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Samenvatting

Gaussische kwantumtrajecten voor de variationele simulatie van
open kwantumsystemen, met fotonische toepassingen

Sinds de opkomst van de kwantummechanica, nu een eeuw geleden, heeft de
fysica een enorme vooruitgang geboekt. Enkele fundamentele vragen zijn nog
steeds grotendeels onbeantwoord: denk aan de interpretatie van het meetproces
(mensen zijn zelf een deel van de kwantumwereld, hoe kunnen we dan het idee
hebben dat metingen zo speciaal zijn en in het dagelijks leven klassiek gedrag
observeren?) of het consistent maken met algemene relativiteit (hoe kan een
golfpakket de ruimtetijd buigen?).

Operationeel is kwantummechanica echter bijzonder succesvol gebleken, en
heeft allerlei tests met bijzonder hoge precisie doorstaan. Naast fundamenteel
onderzoek heeft kwantummechanica dan ook steeds meer praktische toepassingen
gevonden. Een groot toepassingsveld lag bijvoorbeeld in de vastestoffysica, waar
materiaaleigenschappen konden (en kunnen) worden bepaald; en in het verlengde
daarvan de volledige hedendaagse chemie.

De technologische vooruitgang staat echter niet stil, en we staan in de 21e eeuw
voor nieuwe ontwikkelingen, waar kwantumeigenschappen niet meer louter worden
gezien als noodzakelijke correcties om theoretische beschrijvingen te verfijnen. Het
besef is meer en meer gaan groeien –na de vroege suggestie van Feynman– dat net
die echte, tegenintuitieve, kwantumeigenschappen kunnen geoogst worden voor
zinvolle doeleinden.

Het gaat dan onder meer over de computationele oplossing van complexe proble-
men die moeilijk zijn op te lossen op een klassieke computer (uitgedrukt in klassen
zoals NP-hard). Er worden enkele verschillende strategieën bestudeerd in deze
context. De eerste is kwantumsimulatie: voor een belangrijk maar complex kwan-
tumprobleem uit bijvoorbeeld de biochemie of hoge-energiefysica realiseert men
zich dat de relavante Hilbertruimte exact afgebeeld kan worden op de Hilbertruimte
in een ander kwantumsysteem waar een veel grotere experimentele controle over
bestaat. Wanneer een experiment op dit tweede systeem wordt uitgevoerd, kan
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daar, na het uitvoeren van de omgekeerde afbeelding, veel uit worden geleerd over
het oorspronkelijk systeem.

De tweede strategie is volledige (universele) kwantumcomputing: hierbij zoekt
men naar kwantumalgoritmes, die wegens de grotere flexibiliteit dan klassieke
systemen moeten toelaten om taken die zwaar zijn voor klassieke computers (e.g.
berekening van permanenten) uit te voeren, zogeheten quantum supremacy.

Als hardware zoekt men objecten die een mesoscopische coherentie kunnen
vertonen, het kan dan onder meer gaan over koude atoomcondensaten, Rydber-
gatomen, ionen in een val, fotonen of een combinatie van deze elementen. Een zeer
belangrijke factor in deze context, is dat zulke kwantumsystemen nooit compleet
gesloten zijn, maar onvermijdelijk met hun omgeving interageren. Hoewel dit
aanvankelijk als een obstakel werd gezien, is gaandeweg het besef gegroeid dat
zulk gedrag ook nuttig toegepast kan worden.

Deze nood om te werken met een beschrijving als open quantumsysteem is het
sterkst bij de fotonische systemen, waar steeds een deel weglekt dat moet gecom-
penseerd worden met een pomplaser, wat leidt tot zogeheten gedreven-dissipatieve
systemen. Inderdaad is de studie van open quantumsystemen eind vorige eeuw
voortgekomen uit de kwantumoptica. Nieuw in het laatste decennium is dat het
onderzoeksgebied zich meer en meer uitbreidt richting open veeldeeltjessystemen.
Behalve in het geval waar de interactie met de omgeving puur thermisch is, leidt
dat automatisch tot niet-evenwichtsfysica, waar een groot deel van de gekende
statistische fysica niet geldig is. Dit maakt dat dezelfde systemen ook uit fun-
damenteel oogpunt heel interessant zijn omdat er fenomenen opduiken die er in
evenwicht niet zijn.

Een huidige beperking bij de studie van zulke open veeldeeltjessystemen met
mogelijke toepassingen in kwantuminformatie is, ietwat ironisch, dat deze bijna
per definitie moeilijk te simuleren zijn op een klassieke computer. Desalniettemin
kunnen numerieke simulaties vaak wel helpen zulke systemen beter te begrijpen,
zeker ook vanuit fundamentele interesse. Ook in gesloten niet-klassieke systemen
worden al geruime tijd benaderende simulatiemethoden toegepast die dikwijls de
belangrijke fysica vatten.

Eén zo’n methode in gesloten systemen staat bekend als Hartree-Fock-Bogoliubov
(HFB). Dit is een variationele methode waar een Gaussische toestand wordt ge-
bruikt als ansatz voor de golffunctie. Deze slaagt er in om complexiteit die
exponentieel groeit met systeemgrootte, te reduceren tot louter kwadratische
schaling.
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In deze thesis breiden we de HFB methode uit naar open systemen. Een groot
verschil is dat de Schrödingervergelijking in open systemen stochastisch wordt, op
een manier die sterk gerelateerd is aan het optreden van metingen. De resulterende
golffuncties staan bekend als kwantumtrajecten (quantum trajectories). Zoals we
zullen zien, zullen noch de precieze manifestatie van ruis (unraveling), noch de
Gaussische ansatz (kwadratuurvariabelen of dichtheid-fase) zelf uniek zijn, en kan
deze vrijheid uitgebuit worden in verschillende situaties.

In Deel I van deze thesis geven we een gedetailleerdere achtergrond van open
quantumsystemen en de recentere ontwikkelingen op het vlak van veeldeeltjessys-
temen in deze context, inclusief een overzicht van bestaande simulatiemethodes.
We herhalen ook de basiseigenschappen van Gaussische toestanden. Daarna tonen
we expliciet hoe de Gaussische aanname en het quantum trajectory formalisme
gecombineerd kunnen worden. Aan de hand van twee problemen in een enkele
gedreven-dissipatieve caviteit, vergelijken we de performantie van de verschillende
keuzes die gemaakt kunnen worden en in het bijzonder de overeenkomst met
de exacte oplossing die hier nog verkregen kan worden. We bespreken kort de
numerieke schaling van de methodes.

In Deel II bestuderen we een meer geavanceerde toepassing: met name een
rooster van gedreven-dissipatieve Kerr-caviteiten met twee-foton pomp. In dit
systeem treedt spontane symmetriebreking op voor toenemende pompsterkte, een
dissipatieve tweede-orde faseovergang. Het was reeds bekend dat deze fase-overgang
tot de universaliteitsklasse van het kwantum-(transvers-)Isingmodel behoort in
de limiet van lage verliezen en beperkte dichtheid: dit betekent dat correlaties
tussen de caviteiten hoofdzakelijk een kwantumkarakter hebben, ook wel gekend
als ‘verstrengeling’. Niet alleen bevestigen we dit resultaat met de Gaussische-
trajectorymethode (tot iets grotere roosters dan voorheen), we zien ook dat in
een parameterregime met hogere dichtheid en verliezen, waar andere methodes
ontoereikend zijn, via deze methode dat de universaliteitsklasse verandert naar
die van het klassieke(thermische) Isingmodel. We kunnen hier alvast uit leren
dat de rol van dissipatie bij niet-evenwichtssystemen kan overeenkomen met een
effectieve temperatuur. Vervolgens onderzoeken we de dynamische aspecten van
de fase-overgang. We merken dat onder quenches (plotse verandering van een
parameter) van het systeem er een duidelijke kritische vertraging optreedt die via
het Kibble-Zurek effect tot de vorming van verschillende ‘magnetische’ domeinen
leidt in de geordende fase. De grootte van deze domeinen correspondeert ook met
de dynamische kritische exponent die met metropolisdynamica in het klassieke
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Isingmodel overeenkomt. Dezelfde dynamische kritische exponent vinden we verder
optreden in de Liouvilliaanse gap, die, zoals we aantonen, dezelfde universele schal-
ingsrelaties heeft als de gewone (Hamiltoniaanse) gap voor kwantumfaseovergangen
in een gesloten systeem.

Deel III tenslotte is gewijd aan een andere toepassing: een Bose-Einsteincondensaat
van fotonen in een caviteit van verfmoleculen. Hier was reeds geruime tijd een
heuristisch fasormodel in gebruik voor de numerieke beschrijving. Met Gaussische
trajectories slagen we erin de geldigheid ervan te verifiëren. Een bijzondere eigen-
schap van een fotoncondensaat is dat het aantal deeltjes niet behouden blijft: in de
limiet van een groot reservoir van verfmoleculen leidt dit zelfs tot grootcanonische
statistiek waar deeltjesfluctaties arbitrair groot kunnen worden. Het is dan ook
geen triviaal gegeven dat condensatie kan plaatsvinden onder deze omstandigheden.
We breiden de bestaande kennis van de deeltjesstatistiek uit met een studie van
de invloed van foton-fotoninteracties, pomp en verliezen. In het bijzonder ob-
serveren we hoe interacties de deeltjesfluctaties (tweede-orde coherentie) reduceren
en sneller doen vervallen. De pomp en verliezen zorgen dan weer voor het merk-
waardige effect dat enige tijd ná een fluctuatie met bovengemiddeld veel deeltjes,
er gemiddeld minder fotonen zullen zijn dan gemiddeld. Vervolgens bestuderen
we de fasecoherentie (eerste-orde coherentie). De twee voornaamse limitaties op
lijnbreedte van pakweg een laser worden uitgebreid naar dit grootcanonisch regime.
Dit zijn het Schawlow-Townes effect waarvan we zien dat het in de grootcanonische
limiet slechts twee keer sneller gaat, en in het geval van interacties een bijkomende
Henry-diffusie die deeltjesfluctuaties omzet in fasefluctuaties.
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CHAPTER 1
Overview

In this thesis, we will introduce the Gaussian Trajectory Approach (GTA) as a
novel numerical technique to study driven-dissipative many-body quantum systems.
It combines insights about open quantum systems with the Gaussian ansatz that
has been commonly used before in closed and equilibrium systems. We will then
apply the method to two different systems: quadratically-driven Kerr lattices
and a dye-microcavity photon condensate. Accordingly, the body of this thesis
constitutes three main parts: on the GTA itself and on both applications. Finally,
there is the conclusion section and appendices containing additional information
(related to measurement schemes, perturbative coefficients that will arise, and
numerical aspects).

1.1 Introduction: driven-dissipative many-body sys-
tems

In the first half of Part I, we outline the background by introducing the kinds
of systems that we aim to study. Quantum mechanics has been very successful
over the last century in describing a variety of physical phenomena in closed
systems, including many-body physics in the solid state. In the late 20th century
however, the field of quantum optics started to surge, studying individual photonic
modes (harmonic oscillators) and their interaction with some atoms. An important
consideration with these systems was that light easily leaks out to the environment
(dissipation), such that it is a manifestly open quantum system. The compensation
mechanism (pumping or driving) that replaces the photons, will typically drive
the system out of equilibrium. Accordingly, theoretical tools had to be introduced
to deal with such ‘openness’. First, there is the master equation approach for the
ensemble. Tracing out the environment degrees of freedom from the full dynamics
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Chapter 1 - Overview

leads to a loss of information (entropy increase). Second, consider continuous
measurement on all leaking photons, therefore keeping track of all information that
comes out of the system. The evolution conditioned on this measurement record
can be studied, to retain a Schrödinger-like evolution for pure states: quantum
trajectories. Ensemble-evolution can be reconstructed by averaging over many of
these quantum trajectories, each with a different (random) measurement record.

At the dawn of the 21th century, the ever-increasing experimental controllability
has allowed for a variety of studies regarding nonequilibrium phenomena in many-
body physics. For many of these platforms (e.g. exciton-polaritons, cold atoms,
Rydberg states, superconducting circuits. . . ), dissipation is again an important
aspect. There are at least two reasons why such systems are interesting. The first
one is the fundamental condensed matter interest: the nonequilibrium nature gives
rise to novel phenomena forbidden by equilibrium thermodynamics. The second
one is that such systems are promising candidates for quantum technologies as
quantum computing (solving a variety of algorithms on a quantum architecture) or
quantum simulation (mapping another interesting quantum system on one which is
more experimentally accessible). Indeed, one of the most important aspects in such
quantum technologies is that they should combine being sufficiently mesoscopic
to be accessible, while still being resilient to decoherence. This decoherence is
strongly related to dissipation, although dissipation can also be engineered to
maintain coherence as good as possible.

The quest for more exotic many-body phenomena, as well as increasing the
interaction strengths to a level where quantum information processing becomes
relevant, pushes the systems away from parameter regimes where reliable results
are obtained by mean-field theory. Therefore, the many-body approach must be
synthesized with the theoretical methodology for open quantum systems.

1.2 The Gaussian Trajectory Approach

Many successful results in closed-system many-body physics, both regarding
stationary properties and the dynamics, are obtained from variational methods,
where the true state is approximated by the one ’as close as possible’ within a
class of variational states with few parameters. An important example of such a
variational class of states are the Gaussian states, which are entirely characterized
by the expectation values and two-point correlators of the field operators. All higher
order moments can be decomposed using Wick’s theorem. The GTA methods that
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we introduce simply combine quantum trajectories with such Gaussian ansatzes.
Computationally, the advantage is that classical fluctuations can still be easily
sampled, as for exact trajectories, but the computational cost for a trajectory
reduces from exponentially large to only quadratic with system size. When working
with quantum trajectories, there is some freedom involved related to the kind of
measurement that is performed on the leaking light (the unraveling). Furthermore,
we introduce ‘density-phase’ Gaussian states in addition to the normal Gaussian
states. We will carefully examine the benefits and drawbacks of these different
ansatzes and unravelings. As a first proof-of-principle study, we illustrate the
method with a study on the bistability and dephasing in a single driven-dissipative
Kerr-nonlinear cavity.

1.3 Application to specific models

1.3.1 Dissipative phase transition in quadratically-driven Kerr
lattices

In Part II, we study a lattice of such driven-dissipative Kerr resonators, that could
for example be implemented with superconducting circuits. Furthermore, we use a
specific two-photon pump for the driving. This model exhibits a symmetry-breaking
second-order dissipative phase transition as function of the pump strength. Using
finite-size scaling approaches, we determine the universality classes of the transition.
In the low-loss regime, the method reproduces quantum-critical behaviour that
was previously obtained with a different method, showing that the GTA is able to
capture important long-range quantum correlations. We will then move on to a
different parameter regime with higher loss rate, that is inaccessible with other
methods. By application of the GTA we find out that the transition now belongs
to a classical universality class. More specifically, these classes relate to Ising-spin
models. The combination of both classes depending on the dissipation rate, shows
that the losses take a role very similar to finite temperature.

In a following step, we study dynamical properties related to this dissipative
phase transition. First, by performing linear quenches, we see that ‘magnetic’
domains are formed by the photons. The size of these domains is described by
the celebrated Kibble-Zurek mechanism and allows us to extract the dynamical
critical exponent. Second, from the relaxation time to equilibrium, we extract the
gap of the Liouvillian superoperator. It scales with the same dynamical exponent,
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which implies that its scaling relations are the same as for the Hamiltionian gap
for quantum phase transitions in closed systems. The value of this dynamical
exponent corresponds to the metropolis algorithm common for the simulation of
spin lattices.

1.3.2 Temporal coherence of a dye-microcavity photon con-
densate

Bose-Einstein condensation has been achieved on a variety of platforms. This
includes photons in a cavity, which thermalize because of frequent absorption and
emission processes with a dye-molecule reservoir. Unlike other condensates, the
particle number is not conserved, leading to grand-canonical statistics in certain
parameter regimes. Further subtleties affecting the system are interactions, and
the fact that also the combined photon+dye system is weakly driven-dissipative.

In Part III, we construct a hybrid GTA+exact trajectory model to study the
statistics and coherence properties in this system, in combination with analytical
derivations. If one is only interested in the number statistics, the trajectory model
reduces to stochastic rate equations. Interactions both decrease the amount of
number fluctuations in the system and increase their decay rate (second-order
temporal coherence). At longer timescales, we surprisingly find anticorrelations
in photon number, that can be attributed to the finite photon losses through the
mirrors. For the first-order coherence that includes phase information, we find
with the help of trajectories and analytical expressions that the temporal decay of
correlations is only twice as fast in the grand-canonical regime, compared to the
canonical regime where the Schawlow-Townes mechanism determines the decay
rate similar to lasers. This is in contrast with reasoning based on dominating
‘phase jumps’ when the photon number vanishes. Kerr interactions will further
cause an additional Gaussian Henry phase diffusion. For both the number and
phase correlations, we find that a heuristic phasor model, originally introduced
for the study of laser physics, is able to provide quantitatively accurate results
for the experimentally relevant parameters studied here, despite some conceptual
difficulties.
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CHAPTER 2
Fundamentals of open quantum

systems
For many systems, weak coupling with an environment is highly relevant to their
properties, and a Schrödinger equation alone is insufficient. Such systems can be
described either with the Lindblad master equation for the density matrix, or with
the stochastic quantum trajectory method that lays at the basis of the Gaussian
trajectory method which is the central topic of this thesis.

2.1 What is an open quantum system?

Quantum mechanics has been a cornerstone of physical research in the 20th
century [2]. It is widely regarded as a successful fundamental theory with a strong
mathematical framework. This is largely despite the counterintuitive aspects
of quantum mechanics that become explicit in (thought or real) experiments
such as the Stern-Gerlach and double-slit experiment (because of which quantum
mechanics has acquired an almost mythical status as ‘very weird and difficult’ in
popular culture). These aspects are manifestations of the concept of Heisenberg
uncertainty at the very heart of quantum mechanics. Despite the objections of big
physicists such as Albert Einstein (“As I have said so many times, God doesn’t
play dice with the world” [3]), we can say that quantum mechanics is inherently
probabilistic, there are always ‘quantum fluctuations’1.

However, this basic picture where everything can be described by the Schrödinger
equation and Born’s rule [2] is often very optimistic in practical setups, in the

1There is still some ambiguity in the interpretation of quantum mechanics. Strictly speaking,
non-local hidden variable theories cannot be ruled out, these would be fully deterministic at the
cost of violating locality. For an overview of the different interpretations, see e.g. Refs. [4, 5].
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sense that it only applies to isolated systems. Ultimately, all quantum mechanical
systems are open, as they are necessarily embedded in an environment [6]. In fact,
the same holds for classical Hamiltonian mechanics, with the difference that the
latter is often, in its realm of applicability (think for example of celestial bodies),
much less sensitive to external influences.

In classical systems, tracing out the environment yields the Hamiltonian
descriptions incomplete and gives the system a stochastic nature (with as a
textbook example, the case of Brownian motion). Similarly, we will see that
the openness of a quantum system leads to additional ‘classical’ fluctuations.
Interestingly, the description of open quantum systems has a strong connection
with quantum measurement theory [7], as an open quantum system can be formally
seen as ‘continuously measured’ by its environment [8]. From this realization, it can
be understood that the boundary between ‘quantum’ and ‘classical’ fluctuations is
not uniquely defined, but depends on the measurement protocol.

In this chapter, we focus on the fundamentals of open quantum systems as the
field emerged to large extent with quantum optics experiments up to the 1990s and
early 2000s, including the ‘quantum trajectories’ method in section 2.4. A number
of comprehensive books have been devoted to this subject on a fundamental level
[6, 8], focussing on the practical application [9, 10] and starting from measurement
theory [7]. From a pedagogical point, Ref. [11] is also very convenient in that, using
a simple model of interacting q-bits in discrete time, it strips the physics down
to its bare essence without the need for particular quantum optics background,
and discusses the relation with alternative interpretations of quantum mechanics
(although the Copenhagen interpretation is sufficient for the formalism). Here, we
will only provide a brief overview and refer to these works for further background.
In the next chapter 3, we then turn to the more recent study of open many-body
systems and numerical approaches.

2.2 Preliminary notions

Before we move on to open quantum systems, a brief recap on quantum mechanics
in closed systems [2] may be appropriate.

2.2.1 Wavefunction and Hilbert space

According to the common mathematical framework, any quantum system is
characterized by its Hilbert space H (a complete vector space endowed with an

8
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inner product). The (pure) state of the system then corresponds to a ket |k 〉 ∈ H ,
a state vector of the Hilbert space (modulo multiplicative constants), also known as
the wavefunction. The space of linear functionals mapping states back to numbers
is the dual space H ∗, of which elements 〈k | ∈ H ∗ are called bra’s.

Physical observables are self-adjoint operators �̂ = �̂†, of which the expectation
value for state |k 〉 is equal to

〈
�̂
〉
= 〈k | �̂ |k 〉. Importantly, unless |k 〉 is an

eigenvector of �̂, a finite uncertainty (the variance Var �̂ =
〈
�̂2〉 − 〈

�̂
〉2) remains.

This directly relates to the Heisenberg uncertainty relation

Var
(
�̂

)
Var

(
�̂

)
≥ 1

4
�� [�̂, �̂] ��2, (2.1)

where
[
�̂, �̂

]
is the commutator �̂�̂ − �̂�̂.

The full Hilbert space of a many-body system can be parametrized in two ways:
eigenbases are either constructed by starting with all particles and putting them
in all possible modes (first quantization), or by starting with all the modes and
giving them all possible occupations (second quantization). The latter approach
has the advantages that symmetrization of the wavefunction is less cumbersome
and that the particle number does not need to remain conserved.

2.2.2 Mixed quantum states

In a generalized framework, mixed states are introduced as the ones where there
is additional classical uncertainty. If we know the system to be in state |k8〉 with
probability ?8 , then the mixed state is described by the density matrix

d̂ =
∑
8

?8 |k8〉 〈k8 | . (2.2)

Some notions of mixedness are the purity ` = tr
[
d̂2] (1 for a pure state) and

von Neumann-entropy (vn = −Tr[d̂ log d̂] (0 for a pure state and in first order equal
to the linear entropy (lin = 1 − `). Importantly, if d̂ is mixed, its decomposition in
pure states is not unique. Expectation values are computed in terms of density
matrices as

〈
�̂
〉
= tr

[
d̂�̂

]
.

2.2.3 Time-evolution

Physical symmetries in closed quantum systems map to unitary transformations,
that conserve purity. In particular, kets in a closed quantum system evolve
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according to the Schrödinger equation (we set ℏ = 1 for the remainder of this
thesis).

mC |k 〉 = −8 Ĥ |k 〉 . (2.3)

This leads to
|k (C)〉 = *̂ |k (0)〉 , (2.4)

where *̂ = exp
[
−8 Ĥ C

]
and we have assumed Hamiltonian Ĥ to be time-independent

for simplicity.
In terms of density matrices, one has the Von Neumann-Liouville equation

mC d̂ = −8
[
Ĥ, d̂

]
, (2.5)

or
d̂ (C) = *̂ d̂ (0)*̂ †. (2.6)

The picture above, where the quantum state evolves (keeping observables
constant) is known as the Schrödinger picture. An equivalent formulation is the
Heisenberg picture where the quantum state itself (|k 〉 or d̂) remains stationary,
while instead

mC�̂ = −8
[
�̂, Ĥ

]
(2.7)

for all observables �̂. Finally, there is the interaction picture where the observables
evolve according to a ‘non-interacting’ part of the Hamiltonian, and the quantum
state evolves to an ‘interaction’ term of the Hamiltonian. Its main advantage is that
it allows for working perturbatively in this interaction term in a straightforward
manner.

2.2.4 Composite systems

Now, consider two quantum systems 1 and 2 with respective Hilbert spaces H1

and H2. If the systems are coupled, the total quantum state lives in the combined
Hilbert space Htot = H1 ⊗ H2. This combined state can possibly be pure, but can
in any case be described by a density matrix d̂tot.

If one is only interested in the first subsystem, one can work with the reduced
density matrix

d̂1 = tr2 d̂, (2.8)
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where subsystem 2 is traced out. Importantly, this tracing out degrees of freedom
implies a loss of information. This means that (1 + (2 ≥ (1+2. In particular, even
when d̂ is a pure state, d̂1 is not. In fact, in this case, (ent = − tr{d̂1 log d̂1} =
− tr{d̂2 log d̂2}, the entanglement entropy is a widely used concept to quantify the
extent to which subsystems 1 and 2 are correlated.

2.2.5 Measurements

Assume |k 〉 = ∑
8 28 |q8〉, were {|q8〉} is a set of eigenvectors of observable �̂, with

corresponding eigenvalues 08 . Performing a strong (projective) measurement will
yield a measurement outcome 08 with probability |28 |2 and then leave the system
in state |q8〉 (Born’s rule). This can be formalized with projector operators P̂8
satisfying

P̂8 P̂8′ = X88′ (2.9)

and ∑
8

P̂8 = 1 : (2.10)

The probabilities are given by ?8 =

〈
P̂8

〉
and bring the state to P̂8 |k 〉 /

√
?8 or

P̂8 d̂P̂8/?8 .
In realistic experimental setups, measurement devices have a limited resolution,

meaning that complete projection on an eigenstate does not take place. To account
for these cases, there is the more general notion of a Positive-Operator Valued
Measurement (POVM) that generalizes projective measurements. These can also
be understood as the effect of a projective measurement on an ancillary system to
which the system of interest is connected: we will study an explicit example later.
The projector operators are now replaced by more general positive operators �̂8
satisfying ∑

8 �̂8 = 1̂. The property of positivity means that there exists a set of
operators {�̂8 9 } such that

�̂8 =
∑
9

�̂
†
8 9
�̂8 9 . (2.11)

In a POVM, one observes with probability ?8 = 〈�8〉 the state

1
?8

=
∑
9

�̂8 9 d̂�̂
†
8 9
. (2.12)

In the case where the POVM yields only little information on subsystem 1, and
consequently causes only a little perturbation, it is called a weak measurement.
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Figure 2.1: An open quantum system ( is weakly coupled to an infinite
reservoir ' with a coupling Hamiltonian +̂

2.3 Evolution of the density matrix: the Lindblad mas-
ter equation

Consider a large quantum system (( + ') with density matrix d̂tot in Hilbert space
HB ⊗ H', which consists of a subsystem ( of interest (Hilbert space HB , reduced
density matrix d̂B), via coupling Hamiltonian +̂ , weakly coupled with a reservoir '
(H', d̂') with infinitely many degrees of freedom (Figure 2.1).

In order to study (, we are particularly interested in the evolution of d̂B = tr' d̂tot.
This immediately implies that we should expect d̂B to become a mixed state (except
in the trivial case where ( and ' are decoupled), even if d̂tot is a pure state. This
confirms that a wavefunction description is insufficient and a density-matrix
description open quantum systems is necessary.

Comparing the evolution of a closed quantum system (governed by quantum
fluctuations)

mC |k 〉 = −8 Ĥ |k 〉 (2.13)

with the evolution of probability for a classical Markov process for a probability
vector ®? (governed by classical fluctuations)

mC ®? =W®?, (2.14)

and observing the similarity, we might be hopeful that the evolution of an open
quantum system, where both quantum and classical fluctuations are present, can
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also be written as a first order linear differential equation that is local in time, i.e.

mC d̂B = Ld̂B . (2.15)

This conjecture turns out to be valid under quite general circumstances that allow
writing d̂ (C) ≈ d̂B (C) ⊗ d̂'. This can be justified in microscopic models from a clear
separation of timescales (Markov-Born approximation) and generates the so-called
quantum-dynamical semigroup [6, 8, 12]. L is a superoperator that goes under
the name Liouville operator or Liouvillian and takes an analogous role to the
Hamiltonian in closed quantum systems as the generator of time-evolution (it is a
generalization of (2.5)) 2.

We have, however, so far not obtained an explicit, useful form for L. We require
that L is a linear operation that, to be physically acceptable, preserves hermiticity,
the trace of d̂B and its positivity. In fact, L must be completely positive, meaning
that for any other subsystem d̂ ′B , joint evolution LB ⊗ 1′B is also a positive map.
Under these circumstances, L is a valid quantum map, meaning it can be written
(compare with (2.6) for a closed system) as

d̂B (C) =
∑̀

"̂` d̂B (0)"̂†` , (2.16)

where {"̂`} is a (non-unique) set of Kraus operators [8, 12].

For an infinitesimal time-evolution (first order in dC), we can rewrite (2.16) as

"̂0 = 1 − 8 Ĥeff(C) dC (2.17)

"̂`≥1 = !̂` (C)
√

dC . (2.18)

Operators !̂` (C) are known as the Lindblad or jump operators. From requiring
trace preservation (∑` "̂

†
`"̂` = 1), we obtain that

Ĥeff = Ĥ− 82
∑̀

!̂†`!̂`, (2.19)

where Ĥ can be identified as the Hamiltonian of (. Putting everything together,

2Some authors prefer to use an explicit mapping d̂B ∈ H ⊗H∗ ↔ ||d〉〉 ∈ H ⊗H . This procedure
goes under the name of third quantization [13], and | |dB 〉〉 is now a superket. The practical use
of this symmetry is that it allows writing an explicit matrix representation L for L for which
standard tools from linear algebra apply.
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this leads to the Lindblad equation

dd̂
dC = Ld̂ = −8

[
Ĥ, d̂

]
+

∑̀ [
−1
2 (!̂

†
`!̂` d̂ + d̂!̂†`!̂`) + !̂` d̂!̂†`

]
, (2.20)

where we have now dropped the subscript B. Although equations of this form have
appeared earlier in particular setups [14] , the generality of the equation (2.20)
has been shown by Gorini, Kossakowski, Sudarshan [15] and Lindblad [16]. It is
also referred to as the GKSL-equation, although we will not use that terminology
in this thesis.

2.4 Quantum trajectories and stochastic simulation

In the preceding section, we have seen that, in analogy with classical Markov
processes, one can evolve the ensemble d̂ with a Master equation. However, such
construction assumes a complete loss of information; in reality one is (keeping
track of information) always in a single realization (‘single shot’) of the Markov
chain. A similar observation can be made for the open quantum system [6, 8, 12].

According to the Von Neumann-scheme of measurement, a measurement on
a quantum system ( happens as follows, where we take the example of a single
spin-1/2 particle for simplicity. Initially, it is in a pure y-polarized state |↑〉 + 8 |↓〉
(disregarding normalization for simplicity), corresponding to a density matrix

d̂B,8 = |↑〉 〈↑| + |↓〉 〈↓| + 8 |↓〉 〈↑| − 8 |↑〉 〈↓| . (2.21)

A macroscopic measurement device � (we will use a pointer as example) is now
coupled with (, bringing the total state of ( + � to the maximally entangled state
|↑〉( |G1〉� + 8 |↓〉( |G2〉� . � is however a macroscopic object and hence subject to
decoherence. Therefore, we will quickly end up in a classical mixture d̂tot,5 =

( |↑〉 〈↑|)( ( |G1〉 〈G1 |)� + (|↓〉 〈↓|)( ( |G2〉 〈G2 |)� or, if we are interested in ( alone,

d̂B,5 = |↑〉 〈↑| + |↓〉 〈↓| . (2.22)

Now, a crucial insight is that this procedure defines a quantum map on (. In
fact, we see that d̂B,5 is obtained from d̂B,8 by choosing as Kraus operators {"̂`}
the two projection operators in the spin-I basis, meaning that interaction with an
environment is equivalent to an unread measurement (this is consistent with our
remarks when introducing POVMs in subsection 2.2.5). There is more, though.
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What if we do read out the measurement (look at the pointer)? Then, we know,
from the position of G on D, with certainty the spin of B, the ’measured’ spin is
now either

d̂B,< = |↑〉 〈↑| or |↓〉 〈↓| . (2.23)

In fact, because ( is in a pure state after reading out the measurement, there is no
longer a need to work with density matrices and the system after measument can
be characterized by a wavefunction |(〉 alone! For the former example, we have
used projectors as Kraus operators, but in fact the argument holds for all POVM
measurement procedures (for example, when the spin and the pointer are not fully
correlated). Now, what is the importance of this with respect to our story on the
dynamics of open quantum systems? We note that the Lindblad equation (2.20)
can be written in an equivalent form as

dd̂
dC = −8

[
Ĥeff, d̂

]
+

∑̀
!̂` d̂!̂

†
` . (2.24)

The first term describes an evolution with an effective (non-unitary) Hamiltonian,
while the second term is known as the ‘recycling’ term. An important insight
is that, since (2.24) is linear, d̂ can be sampled with pure states, for which the
evolution can be described in terms of wavefunctions. The effective Hamiltonian
leads to a deterministic Schrödinger-like evolution

d ˜|k 〉
dC = −8 Ĥeff ˜|k 〉, (2.25)

where the tilde denotes that the norm of ˜|k 〉 is in general not conserved under this
evolution. The recycling terms enter the evolution as

˜|k 〉 → !̂` ˜|k 〉. (2.26)

The fact that the corresponding Kraus operator scales with
√

dC , as Wiener noise
does, hints that process (2.26) has a stochastic nature. This turns out to be
true, either in the form of discrete jumps at random times, leading to ˜|k 〉 being a
piecewise-deterministic process (PDP), or in the form of continuous Wiener noise.
In this thesis, all stochastic calculus is performed in the Itô sense, although it is in
principle possible to translate it to the Stratonovic sense as well.

This procedure of writing the Lindblad evolution in terms of wavefunctions is
known as an unraveling, while |k 〉 (C) is a quantum trajectory and the method as
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wavefunction monte-carlo. In practice, this nomenclature is used interchangeably,
though.

There is one more important aspect to quantum trajectories which we have
not yet discussed. As noted in subsection 2.2.2, density matrices don’t have a
unique decomposition in pure states. For the spin above, the same d̂B,5 would have
been obtained by coupling the G-components of the spins for example (the analogy
should not be carried to far, as it does not hold for the I-component for this
initial state). This illustrates also, as already remarked, that the choice of Kraus
operators is not uniquely defined by the decoherence mechanism (for example, in
(2.17) alternative sets of Kraus operators can be obtained by adding a constant to
operators !̂` and simultaneously subtracting it from Ĥeff). For our purposes, this
means that a master equation has no unique unraveling. Different measurement
procedures give measurement records that can look qualitatively entirely different,
but the average evolution of the ensemble is identical. After preliminary work by
Davies [17], the quantum trajectory formalism was developed in the early 90s by a
number of different groups (Dalibard, Castin and Mølmer [18]; Dum, Zoller and
Ritsch [19]; Carmichael [20] and Barchielli and Belavkin [21]) in a quantum-optical
context.

In the quantum-optical context, we will study such an example where leaking
photons are measured, and depending on if one uses photon-counting or homo-
dyne/heterodyne measurement schemes, this gives a single-shot PDP or Wiener
process. But let us first highlight some more general features of the quantum
trajectory method.

2.4.1 First benefit of quantum trajectories: closer connec-
tion to experiment

There are two important reasons why one would prefer working with quantum
trajectories over the master equation. The first is that the formalism allows studying
qualitative features of single-shot real measurements, and can thus provide more
complete experimental predictions. We will explicitly use a hybrid trajectory/GTA
model in this context in Part III. Related to this, quantum trajectories allow for
more flexibility than the master equation such as the study of feedback processes
based on the measurement record [7, 22, 23].

16



2.4 - Quantum trajectories and stochastic simulation

2.4.2 Second benefit of quantum trajectories: stochastic sim-
ulation needs less computational resources

Second, wavefunctions |k 〉 are elements of a Hilbert space H that is quadratically
smaller (dimension �) than the Hilbert space H ⊗ H ∗ of d̂ (dimension �2).
In numerical simulations, the dimension directly relates to the computational
complexity of the problem, it is the amount of numbers that must be stored in
computer memory and computed each timestep. One sees that quantum trajectories
(from a virtual measurement) here have a large benefit, harvesting this in practice
is also known as the stochastic simulation method. The expense is of course that
the trajectory simulations must be repeated until statistical convergence if one
wants to recover the statistics of the full ensemble d̂ [10, 24].

2.4.3 Distinguishing quantum- and classical fluctuations

The variance of an operator Ô in quantum mechanics is defined as

Var (Ô) = tr
[
d̂ Ô2] − [

tr
(
d̂ Ô

)]2
=

1
#traj

∑
U

〈
Ô2〉

U
−


∑
U

〈
Ô

〉
U

#traj


2

. (2.27)

In the context of quantum trajectories, it is useful to note that this quantity can be
decomposed in two contributions Var Ô = Var1(Ô) +Var2(Ô), respectively defined
as [6]

Var1(Ô) =
1

#traj

∑
U

[〈
Ô2〉

U
−

〈
Ô

〉2

U

]
, (2.28)

Var2(Ô) =
∑
U

〈
Ô

〉2

U

#traj
−


∑
U

〈
Ô

〉
U

#traj


2

. (2.29)

Var1(Ô) is a measure for the quantum uncertainty on Ô within a trajectory,
whereas Var2(Ô) is the stochastic variance between trajectories. We will refer
to these quantities as the intra-trajectory variance and inter-trajectory variance,
respectively. While Var Ô is uniquely defined by the master equation, the weights
of Var1 Ô and Var2 Ô can strongly depend on the unraveling. In particular, if an
unraveling corresponds to measurements of Ô, then Var1 Ô tends to be small (and
Var2 Ô large) as |k 〉 is close to an eigenstate of Ô. Meanwhile, for a conjugate
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observable Ô′, we expect a large Var1 Ô. These considerations are useful to take
into account when choosing an unraveling for the stochastic simulation method
as they can strongly affect the statistical convergence of the method. In general,
this discussion makes our earlier remark on the interchangeability of classical and
quantum fluctuations more precise.

2.4.4 Correspondence with other concepts from quantum me-
chanics

In deriving quantum trajectory theory, we have been relying only on the Copen-
hagen interpretation of quantum mechanics (even the decoherence used in the von
Neumann measurement scheme is consistent with Born’s rule [8]). Nevertheless,
there are natural connections with some alternative interpretations. Stochastic
collapse models assume that all natural objects are constantly subject to a very
weak measurement, and naturally very similar formulas to the ones of quantum
trajectories have arisen in this context. The most famous example is quantum
state diffusion, which has shown to be mathematically equivalent with the hetero-
dyne unraveling (see subsection 2.5.2). Furthermore, the consistent (decoherent)
histories interpretation of quantum mechanics assumes that the importance of
individual measurement events is overstated, but rather the whole history of a
system is important. This also naturally connects with the quantum trajectory
formalism [11]. Unfortunately, the term quantum trajectory is sometimes also used
in the different context of de Broglie-Bohm (pilot-wave) theory [25]. We wish to
highlight that this is an entirely different notion, as unlike in pilot-wave theory,
the quantum trajectories referred to in this work do not interfere with each other.
In fact, the time-evolution of an open quantum system can be described by a
stochastic path integral over quantum trajectories in Hilbert space. This should
not be confused with the coherent Feynman-Vernon path integral over classical
paths in configuration space or phase space [6] .

2.5 Example: dissipation from an optical cavity

The discussions in the previous section have outlined a generic formalism to
understand open quantum systems, but could not give a specific recipe to obtain
the proper Lindblad operators for a given system. To make the methods a bit more
concrete, we now turn to the particular setup of a leaky optical cavity [6, 12, 26,
27], which will be important for this thesis. The study of systems for which such
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description is relevant is known as Cavity quantum electrodynamics (cavity QED)
and can include individual atoms in a cavity as well as more extensive solid-state
structures [28]. From Figure 2.1, recall that the total Hamiltonian is

Ĥtot = ĤS + ĤR ++̂ . (2.30)

In the interaction picture, the total density matrix evolves as

dd̂C>C
dC = −8

[
+̂ , d̂C>C

]
. (2.31)

From iterative integration, we find

d̂C>C (C +ΔC) = d̂C>C (C) +
∞∑
==1
(−8)=

∫ C+ΔC

C

dC1
∫ C1

C

dC2 · · ·
∫ C=−1

C

dC=
[
+̂ ,

[
+̂ , · · ·

[
+̂ , d̂C>C

] ] ]
.

(2.32)
For tr' (+̂ d̂') = 0, the first term in the expansion of d̂B = tr' d̂C>C vanishes. When
studying evolution in a short time C whe should therefore consider the second term,
leading to

Δd̂B
ΔC

= −
∫ C+ΔC

C

dC1 tr'
[
+̂ ,

[
+̂ , d̂C>C (C)

] ]
(2.33)

≈
∫ C+ΔC

C

dC1 tr' d̂'
[
−+̂ 2d̂B (C1) − d̂B (C1)+̂ 2 + 2+̂ d̂B (C1)+̂

]
, (2.34)

where we have used the Born-Markov approximation d̂C>C (C) = d̂B (C) ⊗ d̂A in the
second equality. For short ΔC , C1 ≈ C and we start recognizing the Lindblad form.
Assuming a simple interaction Hamiltonian coupling the electromagnetic fields
inside and outside the cavity (for notational simplicity, we drop dependencies on
all degrees of freedom other than l),

+̂ = − ®̂� · ®̂� =

∫
dl 6(l) (â + â†) (1̂ (l) + 1̂†(l)) (2.35)

≈ 6Δl
(
â 1̂† + â† 1̂

)
. (2.36)

(Rotating-wave and Markov approximations), where 1̂, 1̂† are the annihilation and
creation operators of the reservoir (free space with ĤR =

∫
l

dl 2 (l)l 5 1̂†(l)1̂ (l)).
If free space has temperature zero, tr' (1̂†1̂) = tr' (1̂1̂) = tr' (1̂†1̂†) = 0 while
tr' (1̂1̂†) = 1. Upon defining W := 262Δ2

l , we readily obtain the Lindblad equation
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mC d̂B =
W

2

(
2 â d̂ â† − â† â d̂ − d̂ â† â

)
, (2.37)

or returning to the Schrödinger picture

mC d̂ = −8
[
Ĥ, d̂

]
+ W2

(
2 â d̂ â† − â† â d̂ − d̂ â† â

)
. (2.38)

Expression (2.38) is clearly of the form (2.20), where we see that the jump operator
associated with this process is √W â. In the following, we will refer to W as the
dissipation rate.

2.5.1 The photon-counting unraveling

Let us now take a look at this process from the quantum trajectory perspective.
The most straightforward continuous measurement is direct photodetection: an
(idealized) detector will, at any infinitesimal timestep dC either detect one photon
(’click’) or none 3. Therefore, the stochastic Schrödinger equation for these
trajectories is a Poisson process

|̃k 〉 =
1 −

(
8 Ĥ+W2 â† â

)
dC +

©«
ââ |̃k 〉 − 1

ª®®¬ d#
 |̃k 〉, (2.39)

where d# 2 = d# , � [d# ] = W 〈n̂〉 dC .
Note that the Poisson increment d# for an infinitesimal timestep is either 0

(with probability 1 − W 〈n̂〉 dC) or 1 (with probability W 〈n̂〉 dC). Hence, as long as dC
is sufficiently small, we can replace the random generation of a Poisson integer
each timestep by a random real number b from a uniform [0, 1] distribution and
perform a jump if b < W 〈n̂〉 dC . As long as no jump has been performed, the same
number b can however be reused. The probability of < subsequent timesteps
without a jump is (1 − W 〈n̂〉 dC)< ≈ 4−W 〈n̂〉<dC = 4−W 〈n̂〉 C . This latter quantity is
equal to the decrease of the norm according to the deterministic part of (2.39).

This leads to the following, practical procedure that has turned out to be
beneficial in many cases [10]:

1. Pull a random number b from a uniform [0, 1] distribution
3Two things to note that may seem counterintuitive: (1) the absence of a click is also a

measurement result that gives information on the system (2) Clicks don’t always decrease the
expectation value of the photon number in the cavity: although one particle is lost it signals that
there were a lot in there as well [10].
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2. Perform a deterministic evolution of the unnormalized state according to

8mC |̃k 〉 =
(
Ĥ−8 W2 â† â

)
|̃k 〉, (2.40)

3. when the norm has decreased to
 |̃k 〉2

= b , a jump is performed

|̃k 〉 → â |̃k 〉/
â |̃k 〉 (2.41)

4. Repeating of the procedure.

2.5.2 Other unravelings

The most important other unravelings for this process are the dyne (homo-
dyne/heterodyne) detection schemes that measure the interference of this leaking
light with a macroscopic reference beam and are able to provide phase infor-
mation as well. The combined photon current of signal and reference beam is
now macroscopic and contains a very large amount of individual photons, each
contributing to a tiny jump. In this case, it is more appropriate to model the noise
as a Wiener process with Gaussian noise without further jumps. In particular,
homodyne detection schemes measure a quadrature variable -̂q = 1

2 (â 4−8q + â† 48q ),
with q a free parameter (the relevance of these variables will become clearer in
subsection 4.2.1). This leads to trajectories of the form

d |̃k 〉 =
(
−8 Ĥ dC − W2 â† â dC + 2W

〈
-̂q

〉
â 4−8q dC + √W â 4−8q d,

)
|k 〉 (2.42)

where d, is a real Wiener process satisfying d, 2 = dC .

In heterodyne detection, all quadrature variables are measured with equal
weights. This yields a stochastic Schrödinger equation

d |̃k 〉 =
(
−8 Ĥ dC − W2 â† â3C + W

〈
â†

〉
â dC + √W â d/ ∗

)
|k 〉 , (2.43)

where d/ is complex Wiener noise satisfying |d/ |2 = dC and d/2 = 0. These
detection schemes are discussed in more detail in Appendix A.
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2.6 Two-time correlation functions: the Onsager-Lax
quantum regression theorem

Another useful result that we will use later states that two-time correlation functions
can be obtained from knowledge of the evolution of single-time operator values.
This is known as the (Onsager-Lax) quantum regression theorem [29]: If
for some operator Ô, 〈

Ô(C + g)
〉
=

∑
9

0 9 (g)
〈
Ô9 (C)

〉
, (2.44)

then 〈
Ô8 (C) Ô(C + g) Ô: (C)

〉
=

∑
9

0 9 (g)
〈
Ô8 (C) Ô9 (C) Ô: (C)

〉
. (2.45)

There has been some discussion as to whether this statement should truly be
considered a theorem, but at least in the case of weak Markovian coupling with a
reservoir, it holds to very good approximation [30, 31].

2.7 Further extensions

2.7.1 Non-markovian dissipation

For the methods in the previous sections to be valid, a number of approximations
had to be made. However, there has been considerable work regarding extensions
to more general setups. In particular the criterion of Markovianity is not always
satisfied, meaning that the environment can retain correlations (note that this
is equivalent with the presence of coloured noise in the Fourier domain, or a
frequency dependent coupling Hamiltonian) [6, 32]. The duality between methods
on the level of the master equation or individual trajectories persists largely,
though. On the level of the master equation, projection operator techniques as the
Nakajima-Zwanzig method or time-convolutionless modifications are typically used.
Non-markovian quantum trajectories can be constructed by working in a doubled
Hilbert space or considering reverse jumps [6, 32]. Although we focus with the
Gaussian Trajectory Approach in this work on Markovian setups, we believe that
exploiting the same Gaussian ansatz might also be useful to the non-Markovian
extensions.
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2.7.2 Relativistic methods

Other extensions include relativistic methods. As a starting point, the Schwinger-
Tomogana equation is commonly used, where quantum states are considered a
functional on the set of spacelike hypersurfaces in Minkowski space. In this context,
the locality of measurements becomes an important aspect [6].

23





CHAPTER 3
Many-body open quantum systems

and their numerical description
In the last decade, an increasing amount of attention has been devoted to the study
open many-body systems, where physics richer than in closed systems can arise.
Several experimental platforms are studied in this regard. Computational resources
are often a constraint, although a variety of methods exist to date, with each their
advantages and drawbacks.

3.1 Many-body open quantum systems

The systems considered in chapter 2 have, to large extent, arisen in a quantum
optics context with few degrees of freedom. More recently, there is an increased
interest in systems where both the open and the many-body aspects are important,
meaning that insights of quantum optics must be merged with those of condensed
matter physics and statistical physics. Even if the exact Lindblad or quantum
trajectory evolution can no longer be tracked, a number of general results exist
to date, of which we will highlight a few important ones here. In section 3.2 we
highlight some important experimental platforms in this context and in section 3.3
we will then give an overview of existing methods to overcome this many-body
problem in open quantum systems.

A (non-exhaustive) number of features that may arise in open many-body
systems that distinguish them from closed systems:

• Spohn’s theorem: A Liouvillian L for a finite system has a unique steady-
state which is reached after (real) time evolution, provided the quantum-
dynamical semigroup is irreducible [33–35]. The last requirement corresponds,
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loosely speaking, with the fact that the jump operators can connect all
possible states and is typically satisfied. Equation (2.15) can be formally
integrated i.e.

d̂ (C) = 4LC d̂ (0) (3.1)

while the steady state is the lowest eigenvector of L (it has eigenvalue zero
in fact, by the requirement of stationarity). (Minus the real part of) the
first excited eigenvalue denotes the Liouvillian gap _ and yields the slowest
timescale in the system 1 and is important in the context of dissipative phase
transitions (we will study these more deeply in Part II). Spohn’s theorem,
however, does not state that the decay should be fast: especially in the
context of glasses, dynamics can be extremely slow, i.e. much slower than
the timescale of the experiment and the system is in a metastable state
[37]. A number of more exotic dissipation mechanisms, that don’t satisfy the
criteria for Spohn’s theorem and don’t reach a unique steady state, have also
recently received attention [38, 39]. In the thermodynamic limit of infinite
occupation, even simple loss processes can lead to dissipative time-crystals
[40, 41].

• In the trivial case of a thermal bath and no driving, this steady state will
also be an equilibrium (Boltzmann-Gibbs) state. Note that typically, in
thermal equilibrium the Markov-Born approximations are in fact not valid.
More interestingly, an interplay of driving and dissipation, or more complex
dissipation mechanisms, tend to result in genuinely non-equilibrium behavior.
In this context, we should highlight that the concept of a ‘steady state’ refers
to the ensemble d̂, individual experimental realizations (trajectories) can
display a variety of dynamical effects (for example, the presence of vortex
trains [42, 43]).

• Detailed balance is generally not satisfied, implying that the system can a
priory be much more sensitive to microscopic dynamics [44, 45].

• A corollary is that also equilibrium fluctuation-dissipation theorems can be
violated. Some observable-dependent alternatives exist [46].

• Reciprocity of susceptibilities can be broken [47].

1Very recently, a counterexample was found relating to the Liouvillian skin effect [36].
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• Densities-of-states can be negative, at least when interpreted as the imaginary
part of the Green’s function (spectral function). This relates to a combination
of a steady-state with population inversion and interactions [48].

In summary, while open quantum systems naturally go to a steady state on
short or long timescales23, their dynamics, especially in a driven-dissipative context,
can be very rich compared to closed or thermal quantum states.

3.2 Experimental platforms

3.2.1 Non-equilibrium physics of atomic condensates

While for many theoretical descriptions of Bose-Einstein condensates with cold
atoms [49], it is not necessary to include interaction with the environment explicitly,
there are some cases where this is highly relevant. For example, in order to perform
successful laser (Doppler) cooling to prepare such systems experimentally, one
needs to overcome the recoil temperature limit, something that is possible by
trapping the atomic wavefunction in a dark state [6, 50]. Also the physics of cold
atoms in optical cavities and cavity arrays is important, including optical lattices
and the heating dynamics therein. These descriptions often give rise to spin models
such as the Dicke model [24, 51]. More recently, there has been a surging interest
for genuine non-equilibrium features of cold-atom systems [52]. Often, the term
‘dissipation’ is used here without explicit reference to Markovian coupling with a
reservoir, but particle losses can become highly relevant [53, 54].

3.2.2 Exciton-polariton condensates

Bose-Einstein condensation has also been observed in the-solid state, in the form
of exciton-polaritons with a series of experiments in 2006 [55]. Some of the
main experimental motivations to study this system has been the possibility to
reach condensation and study superfluid properties [56] at standard cryogenic
temperatures or even room temperature (as opposed to the nanokelvin regime
for cold gases), and that tracking real-time dynamics from the leaking light is
possible. Because of the important optical component (polaritons are coherent

2In closed systems, one needs to invoke advanced notions as eigenstate thermalization in a
somewhat ad hoc way to achieve this result, as the Schrödinger equation (2.13) predicts oscillatory
behaviour.

3In a different sense, the closest analogy to a steady state for Hamiltonian dynamics is the
ground state, which is reached after infinite imaginary time-evolution instead of real.
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superpositions of a photon and an exciton), polariton condensates are also known
as quantum fluids of light. A detailed review of the early experiments is given in
Ref. [57]. In practice, it is mostly experimentally realized in planar microcavities
such that the system is effectively two-dimensional and the confinement in the
I-dimension gives the particles an effective mass. Because particles leak out, new
ones have to be pumped in continuously. This can take place either coherently (a
term in the Hamiltonian) or incoherently (as another Markovian jump process)
and gives polariton condensates a genuine driven-dissipative character [57], so that
features of non-equilibrium condensation can become highly relevant. For example,
vortices in polariton condensates, a typical witness of superfluidity, [58] can be
self-propelling [43]. More recently, the interest has grown to achieve polariton
condensation in optical micropillars and arrays of these for quantum information
processing [59], as such polariton systems can provide a proper implementation
of cavity QED systems with a Kerr nonlinearity. This Kerr (j (3))-nonlinearity
stems from the interaction of the excitonic component that exhibits a bound state
[60]. It is necessary for thermalization [57], but by itself often considered rather
weak for the purposes of information processing. For this purpose, the interaction
strength can be drastically enhanced by exploiting interference effects known as
unconventional photon blockade [61, 62] and its dynamical extensions [63].

3.2.3 Dye-microcavity photon condensates

An alternative approach to the Bose-Einstein condensation of light is by a strong
absorption- and emission rate with a thermal environment consisting of dye-
molecules, making the photon-photon collisions from polariton condensates abun-
dant (realized in 2010) [64]. Both absorption and emission processes are incoherent
(jumps). The low mass allows for condensation at room temperature, even for
standard setups. Although thermal reservoirs lead, in general, to equilibrium
behaviour, the dynamics in this system are, as we will see in Part III of this thesis,
far from trivial.

3.2.4 Superconducting quantum optics

Apart from optical photons, and around the same time as previous platforms,
much work has been done in parallel with microwave photons in superconducting
circuits. This work is known as Circuit QED [65] and largely parallels cavity QED.
The nonlinearity is achieved through superconducting q-bits based on Josephson
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junctions, with which high nonlinearities can easily be achieved [66].

3.2.5 Other experimental platforms

Similar physics to neutral atoms in optical lattices has also been studied with
ions. Because of their charged nature, potential wells can become deeper, which
has allowed for an overall better controllability [67, 68]. Sticking to neutral atoms,
Rydberg atoms, mediating photon interactions, have recently gained a lot of
attention in the context of non-equilibrium dynamics [69] and quantum technologies
[70]. These Rydberg atoms are atoms with an electron in a highly excited state,
giving them ‘exaggerated atomic properties’. By itself the study of these atoms
goes back to the early days of spectroscopy [71], whereas more recently, it has
been realized that their controllability [72] is a strong advantage when seeking
individual atoms to manipulate. Very high nonlinearities for the photons are
achieved because of the ‘Rydberg blockade’ mechanism [73]. Finally, another line
of research in this context, that has been intensively studied the last decade, are
optomechanical devices (‘optomechanics’ ) that exploit radiation pressure [74].
Here, photons are coupled to mechanical oscillators ‘springs’ (moving mirrors, in
practice typically cantilevers, nanobeams or membranes). Also the interferometry
for gravitational-wave detectors can be understood in this context [75]. Another
intriguing question that is also investigated with such optomechanical systems
concerns the fate of quantum coherence and decoherence for progressively larger
systems [76].

3.3 Contemporary analytical and numerical methods

3.3.1 Exact diagonalization

For a number of models, exact analytical solutions can be found [13, 77–79]. In
principle, any Liouvillian could be written out in an explicit matrix representation,
which can be diagonalized by brute force with standard numerical software packages.
This approach is however strongly limited to small systems. In addition to the
exponential scaling of closed quantum mechanics, the computational cost is even
quadratically larger because of the need to work with density matrices. Use of the
stochastic simulation method (exact quantum trajectories) reduces the cost for
a single evolution to the one of the Schrödinger equation for a closed system, at
the expense of the need to average over many trajectories if one is interested in
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ensemble statistics.

3.3.2 Mean-field

A much simpler approach is the (coherent) mean-field approximation, which also
exists in closed systems. Fluctuations are disregarded by replacing a field operator
by its expectation value. This comes down to the ansatz of a coherent state (see
subsection 4.2.1). For BEC physics, this leads, for example, to the generalized
Gross-Pitaevskii equation [49, 57]. For complicated, spatially extended, systems,
such approaches may be the only ones accessible. Its validity is strongly limited to
semiclassical behaviour, typically arising in the limit of large occupation.

3.3.3 Locally exact master-equation based approaches

A straightforward approach to simplify the brute-force solution of the master
equation is the (mean-field) Gutzwiller density matrix approach that assumes
factorized solutions [80–82]4. If symmetries are present and one is interested in
the steady state, it is only necessary to solve the master equation for a single
independent site, while replacing couplings with other sites by the obtained
expectation values self-consistently [83].

In the study of phase transitions (see section 6.1), Gutzwiller theory is known
to predict critical exponents properly from the upper critical dimension onwards
(often more than 3), and it was also widely believed that such approach becomes
asymptotically exact for an infinitely-dimensional setup. Recently though, strong
concerns have arisen as to whether critical points of non-equilibrium systems
are accurately detected by such approaches in this limit [84]. More generally,
the assumption of a factorized solution poses strong constraints on the non-local
correlations that can be captured.

In the study of many-body systems in closed quantum systems, there has
further been a lot of attention to DMRG (Density-Matrix Renormalization Group)
as a tool for lattice models the last decades. More generally, this has been
formalized in Tensor Networks, such as MPS (Matrix-Product States) or MPO
(Matrix-Product operators) in 1D and PEPS (Projected Entangled-Pair States) in
2D. The central idea in tensor networks is that the state of the full system can be
written exactly as a contraction over local tensors. This method can be generalized

4In the literature, both the coherent-state ansatz and the Gutzwiller approach are sometimes
referred to as ’Mean-field’. In this thesis, we will only stick to this terminology for the former
approach.
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quite straightforwardly to the master equation in open quantum systems [85–89].
By itself, this tensor decomposition does not provide a computational advantage.
However, a crucial insight is that physical states tend not to occupy the full,
exponentially large, Hilbert space, but are typically restricted to a ’physical
corner’ where entanglement is local. This realization justifies a truncation in
bond dimension that leads to the computational reduction. Tensor networks are
generally considered as a very powerful and well-controlled tool in the study of
lattice models with short-range correlations (bond dimension cannot be truncated
so easily in presence of long-range correlations, such at near a critical point [90]).
Also non- Markovian extensions exist [91]. Drawbacks are that tensor networks
tend to perform worse in systems where higher occupations can be present and in
situations where long-range correlations are important. Furthermore, the numerical
implementation of tensor networks can become a daunting task when studying
systems with a dimension larger than 1.

The same realization, that the important physical states are restricted to
the ’physical corner’ of Hilbert space, can also be exploited in a somewhat more
lightweight tool known as the Corner-Space Renormalization (CSR) method [92].
The approach works as follows: a small lattice system can be solved exactly. Out
of this solution, the most relevant eigenvectors are selected, and the others are
disregarded. Now, this lattice is doubled in size, and the procedure is repeated, up
to the point were convergence is attained for the proper lattice of interest. While
much simpler to implement for higher-dimension lattices than tensor networks,
the CSR method retains difficulties in accessing systems with higher occupation
per mode, and where the state has a strongly mixed character.

3.3.4 Locally exact trajectory-based approaches

Some similar approaches have also been applied on the level of individual trajecto-
ries [24]. The assumption of a factorized solution, for example, leads to a Gutzwiller
monte carlo approach [93–95]. As opposed to the level of the master equation,
symmetry can now be broken, meaning that in each trajectory, the solutions on
the different sites differ. The added value of starting from trajectories rather than
the master equation, is that the classical fluctuations are not restricted by the
ansatz, these can thus be sampled much better. The cost is that simulations must
be repeated up to proper statistical convergence. A straightforward generalization
is the Cluster Gutzwiller method, where the ansatz is used that the trajectory
can be written as a product of exact solutions of small ’clusters’ of a few lattice
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sites [47]. Similarly, also tensor networks can be combined with the trajectory
formalism [96–98], with as an advantage, parallel to Gutzwiller monte carlo, the
improved description of classical fluctuations. A possible drawback is that if one is
only interested in the steady state of the master equation, one still needs to study
the dynamics with a trajectory approach.

3.3.5 Cumulant expansion

Knowledge on the state of a system is equivalent to knowledge of the probability
density function of the state over operators (in practice the field–creation and
annihilation– operators), which is in turn fully characterized by its moments.
Cumulant expansion exploits this by evolving coupled equations for these moments.
In practice, these moments form an hierarchy of correlations, similar to the BBGKY
hierarchy in classical systems [99]. As typically, the lower moments (mean and
variance) are the most important, one can truncate this hierarchy. Up to now, this
principle has been mainly applied to the evolution of the master equation. Only
truncation at the first (coherent state, equivalent to the mean-field result from
subsection 3.3.2) or second (Gaussian) level (Bogoliubov theory), however, leads
to well-defined variational states [45, 100].

3.3.6 Phase-space methods

As we will explain more deeply in subsection 4.2.1, quantum mechanical states can
also be described as quasi-probability distributions in optical phase-space. Directly
translating the master equation of a multi-mode system to phase space, results
in a high-dimensional Fokker-Planck-like partial differential equation. By itself,
this typically does not make computations more easy. A significant improvement
can however be obtained from the Feynman-Kac formula that allows one to
map this Fokker-Planck equation onto stochastic differential equations under
proper circumstances. To meet these constraints, a number of approximations
typically have to be made that are not always well controlled [9, 57, 101]. Of
particular importance is the Truncated Wigner Approximation [57, 102–104]. The
approximation in this case consists of neglecting derivatives of order higher than
two, typically proportional to interaction constants. Alternative derivations, for
example from the Keldysh formalism (subsection 3.3.7), exist as well [105, 106].
Remarkably, the deterministic part of the TWA method is almost identical to the
Gross-Pitaevskii equation. Noise enters both in the initial conditions and in the
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dissipative evolution. This method is especially useful in the semiclassical limit
of high occupation and positive Wigner functions. The TWA approach has been
particularly successful for the study of BECs of cold atoms and polaritons [57, 102,
107–110] and optical waveguides [111, 112]. Despite these successes, TWA and
similar methods are not always reliable and may lead sometimes to unphysical
results [45]. Some improvements, with limited practical use so far, have also been
introduced [113, 114].

3.3.7 Other methods

On the analytical side, another sophisticated and powerful approach is the
(Schwinger-)Keldysh field theory. It was first introduced by Keldysh [115]
and Kadanoff and Baym [116] in the 60s as a non-equilibrium extension to the
diagrammatic Green’s function methods that are a standard tool in quantum field
theory and solid-state physics. More recently, it was realized that this formalism
is also very useful to describe driven-dissipative setups, as reviewed in Ref. [117].

Results obtained with this formalism also connect to the Renormalization-
group flow: Many interesting phenomena take place at long length scales and
it is unnecessary to track all microscopic degrees of freedom. In such cases, it is
useful to study the asymptotic behaviour of the system under scale transformations.
The underlying differential equations were first derived in Ref. [118] and later
adapted to a driven-dissipative context [119, 120]. This formalism also provides a
convenient picture to distinguish equilibrium from non-equilibrium: in the former,
real and imaginary parts of the different coupling constants retain the same ratio
under scaling, while this is no longer the case outside of equilibrium.

Regarding numerical approaches, as in closed quantum systems [121], a different
approach consists of the quantum monte carlo method to sample the density
matrix evolution [122]. The samples are by themselves unphysical, and this
method should not be confused (despite the name) with wavefunction monte-
carlo (quantum trajectories). While being less controlled than tensor-network
approaches, quantum monte-carlo approaches are easier to implement in more
than one dimension an have been able to find good results in some cases [123].
So far, these methods have only been applied to the determination of the steady
state.

A further recent insight from multiple groups in parallel, which leads to
improvement and conceptual understanding, is that the quantum monte-carlo
approach can efficiently be combined with a variational neural network ansatz
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[124–127].
Several other approaches and results have also been introduced. It is for

example argued that the variational principle for the steady state constitutes
minimizing

L̂d̂trial, where ‖·‖ is a suitable operator norm [128]. This principle is
extended to variational evolution of the master equation in Ref. [129]. Another
approach directly constructs a variational master equation [130, 131]. Variational
optimization has also been studied [132]. Recent work has addressed finding the
steady-steate through mapping on a closed system [133] and Ref. [134] takes a
Geometric approach.

The interested reader can find a few reviews on methods for open many-body
systems in Refs. [24, 117, 135].
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CHAPTER 4
Gaussian states

Gaussian states have a simple description, can exhibit some notorious non-classical
features and have been an important object of study in quantum optics and quantum
information. Wick’s theorem reduces calculations with Gaussian states considerably.
In addition to the standard (quadrature variables) Gaussian states, we also introduce
density-phase Gaussian states.

4.1 The Gaussian distribution in classical statistics

The Gaussian probability density function has attained an extremely important
role in statistics. An important reason for this is the Central Limit theorem
(Independently of the distribution of a variable G , with average G and finite standard
deviation f, the average of a large number of measurements N of the variable
G converges to a Gaussian distribution around the average G with a standard
deviation equal to f/

√
# ), that give the corresponding normal distribution a wide

applicability. There is a second feature of Gaussian states, known as the Isserlis’
theorem or Wick’s theorem [136]1: If (-1, . . . , -=) is a zero-mean multivariate
normal random vector, then

� [-1-2 . . . -=] =
∑
?∈%2

=

∏
{8, 9 }∈?

� [-8- 9 ], (4.1)

where � [·] denotes the expectation value, the sum is over all the pairings of
{1, . . . , =} and the product is over all the pairs contained in ?. This is extremely
useful, as all higher moments (and hence full knowledge of the distribution) are
readily available from the displacement (transformation to zero-mean vector in the

1There is also a different, but related, theorem named after ’Wick’ about ordering contracted
pairs of creation and annihilation operators [137].
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theorem above) and covariance matrix. Wick’s theorem can readily be applied to
bosonic field operators. For fermionic correlation functions (not explicitly studied
in this thesis, although extension of the formalism should be straightforward),
additional minus signs from the commutators appear, as fermionic operators rather
satisfy anti-commutation relations.

4.2 Gaussian states in quantum optics

4.2.1 Quantum-optical phase space

In order to introduce the Gaussian state in quantum optics, it is useful to first
look at the phase space representation of quantum optics which is able to provide
a simple picture of such states, and compare the Gaussian state with some other
important states. We first restrict ourselves to a single mode for convenience.

When studying the harmonic oscillator in first quantization, typically one
introduces at some point the ladder operators â�$ =

√
<l

2
(
Ĝ + 8

<l
?̂
)
, â†�$ =√

<l
2

(
Ĝ − 8

<l
?̂
)
to facilitate the calculations.

In second quantization, every bosonic mode is treated as a harmonic oscillator
and one works with similar creation and annihilation operators (also known as
field operators) â†, â that create and destroy excitations of the field (particles)
and follow the same algebra

[
â, â†

]
= 1; n̂ = â† â is now the number operator. In

analogy with the position and momentum variables in first quantization, similar
Hermitian operators

X̂ =
â + â†

2 (4.2)

P̂ =
â− â†

28 (4.3)

can be introduced satisfying [
X̂, P̂

]
=
8

2 . (4.4)

These are known as the quadrature variables2. These are mathematically analogous
to position and momentum operators, but do not correspond to a physical position
and momentum of a particle. As Hermitian operators, X̂ and P̂ must correspond
to a physical quantity, these are the real and imaginary parts of the field, and can
be measured with homodyne techniques (Appendix A).

2Other normalization conventions are in use as well.

36



4.2 - Gaussian states in quantum optics

In is often convenient to exploit this analogy by working in phase space. Phase
space is naturally regarded as a key concept in classical Hamiltonian mechanics,
where a system is completely defined by a point in this space. Quantum mechanics
usually uses the Hilbert space as an alternative construction (section 2.2). However,
it is possible to describe quantum mechanics in phase space as well [138]. The
difference with classical mechanics is that Heisenberg uncertainty prevents (also
pure) quantum states to map to single points in phase space, rather, they are
quasi-probability distributions. The ‘quasi’ here partly refers to the fact that these
functions do not have to be positive for every pair (-, %).

In the Hilbert space of wavefunctions, position and momenta eigenstates (plane
waves in their Fourier-transformed domains), both form a complete basis. In
the Hilbert space of operators, such a basis exists in the form of Displacement
operators

�̂ (U, U∗) = 4U â† −U∗ â = 4−8 (- P̂−? X̂) . (4.5)

This also implies that (at least in principle) any operator, including the density
matrix, can be written out as a power series in â, â† (or equivalently, X̂, P̂) [9, 12].
Replacing this pair of conjugate operators by classical variables then leads to the
quasi-probability distribution. There is however a catch, in that classical variables
X,P commute whereas X̂, P̂ don’t. To resolve this ambiguity, the operators need
to be ordered in a particular way before being substituted by classical variables.
Different choices are possible, leading to different quasi-probability distributions of
which Glauber-Sudarshan P-distribution (density matrix with antinormal ordering),
the Husimi Q-distribution (density matrix with normal ordering) and the Wigner
W-function (symmetric ordering) are the most important [9]. The W-function is
unique in the sense that it predicts the proper marginals, i.e.

|k (- ) |2 =

∫
, (-, %) d% , (4.6)

and similar for |k (%) |2. The Wigner function has also been studied much earlier
and outside a quantum optics context [139]. Explicitly, it can be computed by first
defining the characteristic function as the expectation value over the displacement
operator (4.5)

j, (V, V∗) = tr
[
d�̂ (V, V∗)

]
(4.7)
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and then taking its Fourier transformation

, (U, U∗) = 1
c2

∫ ∫
dV dV∗ 4−VU∗+V∗U j, (V, V∗). (4.8)

Another useful property are the transformation rules [9]

â8 d̂ ↔
(
U8 +

1
2
m

mU∗
8

)
, ( ®U, ®U∗) (4.9)

â†
8
d̂ ↔

(
U∗8 −

1
2
m

mU8

)
, ( ®U, ®U∗) (4.10)

d̂ â8 ↔
(
U8 −

1
2
m

mU∗
8

)
, ( ®U, ®U∗) (4.11)

d̂ â†
8
↔

(
U∗8 +

1
2
m

mU8

)
, ( ®U, ®U∗) . (4.12)

that make it easy to map the master equation to phase space, as for example
for the truncated Wigner approximation (subsection 3.3.6). We will perform this
mapping for a concrete example in section 7.3.

With this in mind, let us look at some important states in quantum optics
(Figure 4.1).

• The most trivial state is the vacuum state |0〉 of an empty cavity. It is a
pure state, completely isotropic in phase space, and the variances on - and
% are both equal to 1/2. |0〉 is an eigenstate of both â and n̂.

• Next, there is thermal light d̂therm = exp{−Vl (n̂ +1/2)} . It retains the
phase-symmetry, buth the uncertainties on X̂ and P̂ are larger (there are
thermal fluctuations on top of the quantum fluctuations) such that the state
is no longer pure.

• Fock states |=〉 are eigenstates of n̂. Although this seems simple, they can
exhibit highly quantum-mechanical features. Their Wigner functions are
circularly symmetric and radially oscillating. It is is surprisingly hard to
produce Fock states in experiment, especially a large amount of work has
been devoted to the construction of reliable single-photon sources, which
could be useful for quantum information processing [141].

• Coherent states: By letting a displacement operator (4.5) operate on the
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Figure 4.1: W-functions of some important quantum-optical states: (a)
vacuum state, (b) thermal state with Vl = 1, (c) n̂ = 3 Fock state, (d)
U = 3 + 28 displaced (coherent) state, (e) Z = 0.3(1 − 8) squeezed vacuum,
(f) U = 3 + 28, Z = 0.3(1 − 8) displaced squeezed state, a generic single mode
-%-Gaussian state. Colour scheme from Ref. [140].
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vacuum, we obtain a state

|U〉 = �̂ (U, U∗) |0〉 . (4.13)

the shape of the W-function does not change but it is displaced from the
origin to a complex value U . Note that â |U〉 = U |U〉: coherent states are
eigenvectors of the annihilation operator. This means that coherent states
are unaffected by the loss of a photon. Also in mean-field descriptions as
the Gross-pitaevskii equations, where one substitutes k̂ by k =

〈
k̂

〉
, this can

be seen as the variational ansatz that k̂ is in a coherent state. Furthermore,
coherent states are typically used do represent the light field of a laser3.

• Apart from displacement, the vacuum can also be squeezed, by an operation

|0, Z 〉 = (̂ (Z ) |0〉 = 4
Z ∗
2 â2 − Z2 â†2 |0〉 . (4.14)

Interestingly, such states allow for the experimental detection of the vacuum
fluctuations [143].

4.2.2 Squeezed and displaced light

Of course, it is possible to perform both squeezing (4.14) and displacement (4.13)
operations subsequently on the vacuum, to

|U, Z 〉 = �̂ (U)(̂ (Z ) |0〉 . (4.15)

This leads to squeezed, displaced states, the most general pure Gaussian state
(mixed Gaussian states are obtained by squeezing and displacement of a thermal
state). The fact that both �̂ (U) and (̂ (Z ) are of no higher than second order of â, â†

in their exponent hints to the reason why such states are considered Gaussian. Also
the W-function and other phase-space distributions themselves have a Gaussian
shape. In fact, because of a result known as Hudson’s theorem, Gaussian states
are the only pure states with a W-function that is non-negative everywhere [144].

In practice, we will find it more useful to work directly with the second
moments 〈â â〉 and

〈
â† â

〉
in addition to the first moment U = 〈â〉 (the relation

of how Z relates to the Gaussian variances is e.g. given explicitly in ref. [145]).

3Some doubts have arisen as to whether coherent states truly exist at optical frequencies. In
any case, this remains a useful picture for practical purposes [142].
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In fact, by defining fluctuation operators as X̂$ = Ô−
〈
Ô

〉
, we have access to the

second central moments or cumulants
〈
X̂ â X̂ â

〉
= 〈â â〉 −U2 and

〈
X̂
†
â X̂ â

〉
=

〈
â† â

〉
−|U |2.

For the remainder of this thesis, we will drop the subscript ′ â′ for fluctuations.
Importantly, fluctuations X̂ are zero-mean variables, so the application of Wick’s
theorem (4.1) is clear.

As an explicit example, we apply Wick’s theorem to the fourth moment〈
â† â† â â

〉
:〈

â† â† â â
〉
=

〈
(U∗ + X̂†) (U∗ + X̂†) (U + X̂) (U + X̂)

〉
(4.16)

= |U |4 + U∗2 〈X̂ X̂〉 +U2 〈X̂ X̂〉∗ +2|U |2 〈X̂† X̂〉 +
〈
X̂
†
X̂
†
X̂ X̂

〉
(4.17)

= |U |4 + 2|U |2 〈X̂† X̂〉 +2 Re
[
U2 〈X̂ X̂〉∗

]
+

��� 〈X̂ X̂〉���2 + 2 〈X̂† X̂〉
2

(4.18)

where we have also used that all odd cumulants of a Gaussian state vanish.
Extension of this approach to a multimode system is entirely straightforward and
only requires adding subscripts to denote the modes and, of course, properly taking
into account the commutation relation

[
X̂8 , X̂

†
9

]
= X8 9 , where the X on the right-hand

side is the kronecker delta. When studying multimode systems, we will use the
shorthand notation

D8 9 = D 98 =

〈
X̂8 X̂ 9

〉
=

〈
â8 â 9

〉
− U8U 9 (4.19)

E8 9 = E
∗
98 =

〈
X̂
†
8 X̂ 9

〉
=

〈
â†8 â 9

〉
− U∗8 U 9 . (4.20)

quadrature notation, covariance matrix and purity

In an alternative formulation, the same states can be described with hermitian
fluctuations on the quadrature variables, as is more commonly used in some works
on the quantum information of Gaussian states [146]. Explicitly, transformations
are obtained using X̂ ( 9) = X̂x

( 9) +8 X̂p
( 9) to be

〈
X̂8 X̂ 9

〉
=

〈
X̂
(8)
G X̂

( 9)
G

〉
−

〈
X̂
(8)
? X̂

( 9)
?

〉
+ 8

(〈
X̂
(8)
G X̂

( 9)
?

〉
sym
+

〈
X̂
( 9)
G X̂

(8)
?

〉
sym

)
(4.21)〈

X̂
†
8 X̂ 9

〉
=

〈
X̂
(8)
G X̂

( 9)
G

〉
+

〈
X̂
(8)
? X̂

( 9)
?

〉
+ 8

(〈
X̂
(8)
G X̂

( 9)
?

〉
sym
−

〈
X̂
( 9)
G X̂

(8)
?

〉
sym

)
−
X8 9

2 (4.22)
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or conversely,

〈
X̂x
(8)
X̂x
( 9)〉

=
1
2 Re

(〈
X̂
†
8 X̂ 9

〉
+

〈
X̂8 X̂ 9

〉)
+
X8 9

4 (4.23)〈
X̂p
(8)
X̂p
( 9)〉

=
1
2 Re

(〈
X̂
†
8 X̂ 9

〉
−

〈
X̂8 X̂ 9

〉)
+
X8 9

4 (4.24)

(4.25)〈
X̂x
(8)
X̂p
( 9)〉

sym
=

1
2 Im

(〈
X̂8 X̂ 9

〉
+

〈
X̂
†
8 X̂ 9

〉)
. (4.26)

The subscript ‘sym’ denotes the symmetrized expectation value. If we denote the
matrices of these variances by square brackets, the matrix

Σ =
©«

[
〈X̂x

2〉
] [

〈X̂x X̂p〉sym
])[

〈X̂x X̂p〉sym
] [

〈X̂p
2〉

] ª®¬ (4.27)

becomes the covariance matrix of ( ®-, ®%)) [146]. For an m-mode system, the purity
is equal to ` = tr

{
d̂2} = 2−2< det{Σ}−1/2, meaning that pure Gaussian states satisfy

det{Σ} = 2−4<, (4.28)

or for a single mode
〈X̂x

2〉 〈X̂p
2〉 − 〈X̂x X̂p〉sym

2
=

1
16 . (4.29)

For convenience, we note that in terms of our original variables D8 9 and E8 9 , we
can construct a similar matrix

Σ̃ =
©«
[
Re{E} + X8 92

]
[D]

[D∗]
[
Re{E} + X8 92

]ª®¬ (4.30)

for which pure states satisfy

det
{
Σ̃
}
= 2−2<, (4.31)

or for a single mode

〈X̂† X̂〉 + 〈X̂† X̂〉
2
=

��� 〈X̂ X̂〉���2. (4.32)

The main practical use of the purity to our purpose is that it can either be
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used to eliminate one independent variable, or as an independent numerical check
on the convergence of the simulations. Similar results exist for the entropy of a
Gaussian state [146, 147]. If, in a multimode Gaussian state, some modes are traced
out, the reduced state for the remaining modes will remain a (mixed) Gaussian
state. Gaussian states thus facilitate an easy computation of entanglement entropy
(subsection 2.2.4).

In particular, the von-Neumann entropy (subsection 2.2.2) of an individual
Gaussian mode : with thermal occupation =: is

(
(:)
E= = (=: + 1) log=: + 1 − =: log=: . (4.33)

A multimode system can be symplectically diagonalized to

Σ = ()

(
diag(3: ) 0

0 diag(3: )

)
( (4.34)

The values ±3: are obtained as the eigenvalues of 8 �Σ, where

� =

(
0 −1
1 0

)
. (4.35)

The occupation of mode : is 3: − 1/4, and the total entropy is [146, 147]

(E= =
∑
:

(
(:)
E= . (4.36)

This procedure to obtain (E= can be used either on all modes of the Gaussian
state as alternative to the purity, or on a Gaussian subsystem for the entanglement
entropy. We highlight, though, that (4.36) is only the entropy of an individual
trajectory and does not include the classical fluctuations that are additionally
present in the master equation. The full entropy of the ensemble that includes
these contributions can in principle be obtained from the overlap elements between
elements [148] but we have found that this procedure does not converge properly
without using an exponentially large amount of trajectories.

Explicit construction of Gaussian states

As we have seen, Gaussian states can be constructed explicitly, for example in
truncated Fock base (or its product space for multimode systems), by executing
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squeezing and displacement operators on the vacuum or a thermal state.
The Wigner-function of such Gaussian state can also be easily written down in

terms of the displacement and the covariances, both for a single mode [9] as in the
multimode case [146].

As it turns out, the density matrix for all mixed Gaussian states can be written
as

d̂� = N4−V Ĥeff, (4.37)

for some ‘effective Hamiltonian’ Ĥeff [147] (not to be confused with the operator
carrying the same name in chapter 2), and V being inverse temperature. Pure
states correspond to the limit V →∞. They can be obtained as the ground state
(lowest eigenvector) of Ĥeff.

For the case of a single mode for example, Ĥeff would look like [9]

Ĥeff ∝
(
〈X̂† X̂〉 +1

2

)
(â† −U∗) (â−U) + 1

2 〈X̂ X̂〉(â
† −U∗)2 + 1

2 〈X̂ X̂〉
∗(â−U)2, (4.38)

∝ (X̂−- )2
〈
X̂p X̂p

〉
+ (P̂−%)2

〈
X̂x X̂x

〉
− (X̂−- ) (P̂−%)

〈
X̂x X̂p

〉
sym
− (P̂−%) (X̂−- )

〈
X̂x X̂p

〉
sym

, (4.39)

where the proportionality constant is irrelevant.

4.3 Gaussian states in quantum information

As we know from Hudson’s theorem, Gaussian states have positive Wigner func-
tions and have thus inherently a semiclassical nature. Nevertheless, a squeezed
multimode Gaussian state displays entanglement, a feature that is surely non-
classical. As such, Gaussian states play a crucial role in continuous-variable
quantum information. For a full description, we refer to Refs. [146, 147, 149].
Some convenient formulas are also obtained in that context, including some of the
preceding section (although care must be taken about normalization conventions).

4.4 As a variational ansatz: Hartree-Fock-Bogoliubov
method

In closed quantum many-body systems, Gaussian states have been known as a
standard tool for both bosons and fermions, both for the statics and the dynamics
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and both in the solid-state (for example the BCS theory of superconductivity) as
in the nuclear physics context. For an overview, see Ref. [150]. Such approaches
often go under the name ’Hartree-Fock-Bogoliubov’.

It is further interesting to note that Generalized Gibbs Ensembles [151], entropy-
maximizing states that have recently found applicability to integrable quantum
systems, are often Gaussian states [152].

4.4.1 A note on the term ’variational’

In variational methods, one selects a lower-dimensional manifold embedded in
the full Hilbert space in which states can be characterized by many fewer degrees
of freedom (variational parameters). By tuning these parameters, one tries to
find a state in the manifold that is as close as possible to the exact state of
interest. Such methods appear in two flavours: for static variational methods that
try finding the ground state, one minimizes the energy. For the time-dependent
variational principle instead, at each timestep the evolution leaves the manifold and
is subsequently projected back on it (equivalent with stationarity of the action).
With Gaussian states, this projection is achieved by exploiting Wick’s theorem
[150, 153].

4.5 Density-phase Gaussian states

In quantum hydrodynamics, a framework commonly used in the context of Bose-
Einstein condensation, it is common to introduce a (Dirac) phase by

â =: 48 \̂
√

n̂ (4.40)

and describe the dynamics in terms of density and phase as two real variables
instead of the quadratures [49]. Similar to X̂ and P̂, n̂ and \̂ are conjugate variables
implying [

n̂, \̂
]
= 8 . (4.41)

Because of this mathematical symmetry (symplectic structure), the formulas from
the preceding sections on XP-Gaussian states can be straightforwardly trans-
ferred to density-phase states as well (if care is taken about the slightly different
normalization convention). For a single mode, for example, the independent
(real) expectation values to take into account are 〈n̂〉, 〈X̂n X̂n〉 = 〈n̂ n̂〉 − 〈n̂〉2, 〈\̂〉,
〈X̂\ X̂\ 〉 = 〈\̂ \̂〉 − 〈\̂〉

2 and 〈X̂n X̂\ 〉sym = 〈n̂ \̂〉/2 + 〈\̂ n̂〉/2 − 〈n̂〉 〈\̂〉.
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Chapter 4 - Gaussian states

The use of Wick’s theorem is, by itself, the same as with the -%-Gaussian
states. Because of the decompositions (4.40), the correlators to expand are not
guaranteed to be polynomials in n̂ and \̂ . A few useful properties are that

48: \̂ 5 (n̂, \̂ )4−8: \̂ = 5 (n̂ +:, \̂ ) (4.42)

and
[5 (�), �] = [�, �] m5

m�
(4.43)

if [�, [�, �]]=0.
Terms that still remain non-polynomial should be expanded with their taylor

series, in X̂n/n̂ and X̂\ before applying Wick’s theorem. For example,

〈√
n̂ e-i \̂

〉
≈
√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2 (4.44)

×
(
1 + 1

2 〈n̂〉 (
1
2 − 8 〈X̂n X̂\ 〉sym) −

〈X̂n X̂n〉
8 〈n̂〉2

)
.

Here, phase-phase correlations were kept up to all orders (such exact resummation
turns out to be possible rather generally), while phase-density correlations were
truncated at second order. This approximation is valid when the average particle
number is sufficiently large. The full set of expanded correlators that we will
encounter is given in Appendix B.

When using density and phase operators, care must be taken regarding their
definition nevertheless. X̂ and P̂ both have a continuous spectrum from ] − ∞,∞[.
In truth however, the eigenvalues of n̂ are only posive integers. Worse, \̂ is, related
to the periodicity of phase and singularity in the origin, ill-defined [154]. Therefore,
density-phase decompositions are only valid at sufficient particle number (we have
already seen the traces of this in the expansion of the correlators) and if the state
is localized in phase space. From an operational perspective, the fact that the
phase is ill-defined can also lead to problems in general, as the phase operator
obtained through the Dirac recipe (4.41) cannot be written down in an explicit
matrix representation in Fock base. To overcome this issue, we will introduce an
Adaptive Pegg-Barnett phase in section 11.3.
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CHAPTER 5
Gaussian Quantum Trajectories for
the variational simulation of open

quantum systems
The central chapter of the thesis: we combine the quantum trajectory method
with Gaussian ansatzes (-%-Gaussian and #Θ-Gaussian), and compare their
performances for different unravelings against exact results and those obtained by
the TWA, for some simple problems in a single driven-dissipative Kerr resonator.

5.1 Combining quantum trajectories with a Gaussian
ansatz

5.1.1 Quantum trajectories for expectation values

As noted for the case of the cumulant expansion (subsection 3.3.5), knowledge of a
quantum state is equivalent to knowing all moments in a convenient operator basis.
We will utilize a similar procedure here, where the ‘quantum state’ of which we
study the moments is no longer the density matrix d̂, but individual trajectories
|k (C)〉

Explicitly, equations of motions for expectation values are obtained by starting
from the stochastic Schrödinger equation (similar derivations are possible starting
from the Heisenberg picture [155]) as

d
〈
Ô

〉
= d

(
〈k | Ô |k 〉

)
= d(〈k |) Ô |k 〉 + 〈k | Ô d( |k 〉) + d(〈k |) Ô d( |k 〉) (5.1)

and keeping terms of first order in dC , keeping in mind Itô calculus (for real Wiener
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noise, d, 2 = dC , for complex Wiener noise |d/ |2 = dC while d/2 = 0 and for Poisson
processes d# 2 = d# ).

As we have seen, trajectory wavefunctions are often unnormalized according to
the simplest standard formulas. Whether one uses the norm-conserving equivalents
of the exact trajectory wavefunctions before transferring the evolution correlation
functions, or first translate the equations of motions to correlation functions and
correct those to be norm-conserving (we will see an example below) is equivalent.

Photon-counting unraveling

Let us illustrate this with the photon counting unraveling (subsection 2.5.1).

In terms of unnormalized expectation values, the deterministic evolution (2.40)
corresponds to the evolution

d
〈̃
Ô

〉
=8

�〈[
Ĥ, Ô

]〉
dC − W2

�〈
â† â Ô

〉
dC − W2

�〈
Ô â† â

〉
dC . (5.2)

By choosing Ô = 1, we see that the evolution for the normalized expectation value〈
Ô

〉
=

〈̃
Ô

〉
/〈̃1〉 is given by

d
〈
Ô

〉
=8

〈[
Ĥ, Ô

]〉
dC

− W2

〈
â† â Ô

〉
dC − W2

〈
Ô â† â

〉
dC + W

〈
â† â

〉 〈
Ô

〉
dC . (5.3)

Meanwhile, according to (2.41), a jump (photon detection) affects the expectation
value

〈
Ô

〉
by

〈
Ô

〉
�−→

�〈
â† Ô â

〉
�〈â† â

〉 =

〈
â† Ô â

〉〈
â† â

〉 . (5.4)

An equivalent result is obtained from SDE (2.39).

Homo- and heterodyne unravelings

Analogously to the deterministic part of photon-counting, Eqs. (2.42),(2.43) can
be translated to the evolution of normalized expectation values, yielding for the
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heterodyne unraveling

d
〈
Ô

〉
=8

〈[
Ĥ, Ô

]〉
dC

− W2

〈
n̂ Ô

〉
dC − W2

〈
Ô n̂

〉
dC + W

〈
â† Ô â

〉
dC

+ √W
(〈

â† X̂$
〉

d/ +
〈
X̂$ â

〉
d/ ∗

)
, (5.5)

where again X̂$ = Ô−
〈
Ô

〉
. For the homodyne unraveling, d/ should be replaced

by 48q d, in this expression.

5.1.2 Closing at Gaussian level

Equations (5.3), (5.4) or (5.5) will generally introduce an infinite hierarchy of
correlation functions, similar to the cumulant expansions (subsection 3.3.5). By
restricting ourselves to the Gaussian manifold (chapter 4) and exploiting Wick’s
theorem, only the first and second moment are required to obtain all information
on the state.

Because of the presence of the second moments, a Gaussian ansatz is by nature
one order higher than the mean-field approach that corresponds to a coherent
ansatz. Formally then, the Gaussian methods are of the same order as Bogoliubov
theory. Nevertheless, we can expect these Gaussian trajectory methods to provide
a more refined description of the whole state because the second-order expansion
is done at the level of individual trajectories instead of on the level of the ensemble.
In the next section, we will illustrate this with the example of optical bistability
in a Kerr nonlinear cavity. Where the Bogoliubov theory is only able to describe
the fluctuations around one of the two stable branches, the variational Gaussian
method is also capable of describing the switching between the branches.

5.2 Optical bistability and the -%-Gaussian methods

As a first example, we look at a driven-dissipative cavity with Kerr non-linearity,
described by the Hamiltonian

Ĥ = −Δ â† â +*2 â† â† â â +�0† + � ∗ â (5.6)

where Δ the cavity-laser detuning in the frame rotating at pump frequency, *
the photon-photon interaction and � the classical laser amplitude. Furthermore,
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photons leak to the vacuum with rate W as described in section 2.5.
Exact solutions for the expectation values

〈
â†< â=

〉
d̂
of the stationary state, as

well as a semi-classical model, were calculated in [77] (the notation 〈·〉d̂ emphasizes
that the expectation value is taken over the whole ensemble). Interestingly, at
the classical level, this system features a bistability regime where, given all other
parameters, two stable solutions for the density exist.

Such a Kerr-cavity provides a model for polariton condensates (subsection 3.2.2),
for which it has been shown that trajectory methods can provide an adequate
description [156, 157]. Also coupled arrays of these cavities are an object of current
interest [158] and it is in these systems that the TWA method has been proven
insufficient [45].

Here, we will first use the method with the ordinary Gaussian states (Gaussian
in the quadrature variables) or ‘-%-Gaussian states’, as the most straightforward
Gaussian ansatz.

From (5.3) and after applying Wick’s theorem to close the set of equations, we
obtain for photon-counting the deterministic evolution

mCU =

(−W
2 + 8Δ

)
U −*8

(
|U |2U + 2U 〈X̂† X̂〉 +U∗ 〈X̂ X̂〉

)
− 8� − W

(
U 〈X̂† X̂〉 +U∗ 〈X̂ X̂〉

)
(5.7)

mC 〈X̂ X̂〉 = (28Δ − W) 〈X̂ X̂〉 −*8
(
U2(1 + 2 〈X̂† X̂〉) + 〈X̂ X̂〉(1 + 4|U |2 + 6 〈X̂† X̂〉)

)
− 2W 〈X̂† X̂〉 〈X̂ X̂〉

(5.8)

mC 〈X̂
†
X̂〉 = 2* Im

[
U2 〈X̂ X̂〉∗

]
− W

(
〈X̂† X̂〉 + 〈X̂† X̂〉

2
+
��� 〈X̂ X̂〉���2) . (5.9)

This deterministic evolution is propagated until the norm, evolving through
(5.2), becomes 〈̃1〉 = b (the random number as defined in 2.5.1). Then, according
to (5.4), jumps occur as

U
�−→ |U |

2U + 2U 〈X̂† X̂〉 +U∗ 〈X̂ X̂〉

|U |2 + 〈X̂† X̂〉
(5.10)

〈X̂ X̂〉 �−→ |U |
4 〈X̂ X̂〉 +2|U |2 〈X̂† X̂〉 〈X̂ X̂〉 −U2 〈X̂† X̂〉

2
+3 〈X̂† X̂〉

2
〈X̂ X̂〉 −U∗2 〈X̂ X̂〉2

|U |4 + 2|U |2 〈X̂† X̂〉 + 〈X̂† X̂〉
2

(5.11)
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〈X̂† X̂〉 �−→
|U |4 〈X̂† X̂〉 −2 Re

[
U2 〈X̂ X̂〉∗ 〈X̂† X̂〉

]
+ 〈X̂† X̂〉

��� 〈X̂ X̂〉���2 + 2|U |2 〈X̂† X̂〉
2
+2 〈X̂† X̂〉

3

|U |4 + 2|U |2 〈X̂† X̂〉 + 〈X̂† X̂〉
2 .

(5.12)

In the heterodyne unraveling on the other hand, the evolution of the mean-field
(5.5) is given by

3U =

[(−W
2 + 8Δ

)
U −*8

(
|U |2U + 2U 〈X̂† X̂〉 +U∗ 〈X̂ X̂〉

)
− 8�

]
3C + √W

(
〈X̂† X̂〉 3/ + 〈X̂ X̂〉 3/ ∗

)
.

(5.13)

Generally, one would expect similar stochastic equations for 〈X̂ X̂〉 and 〈X̂† X̂〉.
Remarkably, they are entirely deterministic (unlike equations for the correlators
〈â â〉 and

〈
â† â

〉
) and, moreover, are identical to the deterministic part of photon-

counting equations (5.11), (5.12). It should be noted, however, that the the
equations of motion are different for more general homodyne detection schemes:
for those, the equations for d 〈X̂ X̂〉 and d 〈X̂† X̂〉 contain additional terms

− W
(
〈X̂† X̂〉

2
428q + 〈X̂ X̂〉2 4−28q

)
dC (5.14)

and
− W

(
〈X̂† X̂〉 〈X̂ X̂〉∗ 428q + 〈X̂ X̂〉 〈X̂† X̂〉 4−28q

)
dC , (5.15)

respectively.
For all unravelings, as a slightly more efficient and stable alternative to evolving

〈X̂† X̂〉 along explicitly through (5.12), one can obtain it from 〈X̂ X̂〉 by asserting
that the state remains pure, corresponding to the condition (4.32). For an initially
pure state, this relation remains exactly satisfied through heterodyne measurement
as well as through the deterministic evolution between photon jumps, although
the purity

tr
[
d̂2] = (

1 + 4
(
〈X̂† X̂〉 + 〈X̂† X̂〉

2
−
��� 〈X̂ X̂〉���))−1/2

(5.16)

briefly decreases at a jump after which it tends to relax back to 1. Relation (4.32)
remains fulfilled at a jump up to order |U |−5 so that only in systems where there is
a significant jump rate at zero density, it is better to evolve 〈X̂† X̂〉 explicitly with
Eq. (5.12).
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Figure 5.1: Numerically exact trajectory (up to particle number truncation)
with its corresponding -%-Gaussian approximation for a photon-counting
process with parameters * /W = 0.05, Δ/W = 1 and �/W = 2.235.

In Fig. 5.1, we show a comparison between single trajectories that were
obtained with the numerically exact evolution of the wave function and the
Gaussian variational ansatz where for the jumps in both simulations (waiting
times) identical random numbers were used. Initially, there is a very strong
correspondence with the -%-Gaussian variational method, while at later evolution
times, due to an accumulation of the deviations, an offset in time emerges and the
good correspondence is lost. Qualitatively though, the behavior remains similar so
that approximate correspondence in the weak sense (for the whole ensemble) is
remain fulfilled.

To verify this, in figure 5.2 densities
〈
â† â

〉
d̂
and density correlations 6 (2) =

〈â† â† â â〉d̂
〈â† â〉2d̂

are plotted as function of � throughout the bistability regime of the

Kerr-model. We see that the -%-Gaussian methods can provide reasonable to very
good predictions of the exact correlation functions from [77]. In this regime of
relatively low density these -%-Gaussian methods are mostly outperformed by
the TWA method, though. It is also seen that the predictions on the statistics
of the ensemble as a whole depend (weakly) on the choice of unraveling, whereas
this is independent for exact trajectories. We should note that, because of the low
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Figure 5.2: Stationary ensemble expectations of photon number (left) and
instantaneous second-order correlation (right) as function of � through the
bistability regime for parameters * /W = 0.05,Δ/W = 1. Results were obtained
by averaging over 104 samples after C = 100W−1 of evolution from the vacuum.
The exact solution is the analytical result from [77]. While there are some
quantitative deviations, all qualitative features are reflected by the GTA.

density, simulation with exact trajectories can also still easily be performed. It
is the opposite, high-density, limit where Gaussian ansatzes will provide a better
description as well as where exact trajectories become computationally unfeasible.

5.2.1 Benchmarks on a dimer

In Ref. [159], the TWA method was benchmarked for the dimer (two coupled
Kerr resonators 1,2 each with Hamiltonian (5.6) and an additional coupling term
�
(
â†1 â2 + â†2 â1

)
), by moving away from the mean-field limit of high particle

number by increasing * while *� 2 is kept constant. In Figure 5.3 we have
reproduced this result, and compare with the predictions from our GTA method.
Whereas the GTA has a small deviation already in the low-U regime, this remains
bounded for increasing * . The TWA method becomes much worse for strong
interactions. Interestingly, the deviations of both methods are opposite, suggesting
that if a system is studied with both methods, the true result is likely in between
the ones obtained with both methods.
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Figure 5.3: Ratio of = and 6 (2) as predicted by the GTA or TWA methods in
a dimer, with respect to the exact solution. *�2/W3 = 2.465 is kept constant
while Δ/W = 0.1 and coupling �/W = 0.9. The benchmarking of the TWA
method in this parameter range has previously been done in ref. [159]

5.3 Phase diffusion and the #Θ-Gaussian method

5.3.1 Phase space evolution

As a second example, we look at the time-evolution of a freely evolving Kerr cavity:
we envision an initial state present in system (5.6) where at C = 0 the pump is
turned off, i.e. � = �>=Θ(−C). Without the pump, U(1) symmetry is restored,
allowing the phase to diffuse freely.

The challenging nature of this problem for our Gaussian variational ansatz can
be appreciated from the Wigner distributions of a single exact realization after
some time, shown in Fig. 5.4. Panel (a) shows that the phase space distribution
has almost spread out over a full circle, implying the loss of phase coherence.
The difference between the left and right hand panels, obtained with photon
counting and heterodyne detection respectively (Appendix A), shows how the
phase space distribution is kept more concentrated under heterodyne measurement
as compared to the photon counting. This is expected, because only the heterodyne
measurement gives phase information. These statements can be made more precise
in the language of subsection 2.4.3. In this example, we clearly see the importance
of the unraveling on the applicability of a Gaussian approximation. Unfortunately
for the parameters of Fig. 5.4, even for the heterodyne measurement, a Gaussian
approximation is very crude. The applicability of the GTA is directly related to
Var1 of the phase. Only Var(Ô) can be measured without unraveling the dynamics
and it is the only one that is accessible within the master equation description
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Figure 5.4: Wigner function snapshots of a typical single exact trajectory
(obtained by numerical integration in truncated Fock space) after t=0.1W−1

phase diffusion out of an initial coherent |U〉 = |10〉 state (�/W = 0, * /W =

1, Δ/W = 100), for photon-counting (left) and heterodyne detection (right).
It is clear to see that these states are not -%-Gaussian, firstly because they
are bent and secondly because the , -function exhibits Fock-like negative
parts. Note that the intra-sample variance Var1 of the phase is smaller for
a heterodyne sample, its inter-sample Var2 variance is larger. Therefore,
heterodyne detection is slightly less problematic for the -%−Gaussian states.

(and hence the TWA).
The parameter regime where the width of the phase space distribution is

expected to become small can be found by requiring that the phase diffusion rate
is much smaller than the rate at which phase information is obtained: *

√〈
â† â

〉
�

W
〈
â† â

〉
. For the parameters of Fig. 5.4, we have * /(

√〈
â† â

〉
W) = 0.1 � 1, but still

the phase space distribution cannot be accurately approximated by a Gaussian.

5.3.2 #Θ-Gaussian states

The shape of the Wigner distribution suggests that a Gaussian description in terms
of density and phase may provide a better approximation to the quantum trajectory
wave functions, these are exactly the states we have defined in section 4.5.

Using the given set of expectation values, derivation of the stochastic equations
of motion, similarly to the case of -%-Gaussian states, proceeds as described in
section 5.1. For example, for the deterministic evolution under photon-counting
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Figure 5.5: Mean (left panel) and inner-sample-, between-sample- and
total variances (right panel) of the - -quadrature obtained by the numerically
exact trajectory methods (in a truncated Fock space) and TWA as well
as -%-Gaussian and #Θ-Gaussian variational methods as function of time
after free evolution from a coherent initial state |U〉 = |10〉 (same parameters
as Fig. 5.4). Averages are taken over 103 samples (104 for the TWA). It
is clear that the #Θ-variational method provides an accurate description
of the true dynamics, both on the level of the whole ensemble as on the
level of its constitution in pure states (lines overlap completely or almost
completely), whereas the latter cannot be obtained from the TWA method.
Very similar behavior is present regarding % and its variances as well as for
the -, %−covariances.
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we obtain for the density

mC 〈n̂〉 = −W 〈X̂n X̂n〉 +2 Im
[
�

〈√
n̂ e-i \̂

〉]
(5.17)

while jumps

〈n̂〉 �−→ 〈n̂〉 −1 + 〈X̂n X̂n〉
〈n̂〉 (5.18)

occur when 〈̃1〉 = '. The full set of equations of motion can be found in subsubsec-
tion 5.3.2, with an analytical solution for the � = 0 case. From a different starting
point, coupled equations for the evolution of density, phase and their variances
have also been used in Ref. [160].

The update rules for the quantum jumps are all exact except the one for 〈X̂\ X̂\ 〉
where an expansion in orders of =̂−1 must be performed. However, in the case of a
pure state (or more generally constant purity) it can be omitted and, similar to
the -%-Gaussian case, computed from the other expectation values by the relation

〈X̂n X̂n〉 〈X̂\ X̂\ 〉 − 〈X̂n X̂\ 〉sym
2
=

1
4 (5.19)

which is the equivalent of (4.29). For a state that is initially pure, relation (5.19)
again remains satisfied up to order 〈n̂〉−5 after a jump.

Equations of motion for heterodyne measurement of density-phase Gaussian
states are also given in subsubsection 5.3.2, for example for the density,

d 〈n̂〉 =
[
2 Im

[
�

〈√
n̂ e-i \̂

〉]
− W 〈n̂〉

]
dC

+ 2 Re
[
(
〈
X̂n
√

n̂ e-i \̂
〉
−

〈√
n̂ e-i \̂

〉
)√W d/

]
(5.20)

is obtained.
In Figure 5.5 (a) the expected evolution of quadrature variable -̂ is shown.

The right panels show the intra-sample variance Var1, inter-sample variance Var2

and total variances for the evolution of a state that was originally coherent. We
see here that the -%-Gaussian methods for both the photon-counting and the
heterodyne unraveling strongly underestimate the phase diffusion, the description
of which is worse for the photon-counting description.

Only in regimes where the importance of losses is much higher than the
importance of dephasing can -%-Gaussian states provide a suitable description.
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On the other hand, we see that the #Θ-methods are able to capture the phase
diffusion on the level of the ensemble as well as TWA. This relative success of the
#Θ-methods with respect to the -%-methods is somewhat reminiscent of a similar
observation for number-phase phase-space methods of monitored quantum systems
[161, 162]. What distinguishes the #Θ− Gaussian method from TWA however, is
that the #Θ-Gaussian method is able to show the composition of the ensemble: it
maintains information of individual trajectories, which is lost in TWA (we note
that in practice under appropriate conditions, a single TWA sample may still be
representative for some experimental realizations [101, 163]).

Full equations for #Θ-Gaussian Trajectories

For the photon-counting unraveling, expectation values evolve as

mC 〈n̂〉 = −W 〈X̂n X̂n〉 +2 Im [��1] (5.21)

mC 〈X̂n X̂n〉 = 4 Im [��2] − 2 Im [��1]

mC 〈\̂〉 =
(
Δ + *2

)
−* 〈n̂〉 −W 〈X̂n X̂\ 〉sym −Re [��3]

mC 〈X̂\ X̂\ 〉 = −2* 〈X̂n X̂\ 〉sym −2 Re [��4] +
1
2 Im [��5]

mC 〈X̂n X̂\ 〉sym = −* 〈X̂n X̂n〉 +2 Im [��6] − Re [��7]

mC 〈̃1〉 = −W 〈n̂〉 〈̃1〉,

where correlators C are given with an expansion in 〈n̂〉 in Appendix B.
Jumps when 〈̃1〉 = ' are given by

〈n̂〉 �−→ 〈n̂〉 −1 + 〈X̂n X̂n〉
〈n̂〉 (5.22)

〈X̂n X̂n〉
�−→ 〈X̂n X̂n〉

(
1 − 〈X̂n X̂n〉

〈n̂〉2

)
〈\̂〉 �−→ 〈\̂〉 +

〈X̂n X̂\ 〉sym
〈n̂〉

〈X̂\ X̂\ 〉
�−→ 〈X̂\ X̂\ 〉 −

〈X̂n X̂\ 〉sym
2

〈n̂〉2
+ 1

4 〈n̂〉

〈
1
n̂

〉
≈ 〈X̂\ X̂\ 〉 +

1
〈n̂〉2

(
1
4 − 〈X̂n X̂\ 〉sym

2
)
+ 〈X̂n X̂n〉

4 〈n̂〉4

〈X̂n X̂\ 〉sym
�−→ 〈X̂n X̂\ 〉sym

(
1 − 〈X̂n X̂n〉

〈n̂〉2

)
.
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In the � = 0 case, evolution (5.21) can be solved exactly to

〈n̂〉(C) = 〈n̂〉(0) − W 〈X̂n X̂n〉 C (5.23)

〈X̂n X̂n〉(C) = 〈X̂n X̂n〉(0)

〈\̂〉(C) = 〈\̂〉(0) +
(
Δ +* (12 − 〈n̂〉(0)) − W 〈X̂n X̂\ 〉sym(0)

)
C +*W 〈X̂n X̂n〉 C2

〈X̂\ X̂\ 〉(C) = 〈X̂\ X̂\ 〉(0) − 2* 〈X̂n X̂\ 〉sym(0)C +* 2 〈X̂n X̂n〉 C2

〈X̂n X̂\ 〉sym(C) = 〈X̂n X̂\ 〉sym(0) −* 〈X̂n X̂n〉 C

〈̃1〉(C) = exp
(
−W 〈n̂〉(0)C + W

2

2 〈X̂n X̂n〉 C2
)
.

By equating 〈̃1〉(C 9 ) = ', we find the time to the next jump to be

C 9 = W
−1 〈n̂〉(0)
〈X̂n X̂n〉

©«1 −

√
1 + 2 〈X̂n X̂n〉 ln(')

〈n̂〉(0)2
ª®¬ . (5.24)

In the heterodyne unraveling, equations for the evolution are given by

d 〈n̂〉 = [2 Im [��1] − W 〈n̂〉] dC (5.25)

+ 2 Re
[
(�2 −�1)

√
W d/

]
d 〈X̂n X̂n〉 =

[
4 Im [��2] − 2 Im [��1] − 2W 〈X̂n X̂n〉 +W 〈n̂〉

]
dC

− 2W |�2 −�1 |2 dC

+ 2√W Re
[
�3 − 2�2 +�1(1 − 〈X̂n X̂n〉) d/

]
d 〈\̂〉 =

[(
Δ + *2

)
−* 〈n̂〉 −Re [��3]

]
dC

+ 2√W Re [�6 d/ ]

d 〈X̂\ X̂\ 〉 =
[
−2* 〈X̂n X̂\ 〉sym −2 Re [��4] +

1
2 Im [��5] +

W

4
〈
n̂−1〉] dC

− 2W |�6 |2 dC

+ 2√W Re
[
(�1 − 〈X̂\ X̂\ 〉�1) d/

]

d 〈X̂n X̂\ 〉sym =

[
−* 〈X̂n X̂n〉 +2 Im [��6] − Re [��7] − W 〈X̂n X̂\ 〉sym

]
dC
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− 2W Re
[
(�2 −�1)�∗6

]
dC

+ 2√W Re
[(
−�6 − ( 〈X̂n X̂\ 〉sym +

8

2 )�1 + �2

)
d/

]
.

5.4 Numerical considerations

Because of the few simple update rules (five real variables-four if purity constraints
are used), the computational cost for evolving a single variational trajectory is of
the same order as the cost for a single TWA sample (two real variables) given the
same set of parameters. For an exact trajectory � = 2#levels real variables must be
evolved for the same single mode, where #levels is the amount of occupation levels
considered. If the dimension of configuration space 3 increases, the dimension of
Hilbert space correspondingly grows as � ∝ 43 , so that large simulations easily
become limited by computational load. The dimension of the corresponding
phase space on the other hand only grows ∝ 3, making it far more efficient for
large systems. For our variational methods it is the amount of distinct Gaussian
correlation functions that is the relevant quantity of complexity and this scales in
principle as ∝ 32. In many large systems, only correlations between neighbouring
sites are important and other ones can be neglected. If this is the case, scaling ∝ 3
is retrieved, as in Gutzwiller- or tensor-network ansatzes (see also section 3.3).

So far, we have only discussed the evolution of a single sample. As Gaussian
trajectories, like exact trajectories, have a finite spread in Wigner phase-space, they
contain more information than a TWA-sample which is just a point. Therefore, it
can be expected that less samples are required to obtain an accurate description of
the ensemble dynamics. We can estimate the difference in statistics as follows: take
a trajectory method (exact or variational) of which #traj independent trajectories
are evolved. For the trajectory methods, the statistical uncertainty [164] is

f2〈
Ô

〉
,traj

=
Var2(Ô)
#traj

, (5.26)

whereas the analogous uncertainty for TWA is

f2
〈$ 〉sym,TWA =

VarTWA($sym)
#TWA

=
Var(Ô)
#TWA

=
Var1(Ô) +Var2(Ô)

#TWA
. (5.27)
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Figure 5.6: Same process as figure 5.5 simulated with ten samples of
exact/variational trajectories as well as TWA. It is clear that trajectory
methods are more tolerant for low statistics than TWA. Corresponding to
criterion (5.28), we see that photon-counting is still more tolerant than
heterodyne detection, corresponding with the fact that Var1 (- ) � Var2 (- )
for this photon-counting unraveling, as opposed to heterodyne. Note that
the initial state already has a deviation from the true value for TWA but not
for the trajectory methods: criterion (5.28) for the needed ratio of samples
diverges there.

The ratio of #traj and #TWA needed for the same precision can be found by equating
(5.26) and (5.27) to be

#TWA
#traj

= 1 + Var1(Ô)
Var2(Ô)

. (5.28)

In this sense, variational trajectories may even outperform TWA computation-
ally. As an example, on figure 5.6 the same process as on figure 5.5 is simulated
with only ten samples of the exact/variational trajectories and ten samples of
TWA. It is clear that TWA provides a bad estimate with such a low number
of samples. The performance of trajectory methods with regard to the minimal
amount of samples, though observable- and unraveling-dependent, is better. The
amount of improvement depends on Ô and the unraveling: as seen from Eq. (5.28),
the photon counting unraveling performs best because Var1(- ) � Var2(- ) as can
be appreciated from figure 5.5.

When it is a phase-space distribution itself in which one is interested, it can
again be challenging to compute it from an exact density matrix or wavefunction,
when the particle number is not low [165]. If a state is Gaussian, particularly in
the -%-sense, distributions for individual samples are given by straightforward
Gaussian formulas [9] that can be added up for the distribution of the whole

61



Chapter 5 - Gaussian Quantum Trajectories for the variational simulation of open
quantum systems

ensemble. The TWA method is by construction surely also very well suited to plot
the Wigner-quasi-probability function, but binning as a histogram is necessary
there, meaning that again a much larger amount of samples is required for a result
of high resolution (this is highly relevant if one is interested in the parity-operator
Π = 48c â† â or its displaced versions, for which the phase-space representation is a
X-function [146]).

As a final note, all simulations discussed have been performed by trajecto-
ries representing pure states. It is also possible to work with trajectories using
mixed states, either corresponding to initial classical uncertainty or to imperfect
measurements [6]. The exact solution of these would require a density matrix,
undoing the computational advantage of the stochastic simulation method. For
the variational trajectories, the only difference between evolving pure or mixed
states is whether the same purity-constraints are valid or not. Evolving mixed
states increases Var1(Ô) with respect to Var2(Ô) so that less statistics are required
according to (5.28), at the expense of resolution of the individual trajectories. This
would come down to a crossover from pure trajectories to a description on the level
of the master equation. Whether such a description is accurate will depend on
the system dynamics. For the example of the bistability, if there is not sufficient
information on the branch that the system is in, the Gaussian approximation will
fail to accurately describe the state, that evolves toward a mixture of the system
in the lower and upper branch.

5.5 Discussion and summary

We have shown how Gaussian variational quantum trajectory methods can provide
a computationally efficient description of open quantum systems. We have explicitly
derived the dynamics for both -%- and #Θ- Gaussian states, and applied them
as an example to a driven-dissipative cavity. -%-Gaussian states are always well-
defined, though they may be too rigid to describe states with much phase-diffusion.
#Θ-states on the other hand, exist only by approximation, but often provide a
very good description for the true state as long as the density is sufficiently high.
Computationally, the cost of a Gaussian trajectory scales similar to TWA, but
typically less samples are needed. -%-Gaussian methods, like TWA, are limited
to the semiclassical regime where the Wigner function is always positive. #Θ-
Gaussian methods on the other hand can describe the interference patterns similar
to Fock-states. As these variational methods, unlike TWA, ensure that the state
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remains physically well-defined, we expect them to keep predicting accurate results
to a broader class of problems such as coupled cavities. As we have shown, accuracy
can be strongly improved by proper choice of the ansatz. Also similar ansatzes, that
can for example be Gaussian in other variables [166], may be suitable dependent on
the problem. As for exact trajectories, the choice of unraveling greatly determines
the amount of samples needed for a proper description. In addition, we have seen
that this choice of unraveling can also influence the accuracy of the variational
method. In general, terms in the Hamiltonian that are linear and bilinear in
the Gaussian variables, are known to correspond with ‘Gaussian operations’, and
should be tracked exactly with the Gaussian trajectories. The same holds for
linear measurement operators (‘Gaussian measurements’) that include homodyne
and heterodyne detection schemes, but not photon counting. This partly explains
why the former unravelings work better overall within the -%−Gaussian ansatz.
Furthermore, the role of the unraveling is that it translates quantum fluctuations,
that may be subject to non-Gaussian deviations, to classical fluctuations that
are less restricted. Ideally, the measurement scheme is thus able to measure all
relevant degrees of freedom before their quantum uncertainty becomes too large.
Again, heterodyne detection has the advantage in this regard that it localizes the
state in phase space without preferential direction. As we have seen, accuracy
can be described on two levels: either regarding the average behaviour (ensemble
expectation values, ‘weak correspondence’) or for the single-shot (e.g. Figure 5.1
‘strong correspondence’). The criteria for both are similar, although more stringent
in the latter case, which is also more vulnerable to accumulation of deviations over
time.

In the following parts, we will now study more advanced set-ups with the
-%-Gaussian method and the #Θ-Gaussian method.
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CHAPTER 6
Driven-dissipative phase transition in
Kerr lattices with two-photon driving

In addition to thermal phase transitions in classical systems and quantum phase
transitions in closed quantum systems, open quantum systems have the notion of
dissipative phase transitions. Driven-dissipative Kerr resonators are experimentally
relevant systems, useful to access this physics.

6.1 Dissipative phase transitions

6.1.1 Introduction: Phases of matter

Even though an extensive amount of physical research is devoted to microscopic
models of matter, it are oftentimes a few accessible macroscopic observables
that are truly of interest (‘Is it a solid or a liquid?’,‘What are the magnetic
properties?’,‘Does it superconduct?’. . . ). The latter questions all enquire on the
macroscopic phase of a substance. Upon tuning of a system parameter (the control
parameter) 6 across a certain criticality 62 , the macroscopic properties can exhibit
a dramatic (non-analytic) change: a phase transition occurs. One such macroscopic
property f is taken as a witness of the phase transition: the order parameter
which should satisfy f = 0 for 6 < 62 and f ≠ 0 for 6 > 62 (this order parameter is
an additional, extensive and experimentally accessible, variable that can appear
in the themodynamics because of symmetry reduction). The way this occurs
defines the order of the phase transition: a case where f (6) is discontinuous is for
example a first-order transition (e.g. melting and freezing), whereas a continuous
but not continuously differentiable f (6) is a second-order phase transition (e.g.

67



Chapter 6 - Driven-dissipative phase transition in Kerr lattices with two-photon
driving

Figure 6.1: Examples of a Landau free energy on two different sides of the
criticality. The black ball, denoting the system, takes a configuration where
! is minimal. Left, a 1st order phase transition (for example: freezing of
water to ice): the continous deformation from the blue curve to the red curve,
changes which of two existing local minima is lower, leading do a discrete
jump in f. Right, a second-order phase transition (for example cooling a
magnet below the Curie temperature): the unique local minimum splits in
two that gradually move away, thus f changes continuously. The system also
displays spontaneous symmetry-breakng: the system randomly chooses one
of the two minima in the 6 > 62 phase.

magnetism across the Curie temperature)1. A convenient phenomenological picture
to understand these phase transitions, is given by the Landau free energy !6 (f),
or ! for brevity (Figure 6.1). It acts as an effective potential parametrized by 6, of
which the system seeks the minimum, reflected in the value of f. Because phases
themselves are macroscopically extended over the system, it is easy to grasp that
phase transitions can be long-wavelength phenomena. This is especially the case
for second-order transitions, where large fluctuations can occur because there is
no barrier in ! to overcome. This makes second-order transitions very interesting,
so we will focus on these. On a more technical level, the correlation length b

diverges at 62 , leading to scale invariance in the renormalization group [99]. Close
to the criticality, 6 − 62 , b and f are all related to each other by a power-law, e.g.
b ∼ |6 − 62 |−a and f ∼ |6 − 62 |V . Critical exponents as a and V define a universality
class: systems with the same dimensionality and symmetries will be in the same
class and have the same values for the exponents, regardless of microscopic details.

1Another category are infinite-order phase transitions such as the BKT (Berezinskii-Kosterlitz-
Thouless) transition that occurs in certain rotor models, of topological nature [167].
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6.1.2 From classical and quantum phase transitions to dissipa-
tive phase transitions

Let us now make this discussion a bit more concrete. Phase transitions exist
in many different flavours and it is convenient to interpret these as relating to
the origin of !. First, there are classical phase transitions. The configuration of
equilibrium thermodynamic systems, at finite temperature ) , is the minimum of
their (Helmholtz) free energy F = � − )(, where � is the energy (favouring an
ordered configuration) and ( the entropy (favouring disorder). Whether � or (
dominates F thus crucially depends on the temperature ) , which is therefore a
convenient control parameter [99]. Secondly, even at ) ≡ 0, where the system
is always in the ground state, different phases may occur because of competing
terms in the Hamiltonian which now takes the role of ! (specifically tr

[
d̂ Ĥ

]
is minimized). In order for this competition to take place, such terms must
be necessarily non-commuting and hence the quantum nature of the system is
important. By perturbing such quantum phase transitions with a small finite
temperature, one either obtains, depending on the system, that the transition
vanishes or is continuously connected to a classical phase transition. Close to
the quantum critical point, a quantum critical region occurs, where, regardless of
whether a true phase transition still takes place, long-range quantum correlations
are significant [167].

A third flavour of phase transition can be added to this list. As we have seen
in the previous part, systems interacting with a Markovian environment decay to
a (non-equilibrium) steady state instead as we know from Spohn’s theorem, and
this steady state is the lowest eigenvector of the Liouvillian. Similar to the other
kinds of phase transitions above, different terms in the Liouvillian L̂ compete.
The steady state solution satisfies L̂d̂ = 0, implying it minimizes

L̂d̂ (for any
properly defined operator norm ‖·‖) which therefore takes the role of ! here. The
phase transitions that occur here from the competition between different coherent
and dissipative processes are dissipative phase transitions.

6.1.3 State-of-the-art on dissipative phase transitions

Because phase transitions are defined in the thermodynamic limit (infinitely large
system) for which the driven-dissipative experimental context is relatively recent,
the explicit study of dissipative phase transitions is rather young. The non-trivial
interplay between the Hamiltonian evolution, driving and dissipative processes in
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open quantum many-body systems has given rise to several fundamental questions
about the respective roles of quantum and classical fluctuations across a dissipative
phase transition [168–170]. Some early experimental observations are lasing and
the BEC transition of exciton-polaritons in a microcavity. In the last years, the
possibility of realizing strongly correlated states in photonic cavity arrays [57, 171,
172] has stimulated a deeper investigation of driven-dissipative phase transitions,
which have been discussed theoretically in photonic systems [78, 106, 159, 173–
183], lossy polariton condensates [119, 184, 185] and spin models [186–194]. From
the experimental point of view, remarkable results have been recently obtained
with driven circuit quantum electrodynamics systems [195] and semiconductor
microcavities [196, 197], showing the possibility to observe dissipative phase
transitions in real open quantum many-body systems. These more explicit studies
tend to follow two different directions. The first one is the search for exotic
non-equilibrium phenomena. A first example by Diehl et al. [80] considers for
example a Bose-Hubbard lattice consisting of atoms in an optical trap, where a
particularly engineered Lindblad operator favours order. A few other examples
are Ref. [198] finding an experimental platform to study percolation theory and
Ref [199] predicting the emergence of an oscillating order parameter.

The second direction aims at understanding the fate of quantum phase transi-
tions in the presence of more common noise mechanisms and how this compares
to thermal fluctuations. Mitra et al. [200] derive for example that at least certain
magnets subject to a dissipative current exhibit a thermal-like criticality to first
order. On the other hand, Dalla Torre et al. [201, 202] argue that the very
common 1/5 noise, unlike thermal fluctuations, is only marginal in a Josephson
junction circuit and ions in a 1D optical lattice: it does not affect the universality
class. In follow-up work [203], the same authors nuance their claim. Higher-order
contributions of a non-linear coupling do lead to some thermal behaviour and in
[46] they note that driven-dissipative systems may display effective temperatures in
particular at low frequencies, but without thermal equilibrium between the different
components. Also ref. [191] shows that a transition in dissipative spin-lattices
displays signatures of both quantum (such as entanglement) as classical (entropy)
critical behaviour. Some other results pointing in the direction of equilibrium
behaviour were obtained regarding the phase of free exciton-polariton condensates
[106, 119, 204, 205], spin models [190] and the Dicke model [206–208]. Recent work
also shows the occurrence of thermalization from non-markovian noise [209]. On
the other hand, the authors of Refs. [119, 184, 210–212] find that, among others,
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the BEC transitions in driven-dissipative systems (e.g. polaritons) belong to a
non-equilibrium universality class instead. According to Ref. [117], equilibrium
corresponds to a strongly attractive fixed point in terms of the renormalization
group here (meaning that long-wavelength phenomena tend towards it), but it is
not the whole story as dynamical responses retain a difference. Many 2D-systems
are not attracted to the equilibrium fixed point under renormalization, but rather
to the non-equilibrium KPZ (Kardar-Parisi-Zhang) universality class, even at weak
noise levels [117, 213, 214]. In Ref. [215], the authors further show, with the
example of a polariton condensate, that tuning of the coherent drive can move
the system to different universality classes. Finally, a different nonequilibrium
class was recently found that relates to exceptional points: bifurcations in the
Liouvillian spectrum [216].

As we have noted, correlation length b diverges at criticalities. Likewise, also
the correlation time g diverges (a phenomenon known as critical slowing-down). In
the case of quantum phase transitions, this slowing down corresponds directly to a
closing of the (Hamiltonian) gap [167]. For a proper characterization of dissipative
phase transitions, it is of course desirable that similarly, the Liouvillian gap should
close [169].

6.1.4 Structure of Part II

This part of the thesis is structured as follows. The remainder of this chapter is
devoted to introducing the system of consideration. In chapter 7 we describe the
application of the Gaussian Trajectory method to this system, and also derive
truncated Wigner equations for comparison. Chapter 8 focusses on the static
properties of the transition (spatial correlations). In chapter 9 we then turn
towards the dynamical properties and the Liouvillian gap, were we show that also
the way in which it closes bears a deep similarity with Hamiltonian quantum phase
transitions.

6.2 Quadratically-driven Kerr resonators

In this debate on the role of dissipation to universality, arrays of nonlinear photonic
resonators in presence of two-photon – i.e., quadratic in the field – driving have
recently attracted a certain attention, as these systems undergo a dissipative phase
transition which belongs to a quantum universality class in a suitable regime of
parameters [182].
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6.2.1 Single cavity

Before turning to lattices of two-photon driven Kerr lattices, let us first discuss
the single site problem. The system is very similar to the ordinary (single-photon
driven) Kerr cavity studied in chapter 5, except for the driving term. Explicitly,
the Hamiltonian of such a system is given by

ℎ̂ = −Δ â† â +*2 â†2 â2 +�2 â†2 + �
∗

2 â2 , (6.1)

where Δ is the detuning between half of the two-photon driving field frequency and
the resonant cavity frequency, * is the photon-photon interaction energy associated
to the Kerr nonlinearity and � is the two-photon driving field amplitude. Whereas
a single-photon pump completely lifts the U(1) phase symmetry, two-photon
driving leaves a ℤ2 symmetry, because it only fixes the square of the phase. In
addition to the Lindblad operator √W â, one may generally expect also incoherent
two-photon losses to take place as described by the jump operator √[ â2. Both
dissipation mechanisms are consistent with the mentioned symmetry. This system
has been thoroughly investigated and exact solutions for the steady state are
known both without [217] and with an additional single-photon pump [78], even
in the presence of feedback mechanisms. We will restrict ourselves to the case
without single-photon driving here, as we are seeking the occurrence of spontaneous
symmetry breaking.

In the limit W = Δ = 0 (i.e. no single-photon processes), the steady states of this
system form a manifold2 spanned by the ‘even and odd Schrödinger-cat’ states��C±U 〉

=
|U〉 ± |−U〉√

2(1 ± 4−2 |U |2)
, (6.2)

where |U〉 , |−U〉 is a set of coherent states with opposite displacement [218, 219].
The name of

��C±U 〉
name stems from the fact that they are not only eigenvectors

from â2 with eigenvalue U2, but also from the Parity operator

Π̂ = 48c â† â (6.3)

with eigenvalues ±1, meaning that the cat states have deterministically either an
even or odd photon number.

2This is possible because the two-photon processes don’t mix the even and odd solutions,
hence the criteria of Spohn’s theorem are unsatisfied.
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For U � 0, the coherent states

|±U〉 〈±U | ≈
��C+U 〉 〈

C+U
�� ± ��C−U 〉 〈

C−U
�� (6.4)

are, to a good approximation, also steady states.
In mean-field approximation, the values of U = |U |48q are given by [182]

|U |2 =
|� |√

* 2 + [2
(6.5)

q =
8

2 ln 8[ −*√
* 2 + [2

+ \�2 , (6.6)

where � = |� |48\� . In the following, we will assume � to be positive and real.
Even the presence of moderate single-photon losses does not change this picture

too much in the sense that the coherent states remain metastable [217]3. The
Schrödinger cat states, by contrast, are rapidly destroyed since â

��C±U 〉
=

��C∓U 〉
. The

difference between these two decompositions becomes manifest when studying the
quantum trajectories with different unraveling schemes [220].

This single site problem, in fact, does allow for defining a thermodynamic
limit, by setting * = * /# and [ = [/# and considering the limit # → ∞. #

here corresponds to the mean-field photon number (6.5). For suitable values of
Δ and W , the derivative of j =

〈
â† â

〉
/# diverges and the Liouvillian gap closes,

marking a ‘second-order phase transition’ [78, 169]. However, this thermodynamic
limit of high particle number is the rather trivial mean-field limit, where spatial
correlations cannot be studied.

6.2.2 Arrays

Now that we understand the physics of a single Kerr cavity with two photon
driving, we turn towards lattices of these. A lattice of # coupled bosonic modes
is described by a Bose-Hubbard model, whose Hamiltonian contains a local term
ℎ̂8 acting on the 8-th cavity, and a non-local term modelling the photon hopping
between different cavities:

�̂ =

#∑
8=1

ℎ̂8 −
∑
〈8 9 〉

�

I
(â†8 â 9 + â† 9 â8) . (6.7)

3this is actually generic behaviour for coherent states, as they are ‘pointer states’ for photon
losses [8].
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Here, â8 (â†8) is the annihilation (creation) operator acting on the 8-th site4 and
the last sum runs over the nearest-neighbor pairs 〈8 9〉, � and I being, respectively,
the hopping strength and the coordination number (number of neighbouring sites).
Assuming all losses to be local, the jump operators are of the form {√W â8}, {

√
[ â2

8 },
so that the dynamics of d̂ (C) is described by a Liouvillian L̂ of the Lindblad form
(2.20). As in the single-site case, L presents a ℤ2 symmetry coming from its
invariance under a global change of sign of the annihilation operators, â8 → − â8 ∀8.
Now, a different thermodynamic limit to the one of subsection 6.2.1 can be taken,
where parameters (and hence the photon number per cavity) retain their finite
value, while instead the limit of an infinitely large lattice is taken.

In this limit of an infinite lattice, the ℤ2 symmetry can be spontaneously
broken for large values of �/W and �/W , as indicated by a Gutzwiller mean-field
master equation (subsection 3.3.3) analysis [181]. This leads to the emergence of a
transition between a phase with a ℤ2-symmetric steady state (i.e. Tr(d̂((

∑
8 â8) = 0)

and a coherent phase with non-zero expectation value of the Bose field (i.e.
Tr(d̂((

∑
8 â8) ≠ 0).

The nature of the dissipative phase transition can be investigated in terms of
an approximate spin model, where two Schrödinger-cat states with opposite parity
play the role of the two B = 1/2-spin states with opposite magnetization [182].
When projecting the bosonic Hamiltonian in Eq. (6.7) onto the basis spanned by
the Schrödinger-cat states, we recover the Hamiltonian of a quantum transverse XY
model, where the photon hopping term plays the role of an anisotropic spin coupling
in the G~ plane (the coupling can be either ferromagnetic [182] or antiferromagnetic
[221], according to the sign of � ) and the detuning Δ plays the role of a transverse
magnetic field in the I-direction. This model is known to present a phase transition
belonging to the universality class of the quantum transverse Ising model [222].
Indeed, also the dissipative phase transition in a quadratically-driven Kerr lattice
has numerically shown to belong to this same universality class in the limit where W
is much smaller than the Hamiltonian parameters: a regime where the properties of
the dissipative phase transition are very reminiscent to its closed-system quantum
phase transition counterpart 5. In recent work [221], the simulation of frustrated
antiferromagnetism is proposed by using � < 0.

4Explicitly, â8 = 1 ⊗ . . . ⊗ 1 ⊗ â ⊗1 ⊗ . . . ⊗ 1, with â as the 8th factor in the tensor product.
5In fact, even phase transitions in a ‘closed system’ need an infinitesimal amount of decoherence

for macroscopic symmetry-breaking to occur [223].
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6.2.3 Further state-of-the-art in two-photon-driven systems

Although full lattices of quadratically driven resonators have not yet been created,
the basic ingredients have been realized with superconducting circuits: coupling
a circuit with an auxillary, ’readout’ mode with twice the system frequency, and
tracing it out results in an effective two-photon drive in the circuit [224]. The
possibility of quantum correlations between sites, is shown by production of mode-
entangled ( |U〉� |U〉� ± |−U〉� |−U〉�)/

√
2 states in a dimer, where A,B mark the two

circuits [225].
Several works have considered the possibility of exploiting the ℤ2 symmetry

of this system in order to simulate the behaviour of quantum spin systems for
technological purposes as annealing (finding the ground state of the Hamiltonian of
a spin problem by adiabatically lower temperature or an equivalent with quantum
fluctuations) [226–229] or as a platform for noise-resilient quantum code [224].

Going beyond two-photon driving, the study of =-photon driving [169] is
currently an ongoing field of research.

6.3 Annealing and spin models

As noted, one of the first proposed application for these quadratically-driven
systems was not the physics of dissipative phase transitions but annealing. It is
therefore worthwile to explain this concept a bit deeper, setting also the broader
context of our work.

Many complex-optimization problems (travelling salesman, graph colouring
finding a Nash equilibrium, finding the optimal protein threading figure, finding
the best matching DNA sequence...) cannot be solved on a classical computer
within polynomial time and are thus considered NP-hard [230, 231]6. Being able
to solve one of these #%-hard problems would allow for solving all of them with
only polynomial overhead.

Interestingly, one kind of such optimization problems with physical relevance
occurs in finding the ground state of a spin-glass model [232]: the simplest case is an
arbitrary lattice of classical Ising spins (2-level systems) with irregular interactions
�8 9 that can both be positive and negative between the sites. Finding the ground

6On a more technical level, #%-hard means ‘at least as hard as the hardest #%-problems’,
where #%-problems are the ones of which a solution can be verified within polynomial time (as
opposed to %-problems, which can be deterministically solved in polynomial time) [231]. It is
widely believed that % ≠ #% although the formal proof is still one of the most important open
problems in mathematics [230].
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state of such spin glasses experimentally is thus very helpful in solving a variety of
complex optimization problems. However, trying to achieve this by quenching the
temperature to ) = 0 instantly will typically trap the system in a metastable state.
Instead, one wants to have just enough fluctuations to ensure that the system is
able to end up in the true ground state (at least most of the time if the procedure
is repeated). This leads to protocols of gently cooling down the system (using the
adiabatic theorem), known as annealing. The Ising model can also be upgraded to
a quantum version, where fluctuations arise from a non-commuting term instead
of temperature [233]. Remarkably, such quantum correlations are not necessary
for the system to be suitable for annealing. ‘Classical’ spin models also work as
long as the spin itself can only take discrete values (otherwise finding the ground
state would only be an algebraic problem) [234].

As an experimental platform to implement such a spin lattice, two-level systems
with good controllability are sought. A few other proposals that achieve this using
photons include degenerate parametric oscillators ([235–237]) and optical bistability
[238, 239]. In quadratically driven Kerr resonators at least, the latest evidence
does show an additional speedup when using quantum correlations over classical
ones. [240]).
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CHAPTER 7
Describing quadratically driven kerr
lattices with Gaussian trajectories

The Gaussian Trajectory Approach is able to describe both high and low dissipation
regimes in a quadratically driven Kerr lattice, and it displays the predicted quadratic
scaling. On the other hand, corner-space renormalization is only able to access the
low dissipation regime whereas the TWA method fails to describe an ordered phase
even in the semiclassical, high dissipation, regime.

7.1 Accessing the high-loss regime with the GTAmethod

As discussed in chapter 6, the system under consideration is described by a master
equation

md̂

mC
= Ld̂,= −8

[
�̂, d̂

]
+

∑
9,:

Γ̂9,: d̂ Γ̂
†
9,:
− 1

2

{
Γ̂†
9,:
Γ̂9,: , d̂

}
, (7.1)

where Ĥ is given by (6.7), Γ1,: =
√
W â: and Γ2,: =

√
[ â2

:
.

From a computational perspective, the numerical solution of master equation
(7.1) becomes intractable even for small lattices. The corner-space renormalization
method (subsection 3.3.3), has been used to study quadratically driven-dissipative
lattices with large nonlinearities and small loss rates [182], but it fails in the
description of regimes characterized by a large photon occupancy per cavity and a
highly mixed steady state, which are the regimes we consider here.

As an alternative, we will therefore therefore apply the Gaussian Trajectory
Approach to this system. As described in chapter 5, two choices must be made.
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First, the class of Gaussian states. Because we are dealing with coherent driv-
ing processes (and hence a limited Var1 of the phase), potential occupations of
order one or less, and a multimode system for which the amount of perturbative
coefficients as in Appendix B would become large, we choose -%-Gaussian states
over #Θ-Gaussian states. Secondly, the unraveling. We don’t envision a particular
experimental measurement configuration to mimic, so that the choice remains
free. As we noted, the unraveling can be highly important to the success of the
Gaussian ansatz though. In Ref. [220], it was shown that the trajectories in a
single quadratically-driven Kerr cavity are close to coherent states |U〉 , |−U〉 under
homodyne unraveling, whereas photon-counting trajectories track the Schrödinger
cat states

��C±U 〉
instead. The former kind of states are obviously better described by

a Gaussian than the latter. In order not to introduce a preferential quadrature, we
will work with the heterodyne unraveling, equivalent to two conjugate homodyne
measurements (Appendix A). There is a more physical reason for this unraveling
as well: the heterodyne unraveling measures conjugate variables with equal weights
and as such, the way it localizes the state in phase space corresponds the most to
a classical limit [241] (it is no coincidence that this unraveling is closely related
to stochastic collapse models, as discussed in subsection 2.4.4). In particular, in
the context of phase transitions this allows for individual trajectories to track the
order parameters optimally [242].

We note that the ℤ2 symmetry of the Liouvillian must not be preserved in an
individual quantum trajectory (it is a weak symmetry), but it is restored only after
averaging many trajectories. Therefore, it is possible to obtain non-trivial results
in the calculation of a suitable order parameter along an individual trajectory at
long times. The study of the distribution of the latter expectation values over
the whole set of sampled trajectories is helpful to understand the emergence of
collective phases in different regimes of the physical parameters, and hence provides
an important insight into the critical behavior in the thermodynamic limit [193].

7.2 Implementation and performance

Following the approach of chapter 5, the evolution of a generic expectation value
〈Ô〉 under heterodyne unraveling for all decay channels is given by

d 〈Ô〉 =8
〈[
�̂, Ô

]〉
dC − 1

2
∑
9,:

(〈{
Γ̂†
9,:
Γ̂9,: , Ô

}〉
− 2

〈
Γ̂†
9,:

Ô Γ̂9,:
〉)

dC
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+
∑
9,:

(〈
Γ̂†
9,:
(Ô− 〈Ô〉)

〉
d/ 9,: +

〈
(Ô− 〈Ô〉)Γ̂9,:

〉
d/ ∗

9,:

)
, (7.2)

where d/8 = 1√
2
(d,G,8 + 8 d,?,8) is a complex Wiener process satisfying |d/8 |2 = dC .

By assuming a Gaussian ansatz, Wick decompositions are performed and and the
trajectory is expressed entirely in terms of the first and second central moments
U= = 〈â=〉, D=< := 〈X̂= X̂<〉 = 〈â= â<〉 − U=U<, E=< := 〈X̂†= X̂<〉 = 〈â†= â<〉 − U∗=U<.
Note that D=< = D<= and E=< = E∗<=. Using (7.2), the evolution of Gaussian
moments is given by

dU= =

[(
−W2 + 8Δ

)
U= + 8

�

I

∑
=′
U=′ − ([ +*8) ( |U= |2U= + 2U=E== + U∗=D==) − 8�U∗=

]
dC

+ √W
∑
8

(
E8= d/ (1)

8
+ D8=d/ (1)

8

∗)
+ 2√[

∑
8

(
U∗8 E8= d/ (2)

8
+ U8D8=d/ (2)

8

∗)
(7.3)

dD=< =

[
(−W + 28Δ)D=< + 8

�

I

(∑
=′
D=′< +

∑
<′
D=<′

)
− 8� (E=< + E<= + X=,<)

−([ +*8)
(
E=< (U2

= + D==) + E<= (U2
< + D<<) + 2D=< ( |U= |2 + |U< |2 + E== + E<<)

+X=,< (U=U< + D=<)

)
−W

∑
8

(D<8E8= + D=8E8<)

−4[
∑
8

|U8 |2 (D<8E8= + D=8E8<)
]

dC

+ 2√[
∑
8

(
E8=E8< d/ (2)

8
+ D8=D8<d/ (2)

8

∗)
dE=< =

[
8*

(
2E=< ( |U= |2 − |U< |2 + E== − E<<) + D=< (U∗2= + D∗==) − D∗=< (U2

< + D<<)
)

−[
(
2E=< ( |U= |2 + |U< |2 + E== + E<<) + D=< (U∗2= + D∗==) + D∗=< (U2

< + D<<)
)

−8 �
I

(∑
=′
E=′< −

∑
<′
E=<′

)
+ 8� (D=< − D∗=<) − WE=<

−W
∑
8

(
E=8E8< + D∗=8D8<

)
−4[

∑
8

|U8 |2
(
E=8E8< + D∗=8D8<

) ]
dC
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Figure 7.1: Computational time needed to recover 100 Gaussian trajectories
on a desktop computer as function of system size. For every system size, the
trajectories were evolved for 100 W−1 with numerical (Euler-Mayurama, which
coincides with the Milstein scheme at least in the [ = 0 case (section C.2))
timestep ℎ = 10−4W−1. The results are consistent with quadratic scaling.

+ 2√[
∑
8

(
D∗=8E

∗
<8 d/ (2)

8
+ E=8D8<d/ (2)

8

∗)
,

where primed indices refer to nearest-neighbours only. Recalling that the stochas-
ticity of the heterodyne unraveling is fully contained in the Wiener noise terms,
equations (7.3) form a complete description of the time-evolution and no further
jumps are required. In Fig. 7.1 , we benchmark the numerical performance of
the method as function of system size. The scaling of required resources tends
to quadratic, as predicted (section 5.4). We also observe that disregarding the
two-photon loss ([ = 0) results in a speedup of order two. Indeed, about half of
the terms in (7.3) are proportional to [.

7.3 Is TWA a valid alternative?

In the semiclassical parameter regime, one may expect the Truncated Wigner
Approximation (TWA) to be appropriate (subsection 3.3.6). The Standard TWA-
equations [109, 110], taking in account only one-photon processes, are summarized
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in [57]. Using the operator correspondences (subsection 4.2.1), we can generalize
this approach to two-photon processes. For notational simplicity, we first consider
a single mode and assume � to be real.

The two-photon pumping gives a contribution to the Master equation

[
�̂? , d̂

]
=
�

2

(
â†2 d̂ − d̂ â†2 + â2 d̂ − d̂ â2

)
↔ �

2

[
(U∗F −

1
2

m

mUF
)2 − (U∗F +

1
2

m

mUF
)2 + (UF +

1
2

m

mU∗F
)2 − (UF −

1
2

m

mU∗F
)2

]
, (UF, U∗F)

= � (−U∗F
m

mUF
+ UF

m

mU∗F
). (7.4)

Using Feynman-Kac, this results in a deterministic contribution

dUF = . . . + 8�U∗F dC (7.5)

to the evolution of the Wigner field UF .
The Lindblad terms become

â â d̂ â† â† ↔
(
U2
F + UF

m

mU∗F
+ 1

4
m2

mU∗F
2

) (
U∗2F + U∗F

m

mUF
+ 1

4
m2

mU2
F

)
,

=

(
U∗2F + U∗F

m

mUF
+ 1

4
m2

mU2
F

) (
U2
F + UF

m

mU∗F
+ 1

4
m2

mU∗F
2

)
,

d̂ â† â† â â↔
(
U2
F − UF

m

mU∗F
+ 1

4
m2

mU∗F
2

) (
U∗2F + U∗F

m

mUF
+ 1

4
m2

mU2
F

)
,

= â â d̂ â† â† −2UF
m

mU∗F

(
U∗2F + U∗F

m

mUF
+ 1

4
m2

mU2
F

)
,

â† â† â â d̂ ↔
(
U∗2F − U∗F

m

mUF
+ 1

4
m2

mU2
F

) (
U2
F + UF

m

mU∗F
+ 1

4
m2

mU∗F
2

)
,

= â â d̂ â† â† −2U∗F
m

mUF

(
U2
F + UF

m

mU∗F
+ 1

4
m2

mU∗F
2

)
, . (7.6)

The dissipator then becomes

â â d̂ â† â† −1
2 (d̂ â† â† â â + â† â† â â d̂)

↔
[
UF

m

mU∗F

(
U∗2F + U∗F

m

mUF
+ 1

4
m2

mU2
F

)
+ c.c.

]
, (UF, U∗F) . (7.7)
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By neglecting the third-order derivative (actually, these terms are exactly the same
as those proportional to * , except that here there is a plus sign in between instead
of a minus sign),we retain[

( |U |2 + 1)
(
U∗F

m

mU∗F
+ UF

m

mUF

)
+ 4|U |2 + 2|U |2 m2

mUFmU
∗
F

]
, (UF, U∗F) (7.8)

=
m

mUF

[
( |UF |2 − 1)UF, (UF, U∗F)

]
+ m

mU∗F

[
( |UF |2 − 1)U∗F, (UF, U∗F)

]
+ 1

2
m2

mUFmU
∗
F

[
4|UF |2, (UF, U∗F)

]
.

For truncated wigner simulations, this corresponds to contributions1

dUF = −[ ( |UF |2 − 1)UF dC +
√

2[UF d/ (2) . (7.9)

Hence, including all parameters, The TWA equations are given by

dU (=)F =

[(
−W2 + 8Δ

)
U
(=)
F + 8

�

I

∑
=′
U
(=′)
F − ([ +*8) ( |U (=)F |

2
− 1)U (=)F − 8� − 8�U (=)∗F

]
dC +

+
√
W

2 d/ (1)= +
√

2[U (=)F d/ (2)= , (7.10)

where =′ again runs over the nearest-neighbours of =.
In fact, both noise terms can be combined to a single√

W

2 + 2[ |UF |2 d/= . (7.11)

In Figure 7.2, we compare individual exact heterodyne trajectories, GTA
trajectories and TWA samples for a single site. Even though the steady state
properties seem similar for al three methods here, the TWA method dramatically
overestimates the switching rate between branches. This leaves serious doubts as
to whether this method will be able to describe phase transitions properly. At
least one can expect that critical slowing down (closing of the gap) cannot be
predicted correctly. In Figure 7.3, we compare some stationary expectation values
obtained with both methods for a dimer of two coupled cavities. We see that local
quantities are reasonably captured by both methods, overall slightly better by the
GTA. However, the abundant fluctuations destroy the correlations between the

1The phase of the diffusion coefficient is arbitrary.
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Figure 7.2: Example time evolution in a single cavity through different
methods, for parameters �/W = 50,* /W = [/W = 10,Δ = 0 (parameters also
used in Ref. [220]). % = Im[U] is plotted for 100 trajectories each time. Both
the exact heterodyne trajectories and their Gaussian (GTA) counterparts
quickly stabilize in one of the two branches of % ≈ ±1.73, without any
switching on the combined timescale of the simulations. The TWA samples
on the other hand, not only display the local quantum fluctuations around the
branches, but also show a far more frequent switching between the branches.

sites. As we will consequently see in subsection 8.2.1, the method is not able to
predict an ordered phase.
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Figure 7.3: Benchmarking of the methods in a Bose-hubbard dimer for
different parameter values. The left two panels display average photon number
= =

〈
â†1 â1

〉
d̂
and second-order correlation function 6 (2)1 =

〈
â†1 â†1 â1 â1

〉
d̂
/=2

in site 1. The comparison between the methods in terms of accuracy slightly
favours the GTA method, although the TWA often produces reasonable
results as well. On the right panel, we see however from 6

(1)
12 =

〈
â†1 â2

〉
d̂
/=

that the TWA is, unlike the GTA, unable to properly describe correlations
between the two sites. Insets denote the values relative to the exact result.
In all, simulations, Δ = −� to avoid bistable behaviour. For the upper three
studies we have taken [ = 0, in the bottom benchmark we see that the effect
of two-photon losses can also be accurately described.84



CHAPTER 8
The critical behaviour of quadratically

driven photonic lattices
Using the GTA, we reproduce the result that in the low-dissipation regime, the
phase transition belongs to the quantum-Ising universality class. In the high
dissipation result by contrast, we find that individual trajectories clearly break the
symmetry with a transition that belongs to the classical-Ising universality class.
The combination of both results provides strong evidence of dissipation acting as
an effective temperature.

8.1 The GTA reproduces quantum critical behaviour
in the low-loss limit

We apply the GTA formalism to the study of the quadratically-driven dissipative
Bose-Hubbard model in 2D square lattices of different size, with periodic boundary
conditions. In this section, we apply the GTA to the study the lattice of quadrati-
cally driven Kerr resonators in regimes where the one-photon losses is small with
respect to the Hamiltonian and we benchmark it with the results obtained in
Ref. [182] using corner-space renormalization. Foremost, we want to demonstrate
that the GTA is not limited to the description of classically correlated states in
open quantum systems, but can be applied also in the study of dissipative phase
transitions with a quantum criticality: indeed, as noted in chapter 4, Gaussian
states are able to feature multimode entanglement and as such are also used in
quantum information. Additionally, we show that two-photon losses do not play a
relevant role in the emergence of the dissipative phase transition, considering the
critical behaviour of the system for [ = 0.
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In Figure 8.1, we show the results for the steady-state expectation value of
the parity Π =

〈
exp

{
8c â† â

}〉
, as obtained with the GTA, for the following set of

parameters: * = 40W, � = 20W,Δ = −20W, [ = 0 (i.e. the same regime of parameter
considered in Ref. [182], except for the value of the two-photon loss rate). The
condition Δ = −� assures that the two-photon driving is resonant with the : = 0
mode of the single-particle energy band of the closed system, and is useful to
avoid any bistable behaviour. The results show the emergence of a critical point
at �2 ' 1.2W , with the critical exponents of the quantum (transverse) Ising model.
This quantum Ising model has Hamiltonian [167]

Ĥ&� = −�
∑
<8 9>

f̂
(G)
8
f̂
(G)
9
+ ℎ

∑
8

f̂8
(I) , (8.1)

where the matrices f̂ denote Pauli matrices: a lattice of spin-1/2 particles with
ferromagnetic coupling in the G-direction and quantum fluctuations induced by
coupling with an external magnetic field in the I-direction.

How does finite-size scaling work?

At phase transitions in infinite lattice systems, the correlation length b is known to
diverge. Close to the critical point, b is still much larger than the lattice parameter
0, which allows for efficient descriptions in terms of the renormalization group
[99] where microscopic dynamics must not be taken into account (the scaling
hypothesis). However, in finite systems, the system size ! comes in as an additional
length scale. A useful theory is still obtained if one assumes finite-size corrections
as function of the dimensionless quantity b/! , as was first realized by Fisher and
Barber [243].

For example, here we interpret Π as an ‘order parameter’ characterizing the
disordered phase, somewhat analogous to "I , the z-magnetization in the transverse
Ising model (8.1). In an infinite system, one has close to the critical point
Π ∼ |� −�2 |V ∼ b−V/a (we have introduced these exponents in subsection 6.1.1,
for a definition of all critical exponents, see for example ref. [99]). In a lattice of
length !, there is a finite size correction described by

Π = b−V/a 5̃ (b/!), (8.2)

where 5̃ is a scaling function [244]. By using b ∼ |� −�2 |−a and ensuring that the
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Figure 8.1: Rescaled Parity obtained with gaussian trajectories for lattices
of different sizes (* = 40W, � = 20W,Δ = −20W, [ = 0). The critical exponents
which allow to recover the universal behaviour of the rescaled quantities are
a = 0.62997 and V = 0.32642, i.e. the critical exponents for the correlation
length and the order parameter of the 2D quantum transverse Ising model.
Note that for Gaussian states, Π is obtained by the expectation of the Wigner-
function value in the origin of multimode phase-space [146] . Note that in a
finite system, the order parameter remains analytical. Its change becomes
increasingly sharper for larger lattices, leading to non-analytic behaviour at
�2 in the thermodynamic limit.
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dimensions are consistent, we obtain

Π = !−V/a 5 (!1/a |� −�2 |), (8.3)

where 5 is another scaling function.
If one has data points for corresponding values of Π and � , a plot of Π!V/a as

function of (� −�2)!1/a should reveal 5 , which, sufficiently close to the critical
point, should be independent of !: the functions 5 for different values of ! collapse
for the appropriate values of the critical exponent, with improving agreement for
larger values of !. Note that in a first step, it is useful to rescale only the vertical
axis in order to find the critical value �2 : at � = �2 the argument of 5 becomes
zero independent of system size, so that a crossing of the curves (more precisely, a
limit point) can be observed, as we have done in the inset of Figure 8.1.

It turns out that finite-size scaling is rarely relevant in an experimental context,
but it is known to be very useful for numerical simulations as in our case [244].

8.2 New result: classical critical behaviour in the high-
loss regime

Now that we have established the validity of the method, even to describe quantum
critical behaviour, we turn to the main objective: investigate the dissipative phase
transition in regimes where the loss rates are comparable with the Hamiltonian
parameters. We therefore set * /W = �/W = 1, Δ = −� here. As we have seen in the
previous section that two-photon losses are not expected to play an important role
in the emergent criticality [182], we set again [ = 0 to speed up the calculations
(Figure 7.1).

Naively, we would apply the same Π-analysis as in the previous section in this
new parameter regime. However, as we see on Figure 8.2 (left panel) no crossing is
found as Π quickly becomes vanishingly small for finite � , seemingly suggesting the
absence of a phase transition. We note, though, that the Parity operator is only
able to characterize quantum paramagnetic behaviour, a many-mode Schrödinger
cat state. Instead, strong classical fluctuations that arise from the losses mix the
even and odd eigenstates of the steady-state density matrix at all values of � , such
that Π ≈ 0 on both sides of a phase transition.

A possible way to access the quantum correlations in the system more directly,
consists of considering the average entanglement entropy (subsection 2.2.4, subsec-
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Figure 8.2: Left: the parity Π in the parameter regime * = � = W = 1,Δ = −1
quickly becomes exponentially small for any finite G (note that this result,
unlike the ones of Figure 8.1, is plotted on a logarithmic scale). No exponent
is able to result in a common crossing point: this quantity cannot be used to
characterize the transition. Nevertheless, a drop occurs around the region
where criticality can be expected, increasingly sharp for larger lattices. Right:
The average entanglement entropy (ent between ’left’ and ’right’ half of the
lattice in an individual trajectory, normalized by !. Remarkably, the amount
of quantum correlations actually decreases towards the regime where an
ordered phase might be expected. Curves seem to be crossing in this same
region around a value � ≈ 0.86

tion 4.2.2) between two halves of the lattice, within individual trajectories [245].
This quantity is plotted on the right panel of Figure 8.2. A crossing for different
lattice sizes seems to be present around � ≈ 0.86. But surprisingly, the main
observation is that the amount of quantum correlations actually decreases for
increasing � , the regime where symmetry breaking was predicted from a Gutzwiller
study, and where we found ferromagnetic order in the low-loss regime. But similar
to Π, (ent is unable to capture classical correlations.

In order to have a more complete understanding of the correlations, we plot
in Figure 8.3 the first-order correlation function in a 12x12 lattice as function of
distance ΔG between two cavities, for different values of � . It is clear that long-
range correlations emerge. These are dominated by their classical contribution,
while quantum correlations decrease. This result suggests that ferromagnetic order
is still possible, despite the low entanglement.

To verify this, we plot in Fig. 8.4, the steady-state expectation value for the
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Figure 8.3: First order correlation function in a 12x12 lattice with periodic
boundary conditions for multiple values of �/W : 6 (1) (ΔG) = 〈

â†8 â8+ΔG〉8,d̂
〈â†8 â8〉8,d̂

(full

line), separated in its classical contribution
〈U∗8 U8+ΔG〉8,d̂
〈â†8 â8〉8,d̂

(dashed lines) and

it quantum contribution
〈E8,8+ΔG〉8,d̂
〈â†8 â8〉8,d̂

(dotted lines). We see long-range order
emerging for large driving �/W , which is clearly dominated by the classical
contribution. Notation 〈·〉8,d̂ denotes an average over both the lattice sites
and the ensemble.
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Figure 8.4: The steady-state relative occupation of the : = 0-mode increases
as a function �/W , as computed in lattices of different size. Results are
obtained from 1000 trajectories (500 for the 12x12 lattice), each evolved over
a total time C = 100W−1. For each quantum trajectory, the vacuum is chosen
as initial state and the two-photon driving is switched on slowly to the desired
value, in order to reduce the formation of defects which would appear from
strong quenching [246]. The steady-state expectation values are computed
averaging the results obtained in a time interval from a size-dependent initial
time Crelax to the final time C5 8= = 100W−1.
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relative occupation of the : = 0 mode

=:=0 =

∑
9 9 ′ Tr

(
d̂(( â† 9 â 9 ′

)[∑
9 Tr

(
d̂(( â† 9 â 9

) ]2 (8.4)

as a function of the driving amplitude � for different lattice sizes. At large values
of �/W , we notice that =:=0 ' 1, independently of the size of the lattice. This result
indicates that the steady state of the dissipative system in this limit is a coherent
state characterized by long-range order, since the local Bose fields in each cavity
assume the same value. This is in agreement with the picture of the spontaneous
symmetry breaking obtained in the Gutzwiller calculation [181]. At smaller values
of �/W , =:=0 decreases when the lattice size increases, suggesting that =:=0 → 0 in
the thermodynamic limit. This behaviour supports the hypothesis of the presence
of a disordered ℤ2-symmetric phase for small values of the driving amplitude.

Given this last result, it is convenient to describe the behaviour of the system
across the phase transition in terms of an order parameter, which is related to the
average value of the Bose fields on the different cavities. We thus define

U =
1
#

∑
8

ImU8 , (8.5)

i.e. the expectation value of the average Bose field in a single quantum trajectory
(we consider its imaginary part in order to have a real-valued order parameter):
this quantity has a clear physical meaning, as it corresponds to the outcome of
a heterodyne unraveling in real experiments. In Fig. 8.5-(a-d), we plot the time
evolution of U on single trajectories in a 6 × 6 lattice, choosing the vacuum as the
initial state at C = 0, for different values of the driving amplitude. For � = 0.7W [Fig.
8.5-(a)], we notice a behaviour supporting the emergence of a disordered phase, as
the order parameter exhibits Gaussian fluctuations around the value U = 0. For
� = 0.8W [Fig. 8.5-(b)], the situation is similar, but we can see the presence of
longer intervals of time where the value of U fluctuates around non-zero values,
suggesting the appearance of a bimodal character in the steady-state distribution
of the order parameter. At larger values of the driving amplitude [� ≥ 0.9W , Fig.
8.5-(c-d)], the behaviour of U (C) is completely different: after a first transient
where the value of U changes notably in time, at long time we see that the order
parameter fluctuates around a non-zero value, which can be either negative [as in
Fig. 8.5-(c)] or positive [as in Fig. 8.5-(d)] according to the particular realization
of the noise in the stochastic differential equation. This behaviour suggest the
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Figure 8.5: (a-d): Time evolution of the order parameter U along a single
Gaussian trajectory in a 6 × 6 lattice, for different values of the driving
amplitude: (a) �/W = 0.7, (b) �/W = 0.8, (c) �/W = 0.9, (d) �/W = 1.0. (e)
Probability distribution ? (U) of the order parameter for different values of
� . For each value of � , we consider 1000 trajectories each evolved over a
time C = 400 and we collect the data for U (C) for C ≥ 20, i.e. for long times in
which the density matrix of the dissipative system has reached the steady
state. The distribution ? (U) is obtained as the histogram of the collected
data. As � increases, a qualitative transition from monomodal to bimodal
distribution is evident.
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Figure 8.6: Binder cumulant *! as a function of the two-photon driving
amplitude � , for different lattice sizes !. A crossing of the curves for different
lattice sizes can be seen, signaling the emergence of a critical point at � = �2

(the difference 2/3 −*! is shown on a logarithmic scale). Inset: The curves
for different sizes show an universal behaviour when plotted as a function of
(� −�2 )!1/a , with a = 1 the critical exponent for the correlation length in
the classical 2D Ising model

emergence of an ordered phase with broken symmetry in this regime of parameters.
However, when considering an ensemble of many trajectories at given � , half of
them will stabilize at long time around a positive value for U and the other half
around the opposite value −U , retrieving thus a ℤ2-symmetric steady-state density
matrix, as expected for a system of finite size. This behaviour becomes clear
from sampling ? (U), the probability distribution of U , as shown in Fig. 8.5-(e).
Although ? (U) is always an even function, we notice that, when increasing � , the
character of the distribution changes from a monomodal to a bimodal behaviour.

A more quantitative analysis can be performed from the Binder cumulant,
defined as *! = 1 − `4/(3`2

2), where `< =
∫
3U U< ? (U) denotes the <-th moment

of the probability distribution ? (U) [247, 248]. A big advantage of this quantity is
its dimensionless nature, because of which finite-size scaling is possible without
rescaling the vertical axis. As such this universal function of b/! has been widely
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used in the finite-size scaling analysis of spin models in presence of a paramagnetic-
to-ferromagnetic phase transition [247]. This means that at a critical point, where
the correlation length diverges in the thermodynamic limit, the Binder cumulant
itself becomes independent of the lattice size !: therefore, the finite-size scaling
analysis of *! is a useful approach to track the emergence of the criticality in
our system. In Fig. 8.6, we plot *! as a function of the driving amplitude � for
lattices of different size. We find that all the different curves cross at the common
point �2 = 0.86W , confirming the presence of a dissipative phase transition in our
model. Some insight about the universality class of the phase transition can be
obtained by plotting the same data for *! (U) as a function of (� −�2)!1/a , where
a is the critical exponent of the correlation length. From the results shown in Fig.
8.6 (inset), we notice that setting a = 1 makes all the curves collapse, confirming
the expected universal behaviour of *! = 5 (b/!). The value a = 1 corresponds to
the critical exponent of the correlation length for a 2D classical (thermal) Ising
model. This classical Ising model has an energy

� = −�
∑
<8 9>

f8f 9 , (8.6)

where f8 , f 9 = ±1. The ground state of (8.6) is trivial, but interesting physics
occurs at finite temperature ) , where the equilibrium is obtained by minimizing
the free energy F = −:�) logZ, with partition function Z =

∑
conf 4

−�/:1) , where
the sum is over all possible configurations of the lattice.

8.2.1 Failure of the TWA method

For comparison, we have also studied the transition with the Truncated Wigner
method for the same parameters as in section 8.2. However, as we already
anticipated in section 7.3, we see in Fig. 8.7 that it appears to be fundamentally
incapable of describing the ordered phase

(a) the occupation of the :0 mode does not go to 1 for even the largest � studied
(note that we go up to higher values than in section 1). Instead, some plateau
values are reached which decrease with lattice size.

(b) the binder cumulant shows a very similar behaviour, and exhibits no crossing.

The clear failure of this method is remarkable, because of its wide successful use
among driven-dissipative systems (subsection 3.3.6).
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Figure 8.7: :0-occupation and Binder cumulant for * = � = W = 1,Δ =

−1, [ = 0: as opposed to our GTA result, we see that this method misses
the occurrence of an ordered phase, even very deep in the ferromagnetic
parameter regime

8.3 Interpretation: losses act as an effective tempera-
ture

Putting together the results obtained in section 8.1 and section 8.2, we have found
that system (7.1) exhibits a phase transition in all the regimes studied. It belongs
to the universality class of the quantum 2D-Ising model (8.1), and the thermal
2D-Ising model (8.6), respectively.

This picture is very similar to the one that describes the fate of a quantum
phase transition at finite temperature [167, 249]: an increasing amount of classical
fluctuations takes over the role of quantum fluctuations in destroying order, as
explained in Figure 8.8. The loss rate W can thus be interpreted as an effective
temperature.

As noted in subsection 6.1.3, similar pictures of losses acting as an effective
temperature were recently obtained in a number of other systems. A clear advantage
of our analysis is that we were able to study a single system with a single method
in multiple parameter regimes. Regarding the nature of the crossover between the
high-loss and low-loss regimes, we might expect, when decreasing the relative loss
rate, classical behaviour from the losses to be only relevant at longer and longer
length scales. This means that for sufficiently large systems, a classical criticality
may be expected for � very close to �2 and quantum critical behaviour slightly
further away from the critical point. As the 1D classical Ising model does not
exhibit a phase transition, our model doesn’t either. For higher dimensions, it can
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Figure 8.8: Top: either quantum phase transitions at temperature ) = 0
do not correspond to any transition at finite ) as any amount of thermal
fluctuations destroys the ordered phase (left, e.g. the 1D Ising model); or the
phase transition is continuously connected to a classical phase transition (right
e.g. the 2D Ising model) [167, 249]. Perturbatively close to the quantum-
critical point (QCP), there is always a quantum-critical region (QCR) in
parameter space, where long-range quantum correlations are important. At
small temperature then, the phase boundary is still within the QCR and
the phase transition is still in the quantum universality class. For higher
temperature, thermal fluctuations take over the role of quantum fluctuations
and the phase boundary leaves the QCR. Phase transitions here belong to
the classical universality class. Bottom: our quadratically-driven Kerr lattice
displays physics very similar to the equilibrium transition of the 2D quantum
Ising model at finite ) , when � is used as the control parameter and W

the role of temperature: for small W quantum critical behaviour is observed
whereas the transition has a classical (thermal) nature for higher loss rate
W . Note that in all cases, for extremely high values of ) or W , all universal
arguments on phase transitions break down as the microscopic dynamics
becomes important.
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be expected to converge to the mean-field prediction [181].
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CHAPTER 9
Dynamical scaling in quadratically

driven kerr-lattices: the Kibble-Zurek
effect

The GTA equations readily allow for an investigation of the dynamical aspects
of the phase transition. First, we study the formation of domains as function of
quench speed, and extract the dynamical critical exponent from a Kibble-Zurek
argument. This exponent matches with metropolis dynamics in the classical Ising
model. Secondly, from slow decay to the steady state, we extract the Liouvillian
gap and show that it satisfies the same scaling relations as function of correlation
length and distance to the critical point as the Hamiltonian gap in quantum phase
transitions.

9.1 Dynamics of phase transitions

Here, we are concerned with extending the conclusions in the large-dissipation limit
to the dynamical aspects of the phase transition. In particular, we are interested
in the dynamical critical exponent I that relates the correlation time, and in
closed quantum systems the Hamiltonian gap, to the control parameter and the
correlation length. As we have mentioned in section 6.1, not only the correlation
length, but also the correlation time diverges near a critical point, leading to the
occurrence of critical slowing down. Some current works have addressed the latter
effect in a dissipative context for optical bistability (a first-order dissipative phase
transition) [159, 175, 197], fermionic lattices [250], optical lattice clocks [251] and
miscellaneous spin lattices [193, 252].

The value of I does not follow as a simple corollary of knowledge on static
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exponents V, a and their universality class. In the wording of Ref. [117]: While
the static universal critical behaviour is determined by the the symmetries and
the dimensionality of the problem, the dynamical critical behaviour is sensitive to
additional dynamical conservation laws. The latter statement is in fact already
valid for classical systems at equilibrium [253].

For our study of the quadratically driven Kerr lattice, we will use two separate
approaches. First, we address the occurrence of the Kibble-Zurek (KZ) effect.
Because of the critical slowing down, domains are formed when the control param-
eter (photon driving in our case) is tuned through the transition at finite speed.
According to a dynamical scaling hypothesis based on the KZ effect [254, 255], we
are able to extract I from square lattices subject to a linear quench and obtain
1.9 < I < 2.3. Secondly, we study the slow relaxation dynamics to the steady state.
This latter timescale is known to correspond directly to the inverse Liouvillian
gap [169]. We here find scaling with 1.8 < I < 2.3. The fact that both values are
consistent implies that the Liouvillian gap exhibits the same scaling relations as
the Hamiltonian gap in closed quantum systems.

The two-dimensional classical Ising model (8.6) is known as a paradigmatic
example of the second-order phase transition, both in terms of its historical
importance as for its pedagogical value [99, 256, 257]. In numerical simulations,
it is typically implemented with a somewhat heuristic update rule, which is not
uniquely defined by the steady state properties. Moreover, different update rules
applied to the same model result in different values of I. The most well-known
of these rules is the single-site update rule or Metropolis algorithm, which is
consistent with experimental observations of the critical dynamics in an iron film
[258]. The same value of I is found in the Hohenberg-Halperin model A dynamics
[253] as well as in q4-theory [259].

We find here that the value of I extracted from quadratically-driven Kerr
resonators is indeed consistent with the value I< ≈ 2.18 from the Metropolis
algorithm and model A dynamics. This correspondence between our nonequilibrium
critical dynamics and model A dynamics is in line with Ref. [106] on critical
dynamics of a driven-dissipative Bose-Hubbard model.

9.2 Kibble-Zurek scaling for a linear quench

When a parameter in a thermodynamic system is slowly varied, the adiabatic
theorem assures that the system remains at all times in an equilibrium state at
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constant entropy. The minimal ramp time for equilibrium to be preserved is given
by the relaxation time. When a parameter is quenched through a second order
phase transition, the relaxation time diverges, adiabaticity always breaks down
and domains with different values of the symmetry-breaking order parameter are
formed. This mechanism is known as the Kibble-Zurek (KZ) mechanism [254].
Originally introduced in a cosmological context [260], it has been developed further
mainly in condensed matter systems, with first applications to liquid helium [261]
and rotor models, where the defects are vortices [254]. More recently, the KZ
mechanism has been applied to more generic systems where the defects take the
form of domain walls [262, 263]. Extensions to quantum phase transitions have
also been developed [152, 255, 264–266].

More specifically, the KZ mechanism works as follows (Fig. 9.1). We envision
a continuous quench where, starting from the steady-state solution at some value
�0 for the two-photon driving in the paramagnetic regime, � is increased linearly
up to �2 in a total time ) :

� (C) = �0 + EC 0 ≤ C ≤ ), (9.1)

where E =
�2−�0
)

. As �2 is approached, the correlation time diverges as g ∼
(� −�2)−Ia while the correlation length scales as b ∼ (� −�2)−a . From some point
in time during the quench ) − Ĉ onward, g (�) > Ĉ : the dynamics freezes as the
time available for the dynamics drops below the correlation time. The correlation
length is then unable to increase beyond b2 ∼ (� () − Ĉ) −�2)−a , setting the final
domain size. Crucially, the lower E, the larger � () − Ĉ) and thus the larger the
domains. The former arguments assume universality in an infinite lattice. An
example of such domain formation after quenching with different E from a given
initial state is given in Fig. 9.2.

Focussing on the steady-state properties of a more realistic finite lattice system,
we recall from our discussion in section 8.1, that there are three distinct length
scales present: the lattice spacing 0 = 1, the correlation length b and system size
!. Close to criticality, one has b & 0 leading to the scaling hypothesis that all
quantities can be expressed as a function of the dimensionless ratio b/! [244]. This
approach was sufficient to study our system in the previous chapter.

For dynamic scaling, we now follow the scaling approach introduced in ref.
[255]. Similar to length, three different timescales are present. g0 relates to the
local individual Hamiltonian processes and loss rate, g the true correlation time of
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the system, and g! the slowest scale of the finite system, above which adiabaticity
is restored. In general, universal behaviour for b and g , and hence standard
Kibble-Zurek scaling, can be expected for g0 < Ĉ < g! (Fig. 9.1). Each of these
timescales is associated with velocity scales [255]:

On the order of the lattice spacing 1, E0 ∼ � 20−(I+1/a) = � 2 marks the transition
speed between possibly microscopic dynamics and long-range universal behaviour.
The second scale is the quench speed E. Third, there is the Kibble-Zurek speed
E / (!) ∼ � 2!−(I+1/a) : marking the speed where domain size becomes comparable
with the lattice size (below E / (!) the dynamics remain adiabatic). Now, two
separate scaling functions appear for the square order parameter after the quench
(C = ) ) in different regimes [255]. If the quench is sufficiently slow for the
microscopic processes to be unimportant (E . E0), one expects universal scaling as
a function of E/E / : 〈

U2〉
d̂
= !−2V/a 51(E!I+1/a ), (9.2)

where 〈·〉d̂ denotes a statistical expectation value over trajectories. On the
other hand, if the quench is sufficiently fast for the finite size to be unimportant
(E & E / (!)), universal scaling of E/E0 is expected, leading to〈

U2〉
d̂
= !−3 52(E−1) . (9.3)

In the overlapping region E:I . E . E0, both scaling functions overlap with a
power-law dependence

〈
U2〉

d̂
∝ E−G with exponent

G =
3 − 2V/a
I + 1/a . (9.4)

The above arguments have extensively been verified for thermal systems, but the
generic nature of arguments suggests that they should also work out of equilibrium.
In order to verify the KZ mechanism in the two-photon driven dissipative Hubbard
model, we have simulated quenches in the amplitude of the two-photon drive of
the Bose-Hubbard model from �0 = 0.7� to �2 = 0.86� .

In Fig. 9.3, the extracted slow and fast scaling functions 51 and 52 are shown
for different square lattice sizes, and collapse is observed for both when using
exponents V = 0.125, a = 1, I ≈ 2.18. The former two numbers are static critical

1More precisely, E0 relates to the energy scales of individual Hamiltonian processes and
dissipation rate, which we all take of order one.
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Figure 9.1: The Kibble-Zurek effect: when � is linearly increased, the
time until �2 is reached (red, dashed line) becomes less than the diverging
correlation time g (blue line) at Ĉ . From Ĉ onwards, the dynamics freezes
(blue region). In a finite system, the true value of g (full line) only follows
the universal behaviour for intermediate velocities E for which the crossing
occurs at g0 < g < g!.

exponents corresponding to the 2D thermal Ising model (chapter 8)). The value
of I, the dynamical critical exponent, corresponds to Metropolis dynamics in this
model 2. In the intermediate regime for E , the predicted power-law (9.4) is further
observed, consistent with the aforementioned values of the critical exponents.

We thus have obtained strong evidence for the fact that not only the static,
but also the dynamical properties of the two-photon driven Bose-Hubbard model
are in the Ising universality class, more precisely of Metropolis dynamics.

9.3 The Liouvillian gap scales with the same exponent

In Hamiltonian systems, the dynamical exponent I is further known to govern the
scaling of the gap Δ� [167]:

Δ� ∼ b−I & Δ� ∼ |6 − 62 |Ia , (9.5)

2The same classical model can have different simulation algorithms (update rules) with other
values of I [255]
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Figure 9.2: During the quench protocol, � is increased linearly with time
from �0 = 0.7� to �2 = 0.86� , the critical point (section 8.2). The upper
left panel shows a Monte Carlo sampling of the steady state at the � = �0.
The other panels show a sample of the final state that was evolved with
different quench speeds E For E & 1, almost no evolution has been able to
take place. For decreasing E , the correlations are able to spread further, until
for E . E:I (!) the whole 10x10 lattice is correlated.
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(a) (b)

Figure 9.3: Dynamic scaling functions for different system sizes showing
collapse in the adiabatic (51,(a)) and diabatic limit (52,(b)), for linear quenches
from �0 = 0.7� to �2 = 0.86� . In the intermediate regime, there is a universal
power-law scaling (black line) with exponent G =

3−2V/a
I+1/a , where dimension

3 = 2; V = 0.125, a = 1 are critical exponents of the universality class of the
2D classical Ising model; and I is the dynamical critical exponent. Results are
consistent with I = I< ≈ 2.18, the dynamical critical exponent characterizing
Metropolis dynamics in the 2D Ising model, this value was also used for the
finite-size scaling itself. Parameters: * = W = � = 1,Δ = −1. For the fastest
quenches (E/� 2 ≥ 10−2), 103 trajectories were used, and 102 trajectories for
the slower quenches. The yellow vertical lines denote approximate values for
E / and E0, marking the edges of regime where power-law scaling is valid.
We find that the prefactor in the definition of E / is of order one, whereas
E0 ≈ 10� 2.
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where 6 is the control parameter. Because system (7.1) studied here belongs to a
classical universality class due to its driven-dissipative nature, the fate of relations
(9.5) is not a priori clear. In an open system, the dynamics are governed by the
Liouvillian superoperator L [169]. Likewise, the timescale of slowest relaxation to
the steady state is determined by the Liouvillian gap _, defined as (minus) the real
part of the first nonzero eigenvalue of L. One can thus ask if Δ� can be replaced
by _ in relations (9.5). If this replacement in the first relation of (9.5) is valid,
then one must have in a finite system [244]

_ = b−I 5̃ (b/!) = !−I 5 (!1/a (� −�2)), (9.6)

where 5̃ , 5 are unknown scaling functions.
In order to extract _ from the numerical data, let us take a deeper look at the

role that this quantity plays in the dynamics of observables. The Liouvillian, as a
linear operator, has a set of eigenvectors {d̂8} with corresponding eigenvalues {_8},
i.e. L̂d̂8 = _8 d̂8 3. We will, without loss of generality, assume these eigenvalues to
be ordered for increasing absolute value of the real part. Any physical density
matrix can be written as d̂ =

∑
8 28 d̂8 . The time-evolution becomes

d̂ (C) = 4 L̂C d̂ (0) =
∑
8

28 (0)4_8C d̂8 . (9.7)

For the steady-state d̂0, one easily sees that _0 = 0. For all other eigenvalues,
one has Re{_8} < 0 [6], meaning that (9.7) results in an exponential decay of all
excited states towards d̂0, possibly combined with oscillatory behaviour for the
higher excited modes. It is easy to see that _ := −Re{_1} determines the slowest
decay scale. Slow timescales typically correspond to long-wavelength behaviour,
therefore we access this slowest mode in our system by studying the decay from a
fully polarized (U 9 = 18,∀9) state. In order to obtain values of _ for different values
of � and ! numerically, we thus start from this fully polarized state, and let the
system evolve freely. An exponential ∼ 4−_C is then fitted to the slow relaxation
process towards the steady state, as illustrated for a 10x10 lattice in the left panel
of Fig. 9.4.

Validity of Eq. (9.6) implies a collapse of curves for different system sizes when
plotting !I_ as function of !1/a (� −�2). In the right panel of Fig. 9.4, we see that

3Because L̂ is a superoperator, some aspects of the linear algebra are less intuitive, for example
all excited eigenvectors d̂8>0 are traceless and not necessarily hermitian. For the full spectral
theory, see Ref. [169].
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this is indeed the case for a = 1, I = I<, the same values as in the previous section.
Furthermore, relation (9.6) also directly relates _ to control parameter � . In

the limit of large system sizes, we observe indeed (black line on Fig. 2)

_ ∼ |� −�2 |Ia , (9.8)

where the numerical result is specifically good in the regime b < !. This means
that both relations (9.5) are valid for the considered Liouvillian dynamics.

The fact that these scaling relations for _, with exponent I obtained from the
Kibble-Zurek scaling are found in this case study, is not too surprising because _
was directly connected to a slow timescale. This is generally the case for dissipative
phase transitions, so we may expect these scaling relations to hold very broadly.
However, very recently a disconnection between gap and decay time has been found
in some systems [36], so that exotic counterexamples cannot be fully excluded.
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(a) (b)

Figure 9.4: (a): Errorbars show the decay of U to the steady state value (0)
in a 10x10 lattice after initialization in a polarized U 9 = 18,∀9 state, average
over trajectories. From bottom to top, � values run increment from 0.74�
with steps 0.02� to 0.86� . Full lines in corresponding colors: fits ∝ 4−_C , with
fitting from C � = 20/30/40 onwards (6x6/10x10/12x12/16x16) (C � = 10 − 50
for the 8x8 case). (b): extracted values of _, rescaled assuming I = I< as
function of rescaled � . Especially in the b < ! regime (where the function
argument less than -1), collapse is very clear and in agreement with power-law
behaviour (9.8). Closer to the critical point, the data collapse becomes worse.
It should be noted that in this regime, the time scales become very long and
the extracted decay rate may be less accurate. Moreover, the slow dynamics
is more sensitive to rare events, that may not be sufficiently sampled. 103

trajectories were used in the simulations up to 12x12 lattices and 102 for the
16x16 case.
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Summary and outlook

In Part II, we have applied the -%-Gaussian trajectory approach to the study of
quadratically driven photonic lattices of up to 144 sites, in a parameter regime
with a highly mixed steady state that is inaccessible with other methods such as
corner-space renormalization or the truncated Wigner approximation. The system
at hand is particularly interesting because it displays a second-order dissipative
phase transition. Its investigation is easily performed with the GTA, because the
displacements {U8} form a natural order parameter that is spontaneously broken as
function of driving amplitude. In the low-loss regime, the GTA method confirms,
with a finite-size scaling of the parity, the finding of a quantum criticality, demon-
strating the ability of the method to deal with long-range quantum correlations.
In a regime of higher losses, we have found, on the other hand, from an analysis of
the statistics of the order parameter with the Binder cumulant, critical behaviour
of classical nature, but different from the Gutzwiller mean-field prediction, re-
vealing again the ability of the method to describe the many-body correlations
arising among the photons. In fact, the GTA method provides a simple picture to
distinguish quantum from classical correlations: whereas quantum correlations are
reflected by the Gaussian moments D8 9 and E8 9 , classical correlations arise from the
stochastic expectation value over trajectories �

[
U8U 9

]
.

More specifically, the universality classes in the low- and high loss regimes for
this model correspond, respectively, to the quantum and classical Ising model:
one of the most paradigmatic spin systems commonly used for the study of phase
transitions. This confirms a scenario in which, similarly to the case at thermal
equilibrium, a crossover between quantum and classical criticality in the non-
equilibrium steady state occurs, depending on the scale of the loss rate relative
to the Hamiltonian energy scale; contributing to the general understanding of
the crossover from quantum to classical critical behaviour in dissipative phase
transitions.
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In a following step, we have studied the dynamical properties of the phase
transition in the high-loss regime in two ways. First, we have observed the
occurrence of the Kibble-Zurek effect in this dissipative phase transition with a
linear quench in � . Similar to how it is commonly known in equilibrium, finite
domains are formed in the ordered phase depending on the quench speed. From this,
we extract, with a slightly more exotic finite-size scaling approach, the value of the
dynamical critical exponent I (very recently, the Kibble-Zurek effect has now also
been observed a different driven-dissipative context, namely the BKT-transition in
a polariton condensate [267]). Second, from relaxation of a polarized initial state
to the paradigmatic steady state, we extract the Liouvillian gap _ that governs
the slowest timescale. Remarkably, we find that _ scales with I, in a manner
that is identical to the scaling of Hamiltonian gaps in quantum phase transitions.
To what extent this scaling behaviour is generic for open quantum systems is an
interesting open problem: because the close connection between closing of the gap
and divergence of correlation time, we might expect it to hold at least in the most
typical cases. The extracted value of I corresponds to metropolis dynamics, an
important dynamical universality class also matching the classical Ising model, that
corresponds to the simplest update rule commonly used is simulations. Overall,
our study of this model shows that it behaves as an Ising spin model at finite
temperature. This has been assumed before in the different context of annealing,
and our work can also be interpreted as a justification. Even within a classical
regime, optical simulation of the Ising model has been proposed to solve NP-hard
tasks [232] with degenerate parametric oscillators [235–237], a system with an
analogous symmetry breaking to ours. With respect to this application, our results
also confirm that, especially in absence of an all-to-all connected setup, care must
be taken when driving through the transition that E < E / in order to find the true
steady state (Ising ground state) and not a metastable state with Kibble-Zurek
domains. Recently, also implementations of the Ising model in a Kerr resonator
have been proposed [238] where optical bistability in the single-photon driven
case is mapped to the two spin states. Unlike in this proposal, the ℤ2 symmetry
is exact in Kerr resonators with two-photon driving studied here, which might
benefit the accuracy of the results of such optimization algorithms.

It is further interesting to note that there are alternatives to metropolis
updates in classical Ising simulations, with different values of I (different dynamical
universality classes for the same static universality class), which can converge to
the steady state faster (Swedsen-Wang, Wolff) or slower (East). One may wonder
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if suitable reservoir engineering would allow simulation of these as well. This
could be useful to speed up or slow down relaxation to the same steady state
numerically or experimentally. A possibility would be exploiting the difference
between coupling to a common bath or to independent baths, which has shown to
reflect at least on the decoherence time of an open quantum system [268].

It would also be interesting to see how the dynamical criticality behaves in the
quantum regime, where Kibble-Zurek effect can exhibit richer behaviour [266], as
has also been suggested to study experimentally with trapped ions [269]. Recently,
also anti-Kibble Zurek behaviour was found under certain circumstances in open
quantum systems [270, 271].
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CHAPTER 10
Condensation of Photons with

dye-molecules
Photons are bosonic particles, so are they are in principle able to form a BEC.
The required thermalization mechanism can be provided by repeated absorptions
and emissions by a reservoir of dye-molecules. Depending on the reservoir size,
the number statistics is either canonical or grand-canonical. Whereas this number
statistics can be simulated by simple stochastic rate equations, the phase statistics
is studied by a heuristic phasor model.

10.1 Condensation of photons using dye

The last few decades, a vast amount of research has been done to the related
phenomena of Bose-Einstein Condensates (BECs) and quantum fluids [49, 272],
for reasons of fundamental interest as well as their exploitation for quantum
simulation.

The traditional platform for the realization of quantum fluids are ultracold
atoms, but another fascinating platform is a BEC of photons. In order to condense
photons, one faces two obstacles that are absent for atomic condensates. First,
photons are massless particles moving at the speed of light without rest energy.
This problem can be overcome by reducing the dimensionality:

The energy of a free photon is given by

l = 2

®: = 2√:2
G + :2

~ + :2
I , (10.1)

with 2 the phase speed, an expression which is formally identical to the relativistic
energy of a massive particle in a 2D universe for < = :I/2. In the non-relativistic
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limit, this leads to

l ≈ l0 +
:2
G + :2

~

2< . (10.2)

Meanwhile, parabolic trap potentials to confine the photons in the G and ~
directions are obtained by curving the mirrors1. Because their effective mass is
many orders of magnitude lower, condensation can take place at room temperature.
The second obstacle is that photons are by themselves non-interacting particles 2,
an integrable system in which statistical physics is not valid and thermalization
impossible (as an analogy, the motion of billiard balls in a box becomes chaotic
because of collisions). A number of approaches have been used to overcome this.
A first successful approach has been to use effective photon-photon interactions
in a nonlinear material, resulting in the condensation of polaritons 3: coherent
superpositions of photons and excitons [57], of which the temporal coherence has
been studied in Refs. [275, 276] (see also section 3.2).

An alternative approach, where there is no need for the photons to be hybridized,
consists of letting the photons interact with their environment. Indeed, the Planck
spectrum of the black-body radiator already describes thermal light. The Planck
distribution

=(l) ∝ 6(l) 1
4Vl − 1

(10.3)

is similar to the Bose-Einstein distribution,

=(l) ∝ 6(l) 1
4V (l−`) ,−1

(10.4)

but with chemical potential ` = 0. V = 1
)

is here the inverse temperature and
6(l) the density of states (we set :� = ℏ = 1). As a result, the temperature
cannot be independently tuned of particle number, and condensation is impossible:
when the temperature is lowered to go below the critical temperature at a given
density, the density simultaneously decreases such that condensation can never be

1In fact, any quadratic Hamiltonian can be engineered for photons. Apart from the kinetic
term and the potential that we have discussed, effective magnetic terms coupling position and
momentum are obtained by using tilted mirrors that emulate spinning the cavity [273], although
this mechanism hasn’t been applied to dye-microcavity photon condensates yet.

2Actually, photons can scatter in diagrams containing virtual electron-positron pairs, but these
effects are negligible at the energy scales of interest [274].

3Formally, the scattering processes are similar to the ones in vacuum, but with electron-positron
pairs replaced by electron-hole pairs in a semiconductor, requiring far less energy.
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achieved. To overcome this, the dye-molecule reservoir is used as an optically active
(gain) medium. Such dye-molecules are two-level systems for optical frequencies,
dressed with many rovibrational modes that thermalize from frequent collisions
with solvent molecules.

Of the " dye-molecules, "↓ ("↑) are in the optical ground (excited) state. As
the molecules absorb and emit photons in the cavity, the total excitation number
- = "↑ + = is approximately conserved, where = is the amount of photons (weak
fluctuations of - occur because of photon losses from the cavity, balanced by
continuous pumping of the dye with an external laser).

Now, the absorption and emission spectra of the molecules differ and are related
by the Kennard-Stepanov law for their Einstein coefficients (�12(l) for absorption,
�21(l) for emission) [277–279]

�21(l)
�12(l)

=
F↓
F↑
4−V (l−l0) , (10.5)

where l is the frequency of the photon and l0 the frequency of the atomic
transition between ground and excited state of the dye. F↑,↓ are weight coefficients
taking into account the internal molecular density of (rovibrational) states in
the electronic ground and excited level, with a ratio that we will take to be one
(otherwise, they can be absorbed in a renormalization of the transition frequency).
Assuming detailed balance �12"↓= = �21"↑(= + 1) at equilibrium, we see that the
Bose-Einstein distribution (10.4) is retrieved with ` = ) log"↑/"↓ as the chemical
potential. This thermalization mechanism is depicted in more detail in Figure 10.1.

The above thermalization process was first achieved in Ref. [64] and Bose-
Einstein condensation in this system was reported shortly afterwards in Ref. [280]
by Klaers et al. (Bonn, 2010) (a picture of the setup is given in Figure 10.2). On
the theoretical side, the thermalization mechanism is detailed in Ref. [281].

The interested reader can find a few other, more detailed albeit less recent,
reviews and tutorials of photon condensation with dye molecules in Refs. [282–285].

10.1.1 Comparison with a laser

As we are studying many-body coherence with photons, one might wonder to what
extent the photon BEC is truly different from a laser. In fact, it has been shown
[286, 287] that there is a smooth crossover between the two. In the lasing limit,
the external loss rate of photons is large compared to the absorption rate, hence
the system is far from equilibrium. In the photon-BEC limit on the other hand,
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Figure 10.1: Left panel: Thermalization mechanism of photons by dye-
molecules. (1) Initially, the dye-molecule is in its optical ground state, with
thermal rovibrational excitations. (2) Then, one high energy photon (blue
arrow) is absorbed. This excites the molecule optically, and the excessive
photon energy pushes the rovibrational modes also out of equilibrium. (3)
Collisions with solvent molecules restore the rovibrational occupation to
thermal equilibrium (4) From this thermal state, a new photon is emit-
ted with lower energy. (5) Again, collisions with solvent molecules restore
the rovibrational occupation to thermal equilibrium. Right panel: As a
consequence, emission and absorption spectra differ and are related by the
Kennard-Stepanov law.
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the absorption rate is sufficiently large to allow for the repeated interactions with
the molecules to cause thermalization and the timescale associated with driving
and external losses is much slower. A consequence is that lasers generally need
population inversion for the gain medium, whereas a photon BEC does not. A
true BEC has a condensed (macroscopically occupied) ground mode and a thermal
occupation of the excited modes. For a laser, any mode can be bose-enhanced but
the overall distribution will not be thermal. Studying the full phase diagram, it
turns out that in a regime where both the driven-dissipative and thermalization
mechanisms are strong, multimode condensation may occur [288].

10.1.2 Interactions in a Photon BEC

As we have noted, condensation of photons does not require direct photon-photon
interactions. Nonetheless, such effects can still take place in the dye liquid and
have an influence. There are two kinds of nonlinear effects in photon condensates.
Most important are usually the thermo-optical effects [289], resulting in a delayed
interaction. The dye heats slightly from nonradiative relaxation of the excited
molecules. This causes the refractive index of the solvent to change locally so
that the optical path length decreases, resulting in an increasing potential and
thus repellence of future photons. Interestingly, in a recent experiment using
olive oil [290], it has been shown that such thermo-optical effects are able to
result in bistable behaviour, similar to the one studied in section 5.2. Although
our model could in principle be extended to incorporate such effects, we will not
study them as they take place on long timescales compared to our simulations (a
mean-field study has recently been performed in Ref. [291]). Instead, we will look
here at the influence of a weak (instantaneous) Kerr-nonlinearity here, which is
known to affect the coherence properties of cold Bose [292] and Fermi [293] gases
and exciton-polaritons [275]. A Kerr effect can naturally emerge in experimental
setups, where a not entirely decoherent dye induces a natural Kerr effect [294, 295].
Furthermore, it is possible to engineer these interactions on purpose, which makes
the photons behave more like polaritons and might open the possibility for effects
such as superfluidity [296]. It has also been proposed to realize similar behavior
with j (2) -nonlinear materials [297]. Although the precise intrinsic value of the
Kerr nonlinearity in the commonly used dye molecules is still subject of debate
(a recent discussion is given in [295]), we will show that already small values of
the Kerr nonlinearity can substantially affect the coherence properties. Because
the interaction strength can vary many orders of magnitude, we establish the
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interaction scales on which the number and phase dynamics are altered significantly,
while the associated energy scale per particle remains small compared to other
energy scales.

10.1.3 Miscellaneous state-of-the art in photon BECs

A number of other results have been obtained with photon condensates, both
theoretically and experimentally. Regarding the spatial properties, some work
regarding the spatial profile and influence of the pump spot is studied in refs.
[298, 299]. Experimentally, divergence of the correlation length (an important
characteristic of phase transitions, as we have extensively studied in Part II) at
the critical point has been measured in Ref. [300] and consistent with predictions
for the ideal Bose gas (also divergence of the correlation time has been recently
predicted [301], with the peculiarity that slowing down is also present far away
from the critical point). Recent measurements of the spatial profile are shown in
[302]. Refs. [303, 304] study the polarization aspects. Apart from the diverging
correlation length and time, another experimental evidence of the Bose-Einstein
phase transition is the observation of a cusp in the specific heat [305]. On
the theoretical side, a variety of models exist in addition to mean-field (driven-
dissipative Gross-Pitaevskii), from a full nonequilibrium quantum many-body
approach in terms of a master equation [286], to a Schwinger-Keldysh formalism
(see subsection 3.3.7) [306] and quantum-Langevin approach [307]. Remarkably,
the condensation is predicted to occur with even only a few photons [308]. Ref.
[309] proposes the simulation of black holes in a photon BEC. Two-mode emission
has also been predicted [310].

Refs. [311, 312] predict theoretically the possibility for similar photon conden-
sation in a semiconductor. With a different mechanism, thermalization of photons
that leads to condensation can also occur using optomechanical coupling with the
mirrors [313, 314]; in equilibrium with atomic gases [315] or by Doppler-cooling
these [316]; [317]. Similar 1D condensation has also been studied in microtubes
[318] and fibers [317].

10.1.4 Structure of Part III

Part III of this thesis is organized as follows: in the remainder of this chapter 10,
we will expand on the basic physics in a dye-cavity photon condensate and how
it can be simulated with stochastic rate equations and the HPM, also with the
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inclusion of a Kerr nonlinearity. In chapter 11 we describe the condensate as
an open quantum system and construct a stochastic Schrödinger equation to
describe its evolution. At high-densities, we will translate it into equations for an
#Θ-Gaussian variational trajectory, with transitions between exact and variational
regime when necessary and compare with the HPM model. Chapter 12 is devoted
to a detailed numerical study of the number distribution and -temporal coherence,
as well as the first-order temporal coherence, where predictions from the different
methods are compared with each other and with analytic expressions that we have
obtained. Finally, in section 12.3 we discuss some more recent developments that
have followed.

We will assume for simplicity the presence of only a single photon mode.
In many experimental setups, this is valid because of the lower population of
excited modes, the fact that these do not interact and their small overlap with
the condensate [319]. Analytical predictions considering only a single mode
have also been successful in describing phenomena such as the decay of second-
order coherence [284, 320]. As confinement is improving with novel experiments,
restriction to a single mode becomes more realistic in practice. Nevertheless,
beyond this single-mode description, photonic condensates in some parameter
regimes can also exhibit effects arising from multiple modes that lead to interesting
physics: if the occupation of other modes is large and the finite size of the reservoir
is relevant, mode-competition can become important [321]. Large occupation
of other modes in a substantially interacting system, will additionally result in
Beliaev-Landau scattering which may give corrections to the single-mode results
[49]. In a slightly different context, multimode effects also arise naturally when
coupling multiple cavities with a condensate [322], we will discuss some recent
insight in this regard in subsection 12.3.1.

10.2 Fluctuations in photon BECs

An interesting, presently realized, feature of photon BECs in a dye microcavity
system, as opposed to other BECs, is that the number of photons does not remain
fixed through time, even in the absence of losses. If the gain medium is sufficiently
large such that saturation effects are small, the condensate will exhibit grand-
canonical statistics [279, 323–325]. This is important, because the non-interacting
Bose gas is one of the few systems where ensemble equivalence is not satisfied [99].

Along with these statistical fluctuations of the particle number, one observes
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Figure 10.2: Experimental setup in which photon condensation is real-
ized: optical cavity with dye-liquid (left), and the optics for controls and
measurement processing (right).

fluctuations of the phase [284, 320, 326, 327], as first predicted in [328] using the
Keldysh formalism. These can be understood from a heuristic phasor model (HPM)
which we will explain in section 10.3, originally proposed in laser physics [29, 329],
because the phase fluctuations at sufficiently large particle number correspond to
the standard Schawlow-Townes broadening [29, 330]. The dynamics seems richer
though, because in the grand-canonical regime, the particle number can become
zero so that the phase of a subsequent new photon is entirely random, known as a
‘phase jump’. Although predictions from the HPM seem to match experiment so
far, the theoretical understanding is still limited.

In particular, the phase jump picture suggests that a dramatic increase of
temporal coherence occurs when the second order coherence falls below roughly
6 (2) (0) = 1.5, where the probability of having zero photons in the condensate
starts to become exponentially small [326]. We will show here that throughout the
crossover between canonical and grand-canonical statistics, the behaviour of the
phase coherence time behaves much smoother than expected by the phase jump
analysis.

10.2.1 Model for a driven-dissipative, interacting photon con-
densate

We assume a reservoir containing "tot two-level dye molecules, of which "↑("↓)
are in the excited state (ground state). Because of the rapid decoherence due to
collisions with solvent molecules [286], these numbers can be treated as classical
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integers. We consider this reservoir to be coupled with a single, quantum mechani-
cal, photon mode with number operator n̂. Because we restrict ourselves in this
section to number statistics, it is sufficient to consider only number eigenstates
(Fock states) with = photons. The corresponding rate equation for the photons is
then given by

d= = −d# + d" . (10.6)

Here d# and d" are Poisson processes describing molecular absorption at rate
�12"↓= and molecular emission at rate �21"↑(= + 1), respectively, where �12 and
�21 are the modified Einstein coefficients for absorption and emission [279]. For
convenience, we define W := �12"↓ and ' := �21"↑. In the absence of losses, the
total number of excitations - = "↑ + = is conserved such that d"↑ = −d= and
d"↓ = d=. For this system, many previous analytical results regarding the number
distribution and correlation functions have been summarized in Refs. [284, 320].
In practice, the quality factors of cavities are restricted so that an additional loss
at rate ^=(C) [280] takes place, which is compensated by an additional pumping of
molecules. In a typical experimental setup, W � ^, so that we expect losses not to
affect the number statistics significantly. As we are first concerned with ensemble
statistics only, we have the freedom to choose the photon-counting unraveling for
external losses [9], such that they are also modelled by a Poisson process d . This
results in a rate equation

d= = − d# + d" − d . (10.7)

In order to keep the long-time expectation value of - constant, the molecule
reservoir is pumped through a process d% with constant rate ^=, where = is the
average particle number such that

d"↑ = d# − d" + d% (10.8)

and "↓ = "C>C −"↑. From equation (10.7), the average evolution is [284, 320]

m=

mC
= �21(- − =) (1 + =) − �12=(" − - + =) − ^= (10.9)

from which one finds that in the steady state

- (=) = �12=(" + =) + �21=(= + 1) + ^=
�12= + �21(= + 1)

. (10.10)
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As we have seen Einstein coefficients �12, �21 of the absorption and emission
processes are thermodynamically related by the Kennard-Stepanov law (10.5). For
noninteracting photons with frequency l2 , the frequency dependence in (10.5)
depends only on the detuning l2 − l0 = Δ.

A Kerr effect adds by definition an interaction energy �int (=) = *
2 =

2 to the
photons. The =th photon now carries a frequency l = l2 + [�int(=) − �int(= − 1)] ≈
l2 +*=. As long as the interaction strength and particle number are not excessively
large, only the relative difference between �21(l) and �12(l) is important, so that
we can treat �12 as constant. With this, we rewrite (10.5) as

�21(=)
�12

=
F↓
F↑
4−V (Δ+*=) . (10.11)

10.3 The heuristic phasor model

10.3.1 A semiclassical model

Next, we proceed to the evolution of the phase. Rate equations (10.7), (10.8) are
clearly insufficient in this regard. Some descriptions of the temporal coherence of
a photon condensate rely on a heuristic phasor model (HPM, Figure 10.3) [284,
320], originally developed in laser physics [29, 329], that we will repeat here with
the addition of Kerr interactions. According to the HPM, one considers the field
to be classical such that the state is defined by a single phasor (corresponding
to a coherent state as defined in subsection 4.2.1). The energy of a state with n
photons, relative to a situation where all excitations are in the dye, is given by

� (=) = Δ= + *2 =
2, (10.12)

where Δ is the detuning between the cavity and dye transition. As we treat the
phasor as an order parameter, the phase oscillates at speed [49]

E? =
d�
d= = Δ +*=. (10.13)

As statistical properties remain the same in a rotating frame, we may replace
Δ in numerical simulations by Δ′ = 0 (no rotation for the vacuum) or Δ′ = −*=
(no rotation on average) for convergence. Absorption, stimulated emission and
external losses are here treated as deterministic currents that retain the coherence
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Figure 10.3: The heuristic phasor model: Every timestep, a random
phasor is added to the field. Left: in the original description for a laser,
the field can only diffuse in the phase direction, while the photon number
remains constant. In a canonical PC, the situation remains the same as the
deterministic evolution quickly projects the state back to the equilibrium
photon number, so that there remains effectively a 1D random walk in phase
space. Right: in the grand-canonical regime, the field diffuses freely, a 2D
random walk in phase space.

entirely: they are modeled by an evolution of the particle number

d= = (' − W − ^)= dC (10.14)

where '= is the rate of stimulated emission, W= the rate of absorption and ^=

the rate of external losses through the mirrors. Spontaneous emissions into the
condensate mode are then taken into account as an additional Poisson process d"B

with expectation d"B = ' dC . For each spontaneous emission, a vector 48q with
unit magnitude and random phase is added to the field

√
=48\ , with the motivation

that this represents an additional photon that is fully incoherent [331]. In fact,
such a spontaneous emission does not deterministically change the photon number
with one and may even reduce it. As before, ' and W depend on *= and "↑, which
is evolved simultaneously with the photon number. Since the photon number now
varies continuously, the number of molecules in the ground ("↓) and excited ("↑)
states are no longer integers.

10.3.2 Predictions

If "↑, "↓ are sufficiently large such that ' and W remain approximately constant,
the following analytic discussion applies: from geometric reasons, the phase evolves
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as [329]
d\ =

1
√
=

sin(q) d"spont . (10.15)

From this, we obtain 3 Mean(\ ) = 0 and

d Var[\ ] = '

2= dC . (10.16)

Meanwhile, the photon number evolves as

d= = (' − W − ^)= dC + (1 + 2
√
= cosq) d"B , (10.17)

such that
d Mean[=] = d= = −(W + ^)=3C + '(= + 1) dC , (10.18)

and
d Var[=] = 2(' − W − ^)Var[=] dC + '(2= + 1) dC . (10.19)

Despite its simplicity, the HPM is able to give a good explanation for Schawlow-
Townes phase diffusion [29].

A special case occurs when the particle number vanishes entirely. Here, Eq.
(10.16) becomes singular. This means that, in absence of other photons, the phase
of the spontaneous emission is entirely random over the interval [0, 2c [ and a
so-called phase jump occurs [284, 320].

In the following chapters, we will introduce a more sophisticated quantum
trajectory model, and make a detailed comparison in numerical predictions with
the HPM. For now, we note that, the HPM, leaving aside its simplicity and previous
successes, suffers from some conceptual difficulties. First of all, by treating the
field as classical, any squeezing effects are disregarded. Secondly, the continuous
variation of the field is inconsistent with the fact that the emission and absorption
are discrete processes at the level of the dye. Thirdly, it is physically dubious
that only spontaneous emission and neither absorption nor stimulated emission
cause shot noise. In the phasor model, the overly large noise from the spontaneous
emission actually mimics the shot noise from all loss and gain processes. Note
that even though a single spontaneous emission event adds one photon on average,
this number has an uncertainty of

√
=, such that a spontaneous emission can even

decrease the photon number. Finally, regarding the phase, one may wonder what
is so special about these spontaneous emission events that they influence \ whereas
other processes do not.
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CHAPTER 11
Describing photon condensates with

#Θ Gaussian trajectories
To improve on the description of the phasor model, we treat the photon condensate
as an open quantum system. Experimental realizations are described by a quantum
trajectory model. At low photon numbers, we solve the trajectory exactly, whereas
we use the #Θ-Gaussian variational ansatz, that shows excellent agreement with
the exact result, at higher occupations.

11.1 The condensate as an open quantum system

In order to verify the validity of the HPM and to address the questions posed
at the end of the previous chapter, we will study the photon field on a fully
quantum mechanical level. Because of its driven-dissipative nature, the photon
condensate is an open quantum system. The study of an open system starts with
the distinction between system and environment (chapter 2). Here, we will treat
the condensate mode as the system to be modelled by a quantum-mechanical
stochastic wavefunction |k (C)〉. We will use the notation 〈·〉 to denote quantum
expectation values with respect to this wavefunction. The gain medium on the
other hand is modeled classically: of the "tot dye molecules, the integer amounts
"↑(C)("↓(C)) are in the excited(ground-) state as described by stochastic rate
equations given in subsection 10.2.1. This is justified because of the frequent
collisions with solvent molecules that lead to thermalization [281] 1.

1Our model cannot be directly translated in a corresponding Lindblad master equation for
photons only. This is because we are in a special case where have actually split the system-
environment boundary in two: the dye-molecules do retain a memory (number of excitations),
but of an entirely classical nature. The solvent molecules that collide rapidly with the dye are
completely untracked by our model.
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Chapter 11 - Describing photon condensates with #Θ Gaussian trajectories

The coherent evolution of the photons, in the frame rotating at the dye
transition frequency, is governed by the Hamiltonian

Ĥ = Δ â† â +*2 â† â† â â, (11.1)

where operators â(â†) annihilate (create) a photon, defining also the number
operator n̂ = â† â. Again, for numerical purposes we can go to a rotating frame
and replace Δ by arbitrary Δ′. In absence of Hamiltonian dynamics, the evolution
of the photon field is governed by three processes: gain (corresponding to emission
of the dye molecules) occurring at rate '(〈n̂〉 +1), absorption at rate W 〈n̂〉 and
external losses through the mirrors at rate ^ 〈n̂〉. Because of the discrete nature
of the dye excitations, the first two processes are naturally described through a
photon-counting unraveling as if the photon number is ‘measured’ by the dye.
External losses are modelled by a heterodyne unraveling, firstly because heterodyne
detection is, in experiments where one is interested in the phase properties, typically
performed on this leakage current [326]; secondly because it keeps the wave
function localized in phase space, which will be helpful; and thirdly because it
forms the most natural classical limit, as already discussed in the previous parts
(subsection 2.4.4, section 7.1). By combining these processes, we readily obtain a
stochastic Schrödinger equation (section 2.4)��k̃ 〉

=

[
1 − 8

(
�̂ − 82 (W + ' + ^) n̂

)
dC + ^ 〈â〉∗ â dC

+
√
^ â d/ ∗ +

(
â

‖â |k 〉‖ − 1
)

d# +
(

â†â† |k 〉 − 1
)

d"
]
|k 〉 . (11.2)

Here again, the tilde denotes that the left hand side describes the unnormalised
wavefunction, to be renormalised after every timestep. d/ = 1√

2
(d,G + 8 d,?) is

again a complex (Itô) Wiener noise process such that |d/ |2 = dC and again, d# ,
d" describe Poisson processes as defined in subsection 10.2.1, where the role of =
is now replaced by 〈n̂〉.

Because the photon number typically becomes mesoscopic, exact evolution of
(11.2) in a truncated Fock basis rapidly becomes computationally unfeasible. A
number of variational approaches have been proposed for efficient simulation to
this extent, as discussed in subsection 3.3.4. Here, the fact that the system is a
single bosonic mode with large occupation, combined with a visual inspection of
the Wigner function in Figure 11.1 leads us to model the field as being Gaussian
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(a)

−20 −10 0 10 20

−20

−10

0

10

20

X

P

(b)

−20 −10 0 10 20

−20

−10

0

10

20

X

P
−0.2

−0.1

0

0.1

0.2

0.3

Figure 11.1: (a) Wigner function of a representative trajectory wavefunction
in the exact regime, about to make the transition to the variational regime.
(b): W-function of the corresponding variational trajectory with the same
Gaussian moments. The similarity is striking. Note that this optical phase
space (subsection 4.2.1) should not be confused with physical phase space, in
which the photon BEC has been imaged in Ref. [332].

in particle number and phase: an #Θ-Gaussian state. Under this assumption, the
field |k 〉 is entirely characterized by the expectation values 〈n̂〉, 〈\̂〉, 〈X̂n X̂n〉, 〈X̂\ X̂\ 〉
and 〈X̂n X̂\ 〉sym, where X̂$ := Ô−

〈
Ô

〉
is defined as the fluctuation of operator Ô.

The full variational equations for these expectation values are given in section 11.2.
Note that if external decay vanishes, or if it is described as a photon-counting
process, we find that 〈X̂n X̂n〉 → 0, 〈X̂\ X̂\ 〉 → ∞ and the equations reduce reduce to
stochastic rate equation as in subsection 10.2.1. Interestingly, it is thus the (small)
losses that allow us to define a phase, and avoid the condensate becoming a particle
number eigenstate [142]. From Figure 11.1 it is clear that there is a significant
amount of number squeezing in the system, unfortunately this seems hard to
access with current experimental techniques because of the classical fluctuations
of dye-molecule number that are untracked.

Because in the grand-canonical regime the particle number fluctuates also to
vanishingly small densities, we will use a combination of both the exact (11.2) and
variational (11.4)-(11.8) evolution. That is, we define threshold particle numbers
=trans,↘, =trans,↗. When 〈n̂〉 < =trans,↘ = 200, we perform the exact evolution and
when 〈n̂〉 > =trans,↗ = 240, we perform the variational evolution. In the intermediate
window =trans,↘ < 〈n̂〉 < =trans,↗, the method of the previous regime remains in
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Chapter 11 - Describing photon condensates with #Θ Gaussian trajectories

use. The transitions between methods are discussed in more detail in section 11.3.
Whereas the variational equations are solved by a straightforward Euler method
with direct addition of the Poisson increments, for proper numerical convergence of
the exact trajectories, an approach where the deterministic and diffusive evolution
is separated from the individual jumps [333] is used (Appendix C).

11.2 The variational evolution

Following the approach of chapter 5 (where the sign convention for the parameter
Δ differs, though), the trajectory evolution (11.2) can be recast in terms of
(normalized) expectation values

〈
Ô

〉
to be

d 〈$〉 =8〈[�,$]〉 dC − W + ' + ^2 (〈n̂$〉 + 〈$ n̂〉) dC + (W + ') 〈$〉 〈n̂〉 dC + ^〈â†$ â〉 dC

+
√
^

(
〈â† X̂$〉 d/ + 〈X̂$ â〉 d/ ∗

)
+

(
〈â†$ â〉
〈n̂〉 − 〈$〉

)
d# +

(
〈â$ â†〉
〈n̂〉 +1 − 〈$〉

)
d" ,

(11.3)

where again X̂$ = $̂ − 〈$〉. By introducing a Dirac phase through â =: 48\̂
√

n̂
satisfying [n̂, \̂ ] = 8 and using Wick’s theorem, we obtain for the Gaussian corre-
lation functions 〈n̂〉, 〈\̂〉, 〈X̂n X̂n〉 = 〈n̂ n̂〉 − 〈n̂〉2, 〈X̂\ X̂\ 〉 = 〈\̂ \̂〉 − 〈\̂〉

2
, 〈X̂n X̂\ 〉sym =

〈n̂ \̂〉/2 + 〈\̂ n̂〉 /2 − 〈n̂〉 〈\̂〉 the evolution

d 〈n̂〉 = − (W + ') 〈X̂n X̂n〉 dC − ^ 〈n̂〉 dC + 2 Re
[
(�2 −�1)

√
^ d/

]
+

(
〈X̂n X̂n〉
〈n̂〉 − 1

)
d# +

(
〈X̂n X̂n〉
〈n̂〉 +1 + 1

)
d" (11.4)

d 〈X̂n X̂n〉 = − 2^ 〈X̂n X̂n〉 dC + ^ 〈n̂〉 dC − 2^ |�2 −�1 |2 dC

+ 2 Re
[
(�3 − 2�2 +�1(1 − 〈X̂n X̂n〉))

√
^ d/

]
− 〈X̂n X̂n〉

2

〈n̂〉2
d# − 〈X̂n X̂n〉

2

(〈n̂〉 +1)2 d" (11.5)
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between exact and variational regimes

d 〈\̂〉 =
(
−Δ + *2

)
−* 〈n̂〉 −(W + ') 〈X̂n X̂\ 〉sym dC + 2 Re

[
�6
√
^ d/

]
+
〈X̂n X̂\ 〉sym
〈n̂〉 d# +

〈X̂n X̂\ 〉sym
〈n̂〉 +1 d" (11.6)

d 〈X̂\ X̂\ 〉 = − 2* 〈X̂n X̂\ 〉sym +
^

4�1 dC − 2^ |�6 |2 dC + 2 Re
[
(�1 − 〈X̂\ X̂\ 〉�1)

√
^ d/

]
+ ©«
− 〈X̂n X̂\ 〉sym

2

〈n̂〉2
+ �1

4 〈n̂〉
ª®¬ d# + ©«

− 〈X̂n X̂\ 〉sym
2

(〈n̂〉 +1)2 + �2
4(〈n̂〉 +1)

ª®¬ d"

(11.7)

d 〈X̂n X̂\ 〉sym = −* 〈X̂n X̂n〉 −^ 〈X̂n X̂\ 〉sym dC − 2^ Re
[
(�2 −�1)�∗6

]
dC

+ 2 Re
[(
−�6 −

(
〈X̂n X̂\ 〉sym +

8

2

)
�1 + �2

) √
^ d/

]
− 〈X̂n X̂n〉

〈X̂n X̂\ 〉sym
〈n̂〉2

d# − 〈X̂n X̂n〉
〈X̂n X̂\ 〉sym
(〈n̂〉 +1)2 d" . (11.8)

Here, the coefficients � and �, and �, perturbatively in orders of inverse 〈n̂〉,
are defined in Appendix B.

By considering the measurements to be perfect, we can do a restriction towards
pure states, for which relation

〈X̂n X̂n〉 〈X̂\ X̂\ 〉 − 〈X̂n X̂\ 〉sym
2
=

1
4 (11.9)

is satisfied (Equation 5.19). This constraint allows us to compute 〈X̂\ X̂\ 〉 (or
another variance) directly from the others.

11.3 How to use a phase operator even though it doesn’t
exist? Transitions between exact and variational
regimes

11.3.1 From variational to exact

When 〈n̂〉 decreases from the variational regime below the threshold =trans,↘, the
#Θ-Gaussian state must be explicitly expressed in the Fock basis to continue
numerically exact evolution.

As discussed in subsection 4.2.2, the Gaussian state is obtained as the ground
state of an effective Hamiltonian, by exploiting the symmetry from (X̂, P̂) to (n̂, \̂ )
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(section 4.5), we find that it is of the form

�̂eff = (n̂− 〈n̂〉)2 〈X̂\ X̂\ 〉 +(\̂ − 〈\̂〉)2 〈X̂n X̂n〉

− (n̂− 〈n̂〉)(\̂ − 〈\̂〉) 〈X̂n X̂\ 〉sym −(\̂ − 〈\̂〉)(n̂− 〈n̂〉) 〈X̂n X̂\ 〉sym . (11.10)

We now encounter the problem that in fact, no hermitian phase operator \̂
exists, as phase is not a true observable [154]. However, as long as the Fock space
is truncated (which is the case here) at level #max , a meaningful phase operator
can be obtained through the Pegg-Barnett formalism to be

\̂%� (\0) = \0 +
#maxc

#max + 1 +
2c

#max + 1

#max∑
9≠:

exp{8 ( 9 − :)\0} | 9〉 〈: |
exp{8 ( 9 − :)2c/(#max + 1)} − 1 (11.11)

[154]. One free parameter, \0, remains, corresponding to the phase-cut. That is,
because phase is a periodic variable, there must be a cut where (going counter-
clockwise) the phase sharply changes with −2c . In order to avoid spurious effects
of this cut, we will use \0 = 〈\̂〉 −c such that the #Θ-Gaussian state is as far from
the phase-cut as possible.

Using the operators n̂ and \̂ := \̂%� ( 〈\̂〉 −c), the effective Hamiltonian is
constructed. |k 〉 is obtained as the eigenvector of �̂eff corresponding to the lowest
eigenvalue.

11.3.2 From exact to variational

When, in the exact regime, 〈n̂〉 = 〈k | n̂ |k 〉 increases above =trans,↗, the Gaussian
moments must be computed. As in the previous case, this is entirely straightforward
regarding 〈n̂〉 and 〈X̂n X̂n〉. For the phase, we want to use an operator \̂%� (\0) again,
although it is this time not a priori clear which value of \0 to use. We will therefore
do an initial guess \ (0)0 and construct a corresponding \̂ (0)%� = \̂%� (\ (0)0 ). We then
iteratively use \ 8+10 = 〈k | \̂ (8)%� |k 〉 −c and repeat the procedure self-consistently until
convergence is reached. The resulting \̂%� (\ (5 )0 ) can then be used to proceed in
calculating the Gaussian moments. We have verified that the above procedure
results in the expected phase arg [U] when applied to an arbitrary coherent state
|U〉 (Figure 11.2).

After this transition, we use purity relation (5.19) as a numerical check and as
verification for the validity of the Gaussian ansatz.
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Figure 11.2: For coherent states |U〉 displaced to U = 148\8= , the iterative
procedure to update Pegg-Barnett phases leads, bearing in mind periodicity,
to the expected phase \>DC = \8= (mod 2c). As a tolerance, the iterations
where stopped if the difference between phase predictions in subsequent
iterations dropped below 1e-3.

The fact that two different definitions of a phase operator (Dirac and Pegg-
Barnett) are used, causes no problems because the particle number at the transi-
tions is sufficiently large and the trajectory states are sufficiently well-behaved.

11.4 Predictions

Similar to the HPM, we calculate the evolution of the moments of the field while
treating W, ' as constant. We will use the variational equations from section 11.2
as a starting point, considering highest order O(〈n̂〉) = O( 〈X̂n X̂n〉) = O( 〈X̂\ X̂\ 〉

−1)
(this relation between orders can be seen from a coherent state where 〈n̂〉 = 〈X̂n X̂n〉
and relation (5.19)). Under the assumption 〈X̂n X̂\ 〉sym ≡ 0 and neglecting noise,
one obtains as stationary solution for the phase variance (11.7),

〈X̂\ X̂\ 〉stat =
1 +

√
2(1 + W+'

^
)

4 〈n̂〉 . (11.12)

Substituting in (11.6) results in

d 〈\̂〉 = ^ + W + '
2
√
〈n̂〉

d,\ , (11.13)
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where d,\ denotes a real Wiener process from which

d Mean[\̂ ] = d 〈\̂〉 = 0 (11.14)

and
d Var2 \̂ = d

[
\̂ \̂

]
− d

[
\̂

2]
=
^ + W + '

4 〈n̂〉 dC . (11.15)

Recall from subsection 2.4.3 that in trajectory simulations, the total variance of an
observable Var[Ô] = Var1 Ô +Var2 Ô can be decomposed into the intra-trajectory
variance Var1 Ô = 〈X̂\ X̂\ 〉 and the inter-trajectory variance Var2 Ô = Var

〈
Ô

〉
.

Here, from our stationary assumption, d Var1 \̂ = 0 such that d Var[\̂ ] = d Var2 \̂ .
Similarly, we obtain the stationary solution for the particle number from (11.5):

〈X̂n X̂n〉stat =
√
^

√
2
√
W + '

〈n̂〉, (11.16)

where we have used ^ � W, '. Substituting in (11.4) results in

d Mean[〈n̂〉] = d〈n̂〉 = (' − W − ^)〈n̂〉 dC (11.17)

and

d Var n̂ = d Var2 n̂ = d〈n̂〉2 − d(〈n̂〉2)

= [2(' − W − ^)Var n̂ + (W + ' + ^)〈n̂〉] dC . (11.18)

Comparing Eqs. (11.15), (11.17) (11.18) with the predictions from the HPM
(10.16), (10.18), (10.19), the similarity is evident. However, the HPM predicts a
variance increase proportional to the gain ', whereas (11.15), (11.18) are sym-
metrical in ',W, ^. In the steady-state however, ' ≈ W + ^ at least to highest
order in 〈n̂〉, such that the time-averaged result is the same. This correspondence
is also reminiscent to the result for a laser [29]: also there, the phasor model
predicts a phase diffusion proportional to the gain coefficient ' whereas a more de-
tailed quantum-mechanical derivation makes clear that '+^

2 is the correct quantity,
although both become equivalent at threshold where ' ≈ ^.

In Figure 11.3, a comparison between the evolution of phase and particle
number in a single HPM sample (a,b,c) and a single trajectory (d,e,f) is given.
On short times there is a qualitative difference with the HPM: discrete steps
corresponding to emission events are replaced by scale-invariant noise, induced
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by the heterodyne detection and fueled by all emission and absorption processes.
However, current experiments cannot resolve these small fluctuations on short
timescales, as long as they do not affect correlation functions. It is clear from fig.
11.3 that the predictions of both methods become qualitatively indistinguishable
on longer timescales. We see also that for both methods, phase diffuses more
rapidly at lower photon numbers, as predicted by Eqs. (10.16), (11.15).
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Figure 11.3: Some typical single shot realizations, as predicted by (a,b,c)
the HPM versus (d,e,f) the quantum trajectories. We see that there is a clear
qualitative difference on short timescales: whereas the fluctuations of the
phasor model (a) are discrete events corresponding to spontaneous emissions,
noise remains on all scales within a quantum trajectory (d). However, this
qualitative difference is washed away on longer timescales, where the phase
evolution according to the HPM (b) becomes equivalent to the one of a
trajectory (e, blue line). Also regarding the photon number, the evolution of
the HPM (c) is indistinguishable from the trajectory (f,blue line) on sufficiently
large timescales corresponding to typical experiments. Furthermore, it is
clear that both according to the HPM and the trajectories, phase fluctuates
the most when the photon number is low. For completeness, we have added
also the other Gaussian moments of the trajectory: on (e) 〈X̂\ X̂\ 〉 (red) and
〈X̂n X̂\ 〉sym (yellow) are typically small but show spikes at phase jumps. On
(f), we see that generally 〈X̂n X̂n〉 (red)< 〈n̂〉, reflecting number squeezing.
Note that 〈\̂〉 is only defined modulo 2c .
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Coherence of a photon condensate

We obtain precise expressions for the number distribution in presence of a Kerr
nonlinearity, and find that these agree with numerical simulations, even in presence
of some external losses. This driven-dissipative aspect does cause a delayed anti-
bunching effect nevertheless, as witnessed by the second-order temporal correlation
function. First-order correlations that contain phase information decay according
to the normal Schawlow-Townes effect in the canonical regime, and only twice
as fast in the grand-canonical regime, unlike what was previously believed. Kerr
interactions induce an additional Henry phase diffusion.

12.1 Number statistics: effect of interactions and losses

12.1.1 number distribution

Following the approach of Ref. [279], the steady state number distribution can be
found by assuming detailed balance condition

'=P= = W=+1P=+1, (12.1)

where P= denotes the probability for the condensate mode to contain exactly =
photons (note that for fixed ",- ; "↑, "↓ and consequently ',W are a function of =
as indicated by the subscript). By writing W=+1 = �12"↓,=+1 = (" − - + = + 1) �12

and '= = �21"↑,= = (- − =) �21(=) we obtain

P=+1
P=

=
- − =

" − - + = + 1
�21(=)
�12

(12.2)
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such that using (10.11),

P=
P0

=
(" − - )!- !

(" − - + =)!(- − =)!4
−V [Δ=+(* /2)=2]

=

(
-
=

)(
"tot−-+=

=

) 4−V [Δ=+(* /2)=2] , (12.3)

where the expression with binomial coefficients is numerically better conditioned.
In the limit of an infinite reservoir, (12.3) reduces to a Bose-Einstein distribution

P= ∝
(
"↑

"↓

)=
4−V� [=] = exp

(
− (Δ − `)= + (* /2)=

2

)

)
, (12.4)

where the chemical potential is ` = ) log
(
"↑/"↓

)
.

In Fig. 12.1, we see that the predictions in number distributions (12.3),
closely match numerical results from rate equations (10.7), for a set of parameters
corresponding to recent experiments [334], as summarized in Tab. 12.1. As for the
interaction strength, we have taken the value * = 10−5ℏ"tot�12, corresponding to
a dimensionless interaction parameter 6̃ = *

Ωℏ ≈ 9.95 × 10−5 for trapping frequency
Ω ≈ 8c × 1010 �I, which is larger than the most common estimates of the natural
Kerr effect [295, 319]. Importantly, by defining the effective reservoir size

"eff =
"tot

2 [1 + cosh (V (Δ +*=))]−1 , (12.5)

one can distinguish in the noninteracting case a canonical regime with Poisso-
nian number statistics (=2 � "eff), a grand-canonical regime with Bose-Einstein
statistics (=2 � "eff, (12.4)) and a transition region (=2 ≈ "eff).

For our parameters in Tab. 12.1, we have an effective reservoir size "eff =

7.6 × 107 � =2
= 106 such that the system is rather on the grand-canonical side of

this crossover.

Definition (12.5) only depends on * to the extent that it changes the average
energy per photon, a minor correction for our parameters considered. Never-
theless, also for fixed "eff, the number distribution is significantly altered by
interactions: the number fluctuations are reduced, as predicted by Ref. [324].
This can be understood from statistical physics in the grand-canonical regime:
by approximating = to be continuous and integrating (12.4) over positive =, we
obtain the grand-canonical partition function Z. From the associated free energy
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Figure 12.1: Particle number distribution (12.3) without (a) and with (b)
interactions, for the parameters given in Tab. 12.1. Green lines: analytical
results (12.3), covered by the numerical simulation of the rate-equations
(10.7), (10.8) (blue) and HPM (red) results. In both cases there is a very
good agreement between the analytical prediction and numerical results
obtained by rate equations. These are also matched by the predictions from
the HPM. Stochastic results are obtained from 103 independent samples,
each evolving a time 105�−1

12"
−1
tot.

Parameter value

�12 2.5 kHz
"C>C 109

Δ −2.4:) /ℏ
) 300  
* 10−5 �12"tot = 6.4 × 10−7 :�) /ℏ
F↑/F↓ 1
^ 2.2 ��I = 8.3 × 10−4 �12"tot.

Table 12.1: Experimental parameters corresponding to Rhodamin 6G dye
at 560 nm. [334]. Further, we have taken for the simulations = = 1000, which
somewhat smaller than in typical experimental setups to reduce the relevant
timescales. We have chosen the finite value of interaction strength such that
the phase and number statistics are significantly altered (f = *=2

)
of order

one), while the average interaction energy per particle *= remains small
compared to other energy scales. The notion of ‘without interactions’ refers
to * = 0, whereas ‘without losses’ means ^ = 0
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Figure 12.2: Amount of fluctuations [ =

√
=2−=2

=
in a grand-canonical

condensate as function of the interaction parameter f as thermodynamically
derived (black), with asymptotics 1−f (cyan,dashed) and f−1/2 (red,dashed).
Orange: the dynamical approximate result (12.11).

� = −) logZ, the equation of state =(`) can be obtained, as wel as the amount
of number fluctuations Var [=] (`). Eliminating `, the ratio [ =

√
=2−=2

=
can be

expressed as a function of the interaction parameter f = *=2

)
, as shown on Fig.

12.2. Asymptotically, the relative amount of fluctuations [ decreases as 1 − f for
small f and as f−1/2 for large interactions f. For our parameters, we find f = 0.64,
corresponding to [ = 0.75, whereas our noninteracting condensate has [ = 0.99.
Thus, interactions that are small enough to modify the single-photon energy only
weakly, can still have a strong influence on the system as the total interaction
energy *=2 can become of the order of the thermal energy.

For a finite reservoir, ` becomes dependent on =, so that the above thermody-
namic analysis is no longer valid. [ can also be computed from the number distri-
bution (12.3) (fixing = for this number distribution can be done self-consistently
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using (12.12)), or analytically from the dynamical argument below.

12.1.2 Decay of second-order correlations

The second order coherence time g (2)2 , the decay time of 6 (2) (g) = = (C )= (C+g)
=2 , can be

obtained by an extension of the approach in [284, 320]. In linear approximation
�21 = �21(1 − V*X=(C)), the average fluctuation evolves as

m

mC
X=(C) = (12.6)

−
[
�21-

=
+ (�12 + �21)= + V*�21"↑(1 + =)

]
X=(C)

+ O(X=(C)2),

where the driven-dissipative nature has been disregarded. Using the quantum
regression theorem (section 2.6) we find that accordingly, the number correlations
decay at rate

Γ2 =

[
1 + f

=(1 + 4V (Δ+*=) )
+

(
1 + 4−V (Δ+*=)

) =

"tot

]
�12"tot (12.7)

=

[
1 + f + =2

"eff

]
�12"↓
=

, (12.8)

As long as *= � Δ, the change in Γ2 = (g (2)2 )−1 from a noninteracting condensate is
directly proportional to the interaction parameter f. Note that the same expression
(12.7) is also obtained if �21 is treated as constant while considering frequency
dependence in �12. We verify the validity of decay rate (12.7) by comparison to
numerical simulations by rate equations in Fig. 12.3.

For generic parameter values, 6 (2) (0) = 1 + [2 can also be estimated by the
stationary solutions of the expectation value of the second moment of the photon
number

d
[
X=(C)2

]
= 2X=(C) d [X=(C)] + d [X=(C)]2 (12.9)

= −2Γ2X=(C)2 dC + '(= + X= + 1) dC + W (= + X=), (12.10)

from which

6 (2) (0) − 1 = [2 =
X=2

=2 =
1

1 + f + =2

"eff

. (12.11)
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Figure 12.3: Second order correlation functions for the grand-canonical
parameters of Tab. 12.1, with the exponential decay (12.7), without (a)
and with (b) interactions. Generally there is a good agreement (the plot
of the analytical result is completely covered in (b)), though at later times
deviations originating from the driven-dissipative character are visible. These
results are again matched by the HPM (colors as in Fig. 12.1. Inset (c):
6 (2) (g (2)2 < g < g- ) − 1 becomes negative, while this is not the case without
losses (^ = 0, purple).
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12.1 - Number statistics: effect of interactions and losses

For an infinite reservoir ("eff/=2 → ∞), we can compare this dynamical result
directly with the thermodynamic result above. As we see in Fig. 12.2, the relative
difference in predictions for [ remains smaller than 5% for all values of f, and
(12.11) becomes exact in the limit of large f. We can attribute the deviations at
smaller f to higher order contributions in dX=.

Such an estimate of [ is also useful to initiate the number of excited molecules
in the numerical simulations. As can be seen from Eq. (10.10), both the average
number of photons and its fluctuations determine the number of excited molecules:

"↑ = - (=) − = =
(�12" + ^)= + (�12 + �21)=2[2

�21(= + 1 − V*=2[2) + �12=
. (12.12)

12.1.3 Long-g (delayed) antibunching

In previous analytic discussions, we have disregarded the driven-dissipative nature
of the system. Intuitively, one might expect that losses will reduce the second-order
coherence time. Such an effect is not observed in the number distribution, as seen
in Fig. 12.1.

However, as we see in Fig.12.3, 6 (2) (g) is altered on long timescales compared
to the photon correlation time g (2)2 , where a long-g antibunching effect appears.
This can be explained in the following way: if at g = 0 the stochastic particle
number is = = = + X=, the corresponding fluctuation modifies the excitation number
by Δ- = −^ X=g (2)2 . Because = = =(- ), the particle number expectation value is
altered to =′ = = + m=

m-
Δ- where from (10.10), m-

m=
≈ �12�21"C>C

=2 (�12+�21)2
, so that 6 (2) (g)

changes in the order of

==′

=2 −
==

=2 ≈
=2(�12 + �21)2
�12�21"C>C

^g
(2)
2 , (12.13)

where we used that in the grand-canonical regime, X= ∼ =. Expression (12.13)
predicts a decrease in 6 (2) (g) of about 0.012. We verify this numerically by averaging
6 (2) (g) over a time-interval 104�−1

12"
−1
tot − 5× 104�−1

12"
−1
tot, which is sufficiently larger

than g (2)2 but smaller than the timescale of fluctuations in total excitation number
g- and obtain a value 6 (2) (g (2)2 < g < g- ) − 1 = −0.012 for the experimental ^
and 6 (2) (g (2)2 < g < g- ) − 1 = 0.003 without losses, in agreement with our results.
Of course, one always has 6 (2) (∞) = 1 as initial and final state become entirely
independent, but the relaxation from deviation (12.13) only takes place over the
timescale of the dynamics of - , namely g- = (^ m=

m-
)−1, which is of order 105 �−1

12"
−1
C>C
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in our simulations. Because of the different values for g (2)2 and [, this effect is
weaker in our simulations of the interacting condensate.

12.2 First-order coherence

In Fig. 12.4, the first order correlation function 6 (1) (g) = U∗ (C )U (C+g)
|U (C ) |2

is shown,
and again predictions of the HPM agree well with the exact result, obtained
by trajectories. In the noninteracting case, the decay of correlations is clearly
exponential, whereas it is Gaussian in presence of interactions. The decay can be
understood from multiple points of view, let us start with the noninteracting case.

12.2.1 The Grand-Canonical Schawlow-Townes effect, for-
merly known as ’phase jumps’

According to the HPM picture, absorption and stimulated emission only affect
the phasor radially, as d

√
= = d=

2
√
=
=

'−W
2
√
= dC , where we used eq. (10.14), and

neglected the external losses. The stochastic evolution of the HPM can then be
written in terms of the phasor alone as

dU = −W − '2 U dC + d( , (12.14)

where d( is additive noise corresponding to the spontaneous emissions. In the grand-
canonical limit, W and ' can be treated as constants, so that for the expectation
value,

dU = −W − '2 U =
−'
2= U, (12.15)

where we have used W= = '(= + 1) for the second equality. From the quantum
regression theorem (section 2.6), it is then clear that

6 (1) (g) = 4−C/g
(1)
2 , (12.16)

where
1
g
(1)
2

=
'

2= =
�21"↑

2= ≈
�12"↓

2= =
�12"tot

2=(1 + 4VΔ)
. (12.17)

By another line of reasoning, the phase evolution is dominated by large ‘phase
jumps’ when the photon number in the cavity vanishes, as described in Refs. [284,
320, 326]. From estimating the probability of having zero photons in the cavity, one
obtains the ‘phase jump rate’ Γ0

PJ =
�12"↓
=Z

. In the grand-canonical limit, Z = 1, so
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12.2 - First-order coherence

that this is consistent with (12.17) up to a scaling factor of order one. The picture
of phase jumps would further predict that the phase evolution is suppressed if the
probability for the zero-photon state vanishes (Z →∞), as occurs outside of the
grand-canonical limit, towards the canonical regime "eff � =2, where "eff is defined
as in Eq. (12.5). By additional numerical simulations shown in Fig. 12.5, we see
that this is not the case. At most, the first-order coherence time, rescaled with
the molecule number, only scales by a factor two. This is not entirely unsurprising
as the remaining value corresponds to the standard Schawlow-Townes dephasing
mechanism [29, 330] that occurs in the limit where the number distribution is
sharply peaked, as can already be seen from (10.16). We are thus led to write
generically

Γ1 ≡
1
g
(1)
2

=
�12"↓
b=

, (12.18)

where b = 2 in the grand-canonical limit and b = 4 in the canonical limit. Figure
10.3 provides a simple picture for this phenomenon: the canonical and grand-
canonical regimes correspond, respectively, to a 1D and 2D random walk in phase
space.

Comparing with the decay of second-order coherence (12.7), we find that

g
(1)
2

g
(2)
2

=
Γ2
Γ1

(12.19)

= b

[
1 + f + =2

"eff

]
(12.20)

=
b

[2 =
b

6 (2) (0) − 1
, (12.21)

where we have used (12.11) for the third equality. However, in the inset of fig.
12.5, we see that on sufficiently short timescales, there is always an initial decay
with b = 2. There is a clear intuition here: while only a few photons have been
absorbed/emitted with the dye yet, "↑ is only weakly altered and as such it cannot
constrain the dynamics. In general, W − ' = W − ' + (�12 + �21)X=, where X= = = − =.
When, at short timescales, X= remains approximately constant, a similar reasoning
to the grand-canonical regime yields

6 (1) (g) = 4−'g/(2=)

=
= exp

(
− (�12 + �21)X=

2 g

)
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≈ 4
−'
(2=) g

(
1 − [

2

2 (�12 + �21)=g
)

≈ 4
−'
(2=) g . (12.22)

At later times, higher-order effects set in and restrict the dynamics.
It is instructive to compare these results with the ones obtained by Whittaker

and Eastham [1, 335] in a polariton context. There, a Schawlow-Townes decay is
predicted to be of the form���6 (1) (g)��� = exp

[
[2

4 (4
−Γ2g − Γ2g − 1)

]
. (12.23)

For Γ2g � 1, this reduces to an exponential decay at rate [2

2 Γ2, whereas for Γ2g � 1,
(12.23) decays exponentially at rate [2

4 Γ2. This can be understood because at short
times the number fluctuations contribute to the decay of 6 (1) , but after a time 1/Γ2

only Schawlow-Townes phase diffusion remains. There remain a few differences
between the physics of (12.23) and the photon condensate. First, (12.23) is derived
in [1, 335] under the explicit assumption that the whole ensemble has a Gaussian
number distribution peaked around = 1. This assumption is physical for the photon
condensate only in the canonical regime, where the probability of having zero
photons is negligible. This means that the predicted value of b equals 4 at late
times, in agreement with our prediction for the canonical regime.

Finally, the timescale of the transition between the two decay rates is for
photon condensates not determined by Γ2, but only by the second term in (12.7),
which is responsible for the time-dependence of ' and W . In the grand-canonical
limit, this means that a slowing of the decay would only take place at infinitely
long times unlike the prediction of (12.23), as is seen on Fig. 12.4.

12.2.2 Henry diffusion in an interacting condensate

In the presence of finite photon-photon interactions, the decay of first-order
coherence is altered, as we see on the right panel of Fig. 12.4. The profile is
rather Gaussian than exponential. This is characteristic for the so-called Henry
mechanism [329], also known as linewidth enhancement factor [336]. Whereas
Schawlow-Townes decay is attributed to direct fluctuations of the phase, Henry
decay results from phase diffusion as a consequence of number fluctuations causing

1This is different from our ansatz where we consider only individual trajectories as having a
Gaussian number distribution.
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a change of the interaction energy. For the Henry effect, Ref. [1, 335] on polariton
condensation predicts an additional decay���6 (1) (g)��� = exp

[
−[

2* 2

Γ2
2
(4−Γ2g + Γ2g − 1)

]
, (12.24)

which reduces to a Gaussian decay with characteristic time (
√

2/* 〈n̂〉[) at short
timescales. As we see on figure 12.4, there is good agreement with our numerical
results on short times, although deviations occur at later times that we can
attribute to the non-Gaussian character of the number distribution.

The fact that the prediction of Gaussian decay for short timescales remains
valid in the grand-canonical limit can be understood because in a frame rotating
at the bare cavity frequency, the expectation value of a phasefactor of a state with
= photons at time C is

4 (−8*=C ) = exp
[ ∞∑
<=1

:<
(−8)<*<C<

<!

]
= 4−8*=C4

−1
2 *

2C2 (=2−=2)+O(*C )3, (12.25)

where :< is the<th cumulant of the distribution of =. Here, we implicitly assumed
that = remains approximately constant on short times.

12.3 Further results

In this section, we highlight some further results from follow-up research on the
photon condensate. Part of this research was carried out by collaborators, the
author of this thesis was only remotely involved.

12.3.1 Arrays of photon condensates

So far, we have studied a single condensate mode in one harmonic trap and have
found that the heuristic phasor model, as long as it is not overinterpreted, is
quantitatively valid for all practical purposes considered. However, recently, the
interest has been growing to engineer coupled condensates, in analogy to the optical
lattice systems in e.g. Part II that consist of optical micropillars or superconducting
circuits. A convenient technology for this purpose was developed in Ref. [337]: by
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Figure 12.4: First order correlation function for the parameters of Tab
12.1, (a) noninteracting and (b) interacting case. Colors as before, Yellow:
the polariton result of (12.23) and (12.24) from [1, 335]. The result with-
out losses(purple) is also obtained by the HPM. The quantum-trajectory
results are obtained from 84(noninteracting) or 112 (interacting) independent
samples, each evolving a time 104�−1
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tot. The analytical result in (a) is

completely covered by the trajectory- and HPM results.
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Figure 12.5: 6 (1) (g) in absence of interactions, for different values of "tot

(109-red, 107-purple,105-cyan) and hence "eff, together with the asymptotic
exponential decays b = 2 (yellow, line largely covered by the "C>C = 109 line)
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two limits for any finite molecule reservoir. Again, the other parameters are
as in Tab. 12.1 and = = 1000. Inset: even towards the canonical regime, there
is a short initial timespan of grand-canonical (b = 2) decay of the order of
g
(2)
2 .
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thermo-optical imprinting, local differences in the refraction index of the solvent
are induced (a very similar effect to the thermo-optical interactions discussed in
subsection 10.1.2). This leads to a position-dependent optical path length, as if
the mirrors were curved, for example as in parabolic traps. This has very recently
also lead to an extensive experimental study of the Josephson junction between two
condensates [338], and even mode-entanglement (corresponding to the quantum
correlations as in section 8.1) has been claimed [339].

In order to tackle these kinds of systems from a theoretical point of view, the
phasor model was recently generalized in Ref. [322] to a classical field method
for extended systems. Similar to our handling of a small Kerr effect in the
previous sections, the Kennard-Stepanov law is linearized for small V � , leading
to a description of imaginary tunneling (damping). Remarkably, the behavior of
relative number fluctuations and phase correlation between two cavities in a dimer
is nonmonotoneous as function of � in the canonical regime. For extended 2D
lattices, first results show a slower spacial decay of correlations than in 1D lattices,
suggesting the presence of a Berezinskii-Kosterlitz-Thouless (topological) phase
transition. Results for the grand-canonical regime correspond to the equilibrium
result for the ideal Bose gas (some early analytical work in this regard was
performed in Ref. [340]).

Apart from the interest from a purely condensed-matter physics point of view,
an important feature of arrays of coupled photon condensates is that these may
be mapped on spin models and as such could be applicable to solve complex
(NP-hard) optimization problems by finding their ground state [235, 338] (see also
section 6.3).

12.3.2 Improved characterization of the number fluctuations

We have seen in subsection 12.1.3 that an interplay between the timescales for
correlations in photon number =, and the timescale for total occupation number - ,
leads to peculiar behavior of the 6 (2) (g) function: namely a delayed antibunching
effect. In Ref. [341] this is investigated further from both a theoretical and
experimental perspective, and it is clear that depending on the system parameters,
the antibunching (6 (2) (g) < 1) is damped or oscillations take place. Also Ref. [342]
has now reported similar findings in the context of transient phase transitions.

This is also still an ongoing topic of research and even better characterizations
of the number fluctuation, and their relation to fluctuation-dissipation theorems
[343], are to appear soon.
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outlook

In Part III, we have applied the method to a photonic Bose-Einstein condensate
in a dye-molecule microcavity. More specifically, we have established a model
where quantum trajectories are solved exactly (up to Fock-basis truncation) in the
low-density parameter regime and variationally with an #Θ-variational ansatz in
the high-density regime. Along the way, we have found a new way to construct a
proper phase operator. These trajectories of the photons are coupled to stochastic
rate equations for the dye-molecules.

If no phase measurement is performed, the trajectory description for the
photon field reduces to stochastic rate equations as well. Regarding the photon
number statistics, we have shown thermodynamically and dynamically how Kerr
interactions reduce the number fluctuations and calculated the corresponding decay
of second-order correlations. The driven-dissipative nature of a realistic photon
condensate causes delayed antibunching (6 (2) (g) < 1 at large g), because of the
coupling of the photon number to the slow reservoir dynamics. In the study of the
phase properties (heterodyne unraveling on the leaking light), we have studied both
Schawlow-Townes (exponential) and Henry (Gaussian) contributions to the decay
of first-order correlations in the photon condensate, depending on the interaction
strength. As the effect of ‘phase jumps’ is similar to the standard Shawlow-Townes
effect, we found no qualitative differences in the coherence between canonical and
grand-canonical regimes. We have shown how first- and second-order coherence
times are related to the number fluctuations. These analytical formulae were
verified with the Gaussian trajectory model.

Furthermore, we have compared the numerical predictions from the trajectories
with the ones from a heuristic phasor model (HPM), originally introduced in the
context of laser physics. Despite some conceptual difficulties, there is a good
match with the exact results within the experimental parameter regimes studied.
It provides also a simple picture to distinguish phase diffusion in the canonical
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and grand-canonical parameter regimes: a random walk which is, respectively, one-
dimensional and two-dimensional in phase space, leading to a factor 2 difference
in Schawlow-Townes decay speed. An interesting open question is to what extent
the picture above changes in presence of thermo-optical effects. To study the
latter, longer evolution times are necessary, but as we have shown an approach
based on the numerically efficient heuristic phasor model is likely to be sufficient.
Another possible extension is the study of multiple modes. This can either arise
in a single-cavity (mode competition: its role could be to add some additional
fluctuations to the amount of dye-molecules, strong qualitative differences are
not expected and this approximation becomes increasingly better when the total
amount of excitations increases), or in lattices of cavities. Some steps in this
latter direction have meanwhile been taken with the introduction of a classical
field model that generalizes the HPM [322]. Finally, we have assumed here that
the absorption and emission processes are Markovian and coupling between the
photons and molecules is weak. The introduction of weak Kerr interactions can
be seen as a first-order correction on this. It remains an open question to what
extent our conclusions remain valid outside of these approximations. Because
our conclusions in strong thermal equilibrium and weak losses are similar to a
threshold laser far from equilibrium, both regarding the validity of the HPM and
the shape of the autocorrelation functions, we expect these conclusions to remain
valid for all usual parameter values for photon condensates.
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CHAPTER 13
Conclusions and Outlook

In this thesis, we have introduced a technique to study open quantum systems
by combining stochastic quantum trajectories with a Gaussian ansatz. The
numerical cost scales only quadratically with system size (number of modes)
and is independent of the occupation within a mode. The method takes into
account classical fluctuations and correlations, and in addition the dominant
quantum fluctuations and correlations (squeezing or Gaussian entanglement). It
was introduced with the study of the optical bistability and dephasing in a single
driven-dissipative Kerr cavity.

The accuracy of quantitative predictions depends on the unraveling used, and
in situations with strong number squeezing, an alternative ansatz, Gaussian in
density and phase, is more appropriate. Compared to the widely used truncated
Wigner approximation, the GTA method is not always more accurate, but it is
overall more robust. There is an additional numerical advantage in the sense that
less stochastic samples are required for convergence, but the extent to which this
differs is highly dependent on the observables of interest. In addition, the GTA
method has direct access to single-shot realizations and is therefore suited to study
the experimental process more carefully.

13.1 Results from quadratically driven lattices

In Part II, we have applied the -%-Gaussian trajectory approach to the study
of extended quadratically driven photonic lattices with more than 100 sites. In
particular, this system is interesting because it displays a second-order dissipative
phase transition as function of driving amplitude. With the GTA, we are able to
study this transition easily in more detail. First, in the low-loss regime, we have
reproduced the finding of a quantum criticality (universality class of the quantum
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Ising model), demonstrating the ability of the method to describe the relevant long-
range quantum correlations (entanglement). Secondly, in a higher-loss parameter
regime with a highly mixed steady state, which is inaccessible with other methods
(such as corner-space renormalization or the truncated Wigner approximation), the
Gaussian trajectories allow us to directly sample a relevant order parameter. Here,
we have observed a classical transition, belonging to the universality class of the
thermal Ising model. The crossover between both universality classes depending
on dissipation rate, suggests that the losses play a role analogous to the one of
temperature in an equilibrium system.

In the following step, we have studied dynamical aspects of this phase transition,
in the high-loss regime, in two different ways. First, we observe that linear quenches
in the driving amplitude lead to the formation of domains as predicted by the
Kibble-Zurek mechanism. From this, we extract the dynamical critical exponent I
that relates correlation length and time, and obtain a value consistent with the
one from metropolis dynamics for the classical Ising model. Second, from the
relaxation to the steady state, we obtain the Liouvillian gap, and have shown that
it also scales with I, with the same relations as the Hamiltonian gap in a quantum
phase transition.

13.2 Results from photon condensates

In Part III, we have studied a photonic Bose-Einstein condensate in a dye-molecule
microcavity, by treating the condensate mode as an open quantum system and
constructing a trajectory description. If one only measures photon number proper-
ties, these trajectories reduce to stochastic rate equations. On the other hand, for
the case where one is also interested in phase properties, we solve the trajectories
exactly in a truncated Fock basis at low photon numbers and variationally with an
#Θ-variational ansatz at high photon numbers. To perform the transitions between
both regimes, we have found a new way to construct a proper phase operator.
With numerical simulations, complemented by analytical derivations, we have
studied the number distribution and second and first-order temporal coherence.
Despite some conceptual issues, a heuristic phasor model has shown to lead to
accurate predictions for all these phenomena. Some of the most important findings
regarding number statistics are that interactions reduce the number fluctuations
similar to a finite reservoir size and that external losses may cause 6 (2) (g) < 1.
First-order decay is of the exponential Schawlow-Townes form in the canonical
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(small dye-molecule reservoir) regime and ‘phase jumps’ only cause a speedup by
a factor two in the opposite grand-canonical limit (infinite dye-molecule reservoir).
Kerr interactions will introduce an addition Gaussian Henry diffusion.

13.3 The GTA method: overall outlook

We have thus, after first proof-of-principle studies on a single driven-dissipative
Kerr cavity, applied the GTA method to more complicated systems where it has
demonstrated to be a useful novel tool to access the physics. Of course, these
are only the first steps and possibly the method, or variants of it, may find
application to a number of other systems. In first instance, we could think of the
possibility to use the Gaussian ansatz in the description of strongly correlated
photons to open up several ways to the application of our method in quantum
many-body physics with light. An interesting perspective for example could be
to use Gaussian trajectories to investigate the emergence of collective phenomena
in photonic lattices in presence of geometric frustration [221, 344] or disorder
[345], both regarding static and dynamical phenomena. Recently, also nonlinear
optical networks with random couplings have gained attention in the contexts of
annealing and neuromorphic computing [235, 238, 346, 347]: for these systems
the method could be useful too. Furthermore, topological photonics is currently a
large and active research field that we haven’t touched here, where the method
could possibly find applications [348]. Finally, the fact that the GTA-method
is trajectory-based makes it also applicable to systems with feedback, another
upcoming research field [155]. In fact, closely related approaches have already
been used in this context [23, 349]. Related to our study in Part II, we may also
think of addressing the true superfluid-to-mott phase transition in an incoherently
(so that there is complete phase symmetry) pumped system, especially with the
#Θ-ansatz or similar. In the parameter regimes where this could occur in a
photon condensate, we expect the HPM to work well though. But also without
photons, there may be relevant systems that could benefit from the method. This
includes even fermions in a lattice, for which some descriptions treat inelastic
scattering processes as a dissipation channel in the form of two-particle loss [79].
Also spin models can often be mapped on systems of moving particles and have
been approximated by Gaussian states, be it in a somewhat less straightforward
way [350–352]. They are also commonly used as a toy model for dissipative
phenomena, while commonly citing Rydberg atoms as a relevant experimental
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platform. Meanwhile, tensor-network approaches have found wide applicability
for such systems through. Of course, if Gaussian trajectory approaches for one
kind of systems are found suitable, then composite systems of these can also be
studied, taking into account classical and Gaussian quantum correlations between
the constituents (it would also be very interesting if methods could be devised that
include Gaussian correlations between subsystems that are by themselves tracked
differently). There are a number of thinkable ways in which the GTA method
could further be improved. One possibility is to track higher-order correlations,
for example by using higher moments to characterize the trajectory wavefunction.
This leads to a cumulant-expansion on the level of individual trajectories instead of
the wavefunction. However, the inclusion of higher moments prevents the method
to be variational (correlation schemes can be truncated, but not closed) and thus
less controlled. Sticking to the Gaussian ansatzes, one could also think of using
a different Gaussian ansatz from -% or #Θ, if it is more suitable to a particular
system. Finally, we can imagine extending the Gaussian ansatz to non-Markovian
techniques.

The extent to which these possibilities will turn out to be realized or if even
other directions will be taken, remains to be seen.
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APPENDIX A
Unravelings

As we have described in chapter 2, the evolution of an open quantum system,
conditioned on a measurement record (that can either be real or virtual), is a
stochastic process known as a quantum trajectory. Different measurement schemes
give rise to different unravelings, i.e. different properties to individual trajectories
(while the average evolution over all trajectories is the same and consistent with
the master equation). We here briefly comment on the nature of the most common
unravelings for photon losses. All measurements are considered idealized, i.e. full
efficiency, no dark counts and instantaneous.1

A.1 Photon Counting

The simplest example of an unraveling is photon counting. Here, the detector
detects discrete photons leaving the cavity, as discussed in the main text (sub-
section 2.5.1). Photon counting is an elementary experimental practice to obtain
information on the number statistics, including the occurrence of bunching and
antibunching [26]. It has also been proposed as as classroom experiment for
students [353].

A.2 Homodyne detection

In a different setup, (generalized) homodyne detection can be performed, where
the emitted light is interfered with a classical reference signal (local oscillator,
LO) resulting in the measurement of quadrature variables (-̂ or %̂ as defined in

1The formalism can in principle also be extended outside of these approximations [155]: if only
a fraction of the photons are detected for example, one can split W in multiple contributions of
which one is unraveled and the other is not, to obtain a stochastic master equation, trajectories
for non-pure states. Application to the GTA method is straightforward.
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Figure A.1: Setup for homodyne (and heterodyne) detection.

subsection 4.2.1, or a linear combination thereof). Following the discussion of Ref.
[29], the experimental setup is described more precisely as follows (see Fig. A.1).

Take the quantized input field (the light leaking from the cavity) â and the
LO 1̂. In the beamsplitter, these modes recombine to

2̂ =
√
)0̂ + 8

√
1 −)1̂

3̂ = 8
√

1 −)0̂ +
√
)1̂, (A.1)

where ) is the transmissivity and 1 −) the reflectivity. The signals measured in
the two detectors are then given by

2̂†2̂ = ) â† â +(1 −) )1̂†1̂ + 8
√
) (1 −) ) (â† 1̂ − 1̂† â)

3̂†3̂ = (1 −) ) â† â +)1̂†1̂ − 8
√
) (1 −) ) (â† 1̂ − 1̂† â) . (A.2)

As one can see, these operators are time-independent if the local oscillator has the
same frequency as the input field. Now, use for the LO mode a coherent state
1̂ = |V |48q! with large amplitude |V | and phase q!. With this substitution, the last
term in the signal operators (A.2) is proportional to

-̂q =
1
2 (â 4

−8q + â† 48q ) (A.3)

where q = q! + c/2. -̂q is a general quadrature variable, the most common ones
are the conjugate -̂ := -̂0 and %̂ := -̂c/2. There are now two possibilities for
detection of

〈
-̂q

〉
. In the so-called ordinary homodyne detection, ) ≈ 1 and only

the photon flux in detector 1 is measured. The input signal term is negligible with
respect to the other terms, and the LO-term is constant except from shot noise
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(and can hence be manually subtracted afterwards) so that only the interference
term remains. In balanced homodyne detection, a beamsplitter with ) = 0.5 is used
instead and the signals of both detectors are directly subtracted.

The corresponding jump operator of Homodyne detection is Ĵ =
√
W (â +V), where

V = |V |48q . One readily finds that by inverting this relation towards â = Ĵ√
W
− V and

substituting in (2.38), again an equation in the Lindblad form is retrieved when
absorbing a contribution √W Im[V∗ Ĵ] in the Hamiltonian. Therefore, homodyne
detection is equally valid as an unraveling of the Master equation. In practice,
because V is macroscopic, no individual photons are distinguished but a continuous
measurement of the photocurrent is performed. Thus a diffusion approximation of
the jumps is justified [6], yielding the stochastic differential equation

d |̃k 〉 =
(
−8 Ĥ dC − W2 â† â dC + 2W

〈
-̂q

〉
â 4−8q dC + √W â 4−8q d,

)
|k 〉 (A.4)

Whether ordinary or balanced detection is used has no influence on the quantum
trajectory, there only the quadrature variable that is measured is important.
Equation (A.4) can also be recast in a norm-conserving way to

d |k 〉 = − 8 Ĥ dC |k 〉 + W2

(
2
〈
-̂q

〉
â 4−8q − â† â−

〈
-̂q

〉2) dC |k 〉

+ √W
(
â 4−8q −

〈
-̂q

〉)
d, |k 〉 . (A.5)

In practical experimental settings, the use of homodyne detection schemes is
paramount in a variety of systems. A few notable examples are for the measure-
ments in quantum cryptography [354] and the detection of ‘spooky action at a
distance’ (nonlocal wavefunction collapse) [355].

A.3 Heterodyne detection

For heterodyne detection, the condition from homodyne detection that the fre-
quency of the LO matches the input field, is relaxed [9]. This is equivalent with a
q oscillating at constant frequency. Measurement information on all quadrature
variables is encoded in the signal as fourier components [155]. Also the correspond-
ing trajectory description of heterodyne detection, at sufficient detuning of the
LO, is equivalent to a situation where the light leaving the cavity passes a 50/50
beamsplitter where for half the light a homodyne measurement of - is performed
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while simultaneously a homodyne measurement of % is performed on the other
half of the photocurrent [6]. The stochastic Schrödinger equation is of the form

d |̃k 〉 =
(
−8 Ĥ dC − W2 â† â dC + W

〈
â†

〉
â dC + √W â d/ ∗

)
|k 〉 , (A.6)

where d/ = (d,- + 8 d,% )/
√

2 (d,-
2 = d,%

2 = dC and d,- d,% = 0), such that
|d/ |2 = dC . An alternative, norm-conserving expression for (A.6) is

d |k 〉 = − 8 Ĥ dC |k 〉 + W
(〈

â†
〉

â−1
2

〈
â†

〉
〈â〉 − 1

2 â† â
)

dC |k 〉

+ √W (â− 〈â〉) d/ ∗ . (A.7)

Note that there is gauge freedom involved and a variety of alternative expressions
for both homodyne and heterodyne detection schemes can be found in the literature
[6, 9, 155].

In an experimental setup, since information on two independent quadratures is
retrieved, heterodyne detection is commonly used to obtain phase information. [326,
356]. The technique has also been used for precision metrology with femtosecond
frequency combs, leading to the 2015 nobel prize in physics [357].
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APPENDIX B
Coefficients

When performing an #Θ-Gaussian ansatz, the computation of some expectation
values is less straightforward, and must sometimes even be performed perturbatively.
The following is a list of such expanded correlators that we have encountered in
the main text, with a name for convenience. The calculation goes as follows

1. Replace the expressions in brackets by their Taylor series, to obtain a power
series. To this extent, note that n̂ = 〈n̂〉 + X̂ n̂ and \̂ = 〈\̂〉 + X̂

\̂
.

2. Apply Wick’s theorem to each of these terms. Often, this works best by
doing this explicitly for some of them and find a general rule.

3. If possible, perform exact resummations. Analytical computational software
may be helpful. Of what cannot be resummed, the lowest powers of 〈n̂〉−1

must be kept (be careful with the other expectation values depending on the
problem at hand, for example in the case of Poissonian statistics, 〈X̂n X̂n〉 is
of the same order as 〈n̂〉).

For the expressions below, for expansion up to order 〈n̂〉−1 between the brackets
all Wick contractions are taken into account (resumming over all orders in X̂\ ),
and for order 〈n̂〉−2 higher order correlators between prefactor and exponential
were neglected. Similar expansions were also performed in Ref. [358].

〈
e-i \̂

〉
= 4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2 (B.1)

�1 :=
〈√

n̂ e-i \̂
〉
≈

√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2

(
1 + 1

2 〈n̂〉 (
1
2 − 8 〈X̂n X̂\ 〉sym) −

〈X̂n X̂n〉
8 〈n̂〉2

)
�2 :=

〈
X̂n
√

n̂ e-i \̂
〉
≈

√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2

[
1
2 − 8 〈X̂n X̂\ 〉sym
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+ 1
2 〈n̂〉

(
〈X̂n X̂n〉 +

1
4 −

8

2 〈X̂n X̂\ 〉sym − 〈X̂n X̂\ 〉sym
2
)

+ 3
8 〈n̂〉2

(
− 〈X̂n X̂n〉

2 + 8 〈X̂n X̂\ 〉sym 〈X̂n X̂n〉
)]

�3 :=
〈
n̂− 1

2 e-i \̂
〉
≈ 4
−8 〈\̂ 〉 − 〈X̂\ X̂\ 〉2√
〈n̂〉

[
1 + 1

2 〈n̂〉

(
−1
2 + 8 〈X̂n X̂\ 〉sym

)
+ 3 〈X̂n X̂n〉

8 〈n̂〉2

]
�4 :=

〈
n̂− 1

2 X̂\ e-i \̂
〉
≈ 4
−8 〈\̂ 〉 − 〈X̂\ X̂\ 〉2√
〈n̂〉

[
−8 〈X̂\ X̂\ 〉 −

1
2 〈n̂〉

(
〈X̂n X̂\ 〉sym +

8

2

) (
1 − 〈X̂\ X̂\ 〉

)
− 38

8 〈n̂〉2

(
2( 〈X̂n X̂\ 〉sym +

8

2 )
2 + 〈X̂n X̂n〉 〈X̂\ X̂\ 〉

)]
�5 :=

〈
n̂− 3

2 e-i \̂
〉
≈ 4
−8 〈\̂ 〉 − 〈X̂\ X̂\ 〉2√
〈n̂〉3

[
1 + 1

2 〈n̂〉

(
−3
2 + 38 〈X̂n X̂\ 〉sym

)
+ 15 〈X̂n X̂n〉

8 〈n̂〉2

]
�6 :=

〈√
n̂ X̂\ e-i \̂

〉
≈

√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2

[
−8 〈X̂\ X̂\ 〉 +

1
2 〈n̂〉

(
〈X̂n X̂\ 〉sym +

8

2

) (
1 − 〈X̂\ X̂\ 〉

)
+ 8

8 〈n̂〉2

(
2( 〈X̂n X̂\ 〉sym +

8

2 )
2 + 〈X̂n X̂n〉 〈X̂\ X̂\ 〉

)]
�7 :=

〈
X̂n n̂− 1

2 e-i \̂
〉
≈

√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2

[
1

2 〈n̂〉

(
1 − 28 〈X̂n X̂\ 〉sym

)
− 〈X̂n X̂n〉

2 〈n̂〉2

]
;

�1 :=
〈√

n̂ X̂\ X̂\ e-i \̂
〉
≈
√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2

[
(1 − 〈X̂\ X̂\ 〉) 〈X̂\ X̂\ 〉 (B.2)

− 8

2 〈n̂〉 (3 〈X̂\ X̂\ 〉 − 〈X̂\ X̂\ 〉
2)

(
〈X̂n X̂\ 〉sym +

8

2

)
− 1

8 〈n̂〉2

(
〈X̂n X̂n〉 〈X̂\ X̂\ 〉 +2( 〈X̂n X̂\ 〉sym +

8

2 )
2
)]

�2 :=
〈√

n̂ X̂n X̂\ e-i \̂
〉
≈

√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2

[
( 〈X̂n X̂\ 〉sym +

8

2 ) (1 − 〈X̂\ X̂\ 〉)

− 8

2 〈n̂〉

(
〈X̂n X̂n〉 〈X̂\ X̂\ 〉 +( 〈X̂n X̂\ 〉sym +

8

2 )
2(2 − 〈X̂\ X̂\ 〉)

)
− 3

8 〈n̂〉2
〈X̂n X̂n〉( 〈X̂n X̂\ 〉sym +

8

2 )
]

�3 :=
〈√

n̂ X̂n X̂n e-i \̂
〉
≈
√
〈n̂〉4−8 〈\̂ 〉 −

〈X̂\ X̂\ 〉
2

[
〈X̂n X̂n〉 −( 〈X̂n X̂\ 〉sym +

8

2 )
2

− 8

2 〈n̂〉

(
3 〈X̂n X̂n〉( 〈X̂n X̂\ 〉sym +

8

2 ) − 6( 〈X̂n X̂\ 〉sym +
8

2 )
3
)
− 3 〈X̂n X̂n〉

8 〈n̂〉2

]
,

�1 :=
〈

1
n̂

〉
≈ 1
〈n̂〉

(
1 + 〈X̂n X̂n〉

〈n̂〉2

)
(B.3)
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�2 :=
〈

1
n̂ +1

〉
≈ 1
〈n̂〉 +1

(
1 + 〈X̂n X̂n〉
(〈n̂〉 +1)2

)
. (B.4)
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APPENDIX C
Numerical implementation

C.1 Software

All numerical simulations shown in this thesis were carried out in matlab (versions
2016b-2019b). For the trajectory description of the photon condensate, .mex (C++)
executables were used for a speed-up. The most important part in optimizing
the performance of this code was vectorization, either over samples (for single-
mode problems), or over lattice sites (many-mode problems). Some code for the
solver algorithms is already freely available online as supplementary material to
the corresponding papers, the other is available upon request. For a number of
analytical computations, Wolfram Mathematica 11 was helpful, for example in
resummation over the Wick-expanded coefficients from Appendix B, or for the
analytical expressions regarding the number fluctuations of a photon condensate
in chapter 12.

Some of the more heavy calculations were performed on a cluster of the Flemish
Supercomputing Centre (VSC), in particular the CalcUA service at the University
of Antwerp, which I also thank for the support.

C.2 Numerical solution of Stochastic processes

Regarding the convergence properties of numerical methods for Itô stochastic
differential equations, one distinguishes the strong and weak orders of convergence
? and ? ′, respectively defined by [359]

�

 ®-: − ®- (C ) ≤ � (ΔC)? (C.1)�� ( ®-: ) − �� ( ®- (C: ) ≤ � ′(ΔC)?′, (C.2)
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where ®-: is the vector of variables that are evolved, ®-: it approximation at time
C: and ΔC the numerical timestep. � are the functions of ®- in which one is
truly interested (i.e. observables). � denotes the expectation value over different
solutions. The simplest scheme is the Euler-Mayurama scheme, in which equation

d ®- = 5 ( ®-, C) dC +
∑
A

6A ( ®-, C) d,A (C.3)

is approximately solved by

®-:+1 = ®-: + 5 ( ®-: , C: )ΔC +
∑
A

6A ( ®-: , C: )Δ,A,: , (C.4)

with Δ,A,: = bA,:
√
ΔC where bA,: is a random number with standardnormal dis-

tribution. In general, (C.4) has orders of convergence ? = 1/2 and ? ′ = 1. An
alternative scheme with ? = ? ′ = 1 is the Milstein scheme, which adds terms

1
2

∑
A,8

Λ8 ®6A
(
Δ,A,:Δ,8,: − X8AΔC

)
(C.5)

to (C.4), where Λ8 = ( ®68 · m
m ®G ). At least for single-photon loss noise however,

the additional terms predicted by this scheme are exactly zero for the Gaussian
trajectories (the coefficients vanish because noise enters only the equations for {U8},
with prefactors that only depend on {D8 9 , E8 9 }) such that both orders of convergence
are one. The same holds true for the TWA for which single-photon noise is additive.
Far more advanced schemes of higher order for the numerical solution of SDEs exist,
and already a number of software packages are specialized in their implementation
[359, 360]. However, we have so far found the robustness and controllability of a
manual implementation of (C.4) to be advantageous (this furthermore facilitates
easy renormalization at every timestep).This may change in the near future as
the available software gets more mature for the solution of complex, multi-variate
SDEs.

For a jump process alone, the approach of deterministic evolution combined
with a jump when the norm has decreased to a random number has been suitable
whenever the time-separation between jumps is sufficiently larger than ΔC , as
was the case for the problems in chapter 5. For the photon condensate evolution
(chapter 11) this was not always the case, and the jump process was combined
with Wiener noise. Therefore, the proper amount of jumps must be added after
every timestep with Poissonian statistics, leading to an expression for the Gaussian
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expectation functions very similar to (C.4), with additional Poissonian noise
terms ℎ1( ®-: , C: )Δ# + ℎ2( ®-: , C: )Δ". Because this scheme is highly unstable for
the exact trajectory, we therefore take a slightly different approach. After the
deterministic-diffusive evolution with in a timestep, we add both Poisson processes
to d� = d# + d", looped through 1 . . . d� and for each of these events determine
again the nature (absorption or emission) by linear search, and perform them
consecutively on |k 〉, an approach inspired by Ref. [333]. Finally, note also that
generation of random numbers with Poissonian statistics can be computationally
much slower than random numbers from a uniform or normal distribution. In the
situation where the probability that Δ# > 1 is negligible, it is therefore possible to
approximate instead Δ# ≈ Θ [W 〈n̂〉 ΔC − Z ], where we assume that the expectation
value of d# is W 〈n̂〉 dC , Z a random number from a uniform [0, 1] distribution and
Θ the Heaviside theta-function.
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List of publications

• poster Gaussian Quantum Trajectories: a variational Monte Carlo method
for efficient simulation of open quantum systems; Nano and quantum optics,
Les Houches, 2017.

• presentations and posters in Theory@sea, Oostduinkerke in 2017 and 2018.

Miscellaneous

• Teaching assistant Mathematical methods in theoretical physics, 2016-2020.

• Secretary of the Antwerp Young Mind Section of the European Physical
Society 2016-2019; I was especially involved in organizing the popular Sci-
ence quiz in 2018 and 2019, in collaboration with Flemish chemistry and
engineering organizations (jong-KVCV and ie-net Jongeren).

• Courses followed include Leadership and Teamwork, Project management,
Applied Communication, Analytic storytelling, Grow your future career, Opti-
mizing cooperation in international groups, Cluster computing, Programming
techniques for matlab and for Julia.
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