Universiteit Antwerpen Schrödinger's money: The strange marriage between quantum mechanics and finance

From left to right: Dr. S. Klimin, L. Liang, W. O’Kelly, prof.dr. J.T.Devreese, M. Baeten, JT, W. Casteels, K. Putteneers, prof.dr.em. F. Brosens, D.Lemmens, B.Anthonis, N. Van den Broeck, T. Verhulst, prof.dr. M. Wouters, J.Devreese, D.Sels

Part I: path integrals in quantum mechanics

Two alternatives: add the amplitudes

$$
\phi_{A B}=\phi_{1}+\phi_{2}
$$

Many alternatives: add the amplitudes

$$
\phi_{A B}=\left\langle r_{B}(T) \mid r_{A}(0)\right\rangle=K\left(r_{B}, T \mid r_{A}, 0\right)
$$

$$
\phi_{A B}=\int \mathcal{D} x \phi[x(t)]
$$

The amplitude corresponding to a given path $x(t)$ is

$$
\phi[x(t)]=\exp \left\{\frac{i}{\hbar} S[x(t)]\right\}
$$

Here, S is the action functional:

$$
S[x(t)]=\int_{0}^{T} L(x, \dot{x}, t) d t
$$

With L the Lagrangian, eg.

$$
L(x, \dot{x}, t)=\frac{m}{2} \dot{x}^{2}-V(x)
$$

This prescription contains both
classical mechanics (as a limit) :

Only when neighbouring paths have the same action functional

$$
\rightarrow \quad \delta \mathcal{S}=0
$$

will $\exp \{-i S[\mathbf{r}(t)] / \hbar\}$ interfere constructively.

Cannon balls: a quantum mechanical treatment.
\longrightarrow and "Schrödinger-picture" quantum mechanics

$$
\begin{aligned}
K\left(\mathbf{r}_{1}, t \mid \mathbf{r}_{0}, 0\right) & =\left\langle\mathbf{r}_{1}\right| \exp \{i \hat{H} t / \hbar\}\left|\mathbf{r}_{0}\right\rangle \\
& =\sum_{n} \psi_{n}\left(\mathbf{r}_{1}\right) \psi_{n}\left(\mathbf{r}_{0}\right) \exp \left\{-i E_{n} t / \hbar\right\}
\end{aligned}
$$

The particle propagator or Green's function

$$
\begin{aligned}
K\left(\mathbf{r}_{1}, t \mid \mathbf{r}_{0}, 0\right) & =\left\langle\mathbf{r}_{1}\right| \exp \{i \hat{H} t / \hbar\}\left|\mathbf{r}_{0}\right\rangle \\
& =\sum_{n} \psi_{n}\left(\mathbf{r}_{1}\right) \psi_{n}\left(\mathbf{r}_{0}\right) \exp \left\{-i E_{n} t / \hbar\right\}
\end{aligned}
$$

$$
t=i \hbar \beta
$$

$$
\sum_{n} \psi_{n}\left(\mathbf{r}_{1}\right) \psi_{n}\left(\mathbf{r}_{0}\right) \exp \left\{-\beta E_{n}\right\}
$$

$$
=\rho\left(\mathbf{r}_{1}, \mathbf{r}_{0} ; \beta\right)
$$

The density matrix
as a Feynman path integral:

$$
K\left(\mathbf{r}_{1}, t \mid \mathbf{r}_{0}, 0\right)
$$

$$
=\int \mathcal{D} r \exp \left\{\frac{i}{\hbar} \int_{0}^{t}\left(\frac{m \dot{r}^{2}}{2}-V(\mathbf{r})\right) d t^{\prime}\right\}
$$

as a 'Wiener' path integral

Part II: Finance, and trading things in the future

Choose between two rewards:

(a) $100 €$, one year from now (b) $100 €$, right now

Conclusion: Money now is worth more than money in the future.

Question \#2

Choose between two rewards:

(a) $100 €$, one year from now
(b) $0 €$, right now

Conclusion: Future money is worth something between 0\% and 100% of money now.

Apply bracketing to find the amount where people find (a) and (b) equally attractive.

The rational answer: discount the value at the interest rate for money savings.

At $r=0.02$, the value now of "100 euro one year from now" is 98.04 euro now.
Homogeneous in time ("time consistency"): the preference of the options do not change when shifting both times

Application to the student - beer relationship

The reason exponential discounting of future prices is not valid is RISK
Main question in finance: how much is this 'right to buy in the future' worth?

A better deal (for you) is to buy the RIGHT, not the obligation to buy steel at 630 EUR/tonne one year from now.

This is called an 'option contract'. All types exist, eg.also the right to sell, with different times, and for different underlying assets.

2011 data on money. Each block
 $=1000$ billion dollar ($10^{12} \$$)

$\begin{gathered} \text { World GDP } \\ \mathbf{\$ 6 2 , 9 0 0 , 0 0 0 , 0 0 0 , 0 0 0} \end{gathered}$		
$\begin{aligned} & \text { North America } \\ & \$ 17,850,000,000,000 \end{aligned}$	$\begin{gathered} E U \\ \$ 16,240,000,000,00 \end{gathered}$	
United States \$14,530,000,000,000 federal tax : 2.2 T \$		$\begin{aligned} & \text { Asia } \\ & \text { \$17,530,000,000,000 } \\ & \text { Lடடடடட } \\ & \text { Lடட } \end{aligned}$
$\begin{array}{\|cc\|} \hline \text { spending : } 3.4 \mathrm{~T} \$ & \text { LடL } \\ & \text { South America } \\ \$ 3,070,000,000,000 \end{array}$	$\underset{\$ 1,610,000,000,000}{\text { Lfrica }}$	$\begin{aligned} & \text { ■ Oceania } \\ & \$ 1,310,000,000,000 \end{aligned}$

5 years of derivatives trading corresponds to a market equivalent to the total GDP of the human race since the beginning of civilization.


```
lol
```


Market value of all companies listed in stock exchanges:
\$45,000,000,000,000
Banks: \$7,000,000,000,000

Part III: Path integrals in finance

The 'standard model' of option pricing

Rather than 2 possible futures, there are many - but they can bee seen as a limit of many small 'binomial' steps
\rightarrow according to the central limit theorem, the outcome is Gaussian fluctuations

Black-Scholes-Merton model:

leads to $\exp \{r T\}$
cf. "exponential" discounting

We work with the logreturn $x(t)=\log \left(s_{t} / s_{0}\right)$ to obtain $d x=\left(r-\sigma^{2} / 2\right) d t+\sigma d W$
This corresponds to a diffusion with diffusion constant σ^{2} and drift ($r-\sigma^{2} / 2$) per unit time.

$$
P\left(x_{T}\right)=\frac{1}{\sqrt{4 \pi \sigma^{2} T}} \exp \left\{-\frac{\left[x-\left(r-\sigma^{2} / 2\right) T\right]^{2}}{2 \sigma^{2} T}\right\}
$$

The 'standard model' of option pricing

The probability to end up in X_{T} is also given by the sum over all paths that end up there, weighed by the probability of these paths

The 'standard model' of option pricing

The probability to end up in X_{T} is also given by the sum over all paths that end up there, weighed by the probability of these paths

Many refs: Dash, Linetsky, Rosa-Clot, Kleinert,...
option price $=e^{-r T} \mathbb{E}[$ payoff $]$

$$
=e^{-r T} \int_{-\infty}^{\infty} \text { payoff }\left[x_{T}\right] K\left(x_{T}, T \mid 0,0\right) d x_{T}
$$

$$
\longleftarrow K\left(x_{T}, T \mid 0,0\right)=\frac{1}{\sqrt{4 \pi \sigma^{2} T}} \exp \left\{-\frac{\left[x-\left(r-\sigma^{2} / 2\right) T\right]^{2}}{2 \sigma^{2} T}\right\}
$$

1997 nobel prize in economics

\rightarrow Board members of "Long-Term Capital Management", which initially made 40\% return on investment as first users of the Black-Scholes model. Until in 1987 it lost all of its $\$ 4.6$ billion.

Fisher Black \& Myron Scholes, "The Pricing of Options and Corporate Liabilities". Journal of Political Economy 81 (3): 637-654 (1973).
Robert C. Merton, "Theory of Rational Option Pricing", Bell Journal of Economics and Management Science (The RAND Corporation) 4 (1): 141-183 (1973).

Part IV: Beyond the standard model \& the need for path integrals
option price $=e^{-r T} \mathbb{E}[$ payoff $]$

$$
=e^{-r T} \int_{-\infty}^{\infty} \text { payoff }\left[x_{T}\right] K\left(x_{T}, T \mid 0,0\right) d x_{T}
$$

Free particle propagator \Rightarrow Black-Scholes option price
$\longleftarrow K\left(x_{T}, T \mid 0,0\right)=\frac{1}{\sqrt{4 \pi \sigma^{2} T}} \exp \left\{-\frac{\left[x-\left(r-\sigma^{2} / 2\right) T\right]^{2}}{2 \sigma^{2} T}\right\}$

Problem 1: The fluctuations are not Gaussian

Problem 2: Not all options have a payoff that depends only on $\mathrm{x}(\mathrm{t}=\mathrm{T})$, many options have a path-dependent payoff, i.e. payoff is a functional of $x(t)$.
option price $=e^{-r T} \mathbb{E}[$ payoff $]$

$$
=e^{-r T} \int_{-\infty}^{\infty} \text { payoff }\left[x_{T}\right] K\left(x_{T}, T \mid 0,0\right) d x_{T}
$$

Free particle propagator \Rightarrow Black-Scholes option price
$\longleftarrow K\left(x_{T}, T \mid 0,0\right)=\frac{1}{\sqrt{4 \pi \sigma^{2} T}} \exp \left\{-\frac{\left[x-\left(r-\sigma^{2} / 2\right) T\right]^{2}}{2 \sigma^{2} T}\right\}$

Problem 1: The fluctuations are not Gaussian

Problem 2: Not all options have a payoff that depends only on $\mathrm{x}(\mathrm{t}=\mathrm{T})$, many options have a path-dependent payoff, i.e. payoff is a functional of $\mathrm{x}(\mathrm{t})$.

Asian option:
payoff is a function of the average of the underlying price?

two particle problem

The Heston model treats the variance as a second stochastic variable, satisfying its own stochastic differential equation:

$$
\begin{aligned}
\text { call option price } & =e^{-r T} \iint \operatorname{payoff}\left(x_{T}\right) K\left(x_{T}, z_{T}, T \mid x_{0}, z_{0}, 0\right) d x_{T} d z_{T} \\
\text { with payoff }\left(x_{T}\right) & =\max \left(s_{0} e^{x_{T}}-k, 0\right)
\end{aligned}
$$

$$
x=x_{a}+c \tau-c \frac{c_{2}}{\kappa} e^{-\kappa \tau}+c \frac{c_{3}}{\kappa} e^{\kappa \tau}
$$

two particle problem

Using the prescription related before, the stochastic differential equations can be rewritten as an infinitesimal-time propagator, from which a Lagrangian can be identified (introducing $\left.z=(v / \theta)^{1 / 2}\right)$:
$\mathcal{K}\left(x_{0}, z_{0}, 0 \mid x_{T}, z_{T}, T\right)$

$$
\uparrow=A \int \mathcal{D} z[t] \int \mathcal{D} x[t] \exp \left\{-\int_{0}^{T} \frac{\dot{x}^{2}}{2 \theta z^{2}} d t\right\} \exp \left\{-\int_{0}^{T}\left(\frac{1}{2 m} \dot{z}^{2}+a z^{2}+\frac{b}{z^{2}}\right) d t\right\}
$$

the transition probability for a price and volatility to go from x_{0}, z_{0} at time $t=0$ to x_{T}, z_{T} at T (details: D.Lemmens, M. Wouters, JT, S. Foulon, Phys. Rev. E 78, 016101 (2008)).

A) Stochastic Volatility

* Heston model:

$$
\left\{\begin{array}{l}
d x=\left(r-\sigma^{2} / 2\right) d t+\sqrt{v} d W_{1} \\
d v=\kappa(\theta-v) d t+\sigma_{v} \sqrt{v} d W_{2}
\end{array}\right.
$$

* Hull-White model

$$
\left\{\begin{array}{l}
d x=\left(r-\sigma^{2} / 2\right) d t+\sigma d W_{1} \\
d \sigma=\kappa(\theta-\sigma) d t+\sigma_{v} d W_{2}
\end{array}\right.
$$

* Exponential Vasicek model

$$
\left\{\begin{array}{l}
d x=\left(r-\sigma^{2} / 2\right) d t+\sigma d W_{1} \\
d \sigma=\sigma\left[\beta(a-\ln \sigma)+\gamma^{2} / 2\right] d t+\gamma \sigma d W_{2}
\end{array}\right.
$$

B) Jump Diffusion (and Levy models)

$$
d s_{t}=s_{t} r d t+s_{t} \sigma d W+\left(e^{J}-1\right) s_{t} d N_{t}
$$

H. Kleinert , Option Pricing from Path Integral for Non-Gaussian Fluctuations. Natural Martingale and Application to Truncated Lévy Distributions, Physica A 312, 217 (2002).

Improvements to Black-Scholes
...translate into physical actions
...to which quantum mechanics solving techniques can be applied
A) Stochastic Volatility

1. Heston model
free particle coupled to
exact solution radial harmonic oscillator
B) Stochastic volatiltiy + Jump Diffusion
2. Exponential Vasicek model
3. Kou and Merton's models
particle in an exponential gauge field generated by free particle
particle in complicated potential (not previously studied)
perturbational
(Nozieres - Schmitt-Rink expansion)
variational (Jensen-Feynman variational principle)

References

1. D. Lemmens, M. Wouters, J. Tempere, S. Foulon, Phys. Rev. E 78 (2008) 016101.
2. L. Z. Liang, D. Lemmens, J. Tempere, European Physical Journal B 75 (2010) 335-342.
3. D. Lemmens, L. Z. J. Liang, J. Tempere, A. D. Schepper, Physica A 389 (2010) 5193 - 5207.

> Barrier options: contract becomes void if price goes above/below some value
For such options, the price is given by

$$
\text { option price }=e^{-r T} \int_{0}^{\infty}\left(\int \mathcal{D} x(t) \text { payoff }[x(t)] e^{-\mathcal{S}[x(t)]}\right) d x_{T}
$$

Feynman-Kac 'interpretation' \rightarrow include payoff in the path weight:

$$
\begin{aligned}
\text { option price } & =e^{-r T} \int_{0}^{\infty}\left(\int \mathcal{D} x(t) e^{-\mathcal{S}[x(t)]-\ln (\text { payof } f)}\right) d x_{T} \\
& =e^{-r T} \int_{0}^{\infty}\left(\int \mathcal{D} x(t) e^{-\mathcal{S}_{\text {new }}[x(t)]}\right) d x_{T}
\end{aligned}
$$

Density of daily IBM returns

Fluctuating paths in finance are described by stochastic models, which can be translated to Lagrangians for path integration.

Path integrals can solve in a unifying framework the two problems of the 'standard model of finance':

1/ The real fluctuations are not gaussian 2/ New types of option contracts have pathdependent payoffs

D. Lemmens, M. Wouters, JT, S. Foulon, Phys. Rev. E 78, 016101 (2008);
L. Z. J. Liang, D. Lemmens, JT, European Physical Journal B 75, 335-342 (2010);
D. Lemmens, L. Z. J. Liang, JT, A. D. Schepper, Physica A 389, 5193-5207 (2010);
J.P.A. Devreese, D. Lemmens, JT, Physica A 389, 780-788 (2010);
L. Z. J. Liang, D. Lemmens, JT, Physical Review E 83, 056112 (2011).

Closing remark \#1

How can we choose between the zoo of models? Various models have been proposed to include various propertie or specific characteristic of financial time series, such as:

* short memory of the returns
* long memory of the volatility
* heavy-tails in the return distribution
* jumps
* scale-free behavior of logreturns near crash

Approach A: Superstatistics to discriminate between stochastic volatility models
a method to "deconvolute" the underlying distribution of volatilities from the time series

Approach B: Game theory on scale-free networks as microscopic theory to generate time series

What 'econophysics' is not

"I don't believe talks about econophysics at conferences. Physicists who really worked out a predictive model of the market won't be found at conferences. They'd be on some tropical island keeping quiet about it."
(Larry Schulman, path integral conference Antwerpen 1999)
"Econophysics cannot tell you when exactly the market will crash, just like elasticity theory and tribology cannot predict where exactly on the mountain you will fall if you climb it using beach slippers. Nevertheless elasticity theory and tribology have a lot to say about beach slippers."
(Eugene Stanley, APS March meeting 2008)

$T Q$
\checkmark

Additional material

More complicated payoffs

Other example: Timer options in the Heston framework
Timer options have an uncertain expiry time, equal to the time at which a certain "variance budget" has been used up)

A Duru-Kleinert transformation allows to introduced a warped spacetime, linking real time and variance budget. This results in a particle in a Kratzer potential, allowing an exact solution.

More complicated payoffs

Other example: Timer options in the Heston framework
Timer options have an uncertain expiry time, equal to the time at which a certain "variance budget" has been used up)

Leads also to new formulas for estimating the maximum exposure time in an environment with fluctuating radioactivity

The probability density function for a given dose D to be reached at time T_{D}, as a function of T_{D}. The colours correspond to $D=10, . ., 60$ in steps of 10 .

The 'standard model' of option pricing

What is the transition probability for a price to go from x_{a} at time t_{a} to x_{b} at t_{b} ?

$$
K\left(x_{T}, T \mid x_{0}, 0\right)=\frac{1}{\sqrt{4 \pi \sigma^{2} T}} \exp \left\{-\frac{\left[x_{T}-x_{0}-\left(r-\sigma^{2} / 2\right) T\right]^{2}}{2 \sigma^{2} T}\right\}
$$

Calculating the path integral: time slicing

$$
\mathcal{S}\left[\mathbf{r}_{0}, . ., \mathbf{r}_{N}\right]=\sum_{j=1}^{N} \frac{m}{2} \frac{\left(\mathbf{r}_{j}-\mathbf{r}_{j-1}\right)^{2}}{\left(t_{j}-t_{j-1}\right)}+\sum_{j=1}^{N} V\left(\frac{\mathbf{r}_{j}+\mathbf{r}_{j-1}}{2}\right)
$$

Ultracold gases are used as a quantum

 simulator to model the polaron$$
\begin{gathered}
\hat{H}_{p o l}=\frac{\hat{p}^{2}}{2 m_{I}}+\sum_{\mathbf{k} \neq 0} \hbar \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}+\sum_{\mathbf{k} \neq 0} V_{\mathbf{k}} e^{i \mathbf{k} \cdot \hat{\mathbf{r}}}\left(\hat{b}_{\mathbf{k}}+\hat{b}_{-\mathbf{k}}^{\dagger}\right) \\
\hbar \omega_{\mathbf{k}}=c k \sqrt{1+(\xi k)^{2} / 2} \\
V_{\mathbf{k}}=\sqrt{N_{0}}\left[\frac{(\xi k)^{2}}{(\xi k)^{2}+2}\right]^{1 / 4} g_{I B}
\end{gathered}
$$

Prof.dr. Widera's research group: probing Cs atoms in Rb condensate

$$
\text { value }(\text { now })=\exp (-r T) \text { value(T later })
$$

Exponential discounting

Compare:

Do you prefer:

(a) $100,000 €$ in 21 years
\longleftarrow The most prominent choice
(b) $98,039 €$ in 20 years
to

Do you prefer:

(a) $100^{\prime} 000 €$ in 1 year
(b) 98 '039 € now

The most prominent choice
\Rightarrow Human psychology does not work with exponential discounting

Improving Black-Scholes: stochastic volatility

For the uncorrelated system, it is worth simplifying the notation again, and introducing $z=(v / \theta)^{1 / 2}$.

What is the transition probability for a price and volatility to go from $\mathrm{x}_{0}, \mathrm{z}_{0}$ at time $\mathrm{t}=0$ to $\mathrm{x}_{\mathrm{T}}, \mathrm{z}_{\mathrm{T}}$ at T ?

$$
\mathcal{K}\left(x_{0}, z_{0}, 0 \mid x_{T}, z_{T}, T\right)=\int \mathcal{D} x[t] \mathcal{D} z[t] \exp \{-\mathcal{S}\}
$$

$\mathcal{K}\left(x_{0}, z_{0}, 0 \mid x_{T}, z_{T}, T\right)$

$$
\left.\begin{array}{l}
=A \int \mathcal{D} z[t] \int \mathcal{D} x[t] \exp \left\{-\int_{0}^{T} \frac{\dot{x}^{2}}{2 \theta z^{2}} d t\right\} \exp \left\{-\int_{0}^{T}\left(\frac{1}{2 m} \dot{z}^{2}+a z^{2}+\frac{b}{z^{2}}\right) d t\right\} \\
\text { time-slicing + gaussian integrations } \\
\left\{\mathrm{t}_{1}, \mathrm{x}_{1}, \mathrm{z}_{1}\right\}, \ldots,\left\{\mathrm{t}_{\mathrm{N}-1}, \mathrm{x}_{\mathrm{N}-1}, \mathrm{Z}_{\mathrm{N}-1}\right\}
\end{array}\right\} \begin{aligned}
& \frac{1}{\sqrt{2 \pi \theta}} \exp \left(\frac{-x_{T}^{2}}{2 \theta \int_{0}^{T} z^{2} d \tau}\right)=\int d k \exp \left\{i k x_{T}\right\} \exp \left\{-k^{2} \frac{\theta}{2} \int_{0}^{T} z^{2} d t\right\}
\end{aligned}
$$

Classical: add the probabilities

Improving Black-Scholes: stochastic volatility

For the uncorrelated system, it is worth simplifying the notation again, and introducing $z=(v / \theta)^{1 / 2}$.

What is the transition probability for a price and volatility to go from $\mathrm{x}_{0}, \mathrm{z}_{0}$ at time $\mathrm{t}=0$ to $\mathrm{x}_{\mathrm{T}}, \mathrm{z}_{\mathrm{T}}$ at T ?

$$
\mathcal{K}\left(x_{0}, z_{0}, 0 \mid x_{T}, z_{T}, T\right)=\int \mathcal{D} x[t] \mathcal{D} z[t] \exp \{-\mathcal{S}\}
$$

$\mathcal{K}\left(x_{0}, z_{0}, 0 \mid x_{T}, z_{T}, T\right)$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \exp \left[\frac{-x_{T}}{2}+\frac{\kappa^{2} \theta}{\sigma^{2}} T\right] \\
& \int_{-\infty}^{+\infty} \exp \left[i k x_{T}+z_{0}^{2}\left(\begin{array}{c}
\frac{k}{4 \sigma^{2}}-\frac{\sqrt{\frac{1}{4}+\frac{k^{2}}{\sigma^{2}}+k^{2}}}{4 \sigma} \\
\operatorname{coth}\left(\frac{\sigma}{2} \sqrt{\frac{1}{4}+\frac{k^{2}}{\sigma^{2}}+k^{2}} T\right) \\
\left.\left.+\frac{\left(\frac{1}{4}+\frac{k^{2}}{\sigma^{2}}+k^{2}\right)}{4 \sinh ^{2}\left(\frac{\sigma}{2} \sqrt{\frac{1}{4}+\frac{k^{2}}{\sigma^{2}}+k^{2}} T\right)\left(\kappa+\sigma \sqrt{\frac{1}{4}+\frac{k^{2}}{\sigma^{2}}}+k^{2} \operatorname{coth}\left(\frac{\sigma}{2} \sqrt{\frac{1}{4}+\frac{k^{2}}{\sigma^{2}}+k^{2}} T\right)\right)}\right)\right]
\end{array}\right)\right] \\
& \left(\frac{\sqrt{\frac{1}{4}+\frac{\kappa^{2}}{\sigma^{2}}+k^{2}}}{\frac{\frac{\kappa}{\sigma}}{\sigma} \sinh \left(\frac{\sigma}{2} \sqrt{\frac{1}{4}+\frac{\kappa^{2}}{\sigma^{2}}+k^{2}} T\right)+\sqrt{\frac{1}{4}+\frac{\kappa^{2}}{\sigma^{2}}+k^{2}} \cosh \left(\frac{\sigma}{2} \sqrt{\frac{1}{4}+\frac{\kappa^{2}}{\sigma^{2}}+k^{2}} T\right)}\right)
\end{aligned}
$$

