫ ∞

0
dερ(ε)δ(ω − ε)

=− 2iπρ(ω) . (G.5)
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The Nozierès analytic continuation consists in building the function:

f C(z) =

{
f (z), Im[z] > 0
f (z)− 2iπρ(z), Im[z] ≤ 0

(G.6)

The ρ(z) appearing in Eq. (G.6) is the analytic continuation of ρ(ω), where [132]:

ρ(ω) = − Im[ f (ω + iδ)]
π

. (G.7)

G.1 Analytic Continuation of the Polarization function in the
Normal State

The normal polarization function ΠN
0 (q, Ω) in the normal exciton state states:

ΠN
0 (q, Ω) =

1
(2π)2

∫ ∞

0
dk 2k

∫ 2π

0
dϕ

θ(1 − k)− θ(1 −
√

k2 + q2 + 2kq cos ϕ)

Ω − q2 − 2kq cos ϕ
. (G.8)

ΠN
0 (q, Ω) is in unit of (Ry∗a2

B)
−1, the momenta q and k are in unit of kF while the Ω =

ω + iδ is in unit of εF.
The ΠN

0 (q, Ω) has a branch cut for real Ω. The evaluation of the polarization function
in the branch cut can be done by performing the Nozières analytic continuation.

The first step is the evaluation of the spectral function ρ(ω) using Eq. (G.7):

ρ(ω) = − Im[Π(q, ω + iδ)]
π

= − 1
π

Im

[
1

(2π)2

∫ ∞

0
dk 2k

∫ 2π

0
dϕ

θ(1 − k)− θ(1 −
√

k2 + q2 + 2kq cos ϕ)

ω + iδ − q2 − 2kq cos ϕ

]

= − 1
π

1
(2π)2 Im

[∫ ∞

0
dk 2k

∫ 2π

0
dϕ

θ(1 − k)− θ(1 −
√

k2 + q2 + 2kq cos ϕ)

ω + iδ − q2 − 2kq cos ϕ

]
.

Using Eq. (G.4) one gets:

ρ(ω) = − 1
π

1
(2π)2 Im

[ ∫ ∞

0
dk 2k

∫ 2π

0
dϕ

(
θ(1 − k)− θ(1 −

√
k2 + q2 + 2kq cos ϕ)

)

×
(

1
ω − q2 − 2kq cos ϕ

− iπδ(ω − q2 − 2kq cos ϕ)

)]

ρ(ω) =
1

(2π)2

∫ ∞

0
dk 2k

∫ 2π

0
dϕ

(
θ(1 − k)− θ(1 −

√
k2 + q2 + 2kq cos ϕ)

)
δ(ω − q2 − 2kq cos ϕ) .

(G.9)

We introduce the following property of the Dirac delta function:

δ(g(x)) = ∑
i

δ(x − xi)

|g′(xi)|
, (G.10)
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where xi are the roots of g(x). Thus:

δ(ω − q2 − 2kq cos ϕ) = ∑
i

δ(cos(ϕ)− ϕi)

|g′(ϕi)|
, (G.11)

where g(ϕ) = ω − q2 − 2kq cos ϕ and the root ϕi is:

ϕi =
ω − q2

2kq
. (G.12)

Then,

ρ(ω) =
1

(2π)2

∫ ∞

0
dk 2k

∫ 2π

0
dϕ

(
θ(1 − k)− θ(1 −

√
k2 + q2 + 2kq cos ϕ)

)
δ(cos(ϕ)− ϕi)

| − 2kq|

=
1

(2π)2

∫ ∞

0
dk 2k

∫ 2π

0
dϕ

(
θ(1 − k)− θ(1 −

√
k2 + q2 + 2kq cos ϕ)

)
δ(cos(ϕ)− ϕi)

2kq

=
2

(2π)2

∫ ∞

0
dk
∫ π

0
dϕ

(
θ(1 − k)− θ(1 −

√
k2 + q2 + 2kq cos ϕ)

)
δ(cos(ϕ)− ϕi)

q
.

(G.13)

Transforming cos(ϕ) = x:

ρ(ω) =
2

(2π)2

∫ ∞

0
dk
∫ 1

−1

dx√
1 − x2

(
θ(1 − k)− θ(1 −

√
k2 + q2 + 2kqx)

)δ(x − ϕi)

q
.

(G.14)

The integral in x is different from zero only if |ϕi| < 1, thus:∣∣∣ω − q2

2kq

∣∣∣ < 1 (G.15)

k >
∣∣∣ω − q2

2q

∣∣∣ = k . (G.16)

This is the lower limit of integral in k to have δ(x − ϕi) = 1. Replacing Eq. (G.12) in ϕi:

ρ(ω) =
2

(2π)2

∫ ∞

k
dk

1√
1 − (ω−q2

2kq )2

(
θ(1 − k)− θ(1 −

√
k2 + ω)

)1
q

. (G.17)

This is the spectral function ρ(ω). The next step is to do the analytic continuation ω → Ω
to the complex plane. To do it we have to see where is analytic.

The denominator of the integrand is zero when:

1 −
(

ω − q2

2kq

)2

= 0 (G.18)

1 − (ω − q2)2

4k2q2 = 0 (G.19)

4k2q2 − (ω − q2)2 = 0 (G.20)

k =
ω − q2

2q
, (G.21)
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which corresponds to the lower boundary of the k-integral.
The presence of step functions at the numerator of ρ(ω) provides non-analyticity

points. We individuate the k-intervals in which the numerator is different from zero as a
function of ω: {

ω ≥ 1 → 0 < k < 1
ω < 1 →

√
1 − ω < k < 1

(G.22)

Implementing the condition k > k one finds that the numerator is constant and equal to
1 in the following cases:

q ≤ 1 →
{

ω ≤ −q2 + 2q →
√

1 − ω < k < 1
ω > −q2 + 2q → k < k < 1

(G.23)

1 < q < 2 →


ω ≤ −q2 + 2q →

√
1 − ω < k < 1

−q2 + 2q < ω < q2 → −k < k < 1
ω ≥ q2 → k < k < 1

(G.24)

q ≥ 2 →
{

ω ≤ q2 → −k < k < 1
ω ≥ q2 → k < k < 1

(G.25)

Those are the k(q, ω) integration intervals in which the function ρ(ω) is analytic.
Doing the continuation ω → Ω = ω + iΓ also the k integration intervals are continued

in the imaginary space and the spectral function is analytic following the path reported
in Eq. (G.23)-(G.25). This allows the analytic continuation of the polarization function
ρ(ω) → ρ(Ω).

The Nozierès analytic continuation of the normal polarization function is:

ΠC
0 (q, Ω) =

{
ΠN

0 (q, Ω), Im[Ω] > 0
ΠN

0 (q, Ω)− 2iπρ(Ω), Im[Ω] ≤ 0 .
(G.26)
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