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Memory in the polaron problem Variational path integral treatment

Feynman’s seminal idea [1,2] was to propose a simple analytical model action that could

hopefully closely simulate the behavior of the difficult effective polaron action:

and then write down a variational inequality for the free energy of the effective action:

This simple variational approach yields remarkable agreement with computationally

demanding Diagrammatic Monte Carlo (DiagMC) calculations [8]:
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This point of view has proven to be very useful for variational approaches in the literature,

where usually specific choices for model environments are proposed [1,2,3]. One famous

example is the polaron problem where an impurity is interacting with the excitations of

some environment, in many cases described through the Fröhlich model [4]:

Conclusion

The long-lasting supremacy of the variational path integral approach for the Fröhlich model

has been recently questioned with the advent of the more exotic Bogoliubov-Fröhlich

Hamiltonian in the context of the Bose polaron problem. It was found that Feynman’s

approach in its original formulation completely fails to capture the behavior of even the

ground state energy.

In this work we have shown that by combining two previously existing ideas in the literature

[11,12] and applying them to the Bogoliubov-Fröhlich model we obtain major improvements

that provide excellent agreement with Diagrammatic Monte Carlo for this system. In doing

so, we show that the path integral approach remains a powerful and versatile tool for

polaronic physics.

Acknowledgements: T. Ichmoukhamedov gratefully acknowledges a Ph.D. fellowship from “Fonds voor

Wetenschappelijk Onderzoek – Vlaanderen (FWO – Vlaanderen).”

Difficulties of the Bogoliubov-Fröhlich model

To tackle the Bogoliubov-Fröhlich model, two previously existing ideas have to be

combined. First, we leave Feynman’s oscillator model behind and follow [11] to consider

the most general quadratic model action:

We find that this general memory kernel action is already capable of capturing the strong

coupling limit of the Bogoliubov-Fröhlich model:

When the environment of an 

embedded system is integrated 

out in the path-integral description, 

the remaining system is described 

as having obtained an effective 

memory where the particles 

interact with their positions at 

previous times through retarded 

interactions.

The Fröhlich Hamiltonian is encountered in many different polaronic systems, such as the

optical polaron [4], the acoustic polaron [5], the ripplopolaron [6] and the more recent Bose

polaron [7]. By integrating out the environment, the Fröhlich model can be equivalently

described through an effective action functional for the impurity that now contains the

memory effects:

Here, the second term describes the induced interaction of the impurity with itself as a

consequence of integrating out the phonons. Unfortunately, even for the ground state

properties of this effective action, no analytical solutions are known to exist.

Fig. 1: The ground state energy of the Fröhlich 

model for the optical polaron (left) and the acoustic 

polaron (right) as a function of the coupling strength. 

Comparison between Feynman’s result and DiagMC. 

Figure taken for illustrative purposes from [8].

An impurity immersed in a Bose-Einstein condensate will

form the Bose polaron. Similarly to other polaronic systems,

at weak coupling the system can be described by the

Fröhlich model, using [7]:

Fig. 2: The ground state energy of the 

Bogoliubov-Fröhlich model for as a function 

of the coupling strength (left panels) and as 

a function of the momentum cutoff (right 

panel). The green dashed line is 

Feynman’s original approach [7], the red 

squares are DiagMC results [8], the red 

solid line is the Gaussian states approach 

[9], and the red dashed line is 

renormalization group theory [10].

To a large surprise it was found that in this case, suddenly

Feynman’s approach fails to capture the behavior of the

ground state energy, and even more powerful approaches

yield some remaining discrepancies.

Improving Feynman’s approach

Fig. 4: The ground state energy of the Bogoliubov-Fröhlich model at weak to 

intermediate coupling (left panel) and as a function of the momentum cutoff (right 

panel), comparing the general memory kernel approach including perturbative 

corrections (magenta) with DiagMC (red).

Fig. 3: The ground 

state energy of the 

Bogoliubov-Fröhlich 

model at strong 

coupling, comparing 

the general memory 

kernel approach (blue) 

with DiagMC (red).

However, at intermediate coupling it turns out that we still have to include corrections

around the variational solution [12]:
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