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Samenvatting

Faseovergangen in gedreven-dissipatieve veeldeeltjes kwantum-
systemen: Gutzwiller-kwantumtrajecten en een studie van de
geldigheid van de gemiddeld veld benadering

Het is ongeveer honderd jaar geleden dat de grote denkers van het begin van
de twintigste eeuw een theorie hebben geïntroduceerd die de wetten van de fysica
op de kleinste schaal behandelt. De nood aan de ontwikkeling van deze theorie
vond zijn oorsprong in het falen van de klassieke fysica om fenomenen als het
spectrum van een zwarte straler en het foto-elektrisch effect te beschrijven. Een
cruciale observatie was dat licht kan worden gediscretiseerd in kleine pakketjes en-
ergie, energiekwanta, die we nu fotonen noemen. Dit is ook waar de baanbrekende
theorie de oorsprong van zijn naam vindt: kwantumfysica. Ze is gebaseerd op de
verbijsterende notie dat een foton zich als een golf en als deeltje kan gedragen. Uit
het dubbele spleet experiment is overigens gebleken dat elk object dat klein genoeg
is, zoals een elektron, ook zulk gedrag vertoont. Bovendien hangt het gedrag in
hoge mate af van het feit of het wordt geobserveerd of niet, evenals van de manier
waarop het wordt geobserveerd. Maar dat is niet alles: volgens de regels van de
kwantumfysica kan een object zich in meerdere toestanden tegelijk bevinden. Denk
bijvoorbeeld aan het beroemde gedachte-experiment van “Schrödingers kat”, maar
dan met een heel kleine kat. Deze kwantumtheorie, die ons voorziet van wetten
voor materie op de kleinste schaal, heeft geleid tot een revolutie in de fysica. Ze
opent een enorm perspectief aan mogelijkheden voor theoretisch en experimenteel
onderzoek en technologische vooruitgang. Ze vormt de basis van geavanceerde
technologieën, bijvoorbeeld vanwege het vermogen om de werking van halfgeleiders
te beschrijven.

In de afgelopen decennia hebben experimentele vooruitgang en technologische
verbeteringen toegang gegeven tot een hele reeks kwantumsystemen die zeer
nauwkeurig kunnen worden gecontroleerd. Naast het gebruik van kwantumfysica
om fysische verschijnselen te verklaren en te beschrijven, zijn onderzoekers in staat
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een hele reeks interessante kwantumsystemen te ontwikkelen en hun eigenschappen
te benutten om allerlei toepassingen te bedenken. Dit heeft geleid tot de verkenning
van nieuwe kwantumtechnologieën zoals kwantumcomputing en kwantumsimulatie.
Hiernaar wordt vaak gerefereerd als een nieuwe revolutie in de wereld van de
kwantumfysica, namelijk de tweede kwantumrevolutie.

Een veelheid aan systemen die van belang zijn voor kwantumsimulatie en
kwantumtechnologieën bevinden zich in het gebied van kwantumoptica. Dit is
de theorie die beschrijft hoe licht op kwantumniveau interageert met materie.
Een eigenschap van kwantumoptische systemen is dat licht de neiging heeft om
gemakkelijk naar een omgeving te worden gedissipeerd. Anders gezegd, fotonen
kunnen vrij gemakkelijk uit het systeem van interesse ontsnappen. Energieverliezen
zijn hierbij onvermijdelijk. Een dergelijk systeem wordt een open kwantumsys-
teem genoemd en vereist een beschrijving die fundamenteel verschilt van gesloten
kwantumsystemen waar dergelijke verliezen niet aanwezig zijn.

De vooruitgang in de beschikbare experimentele platformen en het vermogen
om uitgebreide systemen experimenteel te bestuderen, hebben ook geleid tot een
verhoogde interesse in de theoretische beschrijving van deze veeldeeltjes open
kwantumsystemen. Een moeilijkheid in de theoretische studie is de schaarste aan
exacte analytische oplossingen. Dit hangt samen met het ontbreken van het concept
van vrije energie in deze open systemen. Daarom is men meestal gedwongen om
de dynamica van deze systemen numeriek te simuleren. Echter, net als bij gesloten
kwantumsystemen, loopt men al snel tegen de beperkingen aan van een zeer snel
groeiende Hilbertruimte waarmee rekening moet worden gehouden als het systeem
wordt vergroot. Neem bijvoorbeeld een veeldeeltjessysteem dat bestaat uit een
aantal twee-niveausystemen: al voor een klein aantal wordt dit snel onhandelbaar
op hedendaagse computers. Exacte (numerieke) oplossingen zijn daardoor meestal
beperkt tot systemen van ongeveer twintig twee-niveausystemen. Voor systemen
met meer dan twee niveaus zijn exacte oplossingen al snel volledig onhaalbaar.
Bovendien, als men de dichtheidsmatrix rechtstreeks wil oplossen of als men in
het Liouvillian-superoperatorformalisme wil werken, wordt de beperking zelfs nog
strenger. Omdat men gewoonlijk geïnteresseerd is in de thermodynamische limiet,
b.v. voor de studie van faseovergangen, is dit uiteraard een grote beperking.

Over het algemeen moet men dus zijn toevlucht nemen tot benaderingsmeth-
oden om de fysica van deze systemen te beschrijven. De geldigheid van deze
benaderingen is natuurlijk modelafhankelijk, en wordt meestal ook sterk beïnvloed
door de parameterregimes van het model. In het afgelopen decennium is er veel
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theoretisch werk geleverd om methoden te ontwikkelen die de simulatie van deze
veeldeeltjes open kwantumsystemen mogelijk maken. Deze inspanningen zijn nog
steeds aan de gang. In deze thesis zullen we ons concentreren op twee paradig-
matische systemen die in de literatuur veel interesse hebben opgewekt vanwege
hun algemeenheid. Het eerste is een model waarmee we spinsystemen kunnen
bestuderen: het XYZ anisotrope Heisenberg-model met dissipatie. Ten tweede
bestuderen we een bosonisch systeem beschreven door het Bose Hubbard-model
met dissipatie, d.w.z. een systeem waarbij fotonen op elke site met elkaar in-
terageren en de mogelijkheid hebben om naar naburige sites te springen. Eerst
zullen we de geldigheid van de aanname van het gemiddelde veld bestuderen in
volledig geconnecteerde open kwantumsystemen. Hiertoe bekijken we een methode
die de permutationele invariantie in deze systemen benut, waardoor een exacte
kwantumbeschrijving mogelijk is tot ongeveer honderd spins. Deze methode wordt
vervolgens toegepast op het dissipatieve volledig geconnecteerde XYZ Heisenberg-
model, waarin we een dissipatieve faseovergang bestuderen die samenhangt met
het breken van een ℤ2-symmetrie. Onze berekeningen laten zien dat de gemiddeld
veld theorie in de thermodynamische limiet correct is in alle parameterregimes.
Voor een intermediair aantal spins en voor grote anisotropie vinden we echter een
significant verschil tussen de resultaten van de gemiddeld veld theorie en die van de
volledige kwantumsimulatie. Onze resultaten laten zien dat de convergentie naar de
gemiddeld veld resultaten onverwacht traag is. We hebben ook indicatoren van de
faseovergang bestudeerd die kunnen worden gebruikt voor eindige-grootte studies,
namelijk de bimodaliteitscoëfficiënt en de hoekgemiddelde-susceptibiliteit. In tegen-
stelling tot de bimodaliteitscoëfficiënt, slaagt de hoekgemiddelde-susceptibiliteit
er niet in om de overgang vast te leggen. Dit is een opvallend verschil met be-
trekking tot lager-dimensionale studies. Vervolgens passen we dezelfde methode
toe op het gedreven-dissipatieve volledig geconnecteerde Bose-Hubbard-model met
sterke niet-lineariteit en getrunceerd tot 𝑝 niveaus. We hebben geanalyseerd of
een faseovergang, overeenkomend met een multistabiliteit in de gemiddeld veld
resultaten, nog steeds aanwezig is in het volledig geconnecteerde model. Hiervoor
hebben we een toolbox in Python ontwikkeld om de tijdsevolutie van volledig
geconnecteerde 𝑝-niveau systemen te simuleren. Dit stelt ons in staat het volledig
geconnecteerde model voor toenemende systeemgroottes exact te onderzoeken. We
concentreren ons op een parameterregime waarbij de gemiddeld veld theorie tot vijf
oplossingen voorspelt, wat resulteert in een rijk fasediagram. Een stabiliteitsanalyse
heeft twee stabiele oplossingen aangetoond, alsook het ontstaan van tijdkristallijn
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gedrag. Onze volledige kwantumstudie toont bewijs voor de aanwezigheid van een
eerste-orde faseovergang, toegeschreven aan de multistabiliteit in de gemiddeld
veld oplossingen, evenals een opkomende tristabiliteit die mogelijks gerelateerd is
aan het bestaan van het tijdkristal dat in de gemiddeld veld oplossing aanwezig is.
Een studie van het spectrum van de Liouvillian laat echter geen duidelijke tekenen
zien van het ontstaan van imaginaire eigenwaarden waarvan het reële deel naar
nul gaat naarmate de systeemgrootte toeneemt.

Na de geldigheid van het gemiddelde veld te hebben bestudeerd, voeren we een
simulatiemethode in die het mogelijk maakt om verder te gaan dan de gemiddeld
veld aanname. We introduceren de cluster-Gutzwiller Monte Carlo-methode, een
kwantumtrajectbenadering waarmee zowel korte-afstandskwantumcorrelaties als
klassieke lange-afstandscorrelaties kunnen worden opgenomen. Deze methode
wordt toegepast op de studie van een dissipatieve faseovergang van een paramag-
netische naar een ferromagnetische fase in een twee-dimensionaal kubisch rooster.
De resultaten worden vergeleken met een geclusterde gemiddeld veld benadering.
Rekening houdend met roosters van eindige grootte toonden we het ontstaan van
een ferromagnetische fase, twee paramagnetische fasen en het mogelijke bestaan
van een faseovergang die volledig kwantum van aard is aan. De inclusie van korte-
afstandskwantumcorrelaties heeft een drastisch effect op het fasediagram, maar
onze resultaten tonen aan dat het gebruik van lange-afstandskwantumcorrelaties
essentieel is of dat het gebruik van meer geavanceerde methoden nodig is om de
exacte resultaten kwantitatief te beschrijven. Een onderzoek naar de suscepti-
biliteitstensor toont aan dat de reciprociteit wordt gebroken, een eigenschap die
niet wordt waargenomen in gesloten kwantumsystemen. Bovendien onderdrukt
het vergroten van het magnetische veld de magnetisatie, wat ook in schril contrast
staat met gesloten kwantumsystemen.

De cluster-Gutzwiller Monte Carlo methode wordt ook toegepast op het
gedreven dissipatieve Bose Hubbard-model. Onder invloed van klassieke lange-
afstandscorrelaties en korte-afstandskwantumcorrelaties worden de dynamische
eigenschappen in een sterk interagerend regime bestudeerd. Door het dynamische
hysteresis-oppervlak te bestuderen dat ontstaat door het sweepen door de coherente
aandrijving, laten we zien dat het fasediagram voor dit systeem in kwalitatieve
overeenstemming is met het Gutzwiller gemiddeld veld resultaat. Er zijn echter
kwantitatieve verschillen en het opnemen van klassieke en kwantumcorrelaties
veroorzaakt een significante verschuiving van de kritische parameters. Bovendien
toonden we aan dat benaderingstechnieken die steunen op een unimodale verdeling,
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zoals het gemiddelde veld en 1/𝑧 expansie, de fluctuaties in het aantal deeltjes
drastisch onderschatten.

Ten slotte presenteren we een nieuwe methode om het laaggelegen spectrum
van de Liouvillian efficiënt te bepalen. Ze biedt een uitstekende tool om de
stationaire toestand van een dissipatief systeem nauwkeurig te berekenen, en om
toegang te krijgen tot het deel van het spectrum dat het meest relevant is voor
dynamica over langere tijden. Bovendien is het met deze methode, omdat ze
gebaseerd is op tijdevolutie, mogelijk om het spectrum te berekenen voor systemen
die anders onhandelbaar zouden zijn met een exacte methode. Onze resultaten
kunnen worden uitgebreid tot generieke methoden voor tijdsevolutie, waardoor
de langzaam vervallende processen al met een relatief korte tijdsevolutie kunnen
worden beschreven.
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CHAPTER 1
Overview

In this thesis the description of many-body open quantum systems governed by a
Lindblad master equation will be studied. More specifically, questions such as the
validity of the mean-field assumption in these open system will be adressed, as
well as the influence of short-range quantum correlations and long-range classical
correlations on the steady state and the dynamics of these systems. Furthermore,
we introduce an efficient (numerical) method to calculate the low-lying spectrum
of the Liouvillian superoperator.

In part I of this thesis we discuss the theory of open quantum systems. In
chapter 2, we start by reviewing closed system time evolution and discuss how
to treat a system that is coupled to an environment, more specifically a system
which is weakly coupled to a Markovian environment. We first derive the Lindblad
master equation through physical considerations and the application of several
approximations. Thereafter, we give with an approach that is more closely con-
nected to quantum information theory, an equivalent derivation. Through this
approach we also introduce the quantum trajectory method. A discussion on
the Liouvillian superoperator follows, and finally we discuss dissipative phase
transitions. In chapter 3 we consider two paradigmatic models in the study of
many-body quantum physics with light and matter. We discuss the dissipative
XYZ Heisenberg model, as well as the driven-dissipative Bose Hubbard model.
Mean-field results are examined and several methods to go beyond the mean-field
are discussed.

In part II we will study the validity of the mean-field assumption in all-to-all
connected open quantum systems. To this end, we review a method to exploit the
permutational invariance present in these systems, allowing for an exact quantum
description, in chapter 4. In chapter 5, this is applied to the dissipative all-to-all
connected XYZ Heisenberg model where we study a dissipative phase transition
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associated with the breaking of a ℤ2 symmetry. In chapter 6 we examine the driven-
dissipative all-to-all connected Bose-Hubbard model with strong nonlinearity. We
analyze whether or not a phase transition, corresponding to a multistability in the
mean-field results, is still present in the all-to-all connected model. Furthermore,
we explore the predictiveness of the mean-field results for the dynamics of the
system in addition to its correspondence in the steady state.

After having studied the mean-field validity we introduce a simulation method
that allows to go beyond mean-field in part III. In chapter 7 we present the
cluster-Gutzwiller Monte Carlo method, a quantum trajectory approach that
allows for the inclusion of short-range quantum correlations as well as long-range
classical correlations. This method is applied to the study of a dissipative phase
transition from a paramagnetic to a ferromagnetic phase, predicted by the mean-
field approach, in a two-dimensional cubic lattice. Its results are compared with a
cluster mean-field approach. Several peculiarities with respect to closed quantum
systems are discussed. In chapter 8 the cluster-Gutzwiller Monte Carlo is applied
to the driven-dissipative Bose Hubbard model. The dynamical properties in a
strongly interacting regime are studied under the influence of short-range quantum
correlations and long-range classical correlations.

In part IV we introduce a numerical method to efficiently and exactly determine
the low-lying spectrum of the Liouvillian superoperator. In chapter 9 we discuss
the Arnoldi method and generalize its utilization to the problem of open quantum
systems described by a Lindblad master equation. The method is applied to several
systems as a proof of concept.

Finally, in part V in chapter 10 we discuss the general conclusions and outlook
of this thesis.
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CHAPTER 2
Theory of open quantum systems

It has been roughly a hundred years since the great minds of the early twentieth
century have introduced a theory dealing with the laws of physics at the smallest
scales. The need for the development of this theory found its origin in the failure
of classical physics to describe phenomena like black body radiation and the
photoelectric effect. One crucial observation was that light can be discretized in
small packets of energy, quanta of energy, which is what we now call photons. This
is also where the groundbreaking theory finds the origin of its name: quantum
physics. It constitutes the mind-boggling notions that a photon can behave like
either a wave or a particle, and any object that is small enough for that matter, e.g.
an electron, as shown by the double slit experiment. Furthermore, its behavior
highly depends on whether it is being observed or not, as well as the way it is
observed. But that is not all, according to the rules of quantum physics, an object
can be in several states at the same time, think for example of the famous thought
experiment of “Schrödinger’s cat”, but with a very small cat.

This quantum theory which provides us with laws for matter at the smallest
scales has led to a revolution in physics, opening a huge field of theoretical
and experimental research and technological advances. It lies at the core of
advanced technologies, for example because of its ability to describe the workings
of semiconductors.

In the last few decades experimental progress and technological improvements
have allowed access to a whole range of quantum systems that can be highly
controlled. Besides the usage of quantum physics to explain and describe physical
phenomena, researchers are able to engineer a whole range of interesting quantum
systems and exploit their properties to devise useful systems. This has granted
access to the exploration of new quantum technologies such as quantum computing
and quantum simulation. This is often referred to as a new revolution in the world
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of quantum physics, the second quantum revolution.
Many of the systems of interest for quantum simulation and quantum technolo-

gies are situated in the field of quantum optics. This is the theory that describes
how light interacts with matter on a quantum level. A property of quantum optical
systems is that light tends to be easily dissipated to an environment. Differently
said, photons can escape quite easily from your system of interest and energy losses
are unavoidable. Such a system is called an open quantum system, and requires a
description that is fundamentally different from closed quantum systems where
such losses are not present. In this chapter we will give a short summary of the
time evolution in closed quantum systems and subsequently move on to discuss
the theory of open quantum systems in more detail.

2.1 Closed system time evolution

The theory of closed quantum systems is part of the curriculum of any aspiring
physicist. In this chapter we will give a very short overview of the basics of this
theory [4, 5]. The postulates of quantum mechanics dictate that the time evolution
of a state |𝜓 (𝑡)〉 of a quantum system governed by a Hamiltonian 𝐻𝑆 (𝑡) is given
by the Schrödinger equation

𝑑

𝑑𝑡
|𝜓 (𝑡)〉 = −𝑖𝐻𝑆 (𝑡) |𝜓 (𝑡)〉, (2.1)

where we have set ℏ equal to 1, as will be the convention in this thesis. This
time evolution can also be expressed in terms of a unitary operator since the
Hamiltonian 𝐻𝑆 (𝑡) is Hermitian. The solution to the Schrödinger equation then
reads

|𝜓 (𝑡)〉 = 𝑈 (𝑡, 𝑡0) |𝜓 (𝑡0)〉, (2.2)

where the unitary operator is given by

𝑈 (𝑡, 𝑡0) = 𝑇←𝑒
−𝑖

∫ 𝑡

𝑡0
𝐻𝑆 (𝑠)𝑑𝑠

, (2.3)

with 𝑇← the time ordering operator, ensuring that in a product of operators,
they are ordered from right to left with increasing time arguments. When the
Hamiltonian is time independent this operator reduces to

𝑈 (𝑡, 𝑡0) = 𝑒−𝑖𝐻𝑆 (𝑡−𝑡0) . (2.4)

6



2.2 - Open system time evolution

Another way to describe the state of the system is through the density matrix.
It allows one to describe the quantum state of systems of which the state is not
entirely known. In other words, when the system resides in a state |𝜓𝑟 (𝑡)〉 with a
certain probability 𝑝𝑟 for a collection of pure states {|𝜓𝑟 (𝑡)〉}. Such a system is
said to be in a mixed state. The density matrix can then be written as

𝜌 (𝑡) =
∑︁
𝑟

𝑝𝑟 |𝜓𝑟 (𝑡)〉〈𝜓𝑟 (𝑡) |, (2.5)

for which the probabilities 𝑝𝑟 to be in a state |𝜓𝑟 (𝑡)〉 have to sum to one. This is
equivalent to ensuring that the density matrix represents a physical state. Formally,
a general density matrix 𝜌 has to satisfy several conditions to ensure its physicality:

• have trace equal to one: Tr [𝜌] = 1,

• be Hermitian: 𝜌 = 𝜌†,

• have nonnegative eigenvalues.

Note that the last two properties coincide with the density matrix being a positive
semidefinite matrix.

The time evolution of such a density matrix can be obtained from the Schrödinger
equation through the product rule

𝑑

𝑑𝑡
𝜌 (𝑡) = −𝑖

[
𝐻𝑆 , 𝜌 (𝑡)

]
. (2.6)

This then results in what is called the Liouville-von Neumann equation. It is this
equation, or equivalently the Schrödinger equation, that allows one to calculate
the time dynamics of a closed quantum system.

2.2 Open system time evolution

In the previous section we discussed the time evolution of a system under Hamil-
tonian dynamics, i.e. a closed quantum system. The system was described using
only its own degrees of freedom, or in other words, the system was completely
decoupled from any environment. In reality, however, this is a rather idealistic
representation as the systems of our interest are usually part of a bigger system.
A classical analog is for example the need to take into account a friction force
when calculating the equations of motion for a falling object in our atmosphere.
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Such a friction force finds its origin in the interaction of the falling object with its
environment. In a quantum description the system can also be in contact with an
environment, and exchange e.g. energy, particles, ... In what follows, when we
talk about an environment we mean an environment that has relevant interactions
with your system of interest. Differently said, it is an environment that is of
importance for the description of the dynamics of the system of interest. There
exist a whole range of possible environments, e.g. a heat bath, the electromagnetic
vacuum, ... . The coupling between this environment and the system can of course
be very weak, but even then the influence of the environment cannot be trivially
neglected. It is thus of great interest to create a theoretical framework dedicated
to the description of these so-called open quantum systems. The theory is well
established and a number of great textbooks exist, going into deep detail in the
derivations of equations governing open system time evolution [5–8]. Generally, one
assumes that the combination of the system of interest and its environment can be
treated as a closed system in itself. Naively, one could expect that the framework
for closed quantum systems is thus applicable. Unfortunately, the environments
tend to be very complicated and they contain an immense amount of degrees of
freedom. This makes it intractable to solve the combined dynamics. Depending
on the type of environment, and its interaction with the system one usually can
simplify this description through the application of several approximations. In
what follows we will derive a master equation for the description of a certain class
of open systems.
First, let us denote the Hamiltonian of the system of interest as 𝐻𝑆 . This is the
system of which one wants to calculate observables and physical properties. The
Hamiltonian of the environment will be denoted as 𝐻𝐸 , and the interaction between
both the system and the environment as 𝐻𝐼 (𝑡). The Hamiltonian of the combined
system can then be written as

𝐻𝑆+𝐸 = 𝐻𝑆 ⊗ 𝟙𝐸 + 𝟙𝑆 ⊗ 𝐻𝐸 + 𝐻𝐼 (𝑡). (2.7)

We have chosen to include time-dependent interactions, naturally one can also
include time-dependent terms in the Hamiltonian describing the system, as well as
the Hamiltonian describing the environment. Equation (2.7) immediately shows
where one runs into difficulties when describing this combined system when the
environment has a large number of degrees of freedom. Indeed, the combined
Hilbert space can be written as the Kronecker product of the individual Hilbert
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spaces of the system 𝑆 and environment 𝐸

Ĥ𝑆+𝐸 = Ĥ𝑆 ⊗ Ĥ𝐸, (2.8)

quickly making the description of the combined system intractable due to an
enormous Hilbert space size. However, nothing is withholding us from writing
down the equation governing the time evolution. Since we assumed that the
combined system can be treated as a closed quantum system, this is governed by
a Liouville-von Neumann equation

𝜕𝑡𝜌𝑆+𝐸 (𝑡) = −𝑖
[
𝐻𝑆+𝐸, 𝜌𝑆+𝐸 (𝑡)

]
, (2.9)

with 𝜌𝑆+𝐸 the density matrix of the combined system, and is thus unitary. Since we
are interested only in the dynamics of 𝑆, one can remove the degrees of freedom of
the environment 𝐸 by tracing them away. This yields the reduced density matrix
of the system 𝜌𝑆

𝜌𝑆 (𝑡) = Tr𝐸 [𝜌𝑆+𝐸 (𝑡)] , (2.10)

which we will call the system density matrix from now on. Note that due to
the interaction with the environment the time evolution of this system density
matrix generally can no longer be described through a unitary time evolution. In
the next section we will derive a quantum master equation valid under certain
assumptions that takes into account the influence of the environment and describes
this non-unitary time evolution.

2.3 The Lindblad master equation

In the following we will present a derivation scheme for the evolution of an open
quantum system which is weakly coupled to its Markovian environment. That
is, an environment that has no memory of earlier interactions with the system.
This is usually true for a very large environment, with respect to a small system.
Indeed, an environment with an enormous amount of degrees of freedom will only
be negligibly influenced by its weak interaction with a small system. Moreover, if
the time at which correlations in the environment decay is small with respect to the
time at which our system changes the assumption of a Markovian environment is
well justified. Starting from the Liouville-von Neumann equation of the combined
system in the interaction picture we will go through the steps where approximations,
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endorsed by the above properties of the environment, lead to a simplified and
elegant master equation [5, 6, 9].

First, let us make some assumptions regarding the properties of the system-
environment coupling. Assume that at 𝑡 = 0 their exist no no correlations between
the system and the environment, i.e. 𝜌𝑆+𝐸 (0) = 𝜌𝑆 (0) ⊗ 𝜌𝐸 (0). Moreover, since we
assume a weakly-coupled environment, this will allow us to decouple the combined
density matrix at any time 𝑡 ≥ 0 as

𝜌𝑆+𝐸 (𝑡) = 𝜌𝑆 (𝑡) ⊗ 𝜌𝐸, (2.11)

since the build-up of correlations in the immense environment due to the small
system will be negligibly small. This is also known as the Born approximation.
The influence of the large environment on the small system, however, will not be
negligible. Let us begin with the derivation, if we write down the Liouville-von
Neumann equation in the interaction picture

𝜕𝑡𝜌𝑆+𝐸 (𝑡) = −𝑖
[
𝐻𝐼 (𝑡), 𝜌𝑆+𝐸 (𝑡)

]
, (2.12)

it can be formally solved as

𝜌𝑆+𝐸 (𝑡) = 𝜌𝑆+𝐸 (0) − 𝑖
∫ 𝑡

0
𝑑𝑡 ′

[
𝐻𝐼 (𝑡 ′), 𝜌𝑆+𝐸 (𝑡 ′)

]
. (2.13)

By substituting this equation into (2.12) and tracing out the environment we gain
an equation for the time evolution of the system density matrix up to second order
in the system-environment coupling

𝜕𝑡𝜌𝑆 (𝑡) = −
∫ 𝑡

0
𝑑𝑡 ′Tr𝐸

[ [
𝐻𝐼 (𝑡),

[
𝐻𝐼 (𝑡 ′), 𝜌𝑆 (𝑡 ′) ⊗ 𝜌𝐸

] ] ]
. (2.14)

Where the Born approximation was applied and we have substituted the expression
Tr𝐸

[
𝐻𝐼 (𝑡), 𝜌𝑆+𝐸 (0)

]
= 0, which can be done without loss of generality [10]. One

should note that this equation still depends on the whole history of the system
𝜌𝑆+𝐸 (𝑡 ′) = 𝜌𝑆 (𝑡 ′) ⊗ 𝜌𝐸 . This is not desirable and is where the assumption of the
Markovian nature will come into play. Indeed, this so-called Markov approximation
allows us the neglect any memory of previous state configurations of the system
and re-write the dynamics in what is known as the Redfield equation [11] or the
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master equation in the Born-Markov form

𝜕𝑡𝜌𝑆 (𝑡) = −
∫ 𝑡

0
𝑑𝑡 ′Tr𝐸

[ [
𝐻𝐼 (𝑡),

[
𝐻𝐼 (𝑡 ′), 𝜌𝑆 (𝑡) ⊗ 𝜌𝐸

] ] ]
, (2.15)

that is, an equation where the future state of 𝜌𝑆 only depends on its present state.
The above equation however does not describe a dynamical semigroup. This means
that it need not describe a physical time evolution for any initial condition, i.e.
it need not be trace preserving and completely positive. To cure this we need to
apply a final approximation, known as the rotating wave approximation.

Let us consider a quite general interaction Hamiltonian, which can be written
as

𝐻𝐼 =
∑︁
𝑖

(
𝐿𝑖 ⊗ 𝐸†𝑖 + 𝐿

†
𝑖
⊗ 𝐸𝑖

)
, (2.16)

where 𝐿𝑖 are eigenoperators of the system Hamiltonian 𝐻𝑆 and 𝐸𝑖 act on the
environment. Since 𝐿𝑖 are eigenoperators of 𝐻𝑆 they obey the commutation
relations [

𝐻𝑆 , 𝐿𝑖
]
= −𝜔𝑖𝐿𝑖 and

[
𝐻𝑆 , 𝐿

†
𝑖

]
= 𝜔𝑖𝐿

†
𝑖
. (2.17)

Going to the interaction picture, these commutation relations allow us to write

𝐿𝑖 (𝑡) = 𝑒𝑖𝐻𝑆𝑡𝐿𝑖𝑒
−𝑖𝐻𝑆𝑡 = 𝑒−𝑖𝜔𝑖𝑡𝐿𝑖 , (2.18)

and analogously for the hermitian conjugate. Substituting this expression for 𝐻𝐼 (𝑡)
into (2.15) results in

𝜕𝑡𝜌𝑆 (𝑡) = −
∑︁
𝑖

∑︁
𝑗

∫ 𝑡

0
𝑑𝑡 ′Tr𝐸

[ [
𝐿𝑖 (𝑡) ⊗ 𝐸†𝑖 (𝑡) + 𝐿

†
𝑖
(𝑡) ⊗ 𝐸𝑖 (𝑡),[

𝐿 𝑗 (𝑡 ′) ⊗ 𝐸†𝑗 (𝑡
′) + 𝐿†

𝑗
(𝑡 ′) ⊗ 𝐸 𝑗 (𝑡 ′), 𝜌𝑆 (𝑡) ⊗ 𝜌𝐸

] ] ]
.

(2.19)

One can now explicitly calculate the commutators of the above equation. Sub-
sequently, the degrees of freedom of the environment can be removed from the
equation by applying the trace over the environment. This yields terms containing
expectation values of the form Tr𝐸

[
𝐸𝑖 (𝑡)𝐸†𝑗 (𝑡 ′)𝜌𝐸

]
= 〈𝐸𝑖 (𝑡)𝐸†𝑗 (𝑡 ′)〉𝐸 . These corre-

lation functions are the correlation functions of the bath. By using the cyclic
properties of the trace, that is, Tr [𝐴𝐵𝐶] = Tr [𝐶𝐴𝐵] = Tr [𝐵𝐶𝐴], one can rewrite
all terms containing environment operators as correlation functions of the envi-
ronment. Note that since we assumed the density matrix of the bath 𝜌𝐸 to be
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time-independent, i.e. a stationary bath, these correlation functions depend only
on the time difference. Under the assumption of quickly decaying correlation
functions in the bath with respect to the timescale on which our system changes
this thus allows us to make the substitution 𝑡 ′→ 𝑡 − 𝑠, as well as increase the limit
𝑡 of the integral to infinity since the integrand dissapears for 𝑡 sufficiently large.
This is exactly what is assumed for the validity of the Markov approximation. If
one now substitutes (2.18) one can rewrite the equation, of which we will only
show one term for the sake of clarity, as follows

𝜕𝑡𝜌𝑆 (𝑡) = −
∑︁
𝑖, 𝑗

(∫ ∞

0
𝑑𝑠𝑒𝑖 (𝜔𝑖−𝜔 𝑗 )𝑡𝐿†

𝑖
𝐿 𝑗𝜌𝑆 (𝑡)𝑒𝑖𝜔 𝑗𝑠 〈𝐸𝑖 (𝑡)𝐸†𝑗 (𝑡 − 𝑠)〉𝐸 + . . .

)
. (2.20)

It should be clear that the factor 𝑒𝑖 (𝜔𝑖−𝜔 𝑗 )𝑡 causes the term to quickly oscillate
when 𝜔𝑖 ≠ 𝜔 𝑗 , resulting in it to average out to zero over the time scales at which
𝜌𝑆 changes significantly. We can thus discard all terms where 𝑖 ≠ 𝑗 , which is called
the rotating wave approximation. This allows us the rewrite the equation as follows

𝜕𝑡𝜌𝑆 (𝑡) = −
∑︁
𝑗

[(𝛾 𝑗
2 + 𝑖𝛿 𝑗

)
𝐿
†
𝑗
𝐿 𝑗𝜌𝑆 (𝑡) + . . .

]
, (2.21)

where we defined the integral over the correlation function of the environment as∫ ∞

0
𝑑𝑠𝑒𝑖𝜔 𝑗𝑠 〈𝐸 𝑗 (𝑡)𝐸†𝑗 (𝑡 − 𝑠)〉 ≡

𝛾 𝑗

2 + 𝑖𝛿 𝑗 . (2.22)

The terms proportional with 𝛿 𝑗 will cause a so-called Lamb shift of the energy
levels in the Hamiltonian, these terms are usually neglected and we will no
longer explicitely write them down in what follows. The coefficients 𝛾 𝑗 repre-
sent the dissipation rate, i.e. the rate at which your system interacts with its
environment. Assuming that the environment is initially in a vacuum state, i.e.
𝑇 = 0, calculation of all remaining terms and after a transformation back to the
Schrödinger picture, one finally arives at the following equation, which is known as
the Gorini–Kossakowski–Sudarshan–Lindblad equation, or in short, the Lindblad
master equation [12, 13]

𝜕𝑡𝜌𝑆 (𝑡) = −𝑖
[
𝐻𝑆 , 𝜌𝑆 (𝑡)

]
+

∑︁
𝑗

𝛾 𝑗

2

(
2𝐿 𝑗𝜌𝑆 (𝑡)𝐿†𝑗 −

{
𝐿
†
𝑗
𝐿 𝑗 , 𝜌𝑆 (𝑡)

})
= −𝑖

[
𝐻𝑆 , 𝜌𝑆 (𝑡)

]
+

∑︁
𝑗

𝛾 𝑗D
[
𝐿 𝑗

]
𝜌𝑆 (𝑡),

(2.23)
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where D[𝐴] represents a Lindblad dissipator of the form

D[𝐴]𝜌𝑆 (𝑡) = 𝐴𝜌𝑆 (𝑡)𝐴† −
1
2

(
𝐴†𝐴𝜌𝑆 (𝑡) + 𝜌𝑆 (𝑡)𝐴†𝐴

)
. (2.24)

For ease of notation we will from now on write the system density matrix 𝜌𝑆 (𝑡) as
𝜌 (𝑡). This concludes the derivation, from a physical point of view, of the master
equation that governs the time evolution of a Markovian open quantum system.
A quick inspection of the master equation shows us that if one were to “turn off”
the coupling with the environment, the closed system dynamics governed by the
Liouville-von Neumann equation are regained.

2.4 A quantum optical example: radiative damping in
an optical cavity

Let us now apply what we have derived in the previous sections to a physical
system. A typical example is the radiative damping in an optical cavity. That
is, the dissipation of photons confined between two high quality mirrors where
the cavity frequency is given by 𝜔𝑐 . As long as this cavity frequency is large with
respect to the environment outside of the cavity, one can model the open system
through a coupling between the field inside the cavity and the electromagnetic
vacuum [14]. Moreover, interactions with the electromagnetic field are generally of
Markovian nature, which is why the dynamics of such systems can be described
by the Lindblad master equation. The reason for this is that the magnitude of the
lifetimes of correlations in the environment are of the order of the inverse of the
optical frequency, which is generally around the THz range [5, 7]. The timescale
at which the system changes is of the order of the life times of optical excitations,
which tend to be of the magnitude of the inverse of the MHz range [5, 7]. Now
that we know that the conditions for our approximations are well satisfied we can
derive the Lindblad master equation for such a system. We have

𝐻𝑆 = 𝜔𝑐𝑎
†𝑎, (2.25)

for the free energy of the cavity mode. The free energy of the environment is given
by

𝐻𝐸 =

∫
𝑑𝜔 𝜔𝑏†(𝜔)𝑏 (𝜔), (2.26)
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where 𝜔 denotes the various modes of the environment, of which we assumed there
to be a continuum, hence the integral. And finally, a Hamiltonian describing the
interaction between the cavity field and the electromagnetic field of the environment,
which can be written as

𝐻𝐼 =

∫
𝑑𝜔𝑟 (𝜔)

(
𝑎† + 𝑎

) (
𝑏†(𝜔) + 𝑏 (𝜔)

)
, (2.27)

with 𝑟 (𝜔) the coupling strength. A transformation to the interaction picture allows
us to write, using the commutation relations (2.17) , the following expression

𝐻𝐼 (𝑡) =
∫

𝑑𝜔𝑟 (𝜔)
(
𝑎†𝑏 (𝜔)𝑒𝑖 (𝜔𝑐−𝜔)𝑡 + 𝑎𝑏†(𝜔))𝑒−𝑖 (𝜔𝑐−𝜔)𝑡

)
, (2.28)

where we have neglected the highly oscillating terms, i.e. terms with 𝜔𝑐 + 𝜔,
through the rotating wave approximation. The next step is substituting this
into equation (2.20) and noting that we now have 𝐿𝑖 (𝑡) = 𝐿𝑖𝑒

−𝑖𝜔𝑖𝑡 = 𝑎𝑒−𝑖𝜔𝑐𝑡 and
𝐸𝑖 (𝑡) → 𝑏 (𝜔)𝑒−𝑖𝜔𝑡 , in the latter we used an arrow to indicate that we are now
working in the continuum limit. Once again, only terms where 𝜔 = 𝜔 ′ (with in
the continuum limit, 𝑖 → 𝜔 and 𝑗 → 𝜔 ′) will survive due to the rotating wave
approximation. Substitution of the interaction Hamiltonian then yields terms of
the form of equation (2.22)

𝛾

2 + 𝑖𝛿𝐿 ≡
∫ ∞

0
𝑑𝑠𝑒𝑖𝜔𝑐𝑠 〈𝐸𝑖 (𝑡)𝐸†𝑗 (𝑡 − 𝑠)〉𝐸 →

∫ ∞

0
𝑑𝑠

∫ ∞

0
𝑑𝜔𝑟 (𝜔)𝑒𝑖 (𝜔𝑐−𝜔)𝑠 〈𝑏 (𝜔)𝑏†(𝜔)〉𝐸,

(2.29)
where the trace over the environment of the environment operators becomes equal
to one, 〈𝑏 (𝜔)𝑏†(𝜔)〉𝐸 = 1, due to the bosonic commutation relations. Note that we
discarded the terms 〈𝑏 (𝜔)𝑏 (𝜔)〉 and 〈𝑏†(𝜔)𝑏 (𝜔)〉 since we assumed the environment
to be in the vacuum state. Additionally, the term 〈𝑏†(𝜔)𝑏†(𝜔)〉 could be neglected
due to the rotating wave approximation. For simplicity, let us now also neglect the
term 𝛿𝐿 corresponding to the Lamb shift, which would cause a shift in 𝜔𝑐 → 𝜔 ′𝑐 ,
i.e. 𝛿𝐿 → 0. If we calculate all non-zero terms and also transform back to the
Schrödinger picture, this yields

𝜕𝑡𝜌 = −𝑖
[
𝐻𝑆 , 𝜌

]
+ 𝛾2

(
2𝑎𝜌𝑎† −

{
𝑎†𝑎, 𝜌

})
, (2.30)

i.e. the master equation governing the radiative damping in an optical cavity.
In Fig. 2.1 we show the time evolution of this system where the initial state of

the system is given by the pure state |5〉 in the Fock state representation, i.e. an
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Figure 2.1: Solution of the expectation value of the particle number 〈𝑎†𝑎〉
for an optical cavity where we have chosen 𝜔𝑐 = 𝛾 = 1. The initial state of
the system is given by the Fock state |5〉. Inset: the purity of the system’s
density matrix 𝜌 (𝑡).

occupation of the cavity by five photons. Dissipation to the environment causes
the system’s state to relax to the pure state |0〉, i.e. no photons. However, as can
be seen from a calculation of the purity of the system’s state, shown in the inset of
Fig. 2.1, the system’s state first passes through a regime where the state becomes
mixed. This mixing is due to the interaction of the system with its environment.
Since no drive is present, the system evolves back to the pure Fock state |0〉 due
to continuous loss of photons. It should be noted that in systems where a drive is
present the system need not evolve to such a pure state, and the state at 𝑡 →∞ is
generally mixed.

2.5 From a measurement point of view

Previously we have introduced and derived the Lindblad master equation through
physical considerations and applying approximations considering the nature of
the coupling between the system and the environment. Instead of starting the
derivation from the dynamics of the combined system, as we did in the previous
section, we can make use of an approach that is more closely connected to quantum
information theory. The approach is based on a process called quantum mapping,
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Chapter 2 - Theory of open quantum systems

that is the mapping of a density matrix into another one [4, 7, 8, 15]. It holds close
connection to measurements and it will prove to be useful for the remainder of this
chapter, more specifically for the derivation of the quantum trajectory approach
in Section 2.6. Nonetheless, we will also use it to once again derive the Lindblad
master equation and show its generality as a quantum Markov master equation.

2.5.1 Quantum maps and measurements

First, let us introduce the concept of a quantum map, that is a process S which
transforms a density matrix into another one

S : 𝜌 (𝑡) → 𝜌 (𝑡 ′) ⇒ 𝜌 (𝑡 ′) = S𝜌 (𝑡), (2.31)

where the process S is often called a super-operator, since it transforms an
operator into an operator. Naturally, restrictions exist on the properties of S for
the quantum map to transform a physical state into another physical state. The
conditions are the following [7, 8]:
S is

1. trace preserving;

2. Hermiticity preserving;

3. a convex linear map;

4. is completely positive.

Such a quantum map will ensure that the conditions on the density matrix,
introduced in section 2.1, are satisfied at all times. Now that we have introduced
the framework needed for the time evolution of a physical state we can switch
our attention to the influence of measurements on the system. We shall denote
the action of a measurement through the formulation of a set of measurement
operators 𝑀̂𝑟 acting on the system. Each of these operators corresponds to a
possible result 𝑟 , or read-out, of the measurement experiment. The result of such
a measurement will cause the system to be projected on a certain state. Assume
a measurement is performed during a time 𝛿𝑡 , then the read-out result can be
written down as

𝜌𝑟 (𝑡 + 𝛿𝑡) =
𝑀̂𝑟 |𝜓 (𝑡)〉〈𝜓 (𝑡) |𝑀̂†𝑟
〈𝜓 (𝑡) |𝑀̂†𝑟 𝑀̂𝑟 (𝑡) |𝜓 (𝑡)〉

, (2.32)
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2.5 - From a measurement point of view

this follows directly from the fact that the state of the system after the measurement
and the read-out of the result can be written as

|𝜓𝑟 (𝑡 + 𝛿𝑡)〉 =
𝑀̂𝑟 |𝜓 (𝑡)〉√︃

〈𝜓 (𝑡) |𝑀̂†𝑟 𝑀̂𝑟 |𝜓 (𝑡)〉
. (2.33)

For ease of notation we define the probability 𝑝𝑟 that such a measurement result
takes place as

𝑝𝑟 = 〈𝜓 (𝑡) |𝑀̂†𝑟 𝑀̂𝑟 |𝜓 (𝑡)〉 = Tr
[
𝜌 (𝑡)𝑀̂†𝑟 𝑀̂𝑟

]
. (2.34)

Naturally, the sum over all possible measurement results should equal one:
∑

𝑟 𝑝𝑟 =

1, that is, a measurement of your system should always have a certain result 𝑟 .
As such one arrives at the following completeness relation for the set of operators
𝑀̂
†
𝑟 𝑀̂𝑟 since it has to be valid for any density matrix 𝜌∑︁

𝑟

𝑀̂†𝑟 𝑀̂𝑟 = 𝟙̂. (2.35)

This set of operators 𝑀̂†𝑟 𝑀̂𝑟 is often called a positive operator valued measure
(POVM). It consists of all operators associated with possible measurement results.
It also allows us to write the action of a measurement operator 𝑀̂𝑟 on the density
matrix in terms of a quantum map and thus a corresponding super-operator,
indeed,

𝜌𝑟 (𝑡 + 𝛿𝑡) = S𝑟𝜌 (𝑡) =
M𝑟𝜌 (𝑡)
𝑝𝑟

=
𝑀̂𝑟𝜌 (𝑡)𝑀̂†𝑟

𝑝𝑟
. (2.36)

Now assume that measurements are performed on the system, but they are not
read out, then the state of the system after a time 𝛿𝑡 consists of the statistical
mixture of the different conditional results. One can write

𝜌 (𝑡 + 𝛿𝑡) =M𝜌 (𝑡) =
∑︁
𝑟

𝑝𝑟𝜌𝑟 (𝑡 + 𝛿𝑡) =
∑︁
𝑟

M𝑟𝜌 (𝑡) =
∑︁
𝑟

𝑀̂𝑟𝜌 (𝑡)𝑀̂†𝑟 . (2.37)

The last term of this equation is also known as the Kraus representation of the
super-operatorM. The number of Kraus operators, or thus measurement operators,
𝑀̂𝑟 is upper bounded by 𝑁 2 [8], with 𝑁 the Hilbert space dimension of the system
described by 𝜌 (𝑡). And more interestingly, in general, it can be shown through
this Kraus sum formalism that any physical quantum map can be written in terms
of at most 𝑁 2 Kraus operators [8]. The implications of this are quite noteworthy.
As we are ultimately interested in the time evolution of the density matrix 𝜌 (𝑡)
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Chapter 2 - Theory of open quantum systems

under influence of an environment, this implies that independently of the nature
of this environment, this time evolution can be written down in terms of a set
of operators bound by the square of the Hilbert space size of the system under
consideration.

We have thus shown that the time evolution of a system’s density matrix
subject to measurements can be written in terms of a Kraus sum constituted by
a set of measurement operators. This will prove quite useful for the derivation
of the Lindblad master equation. The reason for this lies in the close connection
of a measurement and its relation to an environment: for the performance of a
measurement on the system the measurement apparatus can by all means be seen
as an environment itself, and vice versa. Without an observer present to read-out
the results the time evolution of such a system can thus be written as (2.37). It
is this correspondence between measurements and the environment that can be
exploited, and can also be used for a better understanding of the generality of the
Lindblad master equation.

2.5.2 The master equation

We will now use the framework introduced in the previous subsection to make a
derivation of the Lindblad equation (2.23). Let us write down the time evolution
of a density matrix 𝜌 (𝑡) of the system. Up to first order and with 𝛿𝑡 small we can
write the density matrix after an infinitesimal time step as

𝜌 (𝑡 + 𝛿𝑡) = 𝜌 (𝑡) + O(𝛿𝑡), (2.38)

i.e. the initial density matrix 𝜌 (𝑡) and an infinitesimal change of order 𝛿𝑡 . As we
have seen in the previous subsection one can also write this time evolution through
its Kraus sum,

𝜌 (𝑡 + 𝛿𝑡) =
∑︁
𝑟

𝑀̂𝑟𝜌 (𝑡)𝑀̂†𝑟 . (2.39)

We can now make a proposal with regard to what we will denote as the operator 𝑀̂0,
by remarking that it should be of order of unity, since 𝜌 (𝑡) can only infinitesimally
change with 𝛿𝑡 . The other operators 𝑀̂𝑟 (𝑟 ≠ 0) should then be of order

√
𝛿𝑡 . We

can thus write
𝑀̂0 = 𝟙̂ − 𝑖𝐾𝛿𝑡, and 𝑀̂𝑟 =

√
𝛾𝑟𝐿𝑟
√
𝛿𝑡 . (2.40)

Where we have without loss of generality included a factor √𝛾𝑟 into the expression
for the operators 𝑀̂𝑟 , for 𝑟 ≠ 0. One can write the operator 𝐾 in terms of a
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2.5 - From a measurement point of view

Hermitian part 𝐻 and anti-Hermitian part 𝐽 , which allows us to write 𝐾 = 𝐻 − 𝑖 𝐽 .
Now, we can rewrite (2.39) as

𝜌 (𝑡 + 𝛿𝑡) = 𝜌 (𝑡) − 𝑖𝛿𝑡
[
𝐻, 𝜌 (𝑡)

]
− 𝛿𝑡

(
𝐽 𝜌 (𝑡) + 𝜌 (𝑡) 𝐽

)
+

∑︁
𝑟≠0

𝑀̂𝑟𝜌 (𝑡)𝑀̂†𝑟 , (2.41)

where we can now use the completeness relation associated with the Kraus sum,
which allows us to write ∑︁

𝑟≠0
𝛾𝑟𝐿
†
𝑟 𝐿𝑟 = 2𝐽 , (2.42)

Substitution of this term into the expression of 𝜌 (𝑡 + 𝛿𝑡), as well as substituting
the expressions for 𝑀̂𝑟 , and finally collecting the terms then yields

¤̂𝜌 = −𝑖
[
𝐻, 𝜌 (𝑡)

]
+

∑︁
𝑟

𝛾𝑟

2

(
2𝐿𝑟𝜌 (𝑡)𝐿†𝑟 − 𝐿†𝑟 𝐿𝑟𝜌 (𝑡) − 𝜌 (𝑡)𝐿†𝑟 𝐿𝑟

)
, (2.43)

which is, as promised, of the Lindblad form we derived in Section 2.3. Note that
following this derivation, no assumptions were made on the properties of 𝐻 , 𝛾𝑟 and
𝐿𝑟 . We know from our previous derivation that they respectively correspond to
the system Hamiltonian, the dissipation rate and the coupling of the system with
the environment. Moreover, the derivation here also shows that one can interpret
the time evolution of the master equation as the influence of continuous un-read
measurements on your system. It will be quite interesting to see what happens if
we actually do read out the measurements, as we will closer inspect in section 2.6.

A final note should be made about the physical relevance of the above deriva-
tion [8] as we never explicitly made use of the Born approximation and Markov
approximation. They are however of paramount importance. Firstly, for the above
derivation to be valid one inherently needs the system and environment to be
initially decoupled and in a product state. If this were not the case, the initial
entanglement between system and environment could often have a non-neglible
influence on the time evolution of the system, and thus 𝜌 (𝑡). Furthermore, for the
same reason it is also important that the correlations in the environment caused
by the interaction with the system decay rapidly with respect to the timescale at
which the system changes. For this reason we emphasize that we never explicitely
took the limit of 𝛿𝑡 → 0, as is customary in a mathematical formulation. From a
physicists perspective 𝛿𝑡 should be sufficiently large with respect to timescale at
which the correlation functions of the environment decay, but also small enough
with respect to the timescale at which the system changes for our time evolution
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Chapter 2 - Theory of open quantum systems

to describe a continuous change of the system. For an appropriate choice of 𝛿𝑡
this thus reconciles the above derivation with the Born-Markov approximation. It
shows the generality of the Lindblad master equation for systems that are weakly
coupled with a Markovian environment. Indeed, apart from the Markovianity of
the environment, no assumptions were made with regard to its nature.

2.6 Quantum trajectories

Let us now move to the situation where we do read out the measurements performed
on the system. This means that we will get a conditioned time evolution of the
system, depending on the read-outs of the measurements. Let us assume that the
state is initially prepared in a pure state |𝜓 (0)〉 then the time evolution of the
state under continuous monitoring is given by (2.33)

|𝜓 (𝑡 + 𝛿𝑡)〉 → 𝑀̂𝑟 |𝜓 (𝑡)〉√︃
〈𝜓 (𝑡) |𝑀̂†𝑟 𝑀̂𝑟 |𝜓 (𝑡)〉

, (2.44)

with 𝑟 indicating the specific read-out of the measurement, 𝛿𝑡 small and the
probability 𝑝𝑟 = 〈𝜓 (𝑡) |𝑀̂†𝑟 𝑀̂𝑟 |𝜓 (𝑡)〉 that this type of read-out occurs. Such a
conditional time evolution is called a quantum trajectory and can be written down
in terms of a stochastic Schrödinger equation, which we will derive in this section.
It should be clear that the quantum trajectory formalism grants information about
the system in a way very similar to that of an actual experiment. Indeed, each
measurement and its read-out changes the state of your system and the continuous
monitoring causes the system to constantly be in a pure state. To gain knowledge
about the density matrix of the system of interest one would have to repeat the
experiment multiple times to be able to sample the density matrix, or any other
observable of interest. Nevertheless, a single trajectory can give useful insights into
the physical processes present in the system in a way the Lindblad master equation
cannot. Examples of such physical processes are bistability and spontaneous
symmetry breaking. The trajectory approach is more physical than the solution of
the master equation since it can capture the (slow) switching between the bistable
states or the spontaneously broken states.

For the sake of simplicity in the derivation, we assume that there are two types
of measurements that can be performed on the system: 𝑀̂0 and 𝑀̂1. From (2.40)
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we know that they can be written as

𝑀̂0 = 𝟙̂ − 𝑖
(
𝐻 − 𝑖 𝛾2𝐿

†𝐿
)
𝛿𝑡 and 𝑀̂1 =

√︁
𝛾𝛿𝑡𝐿, (2.45)

where we dropped the unnecessary subscript of 𝐿. Since 𝛿𝑡 is small this allows us to
interpret 𝑀̂0 as a non-measurement or the zero read-out. 𝑀̂0 will only marginally
change the state of the system since it is of order unity, and one can say that
“nothing” happens other than the smooth evolution of your system during the
infinitesimal step with an effective, non-Hermitian, Hamiltonian

𝐻𝑒 𝑓 𝑓 = 𝐻 − 𝑖 𝛾2𝐿
†𝐿. (2.46)

Similarly, we know that 𝑝0 will be close to one and this will also be the most
likely result of the measurement. 𝑀̂1 however will occur with a much smaller
probability, but will change the state of the system more abruptly. For this reason
the operator 𝐿 is often called the jump operator. In a quantum optical setting one
could interpret this occurrence as e.g. the emission of a photon to the environment.
The interpretation however is closely related to the nature of the measurement
operators.
Let us denote the result for a measurement result “0” and a measurement result
“1”, corresponding to respectively the operators 𝑀̂0 and 𝑀̂1, during a time 𝛿𝑡 as
𝑑𝑁 (𝑡). That is, 𝑑𝑁 (𝑡) will be either equal to 0 or 1. Consequently, this allows us
to note that the square of 𝑑𝑁 (𝑡) is again equal to 𝑑𝑁 (𝑡), and the probability of
observing a measurement result “1” will be equal to 𝑝1. This thus allows us to
write

𝑑𝑁 (𝑡)2 = 𝑑𝑁 (𝑡) and 𝔼 [𝑑𝑁 (𝑡)] = 𝑝1 = 𝛾 〈𝜓 (𝑡) |𝐿†𝐿 |𝜓 (𝑡)〉𝛿𝑡, (2.47)

with 𝔼 [·] denoting a classical expectation value over different (independent)
realizations. These properties allow us to write down the following time evolution
of the wave function based on the conditional results of the measurement

|𝜓 (𝑡 + 𝛿𝑡)〉 = (1 − 𝑑𝑁 (𝑡)) 𝑀̂0 |𝜓 (𝑡)〉√︃
〈𝜓 (𝑡) |𝑀̂†0𝑀̂0 |𝜓 (𝑡)〉

+ 𝑑𝑁 (𝑡) 𝑀̂1 |𝜓 (𝑡)〉√︃
〈𝜓 (𝑡) |𝑀̂†1𝑀̂1 |𝜓 (𝑡)〉

. (2.48)

We can then substitute the expressions for the measurement operators (2.45). By
making an expansion of the denominator of the term corresponding to the 𝑀̂0
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measurement up to order 𝛿𝑡 this will allow us to write

|𝜓 (𝑡 +𝛿𝑡)〉 = (1−𝑑𝑁 (𝑡))
[
𝟙̂ + 𝛾2𝛿𝑡 〈𝐿

†𝐿〉(𝑡) − 𝛾2𝛿𝑡𝐿
†𝐿 − 𝑖𝐻𝛿𝑡

]
|𝜓 (𝑡)〉 +𝑑𝑁 (𝑡) 𝐿 |𝜓 (𝑡)〉√︃

〈𝐿†𝐿〉(𝑡)
,

(2.49)
where we introduced the notation 〈𝜓 (𝑡) |𝑂 |𝜓 (𝑡)〉 = 〈𝑂〉(𝑡), for ease of use. If we
now subtract a term |𝜓 (𝑡)〉 on both sides of the equation, as well as note that the
term with 𝑑𝑁 (𝑡)𝛿𝑡 is of higher order than 𝛿𝑡 due to (2.47) and can be discarded,
we arrive at

𝑑 |𝜓 (𝑡)〉 =

(𝛾
2 〈𝐿

†𝐿〉(𝑡) − 𝛾2𝐿
†𝐿 − 𝑖𝐻

)
𝑑𝑡 +

©­­«
𝐿√︃
〈𝐿†𝐿〉(𝑡)

− 𝟙̂
ª®®¬𝑑𝑁 (𝑡)

 |𝜓 (𝑡)〉, (2.50)

by collecting both terms in 𝑑𝑁 (𝑡) and 𝑑𝑡 (where the notational transformation
𝛿𝑡 → 𝑑𝑡 was made). Clearly, the time evolution described by (2.50) is different
from the time evolution described by the Lindblad master equation (2.23). The
question thus remains, are both approaches equivalent or not? The answer is yes.
As mentioned earlier the quantum trajectory approach is reminiscent of performing
measurements in an experiment. To gain knowledge on an observable or the state
of the system one needs to collect enough statistics through repeated experiments,
or thus multiple quantum trajectories. By averaging over these trajectories one
regains the Lindblad master equation. To prove this one can start by writing

𝑑 ( |𝜓 (𝑡)〉〈𝜓 (𝑡) |) = (𝑑 |𝜓 (𝑡)〉) 〈𝜓 (𝑡) | + |𝜓 (𝑡)〉 (𝑑 〈𝜓 (𝑡) |) + (𝑑 |𝜓 (𝑡)〉) (𝑑 〈𝜓 (𝑡) |) . (2.51)

We can now take the expectation value 𝔼 [·] over different realizations on both
sides of the above equation. Using that 𝜌 (𝑡) = 𝔼 [|𝜓 (𝑡)〉〈𝜓 (𝑡) |] and (2.47) one
straight-forwardly arrives at

𝑑𝜌 (𝑡) = −𝑖𝑑𝑡
[
𝐻, 𝜌 (𝑡)

]
+ 𝑑𝑡 𝛾2

(
2𝐿𝜌 (𝑡)𝐿† − 𝐿†𝐿𝜌 (𝑡) − 𝜌 (𝑡)𝐿†𝐿

)
, (2.52)

which is indeed equivalent to the Lindblad master equation. In theory, one needs
an infinite number of trajectories for 𝔼 [|𝜓 (𝑡)〉〈𝜓 (𝑡) |] = 𝜌 (𝑡) to be valid. In practice
however, a moderate number of trajectories allow you to get a very good estimate.

Note that a generalization to a higher number of measurement operators is
easily made. We can introduce an arbitrary set of 𝑑𝑁 𝑗 (𝑡) which are equal to 1 when
a measurement of type 𝑗 is observed, and equal to zero when it isn’t. One then
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2.6 - Quantum trajectories

arrives at the stochastic Schrödinger equation for a general set of measurement
operators

𝑑 |𝜓 (𝑡)〉 =
∑︁
𝑗


(𝛾 𝑗

2 〈𝐿
†
𝑗
𝐿 𝑗 〉(𝑡) −

𝛾 𝑗

2 𝐿
†
𝑗
𝐿 𝑗 − 𝑖𝐻

)
𝑑𝑡 +

©­­«
𝐿 𝑗√︃
〈𝐿†

𝑗
𝐿 𝑗 〉(𝑡)

− 𝟙̂
ª®®¬𝑑𝑁 𝑗 (𝑡)

 |𝜓 (𝑡)〉.
(2.53)

It should be clear that it is computationally less demanding to simulate a single
trajectory than it is to simulate the density matrix with the master equation. In
the latter one needs to simulate time evolution of an object of which the size is the
square of the Hilbert space dimension H . For the trajectory approach one needs
only simulate the wave function, i.e. an object with the size of the Hilbert space H .
Of course, one needs to simulate multiple trajectories to collect enough statistics
and retrieve the density matrix with a certain accuracy. However, the number
of needed trajectories is usually a lot smaller than the Hilbert space dimension,
resulting in a computationally more economic approach.

Importantly, one should note that the Lindblad master equation is invariant
under the type of measurement operators used. We saw that the measurement
operators need only satisfy the completeness relation and be positive. This means
one can transform the measurement operators with a unitary operation 𝑈 , i.e.
𝑀̂ 𝑗 →

∑
𝑗 𝑈𝑘 𝑗𝑀̂ 𝑗 , and still obtain the same time evolution (with 𝑈𝑘 𝑗 the elements

of 𝑈 ). Substitution into the Lindblad master equation (2.23) indeed leaves the
equation unchanged. This however, is no longer true in the quantum trajectory
formalism. After averaging over a sufficient number of realizations one recovers
the dynamics predicted by the Lindblad master equation. However, for a single
trajectory the type of measurement has a drastic impact on its time evolution.
Indeed, substitution of the unitary transformation into the stochastic Schrödinger
equation (2.53) no longer leaves the equation unchanged. There are thus many
ways to simulate the time evolution with quantum trajectories, depending on the
type of measurements used. This is often referred to as the type of unravelling of
the Lindblad master equation. In this thesis we will focus on one measurement
scheme in particular: photon counting.

2.6.1 Photon counting

This unravelling scheme is based on continuous photon detection. A detector will
give a click only when a photon is emitted to the environment. Not detecting a
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Figure 2.2: Solution Lindblad master equation (m.e.) and trajectories
for the optical cavity from section 2.4. We have chosen 𝛾 = 𝜔𝑐 = 1 and
|𝜓 (0)〉 = |5〉. We show the results for an increasing number of trajectories
(from 1 to 50).
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photon also gives us information on the state of the system. Such a scheme allows
for some very straight forward measurement operators. In the quantum optical
setting we can substitute 𝐿 𝑗 → 𝑎 𝑗 in (2.40) resulting in a time evolution governed
by

𝑑 |𝜓 (𝑡)〉 =
∑︁
𝑗


(𝛾
2 〈𝑎

†
𝑗
𝑎 𝑗 〉(𝑡) −

𝛾 𝑗

2 𝑎
†
𝑗
𝑎 𝑗 − 𝑖𝐻

)
𝑑𝑡 +

©­­«
𝑎 𝑗√︃
〈𝑎†

𝑗
𝑎 𝑗 〉(𝑡)

− 𝟙̂
ª®®¬𝑑𝑁 𝑗 (𝑡)

 |𝜓 (𝑡)〉.
(2.54)

The term
∑

𝑗
𝛾 𝑗

2 〈𝑎
†
𝑗
𝑎 𝑗 〉(𝑡) ensures that the norm of |𝜓 (𝑡)〉 remains equal to one

since the term
∑

𝑗
𝛾 𝑗

2 𝑎
†
𝑗
𝑎 𝑗 in the effective non-Hermitian Hamiltonian (2.46) has

a decrease of the norm as a result in its time evolution. Let us now apply this
measurement scheme to the example of radiative damping in an optical cavity,
introduced in section 2.4. Given that the system is initially in a Fock state the
time evolution of the trajectory can be straight-forwardly predicted. The system
stays in its initial state |𝑛〉 under the Hamiltonian evolution, due to it being an
eigenstate of 𝐻 . Only when the detector detects a photon, the system will jump
to the state |𝑛 − 1〉. Hence the name jump operator. The same process is then
repeated until the system is in the state |0〉, where it will stay due to the absence
of a driving term. This time evolution is depicted in Fig. 2.2 for the example of the
optical cavity from section 2.4. Evidently, the results for different trajectories differ.
If we average over an increasing number of trajectories we observe a convergence
to the result predicted by the master equation, as expected.

Numerically this is implemented through a Monte Carlo scheme. At each
time step one can check if the condition for a jump, 𝑝1 < 𝜖, is satisfied, with 𝜖 a
repeatedly sampled random number. If this condition is satisfied the jump operator
is applied to the state, which at the same time is normalized. In the case of no
jump, i.e. 𝑝1 ≥ 𝜖, the state evolves with the effective non-Hermiation Hamiltonian
𝐻𝑒 𝑓 𝑓 from (2.46). This scheme is repeated until the desired simulation time is
reached. This can be straight forwardly generalized to systems with multiple jump
operators. The general scheme can be found in appendix A.1.

2.7 The Liouvillian superoperator

The Lindblad master equation (2.23) contains the coherent dynamics of the closed
system dynamics in the form of the commutator of the Hamiltonian with the
system’s density matrix, as well as the incoherent dynamics that finds its origin in
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its coupling with an environment. This translates to the action of the Lindblad
operators on the density matrix. One can thus re-write the master equation as
the evolution of the density matrix through some specific action 𝐿 [·]

𝜕𝑡𝜌 = −𝑖
[
𝐻, 𝜌

]
+

∑︁
𝑖

𝛾𝑖

2

(
𝐿𝑖𝜌𝐿

†
𝑖
−

{
𝐿
†
𝑖
𝐿𝑖 , 𝜌

})
⇒ 𝜕𝑡𝜌 = 𝐿 [𝜌] . (2.55)

This action that contains the systems dynamics can be translated to a super-
operator formalism. Remember, in the language of quantum maps we could have
written

𝜌 (𝑡 + 𝛿𝑡) = 𝜌 (𝑡) + L𝛿𝑡𝜌 (𝑡) = (1 + L𝛿𝑡) 𝜌 (𝑡) = 𝑒L𝛿𝑡𝜌 (𝑡) . (2.56)

since 𝛿𝑡 is small and note that 𝐿 [·] ↔ L. In (2.56) both (1 + L𝛿𝑡) = 𝑒L𝛿𝑡 as well
as L are superoperators transforming an operator into another one. We will call
the former the evolution operator E = 𝑒L𝛿𝑡 and we will exploit its properties in
chapter 9. For now we focus on the superoperator L, from now on called the
Liouvillian superoperator or Liouvillian in short.

Given an initial state 𝜌 (0) one could write the density matrix at a time 𝑡 = 𝑛𝛿𝑡
as

𝜌 (𝑡) = 𝑒L𝑡𝜌 (0), (2.57)

for this reason the superoperator L is also called the generator of the time evolution
and it contains all the information on the dynamics of the system. To be able to
extract this information we will move to a new way of representing superoperators,
that is, we will rewrite them as matrices. We are allowed to do this since the
Liouvillian is a linear superoperator, i.e. L (𝑎𝜌𝑎 + 𝑏𝜌𝑏) = 𝑎L𝜌𝑎 + 𝑏L𝜌𝑏 . In this
formalism the density matrix is rewritten as a one dimensional vector, and the
action on the density matrix can thus be rewritten as a matrix. Formally, this relies
on the Choi-Jamiolkowski isomorphism, i.e. |𝑖〉〈 𝑗 | → |𝑖〉 ⊗ | 𝑗〉, which allows you to
transform your density matrix into a vector. To emphasize that a superoperator
is written in matrix from, we will add a hat to the superoperators, as well as
add bracket notation for the density matrix in its vector form: L → L̂ and
𝜌 (𝑡) → |𝜌 (𝑡)〉. This then allows one to write

𝜕𝑡𝜌 = L𝜌 ⇒ 𝜕𝑡 |𝜌〉 = L̂ |𝜌〉. (2.58)

The size of this superoperator is the square of the density matrix dimension.
We will refer to this as the Liouvillian space dimension, or the dimension of the
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2.7 - The Liouvillian superoperator

Liouvillian.

One can once again solve this differential equation and this results in

|𝜌 (𝑡)〉 = 𝑒 L̂𝑡 |𝜌 (0)〉. (2.59)

The dynamics of the system is now captured by the matrix L̂, for which we can
use an eigendecomposition to extract all information on the time evolution. Note
again that a simple transformation can transform the vectorized density matrix
back into the standard two-dimensional representation. The key to the dynamics
and the properties of the system under consideration can thus be captured through
the properties of this Liouvillian superoperator. This not only allows you to time
evolve your system but as explained in the next section it also gives access to
properties regarding dissipative phase transitions. However, due to the quadratic
increase in the dimension of this matrix with respect to the matrices needed to
describe the Lindblad master equation, this approach is usually unfeasible for
the description of the time evolution of the system when treating it in the full,
unreduced, Hilbert space. As we will see in chapter 4, once one can reduce the
dimension of the Liouvillian, due to e.g. the presence of symmetries in the system.
In such a situation this approach will prove to be very useful.

2.7.1 Liouvillian spectrum

Much like how an eigendecomposition of the Hamiltonian in closed systems grants
you all the information on the system you need, this role is taken by an eigende-
composition of the Liouvillian in open quantum systems obeying the Lindblad
master equation. One should however note that the spectrum of the Liouvillian
is entirely different from the Hamiltonian spectrum. The latter grants you the
eigenstates of the system and their corresponding energies, which are real due to
the Hamiltonian being Hermitian. If we assume a superoperator corresponding
to the action of the right-hand side of the Liouville Von-Neumann equation in a
closed system (2.6), the eigenvalues of this superoperator will be purely imaginary.
In the case of the Liouvillian superoperator this is no longer true. This comes
from the fact that the Liouvillian L̂ is non-Hermitian and the eigenvalues need
not be real. Moreover, the left and right eigenvectors will in general be different.
We can write

L̂ |𝜌𝑖〉 = 𝜆𝑖 |𝜌𝑖〉 =
(
𝜆Re
𝑖 + 𝑖𝜆Im

𝑖

)
|𝜌𝑖〉, (2.60)
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〈𝜎𝑖 |L̂ = 〈𝜎𝑖 |𝜆𝑖 = 〈𝜎𝑖 |
(
𝜆Re
𝑖 + 𝑖𝜆Im

𝑖

)
, (2.61)

where 𝜆𝑖 , |𝜌𝑖〉 and 〈𝜎𝑖 | respectively denote the eigenvalues and the right and left
eigenvectors of the Liouvillian L̂. The upperscripts Re and Im denote the real and
imaginary parts of 𝜆𝑖 . Let us also introduce the Hilbert-Schmidt inner product,
defined as (

𝐴, 𝐵

)
:= Tr

[
𝐴†𝐵

]
. (2.62)

This inner product becomes particularly useful in our vectorized notation since

Tr
[
𝐴†𝐵

]
=

∑︁
𝑟,𝑠

𝐴∗𝑟𝑠𝐵𝑟𝑠 = 〈𝐴|𝐵〉. (2.63)

From the condition of trace preservation one can prove the existence of a left
eigenvector 〈𝜎0 | = 〈𝟙| with an eigenvalue 𝜆0 = 0. One can write

Tr [𝜌] = 1⇔ Tr
[
𝑑𝜌

𝑑𝑡

]
= 0⇔ Tr [𝟙L𝜌] = 0⇔ 〈𝟙|L̂ |𝜌〉 = 0⇔ 〈𝟙|L̂ = 0. (2.64)

One obtains the last result since this equality in the fourth term should hold for
all density matrices 𝜌. This also implies the existence of a right eigenvector |𝜌0〉
with zero eigenvalue. The physical meaning of this will become clear when we
rewrite the time evolution (2.59) in its spectral decomposition. Indeed, in general
one can write

|𝜌 (𝑡)〉 =
∑︁
𝑗

𝑐 𝑗𝑒
𝜆 𝑗 𝑡 |𝜌 𝑗 〉, (2.65)

where the coefficients 𝑐 𝑗 are time-independent and are determined by the initial
state of the time evolution. Since our state needs to remain physical at all times
this implies that the real part of all 𝜆𝑖 are non-positive [16]. If this were not the
case the exponentials in (2.65) would go to infinity at long times, resulting in
unphysical states. This allows us to call |𝜌0〉 the steady state, since for long times
𝑡 →∞ the system will converge to this specific state. The other eigenstates |𝜌𝑖〉
for which Re [𝜆𝑖] < 0 can thus be interpreted as decaying processes as time evolves,
i.e. they are responsible for the system’s dynamics. The trace of these eigenstates
should be zero. This is due to the Liouvillian evolution being a trace preserving
quantum map. Since for 𝑡 →∞ we have that 𝑒L𝑡 = 𝑒𝜆𝑖𝑡 → 0 for 𝜆𝑖 ≠ 0, the trace of
𝜌𝑖 should be zero. Note that the condition on the preservation of the trace implies
the existence of at least one eigenvalue that is equal to zero. There is however no
straight forward condition to determine whether there are multiple steady states
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Re[λj ]

Im[λj ]

Figure 2.3: Example of a Liouvillian spectrum. The red dot indicates
the steady state, the gray dots indicate real (negative) eigenvalues, and the
green dots indicate imaginary eigenvalues. The Liouvillian gap is given by
the absolute value of the first grey dot from the right.

or not, this highly depends on the specific model one is studying.
In what follows we will index the spectrum 𝜆𝑖 from 0 to 𝑀, with 𝑀 the

dimension of the Liouvillian. Additionally, we chose the indexing in such a way
that |Re [𝜆0] | ≤ |Re [𝜆1] | ≤ · · · ≤ |Re [𝜆𝑀 ] |. A typical Liouvillian spectrum is
shown in Fig. 2.3. Note the reflection symmetry of the eigenvalues with respect to
the real axis. This is due to the Hermiticity preservation of the Lindblad master
equation, and thus the Liouvillian superoperator, i.e.

L𝜌† = (L𝜌)† , (2.66)

which can easily be checked by substituting this into the master equation for any
matrix 𝜌. This implies that for each eigenvalue 𝜆𝑖 = 𝜆Re

𝑖 + 𝑖𝜆Im
𝑖 with non-zero

imaginary part (𝜆Im
𝑖 ≠ 0) there also exists an eigenvalue 𝜆∗𝑖 = 𝜆Re

𝑖 − 𝑖𝜆Im
𝑖

Apart from the steady state |𝜌0〉 another eigenstate and its eigenvalue are
of paricular interest, namely |𝜌1〉 and 𝜆1. This is the slowest (time dependent)
process present in the dynamics of the system. The timescale of this process
is thus determined by the real part of 𝜆1, which is what we call the Liouvillian
gap. This Liouvillian gap will play an important role in the study of dissipative
phase transitions. |𝜌1〉 being the slowest process immediately shows one of the
problems one can run into when simulating the dynamics of an open system,
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Method Advantage Disadvantage

Liouvillian Diago-
nalization

Determines 𝜌ss and any the
dynamics of any 𝜌 (𝑡) via
eigendecomposition.

Fast-exponential size of the
Liouvillian, computationally
costly diagonalization.

Time evolution of
𝜌 (𝑡)

Numerically exact dynamics
with no noise, less costly than
Liouvillian diagonalization

In the presence of slow pro-
cesses, long simulations. Still
computationally costly for
large systems.

Quantum Trajecto-
ries

Evolution of wave function
can be done more efficiently
than the evolution of 𝜌 (𝑡),
also for larger systems.

The results are noisy and need
to be integrated over many
quantum trajectories. Same
problem as the evolution of
𝜌 (𝑡) in the presence of slow
processes.

Table 2.1: Advantages and disadvantages of the standard methods to study
the steady state and dynamics of an open quantum system.

and in particular if one wishes to study the steady state. Indeed, if 𝜆1 is small
or approximately zero one has to time evolve for a very long time if one wishes
to obtain the steady state. This problem persists in both the master equation
formalism as well as the quantum trajectory approach. It is thus of interest to be
able to directly calculate the steady state through an eigendecomposition. We will
discuss this in more detail in chapter 9.

If one is able to not only calculate the Liouvillian but also its spectrum one thus
has access to all dynamics of the system. Calculating the eigendecomposition of a
large matrix however is computationally very demanding. Due to the exponential
growth that the Hilbert space of a many-body quantum system exhibits, and the
quadratic dimension of the Liouvillian with respect to the Hilbert space dimension,
one naturally quickly runs into the limits of this approach.
A treatment of the dynamics on the level of the master equation, quantum
trajectories or the Liouvillian has its own advantages and disadvantages, which are
listed in table 2.1. To push beyond the limits of the exponentially large Hilbert
spaces, one is left with making an appropriate choice for the system under study
and one has to apply approximate methods to overcome these limitations. In
chapter 3 we give an overview of state-of-the-art methods applied to paradigmatic
models that will be the topic of this thesis: the dissipative XYZ Heisenberg model
and the driven-dissipative Bose-Hubbard model.
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2.8 Dissipative phase transitions

The study of phase transitions take a central role in physics. In this thesis we will
be studying so-called dissipative phase transitions. That is, phase transitions that
find their origin in a competition between the Hamiltonian dynamics of the system
under consideration and the dynamics due to its coupling with an environment. In
particular, the competition between interaction, driving and dissipation processes
can lead to exotic physics, such as a transition from a photonic Mott insulator to
a superfluid phase [17–21], similar to that observed with ultracold atoms confined
in optical lattices [22, 23]. Moreover, in the limit of a very strong nonlinearity one
enters the regime of photon-blockade [24–27], where the presence of two photons
inside the cavity becomes practically impossible. This effect has been observed
experimentally both in a single atom in a cavity [28] and in a single superconducting
circuit [29]. Before we further clarify this type of phase transitions, let us first
revisit thermal and quantum phase transitions. Generally, phase transitions occur
as a result of competing processes in a physical system. When a certain control
parameter, that is linked to the dominance of one of the two competing processes,
passes a certain critical value, a phase transition takes place. For thermal phase
transitions this is closely linked to the Helmholtz free energy 𝐹 = 𝑈 −𝑇𝑆, where
the system’s internal energy competes with the entropy [30]. The internal energy
is trying to reach a minimum, whereas the entropy strives to reach a maximum.
When the temperature is small, the contribution of the entropy is small and the free
energy is dominated by the internal energy. This results in an ordered state. As
temperature increases one comes to a point where the entropy starts to dominate
and as a result a phase transition to an unordered, entropic state occurs. Another
class of phase transitions is given by quantum phase transitions [31]. Assume a
quantum system governed by a Hamiltonian 𝐻 (𝑔), where 𝑔 indicates a system
parameter, e.g.

𝐻 (𝑔) = 𝐻𝑎 + 𝑔𝐻𝑏 . (2.67)

For such a system it is possible for the energy gap Δ = 𝐸1 − 𝐸0 between the ground
state |𝜓0〉 and the first excited state |𝜓1〉 to vanish in the thermodynamic limit
at a certain critical value 𝑔 = 𝑔𝑐 , i.e. lim𝑔→𝑔𝑐 𝐸1(𝑔) − 𝐸0(𝑔) → 0. The vanishing
of the energy gap is typically accompanied by a non-analicity in the energy of
the system, leading to an abrupt change in the ground state of the system. This
usually coincides with a change in the nature of the correlations in the ground
state and thus a quantum phase transition. If 𝐻𝑎 and 𝐻𝑏 are non-commuting
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terms, i.e.
[
𝐻𝑎, 𝐻𝑏

]
≠ 0, such a vanishing energy gap can lead to second order

phase transitions associated with a spontaneously broken symmetry.

Both thermal phase transitions and quantum phase transitions have in common
that they can be determined through a (free-)energy analysis [30, 31]. This is no
longer true for out-of-equilibrium dissipative systems [32–37]. By properly designing
the coupling with the environment and the driving mechanisms, it is possible to
stabilize phases without an equilibrium counterpart [38–44]. Nonetheless, one can
draw a similarity with quantum phase transitions: where the ground state and the
first excited state are of main interest in the study of quantum phase transitions
this place is taken by the steady-state and the slowest decaying process in the
treatment of dissipative systems. Both the ground state and the steady state can
be found as the eigenvector of the zero eigenvalue of respectively the Hamiltonian
and the Liouvillian superoperator. The same goes for the first excited state and the
slowest decaying process. In dissipative systems we will thus be interested in the
behavior of the Liouvillian gap to signal the onset of a dissipative phase transition.
For a first order phase transition this means the Liouvillian gap is closed at the
critical point, signaling a bimodal stationary state. Note that the imaginary part
of 𝜆1 is also required to go to zero [35]. Furthermore, it can be shown that for
second-order phase transitions which are associated with a symmetry breaking
that the Liouvillian gap closes throughout the region of this broken symmetry
[35]. The closure of the Liouvillian gap is accompanied by a slowing down of the
dynamics of the system. Indeed, for a time 𝑡 sufficiently large the system’s state
can be written as

𝜌 (𝑡) = 𝜌𝑠𝑠 + 𝑐1𝑒
𝜆1𝑡𝜌1. (2.68)

This is also referred to as the critical slowing down of the dynamics near criticality.
It is here that a trajectory approach can provide one with additional information
with respect to a density matrix approach. The reason for this is that even though
the density matrix does not change anymore at 𝑡 →∞, the wave function |𝜓 〉 in
the trajectory approach does. In fact, |𝜓 〉 will explore all states |𝜓 𝑗 〉 that build up
the steady state density matrix 𝜌𝑠𝑠 =

∑
𝑗 𝑝 𝑗 |𝜓 𝑗 〉〈𝜓 𝑗 |. In finite-size systems, where

the Liouvillian gap 𝜆1 is finite, this allows for the observation of for example the
various symmetry broken phases along the evolution of the trajectory for a system
close to, or in, a symmetry broken phase due to the structure imposed on 𝜌1 and
𝜌𝑠𝑠 by this symmetry [35, 45], given a suitable choice of unravelling.
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2.8.1 Dissipative time crystals

An interesting phase that can arise in out-of-equilibrium systems is a dissipative
time crystal, also referred to as a boundary time crystal (BTC). The concept and
possible existence of time crystals was first mentioned in a work by Wilczek [46]
in closed quantum systems. He introduced the concept of a system where time
translational invariance was spontaneously broken, much like how the continuous
spatial translation symmetry is broken in crystal lattices. Hence the name “time
crystal”. This work sparked a lot of discussion on the existence of such a phase [47–
50]. Subsequently, a no-go theorem was derived ruling out the existence of these
time crystals in the ground state as well as at thermal equilibrium [51]. Recently
however, in a work by Khemani et al. it was claimed that the proof contained an
error rendering it invalid for 𝑇 ≠ 0 [52]. Going beyond the equilibrium systems
that were ruled out by the no-go theorem, the existence of a time crystal was
proposed in Floquet systems with periodic driving. Such a system breaks the
discrete time translational invariance since observables can oscillate at multiple
times the driving frequency [53–55]. These systems are also referred as discrete
time crystals or Floquet time crystals and have been experimentally observed [56,
57]. In this thesis, we will focus on those time crystals occurring in dissipative,
non-unitary, systems [58–66]. Hence the name dissipative time crystal, or BTC.
The term “boundary” comes from the interpretation of the system of interest
𝐻𝑆 being on the boundary of a bulk system 𝐻𝐸 , i.e. the boundary of a larger
system [58]. As we have seen in section 2.2, this is exactly the type of system we
are studying. When our system of interest resides in a BTC phase, it exhibits
periodical behavior in the long time limit, i.e. 𝑡 →∞, in the expectation value of
a system operator 𝑂. Such a phase thus breaks the time translational invariance
that is an underlying symmetry of the Liouvillian. Moreover, in contrast with
the Floquet time crystal, the system can break continuous time translational
symmetry. That is, the frequency of the oscillation does not depend on the driving
frequency but rather the various parameters in the system and the strength of the
coupling with the environment. The emergence of such a BTC can once again be
extracted from the properties of the Liouvillian spectrum. It is signaled by the
disappearance of the real part of an eigenvalue 𝜆 as the system approaches the
thermodynamic limit, while its imaginary part converges to a nonzero value [67–69].
The same is true for an eigenvalue 𝜆∗ due to (2.66). In the thermodynamic limit
these eigenvalues become purely imaginary and thus cause oscillating behavior
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to occur in the expectation value of an operator 𝑂 that has an overlap with the
corresponding eigenstates.
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CHAPTER 3
Many-body open quantum systems:

paradigmatic models and theoretical
techniques

Many-body quantum physics with light and matter is at the center of intense re-
search, being at the crossroad of condensed matter, statistical mechanics, quantum
optics, and quantum information. In these open quantum systems, excitations,
energy, and coherence are continuously exchanged with the environment, and they
can be driven via pumping mechanisms [5, 8, 10]. Experimentally, light-matter
interactions can be studied using Rydberg atoms confined between high-quality
mirrors [8], superconducting circuits [70, 71], semiconductor cavities [72–74], and
optomechanical systems [75]. In many of these setups, a key role is played by the
“photons”, that is, electromagnetic field excitations dressed by the matter degrees
of freedom, thus permitting a finite effective photon-photon interaction (e.g., the
polariton [14, 76, 77]). The experimental advances of the last decade provided
the opportunity to realize extended lattices of resonators, allowing to explore
criticality in this out-of-equilibrium context. While quantum or thermal phase
transitions can be determined by (free-)energy analysis [30, 31], their dissipative
counterparts need not obey the same paradigm [32–44]. There exists a plethora of
theoretical examples discussing the emergence of such dissipative phase transitions
for photonic systems [78–94], lossy polariton condensates [95–97], and spin models
[32, 42, 44, 98–108]. Moreover, some key experiments proved the validity of the
theoretical predictions in single superconducting cavities [109] and lattices of
superconducting resonators [110, 111], Rydberg atoms in optical lattices [112, 113],
optomechanical systems [75, 114], exciton-polariton condensates [14, 115], and
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semiconductor micropillars [116, 117].
The advancements in the available experimental platforms, and their ability to
experimentally study extended systems, have also led to an increased interest
in the theoretical description of these many-body open quantum systems. One
difficulty in the theoretical study is the scarcity of exact analytical solutions. This
is linked to the absence of a free energy concept in these open systems. Hence, one
is usually forced to numerically simulate the dynamics of these systems. However,
just as is the case for closed quantum systems, one quickly runs into the restrictions
of a very quickly growing Hilbert space that needs to be taken into account as the
system is enlarged. Indeed, assume a many-body system consisting of a number
𝑁 𝑝-level systems. The Hilbert space dimension 𝐷 of the wave function of such a
system will grow exponentially as

𝐷 = 𝑝𝑁 = 𝑒 log(𝑝)𝑁 . (3.1)

Even for a two-level system this quickly becomes intractable on present-day
computers. For example, for two-level systems exact (numerical) solutions are
usually limited to a system consisting of about 16 two-level systems. As 𝑝 becomes
larger exact solutions are completely infeasible. Furthermore, if one wishes to
directly solve for the density matrix or work in the Liouvillian superoperator
formalism the restriction becomes even more severe. As one is usually interested in
the thermodynamic limit, e.g. for the study of phase transitions, this is obviously
a big limitation.

Generally, one thus has to resort to approximative methods to describe the
physics of these systems. The validity of these approximations is of course model
dependent, and usually also heavily influenced by the parameter regimes of said
model. In the last decade a lot of theoretical work has been invested to develop
methods that allow for the simulation of these many-body open quantum systems
and efforts are still ongoing. As we have seen in the previous chapter there
exist various equivalent ways to study the dynamics of an open quantum system
described by a Lindblad master equation. Depending on the model at hand as well
as the properties that are of interest one either chooses for a quantum trajectory
description, a Lindblad master equation description, or a description on the level
of the Liouvillian superoperator. The various approximation schemes that have
been derived and studied in the literature all start from one of these approaches.
It goes without saying that each of them will also have their own strengths and

36



3.1 - The dissipative XYZ Heisenberg model

disadvantages, usually largely determined by the system under consideration.
In this thesis we will focus on two paradigmatic systems that have gained

interest in the literature due to their generality. The first one is a model that allows
us to study spin systems, the XYZ anisotropic Heisenberg model with dissipation.
Secondly, we study a bosonic system described by the Bose Hubbard model with
dissipation, i.e. a system where photons interact with each other on each site and
have the possibility to jump to neighboring ones. In the following sections we
will give an overview of these models as well as several methods that have been
applied to study them, starting with mean-field solutions and subsequently more
complicated simulation schemes.

3.1 The dissipative XYZ Heisenberg model

In the limit of a very strong on-site photon-photon interaction, also referred to
as the nonlinearity, one enters the regime of photon-blockade [24–27], where the
presence of two photons inside the cavity becomes practically impossible. This
effect has been observed experimentally both in a single atom in a cavity [28]
and in a single superconducting circuit [29]. Interestingly, a system of coupled
superconducting resonators [19, 110, 118–120] or Rydberg atoms [100, 121–125]
can be mapped onto an effective spin model. Indeed, if the photon blockade occurs
at each site in the system they are all reduced to two-level systems, i.e. systems
with a ground state |𝑔〉 (no photon) and an excited state |𝑒〉 (one photon). One
can then easily map |𝑔〉 → | ↓〉 and |𝑒〉 → | ↑〉. In this regard, the XYZ Heisenberg
model describes, with a high degree of generality, these systems and other spin
models. In the 𝑋𝑌𝑍 model, each spin interacts with its nearest neighbors via an
anisotropic Heisenberg Hamiltonian

𝐻𝑋𝑌𝑍 =
1
𝑍

∑︁
〈𝑖, 𝑗 〉

(
𝐽𝑥𝜎

𝑥
𝑖 𝜎

𝑥
𝑗 + 𝐽𝑦𝜎

𝑦

𝑖
𝜎
𝑦

𝑗
+ 𝐽𝑧𝜎𝑧𝑖 𝜎𝑧𝑗

)
, (3.2)

where 𝑍 indicates the coordination number, 〈𝑖, 𝑗〉 indicates the sum over nearest-
neighbor links, 𝐽𝛼 (𝛼 = 𝑥,𝑦, 𝑧) represent the coupling strengths of spin-spin interac-
tions, 𝜎𝛼

𝑖
are the Pauli matrices of the 𝑖-th spin. Since we consider 𝐽𝑥 ≠ 𝐽𝑦 ≠ 𝐽𝑧,

we will refer to this anisotropic Heisenberg model as an XYZ model. If such a
system weakly interacts with a Markovian environment, its dynamics is captured
via a Lindblad master equation [5, 8] (see chapter 2). In the simplest model, the
environment induces the system to relax in a preferential direction, e.g, aligning
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the spins along the 𝑧-direction which coincides with a relaxation of the excited
state |𝑒〉 (| ↑〉) to the ground state |𝑔〉 (| ↓〉). This can occur with a mechanism that
flips a single spin towards the negative direction of the 𝑧-axis, with 𝛾 quantifying
the rate of spin-flip processes. Note that we have chosen the dissipation rate 𝛾 to
be identical on each site, as will be the convention throughout this thesis. The
state of the system is thus captured by a density matrix 𝜌 (𝑡) evolving via

𝜕𝜌 (𝑡)
𝜕𝑡

= L𝜌 (𝑡) = −𝑖
[
𝐻𝑋𝑌𝑍 , 𝜌 (𝑡)

]
+ 𝛾

𝑁∑︁
𝑗=1
D[𝜎−𝑗 ]𝜌 (𝑡), (3.3)

where 𝑁 is the number of two-level systems, 𝜎±𝑗 = (𝜎𝑥𝑗 ± 𝑖𝜎
𝑦

𝑗
)/2 are the raising

and lowering operators for the 𝑗-th spin, and L is the Liouvillian superoperator.
Throughout most of this thesis we will mainly limit ourselves to local dissipation
with a rate 𝛾 , unless specifically mentioned otherwise. Due to its relative generality
and simplicity, this model has been taken both as an example of a system exhibiting
dissipative phase transitions, as well as a benchmark to test numerical methods.
A single-site Gutzwiller mean-field (MF) theory can already retrieve a rich phase
diagram for this model [42]. Numerical studies, some capable of including long-
range correlations, have confirmed a critical behavior in two-dimensional lattices
and the absence of criticality in 1D [1, 44, 104, 107, 126–128], as we will see in
closer detail in the next subsections. We emphasize that the rich XYZ model
phase diagram in different regimes is a cornerstone of the study of many-body spin
quantum systems, magnetism, spin dynamics and quantum phase transitions [125].
Indeed, it is the most general case of the Ising model and of the 𝑋𝑋𝑍 model, of
the Lipkin-Meshkov-Glick model and other spin-squeezing Hamiltonians, to which
it can fall onto, for the appropriate choice of parameters [101].

3.1.1 Mean-field analysis

The first step in studying a quantum many-body system is usually a mean-field
approach. Interestingly, a Gutzwiller mean-field study of this model has already
shown a very rich phase diagram containing a paramagnetic phase, a ferromagnetic
phase, an antiferromagnetic phase, spin density waves and a staggered XY phase
[42]. In this study one assumes the system to be described by a factorized density
matrix

𝜌𝑆 =

𝑁⊗
𝑗=1

𝜌 𝑗 , (3.4)
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which allows one to derive expressions from the Lindblad master equation. It is
worth noting that on the level of the mean field it is possible to derive analytical
equations for the first magnetic moments in the steady state,

𝑀SS
𝛼 =

1
𝑁

∑︁
𝑗

〈
𝜎𝛼𝑗

〉
, (3.5)

that is by solving the equation

𝜕

𝜕𝑡
Tr

[
𝜌

(
1
𝑁

∑︁
𝑗

𝜎𝛼𝑗

)]
= 0. (3.6)

This then results in

𝑀SS
𝑥 = ±

√︄
2𝑀SS

𝑧

(
𝑀SS

𝑧 + 1
) 𝐽𝑦 − 𝐽𝑧
𝐽𝑥 − 𝐽𝑦

, (3.7a)

𝑀SS
𝑦 = ∓

√︄
2𝑀SS

𝑧

(
𝑀SS

𝑧 + 1
) 𝐽𝑧 − 𝐽𝑥
𝐽𝑥 − 𝐽𝑦

, (3.7b)

𝑀SS
𝑧 = −𝛾4

1√︃(
𝐽𝑦 − 𝐽𝑧

)
(𝐽𝑧 − 𝐽𝑥 )

. (3.7c)

This allows one to calculate a range of interesting observables of the system. Indeed,
the local density matrices of this system can be written in terms of their Bloch
sphere representation

𝜌 𝑗 =
1
2

(
𝟙 + ®𝜖 · ®̂𝜎

)
, (3.8)

With ®𝜖 the Bloch vector, which contains the magnetization in the 𝑥 , 𝑦 and 𝑧-
direction, and 𝜎 the Pauli matrices. Which gives access to e.g. the Von Neumann
entropy. It should be noted that this mean-field approach immediately grants
access to the thermodynamic limit. Furthermore, by employing a stability analysis
it is possible to come to a condition that allows to check for the presence of the
various earlier mentioned states. This results in the rich phase diagram depicted
in Fig. 3.1. For a more elaborate discussion of such a stability analysis we refer to
either Ref. [42] or chapter 5 were we will perform a similar stability analysis.

3.1.2 Beyond Mean-field: results and methods

The research in the literature has predominantly focussed on the parameter regime
where the mean-field solutions predict a transition from the paramagnetic phase
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Figure 3.1: Gutzwiller mean-field solution of the XYZ Heisenberg model
with local dissipation. [Left panel] For 𝐽𝑧/𝛾 = 1 one finds a paramagnetic
phase (PM), a ferromagnetic phase (FM), an antiferromagnetic phase (AFM)
and a spin-density wave phase (SDW). The white arrow points to a Lifshitz
point, i.e. a point where the PM, FM and SDW phase coexist. [Right panel]
For 𝐽𝑧 = 0 one finds a paramagnetic phase and a staggered XY phase (sXY).
These figures originate from Ref. [42].

to the ferromagnetic phase as 𝐽𝑦/𝛾 is increased. More precisely for the parameters
𝐽𝑥/𝛾 = 0.9, 𝐽𝑧/𝛾 = 1 and 𝐽𝑦/𝛾 > 0. Furthermore, the studies are typically limited to
two-dimensional square lattices. If we discuss the transition from the paramagnetic
to the ferromagnetic phase in what follows we also refer to this parameter regime.
Let us now discuss several methods that go beyond the previous mean-field
approach.

As a first extension to the Gutzwiller mean-field approach at the level of the
master equation, one can consider an ansatz for the density matrix that includes
close-range quantum correlations. This can again be done by assuming a product
density matrix, but instead of taking the product of the individual site density
matrices one beholds a cluster of neighboring sites and takes the product of the
density matrices of this cluster [44, 129–131]

𝜌 =
⊗
C
𝜌C . (3.9)

The various clusters in the system are often also called the plaquettes. It should
be clear that the numerical complexity of this method scales exponentially with
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the number of sites in the respective clusters. Hence, this method is unable to
capture any long-range correlations but allows for the study of the influence of
short-range quantum correlation in the thermodynamic limit. Note that clusters
of size one correspond to the Gutzwiller mean-field approach in (3.4). Another
extension of the Gutzwiller mean-field approach of the previous subsection can
also be made in a quite similar fashion through a trajectory approach. Instead of
factorizing the density matrix one factorizes the wave function [128]

|𝜓 〉 =
𝑁⊗
𝑗=1
|𝜓 𝑗 〉. (3.10)

The advantage of such an approach is that due to the stochastic nature of the
quantum trajectories this approach includes long-range classical correlations, which
were not included in the density matrix Gutzwiller mean-field approach. However,
exactly due to these classical correlations the trajectory does not immediately grant
access to the thermodynamic limit as one needs to keep track of these correlations
spreading throughout the system. The inclusion of classical correlations thus
comes at the cost of having to perform a finite-size scaling to gain access to the
thermodynamic limit. Both of the above methods predict a re-entrance of the
paramagnetic phase for large values of 𝐽𝑦/𝛾 , where the mean-field predicts the
ferromagnetic phase to persist until infinity, in a study of two-dimensional cubic
lattices. Furthermore, a wider study of the phase diagram shows that the inclusion
of close-range quantum correlations has a dramatic influence on the phase diagram.
The phase diagram, shown in Fig. 3.2, predicted by the cluster mean-field approach
(3.9) in a two-dimensional lattice shows that the ferromagnetic region shrinks and
becomes finite. This phase diagram will be discussed in more detail in chapter 7.

As both these methods give promising and interesting results, a natural exten-
sion is of course a cluster-Gutzwiller approach on the level of the wave function
[1], which we will discuss in detail in chapter 7 and 8. Another extension based on
clusters comprises of a linked-cluster expansion [127].

Where the previous methods based on a factorization are approximative in their
“guess” for the proper wave function or density matrix, there also exists a method
that aims to reduce the Hilbert space of the problem by only taking the relevant
states for the dynamics of the system into account. This method is called the
corner space renormalization method [104, 132], and finds the origin of its name in
the act of only resorting to a “corner” of the Hilbert space to describe the system.
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Figure 3.2: Cluster mean-field phase diagram for the XYZ Heisenberg
model with local dissipation and 𝐽𝑧/𝛾 = 1. The single-site mean field (black
full line) predicts a ferromagnetic phase until infinity as 𝐽𝑦/𝛾 is increased.
Inclusion of short-range quantum correlations through clusters of size 2 × 2
(red squares) and 3 × 3 (blue circles) show the shrinking of the ferromagnetic
region and a re-entrance of the paramagnetic phase (red regions, the darkest
color indicates a paramagnetic region in all simulations) along the 𝐽𝑦/𝛾 axis.
These figures originate from Ref. [44].
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In this method one starts by simulating the exact solution of a small system (where
small means that one can still solve it numerically). An eigendecomposition of the
steady state density matrix then allows for the determination of the most relevant
states. One can then construct a “new” Hilbert space of a system that is quadratic
the size of the small system by taking the tensor product of the original (reduced)
Hilbert space with itself. One can then once again perform an eigendecomposition
of the bigger system and repeat the process to gain access to bigger systems. The
specific number of relevant states that needs to be taken into account is highly
depending on the convergence of the method, which is usually greatly influenced
by the specific parameter regime. If convergence is reached however, one can say
that the obtained result is numerically exact. Such a method grants access to a
finite-size scaling of the systems properties as well as the entanglement properties
[104]. One has to note that in a regime where the system is described by a highly
mixed state, this method can experience issues with convergence. This is due to
the increased number of states that need to be taken into account to accurately
describe the systems entropic state, which can quickly go beyond what is feasible
in numerical calculations.

Another related class of approximative methods is given by the tensor network
approaches. On the level of the wave function one can resort to a matrix product
state ansatz (MPS) in one dimension or a matrix product operator approach
(MPO) on the level of the density matrix. Both these approaches perform very
well in for a one dimensional system [133, 134]. They were also used to show that
in one dimension ferromagnetic order is not present in the steady state [44]. With
an infinite matrix product operator approach (iMPO) the study in one dimension
was extended to the dynamics of the system where it was shown that no critical
dynamics occur (it however does in two dimensions) [107].

In two dimensions the tensor network method can be extended with so-called
projected entangled pair states (PEPS). To gain access to the thermodynamic
limit methods based on infinite projected entangled pair states are also being
investigated and show promise in regions where they converge [135, 136]. Recently,
numerical approaches based on neural network ansatzes [137–142] have also been
applied, also showing promise for the description of larger lattices. An extension
of the previously mentioned cluster methods in combination with methods such as
the corner approach or neural network approaches, allowing bigger cluster sizes,
comprise an interesting and active pursuit of research.

For a more elaborate discussion of the different simulation methods we refer to
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their respective papers, the interested reader can also find an overview in a review
paper by Weimer et al. [143].

A special case where one can exactly study up to the order of a hundred spins
is the all-to-all coupled Hamiltonian. By exploiting the permutational symmetry
present in the system one can drastically reduce the size of the Liouvillian. This
method has allowed to study the validity of the mean-field approximation in the
all-to-all connected version of this system [2] and will be discussed in detail in
chapter 4 and 5.

3.2 The driven-dissipative Bose-Hubbard model

In the case of a weak(er) nonlinearity, i.e. a weak(er) on-site photon-photon
interaction than in the previous section, the optical cavity will no longer describe
a two-level system. Rather, it will be a bosonic system that can be described as a
𝑝-level system, or in principle, a system with an unbound set of number states
(𝑝 →∞). Let us consider a nonlinearity of the Kerr type, of which the strength of
the photon-photon interaction in a cavity is given by 𝑈 and in which photons can
“hop” between nearest-neighboring cavities with an amplitude 𝐽 due to quantum
tunneling. If we drive our system with a coherent laser drive with laser frequency
𝜔𝐿 and strength 𝐹 which has a detuning of Δ = 𝜔𝐿 − 𝜔𝐶 with respect to the cavity
frequency 𝜔𝑐 then the Hamiltonian of this system is given by the so-called Bose
Hubbard Hamiltonian. In the frame rotating with the drive frequency one has

𝐻𝐵𝐻 =
∑︁
𝑖

(
−Δ𝑎†

𝑖
𝑎𝑖 +

𝑈

2 𝑎
†
𝑖
𝑎
†
𝑖
𝑎𝑖𝑎𝑖 + 𝐹

(
𝑎𝑖 + 𝑎†𝑖

))
− 𝐽
𝑧

∑︁
〈𝑖, 𝑗 〉

(
𝑎
†
𝑖
𝑎 𝑗 + 𝑎†𝑗𝑎𝑖

)
,

(3.11)

with 𝑧 the number of nearest neighbors and
∑
〈𝑖, 𝑗 〉 a sum over all these nearest-

neighbor pairs. The dynamics of the driven-dissipative Bose Hubbard model are
then governed by a Lindblad master equation describing the time evolution of the
density matrix

𝑑𝜌

𝑑𝑡
= −𝑖

[
𝐻𝐵𝐻 , 𝜌

]
+ 𝛾2

∑︁
𝑖

(
2𝑎𝑖𝜌𝑎†𝑖 − 𝜌𝑎

†
𝑖
𝑎𝑖 − 𝑎†𝑖 𝑎𝑖𝜌

)
, (3.12)

with 𝛾 the dissipation rate and the annihilation operator 𝑎𝑖 being the jump
(Lindblad) operator, i.e. the loss of a photon. A schematic description of this
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Figure 3.3: Graphical depiction of a square lattice of optical cavities with
cavity frequency 𝜔𝐶 , where photons are represented as green circles. A
coherent laser with frequency 𝜔𝐿 is present as a drive with pump strength 𝐹 .
Photon-photon interactions are present under the form of a Kerr non-linearity
𝑈 . Photons dissipate from the individual cavities with a dissipation rate
𝛾 . Hopping of the photons is possible between neighbouring cavities due to
tunneling, with a hopping amplitude 𝐽/4.
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system is shown in Fig. 3.3.
The driven-dissipative Bose-Hubbard model has been extensively studied [3,

85–87, 91, 132, 144–148]. It combines physics of optical bistability [149], well
known from nonlinear optics, with the phenomenon of the Mott insulator [22],
familiar from condensed matter physics. However, since exactly solving a system
of multiple two-level systems is already a burdensome task, it should be clear that
solving the equation (3.12) exactly is numerically infeasible already for a small
number of cavities due to the larger local Hilbert spaces. Hence, even numerical
exact solutions are infeasible for very small systems and one needs to resort to
approximate methods. Furthermore, the large number of tunable parameters
causes this system to be notoriously difficult to study. As a result, the literature
has predominantly focussed on studying a small number of cavities of which the
cutoff in local Hilbert space, i.e. 𝑛max of the Fock state |𝑛max〉, can reach fairly
high values, depending on the method used to study the system. In this thesis
however, as well as the next subsections, the focus will lie on describing extended
lattices, with the thermodynamic limit as the ultimate goal.

3.2.1 Mean-field analysis

Similarly to the previous section, one can perform a mean-field analysis by assuming
that the density matrix of the collective system of cavities can be written in terms
of a product density matrix, i.e. a Gutzwiller mean-field approach. This coincides
with decreasing the complexity of the model to that of a single site. Furthermore,
it once again allows us to derive an analytical solution. The mean-field decoupling
allows one to write 𝑎†

𝑖
𝑎 𝑗 = 〈𝑎†

𝑖
〉𝑎 𝑗 + 𝑎†𝑖 〈𝑎 𝑗 〉 − 〈𝑎

†
𝑖
〉〈𝑎 𝑗 〉 and subsequently derive a

self-consistent equation for 〈𝑎 𝑗 〉 = 〈𝑎〉 [87, 150, 151],

〈𝑎〉 = −
2𝜙 𝐽

𝛿

0𝐹2(; 1 + 𝛿, 𝛿∗; 8|𝜙 𝐽 |2)
0𝐹2(: 𝛿, 𝛿∗; 8|𝜙 𝐽 |2)

. (3.13)

with 𝜙 𝐽 = (𝐹 − 𝐽 〈𝑎〉)/𝑈 the renormalized drive, 𝛿 = −(2Δ + 𝑖𝛾)/𝑈 the dimensionless
detuning and 0𝐹2(;𝑎, 𝑏; 𝑧) the hypergeometric function. The solution for 〈𝑎〉 grants
direct access to higher order correlators [151], e.g. the particle number expectation
value 〈𝑛〉 = 〈𝑎†𝑎〉 [150]. It allows one to construct a phase diagram for this system,
shown in Fig. 3.4 , taken from Ref. [87]. The figure shows the photon number at
the 4-photon resonance, i.e. 1 + 2Δ/𝑈 = 4 and for small dissipation 𝛾 = 𝑈 /20 with
respect to the nonlinearity 𝑈 . As one can see from the modest particle number
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Figure 3.4: Gutzwiller mean-field solution of the Bose Hubbard model with
local dissipation and coherent drive. The system is chosen at the 4-photon
resonance 1 + 2Δ/𝑈 = 4 and a small dissipation 𝛾 = 𝑈 /20 with respect to the
nonlinearity 𝑈 is applied. The phase diagram consists of a low-density phase
(gas), a high-density phase (liquid) which has a steep crossover for small 𝐽/𝑈 .
For higher values of 𝐽/𝑈 this transforms into a first-order transition and a
regime of coexistence emerges. The bistable region is bounded by the white
lines. This figure originates from Ref. [87, 146].

expectation value in the phase diagram, the results obtained for this parameter
lean towards a stronger nonlinearity. In Ref. [87] the authors formulate a gas-liquid
phenomenology, where they associate the low-density phase with a gas and the
high-density phase with a liquid. They report a region with a steep crossover from
the low density phase to the high density phase as the pumping strength 𝐹/𝑈
is increased, for small values of 𝐽/𝑈 . However, as the hopping amplitude 𝐽/𝑈 is
increased this steep crossover transforms into a transition of first-order indicating
a bistable regime.

Additionally, another often used approach is the Gross-Pitaevskii mean-field
approach. It consists of assuming that the state of each cavity 𝑗 can be described
by a coherent state |𝛼 𝑗 〉. That is, a state that obeys the relation 𝑎 𝑗 |𝛼 𝑗 〉 = 𝛼 𝑗 |𝛼 𝑗 〉.
In other words, the density matrix of each site 𝑗 can be written as 𝜌 𝑗 = |𝛼 𝑗 〉〈𝛼 𝑗 |. It
turns out that such an assumption is quite good in the semi-classical regimes where
the photon number is on the larger side. However, in the strong coupling regime
with small occupation number it is usually not adequate. For such an ansatz one
can rewrite the time evolution according to the Lindblad master equation of the
system (3.12) in terms of time evolution of the fields 𝛼 𝑗 , which can be written in a
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Gross-Pitaevskii like equation

𝜕𝛼 𝑗

𝜕𝑡
=

[
−𝑖

(
Δ −𝑈

(
|𝛼 𝑗 |2 − 1

)
− 𝛾/2

)]
𝛼 𝑗 − 𝑖

𝐽

𝑧

∑︁
𝑗 ′
𝛼 𝑗 ′ + 𝑖𝐹 . (3.14)

In the steady state, i.e. when the time derivative is zero, one can then rewrite this
equation as

𝐹 2 = |𝛼 |2
[(
Δ + 𝐽 −𝑈 |𝛼 |2

)2
+ 𝛾2/4

]
, (3.15)

where we assumed the system to be homogeneous, i.e. 𝛼 𝑗 = 𝛼 . Such an approach is
usually thought of being classical since no entanglement between multiple cavities
is possible and the on-site density matrix represents a pure state at all times. The
method thus fails to describe a mixed state.

In this thesis we will mainly focus on regions with strong photon-photon
interaction, which leads to a lower occupation number. More specifically, one of
the parameter regimes of interest is the bistable region in Fig. 3.4. In this region
the condition of a coherent state is not always satisfied. Hence, when mentioning
mean-field results with regards to the Bose-Hubbard model we will be referring to
those obtained via the Gutzwiller mean-field approach, unless specified otherwise.
In the next subsection we will review several (numerical) approaches that have been
used to study the driven-dissipative Bose-Hubbard model (in extended lattices)
and which go beyond the previous mean-field methods.

3.2.2 Beyond Mean-field: results and methods

As was the case for lattices of two-level systems, the corner space renormalization
method can also be applied to the Bose Hubbard model [88, 132]. Of course, in
the limit of weak photon-photon interactions one is restricted to a small collection
of interacting cavities. If the local Hilbert space however is small, e.g. in the limit
of a stronger nonlinearity it is still possible to use the method to obtain results
for larger lattices [132]. It was shown that mean-field predictions can be rather
accurate in regions where the on-site interaction 𝑈 does not compete with the
hopping amplitude 𝐽 , i.e. if 𝐽 is sufficiently small with respect to 𝑈 . In regions
where they do compete, significant deviations can be present between the “exact”
solution and the mean-field predictions.

Building onto the Gutzwiller mean-field approach, a self-consistent expansion in
the inverse coordination number 1/𝑧 of the lattice was applied [152]. They showed
large density fluctuations in the gas-liquid transition of Fig. 3.4. Unfortunately,
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this method could not be used to study the hysteretic regime, as it does not always
converge in this regime.

If one is interested in the parameter region where 𝑈 is small, one can resort to
the so-called Truncated Wigner approach [14, 153, 154]. This approach solves the
problem of the coherent ansatz not being able to describe a mixed state. It does
so by sampling various initial conditions and simulating stochastic trajectories to
build up the density matrix. It stems from being able to write the master equation
as a third-order differential equation for the quasi-probability Wigner function.
This is nothing more than an alternative way to represent the density matrix. In
the limit of small 𝑈 however, one can reduce this equation to one of second order
since the third order terms are proportional to 𝑈 . The remaining problem can
then be rewritten in terms of a Langevin equation for the complex fields 𝛼 𝑗 (𝑡)

𝜕𝛼 𝑗

𝜕𝑡
=

[
−𝑖

(
Δ −𝑈

(
|𝛼 𝑗 |2 − 1

)
− 𝛾/2

)]
𝛼 𝑗 − 𝑖

𝐽

𝑧

∑︁
𝑗 ′
𝛼 𝑗 ′ + 𝑖𝐹 +

√︁
𝛾/2𝜒 (𝑡), (3.16)

with 𝜒 (𝑡) normalized random complex Gaussian noise obeying the relations
〈𝜒 (𝑡)𝜒 (𝑡 ′)〉 = 0 and 〈𝜒 (𝑡)𝜒∗(𝑡 ′)〉 = 𝛿 (𝑡 − 𝑡 ′). Note that this is exactly the same
as equation (3.14) with added complex Wiener noise. The truncated Wigner
approach was applied to extended lattices of the Bose-Hubbard model and has
shown remarkable results when compared to the corner method [91]. It was ap-
plied to study first-order phase transitions, showing that they do not occur in one
dimension, indicating a lower-critical dimension of 𝑑 < 2. In a continuing study the
role of disorder was studied on the criticality of the first-order transition [147]. An
efficient sampling method to compute configuration averages in disordered systems,
of which the dynamics are described by a stochastic evolution, was introduced.
They showed that criticality was suppressed in 2 dimensions, as was indicated
by an exponential decrease in space of the correlation functions. Related to this
truncated Wigner approach is the functional integral approach applied in Ref. [86].

The truncated Wigner approach however not always obtains good results, even
in the limit of small 𝑈 , as was shown in a study of spontaneous Beliaev-Landau
scattering out of equilibrium through the use of a hierarchy of correlation functions
[155]. On the quantum trajectory level one can opt for a Gaussian description.
That is, one assumes the state of the system can be described with the knowledge
of its first and second moments. This approach is known as the Gaussian quantum
trajectory approach and has been applied to extended lattices of the quadratically
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driven Bose-Hubbard model [92–94]. This quadratically driven model was also
studied in Ref. [89] with a mean-field density matrix decoupling, where the phase
transition associated with a ℤ2 symmetry was investigated. Furthermore, a study of
the model with single photon drive as well as a quadratic drive has been performed
in Ref. [156], a Gutzwiller trajectory approach based on a diffusive unravelling,
also known as homodyne measurements, was used as well as an MPS approach.
Studies that employ tensor network approaches have mostly been limited to one
dimensional Bose Hubbard chains [88, 157–159].
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CHAPTER 4
Permutational invariance in open

quantum systems

In this chapter we will introduce a framework that will allow us to exploit per-
mutational symmetry in open all-to-all connected quantum systems to drastically
reduce the number of states one needs to keep track of. It will allow us to decrease
the exponential scaling of the dimension of the Liouvillian space to a polynomial
one. This grants access to the exact numerical simulation of many-body open
quantum systems to an extent that would be infeasible in the full space. The
contents of this chapter are based on a work by Gegg et al. [160] and hold close
relation to works by Shammah et al. [161]. These frameworks will be used in
chapter 5 and 6, we then apply this to study the dissipative XYZ Heisenberg
model and the driven-dissipative Bose Hubbard model.

4.1 Two-level systems

To illustrate how one can exploit permutational symmetry to reduce the size of the
Liouvillian, we will first resort to the simplest example where we have a collection
of interacting two-level systems. Let us first look at the individual two-level system
and how the states of this system can be represented. We will denote the states
of the two-level system as |0〉 and |1〉. This allows us to write a general density
matrix of a two-level system as

𝜌 =

(
𝑐00 𝑐01

𝑐10 𝑐11

)
= 𝑐00 |0〉〈0| + 𝑐01 |0〉〈1| + 𝑐10 |1〉〈0| + 𝑐11 |1〉〈1|. (4.1)
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The explicit notation in its ket and bra form will prove to be rather useful in
the framework we will be presenting. To clarify this we extend the size of our
system by adding a second two-level system. The density matrix will now be a
4 × 4 matrix that can be represented as

𝜌 =
∑︁
𝑖, 𝑗,𝑘,𝑙

𝑐
𝑗𝑙

𝑖𝑘
( |𝑖〉〈 𝑗 | ⊗ |𝑘〉〈𝑙 |) =

∑︁
𝑖, 𝑗,𝑘,𝑙

𝑐
𝑗𝑙

𝑖𝑘
|𝑖𝑘〉〈 𝑗𝑙 |. (4.2)

It should be clear that this is straight forwardly extended for larger systems with
size 𝑁 , and results in 4𝑁 terms, i.e. the square of the Hilbert space size of the
wave function which is equal to 2𝑁 . We will now introduce a new representation
for an element |𝑘1𝑘2...𝑘𝑁 〉〈𝑘 ′1𝑘 ′2...𝑘 ′𝑁 | that will keep track of how many sites are in
a respective local state |𝑖〉〈 𝑗 |. Assume the state has 𝑛00 sites in |0〉〈0|, 𝑛01 sites in
|0〉〈1|, 𝑛10 sites in |1〉〈0|, and 𝑛11 sites in |1〉〈1|, then we will write for the operator

|𝑘1𝑘2...𝑘𝑁 〉〈𝑘 ′1𝑘 ′2...𝑘 ′𝑁 | = 𝑂 [𝑛00,v00, 𝑛01,v01, 𝑛10,v10, 𝑛11,v11] . (4.3)

In this new notation we have introduced the sets v𝑖 𝑗 = {𝑠 : |𝑖〉𝑠 〈 𝑗 |𝑠 } that keep track
of which sites are in the respective local states |𝑖〉𝑠 〈 𝑗 |𝑠 , where 𝑠 denotes the specific
site. Note that the order in which we place the 𝑛𝑖 𝑗 and 𝑣𝑖 𝑗 in the righthandside
of (4.3) is arbitrarily chosen, and could have been placed in any order while still
representing the same state. Nonetheless, we shall work with the order introduced
above.

Up till now we have only written down a new way of representing the basis of
the density matrix, we still need to keep track of as many states as are present
in the full space. The advantage of this notation however becomes particularly
clear when we assume the system’s state to be permutationally invariant. This
permutational invariance implies that any and all permutations on the sites of the
system leaves the state of the system unchanged. Let us illustrate this with an
example of three two-level systems. Observe the state |100〉〈100|, which can be
written as

|100〉〈100| = |1〉1〈1|1 ⊗ |0〉2〈0|2 ⊗ |0〉3〈0|3
= 𝑂 [2, {2, 3} , 0, ∅, 0, ∅, 1, {1}] ,

(4.4)

which immediatly tells us that there are 𝑛00 = 2 sites in state |0〉〈0|, 𝑛01 = 0 sites in
state |0〉〈1|, 𝑛10 = 0 sites in state |1〉〈0| and 𝑛11 = 1 site in state |1〉〈1|. Note that
the subscripts on the kets and bras in (4.4) indicate the specific site and we use ∅
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to indicate an empty set. The non-empty sets of sites corresponding to this state
are thus v00 = {2, 3} and v11 = {1}. It should be clear that the 𝑛𝑖 𝑗 stay unchanged
under a permutation of the sites, whereas the sets v𝑖 𝑗 do change. Indeed, on the
above state we can perform permutations that will yield two non-trivial results,
namely the states

|010〉〈010| = |0〉1〈0|1 ⊗ |1〉2〈1|2 ⊗ |0〉3〈0|3, with v00 = {1, 3} ,v11 = {2} , (4.5)

|001〉〈001| = |0〉1〈0|1 ⊗ |0〉2〈0|2 ⊗ |1〉3〈1|3, with v00 = {1, 2} ,v11 = {3} . (4.6)

The coefficients corresponding to the above states can in general however be
different from each other, depending on the initial conditions of the system. It
is in the special case where one cannot distinguish between the various sites,
and when the coefficients of the states that transform into each other under a
permutation are equal to each other, that a drastic decrease in the number of
states one needs to take into account will occur. Indeed, in such a situation the
system is permutationally invariant and one can discard the information from the
sets v𝑖 𝑗 and resort to a much simpler notation

𝑂 [𝑛00,v00, 𝑛01,v01, 𝑛10,v10, 𝑛11,v11] → 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] . (4.7)

This means that the number of states one needs to keep track of becomes much
smaller since the number of states will decrease to the number of permutational
invariant subspaces in the full Hilbert space. That is, the number of states that
cannot be transformed into each other under a permutation. Another permutational
invariant subspace could for example be generated from the state |110〉〈110| by
applying all possible permutations. From our earlier example we can already
see that the three respective states form a permutational invariant subspace and
can now be represented by a single state. Evidently, a permutational invariant
description of a system imposes restrictions on the system itself, which should
satisfy the condition of indistinguishability. In the next section we will go in further
detail on the conditions of the system for the permutational invariant approach to
be applicable. The remainder of this section will discuss the decrease in complexity
as a result of the permutational invariance. The number of permutational states
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in a permutational invariant subspace of a certain set
{
𝑛𝑖 𝑗

}
can be calculated as

𝑅
({
𝑛𝑖 𝑗

})
= 𝑅 (𝑛00, 𝑛01, 𝑛10, 𝑛11) =

(
𝑁

𝑛00, 𝑛01, 𝑛10, 𝑛11

)
=

𝑁 !
𝑛00!𝑛01!𝑛10!𝑛11! .

(4.8)

Which is nothing more than the multinomial coefficient, that is the number of ways
to order 𝑁 interchangeable objects into the boxes with index 𝑖 𝑗 equal to 00, 01, 10
and 11 such that each box contains 𝑛𝑖 𝑗 elements. In equation (4.8) we introduced
a more compact notation to indicate the set of 𝑛𝑖 𝑗 , i.e. 𝑛00, 𝑛01, 𝑛10 and 𝑛11, as{
𝑛𝑖 𝑗

}
. Also note that 𝑛00 +𝑛01 +𝑛10 +𝑛11 = 𝑁 , i.e. each site is in one of the possible

ketbra states. The reduction in the number of coefficients one needs to keep track
of for a collection of 𝑁 two-level systems can then be straightforwardly calculated
by determining the number of sets {𝑛00, 𝑛01, 𝑛10, 𝑛11} that satisfy the condition∑︁

𝑖, 𝑗=0,1
𝑛𝑖 𝑗 = 𝑛00 + 𝑛01 + 𝑛10 + 𝑛11 = 𝑁 . (4.9)

Each set
{
𝑛𝑖 𝑗 : ∀𝑖, 𝑗 ∈ {0, 1}

}
characterizes a subspace of permutational invariant

states and by calculating their number we will have determined the number of
states we need to keep track of. It can be calculated by solving the following sum,
for which we refer to appendix B.1 for the derivation, which results in

𝐷 (𝑁 ) =
∑︁

𝑛00+𝑛01+𝑛10+𝑛11=𝑁

1 =

(
𝑁 + 3
𝑁

)
=

1
6 (𝑁 + 3) (𝑁 + 2) (𝑁 + 1) .

(4.10)

Which is a drastic reduction with respect to the number of elements in the density
matrix represented in the full space of the density matrix. Indeed, the number of
coefficients is exponential in size, more specifically 4𝑁 , whereas the permutational
invariant basis shows a polynomial scaling with the system size 𝑁 of order three.
Finally, one can use the multinomial theorem [162] to prove that the sum over the
coefficients of each permutational invariant subspace recovers the total number of
coefficients in the exact treatment

𝐷Exact (𝑁 ) =
∑︁

𝑛00+𝑛01+𝑛10+𝑛11=𝑁

𝑅 (𝑛00, 𝑛01, 𝑛10, 𝑛11) = 4𝑁 . (4.11)
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A useful expression in this new representation will be the completeness relation,
which can now be written as∑︁

𝑘1,𝑘2,...,𝑘𝑁 =0,1
|𝑘1𝑘2 . . . 𝑘𝑁 〉〈𝑘1𝑘2 . . . 𝑘𝑁 | = 𝟙,

⇔
𝑁∑︁

𝑛00=0

∑︁
sets

𝑂 [𝑛00,v00, 0, ∅, 0, ∅, 𝑁 − 𝑛00,v11] = 𝟙,

⇔
𝑁∑︁

𝑛00=0

(
𝑁

𝑛00

)
𝑂 [𝑛00, 0, 0, 𝑁 − 𝑛00] = 𝟙,

(4.12)

where
∑

sets runs over all possible unique sets v𝑖 𝑗 and we also wish to note that
v00 ∪ v11 = {1, 2, . . . , 𝑁 }, i.e. the set of all sites in the system. In the last equation
we used (4.7) and (4.8), where the multinomial coefficient could be written as a
binomial coefficient due to both 𝑛01 and 𝑛10 being equal to zero.

4.2 Conditions for a permutational invariant time evo-
lution

The conditions to describe the system in its permutational invariant basis can
be summarized under the indistinguishability of the sites in the system. If all
sites are indistinguishable from each other, a permutation will evidently leave the
system unchanged. We are of course interested in being able to calculate the time
evolution of such a system in the permutational invariant framework. Let us go into
deeper detail what this means for the system’s state, as well as the Hamiltonian
and dissipation governing the time evolution of the system. As a first condition,
already mentioned in the previous section, we can impose that all coefficients of
states inside a certain permutational invariant subspace should be equal to each
other. If this were not the case one still needs the full Hilbert space of coefficients
to describe the system. This condition alone is of course not enough to obtain
indistinguishability in the system itself. Indeed, the Hamiltonian will impose a
certain structure on our collection of sites, e.g. a 1D chain of sites, a 2D lattice
of sites, ... Even if we observe a permutational invariance in the notation of the
states, it need not be present if we were observing the physical sites of the system.
This can be easily illustrated with an example of four connected two-level systems
on a chain as illustrated in 4.1, where the on-site interactions are identical for
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Figure 4.1: Schematical illustration of a chain of four two-level system in
the states (a) |1100〉〈1100〉 and (b) |1010〉〈1010|. (c) Schematical description
of four all-to-all connected two-level systems in a state with 𝑛00 = 𝑛11 = 2.
Any permutation performed on this all-to-all connected system leaves the
system invariant.

each two-level system as well as the nearest-neighbor interaction strength between
each two-level system. Let us look at the specific state |1100〉〈1100〉 depicted in
panel (a) of Fig. 4.1, which through a permutation could be transformed into
|1010〉〈1010|, depicted in panel (b) of Fig. 4.1. For this specific case one could
distinguish between both states. Indeed, for the first state each site has one
neighbor in a local state |0〉〈0| and the other neighbor in the local state |1〉〈1|. For
the second state, after the permutation, each site has two neighbors in the same
local state, different from the state of the site itself. It should be clear that under
the same interaction between the neighboring sites the result would be different
for the above states. To reconcile with the indistinguishability condition all sites
present in the system should be connected to each other as depicted on panel (c)
of Fig. 4.1. In other words, the framework from section 4.1 requires an all-to-all
connected Hamiltonian. Furthermore, all links inside the system should have the
same interaction strength and the on-site interactions should also be identical at
each site. More practically, this means that the systems Hamiltonian must be able
to be written in terms of collective operators. That is in terms of, for a general
local operator 𝑥 𝑗 , operators of the form

𝑋 =

𝑁∑︁
𝑗

𝑥 𝑗 , (4.13)

58



4.3 - Time evolution

which are also referred to as collective processes. This finally brings us to the
conditions on the dissipation. There are two possible dissipation schemes that are
of interest to us in this thesis and that fulfill the condition of indistinguishability.
The first one is (identical) local dissipation at each site, i.e. the local Lindblad
operator at each site 𝑗 is identical. The other is collective dissipation of all sites at
the same time and with the same lindbad operator, that is

𝐿 =
∑︁
𝑗

𝐿 𝑗 , (4.14)

where once again for all 𝑗 we have that the local Lindblad operators are identical.
It is also allowed to have a combination of both local dissipation and collective
dissipation, both obeying the above requirements.

With this we can summarize the conditions to obtain a system where the
sites are indistinguishable from each other and we can thus utilize the framework
that exploits the permutational invariance in the system to drastically reduce the
complexity for its time evolution. The system should

• be all-to-all coupled, with identical local Hamiltonians for each site;

• have identical local dissipation or collective dissipation, or a combination
thereof;

• start in an initial state that is permutational invariant.

For such a system the sites in the system are indistinguishable from each other,
and will be so at all times.

4.3 Time evolution

We now have all components needed to calculate the time evolution of an open
quantum system governed by the Lindblad master equation (2.23) in a reduced
space. One way to achieve this is to note that the time evolution of the expectation
value of an operator 𝑋 can be written as

𝜕𝑡 〈𝑋 〉 = 𝜕𝑡Tr
[
𝑋𝜌

]
= Tr

[
𝑋𝜕𝑡𝜌

]
= −𝑖Tr

[
𝑋

[
𝐻, 𝜌

] ]
+ 𝛾2

∑︁
𝑗

(
2Tr

[
𝑋𝐿 𝑗𝜌𝐿

†
𝑗

]
− Tr

[
𝑋

{
𝐿
†
𝑗
𝐿 𝑗 , 𝜌

}])
,

(4.15)
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where we substituted (2.23). Let us now observe the operator 𝑋 as one of the
elements of the operator basis in the permutational reduced Liouvillian space

𝑋 = 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] , (4.16)

where we define the expectation value of this operator as

𝜌 [𝑛00, 𝑛01, 𝑛10, 𝑛11] = Tr
[
𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] 𝜌

]
=

〈
𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11]

〉
.

(4.17)

When one calculates the expectation value of all the 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] in the
permutational reduced basis we gain access to all coefficients of the density matrix.
Indeed, the above expectation values are equal to the expansion of the density
matrix into the new basis, i.e. a projection, and thus yield the coefficients of 𝜌. This
allows us to construct a system of equations of motion of all 𝜌 [𝑛00, 𝑛01, 𝑛10, 𝑛11]
governed by (4.15). Let us first introduce a new notation where we take into
account the number of states in a permutational invariant subspace by multiplying
𝜌 [𝑛00, 𝑛01, 𝑛10, 𝑛11] with 𝑅 (𝑛00, 𝑛01, 𝑛10, 𝑛11)

𝜉 [𝑛00, 𝑛01, 𝑛10, 𝑛11] =
𝑁 !

𝑛00!𝑛01!𝑛10!𝑛11!𝜌 [𝑛00, 𝑛01, 𝑛10, 𝑛11] . (4.18)

This will come in quite handy when calculating expectation values of general
operators since it directly takes into account the number of identical coefficients in
𝜌. Furthermore, it also allows to prevent numerical errors. Let us give the example
of the calculation of the trace, by using the completeness relation of (4.12), one
finds

Tr [𝜌] =
𝑁∑︁

𝑛00=0

(
𝑁

𝑛00

)
Tr

[
𝑂 [𝑛00, 0, 0, 𝑁 − 𝑛00] 𝜌

]
=

𝑁∑︁
𝑛00=0

(
𝑁

𝑛00

)
𝜌 [𝑛00, 0, 0, 𝑁 − 𝑛00]

=

𝑁∑︁
𝑛00=0

𝜉 [𝑛00, 0, 0, 𝑁 − 𝑛00] = 1.

(4.19)

It should be clear that the binomial coefficients can become very big, while the
expectation values of the operators 𝜌 [...] will become very small, as system size
increases. Their product would lead to very big numerical errors, showing the
practical convenience of working with 𝜉 rather than 𝜌. What is left now is to
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4.3 - Time evolution

determine the effect of the operators inside the Lindblad master equation onto the
operators 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] and write the equations in terms of their expectation
values, i.e. 𝜉 [𝑛00, 𝑛01, 𝑛10, 𝑛11].

4.3.1 The effect of operators

The calculation of the equation of motion governing the time evolution of (4.15)
is very straight forward due to the conditions on the system’s Hamiltonian and
the dissipation as discussed in section 4.2. Let us first focus on local operators,
that is operators acting on a single site 𝑠, and more specifically the Hamiltonian
contributions. The restraints allow one to rewrite the part of the Hamiltonian
acting on the individual sites, i.e. the local Hamiltonian 𝐻𝑙𝑜𝑐𝑎𝑙 , in terms of collective
operators, that is a sum over the operators acting on the individual sites

𝐻𝑙𝑜𝑐𝑎𝑙 =
∑︁
𝑠

𝐻𝑠 =
∑︁

𝑘,𝑙=0,1
ℎ𝑘𝑙

∑︁
𝑠

|𝑘〉𝑠 〈𝑙 |𝑠 . (4.20)

Determining the action of the local Hamiltonian thus depends on the action of
general operator |𝑘〉𝑠 〈𝑙 |𝑠 on an operator 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11], and then calculating
the expectation value as discussed in the previous section. The action of |𝑘〉𝑠 〈𝑙 |𝑠 is
easily calculated, given that the site 𝑠 is in a state |𝑙〉𝑠 〈 𝑗 |𝑠 it will lower the number
𝑛𝑙 𝑗 by one, and increase the number 𝑛𝑘 𝑗 by one: |𝑘〉𝑠 〈𝑙 |𝑠𝑙〉𝑠 〈 𝑗 |𝑠 = |𝑘〉𝑠 〈 𝑗 |𝑠 . Naturally,
we no longer know in which state the site 𝑠 is, but this gives no problem whatsoever
due to the formulation in terms of the collective operators. We know that there
are 𝑛𝑙0 sites in a local state |𝑙〉〈0| and 𝑛𝑙1 sites in a local state |𝑙〉〈1|, we will thus
have 𝑛𝑙0 + 𝑛𝑙1 non-zero contributions under the action of

∑
𝑠 |𝑘〉𝑠 〈𝑙 |𝑠 . Let us write

down an example for ℎ01
∑

𝑠 |0〉𝑠 〈1|𝑠 . Explicitly one can write

〈ℎ01
∑︁
𝑠

|0〉𝑠 〈1|𝑠𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11]〉

= ℎ01
(
𝑛10

〈
𝑂 [𝑛00 + 1, 𝑛01, 𝑛10 − 1, 𝑛11]

〉
+ 𝑛11

〈
𝑂 [𝑛00, 𝑛01 + 1, 𝑛10, 𝑛11 − 1]

〉)
= ℎ01 (𝑛10𝜌 [𝑛00 + 1, 𝑛01, 𝑛10 − 1, 𝑛11] + 𝑛11𝜌 [𝑛00, 𝑛01 + 1, 𝑛10, 𝑛11 − 1]) .

(4.21)
This is trivially extended to the other values of 𝑘 and 𝑙 . An inspection of the
Lindblad master equations learns us that one also needs to calculate terms where
these operators act from the right, rather than the left. The calculations are
analogous to the one above, with the difference that now other 𝑛𝑖 𝑗 will decrease
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Chapter 4 - Permutational invariance in open quantum systems

and increase, for our example in (4.21) one finds

〈ℎ01𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11]
∑︁
𝑠

|0〉𝑠 〈1|𝑠〉

= ℎ01 (𝑛10𝜌 [𝑛00 + 1, 𝑛01, 𝑛10 − 1, 𝑛11] + 𝑛10𝜌 [𝑛00, 𝑛01, 𝑛10 − 1, 𝑛11 + 1]) .
(4.22)

Similarly, one can use the same straight forward calculations to determine the
result of an operator acting on both sides of 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11]. This allows one to
calculate the local contributions from the terms with the Hamiltonian commutator
as well as the dissipative part of equation (4.15) for local dissipation. To obtain
the equations in terms of 𝜉 [. . . ] rather than 𝜌 [. . . ] we can multiply both sides
of (4.15) with the multinomial factor of 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] and note that one can
easily rewrite the multinomial factor on the right-hand side to correspond to the
new states, for example for the first term of (4.22) we have after multiplication
with (4.8)

ℎ01𝑛10
𝑁

𝑛00!𝑛01!𝑛10!𝑛11!𝜌 [𝑛00 + 1, 𝑛01, 𝑛10 − 1, 𝑛11]

= ℎ01(𝑛00 + 1)𝜉 [𝑛00 + 1, 𝑛01, 𝑛10 − 1, 𝑛11] ,
(4.23)

which thus results in an equation for the time evolution containing 𝜉 [. . . ] rather
than 𝜌 [. . . ], as desired. The non-local contributions, e.g. the two-site interaction
terms in the Hamiltonian, can be calculated in a very similar way. One can rewrite
the non-local Hamiltonian as

𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙 =
∑︁
𝑖, 𝑗,𝑘,𝑙

[∑︁
𝑠,𝑟≠𝑠

(
𝑎𝑖 𝑗 |𝑖〉𝑠 〈 𝑗 |𝑠

)
⊗

(
𝑏𝑘𝑙 |𝑘〉𝑟 〈𝑙 |𝑟

)]
, (4.24)

and note that this once again consists of the local operators |𝑖〉𝑠 〈 𝑗 |𝑠 and |𝑘〉𝑟 〈𝑙 |𝑟 .
The only difference is them being applied subsequently. It is not too hard to see
that the result of such operators will make the individual numbers 𝑛𝑖 𝑗 change by
an increment equal to either zero, one or two. Indeed, a first local operator will
act on the initial state, transforming it into a new one as we have seen before. The
second local operator will then act on the new state, again transforming it into yet
a new one. The only thing one needs to keep in mind that is different from letting
two local collective operators act on a state is that the sum is now given by

∑
𝑠,𝑟≠𝑠

and not
∑

𝑠

∑
𝑟 . This means one should keep track of where the first local operator

“sends” the specific site. One could keep track of this through the sets v𝑖 𝑗 , but
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4.4 - The Liouvillian superoperator

their information is still redundant. It is enough to know that the set of the 𝑛𝑖 𝑗
that is decreased no longer contains site 𝑠 since it is now in the set of the 𝑛𝑖′ 𝑗 ′
that is increased. Let us write this down for the example 𝑎01𝑏01 |0〉𝑠 〈1|𝑠 ⊗ |0〉𝑟 〈1|𝑟
multiplying a general state |𝑛00, 𝑛01〉〈𝑛10, 𝑛11 | from the left

𝑎01𝑏01
∑︁
𝑠,𝑟≠𝑠

〈|0〉𝑠 〈1|𝑠 ⊗ |0〉𝑟 〈1|𝑟𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11]〉

=𝑎01𝑏01𝑛10(𝑛10 − 1)𝜌 [𝑛00 + 2, 𝑛01, 𝑛10 − 2, 𝑛11]

+ 𝑎01𝑏01𝑛11(𝑛11 − 1)𝜌 [𝑛00, 𝑛01 + 2, 𝑛10, 𝑛11 − 2]

+ 2𝑎01𝑏01𝑛10𝑛11𝜌 [𝑛00 + 1, 𝑛01 + 1, 𝑛10 − 1, 𝑛11 − 1]

(4.25)

This equation can also be written in terms of 𝜉 [. . . ] rather than 𝜌 [. . . ] similarly
to (4.23). The procedure for the result of an operator acting on the right side of
the operator 𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] is equivalent to the above. With the procedures
laid out in the subsection one is thus able to construct the equation of motion
for each 𝜉 [𝑛00, 𝑛01, 𝑛10, 𝑛11] in our reduced basis. The knowledge of their value at
each moment in time provides us with all the information one needs, as well as
the possibility to calculate all possible expectation values of operators since the
expectation value of an operator 𝐴 can be written as we did for the trace in (4.19).
That is, by using the completeness relation (4.12) which allows us to write

〈𝐴〉 =
𝑁∑︁

𝑛00=0

(
𝑁

𝑛00

)
Tr

[
𝜌𝐴𝑂 [𝑛00, 0, 0, 𝑁 − 𝑛00]

]
, (4.26)

which can in turn be rewritten in terms of 𝜉 [. . . ] when calculating the action of 𝐴
on 𝑂 [𝑛00, 0, 0, 𝑁 − 𝑛00] in a similar fashion as we have done before. Evidently, the
operator 𝐴 should be similar to e.g. (4.20) and (4.24), in the sense that it should
not discriminate between different sites in the system.

4.4 The Liouvillian superoperator

With the information from the previous section one is able to construct the
equations of motion for each 𝜉 [𝑛00, 𝑛01, 𝑛10, 𝑛11] by substituting the operator
𝑂 [𝑛00, 𝑛01, 𝑛10, 𝑛11] into (4.15) and multiplying both sides with the corresponding
multinomial coefficient. Some re-ordening of the coefficients then allows one to
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Chapter 4 - Permutational invariance in open quantum systems

write
𝜕𝑡𝜉 [𝑛00, 𝑛01, 𝑛10, 𝑛11] =

∑︁
n
𝑐n𝜉 [n] . (4.27)

Where the sum over n indicates the sum over all sets
{
𝑛′00, 𝑛

′
01, 𝑛

′
10, 𝑛

′
11

}
with a

non-zero contribution, i.e. a non-zero coefficient. From the previous section we
already know that for a Hamiltonian with at most two-point interactions a certain
state can only couple to those states with a maximum difference of two for at most
one 𝑛𝑖 𝑗 . This means that the number of non-zero contributions in (4.27) is a lot
smaller than the total number of permutational invariant subspaces, see (4.10),
that we will denote as 𝐷 for the sake of simplicity. Let us assign a label from 1 to
𝐷 to each possible 𝜉 [𝑛00, 𝑛01, 𝑛10, 𝑛11] in our basis

𝜉 [𝑛00, 𝑛01, 𝑛10, 𝑛11] → 𝜉𝑖 . (4.28)

It is then straight forward to see that the system of equations that obey (4.27)
can be rewritten in a linearised system of the form

𝜕𝑡
©­­«
𝜉1

. . .

𝜉D

ª®®¬ =

©­­­«
𝑙11 . . . 𝑙1D
...

. . .
...

𝑙D1 . . . 𝑙DD

ª®®®¬
©­­«
𝜉1

. . .

𝜉D

ª®®¬ . (4.29)

Since the collection of all 𝜉𝑖 , that is {𝜉𝑖 : ∀𝑖 ∈ [1, 𝐷]} contains all coefficients of
the density matrix, up to a multinomial factor, this is once again equivalent to a
superoperator description of the Lindblad master equation. Indeed, the Liouvillian
superoperator in the permutationally reduced basis is given by

L̂𝑝𝑒𝑟𝑚 =

©­­­«
𝑙11 . . . 𝑙1D
...

. . .
...

𝑙D1 . . . 𝑙DD

ª®®®¬ (4.30)

of which the dimension scales with the third order of the number sites 𝑁 in the
system. Moreover, as noted before, most of the coefficients 𝑙𝑖 𝑗 are equal to zero.
This results in a Liouvillian superoperator which not only has modest dimensions
but is also sparse. It goes without saying that this allows one to study systems,
using an exact numerical approach, with a number of sites that is a lot bigger
than one could usually reach due to the exponential scaling with system size.
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4.5 Connection with Dicke states

Another way to obtain the reduction in Liouvillian space size through use of the
permutational symmetry in the system is by using a representation with Dicke
states [160, 161]. It is a different basis representation that leads to the same
conclusions as the ones derived in the previous chapter, but for two-level systems
only. It is at the basis of the numerical toolbox that we will use in chapter 5. Let
us first clarify what a Dicke state is and subsequently show its relation with the
previous representation. The Dicke states form a usefull basis when describing
the so-called Dicke model [163]. It describes the collective interaction of a single
bosonic mode with a set of 𝑁 two-level systems. Its Hamiltonian is given by

𝐻Dicke = 𝜔𝑐𝑎
+𝑎 + 𝜔𝑧

2

𝑁∑︁
𝑗=1

𝜎𝑧𝑗 +
𝛾
√

2

(
𝑎 + 𝑎†

) 𝑁∑︁
𝑗=1

𝜎𝑥𝑗 , (4.31)

which, as can directly be observed from the Hamiltonian, can be formulated
in terms of collective operators, i.e. 𝐽𝑧 = 1

2
∑𝑁

𝑗=1 𝜎
𝑧
𝑗

and 𝐽𝑥 = 1
2
∑𝑁

𝑗=1 𝜎
𝑥
𝑗 . It is

customary to write the Dicke Hamiltonian in terms of spin-(1/2) operators which
is why we added the factor 1

2 in the definition of these collective operators. The
Dicke states are then the eigenvectors of the collective (pseudo)-spin operators
Ĵ2

=

(
𝐽𝑥

)2
+

(
𝐽 𝑦

)2
+

(
𝐽𝑧

)2
and 𝐽𝑧 [160, 161, 164]

Ĵ2 | 𝑗,𝑚〉 = 𝑗 ( 𝑗 + 1) | 𝑗,𝑚〉, (4.32)

𝐽𝑧 | 𝑗,𝑚〉 =𝑚 | 𝑗,𝑚〉, (4.33)

with 𝑗 ≤ 𝑁
2 and |𝑚 | ≤ 𝑗 , 𝑗 and 𝑚 can be either integers or half integers and the

minimum value of 𝑗 is given by 0 or 1/2 for 𝑁 respectively even and odd. This
immediatly sheds light on why these Dicke states form an interesting basis to study
this model. Indeed, they allow for a reduction in the Hilbert space dimension
of 2𝑁 to a space that scales polynomially with order two for the desription of
collective processes, a feat that finds its origin in the permutational symmetry of
the collective operators. The advantage of using this basis is of course not limited
to the Dicke model. Any system of which the time evolution can be written in
terms of collective operators will be able to exploit the Dicke basis and acquire a
drastic reduction in complexity, given that they also describe collective processes
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(cfr. 4.2). Each Dicke state | 𝑗,𝑚〉 has a degeneracy [161, 163] of

𝑑
𝑗

𝑁
= (2 𝑗 + 1) 𝑁 !(

𝑁
2 + 𝑗 + 1

)
!
(
𝑁
2 − 𝑗

)
!
, (4.34)

which stands central in its ability to reduce the number of states needed to describe
the systems time evolution. Similarly to the previous sections one can then move
to describing the density matrix in terms of the outerproducts of this new basis
and gain a desription that is equivalent. The most straight-forward way to show
a direct link with the previous formalism is through the symmetric Dicke states.
These Dicke states are defined as 𝑗 = 𝑁 /2 and can be written as a symmetric
superposition of the uncoupled local states |0〉 and |1〉, that is����𝑁2 , 𝑘 − 𝑁2 〉

=
1√√(
𝑁

𝑘

)S [
|0〉⊗𝑁−𝑘 |1〉⊗𝑘

]
, (4.35)

with S the symmetrisation operator that will take the sum over all possible
products of 𝑁 − 𝑘 sites in a state |0〉 and 𝑘 sites in a state |1〉. As an example we
will show the relation of an outer product of (4.35) with our previous formalism.
This yields����𝑁2 , 𝑘 − 𝑁2 〉 〈

𝑁

2 , 𝑘 −
𝑁

2

���� = 𝑁 !(𝑁 − 𝑘)!
𝑘!

𝑀∑︁
𝑟=0

∑︁
sets

𝑂 [𝑁 − 𝑘 − 𝑟, 𝑟, 𝑟, 𝑘 − 𝑟 ] , (4.36)

with 𝑀 = min(𝑘, 𝑁 − 𝑘) since max(𝑛00) = 𝑁 − 𝑘 and max(𝑛11) = 𝑘 and they cannot
become negative. We also used the fact that

𝑛00 + 𝑛01 = 𝑁 − 𝑘 = 𝑛00 + 𝑛10 and 𝑛10 + 𝑛11 = 𝑘 = 𝑛01 + 𝑛11. (4.37)

Furthermore, the sum over all sets {𝑛00, 𝑛01, 𝑛10, 𝑛11} with these respective values
is once again given by a multinomial coefficient and find its origin in the product
of the sum over all possible products of the states |0〉 and |1〉 (and their conjugate)
from the symmetrisation operator S. If we then calculate the expectation value of
the outer product of (4.35) one finds a relation between both approaches, that is〈����𝑁2 , 𝑘 − 𝑁2 〉 〈

𝑁

2 , 𝑘 −
𝑁

2

����〉 =
𝑁 !(𝑁 − 𝑘)!

𝑘!

𝑀∑︁
𝑟=0

𝜉 [𝑁 − 𝑘 − 𝑟, 𝑟, 𝑟, 𝑘 − 𝑟 ] . (4.38)
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The representations of Dicke states other than the symmetric ones of (4.35) can
be obtained by a standard approach equivalent to the one for the construction of
Clebsch-Gordan coefficients [165], i.e. by iteratively applying the collective raising
and lowering operators 𝐽 + and 𝐽−, given by 𝐽± = 1

2
∑

𝑗 𝜎
±
𝑗 . For these cases other

than the symmetric Dicke state it can however be quite bothersome to derive a
relation with the previous formalism like (4.38). From the example however, it
is clear that there exists an equivalence between both approaches, both leading
to a reduction of Liouvillian space that scales polynomially with order three [160,
161]. For two-level systems the choice of the approach one uses thus remains free,
and will most likely be influenced by ones preference. The extension to 𝑛-level
many body systems is more evident from the approach introduced in the previous
sections. Furthermore, open source numerical packages exist that implement both
approaches [161, 166–168]. In this thesis we will use the PIQS module implemented
in QUTIP (Python) [167, 168] which is based on the Dicke basis formalism for
our study of two-level systems detailed in chapter 5. An implementation of the
work by Gegg et al. also exists in C/C++ and is called PSIQUASP [166]. For our
study of the 𝑝-level systems we have however implemented this formalism into a
Python module, on which the details can be found in appendix B.2, which will be
used for the results in chapter 6.

4.6 𝑝-level systems

The formalism from the previous sections can be straight-forwardly extended to
𝑝-level systems. Instead of only four numbers 𝑛𝑖 𝑗 there will now be 𝑝2 numbers
𝑛𝑖 𝑗 . This means that in general we will have

𝜉
[{
𝑛𝑖 𝑗

}]
= 𝜉

[
𝑛00, 𝑛0𝑝−1, . . . , 𝑛𝑝−10, . . . , 𝑛𝑝−1𝑝−1

]
. (4.39)

This also means that the number of states inside a permutational invariant subspace
for a certain set of

{
𝑛𝑖 𝑗

}
will now be given by the multinomial coefficient

𝑅
({
𝑛𝑖 𝑗

})
=

𝑁 !
𝑛00! . . . 𝑛0𝑝−1! . . . 𝑛𝑝−10! . . . 𝑛𝑝−1𝑝−1! , (4.40)
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Figure 4.2: Dimension of the Liouvillian in the permutational invariant
basis as a function of 𝑁 all-to-all connected 𝑝-level systems, for 𝑝 = 2 (blue
dotted line), 𝑝 = 3 (orange dashed line), 𝑝 = 4 (green dash-dotted line), and
𝑝 = 5 (red full line).

and the number of permutational invariant subspaces, i.e. the number of unique
sets

{
𝑛𝑖 𝑗 : ∀𝑖, 𝑗 ∈ {0, 1, . . . , 𝑝 − 1}

}
, now reads

𝐷 (𝑁, 𝑝) =
∑︁

𝑛00+···+𝑛𝑝−1𝑝−1=𝑁

1 =

(
𝑁 + 𝑝2 − 1

𝑁

)
, (4.41)

of which the derivation is presented in appendix B.1. In Fig. 4.2 we show the
dimension of the Liouvillian for various 𝑝-level systems as a function of the number
of all-to-all connected sites. From (4.41) follows that the dimension of the reduced
Liouvillian space of an 𝑝-level system will scale polynomially with a power of
𝑝2 − 1. It should be clear that the action of the operators is also straigt-forwardly
generalized. Indeed, the number of possible |𝑘〉𝑠 〈𝑙 |𝑠 that can act on a single site
increase, as well as the number of different 𝑛𝑖 𝑗 . They will however still only increase
and decrease their specific 𝑛𝑘 · values they can act upon, just as was the case for
the two-level system. Nothing fundamental thus changes with regard to the earlier
derived results. The only difference is there being more terms present in the
equations of motion due to the increase in states. The Liouvillian superoperator
stays sparse nonetheless.
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CHAPTER 5
Mean-field validity in the XYZ

Heisenberg model
In this chapter, we investigate the properties of an all-to-all (or fully) connected
dissipative XYZ Heisenberg model. The permutational method which we use
here is exact (that is, no approximation on the model has been done). Exact
computations on open-spin systems have been carried out for systems up to 16
spins [107]. This work pushes this boundary far beyond this limit.

In the general study of a quantum system, one can think of the all-to-all
connected model with uniform coupling as one in which the dimension increases as
the number of neighbours is increased. In this regard, it is “common wisdom” that
in a high-dimensional model 𝑑 � 1, in the thermodynamic limit fluctuations are
suppressed and the correct result should be captured by a mean-field decoupling
procedure [98, 99]. The resulting steady-state density matrix is then a tensor
product of identical local density matrices. Even if this can be argued for ther-
modynamic systems (where Landau-Ginzburg theory can be applied to determine
phase transitions [169]), the lack of free energy analysis does not allow such an
easy argument in open quantum systems. We will consider the simplest type of
non-thermal bath to try to address this question. Even if the mean field were to
work, what is not clear is how the system behavior scales up to the infinite spin
number. The high degree of symmetry of the all-to-all connected system allows for
a dramatic reduction of the computational cost of the numerical calculations [161].
Moreover, many atoms-in-cavity experiments can be recast as all-to-all connected
models by the mediation of the electromagnetic field, which collectively interacts
with the atoms [170]. However, since in these systems there is a limited number of
particles, identifying the correct observables to characterize the emergence of the
phase transition is of paramount importance. In this chapter, we will investigate
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

the phase transition from a paramagnetic phase with no magnetization in the
𝑥𝑦-plane (〈𝜎𝑥 〉 = Tr

{
𝜌ss𝜎

𝑥
𝑗

}
= 0 , 〈𝜎𝑦〉 = Tr

{
𝜌ss𝜎

𝑦

𝑗

}
= 0) to a ferromagnetic phase

with finite magnetization in the 𝑥𝑦-plane (〈𝜎𝑥 〉 ≠ 0 , 〈𝜎𝑦〉 ≠ 0) which is expected
to happen in the thermodynamic limit of the XYZ model for anisotropic coupling
𝐽𝑥 ≠ 𝐽𝑦 [1, 42, 44, 88, 104, 126, 128]. Note that at 𝑇 = 0 and in the absence of
dissipation no quantum phase transition of this kind exists in this system. We
provide a thorough study of the spin structure factor, the collective magnetization,
the bimodality coefficient and the angular averaged susceptibility. We also charac-
terize less experimentally accesible quantities signaling the phase transition, as
the Von Neumann entropy of the steady state and the Liouvillian spectrum and
its gap. We test which one fares better in this intermediate regime to capture the
onset of criticality.

5.1 The model

If we consider an all-to-all connected model with uniform couplings, i.e., all the
spins interact with each other with the same strength, the Hamiltonian in Eq. (3.2)
can be recast as

𝐻 =
1

2 (𝑁 − 1)

[
𝐽𝑥

(
𝑆𝑥

)2
+ 𝐽𝑦

(
𝑆𝑦

)2
+ 𝐽𝑧

(
𝑆𝑧

)2
]
, (5.1)

where we have introduced the collective operators 𝑆𝛼 =
∑𝑁

𝑖=1 𝜎
𝛼
𝑖

for 𝛼 = 𝑥, 𝑦, 𝑧.
Notice the factor 2 is due to the fact that in Eq. (3.2) the sum is over the links
while to obtain Eq. (5.1) we have to sum over the sites. Moreover, in the all-to-all
connected model, the coordination number 𝑍 = 𝑁 − 1. Moreover, note that in our
lattice the ratio between the number of sites and the dimension of the lattice 𝑁 /𝑑
is thus of order one for large lattices, while in the usually defined thermodynamic
limit, the number of sites diverges with respect to the dimension.

For our study we will include local dissipation as well as collective dissipation.
The collective dissipation becomes D[∑𝑗 𝜎

−
𝑗 ] = D[𝑆−]. In this regard, in the

all-to-all connected model, the Hamiltonian and collective dissipation processes
will tend to create entangled states, while local dissipation will disentangle them.
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Figure 5.1: Sketch of the dissipative XYZ model, with local and collective
dissipation. In the legend we illustrate the possibility of implementing the spin
model on an ensemble of two-level systems, or (artificial) atoms, interacting
with an electromagnetic field. Each two-level system can switch between a
ground state, |𝑔〉, and excited state, |𝑒〉. While the spin-spin interactions,
∝ 𝐽𝛼 , of the all-to-all connected lattice, can be mediated by the coherent
interaction with the photonic field, its collective mode dissipates, at a rate
∝ Γ, and all other spin-flip mechanisms contribute to local dissipation, ∝ 𝛾 .

The Lindblad master equation of this system is given by

𝜕𝜌 (𝑡)
𝜕𝑡

= L𝜌 (𝑡) = −𝑖
[
𝐻, 𝜌 (𝑡)

]
+ 𝛾

𝑁∑︁
𝑗=1
D[𝜎−𝑗 ]𝜌 (𝑡)

+ Γ

𝑁 − 1D[
𝑁∑︁
𝑗=1

𝜎−𝑗 ]𝜌 (𝑡),
(5.2)

where Γ represents the dissipation rate characterizing the collective spin-flip process.

5.1.1 Experimental implementations of an all-to-all connected
model

We envision that the predictions that will be detailed in this chapter can be
observed in experiments with noisy quantum simulators [171] and long-range
interaction, based on a broad variety of platforms: atomic clouds [122], Rydberg
atoms [100, 102, 121, 123, 125], trapped ions [172–175], as well as in solid state [58,
176], e.g., in superconducting circuits [40, 71, 110, 177–179] and especially in hybrid
superconducting systems [180], where a bosonic field mediates the effective spin-
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

spin interactions. Indeed, Ref. [125] shows the feasibility of investigating exactly the
all-to-all connected XYZ model in Rydberg atoms. Probing the dissipative regime
studied here only requires the implementation of a weak coupling to an additional
cavity mode allowing for dispersive measurement of the radiated field. Trapped
ions provide another platform on which to engineer long-range spin interactions
[173–175] and already allow one to investigate dissipative phase transitions with
tens of two-level systems, which can also be locally manipulated [181].

Superconducting circuit elements and condensed matter magnetic degrees of
freedom can be combined to implement hybrid quantum systems. One such example
is provided by a collection of nitrogen vacancies (NV) or color centers in diamond
interacting with the magnetic field controlled by a superconducting resonator.
This platform offers the advantage of large 𝑁 spins, actually implementing a
good approximation of the thermodynamic limit since 𝑁 ≈ 1012–1016 there, and
physical conditions that allow to explore various regimes of both collective and
local dissipation. The former is determined by the superconducting resonator
quality factor, the latter by the intrinsic impurities of the condensed matter
system and couplings to the crystal lattice. In these systems, superradiant light
emission has been recently observed [180, 182], as well as steady-state bistability
and critical slowing down [183]. In the bad-cavity regime, the cavity mode decay
allows an adiabatic elimination of the bosonic degree of freedom, allowing the
implementation of effective spin Hamiltonians, while tuning spin sub-ensembles in
and out of resonance allows to vary 𝑁 and thus study system-size scaling [180].

5.2 Liouvillian spectrum and phase transition

We begin our analysis by studying the spectral properties of the Liouvillian, which
can signal the emergence of phase transitions [35]. As noted in section 2.8, a
fundamental role in the system dynamics is played by 𝜌1, that is the eigenmatrix
associated to the smallest eigenvalue 𝜆1 bigger than zero, which describes the
slowest relaxation scale towards the steady state. A phase transition takes place
in the thermodynamic limit when 𝜆1 becomes exactly zero, both in its real and
imaginary parts. For any finite size of the system under consideration, however,
𝜆1 ≠ 0. Nevertheless, the study of 𝜆1 and 𝜌1 provides much useful information
about the scaling and nature of the transition [91].

Furthermore, as we will see in subsection 5.2.2, the all-to-all connected XYZ
model exhibits a symmetry in its Liouvillian spectrum that will allow a numerically
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5.2 - Liouvillian spectrum and phase transition

more efficient calculation of this Liouvillian gap.

5.2.1 Symmetry breaking and phase transition

The Lindblad master equation (3.3) is invariant under a 𝜋-rotation of all the spins
around the 𝑧-axis (𝜎𝑥𝑖 → −𝜎𝑥𝑖 , 𝜎𝑦

𝑖
→ −𝜎𝑦

𝑖
∀𝑖). Thus, the system admits a ℤ2

symmetry, that is, there is a superoperator Z2 such that

Z2𝜌 (𝑡) =
𝑁∏
𝑗=1

exp
{(
−𝑖𝜋𝜎𝑧𝑗

)}
𝜌 (𝑡)

𝑁∏
𝑗 ′=1

exp
{(
+𝑖𝜋𝜎𝑧𝑗 ′

)}
, (5.3)

and one can verify that [L,Z2] = 0. While in a Hamiltonian system the presence of
a symmetry implies a conserved quantity, this is not always the case for Liouvillian
symmetries [67, 69, 184]. A symmetry of an out-of-equilibrium system, however,
implies that the steady-state cannot have an arbitrary structure. In our case, 𝜌ss

must be an eigenmatrix of Z2, such that Z2𝜌ss ∝ 𝜌ss. In turn, this means that, for
any finite size system

〈
𝜎𝑥𝑖

〉
=

〈
𝜎
𝑦

𝑖

〉
= 0 for all sites 𝑖.

The symmetry breaking takes place when, in the thermodynamic limit, 𝜆1 = 0
allows to have two steady states with nonzero and opposite magnetization. We
thus expect to observe a second-order phase transition associated to this symmetry
breaking of ℤ2 [35]. For a finite-size system, 𝜆1 ≠ 0, such symmetry breaking
cannot be directly witnessed. However, the precursors of the phase transition can
be inferred both via spectral analysis and via an extensive study of the scaling of
observables.

5.2.2 ℙ𝕋-symmetry and Liouvillian antigap

There exists a class of non-Hermitian Hamiltonian systems which are invariant
under the composition of unitary (parity P) and anti-unitary (time-reversal T )
transformations: the PT -symmetry [185–187]. This PT -symmetry cannot be
directly extended to the Liouvillian case, due to the dissipative nature of the
contractive dynamics [188]. However, certain systems admit a PT -symmetric
transformation once a shift parallel to an average damping rate is added to L
[189]. Therefore, the ℙ𝕋-symmetry of L is not a superoperator symmetry (that
is, it does not describe a property of the steady state). Instead, it is a spectral
property related to the emergence of a reflection symmetry of the eigenvalues in
the complex plane, i.e., introducing a dihedral (𝐷2) symmetry. Indeed, there exist
a real number 𝜂 > 0 such that, for all the eigenvalues 𝜆𝑖 , there exist a 𝜆 𝑗 = −2𝜂 + 𝜆𝑖 .
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Figure 5.2: Liouvillian spectrum for the dissipative XYZ model with local
dissipation only, Γ = 0 [panel (a)], and both local and collective dissipation,
Γ = 2𝛾 [panel (b)]. Here 𝑁 = 4 and we choose 𝐽𝑥/(𝛾 + Γ) = 0.6, 𝐽𝑦/(𝛾 + Γ) =
𝐽𝑧/(𝛾 + Γ) = 1. We mark 𝜆0 and 𝜆1 with a black star and a red square,
respectively. All other eigenvalues 𝜆𝑖 are marked by circles. (a) The ℙ𝕋-
symmetry of the Liouvillian with only local dissipation is visible by the
additional plane symmetry (vertical dashed line) of the eigenvalues (green
circles). The Liouvillian gap and the Liouvillian antigap of the ℙ𝕋-symmetric
model are highlighted, showing the correspondence of 𝜆0 with 𝜆𝑀 (black star),
and 𝜆1 with 𝜆𝑀−1 (red square). (b) The Liouvillian spectrum with local and
collective dissipation, showing no ℙ𝕋-symmtery.
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5.2 - Liouvillian spectrum and phase transition

This can be easily visualized by plotting the eigenvalues of the Liouvillian in the
complex plane 𝜆 𝑗 = 𝑥 𝑗 + 𝑖 𝑦 𝑗 .

The ℙ𝕋-symmetry results in a reflection symmetry of the eigenvalues with
respect to a line 𝑥 = −𝜂 parallel to the imaginary axis [189–191]. The spectrum of
the dissipative all-to-all connected XYZ spin model is shown in Fig. 5.2, setting
𝑁 = 4, 𝐽𝑥 = 0.6𝐽𝑧 and 𝐽𝑦 = 𝐽𝑧 . In Fig. 5.2 (a) we consider the case of homogeneous
local dissipation, Γ = 0 in Eq. (3.3), and for comparison, the case of collective
and local dissipation is shown in Fig. 5.2 (b), Γ = 2𝛾 in Eq. (3.3), showing instead
no additional symmetry in the spectrum. We have verified that the absence of
ℙ𝕋-symmetry occurs also in the case of collective dissipation only, 𝛾 = 0, Γ ≠ 0.
Similarly, also in the case of local dephasing and local pumping, the Liouvillian
spectrum of the model displays the additional dihedral symmetry typical of ℙ𝕋-
symmetry.

To clarify the discussion, let us consider a ℙ𝕋-symmetric Liouvillian with
(𝑀 + 1) eigenvalues. Therefore, there exists an eigenmatrix 𝜌𝑀 whose eigenvalue is
𝜆𝑀 , which is the symmetric counterpart of 𝜌ss. Since 𝜆0 = 0 and 𝜆𝑀 = −2𝜂, we can
directly access the value of 𝜂. Similarly, we can define the eigenmatrix 𝜌𝑀−1 which
mirrors 𝜌1, and an “antigap” 𝜆𝑀−1, such that 𝜆𝑀−1 −𝜆𝑀 = 𝜆1. This property allows
for an easier numerical computation of the gap and associated 𝜌1. Indeed, if one is
interested in computing only a few eigenvalues of the Liouvillian, one could resort
to an iterative diagonalization method, based on Krylov subspaces. This method
works extremely well for large-magnitude eigenvalues. However, if one is interested
in computation of small eigenvalues, this method performs worse since one has to
invert the matrix L, so that the eigenvalues of smallest magnitude become the
most relevant ones. Moreover, for non-Hermitian matrices, this method is known
to be unstable [192]. Knowing that the Liouvillian is ℙ𝕋-symmetric (and knowing
𝜂) can mitigate these numerical problems: by considering the shifted Liouvillian
L ′ = L + 2𝜂 𝟙, the steady state is characterized by 𝜆′0 = 2𝜂 and 𝜆′1 = 2𝜂 − 𝜆1, where
𝟙 is the identity matrix. Since 𝜆′1 = −𝜆𝑀−1, we will call the eigenmatrix obtained
like that the ℙ𝕋-symmetric antigap.

In a XYZ spin system, a sufficient condition to have this ℙ𝕋-symmetric behavior
is to have dissipation only on the border of the chain [190]. This condition is
trivially satisfied for the all-to-all connected XYZ spin model with local dissipation,
since all spins are at the border of the system.
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

5.2.3 Closing of the Liouvillian gap: critical slowing down

As detailed in Sec. 5.2.1, the occurrence of a second-order phase transition in the
XYZ model is marked by the closing of the Liouvillian gap in a whole region.
In Fig. 5.3 we compute the Liouvillian gap exploiting the ℙ𝕋-symmetric antigap
method introduced in Sec. 5.2.2.

In Fig. 5.3 (a), the real part of the Liouvillian gap, 𝜆 = |Re[𝜆1] |, is calculated
as a function of 𝐽𝑦 (normalizing both quantities by a fixed value of 𝛾), for various
system sizes, 𝑁 , also setting 𝐽𝑧 = 𝛾 , 𝐽𝑥 = 0.6𝛾 . In panel (a), no critical behavior
is observed for small or negative values of 𝐽𝑦/𝛾 , hinting at the absence of an
antiferromagnetic phase.

For positive 𝐽𝑦, the gap tends to close abruptly after 𝐽𝑦/𝛾 ' 1. The minimum
is for 𝐽𝑦/𝛾 ' 3 for 𝑁 = 10, and for larger values of 𝐽𝑦/𝛾 we see that the Liouvillian
gap again increases. However, by comparing 𝜆(𝑁 ) for different system sizes, we
see that for 𝐽𝑦 > 𝛾 , 𝜆(𝑁 ) > 𝜆(𝑁 + 1). This aspect corroborates the idea that a
second-order dissipative phase transition is occurring, as these are characterized
by a closing of the gap over an extended region of the control parameter [35].

The presence of a critical slowing down (i.e., of a diverging timescale) can be
argued from Fig. 5.3 (b). The minimum of the Liouvillian gap for each curve
of panel (a) is plotted against the system size 𝑁 in a log-log plot, showing an
excellent fit by a power law min(𝜆/𝛾) = 𝛽𝑁𝛼 with exponent 𝛼 = −0.3. We conclude
that for 𝑁 →∞ there is a diverging timescale associated to 1/𝜆, resulting in the
presence of multiple steady states.

Our results are thus in agreement with the MF predictions, indicating a
ferromagnetic (FM) to paramagnetic (PM) phase transition. Having demonstrated
via spectral analysis the presence of the paramagnetic-to-ferromagnetic phase
transition and the absence of an antiferromagnetic regime, we focus now the
properties of the steady-state density matrix, obtained both via Gutzwiller MF
analysis and via exact numerical calculation.

5.3 Mean field phase diagram

The Gutzwiller ansatz for the system density matrix amounts to assuming that
𝜌 (𝑡) is the tensor product of identical density matrices, each one representing the
state of the 𝑗-th spin, 𝑗 = 1, . . . , 𝑁 . Under this hypothesis, the Lindblad master
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Figure 5.3: Study of the Liouvillian gap, in units of the local dissipation
rate, 𝛾 , and its critical slowing down for the dissipative XYZ model with
local dissipation only. The system parameters are chosen as specified in Fig.
5.4 panel (b). (a) The Liouvillian gap, 𝜆, is plotted as a function of 𝐽𝑦/𝛾 for
various system sizes, 𝑁 = 2, . . . , 10. The markers are only a guide for the eye
(101 points have been calculated for each value of 𝑁 ). (b) The minimum of
the Liouvillian gap, normalized by 𝛾 , for each of the curves in the top panel is
plotted as a function of the system size 𝑁 in a log-log plot, showing a linear
scaling of the Liouvillian gap typical of phase transition [min (𝜆) ∝ 𝑁𝛼 , with
exponent 𝛼 = −0.3] leading to a critical slowing down in the thermodynamic
limit.
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equation (5.2) can be recast as:

𝜕𝑡 〈𝜎𝑥 〉 = 2
(
𝐽𝑦 − 𝐽𝑧

)
〈𝜎𝑦〉 〈𝜎𝑧〉 − 𝛾2 〈𝜎

𝑥 〉 + Γ

2 〈𝜎
𝑥 〉 〈𝜎𝑧〉 , (5.4a)

𝜕𝑡 〈𝜎𝑦〉 = 2 (𝐽𝑧 − 𝐽𝑥 ) 〈𝜎𝑥 〉 〈𝜎𝑧〉 −
𝛾

2 〈𝜎
𝑦〉 + Γ

2 〈𝜎
𝑦〉 〈𝜎𝑧〉 , (5.4b)

𝜕𝑡 〈𝜎𝑧〉 = 2
(
𝐽𝑥 − 𝐽𝑦

)
〈𝜎𝑥 〉 〈𝜎𝑦〉 − 𝛾 (〈𝜎𝑧〉 + 1) − Γ

2

(
〈𝜎𝑥 〉2 + 〈𝜎𝑦〉2

)
, (5.4c)

having defined 𝛾 = 𝛾 + Γ/(𝑁 − 1) and 〈𝜎𝛼 〉 the single-site approximation of the
Pauli matrix expectation values, with 𝛼 = 𝑥, 𝑦, 𝑧.

Equation (5.4) cannot be analytically solved, even in the steady state (𝜕𝑡 〈𝜎𝛼 〉 =
0). Indeed, the inclusion of collective emission introduces nonlinear terms that, for
Eq. (5.4a) and Eq. (5.4b) are similar to the Hamiltonian ones, hinting at the fact
that they contribute to entanglement generation in the dynamics. Similarly, the
presence of local dissipation prevents the equation of motion from being simplified,
since the spin length, Eq. (C.10), is not preserved. Both the local and collective
dissipation, however, act as an effective transverse magnetic field in the 𝑧 direction.

We plot the MF solution to Eq. (5.4) in Fig. 5.4 in the case Γ = 2𝛾 [panel
(a)] and in the case Γ = 0 [panel (b)]. The total dissipation (𝛾 + Γ) is kept fixed.
We notice that both MF solutions predict a second-order phase transition and
that the value of 𝐽𝑦 triggering the phase transition is the same in both cases.
However, the two plots exhibit a different dependence of the mean values 〈𝜎𝛼 〉 on
𝐽𝑦, with 𝛼 = 𝑥, 𝑦, 𝑧. In the presence of local and collective dissipation [panel (a)],
the transition appears to be sharper than in the presence of local dissipation only
[panel (b)].

5.3.1 Local dissipation only

Here, we briefly analyze the case Γ = 0 in Eq. (5.4), which was extensively
investigated in Refs. [1, 42, 44, 88, 104, 107, 126, 128, 193] in lower dimensions
and in Ref. [101] in infinite dimension. We notice that, in this case, Eqs. (5.4) only
contain nonlinear homogeneous terms, and one can thus obtain 〈𝜎𝛼 〉ss exactly. A
discussion of the properties of this model in presence of only collective dissipation
can be found in App. C.2.

We study the mean-field phase diagram through an instability analysis anal-
ogous to the one performed for the nearest-neighbor XYZ Hamiltonian [42].
We determine the instability of the paramagnetic phase in the 𝑥𝑦-plane to a
𝑑-dimensional perturbation with wave vector ®𝑘. Due to the all-to-all connected
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Figure 5.4: Steady-state solution of the mean-field equations (5.4) in the
case Γ = 2𝛾 [panel (a)] and in the case Γ = 0 [panel (b)], having fixed the
value (𝛾 + Γ) = 1. The parameters used here are 𝐽𝑥/(𝛾 + Γ) = 0.6, 𝐽𝑧/(𝛾 + Γ) = 1
and 𝑁 →∞. The horizontal black dashed lines correspond to 〈𝜎𝛼 〉 = 0,−1.
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

structure, the perturbations with wave vector ®𝑘 = (𝑘1, 𝑘2, ..., 𝑘𝑑 ) are restricted by 𝑘𝑙
only being able to attain the values 0 and 𝜋 . For such analysis the presence of an
antiferromagnetic phase is nonphysical for any value of the coupling parameters.
Hence, the mean-field phase diagram consists only of a paramagnetic phase and a
ferromagnetic one. The latter is present when the condition

− 𝛾
2

16 > (𝐽𝑥 − 𝐽𝑧)
(
𝐽𝑦 − 𝐽𝑧

)
, (5.5)

is fulfilled. We refer to appendix C.1 for the complete derivation. In the following,
we will choose 𝐽𝑥/𝛾 = 0.6 and 𝐽𝑧/𝛾 = 1. Consequently, we can define the critical
𝑦-coupling 𝐽 c

𝑦 as the minimal 𝐽𝑦 satisying Eq. (5.5), i.e.,

𝐽 c
𝑦

𝛾
=
𝐽𝑧

𝛾
+ 𝛾

16 (𝐽𝑧 − 𝐽𝑥 )
= 1.15625. (5.6)

The absence of an antiferromagnetic phase in this all-to-all connected model
can be expected. Each spin is connected to every other spin in the system, and
no unique spatial structure is present for this type of interaction. It is impossible
for the spins to take alternating directions with respect to their neighbors. The
results of this instability analysis lead to the phase diagram shown in Fig. 5.5,
where the black dash-dotted curves show the transition boundary between both
phases according to the mean-field approximation.

Having derived the MF solutions and the phase diagram, we will now proceed
to study the dynamics in the full quantum formalism, beyond results found for
dissipative spin-boson models [37, 194]. Since we show that, at the MF level, the
model with local and collective dissipation displays a second-order phase transition
similar to the local dissipation only case, we will at first focus on the latter case.

5.4 Calculation of physical quantities

In this section we introduce the general definitions of the spin-structure factor,
𝑧-magnetization, and Von Neumann entropy, also providing their mean-field ex-
pressions. We will utilize these physical quantities in the next section to study
the validity of the mean field across the phase diagram. We also introduce the
bimodality coefficient and the angular averaged susceptibility, which will be used
to identify the critical point of the transition from the paramagnetic phase to the
ferromagnetic phase.

80



5.4 - Calculation of physical quantities
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Figure 5.5: Phase diagram for local dissipation only, where Γ = 0 and
𝐽𝑧/𝛾 = 1. The phases are determined from the intersection in the bimodality
coefficient curves for in the 𝑥 and 𝑦 direction for 𝑁 = 50 and 𝑁 = 60, i.e. the
transition from a paramagnetic phase (PM) to a ferromagnetic phase (FM) in
the 𝑥𝑦-plane. The black dash-dotted curves show where the transition takes
place in the mean-field approximation, while the background color defines
the PM (dark grey) and FM (light grey) regions from calculations using the
bimodality coefficient in the full quantum model (discussed in Sec. 5.5.2).
The orange vertical dashed line is located at 𝐽𝑥 = 0.6𝛾 and shows the cut that
will be used in the next figures to characterize the phase transition. The
three points on the cut 𝐽𝑥/𝛾 = 0.6 indicate the values of 𝐽𝑦/𝛾 which will be
used for bench-marking the MF with the full quantum solutions: 𝐽𝑦/𝛾 = 1.1,
in the PM phase (hexagon with yellow contour), at criticality, 𝐽𝑦/𝛾 = 1.15625
(square with red contour), and at 𝐽𝑦/𝛾 = 1.7 in the moderately anisotropic
FM region (circle with a cyan contour).

5.4.1 Spin structure factor and 𝑧-magnetization

To identify the possible agreement of the mean-field theory with the exact numerical
solutions we study the order parameter of the system. Due to the ℤ2-symmetry
present in the system we cannot rely on the magnetization in the 𝑥- and 𝑦-direction.
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

As a result we study the steady-state spin structure factor, which is calculated as
follows

𝑆𝛼𝛽 (k) = 1
𝑁 (𝑁 − 1)

∑︁
𝑗,𝑙≠𝑗

𝑒𝑖k· (j−l) 〈𝜎𝛼𝑗 𝜎
𝛽

𝑙
〉, (5.7)

where 𝛼 , 𝛽 = 𝑥 or 𝑦 and where 〈𝜎𝛼
𝑗
𝜎
𝛽

𝑙
〉 = Tr[𝜎𝛼

𝑗
𝜎
𝛽

𝑙
𝜌ss]. It contains information on

the orientation of the spins with respect to each other. Ferromagnetic order is
present in the 𝑥𝑦-plane if the steady-state spin structure factor in the 𝑥-direction
or (and) the 𝑦-direction is different from zero. We note that in Eq. (5.7) the spin
structure factor is defined without the contribution of the self-energies, i.e. the
sum over the sites considers only different spins. We can thus calculate these
quantities even for permutational-symmetric systems, subtracting the single-site
contributions to the total second moments. If we consider 𝑆𝑥𝑥 (k = 0) or 𝑆𝑦𝑦 (k = 0)
(from here on out we drop the k = 0), they predict a ferromagnetic phase when
they are nonzero and a paramagnetic phase when they are both equal to zero.
Besides being able to identify the phase we are also interested in the quantitative
agreement of the mean-field theory with the exact solutions. To this end, we also
study the 𝑧-magnetization in the steady state, 𝑀𝑧 = Tr[𝜌ss𝑆

𝑧]/𝑁 , which can be
readily calculated without the limitations of the ℤ2-symmetry.

The mean-field spin structure factor and 𝑧-magnetization

The system of mean-field equations in Eq. (5.4) is analytically solvable for the
steady state for local dissipation only. By equating the time derivative equal to
zero we find the following solutions for the magnetization in each direction

𝑀𝑥 MF = ±

√︄
2𝑀𝑧 MF (𝑀𝑧 MF + 1)

𝐽𝑦 − 𝐽𝑧
𝐽𝑥 − 𝐽𝑦

, (5.8a)

𝑀𝑦 MF = ∓
√︄

2𝑀𝑧 MF (𝑀𝑧 MF + 1) 𝐽𝑧 − 𝐽𝑥
𝐽𝑥 − 𝐽𝑦

, (5.8b)

𝑀𝑧 MF = −𝛾4
1√︃(

𝐽𝑦 − 𝐽𝑧
)
(𝐽𝑧 − 𝐽𝑥 )

. (5.8c)

One can also easily prove that the steady-state spin structure factor in the
𝑥-direction can be written as

𝑆𝑥𝑥MF = (𝑀𝑥 MF)2 = 2𝑀𝑧 MF (𝑀𝑧 MF + 1)
𝐽𝑦 − 𝐽𝑧
𝐽𝑥 − 𝐽𝑦

, (5.9)
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5.4 - Calculation of physical quantities

by using the Gutzwiller mean field properties. The calculation in the 𝑦-direction
is analogue.

5.4.2 Von Neumann entropy

The study of the Von Neumann entropy of the steady state allows for an interesting
extension of our analysis of the system, since in standard thermodynamics a second-
order phase transition is associated to a change in the entropy of the system. The
Von Neumann entropy reads

𝑆 = −
∑︁
𝑖

𝑝𝑖 log (𝑝𝑖) , (5.10)

with 𝑝𝑖 the eigenvalues of the density matrix. It can thus provide information on
the mixed nature of the steady-state density matrix, 𝜌ss. Usually in many-body
studies one is able to calculate this observable only for small systems. However,
similarly to the other variables in this work, we are able to calculate it up to the
order of 𝑁 = 95 spins. The Von Neumann entropy is an extensive quantity and in
the main text we study the Von Neumann entropy per spin: 𝑆 (𝑁 ) /𝑁 .

The mean-field Von Neumann entropy

The mean-field entropy can be calculated by noting that the density matrix can
be written in its Bloch sphere representation 𝜌 = 1

2

(
𝟙 + ®𝜖 · ®̂𝜎

)
. With ®𝜖 the Bloch

vector, which contains the magnetization in the 𝑥 , 𝑦 and 𝑧-direction, and 𝜎 the
Pauli matrices. The eigenvalues are given by 𝑝 = (1 ± |®𝜖 |) /2. These eigenvalues
can be readily calculated from the steady-state mean-field equations (5.8) and give
access to the MF approximation of the Von Neumann entropy through (5.10),

𝑆MF
𝑁

= − (1 + 𝐽 )2 ln
(
(1 + 𝐽 )

2

)
− (1 − 𝐽 )2 ln

(
(1 − 𝐽 )

2

)
,

(5.11)

where 𝐽 2 = 〈𝑆2〉 = Tr[𝑆2𝜌 (𝑡)] is the expectation value of the total spin length [c.f
Eq. (C.10)] in the mean-field approximation.

The Von Neumann entropy solely depends on 𝐽 in Eq. (5.11), illustrating the
fact that states with maximum spin length, lying on the surface of the Bloch sphere,
have minimum entropy. Instead, the entropy increases with decreasing spin length
until the value 𝑆MF/𝑁 = ln(2), which is indeed the maximum entropy of a qubit.
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

In particular, we can express Eq. (5.11) explicitly in terms of the steady-state
values 〈𝜎𝑥 〉ss, 〈𝜎𝑦〉ss and 〈𝜎𝑧〉ss. These results would be true independently of the
model under consideration and even for the system dynamics, given the nature of
the Gutzwiller-mean-field ansatz, for two-level systems, 〈𝜎𝑧

𝑖
𝜎𝑧
𝑗
〉ss ≈ 〈𝜎𝑧〉2ss.

5.4.3 Bimodality coefficient

Using the permutational invariance present in this system, one is able to calculate
results for a higher number of spins than usually feasible with other techniques.
However, finite-size effects are still present, hampering our ability to make a good
estimate of the point of transition from the paramagnetic to the ferromagnetic
phase using the order parameter. An indicator which is extremely suited for making
a good estimate of this transition point is the bimodality coefficient, defined as

𝐵𝑐 =
𝑚2

2
𝑚4

, (5.12)

with 𝑚𝑛 being the 𝑛-th moment of an observable. The bimodality coefficient
gives information on the bimodal nature of the operator used to calculate the
moments. This bimodal nature indicates the presence of a ferromagnetic phase or
a paramagnetic phase. A bimodal distribution for

∑
𝑖 𝜎

𝑥
𝑖 , being the magnetization

in the 𝑥-direction, indicates a ferromagnetic phase and typically has values close
to 𝐵𝑐 = 1. A paramagnetic phase, i.e. a unimodal distribution, is indicated by
smaller values for 𝐵𝑐 . A Gaussian distribution with zero mean has a value 𝐵𝑐 = 1/3
[107, 195]. Note that the bimodality coefficient is closely related to the Binder
cumulant [196, 197].

Besides information on the nature of the phases at a specific parameter, the
bimodality coefficient can also be used to indicate the transition point between
the different phases. The curves for the bimodality coefficient for different system
sizes intersect, providing an estimate of the critical point. In finite-size systems,
these intersection points coincide due to power-law dependence of correlations on
the system size around the critical point. In our case, since different number of
spins correspond to different dimensions, this intersection point changes. However,
for sufficiently large systems this transition point should converge, indicating the
phase transition.

We are interested in the presence of a ferromagnetic or paramagnetic phase in
the 𝑥𝑦-plane, and as such we study the emergence of ferromagnetic order in either
the 𝑥 or 𝑦 direction. The second and fourth moments of 𝜎𝑥𝑖 and 𝜎

𝑦

𝑖
are readily
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5.4 - Calculation of physical quantities

calculated in the permutational invariant basis, as they are expectation values of
global operators.

5.4.4 Angular averaged susceptibility

A divergence in the susceptibility indicates the existence of a second order phase
transition. To calculate the susceptibility we use the scheme presented in Ref. [104].
If a small magnetic field of intensity ℎ is applied in the 𝑥𝑦-plane as a probe,

𝐻𝐵 (ℎ, 𝜃 ) = ℎ
∑︁
𝑖

(
cos (𝜃 )𝜎𝑥𝑖 + sin (𝜃 )𝜎𝑦

𝑖

)
, (5.13)

it explicitly breaks the ℤ2-symmetry of the system. By obtaining the perturbed
steady state 𝜌 (ℎ, 𝜃 ) for 𝐻ext(ℎ, 𝜃 ) = 𝐻 +𝐻𝐵 (ℎ, 𝜃 ), the resulting magnetization reads

𝑀𝛼 =
1
𝑁

𝑁∑︁
𝑗=1

Tr
[
𝜌 (ℎ, 𝜃 )𝜎𝛼𝑗

]
, 𝛼 = 𝑥, 𝑦. (5.14)

Calling ℎ𝑥 = ℎ cos (𝜃 ) and ℎ𝑦 = ℎ sin (𝜃 ), the magnetic response in the linear regime
is

®𝑀 (ℎ, 𝜃 ) =
(
𝜒𝑥𝑥 𝜒𝑥𝑦

𝜒𝑦𝑥 𝜒𝑦𝑦

) (
ℎ cos (𝜃 )
ℎ sin (𝜃 )

)
, (5.15)

where the susceptibility tensor is defined as

𝜒𝛼𝛽 =
𝜕𝑀𝛼

𝜕ℎ𝛽

����
ℎ→0

. (5.16)

A scalar value can be obtained from this susceptibility tensor through angular
averaging of the determinant, i.e.,

𝜒av =
1

2𝜋

∫ 2𝜋

0

𝜕 | ®𝑀 (ℎ, 𝜃 ) |
𝜕ℎ

�����
ℎ→0

𝑑𝜃 . (5.17)

The mean-field angular averaged susceptibility can be calculated through numeri-
cally solving the mean-field equations with an applied field as stipulated above
and also applying Eq. (5.17).
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

5.5 Mean-field validity across the phase diagram

To compare the mean-field analysis to the full quantum solution, we interpret the
all-to-all coupled spin system as a 𝑑-dimensional system. Every time we add a
spin the dimension of the system is also increased by one. This implies that a
𝑑-dimensional system consists of 𝑑 spins and that infinite dimensions are reached
when the system has an infinite amount of spins. Hence, we test if mean-field
theory becomes exact in infinite dimensions, i.e., for an infinite number of spins.

In the following, we use the permutational invariant quantum solver (PIQS)
[161], a module of QuTiP, the Quantum Toolbox in Python [167, 168], developed
to efficiently solve problems with permutational invariance. This is an open-source
computational library that leverages the flexibility of numerical and scientific
Python libraries (NumPy and SciPy) and implements efficient numerical techniques
by interfacing with the Intel Math Kernel Library (MKL). Performance is enhanced
by using compiled scripts in Cython and by natively supporting cross-platform
parallelization on clusters, with open multi-processing (Open MP) [167, 168]. To
obtain the steady-state density matrix, we will use the direct method of the
qutip.steadystate solver, which is based on the lower-upper (LU) decomposition
of the Liouvillian matrix to solve the equation L𝜌ss = 0. The results are exact
up to numerical tolerance (having set the absolute tolerance to 10−12) 1. We
will characterize criticality by calculating the expectation values of operators
on the steady-state density matrix of the system, i.e.,

〈
𝐴
〉

ss = Tr[𝐴𝜌ss], and by
investigating the properties of 𝜌ss.

Based on the preliminary study of the MF solution and of the Liouvillian gap,
see Figs. 5.3 and 5.5, and Secs. 5.2.3 and 5.3, we can identify three main regions
in the phase diagram of the XYZ model: (i) Paramagnetic far from criticality
(𝐽𝑦 ≤ 𝐽𝑥 ); (ii) Critical (𝐽𝑥 < 𝐽𝑦 ≤ 𝐽h

𝑦 ); (iii) Highly anisotropical (𝐽𝑦 > 2.3𝛾 = 𝐽h
𝑦 ), see

discussion in Sec. 5.5.3. The paramagnetic one (i) seems to present a saturation of
the Liouvillian gap and no antiferromagnetic phase for 𝐽𝑦 ≤ 0. We may argue that
this region can be safely approximated by a MF solution. We numerically tested
this hypothesis, and found it to be correct (not shown).

In the critical region (ii), a fundamental question is the determination of both
the existence and the position of the critical point. Regardless of our ability to

1The interested reader can find a series of notebooks dealing with similar systems in
the section “Permutational invariant Lindblad dynamics” of the QuTiP project tutorials
http://qutip.org/tutorials.
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5.5 - Mean-field validity across the phase diagram

determine the transition point, we are able to access the validity of the mean-
field solutions through a finite size scaling. For almost-critical anisotropy, we
will consider three domains: (1) The paramagnetic region before the transition
𝐽𝑥 < 𝐽𝑦 < 𝐽 c

𝑦 ; (2) The critical point according to MF prediction 𝐽𝑦 = 𝐽 c
𝑦 ; (3) The

ferromagnetic region 𝐽 c
𝑦 < 𝐽𝑦 < 𝐽h

𝑦 . These are respectively represented as the yellow
hexagon, the red square and the blue circle in the phase diagram of Fig. 5.5.

Finally, we are interested in the properties of the high-anisotropy phase (iii).
The MF does not predict a second phase transition to a paramagnetic phase.
Nevertheless, several different methods [42, 44] have pointed out that this regime
of parameters leads to a completely different behavior with respect to the standard
ferromagnetic phase.

Note that in all the curves in this section, which show the behavior of the
system as a function of 𝐽𝑦/𝛾 , the markers on the curves are a guide for the eye,
and each curve is obtained from a simulation of a 100 points. We also computed
more values of the system size 𝑁 than those shown in those figures.

In the following we choose, unless specified otherwise, 𝐽𝑧 = 𝛾 , 𝐽𝑥 = 0.6𝛾 and we
vary 𝐽𝑦.

5.5.1 Critical region

To characterize the properties of the steady state, we consider the spin-structure
factor in the 𝑥-direction,

𝑆𝑥𝑥 (𝑁 ) = 1
𝑁 (𝑁 − 1)

∑︁
𝑗≠𝑙

〈𝜎𝑥𝑗 𝜎𝑥𝑙 〉ss, (5.18)

the 𝑧-magnetization,
𝑀𝑧 = 〈𝑆𝑧〉ss/𝑁 = Tr[𝑆𝑧𝜌ss]/𝑁, (5.19)

and the Von Neumann entropy,

𝑆 = 𝑆 [𝜌ss] = −
∑︁
𝑖

𝑝𝑖 log (𝑝𝑖) , (5.20)

where 𝑝𝑖 are the eigenvalues of the density matrix 𝜌ss. While at MF level it is
possible to have 〈𝜎𝑥 〉 ≠ 0, for any finite-size system the ℤ2 symmetry imposes
〈𝜎𝑥 〉 = 0 (see the discussion in section 5.2.1). Ferromagnetic order is present in
the 𝑥𝑦-plane if the steady-state spin structure factor in the 𝑥-direction or (and)
the 𝑦-direction is different from zero. The magnetization 𝑀𝑧 , instead, is expected
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Figure 5.6: Study of the paramagnetic to ferromagnetic dissipative phase
transition in the presence of only local dissipation for the system parameters
specified in Fig. 5.4 panel (b). The first row shows the steady-state spin
structure factor in the 𝑥-direction [panel (a)], the 𝑧-magnetization [panel
(b)], and the Von Neumann entropy per spin [panel (c)] as a function of 𝐽𝑦
for different system sizes (𝑁 increases for darker curves). The markers are
a guide for the eye, 100 points are calculated for each curve. The second
row shows the absolute value of the difference between the variables in
the corresponding upper panel and the mean-field value for 𝑁 → ∞. (d)
Δ𝑆𝑥𝑥 (𝑁 ) =

(
𝑆𝑥𝑥 (𝑁 ) − 𝑆𝑥𝑥MF (𝑁 )

)
/𝑁 . (e) Δ𝑀𝑧 (𝑁 ) = (𝑀𝑧 (𝑁 ) −𝑀𝑧 MF (𝑁 )) /𝑁 .

(f) Δ𝑆 (𝑁 ) = (𝑆 (𝑁 ) − 𝑆MF (𝑁 )) /𝑁 . See Eq. (5.21) for details. In all panels,
the black dashed curve represents the MF value. The dashed vertical lines
refer to the points chosen in Fig. 5.5 and also studied for the system-size
scaling in Fig. 5.7: the PM phase (yellow line, hexagon marker); the critical
point (red line, square marker); the FM phase (cyan line, circle marker).

to show a first order discontinuity, according to the mean-field prediction. Finally,
we will use the Von Neumann entropy per spin 𝑆 (𝑁 )/𝑁 , it is an indicator of the
degree of mixedness of the steady state.

In Fig. 5.6 we plot the spin structure factor [panel (a)], the 𝑧-magnetization
[panel (b)], and the Von Neumann entropy [panel (c)] in the region 0.75 < 𝐽𝑦/𝛾 <

1.75 for different values of 𝑁 , and we compare them to the results obtained via MF
analysis (black dashed curve). Note that we define the point where the mean field
predicts a change between the PM and FM phases as the critical point. All the
three top panels of Fig. 5.6 show that the results of the full quantum simulations
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5.5 - Mean-field validity across the phase diagram

become closer to the MF prediction by increasing the number of sites. Nevertheless,
we notice that the results at the critical point are still in visible disagreement with
respect to those obtained via MF analysis.

We thus identify a paramagnetic and a ferromagnetic phase in qualitative
agreement with the mean-field calculations. Note that, as a result of finite-size
effects, the transition from the paramagnet to the ferromagnet is smoothed, making
it difficult to pinpoint the exact location of the phase transition. Even more so as
the region close to the transition is subject to sizeable fluctuations. We will return
to the determination of the point of transition in subsection 5.5.2.

Normally, one expects the finite-size effects to disappear in the thermodynamic
limit. To better quantify whether the exact quantum solutions retrieve the mean-
field results for 𝑁 →∞, we study the absolute difference between the full quantum
solution and the MF prediction for corresponding 𝑁 ,

Δ𝑆𝑥𝑥 (𝑁 ) = |𝑆𝑥𝑥 (𝑁 ) − 𝑆𝑥𝑥MF(𝑁 ) |, (5.21a)

Δ𝑀𝑧 (𝑁 ) = |𝑀𝑧 (𝑁 ) −𝑀𝑧 MF(𝑁 ) |, (5.21b)

Δ𝑆 (𝑁 ) = |𝑆 (𝑁 ) − 𝑆MF(𝑁 ) |, (5.21c)

for the steady-state spin structure factor, the 𝑧-magnetization, and the Von
Neumann entropy, respectively. How these quantities fare as a function of 𝐽𝑦 is
shown in panels (d-f) of Fig. 5.6. The discrepancies are largest at the critical
point (marked by a vertical red dashed line in each panel) and in general the
MF tends to perform better in the anisotropic FM region, 𝐽𝑦 > 𝐽𝑧, 𝐽𝑥 than in the
PM region. We will investigate the highly anisotropic region in more detail in
Sec. 5.5.3. As a general trend, we see that, as the system size is increased, the
difference between the MF and the computed quantities from the quantum 𝜌ss

becomes smaller. However, the three curves display different behaviors in their
scaling properties.

In Fig. 5.7 we show the finite-size scaling of the solution towards the MF, for
the quantities of Eq. (5.21), for the three regions: (i) Paramagnetic, 𝐽𝑦/𝛾 = 1.1
[panel (a)]; (ii) Critical, 𝐽𝑦/𝛾 = 𝐽𝑦,𝑐/𝛾 [panel (b)]; (iii) Ferromagnetic, 𝐽𝑦/𝛾 = 1.7
[panel (c)]. We notice that all the results display a power-law behavior up to
good approximation. Thus, we perform a power-law fit of the form 𝑦 = 𝛽𝑁𝛼𝑖 for
unknowns coefficients 𝛽 and 𝛼𝑖 . Clearly, 𝛼𝑖 are negative for each observable, i.e.,
the mean-field solutions are in fact exact in the thermodynamic limit. However,
different quantities in different regimes present different behaviors. We notice that
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Figure 5.7: The panels show the finite size scalings of the quantities
plotted in Fig. 5.6 for 𝐽𝑦/𝛾 = 1.1 [panel (a)], 𝐽𝑦/𝛾 = 𝐽𝑦,𝑐/𝛾 [panel (b)], and
𝐽𝑦/𝛾 = 1.7 [panel (c)]. We show the exponents 𝛼 of a power law fit of the form
𝑦 = 𝛽𝑁𝛼𝑖 next to the curves, for unknown coefficients 𝛽 and 𝛼𝑖 . The absolute
difference of the spin-structure factor with respect to the MF prediction, for
corresponding value of 𝑁 , is marked by a blue line with stars and fit by 𝛼1.
Similarly, in each panel the 𝑧-magnetization MF difference is marked by an
orange line with circles and exponent 𝛼2, while the Von Neumann entropy is
marked by a green line with crosses, the exponent for the fit given 𝛼3. The
markers in the top-right corner of each panel refer to the points in the phase
diagram of Fig. 5.5.
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5.5 - Mean-field validity across the phase diagram

the ferromagnetic phase presents the highest convergence rate, the critical region
being the slowest-converging one. This is surprising, since even if the critical
point is at lower entropy than the ferromagnetic region, the latter can be better
captured by a Gutzwiller ansatz. Indeed, the ferromagnetic structure is not that
of an ordered phase in which all the spin tends to be aligned, but every spin
is, instead, in the same mixed state. Instead, at criticality, the system shows
significant fluctuations around the MF results, which slows the convergence rate
regardless of the less mixed nature of the system.

5.5.2 Pinpointing the phase transition: Success of the bimodal-
ity coefficient and failure of the averaged susceptibility

Having proved that the MF results recover the expected outcomes in the thermo-
dynamic limit, we turn our attention now to the study of the critical point in finite
size systems. Indeed, in any experiment, one cannot access an infinite number of
spins, but instead one has to infer the presence of criticality via finite-size scaling.
In this regard, we consider which quantity can better infer the existence of a phase
transition in the thermodynamic limit.

In panel (a) of Fig. 5.8 we show results for 𝐽𝑥 = 0.6𝛾 . The vertical black
dash-dotted line shows the mean-field prediction for the position of the phase
transition, the vertical red dashed line shows the position as predicted by the point
of intersection of the bimodality coefficient, 𝐵𝑐 = 〈(𝑆𝑥 )2〉2ss/〈(𝑆𝑥 )4〉ss, between the
curves 𝑁 = 50 and 𝑁 = 60. It is clear that finite-size effects impose a quantitative
difference with the mean-field prediction for the location of the phase transition.
Comparing the results for finite-size systems to those of the MF (Fig. 5.5), the
qualitative behavior is, however, in good agreement. Moreover, the phases on
either side of the transition coincide. On the left we see the values of the bimodality
coefficient approaching 1/3, indicating a unimodal, i.e., paramagnetic, region. And,
on the right side, they approach 1, indicating a bimodal region, i.e., a ferromagnetic
one.

One can wonder if there actually is a quantitative agreement in the thermody-
namic limit and if not, how large the quantitative deviation from the mean-field
value is. To obtain a better idea of this we show the point of transition as predicted
by the point of crossing of the bimodality coefficient curves for 𝑁 and (𝑁 + 5) as a
function of 1/𝑁 in panel (b) of Fig. 5.8. As the system size increases, the point
of transition moves towards the mean-field critical point. Even though we can
simulate systems with a number of spins of the order of a hundred, we are still
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Figure 5.8: Study of the location of the phase transition using bimodality
coefficient (upper row) and the angular averaged susceptibility (lower row)
for the system parameters specified in Fig. 5.4 panel (b). (a) Bimodality
coefficient in the 𝑥-direction. Where the critical point in the mean-field
(black dash-dotted line) is 𝐽𝑦,𝑚𝑓 = 1.15625𝛾 and in the exact solution (red
dashed line) 𝐽𝑦,𝑒 = 1.144𝛾 , as determined by the intersection of the 𝑁 = 50
and 𝑁 = 60 curves. The (grey) horizontal dashed line indicates the value
1/3, expected for the PM phase. (b) Point of transition as predicted by the
intersection of the bimodality coefficient for systems with 𝑁 and (𝑁 + 5)
spins (black full line with stars). The (blue) horizontal line indicates the
mean-field prediction and the (orange) dashed and (green) dash-dotted curves
respectively show a polynomial fit of degree three and four. The lower panels
show a study of the angular averaged susceptibility for increasing system size
𝑁 . (c) The angular averaged susceptibility, 𝜒av, is studied as a function of 𝐽𝑦 .
The black dash-dotted line shows the mean-field critical point. (d) Scaling
of the maximum of the angular averaged susceptibility as a function of the
systems size 𝑁 . The log-log fit extracts an exponent 𝛼 = 1.1.
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5.5 - Mean-field validity across the phase diagram

far away from the thermodynamic limit. To get an estimate of the convergence
in the thermodynamic limit we make a polynomial fit of third (orange dashed
line) and fourth degree (green dash-dotted line). These results show us that in the
thermodynamic limit the critical point is recovered with a reasonable, although
not excellent, accuracy.

In Fig. 5.8 (c) and (d) we report on a study of the angular averaged susceptibility
𝜒av (see Sec. 5.4.4 for a definition). We find that this quantity is not a good predictor
of the position of the phase transition for finite number of spins 𝑁 in the all-to-all
connected XYZ spin model with local dissipation. Even if for small 𝑁 values the
maximum of the susceptibility keeps shifting toward bigger 𝐽𝑦/𝛾 as 𝑁 increases, for
bigger 𝑁 the peak is at a value 𝐽𝑦 ' 1.35𝛾 [Fig. 5.8(c)]. This value is different from
that of the transition point predicted by the MF. However, 𝜒av becomes divergent
for 𝑁 → ∞, as shown in panel (d). A log-log fit of the maximum extracts an
exponent 𝛼 = 1.1. We conclude that the angular averaged susceptibility, while
signaling a divergence, is not associated to the one of the symmetry breaking. This
is in stark contrast with lower dimensional cases [104].

5.5.3 Highly anisotropic regime: Highly-entropic ferromagnet

We now focus onto the study of the high-anisotropy regime. We define it as the
region of 𝐽𝑦/𝛾 where the phase is ferromagnetic but 𝑆𝑥𝑥 decreases. In our case,
this corresponds to 𝐽𝑦 > 2.3𝛾 . We verified that this point coincides exactly to that
where the bimodality coefficient obtained via the MF solution starts to decrease.
In this regard, the high-anisotropy regime is the one where, by increasing 𝐽𝑦, the
ferromagnetic peaks in the probability distribution of the magnetization become
less distinguished.

As already stated, this regime is particularly interesting. Indeed, far from
isotropy, the simultaneous creation of two spin excitations is energetically favorable.
The Hamiltonian part tends to create correlations in the lattice while dissipation
can act continuously to destroy them. The competition between the two actions
creates very mixed and correlated states. Indeed, the state remains very entropic
even in the limit in which the Hamiltonian should dominate the dynamics.

Figure 5.9 shows a detailed study of the steady-state spin structure factor in
the 𝑥-direction. We recall that in Fig. 5.6 we found that, for low anisotropy (i.e.
|𝐽𝑥 − 𝐽𝑦 | small), the exact results converged quite well to the mean-field calculations,
for the steady state spin structure factor as well as for the other quantities. For
large anisotropy, this appears no longer true, as illustrated by panel (a) up to
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Figure 5.9: Study of the highly anisotropic ferromagnet and of the mean-
field approximation validity, for local dissipation only. We set the system
parameters as specified in Fig. 5.4 panel (b) and study the spin structure
factor as a function of 𝐽𝑦 for different system sizes (lighter to darker curves
as 𝑁 increases). (a) Spin structure factor, 𝑆𝑥𝑥 (𝑁 ), calculated from the
steady-state density matrix obtained from the Liouvillian in a fully-quantum
picture. (b) Absolute difference between 𝑆𝑥𝑥 (𝑁 ) and the MF approximation
for corresponding 𝑁 . (c) A power-law fit of the form 𝑦 = 𝛽𝑁𝛼1 is performed
for 𝑆𝑥𝑥 (𝑁 ) for various points of 𝐽𝑦, using all the curves for different 𝑁 in
panel (a), but up to the value 𝐽𝑦/𝛾 = 100. The inset highlights the variations
in scaling with a log-log plot of |𝛼1 |.
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Figure 5.10: Study of the system in the presence of both local and col-
lective dissipation near the paramagnetic to ferromagnetic dissipative phase
transition for the system parameters specified in Fig. 5.4 panel (a). The
plots show the same quantities and parameter range for 𝐽𝑦/(𝛾 + Γ) as Fig. 5.6
(there Γ = 0). (a) Spin structure factor, 𝑆𝑥𝑥 (𝑁 ). (b) 𝑧-magnetization, 𝑀𝑧 (𝑁 ).
(c) Von Neumann entropy per spin, 𝑆 (𝑁 )/𝑁 . In all upper panels, the black
dashed curve represents the MF value for 𝑁 →∞. The lower panels highlight
the difference with respect to the corresponding mean-field quantities for
the same value 𝑁 . The lower panels highlight the difference with the mean
field for fixed 𝑁 , see Eq. (5.21). (d) Δ𝑆𝑥𝑥 (𝑁 ) =

(
𝑆𝑥𝑥 (𝑁 ) − 𝑆𝑥𝑥MF (𝑁 )

)
/𝑁 . (e)

Δ𝑀𝑧 (𝑁 ) = (𝑀𝑧 (𝑁 ) −𝑀𝑧 MF (𝑁 )) /𝑁 . (f) Δ𝑆 (𝑁 ) = (𝑆 (𝑁 ) − 𝑆MF (𝑁 )) /𝑁 .
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Chapter 5 - Mean-field validity in the XYZ Heisenberg model

𝐽𝑦/𝛾 = 30. In panel (b) we highlight the difference to the mean-field prediction,
Eq. (5.21). A study on the scaling of the exponent,𝑆𝑥𝑥 (𝑁 ) ∝ 𝑁𝛼1 , is given in panel
(c), for each point 𝐽𝑦/𝛾 , up to 𝐽𝑦/𝛾 = 100, extracting the exponent for different
values of 𝑁 . Even though the scaling predicts a very slow convergence to the
mean-field (e.g. 𝑁 −0.22 for 𝐽𝑦/𝛾 > 60) we derive a very different description of
this regime. Since these exponents tend to zero for larger 𝐽𝑦, the MF prediction
become less and less accurate the deeper we go in the anisotropic regime. The
inset in 5.9(c) provides a log-log scale of |𝛼1 | versus 𝐽𝑦/𝛾 to even better illustrate
the presence of different scaling regimes. The plots of Fig. 5.6 and Fig. 5.9 show
that the correctness of the mean-field solutions depends on the parameter regime.
More specifically: for low anisotropy it holds, and for larger anisotropy it does not.

We conclude that, even if there is not a second phase transition, in actual
realization of the model the high-anisotropy regime can be seen as profoundly
different from the low-anisotropy ferromagnet. Not only does the order parameter
in the MF become smaller and smaller, but the convergence of the full quantum
solution towards the MF also becomes slower and slower. In this regard, the
thermodynamic limit in the high-anisotropy region of the phase diagram seems to
be inaccessible for experimental studies.

5.5.4 Benchmark in the presence of local and collective dis-
sipation

Finally, we consider the most general case in Eq. (5.2), for 𝛾 ≠ 0 and also Γ ≠ 0,
i.e. we study the interplay of local and collective dissipation. The results of
our numerical investigations are summarized in Fig. 5.10 and Fig. 5.11. The
main observations are that the nature and position of the phase transition is
not modified by the inclusion of collective dissipation, while some more refined
qualitative features are affected, as also predicted by the MF solutions.

Notably, the phase transition seems to become sharper, as highlighted both by
the magnetization and spin structure behavior as a function of 𝐽𝑦 across the critical
region, in panels (a) and (b) of Fig. 5.10. Similar features where observed when
studying the Lipkin-Meshkov-Glick model with local and collective dissipation [101].
The Von Neumann entropy, shown in panel (c), displays an excellent agreement
with the MF prediction as the system size increases. Note that, similarly to
Fig. 5.6, the markers on the curves provide a guide for the eye, and 100 points are
calculated for each curve as a function of 𝐽𝑦. In the lower row of Fig. 5.10, panels
(d)-(f), we more precisely measure the difference from the MF result, showing that
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Figure 5.11: Study of the system-size scaling, extracted from the quantities
plotted in Fig. 5.10, in the presence of both local and collective dissipation
across the paramagnetic to ferromagnetic dissipative phase transition. The
same conventions as in Fig. 5.7 are used to refer to the difference between
full-quantum simulation and MF prediction for the spin structure factor, the
𝑧-magnetization and the Von Neumann entropy. (a) We set 𝐽𝑦 = 1.1𝛾 , (b)
𝐽𝑦 = 𝐽𝑦,𝑐 and (c) 𝐽𝑦 = 1.7𝛾 .
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the highest discrepancies occur at the point of the phase transition and as the
𝐽𝑦/𝛾 normalized anisotropic coupling is increased.

Moreover, in Fig. 5.11 we report the scaling of these quantities, as a function of
𝑁 , in the PM region [panel (a)], at criticality [panel (b)], and in the FM region with
moderate anisotropy with respect to the |𝐽𝑦 − 𝐽𝑥 | ratio [panel (c)]. Interestingly,
panel (b) shows that at criticality, the same exponents as for the local dissipation
case (see Fig. 5.7) for 𝛼2 (𝑧-magnetization) and 𝛼3 (Von Neumann entropy per spin)
are expected, with a slight discrepancy for 𝛼1 (spin structure factor). Similarly
to the local-dissipation-only dynamics, in the FM anisotropic region, shown in
panel (c), the system is well described by the MF even for low number of spins, as
highlighted by Δ𝑀𝑧 (𝑁 ), which decreases faster than a power-law behavior. Indeed,
the magnetization absolute difference with respect to the MF displays a remarkable
non-linear trend, that does not seem well captured by a linear fit in a log-log plot
(a fit would produce 𝛼2 = −1.14, shown as a dashed orange curve). This highlights
the competition of processes governed by different scaling laws, hinting at the
competition between local and collective dissipation even for remarkably large
system sizes, 𝑁 ≈ 100.

5.6 Conclusions

The analysis performed in this chapter provides a benchmark for spin models on
the correctness of mean-field theory in all-to-all connected dissipative systems. We
studied the steady-state properties of an all-to-all connected dissipative spin model
and tested the validity of the Gutzwiller mean-field approximation in capturing
them.

Specifically, we considered the benchmark model of the XYZ anisotropic
Heisenberg spin system, subject to both local and local-and-collective dissipation
in the Lindblad form. This model is particularly interesting because it shows
a second-order phase transition from a paramagnetic to a ferromagnetic phase.
Moreover, for large anisotropy, this model presents a highly entropic regime which
was debated to be a different phase according to cluster mean-field computations
[44].

We simulated systems up to 𝑁 = 95 spins exploiting the permutational sym-
metry of the model [161]. We demonstrate that, in both cases, the mean field
correctly captures the physics in the thermodynamic limit. However, the scaling
in the low-anisotropy regime strongly differs from that in the high-anisotropy one:
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while in the former the agreement is also quantitative, in the latter the mean-field
approximation fares worse. In this regard, we may advocate for the presence
of strong correlations also in the all-to-all connected model. Even if we find no
signs of a second phase transition, we may still argue that the high-anisotropy
ferromagnetic regime is physically different from the lower-anisotropy ferromagnet.
Recently, the validity of the mean-field assumption in this type of system has also
been rigorously proven in Ref. [198].

Concerning more technical points, in absence of collective dissipation, we exploit
the Liouvillian ℙ𝕋-symmetry [189] to efficiently compute the spectral properties of
the Liouvillian superoperator. In the presence of this weak symmetry the spectrum
presents a second symmetry axis beyond the complex conjugation one. That,
in turn, implies the existence of a state symmetric with respect to the steady
state, and one associated to the first-excited eigenmatrix of the Liouvillian. The
numerical computation of these two states is much easier than finding the real gap
and steady state. We thus introduced the antigap of ℙ𝕋-symmetric Liouvillian
systems, which is equivalent to the true Liouvillian gap, and thus marks criticality
in open quantum systems [32, 35].

The possibility to study a large range of spin system sizes allowed us to address
the question of how to better characterize the emergence of criticality in finite-size
systems. Our results indicate that the physics of systems out-of-equilibrium is more
challenging to infer than one would naively expect, even in the best case scenario
of all-to-all connected models, where dimensionality should induce a rapid decrease
in correlations and fluctuations. Additionally, we have proven the resilience of the
paramagnetic to ferromagnetic phase transition in the presence of both local and
collective dissipation, finding that the presence of the two mechanisms does not
change the nature of the phase transition. In both cases, one observes a second
order phase transition, and the onset of criticality is for the same parameters. These
indications are especially relevant to a broad variety of experimental platforms
in which the dissipative phase transition can be studied, such as trapped ions,
Rydberg atoms, superconducting circuits, and in solid state, especially with hybrid
superconducting systems. More generally, these results provide a benchmark for
the validity of mean-field approximations in understanding the experimental results
obtained with noisy intermediate scale quantum simulators.

The all-to-all connected geometry under consideration constitutes also an ideal
benchmark for linked-cluster expansion theories [199]. In the limit of weak spatial
fluctuations, the effect of correlations is known to produce a correction scaling
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as the inverse of the coordination number to the Gutzwiller mean-field limit,
and therefore MF results are expected to be exact [146, 200]. As pointed out in
Ref. [127], however, around second-order critical points correlations diverge, and
higher-order correlation schemes should be taken into consideration to properly
capture the behavior in the critical region. Finally, we also stress that linked-cluster
expansions explicitly deal with an infinite lattice size, while our study is a finite-size
one.

As a future outlook, we note that the interplay between local and collective
dissipation beyond the all-to-all connected model demands further investigation
with the adoption of both analytical and numerical approximate techniques. Fur-
thermore, it will also be interesting to investigate the system’s time evolution
toward the steady state, as transient processes shall display even starker differ-
ences between mean-field or classical results and full quantum dynamics [101,
201–206]. Indeed, the present study focuses on the steady-state properties of
the model, i.e., those which are permutationally invariant. Phenomena breaking
this spatial symmetry, however, may arise in the dynamics towards the steady state.

The results of this chapter were published in Ref. [2].
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CHAPTER 6
Dissipative phase transitions and

boundary time crystals in all-to-all
connected dissipative 𝑝-level systems

The physics of dissipative phase transitions has been associated with the emergence
of several phenomena, such as lasing, [207–210], bistability and hysteresis [78, 79,
82, 83, 86, 87, 91, 151, 211, 212], and symmetry breaking [2, 42, 44, 81, 83, 88,
89, 104, 107, 213–216]. Similarly to dissipative phase transitions, boundary time
crystals (BTCs) are critical phenomena, which are associated with the spontaneous
emergence of nondecaying oscillations in open quantum systems. Here, we will
consider BTCs (see section 2.8.1), i.e., those time crystals emerging despite the
action of dissipation, where the long-time dynamics of the system, whose underlying
dynamics is invariant under time translation, develops a periodicity [58–64, 66].

Many of the previously cited works, as well as those cited in chapter 3, deal
with two very extreme cases. On the one hand, two-level systems can be thought
of as bosonic resonators in the presence of a very strong interaction, where only
two levels can be excited and the other transitions are so much detuned that they
play no role in the dynamics. On the opposite side, when dealing with bosonic
systems, one is considering the infinite number of excitations. Here, instead, we
consider generalized 𝑝-level systems, where several interactions can compete in
determining the physics of the system. In particular, we will consider the physics
of the driven-dissipative 𝑝-level lattices in the presence of drive and (uniform) local
dissipation. This system is known to display criticality both for 𝑝 = 2 and for 𝑝 = ∞.
However, the role of the dimension is not clear in determining the transition point.
Note that for 𝑝 = ∞ the model system under consideration is the driven-dissipative
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Bose Hubbard model introduced in chapter 3. Furthermore, a mean-field analysis
shows the emergence of a BTC phase for this class of systems. Notably, we find
that such a crystalline phase cannot be captured by a Gross-Pitaevskii equation
(i.e., coherent state approximation (3.14)): a time crystalline phase emerges in the
following analysis only when the mean-field equations display five solutions. The
Gross-Pitaevskii equation, however, can at most display three solutions. As such,
the emerging time crystal is in a quantum state and not a semiclassical state.

To confirm or disprove the results of the mean-field approach, similarly to
chapter 5, we will once again exploit the permutational invariance that is present
in an all-to-all connected 𝑝-level system. We have implemented a code in Python
that allows us to construct a reduced Liouvillian for 𝑝 ≥ 2 (see appendix B.2 for a
code example and chapter 4 for the theoretical framework). Furthermore, using a
technique that we developed, and which is discussed in chapter 9, we manage to
determine the low-lying part of the Liouvillian spectrum, and as such we can argue
about the emergence of dissipative phase transitions and BTCs for the considered
size of the system.

6.1 The system and its time evolution

We consider a Bose-Hubbard driven-dissipative lattice characterized by two types
of interaction. It reads

𝐻 =
∑︁
𝑗

(
𝐻Kerr

𝑗 + 𝐻𝑝

𝑗

)
+ 𝐻Hop,
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2𝐷
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〈𝑗,𝑙 〉

(
𝑎
†
𝑗
𝑎𝑙 + h.c.

)
,

(6.1)

where 𝐻Kerr is the local Kerr-resonator Hamiltonian, 𝐻𝑝

𝑗
is a 𝑝−photon interaction,

and 𝐻
Hop
𝑗,𝑙

describes the hopping between sites 𝑗 and 𝑙 . The operators 𝑎†
𝑗

(𝑎 𝑗 ) are
the creation (annihilation) operators of the 𝑗-th site. The other parameters are: Δ

the detuning, 𝑈 the Kerr non-linearity, and 𝐹 the pumping strength. The 𝑝-photon
interaction strength is given by 𝑊 . For consistency between lattices of different
dimensions 𝐷, the hopping amplitude 𝐽 is renormalized by the connectivity 2𝐷 .
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6.2 - Mean-field equation of motion

The dissipation is uniform and constant, and the time evolution reads

𝜕𝑡𝜌 = L𝜌 = −𝑖 [𝐻, 𝜌] + 𝛾
∑︁
𝑗

D[𝑎 𝑗 ]𝜌, (6.2)

where the dissipator D
[
𝑎 𝑗

]
𝜌 is given by

D[𝑎 𝑗 ]𝜌 = 𝑎 𝑗𝜌𝑎
†
𝑗
− 1

2

(
𝑎
†
𝑗
𝑎 𝑗𝜌 + 𝜌𝑎†𝑗𝑎 𝑗

)
. (6.3)

We will assume that 𝑊 dominates the dynamics, so that we can introduce a cutoff
in the Hilbert space at 𝑝 − 1 excitations. In case 𝑝 = 2, the system is the standard
driven XY model. For 𝑝 = 3, we are considering qutrits instead of qubits, and so
on. In the following, we will be mainly interested in the cases 𝑝 ≥ 3, representing
a generalization of qubit dynamics. As such, we will indicate the Hamiltonian 𝐻

of a 𝑝-level bosonic system with a subscript (𝑝) , e.g. (𝑝)𝐻 . Furthermore, we will
adopt the shorthand notation that (𝑝)𝑎 is the truncated creation operator, e.g.,

(3)𝑎 =
©­­«
0 1 0
0 0

√
2

0 0 0

ª®®¬ . (6.4)

We will study an all-to-all connected geometry of the p-level lattice of resonators.
In this all-to-all system, the hopping term reads:

(𝑝)𝐻
Hop = − 𝐽

𝑁 − 1
∑︁
𝑗≠𝑙

(
(𝑝)𝑎

†
𝑗 (𝑝)𝑎𝑙 + h.c.

)
. (6.5)

In this chapter we will consider the following parameter values with 𝛾 as the unit
of energy, 𝑈 = 20𝛾 , 𝐽 = 1.5𝑈 , Δ = 1

3𝑈 and vary 𝐹 = 𝐹𝑈 .

6.2 Mean-field equation of motion

We begin our discussion of this model by considering the Gutzwiller mean field.
Within such an approximation, the state of the system is described as a tensor
product, reading

𝜌 (𝑡) =
⊗

𝑗

𝜌 𝑗 (𝑡) (6.6)

where 𝜌 𝑗 is the local density matrix of the 𝑗-th site. These approaches have been
studied in the context of bistability and phase transitions, both in the bosonic

103



Chapter 6 - Dissipative phase transitions and boundary time crystals in all-to-all
connected dissipative 𝑝-level systems

0 0.5 1 1.5

F/U

0

0.2

0.4

〈 (p
)â
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Figure 6.1: Mean-field and exact steady-state solutions for the multistable
mean-field region. Mean-field solutions are shown as stable solutions (black
lines) and unstable solutions (red lines) and exact solutions for 𝑁 all-to-all
coupled sites are shown as green stars, for (a) 𝑝 = 2 and 𝑁 = 35, (b) 𝑝 = 3
and 𝑁 = 17, (c) 𝑝 = 4 and 𝑁 = 9, and (d) 𝑝 = 5 (no exact solutions shown).
A dynamical stability analysis of for a certain value of 𝐹/𝑈 for each of the
𝑝 values is shown in (e) 𝐹/𝑈 = 0.8, (f) 𝐹/𝑈 = 0.13, (g) 𝐹/𝑈 = 0.19 and
(h) 𝐹/𝑈 = 0.19. The mean-field steady state solutions are shown as orange
dashed lines, the dynamical evolution from these initial states (with an added
perturbation) is shown by blue lines for each of the initial steady states. For
𝑝 ≥ 4 and certain values of 𝐹/𝑈 periodical behaviour is observed as 𝑡 →∞
for certain initial states. These regions are indicated by a light blue area in
(c) and (d). Parameters used: 𝐽/𝑈 = 1.5, Δ = 1

3𝑈 , and 𝑈 = 20𝛾 .
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limit (𝑊 = 0) [79, 87, 145, 151] and in the hard-core limit (𝑊 →∞) and 𝑝 = 2 [2,
59, 66, 198]. Interestingly, the intermediate regime where Kerr nonlinearity can
play a role, but the full bosonic ladder cannot be fully explored has never been
taken into consideration. Under such a truncation hypothesis, the Hamiltonian
reads:

(𝑝)𝐻
MF = − Δ(𝑝)𝑎† (𝑝)𝑎 +

𝑈

2
[
(𝑝)𝑎

†]2 [
(𝑝)𝑎

]2 +[(
𝐹 − 𝐽

〈
(𝑝)𝑎

†〉)
(𝑝)𝑎 + h.c.

]
.

(6.7)

Consequently, we define the self-consistent Liouvillian as

(𝑝)LMF = −𝑖 [ (𝑝)𝐻MF, ·] + 𝛾D[ (𝑝)𝑎]·, (6.8)

where the dot · indicates where 𝜌 can be substituted. At first, we are interested in
finding the self-consistent steady states, such that

(𝑝)LMF𝜌MF
ss = 0. (6.9)

We plot the solution to the self-consistent equation in Fig. 6.1(a)-Fig. 6.1(d) for
increasing values of the cutoff 𝑝. While for 𝑝 = 2 we see just one solution, multiple
solutions emerge for 𝑝 > 2. As such, a few remarks are necessary. First, as
discussed in, e.g., [35, 83, 85, 211], the presence of multiple steady states at the
mean-field level is an indication of an emerging criticality. Therefore, we would
expect that a system with 𝑝 = 3 would already display a critical behaviour. In
other words, for 𝑝 = 3, there should be a nontrivial competition between the
detuning and the interaction in determining the steady state of the system for this
set of parameters.

Second, we notice that there are more than three solutions. This is a remarkable
fact since the Gross-Pitaevskii equation (i.e., assuming 𝜌 𝑗 (𝑡) = |𝛼 (𝑡)〉 〈𝛼 (𝑡) | where
|𝛼〉 is a coherent state) yields at most three solutions. While in a standard GPE
approach one usually finds two stable and one unstable solution, here it is unclear
which solutions are stable and which are not. As such, in Fig. 6.1(e)-Fig. 6.1(h)
we plot a numerical study of the stability of the solutions. That is, we numerically
solve

𝜕𝑡𝜌 (𝑡) = (𝑝)LMF𝜌 (𝑡), 𝜌 (0) = 𝜌MF
ss + 𝛿𝜌, (6.10)

for each of the solution of 𝜌MF
ss (also indicated as orange dashed lines), 𝛿𝜌 being
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a small variation. In Fig. 6.1(a)-Fig. 6.1(d), stable solutions (black lines) will be
characterized by a negative exponent (i.e., the system will rapidly converge to
𝜌MF

ss ) while unstable ones (red lines) will be characterized by a positive exponent
(the solution will diverge away from it). The value of 𝐹 for which the solution is
considered is marked as a dashed light-blue vertical line. For 𝑝 = 2, where there is a
unique solution, we observe that it is always stable. For 𝑝 ≥ 3, instead, we observe
that there are two stable solutions and three unstable ones. Surprisingly, however,
when we consider 𝑝 = 4 or 𝑝 = 5 we see that one of the unstable solutions develops
a periodic behaviour, indicating the presence of a time crystal. We verified for
several values of the pumping strength around the choice of 𝐹 in the figures that
time crystalline behaviour occurs. This region is marked by a light blue area in
Fig. 6.1(c)-Fig. 6.1(d). We have verified that such behaviour of the mean-field
solutions persist as 𝑝 is increased, i.e. untill convergence is met.

The analysis of such a rich phase diagrams justifies the necessity to do full
quantum simulations in order to better understand the characteristics of this
system. In particular, two questions need to be answered:

1. Is there really a phase transition for 𝑝 ≥ 3 when we consider an all-to-all
connected model?

2. Is the MF analysis predictive also of the dynamics of the system and not
only of its steady state? As such, is there really an emergent time crystal
also in the quantum limit?

6.3 Full quantum study I: dissipative phase transition

The reduction in complexity due to the exploitation of the permutational invariance
in combination with the method from chapter 9 to calculate the low-lying spectrum,
and thus the steady state, allows us to calculate exact full quantum solutions for
the all-to-all connected system. In this study we will consider (i) 𝑝 = 3 and up to
𝑁 = 17 cavities; (ii) 𝑝 = 4 and up to 𝑁 = 9 cavities.

The multistability in the mean-field solution becomes a first-order phase tran-
sition for the full quantum model in the thermodynamic limit, and it should be
witnessed by a sudden jump in the particle number. Since we consider finite
systems, however, this discontinuity is somewhat smoothened. Nonetheless, it is a
good indicator of emerging criticality. In Fig. 6.1 we show the particle number
expectation value for: Fig. 6.1(a) 𝑝 = 2 and 𝑁 = 35; Fig. 6.1(b) 𝑝 = 3 and 𝑁 = 17;
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Fig. 6.1(c) 𝑝 = 4 and 𝑁 = 9 as green stars. For the two-level system, we confirm
that the mean-field solutions are quite predictive of the full quantum solution,
even for a relatively small 𝑁 [2, 198]. This correspondence is also present for the
stable branches in 𝑝 = 3 and 𝑝 = 4, again for a quite small number of cavities.
Furthermore, both for 𝑝 = 3 and 𝑝 = 4, the data confirm the expected emerging
criticality, in the form of a steep transition from the low particle number branch
to the high one, associated with the mean-field multistability. Since we will be
interested also in the emergence of time crystals, below we will focus on the study
of the 𝑝 = 4 system, although similar results were found for 𝑝 = 3 (not shown).

To further characterize the emerging criticality, we consider the low-lying
Liouvillian spectrum in Fig. 6.2(a)-Fig. 6.2(c), where we show the 5 “slowest”
eigenvalues of the Liouvillian for 𝑝 = 4 for 𝑁 = 3, 7, 9. We indicate purely real
eigenvalues with black dots, whereas eigenvalues with non-zero imaginary part are
red crosses. In the thermodynamic limit, the fact that 𝜆1 becomes zero in both real
and imaginary part signals the first-order phase transition. As such, the Liouvillian
gap, i.e. the real part of 𝜆1, describing the convergence rate towards the steady
state, is an excellent indicator of criticality. As shown in Fig. 6.2(a)-Fig. 6.2(c) the
minimum of the gap indeed closes as the system size increases. This is also shown
in Fig. 6.2(d), where we plot the maximum of the timescale 𝜏1 = 1/𝜆1, showing a
power-law trend as we increase the system size. Interestingly, one can find another
emerging minimum in the low-lying Liouvillian spectrum, particularly visible in
Fig. 6.2(c). A power law scaling of this minimum, in the form of the maximum
of the timescale 𝜏4 = 1/𝜆4, is shown in Fig. 6.2(e), clearly indicating a diverging
timescale, albeit with a much smaller exponent (≈ 0.10) than in the case for the
first-order transition one (≈ 1.57). Nonetheless, this behaviour signals that in the
thermodynamic limit, a tristability may be present.

Such a tristable behaviour could be associated with an emerging time crystal,
since as it has been shown in [64, 217], the emergence of a time crystal can be
associated with a point-wise closure of the Liouvillian gap (i.e., an emerging 𝑈 (1)
symmetry of the system).

6.4 Full quantum study II: time crystal

Similarly to the first-order phase transition, an emerging time crystal is a critical
phenomenon. In this case, some eigenvalues acquire zero real part but they retain
a nonzero imaginary eigenvalue. From Fig. 6.2(a)-(c) however, we do not see the
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Figure 6.2: The Liouvillian spectrum showing the 5 “slowest” eigenvalues
for a system with 𝑝 = 4 for severel system sizes: (a) 𝑁 = 3, (b) 𝑁 = 7 (c)
𝑁 = 9. A power law fit ∝

(
𝜏max

1
)𝛽 (dark red dash-dottes line) scaling of the

maximum of the timescale 𝜏1 = 1/(−𝑅𝑒 (𝜆1)) (black triangles), i.e. minimum
of the Liouvillian gap, is shown in (d). A power law exponent of 𝛽 ≈ 1.57
is found. A similar scaling is shown for 𝜏4 = 1/(−𝑅𝑒 (𝜆4)) in (e) for the
minimum that is emerging in −𝑅𝑒 (𝜆4), where an exponent of ≈ 0.10 is found.
Other parameters are as in Fig. 6.1.

emergence of such an eigenvalue, if at all present. A possible reason may be that,
for the observed system sizes, we are still far from criticality. Subsequently, it may
be needed to go “deeper” into the Liouvillian spectrum.

In Fig. 6.3(a)-(c) we show these low-lying spectra of which the real part goes
up to ≈ 1.5𝛾 as a function of system size for values of 𝐹/𝑈 in the region where the
mean-field predicts periodical behaviour. Whereas the presence of the first-order
phase transition is again quickly observed, the presence of an imaginary eigenvalue
of which the real part goes to zero as system size increases is not. Our analysis
thus finds no signs of emerging time crystalline behaviour in the full-quantum
treatment.

To verify whether a time crystal does (or does not) occur, we are currently
following two directions: (i) extending our study of the low-lying spectrum for
eigenvalues of which the absolute value of the real part goes beyond 1.5𝛾 . (ii)
considering a different set of parameters (𝐽/𝑈 = 5) where also the system with
𝑝 = 3 displays limit cycles at the mean-field level. As such, we hope to reach higher-
dimensional systems, where we could capture signs of an emergent time-crystal
structure.
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Figure 6.3: The Liouvillian spectrum for eigenvalues of which the real
part goes up to ≈ 1.5𝛾 as a function of 1/𝑁 in the region where the mean-
field predicts time crystalline behaviour for 𝑝 = 4 and (a) 𝐹/𝑈 = 0.15, (b)
𝐹/𝑈 = 0.2, and 𝐹/𝑈 = 0.25. Eigenvalues with no imaginary part are marked
with black dots, whereas those with non-zero imaginary part are marked as
red crosses. Other parameters are as in Fig. 6.1.

6.5 Conclusions

We have studied a model where the mean-field steady-state solutions predict a rich
phase diagram, containing multistability for 𝑝 ≥ 3 and an observed time crystalline
phase for 𝑝 ≥ 4. This time crystalline phase occurs in the region where the mean
field predicts five steady-state solutions. Since such behaviour cannot be captured
through a coherent state ansatz (i.e. GP equation) this phase is expected to
come forth from the pure quantum properties of the system. In our full quantum
analysis we find that criticality survives in these systems where the local Hilbert
space cutoff is forcefully limited. Moreover, we have found clear evidence of a
first-order phase transition as well as indications for the presence of a tristability.
Furthermore, already for small 𝑁 the mean-field predictions (away from criticality)
hold close correspondence to the exact solutions. A study of the emergence of
imaginary eigenvalues whose real part goes to zero as 𝑁 is increased has given no
clear sign of time crystalline behaviour. Further investigation is ongoing by doing
a more in depth study of the Liouvillian spectrum as well as a study of different
parameter regimes that allow for the study of systems with a higher number of
sites.
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CHAPTER 7
Cluster methods for the description of
the dissipative XYZ Heisenberg model
In the previous chapters we have focussed on the Gutzwiller mean-field approach
and its validity in highly dimensional all-to-all connected open quantum systems.
Now, we will shift our attention to lower dimensional open systems where the
mean-field theory introduced in chapter 3 is expected to fall short of, at least,
quantitavely describing the system in most regimes. More specifically, we will study
two-dimensional cubic lattices with periodic boundary conditions and briefly discuss
one dimensional chains. In this chapter an extension to the mean-field approach is
introduced, namely the cluster-Gutzwiller quantum trajectory approach, and it
will be applied to the dissipative XYZ Heisenberg model. We will also refer to this
method as the cluster-Gutzwiller Monte Carlo approach (CGMC). Furthermore,
its results will be compared with the cluster mean-field approach (see (3.9)), which
is a master equation approach. We will also comment on several peculiarities of
this open system that arise from mean-field theory with respect to closed quantum
systems.

7.1 The model system

We again study the anisotropic XYZ Heisenberg Hamiltonian (3.2)

𝐻 =
∑︁
〈𝑖, 𝑗 〉

(
𝐽𝑥𝜎
(𝑥)
𝑖
𝜎
(𝑥)
𝑗
+ 𝐽𝑦𝜎 (𝑦)𝑖

𝜎
(𝑦)
𝑗
+ 𝐽𝑧𝜎 (𝑧)𝑖

𝜎
(𝑧)
𝑗

)
, (7.1)

this time on a cubic spin lattice. Note that in the above Hamiltonian we have
discarded the coefficient with the coordination number 1/𝑍 from (3.2). The reason
for this stems from the literature, where predominantly this choice of convention is
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used in works that focus on the beyond-mean field treatment of this model [1, 44,
104, 107, 126–128, 131]. This can be done without loss of generality, one however
needs to pay attention that e.g. mean field equations in this chapter will slightly
differ from those that have been derived in chapter 5. The above Hamiltonian
governs the unitary part of the time evolution of the system. The total time
evolution of the system is governed by a Lindblad Equation with dissipation along
the z-axis

𝜕𝑡𝜌 = −𝑖
[
𝐻, 𝜌

]
+ 𝛾2

∑︁
𝑗

(
2𝜎 (−)

𝑗
𝜌𝜎
(+)
𝑗
−

{
𝜎
(+)
𝑗
𝜎
(−)
𝑗
, 𝜌

})
. (7.2)

With 𝛾 the decay rate of the spins and 𝜎+𝑖 (𝜎−𝑖 ) the raising (lowering) operators
along the z-axis. We thus study the case of local dissipation only.

From this moment on, we will consider the parameters 𝐽𝑥 = 0.9𝛾 and 𝐽𝑧 = 𝛾 ,
unless stated differently, and vary 𝐽𝑦.

7.2 Cluster methods

We will compare our results with the cluster mean-field method (CMF) [44].
The mean-field approach [42] predicts a transition from a paramagnetic phase
to a ferromagnetic phase for this parameter set at 𝐽𝑦 ≈ 1.04𝛾 . By including
quantum correlations in the CMF [44] the existence of another transition from
the ferromagnetic phase to the paramagnetic phase is observed. Such a behaviour
is also observed when one includes classical spatial correlations by using the
Gutzwiller Monte Carlo approach (GMC) [128]. A natural extension is then of
course a cluster-Gutzwiller Monte Carlo approach, where the inclusion of short-
range quantum correlations is combined with the inclusion of classical spatial
correlations. It is worth noting that the nature of the steady state in the regime
where the previous methods predict a re-entrance of the paramagnetic state is still
largely under debate [107]. In this regime of large anisotropy the transition point
from the ferromagnetic phase to a paramagnetic phase is largely dependent on the
method used, as well as possible cluster sizes. Furtermore, several of the above
methods that we discussed in chapter 3 do not reach convergence in this region.

In this section we will first give a more in depth introduction to the CMF
approach and then move onto the introduction of the CGMC approach.
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Figure 7.1: This figure shows the lattice layout with 2 × 2 clusters on a
two-dimensional lattice. Each cluster is shown as a grey area and contains a
set of (’connected’) lattice points. Inside these clusters quantum correlations
between the different sites are included. Since numerical simulation can only
be performed for small clusters we will refer to these quantum correlations
as short-range quantum correlations.

7.2.1 Cluster mean-field approach

As we have introduced in chapter 3, the cluster mean-field approach corresponds
to the introduction of a factorized density matrix ansatz for the density matrix of
the system of interest

𝜌 =
⊗
C
𝜌C . (7.3)

It consists of a division of the lattice into multiple (non-overlapping) clusters or
plaquettes, as illustrated on Fig. 7.1. If one substitutes (7.3) into the lindblad
master equation of the system one can straight forwardly derive an equation for
the time evolution of the density matrix of a certain cluster C. If one assumes the
clusters to be of identical size 𝑁𝑐 , i.e. they all have the same dimensions 𝑁𝑐 × 𝑁𝑐

and thus consist of 𝑁 2
𝑐 lattice sites, the translational invariance of the system can

be exploited. It then suffices to derive the time evolution of only one cluster 𝐶,
since the time evolution of the density matrices of all other clusters C′ will be
identical to it. After subsitution of (7.3) into the master equation (7.2) and taking
the partial trace of all sites that are not in the set of sites inside the cluster C one
then yields

𝜕𝑡𝜌C = −𝑖
[
𝐻𝐶𝑀𝐹 , 𝜌C

]
+ 𝛾2

∑︁
𝑗 ∈C

(
2𝜎 (−)

𝑗
𝜌𝜎
(+)
𝑗
−

{
𝜎
(+)
𝑗
𝜎
(−)
𝑗
, 𝜌

})
. (7.4)
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Where the cluster mean-field Hamiltonian 𝐻𝐶𝑀𝐹 can be written as

𝐻𝐶𝑀𝐹 = 𝐻C + 𝐻B(C) , (7.5)

where 𝐻C only contains interactions within the cluster C, given by

𝐻C =
∑︁

𝛼=𝑥,𝑦,𝑧

∑︁
〈𝑖, 𝑗 〉 |𝑖, 𝑗 ∈C

𝐽𝛼𝜎
(𝛼)
𝑖
𝜎
(𝛼)
𝑗
. (7.6)

The term 𝐻B(C) describes the interactions along the boundary B of the cluster 𝐶,
i.e.: the interactions between sites inside the cluster and their nearest neighbours
outside this cluster, also called the mean-field interactions. This term is given by

𝐻B(C) =
∑︁

𝛼=𝑥,𝑦,𝑧

∑︁
〈𝑖, 𝑗 〉 |𝑖∈C, 𝑗∉C

𝐽𝛼𝜎
(𝛼)
𝑖
〈𝜎 (𝛼)

𝑗
〉. (7.7)

Rewriting 𝐻𝐶𝑀𝐹 in terms of these two Hamiltonians allows one to quickly see that
close-range quantum correlations are incorporated through the “exact” treatment
of the sites inside C in (7.6). However, long-range quantum correlations are missing
in this type of approximation due to the mean-field treatment on the boundaries
of the cluster, i.e. 𝐻B(C) in (7.7). By including more lattice sites into the cluster
one can increase the range of the quantum correlations. One will however quickly
run into the problem of the exponentially growing Hilbert space of such a cluster.
To keep the dimension of the Hilbert space limited only small clusters will be
studied and the importance of short-range quantum correlations will be determined.
Notably, due to the translational invariance and the mean-field treatment on the
boundaries of the cluster, the results one obtains from such a treatment are valid
for an infinitely sized lattice. Additionally, if one constrains the size of the cluster
to only one lattice site, one regains the standard Gutzwiller mean-field approach.

Recently, some interesting proposals to combine existing methods with this
cluster mean-field approach have come forth. For example, one could use the
corner renormalization method to calculate results for larger cluster sizes that
would be unreachable in a brute force matter. This would combine the strength of
the corner method with the ability of the cluster mean-field approach to simulate
infinite size lattice systems.

In Ref. [44] the CMF approach was applied to the dissipative XYZ Heisenberg
model and they found that close-range quantum correlations have a dramatic
impact on the mean-field phase diagram, as shown in Fig. 3.2. A re-entrance
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of the paramagnetic phase was observed as 𝐽𝑦/𝛾 was increased. Furthermore, it
was argued that this re-entrant paramagnetic phase is different in nature from
the paramagentic phase for small 𝐽𝑦/𝛾 . A study of the purity has shown that the
system’s density matrix becomes fully mixed in the limit of high 𝐽𝑦/𝛾 , while for
low 𝐽𝑦/𝛾 it has a purity close to one. Note that this is reminiscent of the entropic
ferromagnet observed in the highly anistotropic regime in our study in chapter 5.
Even though no re-entering paramagnetic phase was observed in this study, the
nature of the ferromagnetic phase also shows different characteristics between the
regimes of low and high 𝐽𝑦/𝛾 .

Interestingly, the drastic change through the inclusion of close-range quantum
correlations is unheard of in equilibrium systems. The difference occurs due to the
ordered (ferromagnetic) steady state finding its origin in a dynamical evolution,
whereas in closed systems in equilibrium the ordering emerges from the properties
of the free energy. This once again emphasizes the intriguing differences between
closed and open systems.

7.2.2 Cluster-Gutzwiller Monte Carlo approach

The (cluster-)Gutzwiller approach can also be applied in a quantum trajectory
formalism. Instead of evolving a factorized density matrix one evolves a factorized
wave function

|𝜓 〉 =
⊗
C
|𝜓C〉. (7.8)

As we have seen in chapter 2, a continuous monitoring of the spin flips that occur
in the system allows for a stochastic simulation of the dynamics of the system.
In between the detection of these quantum jumps the wave function will evolve
according to

|𝜓 (𝑡)〉 =
exp

(
−𝑖𝐻CGMC𝑡

)
|𝜓 〉

| | exp
(
−𝑖𝐻CGMC𝑡

)
|𝜓 〉| |

, (7.9)

with 𝜓 an initial (normalized) wave function. Note that the time evolution
generated by

𝐻𝐶𝐺𝑀𝐶 =
∑︁
C

[
𝐻C + 𝐻B(C) − 𝑖

𝛾

2
∑︁
𝑖∈C

𝜎+𝑖 𝜎
−
𝑖

]
, (7.10)

does not preserve the norm due to the non-Hermitian term that contains the
dissipation rate 𝛾 . When a spin-flip is detected a quantum jump is made in the
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evolution of the wave function

|𝜓 (𝑡)〉 →
𝜎−𝑖 |𝜓 (𝑡)〉
| |𝜎−

𝑖
|𝜓 (𝑡)〉| | , (7.11)

after which the wave function continues evolving according to (7.9). The cluster
mean-field Hamiltonian (7.10) implements the deterministic time evolution in the
manifold of cluster-Gutwiller states according to the time-dependent variational
principle (see appendix D). Since the dissipation is given by a spin-flip on a certain
site, the quantum jump does not cause the wave function to leave this variational
manifold and Eq. (7.11) is readily applicable. Furthermore, due to the factorized
nature of (7.8) one obtains a system of coupled equations for each individual |𝜓C〉
and consequently an expression that governs the time evolution (7.9) for each
cluster, given by

𝜕𝑡 |𝜓C〉 = −𝑖
[
𝐻C + 𝐻B(C) − 𝑖

𝛾

2
∑︁
𝑖∈C

𝜎+𝑖 𝜎
−
𝑖

]
|𝜓C〉. (7.12)

The time evolution can then be determined through a standard numerical differen-
tial equation solver. For the numerical implementation and the determination of
the times at which the quantum jumps take place we refer to appendix A.1.

This approach allows for the inclusion of long-range classical correlations in
the description of the system due to the stochastic nature of the quantum jumps
in the evolution of a single trajectory. With long-range we refer to all correlations
beyond the used cluster size. Due to the stochastic nature however, the system can
no longer be regarded as translationally invariant. The approach thus no longer
allows for results in infinite sized lattices, as was the case for the master equation
treatment in (7.4). One is limited to simulating lattices of finite size. Consequently,
the complexity of the approach scales as 𝑁C𝑁 2

𝑐 , where 𝑁C the number of clusters.
Nonetheless, information on the thermodynamic limit can be extracted through a
finite-size scaling of the obtained results. The inclusion of classcial correlations has
thus come at the cost of the infinite lattice description of the cluster mean-field.

The simplest case of (7.8) is the one with cluster size one, that is a standard
Gutzwiller ansatz of the wave function, which has been studied in Ref. [128]. As
an example to get familiar with this trajectory description we show a trajectory of

118



7.2 - Cluster methods

0 10 20 30 40 50

 t

0

0.2

0.4

0.6

0.8

1

M
x

(a)

0 200 400 600 800 1000

 t

-1

-0.5

0

0.5

1

M
x

(b)

0 200 400 600 800 1000

 t

-1

-0.5

0

0.5

1

M
x

(c)

0 20 40 60 80 100

 t

-0.5

0

0.5

1

M
x

(d)

Figure 7.2: The magnetization in the 𝑥-direction obtained through a
Gutzwiller Monte Carlo approach for a 6× 6 lattice with parameters 𝐽𝑥 = 0.9𝛾
and 𝐽𝑧 = 𝛾 and various values for 𝐽𝑦 : (a) 𝐽𝑦 = 𝛾 , (b) 𝐽𝑦 = 1.2𝛾 , (c) 𝐽𝑦 = 1.8𝛾
and (d) 𝐽𝑦 = 2.5𝛾 . Each trajectory was started in an initial state where all
spins point in the positive 𝑥-direction, except for panel (b) where the red
curve starts in an initial state in the negative 𝑥-direction.
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the 𝑥−magnetisation of a 𝑁 × 𝑁 lattice, that is

𝑀𝑥 =
1
𝑁 2

∑︁
𝑗

〈𝜎𝑥𝑗 〉, (7.13)

with 𝑁 = 6 and for various parameter sets in Fig. 7.2. In Fig. 7.2 (a) one can
see a quick relaxation to a paramagnetic phase as time evolves. Such a result is
expected because of symmetry: due to 𝐽𝑦 = 𝐽𝑧 the unitary dynamics governed by
the Hamiltonian conserves the 𝑥-magnetisation. The continuously occuring spin
flip processes in the negative 𝑧-direction will however cause the 𝑥-magnetisation
to diminish until it is equal to zero. In Fig. 7.2 (b) one can clearly observe the
ferromagnetic phase of which the direction of the spins is determined by their
initial configuration. For this parameter choice, the coupling between the different
spins is able to counteract the spin flips in the negative 𝑧-direction. Fig. 7.2 (c)
shows an example of a transition region where the system jumps between the two
ferromagnetic branches and a paramagnetic phase at relative long timescale. From
this quantum trajectory one can expect a re-entrance of the paramagnetic state
for increased values of 𝐽𝑦. This is exactly what is observed in Fig. 7.2 (d) where
on average the magnetization will be zero.

7.3 Steady-state spin structure factor

In order to investigate the dissipative phase transition between a paramagnetic
and ferromagnetic state, we will consider the steady-state spin structure factor
𝑆𝑥𝑥 (k = 0) as defined in (5.7). We use this correlation function rather than the
spontaneous magnetization itself, because in a finite system, the ℤ2-symmetry does
not spontaneously break and we wish to compare our results with exact solutions.
Alternatively, a (small) magnetic field could be applied to break the symmetry, as
will be discussed in section 7.4. A non-zero value of the steady-state spin structure
factor indicates a region with ferromagnetic correlations. A zero value has a wider
range of possibilities such as a paramagnetic region, an anti-ferromagnetic region
and spin density waves. To distinguish between these regions different values of the
wave vector k have to be studied. We have verified that the zero value coincides
with a paramagnetic phase.

We simulate the dynamics of a trajectory over a minimum total time of 10.000/𝛾
and obtain the steady-state solutions by time averaging over this single trajectory.
Generally, the number of independent points in this time window is of the same

120



7.3 - Steady-state spin structure factor

order as the length of the time window, i.e.: proportional to 10.000. However, at
certain points in the phase diagram, for example near a transition between regions
or at certain cluster sizes, the need to use larger time windows may arise. This is
because the time for two points to become uncorrelated, and thus independent,
may be larger in these cases and the time window thus contains less independent
points. Increasing the time window with a factor 2 to 5 is usually sufficient to
obtain a good accuracy. The results of our numerical simulations are shown in Fig.
7.3, where the spin structure factor was obtained for a 4 × 4 lattice with various
cluster sizes. It is clear that increased incorporation of quantum correlations
present for larger cluster sizes significantly affects the spin correlations.

Both the 1× 2 and 2× 2 clusters show the existence of the ferromagnetic region
and show qualitatively the same behaviour as predicted by the CMF [44] and the
GMC [128]. The clusters however, are able to find a non-zero value for 𝑆𝑥𝑥𝑠𝑠 (0) for
values of 𝐽𝑦 < 0.9𝛾 . This behaviour is not captured by the single-site Gutzwiller
ansatz [128] or the mean-field [42] and thus originates from quantum correlations.
In the GMC [128] the ferromagnetic region becomes smaller with growing system
size and the transition to the paramagnetic region becomes sharper. The inset of
Fig. 7.3 shows that by including clusters of size 1 × 2 and 2 × 2 this behaviour is
captured already for smaller lattice sizes. Increasing the cluster size makes the
sharpening steeper and occur for smaller values of 𝐽𝑦. This shows the importance
of quantum correlations in the simulation of an open quantum system. This
sharpening is what is to be expected when the size of the lattice grows (i.e. when
the thermodynamic limit is approached).

By comparing the results for different cluster sizes with the exact solution of
this lattice we see that for increasing cluster sizes the exact solution is approached
more closely, but differences persist. It has to be noted that short-range quantum
correlations are not enough to accurately approximate the exact solution for the
4 × 4 system. It remains to be seen if this stays true for larger lattices and if
longer-range quantum correlations have to be taken into account as well.

As mentioned earlier, for values of the parameter 𝐽𝑦 smaller than 0.9𝛾 we find
an unexpected buildup of spin-spin correlations. Where the mean-field theory
predicts an all-zero steady-state spin structure factor we find a non-zero value by
including clusters. This non-zero value is most pronounced in the exact solution.
This behaviour is completely neglected by the classical mean-field theory and
thus entirely driven by quantum fluctuations. The question remains whether a
phase transition is present or not. It is however clear that short-range quantum
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Figure 7.3: (Color online) Steady-state spin structure factor of a 4 × 4
lattice with 1 × 1 clusters (first top right line), 1 × 2 clusters (second top
right line) and 2 × 2 clusters (third top right line) for the CGMC (stars)
and the CMF (full lines). The dash-dotted line is the exact solution of the
4 × 4 lattice obtained by using quantum trajectories for the time evolution
of the full Hilbert space. Note that the 1 × 1 CMF is the usual mean-field
result. The CGMC qualitatively predicts the same ferromagnetic and two
paramagnetic regions as the CMF [44]. Additionally we observe the possible
existence of a phase transition completely missed by mean-field theory for
values of 𝐽𝑦 < 0.9𝛾 .
Inset: steady-state spin structure factor of a 4 × 4 (first top right line), 6 × 6
(second top right line), 8 × 8 (third top right line) and 10 × 10 (fourth top
right line) lattice with clusters of size 1 × 2 (dashed lines) and 2 × 2 (full
lines) for the CGMC. Increasing the lattice size shows a sharpening of the
transition, also found with the GMC [128]. This sharpening is steeper when
larger cluster sizes are included.
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correlations do not capture the exact behaviour for small lattices and long-range
correlations have to be included for a more accurate description.

A comparison with the CMF used in Ref. [44] can show us the importance of
spatial correlations between the clusters, as they are not captured by the CMF. Fig.
7.3 shows the steady-state spin structure factor for several cluster sizes on a 4 × 4
lattice. The exact solution is found using the quantum trajectory approach. We
notice two distinct areas, again for 𝐽𝑦 < 0.9𝛾 and 𝐽𝑦 > 0.9𝛾 (we will resp. call them
the left-hand and right-hand side). On the left-hand side both the CMF and the
CGMC match closely, giving a strong indication that only quantum correlations
are important in this regime. On the right-hand side of the figure however, the
CMF and CGMC match only qualitatively, in this regime both quantum and
classical spatial correlations contribute. This confirms the difference between the
buildup of order on the left and right-hand sides respectively.

In one dimension (1D) we can take clusters with larger linear size. In the
top panel of Fig. 7.4 we look at a 1 × 12 lattice for which we can go up to 1 × 6
clusters. As was the case for the two-dimensional lattice, the exact solution was
obtained using the quantum trajectory approach. We find that the behaviour
of the steady-state spin structure factor is qualitatively captured by the cluster
approach both in the left and right region for 1 × 6 clusters. It has to be noted
that the system has no phase transition in the thermodynamic limit in 1D, which
has been shown by using a matrix product operator ansatz for the density matrix
[44]. The behavior of the spin structure factor for finite size systems does however
give insight in the importance of the longer-range quantum correlations to describe
the exact dynamics of the open quantum system. As one can see in Fig. 7.4,
decreasing the size of the clusters results in a steady-state spin structure factor
that differs strongly from the exact value, even negative values are found for values
of 𝐽𝑦 > 𝛾 where they should be positive. For values of 𝐽𝑦 < 𝛾 the influence of
increasing the cluster size can be clearly observed. By including longer-range
quantum correlations the exact behaviour is matched more closely. For 1 × 2
clusters we find the same linear behaviour for the steady-state spin structure factor
as found in the two dimensional case. By increasing the cluster size we can see
a clear convergence to the same behaviour as the exact solution. Short-range
quantum correlations are as such not sufficient for the description of the system
and longer-range quantum correlations play an important role.
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Figure 7.4: (Color online) Steady-state spin structure factor of a 1 × 12
lattice with different cluster sizes using the CGMC (stars) and the CMF (full
lines). The dash-dotted line is the exact solution of the 1×12 lattice obtained
by using quantum trajectories for the time evolution of the full Hilbert space.
The figure shows that through inclusion of longer-range quantum correlations,
by increasing the cluster size, the exact behaviour is approached more closely
for 𝐽𝑦 < 𝛾 , we observe a convergence from the result with 1 × 2 clusters
(bottom star line) up to the result with 1 × 6 clusters (top star line) to the
exact result. Increasing the cluster size for values of 𝐽𝑦 > 𝛾 does not show a
clear convergence pattern to the exact solution. The results for 1 × 6 clusters
do however match the exact result most closely. These findings, both for
𝐽𝑦 < 𝛾 and 𝐽𝑦 > 𝛾 , indicate short-range quantum correlations are not sufficient
for the description of the system.
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To gain a better understanding of the ferromagnetic region missed by mean-field
theory we show the steady-state spin structure factor for the exact solution of a
2 × 2, 3 × 3 and 4 × 4 lattice on the top panel of Fig. 7.5. The solution of the 2 × 2
and 3 × 3 was found by solving the master equation and the 4 × 4 solution was
obtained with the trajectory approach. As can be seen from this figure, and as
is expected for finite size systems, the region where the phase transition occurs
is smoothed out and one could suspect that there is only a continuous change
of the order parameter rather than an actual phase transition. In the parameter
region 𝐽𝑦/𝛾 ∈]0.9, 1[ however the spin structure factor does decrease when the
lattice size is increased (Note that the steady-state spin structure factor is always
zero for the values 𝐽𝑦 = 𝐽𝑥 and 𝐽𝑦 = 𝐽𝑧 due to the unitary dynamics conserving
respectively the magnetization in the z-direction and x-direction [44]). In order to
check for the convergence as a function of increasing system size, we show in the
bottom panel of Fig. 7.5 the behavior as a function of the system size, together
with a fit to the power law dependence 𝑆𝑥𝑥𝑠𝑠 (0, 𝐿) = 𝑎𝐿𝑏 , where 𝐿 is the number of
points along one dimension of the 𝐿 × 𝐿 lattice. In all cases, we find a negative
exponent 𝑏, which is compatible with a vanishing of the spin structure factor in
the thermodynamic limit. For 𝐽𝑦 = 0.95𝛾 (in the middle of the interval), we find
𝑏 ≈ −2.1, close to the value 𝑏 = −2, that is expected for a two-dimensional system
with a finite correlation length.

7.4 An external magnetic field

The ℤ2-symmetry can be explicitly broken by applying a small magnetic field. In
this section we will study the behaviour of the magnetization of the system as a
function of the applied field in the 𝑥-direction and 𝑦-direction. An applied field
®ℎ = ℎ𝑥 ®𝑒𝑥 + ℎ𝑦®𝑒𝑦 translates in adding a term 𝐻𝐵 to the Hamiltonian 𝐻 from (7.1)

𝐻𝐵 = ℎ
∑︁
𝑖

(
cos(𝜃 )𝜎 (𝑥)

𝑖
+ sin(𝜃 )𝜎 (𝑦)

𝑖

)
. (7.14)

In Fig. 7.6 the magnetization in the 𝑦-direction is shown for a 4 × 4 lattice
with 1 × 2 and 2 × 2 clusters as a function of ℎ𝑦 (ℎ𝑥 = 0) in the CMF. From the
theory of closed quantum systems one would expect the magnetization to tend to
±1 for large ℎ. This however is not the case as can be seen in the figure, both the
𝑥 and 𝑦 magnetization go to zero when the field is increased. To obtain a closer
understanding of this behaviour we note that it is also present in the mean-field
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Figure 7.5: (Color online) Top panel: the exact solution for the steady-
state spin structure factor of a 2 × 2, 3 × 3 and 4 × 4 lattice. To exclude the
possibility of the presence of a continuous variation of the order parameter
rather than a phase transition driven by quantum correlations, we study
if the steady-state spin structure factor in the region 𝐽𝑦 ∈] 𝐽𝑥 , 𝐽𝑧 [=]0.9𝛾,𝛾 [
converges to zero in the thermodynamic limit. The solution of the 2 × 2 and
3 × 3 was found by solving the master equation and the 4 × 4 solution was
obtained with the trajectory approach.
Bottom panel: The behaviour of the steady-state spin structure factor through
a fit as a function of lattice size from the known points of the 2× 2, 3× 3 and
4 × 4 lattice for several values of 𝐽𝑦 ∈] 𝐽𝑥 , 𝐽𝑧 [: 𝐽𝑦 = 0.92𝛾 (top line), 𝐽𝑦 = 0.95𝛾
(bottom line) and 𝐽𝑦 = 0.98𝛾 (middle line). The fit of a power law of the form
𝑆𝑥𝑥𝑠𝑠 (0, 𝐿) = 𝑎𝐿𝑏 for 𝐿 × 𝐿 lattices returns high 𝑅2-values and converges to zero
in the thermodynamic limit.
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Figure 7.6: (Color online) Magnetization in the y-direction as function
of an applied magnetic field in the y-direction for 1 × 2 (dashed red line)
and 2 × 2 (dash-dotted blue line) clusters in the CMF and the approximated
mean-field solution (full purple line) which is valid in the limit of large ℎ𝑦
for 𝐽𝑦 = 0.25𝛾 .
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approximation, for which we can find analytic expressions. These expressions will
enable us to shed light on this behaviour.
The system of mean-field equations in the steady-state can be written as



− 𝛾2𝑀𝑥 + 2𝑑 (𝐽𝑦 − 𝐽𝑧)𝑀𝑦𝑀𝑧 + 2ℎ𝑦𝑀𝑧 = 0,

− 𝛾2𝑀𝑦 + 2𝑑 (𝐽𝑧 − 𝐽𝑥 )𝑀𝑥𝑀𝑧 − 2ℎ𝑥𝑀𝑧 = 0,

− 𝛾 (𝑀𝑧 + 1) + 2𝑑 (𝐽𝑥 − 𝐽𝑦)𝑀𝑥𝑀𝑦

+ 2(ℎ𝑥𝑀𝑦 − ℎ𝑦𝑀𝑥 ) = 0,

(7.15)

with 𝑑 the dimensionality, 𝛾 the dissipation rate and 𝑀𝑥 , 𝑀𝑦 and 𝑀𝑧 resp. the
magnetization in the 𝑥 , 𝑦 and 𝑧 direction. We look at the case where ℎ𝑦 ≠ 0 and
ℎ𝑥 = 0 (the reverse situation is analogue). With these parameters one can rewrite
the system of equations as an expression for 𝑀𝑥 and 𝑀𝑦 in terms of 𝑀𝑧

𝑀𝑥 =
1
𝛾

4ℎ𝑦𝑀𝑧

1 − 16𝑑2

𝛾2
(
𝐽𝑦 − 𝐽𝑧

)
(𝐽𝑧 − 𝐽𝑥 )𝑀2

𝑧

, (7.16)

𝑀𝑦 =
4𝑑
𝛾
(𝐽𝑧 − 𝐽𝑥 )𝑀𝑥𝑀𝑧, (7.17)

and an equation for 𝑀𝑧 of which the solution remains to be found by substituting
the above solutions for 𝑀𝑥 and 𝑀𝑦 into the last equation in (7.15). This equation
has no analytic solution and has to be solved numerically. We can however use the
knowledge that 𝑀𝑧 → 0 as ℎ𝑦 →∞. A more close study shows that for a growing
field ℎ𝑦, ℎ𝑦𝑀𝑧 → 0. With these conditions we can approximate the third equation
of (7.15) to first order in 𝑀𝑧 . We then find for large ℎ𝑦

𝑀𝑧 = −
1
8
𝛾2

ℎ2
𝑦

. (7.18)

This relation shows that 𝑀𝑥 and 𝑀𝑦 go to zero for big applied fields, rather than ±1.
This is shown in Fig. 7.6 as the magenta line. Unlike in thermal equilibrium, the
magnetization goes to zero for large magnetic field. The reason is that in the limit
|ℎ𝑦 | → ∞, the Zeeman term dominates the Hamiltonian, so that the eigenstates
are simply the eigenstates of 𝜎𝑦. The dissipation being in the orthogonal direction
does not drive the system to the ground state, but rather destroys the coherence
between the eigenstates. The resulting steady state is then the unit matrix, from
which the zero magnetization follows.
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For the special case of 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 (𝛾 = 1) the system of mean-field equations
is analytically solvable without any approximations:

𝑀𝑥 = −
ℎ𝑦

1
4 + 2

(
ℎ2
𝑥 + ℎ2

𝑦

) ,
𝑀𝑦 =

ℎ𝑥
1
4 + 2

(
ℎ2
𝑥 + ℎ2

𝑦

) ,
𝑀𝑧 = −

1
1 + 8

(
ℎ2
𝑥 + ℎ2

𝑦

) .
(7.19)

This is in agreement with the above result and is also true for small ℎ𝑥 and ℎ𝑦.
We can conclude that a large magnetic field will cause the system to have no
magnetization at all.

Note the difference in sign between 𝑀𝑥 and 𝑀𝑦 in this special case. This sign
difference implicates that we cannot interchange 𝑥 and 𝑦 without introducing a
sign change. At first sight this might appear confusing because of the identical
parameters 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧. Only the 𝑧-direction is fixed by the dissipation and so
there appears to be no clear reason for a distinction between 𝑥 and 𝑦. A closer look
shows that one cannot interchange 𝑥 and 𝑦 because this changes the handedness of
our coordinate system. This is reflected in the commutation relations of the Pauli
matrices requiring that

[
𝜎 (𝑎) , 𝜎 (𝑏)

]
= 2𝑖𝜖𝑎𝑏𝑐𝜎 (𝑐) . To interchange 𝑥 → 𝑦 one could do

𝜎 (𝑥) → 𝜎 (𝑥) and 𝜎 (𝑦) → −𝜎 (𝑦) . This would however result in 𝜎 (𝑧) → −𝜎 (𝑧) in order
to satisfy the Pauli commutation relations. So 𝑥 and 𝑦 cannot be interchanged
without changing the sign of 𝑧. This also results in the same coordinate system
and thus no interchange was made in the end. As such there is no symmetry to
transform 𝑥 into 𝑦 explaining why a sign difference can be present.

7.5 Angular averaged susceptibility

A divergence in the susceptibility indicates the existence of a phase transition. To
calculate the susceptibility we use the scheme presented in [104] and as introduced
in Sec. 5.4.4.

When we calculate the susceptibility tensor for different cluster and lattice sizes
we find that 𝜒𝑥𝑦 ≠ 𝜒𝑦𝑥 . This is strikingly different from the case of closed systems,
where the susceptibility is found from the free energy 𝐹 , 𝜒𝑥𝑦 = 𝜕2𝐹

𝜕ℎ𝑥 𝜕ℎ𝑦
= 𝜕2𝐹

𝜕ℎ𝑦𝜕ℎ𝑥
= 𝜒𝑦𝑥 .

We find this result even in the mean-field approximation. If we take the parameter
values 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 we find that 𝜒𝑥𝑦 = −𝜒𝑦𝑥 from (7.19). Numerical results show
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Figure 7.7: (Color online) Exact solution of the magnetization (blue stars)
of the system 𝑀𝑥 in the 𝑥-direction (left panel) and 𝑀𝑦 in the 𝑦-direction
(right panel) under influence of a small magnetic field in respectively the
𝑦 and 𝑥 direction for a 3 × 3 lattice at coupling strength 𝐽𝑦 = 1.25𝛾 . This
result is obtained through solving the master equation. The magnetization as
function of the applied field is given by a linear function (red line), this means
that 𝜒𝛼𝛽 is given by the slope of this linear function because of (5.16). As is
clear from both panels, 𝜒𝑥𝑦 and 𝜒𝑦𝑥 have different signs and furthermore we
find that |𝜒𝑥𝑦 | ≠ |𝜒𝑦𝑥 |.
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Figure 7.8: (Color online) Exact solution of the average angular suscepti-
bility (blue, two bottom lines) and steady-state spin structure factor (red,
two top lines) of a 2x2 (full line) and 3x3 (dashed line) lattice as a function
of 𝐽𝑦, obtained through solving the master equation. Both solutions show
a ’shoulder’ for 𝐽𝑦 < 0.9𝛾 . This shoulder could be a second peak in the
susceptibility, masked by the higher peak on the right, suggesting a phase
transition. The position of this peak corresponds to the non-zero region in
the steady-state spin structure factor.

that for general coupling parameters the magnitudes differ and in general we
find |𝜒𝑥𝑦 | ≠ |𝜒𝑦𝑥 | and reciprocity is broken. This is shown in Fig. 7.7 by solving
the master equation with an applied field for a 3 × 3 lattice at coupling strength
𝐽𝑦 = 1.25𝛾 . In closed quantum systems the existence of the free energy and the
ability to interchange the partial derivatives imposes a symmetry on the system
that need not be explicitly present in the system (e.g. a system where 𝐽𝑥 ≠ 𝐽𝑦 ≠ 𝐽𝑧).
This result shows that the lack of a free energy in open quantum systems means
no such symmetry is imposed.
Continuing our study of the phase diagram for the two-dimensional lattices we

have two regions of interest. The earlier mentioned right-hand region, studied in
[42, 44, 128], and secondly the left-hand region, discussed in section 7.3. In Fig. 7.8
the exact solution of the susceptibility for a 2 × 2 and 3 × 3 lattice is shown. They
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were found by solving the master equation. Larger lattices are computationally
not feasible and a more sophisticated method would have to be used, such as
the Corner Space method [104], where the right-hand region of the susceptibility
has been studied. The presence of a peak in the susceptibility could indicate a
phase transition. Note the ‘shoulder’ which is present on the left side. This could
indicate the presence of a second peak, partially masked by the higher peak on the
right-hand side. These two peaks move away from each other when the lattice size
is increased. The peak on the left however is not sharp and it remains to be seen
whether it diverges for larger lattice sizes and whether a true phase transition is
present. It should be noted that the positions of the shoulder do coincide with
a sharp decrease of the steady-state spin structure factor. These findings show
the possible presence of a phase transition which is completely missed when the
quantum correlations are neglected. We also wish to remark that the study of the
all-to-all connected model in chapter 5 does not show signs of such a transition.
There, the ferromagnetic order (slowly) dissapears as the system size is increased,
leading to a paramagnetic phase as predicted by mean-field theory. A study with
bigger system sizes in two dimensions is thus needed to formulate a conclusive
argument for its (non)existence.

7.6 Conclusions

We studied the dissipative XYZ Heisenberg model with the cluster-Gutzwiller
Monte Carlo approach. This method allows for the inclusion of short-range
quantum correlations as well as classical spatial correlations. Calculation of the
steady-state spin structure factor shows the appearance of a ferromagnetic region
and two paramagnetic regions also found in Ref. [44] and Ref. [128]. We show
the possible existence of another ferromagnetic phase which is completely missed
when quantum correlations are neglected. A calculation of the susceptibility tensor
shows how reciprocity is broken, a feature not observed in closed quantum sys-
tems. Moreover, increasing the magnetic field suppresses the magnetization, this
is also in contrast with closed quantum systems. We show that the inclusion of
short-range quantum correlations causes the sharpening of the crossover between
the ferromagnetic and paramagnetic region to occur for smaller lattice sizes. Even
though short-range quantum correlations have a big impact on the phase diagram
of the system it has to be noted that they only qualitatively match the exact results
and long-range quantum correlations play an important role in the dynamics of
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the system.

The results of this chapter were published in Ref. [1].
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CHAPTER 8
Dynamical hysteresis properties of the

driven-dissipative Bose-Hubbard
model with a Gutzwiller Monte Carlo

approach

In this chapter we will apply the (cluster-)Gutzwiller approach introduced in
Sec. 7.2.2 to the driven-dissipative Bose-Hubbard model. We are specifically
interested in the hystertic region predicted by a Gutzwiller mean-field treatment of
the model [87] as can be seen in Fig. 3.4. The approach will allow us to go beyond
the Gutzwiller approach for the density matrix, because the classical correlations
in the system can be captured. It is intuitive that these classical correlations are
important in the bistability region, because due to tunneling most of the time the
cavities are all together in the low or the high particle number state. In finite
systems, it is known that the bistability is destroyed by switching between the
low and high photon number branches, which results in a smooth average photon
number as function of pumping intensity. In the thermodynamic limit however,
the switching time is expected to tend to infinity and true bistability to emerge.
In order to access the steady-state predictions in the thermodynamic limit and
for long times, we follow Ref. [82] and study the dynamical hysteresis and more
specifically its scaling as a function of system size and sweeping velocity. We
perform a study of the dynamical hysteresis, which includes its properties in the
steady-state limit and a study of the compressibility and the correlation functions.
Thereafter, we discuss the validity of a mapping of the driven-dissipative Bose
Hubbard model onto a single cavity.
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8.1 The Cluster-Gutzwiller Monte Carlo time evolu-
tion

The model Hamiltonian of the Bose-Hubbard model with nearest-neighbour hop-
ping and a local Kerr non-linearity is given by (3.11). Dissipation is included
through local (single) photon emissions, leading to a Lindblad master equation
given by (3.12). The continuous measurement of these photon emissions once again
allow us to treat the system with the (cluster)-Gutzwiller Monte Carlo approach.
In between the detection of these quantum jumps the wave function will evolve
according to

|𝜓 (𝑡)〉 =
exp

(
−𝑖𝐻CGMC𝑡

)
|𝜓 〉

| | exp
(
−𝑖𝐻CGMC𝑡

)
|𝜓 〉| |

, (8.1)

with 𝜓 an initial (normalized) wave function. Note that the time evolution
generated by

𝐻CGMC =
∑︁
C

[
𝐻C + 𝐻B(C) − 𝑖

𝛾

2
∑︁
𝑖∈C

𝑎
†
𝑖
𝑎𝑖

]
, (8.2)

does not preserve the norm. In (8.2), 𝐻C contains all local terms as well as the
hopping terms with links inside the cluster C

𝐻C =
∑︁
𝑖∈C

(
−Δ𝑎†

𝑖
𝑎𝑖 +

𝑈

2 𝑎
†
𝑖
𝑎
†
𝑖
𝑎𝑖𝑎𝑖 + 𝐹

(
𝑎𝑖 + 𝑎†𝑖

))
− 𝐽
𝑧

∑︁
〈𝑖, 𝑗 〉 |𝑖, 𝑗 ∈C

(
𝑎
†
𝑖
𝑎 𝑗 + 𝑎†𝑗𝑎𝑖

)
, (8.3)

and 𝐻B(C) contains the mean-field contributions of the nearest-neighbour links
across the boundary B of the cluster C, that is

𝐻B(C) = −
𝐽

𝑧

∑︁
〈𝑖, 𝑗 〉 |𝑖∈C, 𝑗∉C

(
𝑎
†
𝑖
〈𝑎 𝑗 〉 + 𝑎𝑖 〈𝑎†𝑗 〉

)
. (8.4)

When an emitted photon is detected a quantum jump is made in the evolution of
the wave function

|𝜓 (𝑡)〉 → 𝑎𝑖 |𝜓 (𝑡)〉
| |𝑎𝑖 |𝜓 (𝑡)〉| |

, (8.5)

after which the wave function continues evolving according to (8.1). This again
corresponds to a system of coupled equations for the time evolution of each |𝜓C〉,
similar to (7.12).
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Figure 8.1: (color online) Example of a bistable region in the driven-
dissipative Bose-Hubbard model. There exist two stable branches and one
unstable branch, which are the stable and unstable solutions of the mean-
field approximation, shown as the blue line. The blue arrows indicates
where the system undergoes a first-order phase transition in the steady-state
limit, depending on which branch it was on. The two blue arrows mark
the boundaries of the bistable regime. The light blue arrow indicates that
deviations away from the stable solutions will quickly evolve back to these
stable solutions. The dashed light green line shows the dynamical hysteresis
curve for a finite sweeping velocity, the dashed dark green line shows the
dynamical hysteresis curve for a sweeping velocity which was decreased with
respect to the one of the light green dashed line. Similarly, the dashed orange
lines show the dynamical hysteresis curves when fluctuations are taken into
account, i.e. beyond mean-field, and switching between the branches is
possible.
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8.1.1 Bistabile regime and its dynamical properties

The mean-field equation of the driven-dissipative Bose Hubbard model, consisting
of using a Gutzwiller factorized ansatz for the density matrix to solve the master
equation, predicts bistable behaviour for certain parameter regimes [87]. The
bistable region is a region where the system has two stable states and one unstable
state, as shown by the blue line on Fig. 8.1. Deviations from these stable states
quickly cause the system to evolve back to one of these two stable solutions. As
such, when the system resides on one of the two stable branches it also stays on
this branch. Say the system resides on the bottom stable branch of Fig. 8.1 and
the pumping strength is increased across the right boundary of the bistable regime,
then the system only has one stable solution, being the top branch, instead of two.
The system switches to this new state through a jump, marking a first-order phase
transition. If one then decreases the pumping strength the system does not jump
back to the lower branch but instead stays on the stable top branch. That is, until
the pumping strength crosses the left boundary of the bistable regime and jumps
back to the lower stable branch, again marking a first-order phase transition. This
is called hysteresis and is characteristic for a first order phase transition.

The above is true for an infinitely slow sweep of the pumping strength, which
gives information on the steady-state properties. However, instead of using an
infinitely slow sweeping velocity to study the steady-state properties one can also
study dynamical properties by resorting to a finite sweeping velocity. The faster
one sweeps, the less time the system has to adapt to the new pumping strength.
This allows the system to reside longer on its previously stable branch before it
jumps to its new stable branch. This behaviour is shown on Fig. 8.1 where the
dashed dark green line shows the behaviour for a finite sweeping velocity. The
dashed light green line shows what is expected to happen when one increases the
sweeping velocity with respect to the one of the dashed dark green line.

Another effect is observed when one allows fluctuations in the system. When
these fluctuations are large enough it becomes possible for the system to jump to
the other stable branch. As shown on Fig. 8.1 this happens most easily close to
the boundaries of the hysteresis curve, since small fluctuations can already drive
the system’s state into a region where it quickly converges to the other stable
state. This behavior is shown as the dashed dark and light orange lines, where
the sweeping velocity is faster in the latter one. When the sweeping velocity
decreases the system is able to jump to the top (bottom) branch for lower (larger)
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values of the pumping strength since the system has a longer time to switch
between the stable states. This naturally decreases the hysteretic region [82]. The
influence of fluctuations then leads to the disappearance of the hysteretic region
in the long-time limit in finite-size systems. Only in the thermodynamic limit it is
possible for the hysteretic region to survive. This follows from the fact that as the
system gets bigger, it becomes harder for fluctuations to make the entire system
switch to the other branch.

Both the green and orange dashed lines show dynamical hysteresis curves. By
studying them we gain information on the dynamical properties of the system. It
is worth noting that it is hard to determine the dynamical hysteresis region, i.e.
the pumping strength interval in which the system shows hysteretic behaviour. To
avoid the usage of arbitrary definitions we study the hystertic surface defined as
[82]

𝑆ℎ =

∫ 𝐹𝑒𝑛𝑑

𝐹𝑠𝑡𝑎𝑟𝑡

(
𝑛↑(𝐹 ) − 𝑛↓(𝐹 )

)
𝑑𝐹, (8.6)

which is the surface between the top (𝑛↑) and bottom (𝑛↓) branch of the hystertic
curve of the single cavity particle number 〈𝑛〉 = 1

𝑁
〈∑𝑖 𝑎

†
𝑖
𝑎𝑖〉, with 𝑁 the number

of cavities in the lattice. 𝐹𝑠𝑡𝑎𝑟𝑡 and 𝐹𝑒𝑛𝑑 are chosen in such a way that the entire
hystertic surface is enclosed.

The behaviour described above can also be found in the well studied and
exactly solvable single cavity [149] in the thermodynamic limit where the photon
number tends to infinity while the nonlinearity simultaneously tends to zero. The
thermodynamic limit is important here, because otherwise quantum fluctuations
cause switching between the two branches, washing out the hysteretic behavior. In
the Gutzwiller mean-field solution of the Bose-Hubbard model, the thermodynamic
limit is implicit because the equations of motion remain unaltered when the
number of sites is increased, hence true bistable behavior is always present in
this approximation. When classical and quantum fluctuations are included in the
description of a finite-size driven-dissipative Bose-Hubbard model, this system can
also switch between both branches. Incorporating them through the trajectory
method and the cluster-Gutzwiller wave function ansatz is therefore expected to
give drastic changes in the hysteretic surface, especially in the region where the
transitions are expected to happen.
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8.2 Dynamical hysteresis

In order to quantify the role of fluctuations in the driven-dissipative Bose-Hubbard
model, we start by analyzing the dynamical hysteresis surface. If it tends to a zero
value in the limit where the sweep time goes to infinity and in the thermodynamic
limit of infinite system size, the system has no hysteretic phase transition. If on
the other hand, the hysteretic surface tends to a nonzero value when sweeping
slower and slower, even when the system size diverges, the system has a true
hysteretic phase transition. In other words, in the thermodynamic limit and for
the sweeping velocity tending to zero there are two possibilities: (i) the hysteresis
surface disappears, resulting in a single curve which is the long-time limit average
between both stable branches, i.e. there is one steady-state solution and (ii) the
hysteresis surface converges to a finite value, meaning that when the system resides
on one of both branches it will never jump to the other one, i.e. there exist two
steady-state solutions.

In the following we perform a linear sweep in pumping strength, that is

𝐹 (𝑡) = (𝐹𝑠𝑡𝑎𝑟𝑡 + 𝑣𝑠𝑡) 𝜃
(
𝑡 <

𝑡𝑠

2

)
+

(
𝐹𝑒𝑛𝑑 − 𝑣𝑠

(
𝑡 − 𝑡𝑠2

))
𝜃

(
𝑡 ≥ 𝑡𝑠2

)
,

(8.7)

with 𝑡𝑠 the total sweep time and 𝑣𝑠 = 2(𝐹𝑒𝑛𝑑−𝐹𝑠𝑡𝑎𝑟𝑡 )
𝑡𝑠

the sweep velocity. Throughout
this chapter we work in the following parameter regime, unless specified otherwise:
the relation between the Kerr non-linearity and dissipation rate is chosen as 𝑈

𝛾
= 20

and the laser frequency is tuned to the 4-photon resonance 1+ 2Δ
𝑈

= 4. The coupling
parameter is 𝐽

𝑈
= 0.5. In each lattice we impose periodic boundary conditions.

Note that in this parameter region a hysteretic region is predicted in the mean-field
approximation [87]. The hysteresis surface will be calculated over 𝐹/𝑈 rather than
𝐹 and the initial state of the system for each trajectory is given by a lattice of
unoccupied cavities.

On Fig. 8.2 (a) we show hysteretic curves of the average single cavity particle
number 〈𝑛〉 for various system sizes with an inverse sweeping velocity of 𝑣−1

𝑠 𝛾2 = 25.
As the system size increases, so does the surface of the hysteresis curves. This
coincides with the expectations from the previous section. Interestingly, it appears
that the system does not converge to the mean-field hysteretic surface in the
thermodynamic limit. This appears to be due to a large importance of fluctuations
on the left side of the bistable region, where a big difference is present for the

140



8.2 - Dynamical hysteresis

0

1

2
〈n̂
〉

(a) v−1
s γ2 = 25

0.1 0.2 0.3 0.4
F/U

0

1

2

〈n̂
〉

(b) 8× 8

4× 4

5× 5

6× 6

8× 8

10× 10

MF

v−1
s γ2 = 5

v−1
s γ2 = 25

v−1
s γ2 = 50

v−1
s γ2 = 100

v−1
s γ2 = 200

Figure 8.2: (Color online) (a) Hysteresis curves of the single cavity particle
number 〈𝑛〉 for various system sizes (dashed lines) at sweeping velocity
𝑣−1
𝑠 𝛾2 = 25 and the mean-field (MF) result (full black line) (and 𝑁𝑡𝑟𝑁 ≈

10000, with 𝑁𝑡𝑟 the number of trajectories, and the cavity Hilbert size cutoff
𝑁𝑀𝑎𝑥 = 7). (b) Hysteresis curves of the single cavity particle number 〈𝑛〉 for
various sweeping velocities for an 8 × 8 lattice of cavities (and 𝑁𝑡𝑟𝑁 ≈ 10000,
𝑁𝑀𝑎𝑥 = 7).

transition from the top branch to the bottom branch with respect to the mean-field
prediction. All values for the particle number, not including the ones near the
transitions, are however in good agreement with the mean-field results.

On Fig. 8.2 (b) the hysteretic surface of a 8 × 8 lattice of cavities is shown
for various sweeping velocities. As the sweeping velocities are decreased, i.e. the
sweeping time is increased, the hysteretic surface decreases. This is according to
the discussion in section 8.1.1.

For the example of the 8 × 8 lattice of cavities the hysteretic surface is still
shrinking as the sweeping velocities are decreased. This continued decrease not
only causes the system to move even further away from the mean-field hysteresis
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surface but also questions whether it will converge to a finite value (ii) or not (i).
We perform a more detailed study of the long-time limit in the following section
in combination with a finite-size scaling in order to approach the thermodynamic
limit. However, it has to be noted that the previous results give a first indication
that through the inclusion of classical correlations the mean-field phase diagram
will be qualitatively correct but quantitative differences are expected in the regions
where these correlations and fluctuations become increasingly important, i.e. near
the phase transition.

8.2.1 Steady-state and thermodynamic limit

Besides studying the long-time limit, i.e. the steady-state, we are also interested
in the system’s behaviour in the thermodynamic limit. Indeed, phase transitions
are only well-defined in the thermodynamic limit and if we wish to compare our
results to the steady-state mean-field phase diagram found in Ref. [87] we need
to perform a finite-size scaling to gain access to this infinite-cavity limit. In Fig.
8.3 (a) we show the behaviour of the hysteretic surface of various 2D square
lattices as a function of the sweeping velocities for a Gutzwiller ansatz of the wave
function, i.e. cluster size one (full lines with circle markers), and a cluster wave
function with clusters of size 1×2 (full lines with cross markers) with respect to the
mean-field result (full black line), at 𝐽/𝑈 = 0.5. Note again that as the sweeping
velocity is decreased the size of the hysteresis surface increasingly deviates from
the mean-field result. Even as the thermodynamic limit is approached this is not
expected to converge, since the results of the 6 × 6 and 8 × 8 lattices are already
practically identical.

By performing a power law fit of the form 𝑆ℎ = 𝛽 (𝑣−1
𝑠 )−𝛼 , we can now determine

the behaviour in the long-time limit and thus determine whether the hysteretic
surface disappears due to the presence of classical (and quantum) fluctuations.
For the observed parameter regime and finite system sizes the extrapolation of
the hysteretic surface disappears in the limit of infinite sweeping time. However,
it is worth noting that by increasing the system size the exponent of the power
law decreases. The question then remains whether the exponent of this power law
remains finite in the thermodynamic limit. If it were to become zero we can expect
a finite hysteresis surface, i.e. there exists a parameter region where the system
shows bistable behaviour in the long-time thermodynamic limit. The scaling of
this exponent in the limit of infinite system size is shown as the dashed line with
circle markers in Fig. 8.3 (c) . For the observed parameter regime we indeed see a
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convergence to a non-zero exponent and thus marking the disappearance of the
hysteretic region under the influence of classical fluctuations.

Furthermore, if we include short-range quantum correlations in the form of
1 × 2 clusters, on top of the classical correlations and on-site quantum correlations
this behaviour becomes even more pronounced. This can easily be seen on Fig.
8.3 (a) where we show the hysteretic surface for 1 × 2 clusters on a 4 × 4 and
8 × 8 lattice (full lines with cross markers). The inclusion of these short-range
quantum correlations causes a further decrease of the hysteresis surface. Moreover,
as shown on Fig. 8.3 (c) there is also an increase in the magnitude of the exponent,
signalling a faster convergence to a zero hysteretic surface in the thermodynamic
limit. It is worth noting that the hysteresis surface exhibits a slow convergence
to the power law in the long-time limit, i.e. one needs to simulate trajectories
over a long time to obtain the asymptotic behavior. This could lead to (small)
corrections on the power law exponents derived here. Additionally, we point out
that the curves of the hysteresis surface display two power laws, the one studied in
the long-time limit on Fig. 8.3 (c), but also the one in the short-time limit. The
former is linked to the influence of fluctuations on the system, the latter is linked
to the mean field response of the system to the changing pumping strength. Such
double power law behavior is also found in experimental and theoretical studies of
the single-cavity Bose Hubbard model [82, 116, 218].

Our results are in contrast with the mean-field phase diagram from Ref. [87]
where a hysteretic region is predicted at 𝐽/𝑈 = 0.5. Fig. 8.3 indicates that the
critical point in the hopping amplitude, where the system switches from a smooth
crossover to a hysteretic crossover as the pumping strength is increased, shifts to
higher values of 𝐽/𝑈 . This shift is expected to be larger as (longer-range) quantum
correlations are included. To investigate more closely the (non)dissapearance of the
hysteresis surface as a function of 𝐽/𝑈 we show Fig. 8.3 (b) where we calculated
the hysteretic surface as a function of the sweeping velocity for various system
sizes for 𝐽/𝑈 = 2, i.e. roughly an order of magnitude larger than the critical point
in the mean-field study (where 𝐽𝑐/𝑈 ≈ 0, 18). We indeed see a decrease in steepness
of the power law fits and the dashed line with triangle markers on Fig. 8.3 (c)
show us that by increasing 𝐽/𝑈 the exponent has decreased and is approaching
zero. From this result we argue that a new (and larger) critical point 𝐽𝑐/𝑈 exists
where this exponent becomes equal to zero and thus predicts a hysteretic regime.
However, a closer study of the region around 𝐽𝑐/𝑈 would be needed to pinpoint the
exact location of the onset of the hysteretic regime and the nature of the critical
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Figure 8.3: (Color online) (a) [Top Panel] (𝐽/𝑈 = 0.5) Hysteresis surface
for various system sizes at different sweeping velocities for 1 × 1 (𝑁𝑡𝑟𝑁 ≈
10000, 𝑁𝑀𝑎𝑥 = 7 and 𝑁𝑡𝑟 ≈ 100 − 500 when 𝑣−1

𝑠 𝛾2 > 200) and 1 × 2 clusters
(𝑁𝑡𝑟𝑁 ≈ 5000, 𝑁𝑀𝑎𝑥 = 7). The dashed lines are power law fits of the
form 𝑆ℎ = 𝛽 (𝑣−1

𝑠 𝛾2)−𝛼 in the long time limit. (b) [Middle Panel] (𝐽/𝑈 = 2)
Hysteresis surface for various system sizes at different sweeping velocities for
1 × 1 clusters (min(𝑁𝑡𝑟𝑁 ) ≈ 5000 and max(𝑁𝑡𝑟𝑁 ) ≈ 20000, 𝑁𝑀𝑎𝑥 = 11). The
dashed lines are again power law fits in the long time limit. (c) [Bottom
Panel] Exponent 𝛼 of the power law fit 𝑆ℎ = 𝛽 (𝑣−1

𝑠 𝛾2)−𝛼 for 1 × 1 clusters at
𝐽/𝑈 = 0.5, 2 and for 1 × 2 at 𝐽/𝑈 = 0.5.
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point.
We note that in order to obtain a nonzero hysteretic surface one first needs to

take the thermodynamic limit before taking the long-time limit. We wish to point
out that this observation is in agreement with a study performed in a, related,
dissipative spin system in Ref. [108] where an MPO approach was used.

8.2.2 The compressibility

So far we have studied the surface of the hysteresis curve and indicated deviating
behaviour with respect to the mean-field method as a result of incorporating
fluctuations. We will now explicitly study these particle number fluctuations
through the compressibility, that is defined as [87, 146]

𝐾 =
〈𝑁 2〉 − 〈𝑁 〉2

〈𝑁 〉
= 1 − 〈𝑁 〉 + 1

〈𝑁 〉
〈
∑︁
𝑖, 𝑗

𝑎
†
𝑖
𝑎
†
𝑗
𝑎𝑖𝑎 𝑗 〉

= 1 + 〈𝑁 〉
[∑︁

𝑖, 𝑗

𝑔
(2)
𝑖 𝑗
− 1

]
,

(8.8)

with 𝑁 =
∑

𝑖 𝑎
†
𝑖
𝑎𝑖 and 𝑔 (2)

𝑖 𝑗
=
〈𝑎†

𝑖
𝑎
†
𝑗
𝑎𝑖𝑎 𝑗 〉

〈𝑁 〉2 . Note that for the Gutzwiller mean-field this

reduces to 𝐾 = 1 + 𝑛
(
𝑔
(2)
𝑖𝑖
− 1

)
, with 𝑛 the single site particle number.

On Fig. 8.4 (a) the particle number 〈𝑛〉 (full red line) and compressibility 𝐾
(full brown line) of a 6×6 lattice are shown as well as the mean-field compressibility
(full black line), both for a sweeping velocity of 𝑣−1

𝑠 𝛾2 = 25. We confirm that the
transitions are accompanied by a presence of high fluctuations which peak at (or
close to) the transition. Such a peak can also be observed from the mean-field
result albeit with a strikingly lower amount of fluctuations. This discrepancy was
expected as the trajectory method allows for jumps between the stable branches,
a feature not included in the mean-field method. As our simulations show, this
increase in compressibility can be of the order of a magnitude.

Similar to our observations in Fig. 8.2 (a), the positions of the maxima of
the peaks are also shifted with respect to the mean-field results; at the transition
from high to low particle number the mean-field maximum is also found for lower
values of 𝐹/𝑈 . The position of the transition from low to high particle number
is also similar for both methods. Away from the transition, the results for the
compressibility coincide with the mean-field results and deviations only arise close
to the transition. We have noted before that as the system size increases, it
becomes harder for the entire system to switch to the other branch. As a result
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Figure 8.4: (Color online) (a) Hystersis curve of the particle number per
site and compressibility on a 6 × 6 lattice at sweeping velocity 𝑣−1

𝑠 𝛾2 = 25
(𝑁𝑡𝑟𝑁 ≈ 25000, 𝑁𝑀𝑎𝑥 = 8). The mean-field (MF) compressibility is shown as
a full black line. (b) Compressibility for various system sizes at a sweeping
velocity of 𝑣−1

𝑠 𝛾2 = 25 (𝑁𝑡𝑟𝑁 ≈ 25000, 𝑁𝑀𝑎𝑥 = 8). The mean-field (MF)
compressibility is shown as a full black line. The power law fits are performed
on the maxima of the compressibility of lattices of dimension 5×5 to 8×8 (not
shown). (c) Compressibility of a 6× 6 lattice for various for various sweeping
velocities (𝑁𝑡𝑟𝑁 ≈ 25000 and 𝑁𝑡𝑟𝑁 ≈ 40000 for 𝑣−1

𝑠 𝛾2 = 50, 𝑁𝑀𝑎𝑥 = 8). The
mean-field (MF) compressibility for the various sweeping velocities are shown
as black lines.
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overall higher fluctuations would be needed for a phase transition to occur in
the system. This is indeed what we observe in Fig. 8.4 (b) where we show the
compressibility for various system sizes at a sweeping velocity of 𝑣−1

𝑠 𝛾2 = 25. As
the system size increases the fluctuations also increase. This is expected since the
numerator of (8.8) is quadratic in 𝑁 with respect to the denominator. Through a
finite-size scaling we find a sub-extensive power-law scaling with system size of the
maxima of both the left and right peaks, of which the exponents are respectively
0, 4 and 0, 6. This sub-extensive scaling is explained by the formation of domains
when the system switches to another branch.

Additionally, we can study the behaviour of the compressibility for various
sweeping velocities. We show the results of a 6 × 6 lattice on Fig. 8.4 (c). When a
fast sweep (full yellow line) is performed, i.e. a high sweeping velocity, the system
is driven through the hysteresis region at a very fast pace. The system thus does
not have a lot of time to jump between the branches, but it does need to adapt
its state very quickly to the new parameter values. This results in fluctuations
which are smeared out, explaining the broader, but lower, peaks for high sweeping
velocities. This effect decreases as the system gains more time to adapt to the
sweeping parameter (full brown and gray line), resulting in narrower and taller
peaks. The increased height of the peaks is due to the increased time the system
has to jump between the branches, resulting in more fluctuations. This also means
the system will be able to jump to the other branch at smaller (bigger) values for
𝐹/𝑈 when it is on the bottom (top) branch, which is why the peaks move towards
each other as the sweeping velocity is decreased. This is in accordance with the
shrinking hysteresis surface observed in the previous section.

The effect of including short-range quantum correlations is shown on Fig. 8.5
(a) for 1 × 2 and 1 × 3 clusters for a 6 × 6 lattice at sweeping velocity 𝑣−1

𝑠 𝛾2 = 25.
There is no drastic change in the amount of fluctuations under the influence of
the 1 × 2 clusters, however, they do cause a shift in the position of the transition.
When we go one step further in the range of the quantum correlations, i.e. 1 × 3
clusters, no significant further shift is observed. This is an interesting result as it
shows that already for small cluster sizes, the systems properties do not change
significantly as longer-range quantum correlations are included, i.e. long-range
quantum correlations are expected to be less important than in the case of the
XYZ model in the previous chapter. In other words, by including only short-
range quantum correlations, and thus modest computational resources, one can
drastically increase the effectiveness of the Gutzwiller approximation.
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8.2.3 The correlation function

The calculation of the compressibility required knowledge of the pair-correlation
functions 𝑔 (2)

𝑖 𝑗
. We show the results for the correlation functions as a function of

the distance 𝑑 = |i − j| for various parameters of 𝐹/𝑈 left, right and exactly on
the maximum of the compressibility peak of the bottom and top branch on Fig.
8.5 (b) and Fig. 8.5 (c), respectively. For both branches we note that the system
shows no off-site correlations in the regions left and right of the maximum in the
compressibility. This explains the success of the mean-field approximation in this
region. The on-site bunching in the low-particle number phase (𝐹𝑙/𝑈 ) and on the
maximum is due to the 4-photon resonance. We also find slight on-site antibunching
in the high-particle number phase. These results are in accordance with the mean-
field theory and a self-consistent expansion in the inverse coordination number of
the lattice [146]. We do find deviations for the off-site correlations at the peak of
the compressibility, i.e. near the transition. Our method is able to capture the
classical long-range correlations in the lattice, which are expected at the transition,
and are missed by mean-field theory. It is due to these correlations that we see a
big increase in the compressibility with respect to the mean-field theory.

As noted before, the influence of short-range quantum correlations is most
pronounced at the transition from high particle number to low particle number,
as can be seen on Fig. 8.5 (c) in the dashed lines with circle markers. We note a
decrease in correlations with respect to the Gutzwiller wave function ansatz, but
long-range correlations are still present. This decrease in correlations is responsible
for the slightly lower maximum of the compressibility for the cluster simulations
in Fig. 8.5 (a).

8.3 Mapping of the Bose-Hubbard model onto a single
Kerr cavity

There exists a mapping of the Bose-Hubbard model with nearest-neighbour hop-
ping (3.11) on the single Kerr cavity [85]. The mapping is realized by Fourier
transforming the annihilation operator, that is

𝑎𝑖 =
1
√
𝑁

∑︁
𝑘

𝑒𝑖𝑘𝑥𝑖𝑎𝑘 , (8.9)
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Figure 8.5: (Color online) (a) Hystersis curve of the particle number per
site and compressibility for various cluster sizes on a 6× 6 lattice at sweeping
velocity 𝑣−1

𝑠 𝛾2 = 25 (𝑁𝑡𝑟𝑁 ≈ 25000, 𝑁𝑀𝑎𝑥 = 8 and 𝑁𝑀𝑎𝑥 = 9 for 1×3 clusters)).
(b) Correlation function for various distances of the bottom branch for the
6 × 6 lattice of panel (a) with 𝐹𝑙/𝑈 = 0.05, 𝐹𝑟/𝑈 = 0.5 and 𝐹𝑚/𝑈 on the
respective peaks of the compressibility in panel (a). (c) Correlation function
for various distances of the bottom branch for the 6 × 6 lattice of panel (a).
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with 𝑥𝑖 the spatial coordinates of cavity 𝑖. By substituting this in (3.11) one gets
the equivalent Hamiltonian

𝐻 = − 𝐽
𝑁

∑︁
〈𝑖, 𝑗 〉

∑︁
𝑘

2 cos
(
𝑘𝑑𝑖 𝑗

)
𝑎
†
𝑘
𝑎𝑘 − Δ

∑︁
𝑘

𝑎
†
𝑘
𝑎𝑘

+ 𝐹
√
𝑁

∑︁
𝑖

∑︁
𝑘

(
𝑒−𝑖𝑘𝑥𝑖𝑎†

𝑘
+ 𝑒𝑖𝑘𝑥𝑖𝑎𝑘

)
+ 𝑈

2𝑁
∑︁

𝑘1,𝑘2,𝑘3

𝑎
†
𝑘1
𝑎
†
𝑘2
𝑎𝑘3𝑎𝑘1+𝑘2−𝑘3,

(8.10)

with 𝑑𝑖 𝑗 = |𝑥𝑖 − 𝑥 𝑗 |. The main assumption that is made to map this onto a single
Kerr cavity is the following. If one applies a homogeneous drive, only the 𝑘 = 0
mode will be populated. The assumption is then that no nonlinear scatterings will
be present and as a result none of the other modes will be populated. This allows
all terms 𝑘 ≠ 0 in (8.10) to be neglected. This results in the following single Kerr
cavity Hamiltonian

𝐻 = 𝜔0𝑎
†
0𝑎0 + 𝐹𝑒 𝑓 𝑓

(
𝑎
†
0 + 𝑎0

)
+
𝑈𝑒 𝑓 𝑓

2 𝑎
†
0𝑎
†
0𝑎0𝑎0, (8.11)

where 𝜔0 = −Δ − 𝐽𝑍 , 𝐹𝑒 𝑓 𝑓 = 𝐹
√
𝑁 and 𝑈𝑒 𝑓 𝑓 = 𝑈

𝑁
. This is an interesting mapping

because it can be used to study the thermodynamic limit of (3.11) by tuning
𝐹𝑒 𝑓 𝑓 → ∞ and 𝑈𝑒 𝑓 𝑓 → 0, keeping the product 𝑈𝑒 𝑓 𝑓 𝐹

2
𝑒 𝑓 𝑓

constant. However,
neglecting the nonlinear scatterings could make the above mapping invalid in
certain parameter regimes. To study its validity we look again at the correlation
function. In Fig. 8.6, we illustrate schematically the behavior of the correlation
function in the 𝑘 = 0 (red dashed line) and mean-field approximations (blue line).
In the 𝑘 = 0 approximation, all cavities are perfectly correlated, such that 𝑔 (2) is
flat. In the mean-field approximation on the other hand, correlations are entirely
neglected, such that 𝑔 (2) = 1 for 𝑑 ≠ 0. For pump intensities far from the transition,
Fig. 8.5 shows that the correlation function is close to one for 𝑖 ≠ 𝑗 . This is
consistent with the good agreement with the mean-field theory in this parameter
regime. For the correlation function on the upper branch (𝐹𝑟 in Fig. 8.5 (c)), the
correlation function is very flat, such that it is also compatible with the 𝑘 = 0
model. This is however not the case in the low intensity (𝐹𝑙 ) case. In the transition
region, we have already seen that the mean-field approximation breaks down.
Unfortunately, the correlation functions at 𝐹𝑚 in Fig. 8.5 (b) are also not constant,
such that neither the 𝑘 = 0 is valid in the transition region. Physically, this is
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Figure 8.6: (Color online) A qualitative visualisation of the correlation
function for the mean-field method (blue line) and the mapping to the 𝑘 = 0
mode (red dashed line).

due to the formation of domains of high and low intensity in the switching region,
which goes beyond the assumptions of the 𝑘 = 0 model.

8.4 Conclusions

We have shown that by using the cluster-Gutzwiller Monte Carlo method, and thus
the incorporation of classical correlations and short-range quantum correlations,
the Gutzwiller mean-field phase diagram is qualitatively correct. The influence of
the included fluctuations causes the critical hopping parameter 𝐽𝑐/𝑈 , indicating
where the steep crossover of the system transforms into a first-order hysteretic
phase transition, to shift to higher values. From the study of the particle number
fluctuations we can conclude that away from the transition the results fall onto the
mean-field results, also when close-range quantum correlations are included. This
is confirmed by the absence of off-site correlations in these regimes, explaining the
success of the mean-field method. At the transition we note a drastic increase in
the particle number fluctuations, by an order of magnitude, with respect to the
mean-field result. This increase finds it origin in the off-site correlations that are
included through our method, and which are absent in mean-field theory. Addition-
ally, a shift in the location of the transition from high to low particle number is also
observed. This shift does not change significantly when more short-range quan-
tum correlations are included, signalling that long-range quantum correlations are
expected to be less important. We thus show that by a modest increase in computa-
tional resources the effectiveness of the approximation can be drastically improved.
Finally, we show that care has to be taken when performing the mapping of an
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extended Bose-Hubbard lattice onto a single Kerr cavity, especially in the proximity
of a phase transition, i.e. regions where fluctuations and correlations are important.

The results of this chapter were published in Ref. [3].
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CHAPTER 9
Re-visiting Liouvillian diagonalization

The determination of the steady state and of the Liouvillian spectrum associated
with a Lindblad master equation is a central and recurring problem in the study
of open quantum systems. While the steady state describes the average physics of
an open system once all the transient process have faded out, the spectrum gives
access to the transient dynamics and to the states involved in it. The determi-
nation of the steady state often relies on the time evolution of a density matrix,
while the spectral determination requires the diagonalization of the Liouvillian
superoperator. Here, we propose a new method to efficiently obtain the Liouvillian
spectrum and the steady state from short time evolution of a density matrix. The
advantage of our method is twofold: (i) It provides an easy method that efficiently
produces the steady state (shorter simulation time); (ii) It allows a complete
understanding of the low-lying spectral properties of the Liouvillian without an
additional computational cost. This method lends itself to the study of large
systems, where the determination of the Liouvillian spectrum can be numerically
demanding. Furthermore, it was applied in chapter 6 to calculate the low-lying
spectrum of Liouvillians with dimensions up to the order of one million. Our
results can be extended to generic time evolution methods, allowing to describe
the long-lasting processes with a short dynamical evolution.

9.1 The reduced Liouvillian method and Krilov time
evolution

As we discussed, knowing the Liouvillian eigenvalues and eigenmatrices allows a
complete determination of the dynamics of an open quantum system. In many
applications, however, one is not interested in characterizing all the possible
processes which may take place in an open quantum system, but rather those
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Figure 9.1: Pictorial representation of the physical meaning of the time
evolution of a density matrix from a spectral point of view. (a) The dynamics
of a system governed by a Lindblad master equation has always some common
characteristics. Indeed, after an initial transient dynamics, the system
straightforwardly converges to its steady state. (b) These characteristics are
clear from a Liouvillian spectrum point of view. Except from the steady state
𝜌0 characterized by 𝜆0 = 0, the eigenvalues characterizing the Liouvillian
eigenmatrices have always negative real part (they describe decaying processes
towards the steady-state) and they always appear as complex conjugate (they
preserve the Hermiticity of a density matrix). (c) This translate in a specific
form of the density matrix along its evolution. While at the beginning all the
density matrices are relevant, as time passes the influence of the eigenmatrices
𝜌 𝑗 whose eigenvalues 𝜆 𝑗 have large negative real part can be neglected from
the dynamics. However, the slow-decaying eigenmatrices are always present
in the dynamics.

associated with the slow-decaying eigenstates of the Liouvillian superoperator.
In the following, we will introduce a new method capable of combining the

exactness of the Liouvillian diagonalization, with the efficiency of time evolution of
𝜌 (𝑡). We will show that it is possible to construct a reduced Liouvillian allowing to
obtain an extremely precise estimation of 𝜌ss and 𝜌𝑖 from short time evolutions of
the density matrix. In other words, our method combines the advantages of both
the time evolution methods and those of the Liouvillian diagonalization, being
only partially affected by their disadvantages.

9.1.1 General idea behind the algorithm and its physical mean-
ing

The main idea of the algorithm is to use the information encoded in the time
evolution to efficiently reconstruct the spectrum of the Liouvillian. It is clear that,
knowing the Liouvillian spectrum, it is possible to determine the time evolution of
an open quantum system (Fig. 9.1). Using the spectrum of the Liouvillian we can
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express the initial state as

𝜌 (𝑡 = 0) = 𝜌ss +
∑︁
𝑗≥1

𝑐 𝑗𝜌 𝑗 . (9.1)

From this equation we get the time evolution as

𝜌 (𝑡) = 𝜌ss +
∑︁
𝑗≥1

𝑐 𝑗𝑒
𝜆 𝑗 𝑡𝜌 𝑗 . (9.2)

In other words, it is trivial to see that, if we know 𝜌 𝑗 and 𝜆 𝑗 , we can determine
the time evolution of any density matrix by applying appropriate coefficients.

The other way around it is also possible. Since all the Re
{
𝜆 𝑗

}
≤ 0, after a

sufficient long time the system reaches its steady state and 𝜌 (𝑡) ' 𝜌ss. Knowing 𝜌0

we can proceed backwards and determine all the other eigenmatrices, as depicted
in Fig. 9.1 (c).

Obviously, this is a very inefficient method, which does not bring any numerical
advantage to the determination of 𝜌ss, even if it allows to correctly determine the
Liouvillian spectrum. Indeed, we are “throwing away” all the information about
the Liouvillian spectrum accumulated along the dynamics [see Fig. 9.1 (c)]. After
a short transient dynamics, the physics of the system is confined in the manifold
spanned by the eigenmatrices of the Liouvillian with sufficiently small real part (in
absolute value) of the eigenvalues, i.e., those states which are the slowest decaying.
If 1/Γ is the typical decaying timescale of the system, the dynamics is described
by those 𝑁 eigenmatrices such that 𝜆 𝑗/Γ is sufficiently close to zero, i.e.,

𝜌 (Γ𝑡 > 1) ' 𝜌ss +
∑︁

1≤ 𝑗<𝑁
𝑐 𝑗𝑒

𝜆 𝑗 𝑡𝜌 𝑗 . (9.3)

Notice that we do not need to exactly know the eigenmatrices 𝜌 𝑗 , but just
their linear combination. In other words, if we are able to determine the span of
the 𝑁 relevant matrices, we can build up a basis for 𝜌 (𝑡 > 1/Γ) and re-express the
Liouvillian within this reduced basis. The newly obtained effective Liouvillian will
be much smaller than the original one, reducing the computational cost of the
diagonalization, but at the same time it would correctly determine the 𝜌 𝑗 .

The advantages of this method are evident. Not only does it shorten the
amount of time needed to obtain the steady state, but it also makes it possible to
obtain an excellent estimation of the slow-decaying part of the Liouvillian 𝜌 𝑗 .

Having clarified the physical idea behind the algorithm, the mathematical
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formalization of this intuition can be provided in terms of Krilov subspaces, and
the proposed algorithm will be a reinterpretation of the time evolution of an open
quantum system in terms of Arnoldi iteration. We call such a procedure a Krilov
time evolution.

9.1.2 Krilov subspaces, Arnoldi iteration, and evolution oper-
ator

Arnoldi iteration

Although a detailed description of Arnoldi iteration and Krilov subspaces goes
beyond the purpose of this thesis, here we provide a brief description of the
algorithm and of its main properties. We will use the previously-developed
notation of operators and superoperators to highlight the context in which we will
use it.

Suppose we want to determine part of the spectrum of a superoperator, say the
Liouvillian L. This task can be achieved via an iterative diagonalization known as
Arnoldi iteration. The key idea behind this algorithm is that one can recursively
apply 𝑛 times the Liouvillian to a random matrix 𝜎 of norm one, producing the
so-called Krilov matrix

𝐾𝑛 =
{
𝜎,L𝜎,L2𝜎 . . . ,L𝑛𝜎

}
. (9.4)

This method will highlight those eigenvalues of largest absolute value. Indeed,
using the spectral decomposition of 𝜎 we have

𝜎 =
∑︁
𝑖

𝑐𝑖𝜌𝑖 ⇒ L𝑛𝜎 =
∑︁
𝑖

𝑐𝑖𝜆
𝑛
𝑖 𝜌𝑖 , (9.5)

since, by definition, L𝜌𝑖 = 𝜆𝑖𝜌𝑖 .
The Arnoldi iteration builds up an orthonormal basis from the 𝐾𝑛 via Grahm-

Schmidt orthonormalization. If one calls 𝜎1 . . . 𝜎𝑛 the Arnoldi orthonormal basis
obtained from 𝐾𝑛, and S𝑛 the rectangular matrices whose columns are the 𝑛
vectorialized Arnoldi operators, one can define an effective Liouvillian as

Leff
𝑛 = S†𝑛LS𝑛 . (9.6)

In the limit in which 𝑛 → 𝑁 2, where 𝑁 is the dimension of the Hilbert space, Leff

becomes the full Liouvillian L, S being nothing but a change of basis.
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The diagonalization of Leff for 𝑛 � 𝑁 2 is, in principle, efficient: Leff is a
relatively small and upper Hessenberg matrix (i.e. “almost” triangular):

Leff
𝑛 =



𝑙1,1 𝑙1,2 𝑙1,3 · · · 𝑙1,𝑛

𝑙2,1 𝑙2,2 𝑙2,3 · · · 𝑙2,𝑛

0 𝑙3,2 𝑙3,3 · · · 𝑙3,𝑛
...

. . .
. . .

. . .
...

0 · · · 0 𝑙𝑛,𝑛−1 𝑙𝑛,𝑛


. (9.7)

Importantly, one can diagonalize Leff
𝑛 and obtain the (Ritz) eigenvalues 𝜆eff

j (𝑛)
and eigenmatrices 𝜌eff

𝑗 (𝑛). In the limit in which the 𝜌eff
𝑗 (𝑛) approximates all the

wanted 𝜌 𝑗 , one can stop the iteration.
Notably, one never needs to compute explicitly the matrix elements Leff via

the similarity transformation in (9.6). The pseudocode for the Arnoldi iteration is
provided in Algorithm 1 in appendix E.

The exponential map as an alternative operator

There are several reasons for which directly computing the Liouvillian spectrum
via the Arnoldi method is impractical for large systems. First, the Liouvillian
has a large exponential growth: for a Hilbert space of size 𝑁 , the Liouvillian is a
matrix of size 𝑁 2, making it impractical even to store its elements. Second, the
Krilov subpaces tends to bring out the Liouvillian eigenvalues of large magnitude.
This problem can be solved by using the inverse of L. In this way, the most
relevant vectors become those closest to zero. This, however, further increases the
numerical cost of the diagonalization, and can lead to significant numerical errors
due to numerical instabilities [219].

It is actually easier and numerically more efficient to resort to the time evolution
of the system for large Hilbert spaces. Let us analyze more in detail the time
evolution of an open system. Using the exponential Liouvillian map, see section
2.7, the evolution reads

𝜌 (𝑡) = exp(L𝑡)𝜌 (0) . (9.8)

Even if we never write the Liouvillian, or its exponential, we can formally introduce
the evolution operator

E = exp(L𝑇 ), (9.9)

where 𝑇 is a time interval whose choice will be specified below. Consequently, we
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Re[λj ]

Im[λj ] (a)

Re[εj ]

Im[εj ]
(b)

Figure 9.2: Spectrum of the Liovillian [dots in (a)] vs spectrum of the
corresponding evolution operator [dots in (b)]. While the steady state is the
the zero of Liouvillian (red dot), 𝜖0 is the largest eigenvalue of E, as it can be
seen in (b) where the dashed lines represent the circles of radius exp[Re(𝜆𝑖 )].
Thus, the Arnoldi iteration is well suited to obtain 𝜌0 from E. Furthermore,
the eigenvalues with the smallest real part acquire the larger magnitude
[other colored dots in (a) and (b)], while the fast-decaying processes are
condensed towards the zero.
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have
𝜌 (𝑇 ) = E𝜌 (0) = exp(L𝑇 )𝜌 (0) . (9.10)

Within this representation, we can see the time dynamics up to a time 𝑛𝑇 as

𝐾𝑛 = {𝜌 (0), 𝜌 (𝑇 ), 𝜌 (2𝑇 ), . . . 𝜌 (𝑛𝑇 )}

=
{
𝜌 (0), E𝜌 (0), E2𝜌 (0) . . . , E𝑛𝜌 (0)

}
.

(9.11)

Therefore, the time dynamics of 𝜌 (𝑡) is the Krilov subspace of E. When computing
the steady state from the time dynamics, one is only considering E𝑛𝜌 (0) while
discarding all the information stored in the construction of the Krilov subspace
𝐾𝑛. This is the mathematical formalization of the intuition depicted in Fig. 9.1(c).

Within this description, it is clear that we can apply the Arnoldi iteration to
determine the spectrum of E. Again, we stress that we never need explicitly to
write E or L, and each time step of this procedure has roughly the same numerical
cost than a similar time evolution.

Why is it so much more advantageous to use E instead of L? The first remark
is that there is a direct correspondence between the eigenvalues of E and those of
L. Indeed, one has

E𝜌 𝑗 = 𝜖 𝑗𝜌 𝑗 = 𝑒𝜆𝑗𝑇 𝜌 𝑗 ⇔ L𝜌 𝑗 = 𝜆 𝑗𝜌 𝑗 . (9.12)

The second fundamental remark is that, the Liouvillian spectrum, and thus that
of E, has some fundamental properties. In particular, the fact that all the 𝜆 𝑗 are
of negative real part means that 𝜌0 becomes the largest eigenvalue of E, since
𝜖0 = 𝑒𝜆0𝑇 = 1. This can be easily seen in Fig. 9.2, where we show how the spectrum
of L transforms into that of E.

In other words, we can construct

Eeff
𝑛 = S†𝑛ES𝑛 =



𝑒1,1 𝑒1,2 𝑒1,3 · · · 𝑒1,𝑛

𝑒2,1 𝑒2,2 𝑒2,3 · · · 𝑒2,𝑛

0 𝑒3,2 𝑒3,3 · · · 𝑒3,𝑛
...

. . .
. . .

. . .
...

0 · · · 0 𝑒𝑛,𝑛−1 𝑒𝑛,𝑛


, (9.13)

via application of the Arnoldi iteration without ever computing the Liouvillian
or its exponential. Indeed, the algorithm is identical to the previously described
having built the Krilov subspace via time evolution.
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The pseudocode to realize the Krilov time evolution and determine the spectrum
of the low-lying part of the Liouvillian is detailed in Algorithm 2 in appendix E.

The previously discussed algorithm, although perfectly working, may still
present some difficulties for very large systems, since it may be necessary to
store many density matrices before convergence is reached. This problem could
be avoided by using an Implicitly Restarted Arnoldi Method (IRAM). Such an
optimization goes beyond the purpose of this work and the development of an
IRAM time evolution is one of the future perspectives.

9.2 Case study: the driven-dissipative Bose-Hubbard
model

To prove the efficiency of our method, we consider the homogeneously driven-
dissipative Bose-Hubbard model, introduced in chapter 3. It describes the physics
of arrays of 𝐿 resonators, where the photons in each site interact through a potential
𝑈 , and they can hop between different sites with a strength 𝐽 . The model is driven
by a coherent pump of intensity 𝐹 𝑗 ( 𝑗 indicating the site), and the pump-to-cavity
detuning is Δ. In the frame rotating at the pump frequency, its Hamiltonian is

𝐻 =

𝐿∑︁
𝑗=1

[
−Δ𝑎†

𝑗
𝑎 𝑗 +

𝑈

2

(
𝑎
†
𝑗

)2 (
𝑎 𝑗

)2 + 𝐹 𝑗
(
𝑎
†
𝑗
+ 𝑎 𝑗

)]
− 𝐽
𝑧

∑︁
〈𝑗,𝑙 〉

𝑎
†
𝑗
𝑎𝑙 ,

(9.14)

where 〈 𝑗, 𝑙〉 indicates the sum on the nearest neighbours. The dissipation acts
locally and uniformly in each site at a rate 𝛾 by ejecting single photons from each
resonator. Thus, the Lindblad master equation and the associated Liouvillian
reads

𝜕𝑡𝜌 (𝑡) = L𝜌 (𝑡) = −𝑖
[
𝐻, 𝜌 (𝑡)

]
+ 𝛾

𝐿∑︁
𝑗=1
D[𝑎 𝑗 ]𝜌 (𝑡) . (9.15)

The driven-dissipative Bose-Hubbard model is known to be characterized by
a dissipative phase transition in the thermodynamic limit of infinite cavities.
Furthermore, the emergence of time-crystal phases in asymmetrically driven cavities
has been discussed in [63, 220]. As such, the finite-size driven-dissipative Bose-
Hubbard model provides an ideal benchmark for our method, combining the
difficulty of an emerging criticality with the large size of the Hilbert space of the
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coupled resonators.

9.2.1 Uniform drive

In the following, we will consider the dimer and trimer cases (i.e., the number of
sites 𝐿 is either 2 or 3) We will start by considering two and three identical cavities,
where the parameters will be fixed at Δ = 5𝛾 , 𝐹1 = 𝐹2 = 𝐹 = 4.5𝛾 , 𝑈 = 20𝛾 , and
𝐽/𝑧 = 10𝛾 (for consistency, the hopping term is renormalized by the connectivity 𝑧
(the number of nearest neighbours).

The dimer

Here, we consider the case of two resonators, i.e., 𝐿 = 2 in Eqs. (9.14) and (9.15).
For this size of the system, and for the parameters considered, we find that the part
of the spectrum shown below has reached convergence for a cutoff of 𝑛𝑚𝑎𝑥 = 7, that
is, we suppose that any element of a density matrix 〈𝑟 |𝜌 (𝑡) |𝑞〉 is zero if 𝑟 > 𝑛𝑚𝑎𝑥 or
𝑞 > 𝑛𝑚𝑎𝑥 , where |𝑟 〉 and |𝑞〉 are Fock states. It follows that 𝐻 is a 64 × 64 matrix,
while the whole Liouvillian has size 4096 × 4096, a still diagonalizable object.

We will test our algorithm on two types of tasks: (i) Determine just the steady
state [noted 𝜌ss]; (ii) Determine the 𝑚 slowest eigenvalues and eigenmatrices [noted
𝜌𝑚]. We check for the eigenvalues convergence every 10 timesteps. The condition
of convergence we require is 𝜏 = ‖E𝜌 𝑗−𝜖eff

𝑗 𝜌 𝑗 ‖ < 10−3. Note however that there exist

multiple possible measures of convergence, e.g.
����


Tr

[ (
𝜌 𝑗

)† L𝜌 𝑗 ]


2
−




Tr
[ (
𝜌 𝑗

)† L2𝜌 𝑗
]


���� =

𝜏 ′. First, let us give an overview of the computational effort required for each task
on our local machine [Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz (12 CPUs) and
128 Gb of RAM], i.e. exact diagonalization (ED) and our method, in the Table 9.1
below:

Table 9.1

ED 𝜌ss 𝜌5 𝜌10 𝜌50

Computation time 43 s 8.5 s 11.75 s 15 s 42s
Final time 6 𝛾 8 𝛾 10 𝛾 42 𝛾
dim(Leff) 4096 120 160 200 280

Clearly, to obtain few values, for this limited system size, our method is much
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faster than a Liouvillian ED. Nevertheless, if one is interested in getting many
eigenvalues and eigenmatrices, our algorithms starts to be comparable with the
Liouvillian ED (c.f. 𝜌50).

Besides the speed of the method, evidently one is also interested in the correct-
ness of its predictions. In Fig. 9.3 we compare the results obtained for 𝜌5 and 𝜌10

through our method with the corresponding ones obtained via ED. In Figs. 9.3(a)
and (b) we show the Liouvillian spectrum and the spectrum of the evolution
operator, respectively. The red dots indicate the spectrum obtained through ED,
while the blue vertical markers represent the results convergent up to 𝜌5, and the
green vertical markers are the other five solutions up to 𝜌10. There is obviously
an excellent agreement between our method and the exact results. Notably, even
in the regions where the spectrum becomes “crowded”, the obtained eigenvalues
are indistinguishable from those resulting from ED. It should be noted that if
one wishes to calculate more eigenvalues (c.f. 𝜌50 in Table 9.1), and especially
if eigenvalues are not far apart, the method will require more time to be able
to distinguish between them. In such cases a decrease of 𝑇 can also allow for
quicker convergence. In Fig. 9.3 (c) we see excellent correspondence of eigenvalues:
our method determines the 𝜆eff

𝑗 almost up to the numerical precision of ED. This
precision is not limited to the eigenvalues, as shown in Fig. 9.3 (d). Indeed, the
overlap between the eigenmatrices obtained through ED (𝜌 𝑗 ) and those obtained
with method (𝜌eff

𝑗 ) shows a precision up to numerical error.
Summing up, for this simple model, we have thus demonstrated that our

method is efficient and accurate for the spectrum of the Liouvillian superoperator.
Another important question is how the method presented here fares against

other possible methods to extrapolate the steady state from a time evolution.
Let us show here that our method is both faster and more precise. Consider, for
example, 〈𝑛1〉 = 〈𝑎†1𝑎1〉, i.e., the expectation value of the particle number of the
first cavity of the dimer. In panel (a) of Fig. 9.4 we show 〈𝑛1(𝑡)〉 for the same
random initial state that we used for our algorithm. The vertical dotted lines
indicate the final simulation times where our method reached convergence for the
indicated number of eigenvalues and eigenmatrices (𝜌ss, 𝜌5 and 𝜌10). This time
is clearly much smaller than the one needed to reach the steady state through
standard time evolution. Indeed, for 𝛾𝑡 = 15, 〈𝑛1(𝑡)〉 significantly differs from the
steady-state solution 〈𝑎†1𝑎1〉ss, marked with a horizontal orange dashed line.

Given the spectral structure in (9.2), one can extrapolate the steady state
value from a long time dynamics. For example, once transient fast processes have
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Figure 9.3: Results for the Bose Hubbard dimer for the parameters Δ = 5𝛾 ,
𝐹1 = 𝐹2 = 4.5𝛾 , 𝑈 = 20𝛾 , and 𝐽 = 10𝛾 and a cutoff 𝑛𝑚𝑎𝑥 = 7. (a) Liouvillian
spectrum obtained via the exact diagonalization (red dots) and our method
for the 5 slowest states 𝜌5 (blue vertical markers) and the 10 slowest states
𝜌10 (green horizontal markers). Eigenvalues of which Re

(
𝜆 𝑗

)
/𝛾 < −3 have

been discarded from the figure for clarity. (b) Spectrum of the evolution
operator obtained via the exact diagonalization (red dots) and our method for
𝜌5 (blue vertical markers) and 𝜌10 (green horizontal markers). (c) Difference
between the eigenvalues obtained with the ED 𝜆 𝑗 and our method 𝜆eff

𝑗 for 𝜌5

(blue line with dots) and 𝜌10 (green dashed line with squares). The values
have been re-scaled with a factor 𝑒0.3 to clearly show their differences. (d)
One minus the overlap between the eigenmatrices obtained via the ED and
our method for 𝜌5 (blue line with dots) and 𝜌10 (green dashed line with
squares).
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Figure 9.4: (a) Time evolution of the expectation value of the particle
number of the first cavity of the dimer 𝑛1 = 〈𝑎†1𝑎1〉 (blue full line). The
steady-state solution obtained via exact diagonalization, i.e. 〈𝑎†1𝑎1〉ss (orange
dashed line). The final time where our method reached convergence is shown
by vertical lines for 𝜌ss (blue dotted line), 𝜌5 (black dotted line) and 𝜌10

(red dotted line). (b) Relative difference between the expectation value
of 𝑛1 obtained via ED and either our method (red dashed line) or a fit of
the exponential decrease towards the steady state (black dashed line). The
blue dotted indicates the time where our method reached convergence and
obtained 𝜌ss. Same parameters and initial state were used as in Fig. 9.3.
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washed out, one has:
〈𝑛1(𝑡)〉 = 〈𝑛〉ss + 𝑐1𝑒

𝜆1𝑡 , (9.16)

where 𝑐1 = 𝑐1〈𝑎†1𝑎1𝜌1〉. From this, one can extrapolate 〈𝑛〉ss. In panel (b) of Fig. 9.4
we show as a function of time the relative error

‖𝛿 〈𝑛1〉‖/〈𝑛1〉ss = ‖〈𝑛1〉eff
ss − 〈𝑛1〉ss‖/〈𝑛1〉ss (9.17)

where 〈𝑛1〉eff
ss has been obtained either through this fitting method (black dashed

line) or with our method for the case where convergency is reached for only the
steady state 𝜌ss (red horizontal dashed line). In other words, 𝛿 〈𝑛1〉 quantifies how
accurate a prediction is at a time 𝛾𝑡 . It is clear that our method gives a result
that is several orders of magnitudes more precise than the one obtained with the
fitting method, even when we let the system evolve for times much longer than
𝛾𝑡 = 6 required by our method (see Table 9.1).

The trimer

We will now consider the trimer, i.e. 3 connected cavities, for the same parameter
regime. Convergence is also reached for a cutoff of 𝑛max = 7. By adding one
cavity to the previous dimer, the Liouvillian of this system is no longer numerically
exactly diagonalizable. Indeed, the Hilbert space now has a dimension of 83 = 512
and the whole Liouvillian has size 262144 × 262144. The (low-lying) Liouvillian
spectrum and the corresponding eigenmatrices are thus usually beyond what one
can calculate. Using our method however, one is still able to efficiently obtain
results. In Fig. 9.5 we show the 5 slowest processes in the Liouvillian spectrum of
the trimer.

9.2.2 Asymmetric drive and time crystal in a dimer

As a final example, we turn our attention to an asymmetrically driven Bose
Hubbard dimer. Recently, it was shown that for a certain choice of parameters a
time crystalline phase emerges in the thermodynamic limit [63]. Its emergence is
marked by the closure of the Liouvillian gap, i.e. the increase of the real part of
largest non-zero eigenvalue as system size is increased, given that this eigenvalue
also has non-zero imaginary part. Due to the reflection symmetry of the Liouvillian
this thus coincides with two mirrored eigenvalues of which the real part approaches
zero as system size is increased. We show the low-lying spectrum of such a model
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Figure 9.5: Results for five slowest eigenvalues of the Bose Hubbard trimer
for the parameters Δ = 5𝛾 , 𝐹1 = 𝐹2 = 4.5𝛾 , 𝑈 = 20𝛾 , and 𝐽 = 10𝛾 and a cutoff
𝑛max = 7. Note that due to the symmetry of the Liouvillian spectrum six
eigenvalues are plotted.
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Figure 9.6: Results of the low-lying Liouvillian spectrum for a Bose-
Hubbard dimer with assymetrical drive for the parameters 𝐹 = 1 where
𝐹 = 𝐹

√
𝑈 /𝛾3/2, 𝑈 = 0.125𝛾 , Δ/𝛾 = 2, and 𝐽/𝛾 = 2. The local Hilbert space as

a cutoff at 𝑁max = 28.
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in Fig. 9.6 for a parameter regime studied in Ref. [63].

9.3 Conclusions

We have presented a method to efficiently determine the steady state and the
low-lying Liouvillian spectrum and eigenmatrices of an open quantum system
governed by a Lindblad master equation. It only requires (short) time evolution of
the open system and consequently allows the calculation of the low-lying Liouvillian
spectrum for system sizes that would be inaccessible through exact diagonalization.
Furthermore, for a sufficiently small number of eigenvalues the method is also
more efficient than exact diagonalization. Preliminary testing has shown that
the method can be generalized to the quantum trajectory formalism. This has
exciting possibilities with respect to number of samples that would usually be
needed when averaging over the trajectories. If one is able to construct a set of
relevant states it would thus be possible to suppress the stochastic noise that is
per construction present in the quantum trajectory formalism. As a future outlook
we plan to further investigate this generalized application and formulate it in a
rigorous mathematical framework.

169





V

PART

GENERAL CONCLUSIONS





CHAPTER 10
General conclusions and outlook

In part II we exploited the permutational invariance which is present in all-to-all
connected models to test the validity of the Gutzwiller mean-field approximation.
In particular, in chapter 5 we studied the all-to-all connected XYZ (anisotropic-
Heisenberg) spin model with local and collective dissipation, comparing the results
of mean-field (MF) theory with the solution of the Lindblad master equation.
Exploiting the weak PT -symmetry of the model (referred to as Liouvillian ℙ𝕋-
symmetry), we efficiently calculated the Liouvillian gap, introducing the idea of
an antigap, and we demonstrated the presence of a paramagnetic-to-ferromagnetic
phase transition. Leveraging the permutational symmetry of the model, we
characterized criticality, finding exactly (up to numerical precision) the steady
state for 𝑁 up to 𝑁 = 95 spins. We demonstrated that the MF theory correctly
predicts the results in the thermodynamic limit in all regimes of parameters.
However, for an intermediate number of spins and for large anisotropy, we find a
significant difference between the results of the MF theory and those of the full
quantum simulation. Our results show that the convergence to the mean-field
results are unexpectedly slow. We also studied other witnesses of the transition,
which can be used for finite-size studies, namely the bimodality coefficient and
the angular averaged susceptibility. In contrast to the bimodality coefficient, the
angular averaged susceptibility fails to capture the onset of the transition, in
striking difference with respect to lower-dimensional studies. We also analyzed
the competition between local dissipative processes (which disentangle the spin
system) and collective dissipative ones (generating entanglement). The nature of
the phase transition is almost unaffected by the nature of the dissipation.

Subsequently, in chapter 6 we developed a toolbox in Python to simulate the
time evolution of all-to-all connected 𝑝-level systems. Similar to the previous study
this has allowed us to study exactly the all-to-all connected model for increasing
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system sizes. We have presented mean-field solutions in a parameter regime that
shows a rich phase diagram, containing up to five solutions. A dynamical stability
analysis has shown two stable solutions and also the emergence of time crystalline
behaviour. Our full quantum study shows evidence for the presence of a first order
phase transition, ascribed to the multistability in the mean-field solutions, as well
as an emerging tristability that may be linked to the time crystal present in the
mean-field solutions. A study of the Liouvillian spectrum however shows no clear
signs of the emergence of imaginary eigenvalues of which the real part goes to zero
as system size is increased. A reason for this may be that the simulated system
sizes are too small to display the behavior from the thermodynamic limit. Further
investigation is needed as it will answer the interesting question of whether the
mean field is predictive also for the dynamics of the system.

In part III we introduced the cluster-Gutzwiller Monte Carlo method to study
dissipative open quantum systems. In chapter 7, we used it to study the influence
of short-range quantum correlations and classical spatial correlations on the phase
diagram of the dissipative XYZ model with only nearest-neighbor interactions.
Considering lattices of finite size we showed the emergence of a ferromagnetic phase,
two paramagnetic phases and the possible existence of a phase transition which is
entirely quantum in nature. The inclusion of short-range quantum correlations
has a drastic effect on the phase diagram but our results show the inclusion of
long-range quantum correlations or the use of more sophisticated methods are
needed to quantitatively match the exact results. A study of the susceptibility
tensor shows that reciprocity is broken, a feature not observed in closed quantum
systems. In stark contrast with closed quantum systems, increasing the magnetic
field suppresses the magnetization.

In chapter 8 we studied the dynamical properties of a driven-dissipative Bose-
Hubbard model in the strongly interacting regime in chapter 8. By studying
the dynamical hysteresis surface that arises by sweeping through the coherent
driving strength we show that the phase diagram for this system is in qualitative
correspondence with the Gutzwiller mean-field result. However, quantitative
differences are present and the inclusion of classical and quantum correlations
causes a significant shift of the critical parameters. Additionally, we showed that
approximation techniques relying on a unimodal distribution such as the mean
field and 1/𝑧 expansion drastically underestimate the particle number fluctuations.
Finally, we have shown that a proposed mapping of the driven-dissipative many-
body Bose-Hubbard model onto a single driven-dissipative Kerr model is not
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accurate for parameters in the hysteresis regime.
Finally, in part IV we have presented a novel method to efficiently determine the

low-lying spectrum of the Liouvillian. It provides a tool to accurately calculate the
steady state of a dissipative system, as well as access the part of the spectrum most
relevant to longer time dynamics. Furthermore, since it relies on a time evolution
scheme it is possible to calculate these properties for systems that would otherwise
be intractible with a brute-force exact method. Our results can be extended to
generic time evolution methods, allowing to describe the slowly decaying processes
with a relatively short dynamical evolution.

As a general outlook, we note that the interplay between local and collective
dissipation beyond the all-to-all connected model demands further investigation
with the adoption of both analytical and numerical approximation techniques.
Exploiting other symmetries, such as translational invariance, it should be possible
to further reduce the numerical resources for Liouvillian representation. Moreover,
it will be interesting to further investigate the system’s time evolution toward the
steady state, as transient processes may display even starker differences between
mean-field or classical results and full quantum dynamics. Additionally, this
method can also grant access to a study of the universal exponents near the phase
transition in this system through a proper rescaling of the systems parameters and
studying e.g. the order parameter. This would shed further light on the nature of
the transitions for these highly dimensional models.

The study of the emerging time crystalline behavior requires a more in depth
investigation that is part of ongoing research. Currently, we are extending the
study of the low-lying spectrum by including more eigenvalues of the spectrum
where signs of a very slowly emerging time crystal may be observed. Furthermore,
the investigating is continued in a wider parameter regime where the mean-field
results predict time crystalline behaviour. More specifically in a regime where we
can calculate exact results for larger system sizes, and thus dimensionality. The
present study also shows that a wider study, similar to the one performed for the
dissipative XYZ Heisenberg model, can give a clearer view on the validity of the
mean-field approximation throughout the phase diagram of this driven-dissipative
Bose Hubbard model, at least for strong nonlinearity.

In low-dimensional systems our results have shown that quantum correlations
that go beyond the size of the used clusters are needed to accurately describe the
dissipative XYZ Heisenberg model. One way to include these long-range quantum
correlations is through a correlation hierarchy containing the various moments
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of the magnetization, on the level of the master equation as well as the level
of quantum trajectories. The advantage of this method is that it is a straight
forward extension of the Gutzwiller mean-field approach as well as the Gutzwiller
quantum trajectory approach. Indeed, the aformentioned methods are obtained at
first order in the hierarchy. Going to higher order then allows to go beyond the
standard factorization of the system’s state. Currently, we are pursuing this line of
research and we expect this to be a promising method due to the notion that the
dissipation present in the system destroys multipartite entanglement or higher order
correlations between the spins. Therefore, a correlation hierarchy that is truncated
at low order should already give good predictions of the system’s properties. This
immediately shows another interesting line of research for these models, and that is
the study of such multipartite entanglement in driven-dissipative systems through
various entanglement witnesses and under influence of various dissipation schemes.
The method based on the correlation hierarchies can also be used to study the
regime of large 𝐽𝑦 where the paramagnetic phase re-enters the phase diagram as
well as the region of the phase diagram where ferromagnetic order was found that
is ascribed solely to quantum correlations.

Finally, the method presented to calculate the low-lying spectrum and eigenma-
trices of the Liouvillian superoperator through standard time evolution methods
shows much promise as it can also be generalized to other time evolution methods.
An implementation using e.g. the Corner space renormalization method or tensor
networks could push the size of systems that can be studied beyond what is possible
with a standard master equation approach. Furthermore, preliminary results have
shown that the method may also be extended to the quantum trajectory approach.
Finally, we note that work on an open source implementation of the method is
ongoing, as well as its implementation with more sophisticated methods than the
standard Arnoldi iteration used in this work.

176



APPENDIX A
Open quantum systems

A.1 Photon counting trajectory simulation scheme

Where the equations (2.53) and (2.54) determine the stochastic time evolution
of the wave function, it is more of a formal way to formulate it in an equation
than it provides a way to explicitely calculate the time evolution. Nonetheless, its
numerical simulation can be expressed in a few simple and straight forward steps.
Assume an initial (normalized) state |𝜓 (𝑡)〉 of which the unitary dynamics is given
by a Hamiltonian 𝐻 and the dissipation is governed by a set of 𝑁 jump operators
𝐿 𝑗 , where we assume a uniform dissipation rate 𝛾 for simplicity. Furthermore,
we chose a small time step 𝛿𝑡 such that the Markov approximation is valid (i.e.
big with respect to the time at which the correlations in the environment decay,
but small with regard to the timescale at which the system changes) and also
small enough so that the deterministic evolution can be smoothly simulated. The
time evolution of the wave function |𝜓 (𝑡)〉 until a final time 𝑇 in its most simple
formulation is then given by the following steps.

For each time step 𝛿𝑡

1. Generate a random number 𝜖 uniformly distributed between 0 and 1, and
calculate the probabilities 𝑝 𝑗 = 𝛾𝛿𝑡 〈𝜓 (𝑡) |𝐿†𝑗 𝐿 𝑗 |𝜓 (𝑡)〉 for 𝑗 ∈ [1, 𝑁 ]. With these
probabilites construct a set of boundary values 𝑏𝜈 such that 𝑏0 = 0, 𝑏1 = 𝑝1,
𝑏2 = 𝑝1 + 𝑝2, ... , 𝑏𝑁 =

∑
𝑗 𝑝 𝑗 and 𝑏𝑁+1 = 1.

2. IF 𝑏 𝑗−1 ≤ 𝜖 < 𝑏 𝑗 a jump 𝐿 𝑗 takes place and the wave function becomes

|𝜓 (𝑡 + 𝛿𝑡)〉 = 𝐿 𝑗 |𝜓 (𝑡)〉. (A.1)
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Chapter A - Open quantum systems

ELSE IF 𝜖 ≥ 𝑏𝑁 no jump occurs and the wave function is time evolved with
its non-Hermitian Hamiltonian (see the second and third term in (2.53))

|𝜓 (𝑡 + 𝛿𝑡)〉 = |𝜓 (𝑡)〉 − 𝑖
(
𝐻 − 𝑖 𝛾2

∑︁
𝑗

𝐿
†
𝑗
𝐿 𝑗

)
𝛿𝑡 |𝜓 (𝑡)〉. (A.2)

3. Normalize the wave function |𝜓 (𝑡 + 𝛿𝑡)〉

|𝜓 (𝑡 + 𝛿𝑡)〉 = |𝜓 (𝑡 + 𝛿𝑡)〉√︁
〈𝜓 (𝑡 + 𝛿𝑡) |𝜓 (𝑡 + 𝛿𝑡)〉

(A.3)

4. Go back to step 1 if the final time 𝑇 in the evolution is not reached.

The above scheme gives the time evolution up to first order in 𝛿𝑡 . There however
exists a more efficient way to do the time evolution. It is based on determining the
time 𝑡 ′ (with 𝑡 ′ > 𝑡) at which the next jump will occur, rather than checking if a
jump will occur in a time step 𝛿𝑡 . It utilizes the so-called waiting time distribution
for a jump to take place [5]. It holds a close connection to the value of the norm
of the wave function |𝜓 (𝑡)〉. The norm decreases due to the deterministic time
evolution with the effective non-Hermitian Hamiltonian

𝐻eff = 𝐻 − 𝑖 𝛾2
∑︁
𝑗

𝐿
†
𝑗
𝐿 𝑗 . (A.4)

In (2.53) the norm was conserved due to the presence of the first term in the
deterministic term (i.e. the term multiplied with 𝑑𝑡), which is exaclty the decrease
in the norm of |𝜓 (𝑡)〉 at each time step. This allows us to formulate the following
time evolution for an initial (normalized) wave function |𝜓 (𝑡)〉

1. Generate a random number 𝜖1 uniformly distributed between 0 and 1.

2. Time evolve the wave function |𝜓 (𝑡)〉 with the effective Hamiltonian (A.4)
until the time 𝑡 ′ where 〈𝜓 (𝑡 ′) |𝜓 (𝑡 ′)〉 = 𝜖1 as long as 𝑡 ′ < 𝑇 .

3. Generate a new random number 𝜖2 uniformly distributed between 0 and 1
and calculate

𝑝 𝑗 =
𝛾 〈𝜓 (𝑡 ′) |𝐿†

𝑗
𝐿 𝑗 |𝜓 (𝑡 ′)〉∑

𝑘 𝛾 〈𝜓 (𝑡 ′) |𝐿†𝑘𝐿𝑘 |𝜓 (𝑡 ′)〉
, (A.5)

for all 𝑗 ∈ [1, 𝑁 ]. With these probabilites construct a set of boundary values
𝑏𝜈 such that 𝑏0 = 0, 𝑏1 = 𝑝1, 𝑏2 = 𝑝1 + 𝑝2, ... , 𝑏𝑁 =

∑
𝑗 𝑝 𝑗 = 1.
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4. A jump 𝐿 𝑗 occurs for which 𝑏 𝑗−1 ≤ 𝜖2 < 𝑏 𝑗 , the wave function becomes

|𝜓 (𝑡 ′)〉 = 𝐿 𝑗 |𝜓 (𝑡 ′)〉. (A.6)

5. Normalize the wave function

|𝜓 (𝑡 ′)〉 = |𝜓 (𝑡 ′)〉√︃
〈𝜓 (𝑡 ′) |𝜓 (𝑡 ′)〉

. (A.7)

6. Go back to step 1 if the final time 𝑇 in the evolution is not reached.

The time evolution in step 2 is governed by the equation

𝜕 |𝜓 (𝑡)〉
𝜕𝑡

= −𝑖
(
𝐻 − 𝑖 𝛾2

∑︁
𝑗

𝐿
†
𝑗
𝐿 𝑗

)
|𝜓 (𝑡)〉, (A.8)

which can be solved through standard numerical solvers.
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APPENDIX B
Permutational invariance

B.1 Scaling of the method

To calculate the scaling of the method for two-level systems, that is the number of
coefficients one needs to keep track of, the following sum should be calculated

𝑛𝑐𝑜𝑒 𝑓 𝑓 =
∑︁

𝑛00+𝑛01+𝑛10+𝑛11=𝑁

1. (B.1)

One can rewrite this sum as

𝑛𝑐𝑜𝑒 𝑓 𝑓 =

𝑁∑︁
𝑛00=0

(
𝑁−𝑛00∑︁
𝑛01=0

(
𝑁−𝑛00−𝑛01∑︁

𝑛10=0
1
))
, (B.2)

and calculate this using the expressions

𝑛∑︁
𝑘=1

𝑘 =
𝑛 (𝑛 + 1)

2 and
𝑛∑︁

𝑘=1
𝑘2 =

1
6𝑛 (𝑛 + 1) (2𝑛 + 1) , (B.3)

this yields

𝑁∑︁
𝑛00=0

(
𝑁−𝑛00∑︁
𝑛01=0

[𝑁 − 𝑛00 − 𝑛01 + 1]
)
=

𝑁∑︁
𝑛00=0

(
𝑁 2

2 +
𝑛2

00
2 +

3
2𝑁 −

3
2𝑛00 − 𝑁𝑛00 + 1

)
=

1
6𝑁 (𝑁 + 1) (𝑁 + 2)

=

(
𝑁 + 3
𝑁

)
.

(B.4)
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For 𝑝-level systems an equivalent calculation can be performed by employing
Faulhaber’s formula for the sum of the 𝑝-th powers of the first 𝑛 positive integers

𝑛∑︁
𝑘=1

𝑘𝑝 =
𝑛𝑝+1

𝑝 + 1 +
1
2𝑛

𝑝 +
𝑝∑︁

𝑘=2

𝐵𝑘

𝑘!
𝑝!

(𝑝 − 𝑘 + 1)!𝑛
𝑝−𝑘+1, (B.5)

with 𝐵𝑘 the Bernouilli numbers. Note that is the generalized expression for the
sums in (B.3).

However, such a calculation would be, albeit straightforward, quite tedious.
An alternative derivation is found from combinatorial considerations by noting
that the problem requires all possible ways to divide 𝑁 indistinguishable balls
into 𝑝2 distinguishable boxes. This problem is also known as the stars and bars
problem. We will introduce a simple graphical notation and use it to derive the
expression for a general number of 𝑝-level systems. As an example, assume that
we have 𝑁 = 6 stars that have to be distributed over 𝐵 = 𝑝2 = 4 boxes, then a
possible configuration can be visualized as

★★| ★ | | ★★★ . (B.6)

where 𝐵 − 1 = 𝑝2 − 1 = 3 bars divide the four boxes. One can then note that the
problem can be equivalently formulated as the number of ways there are to divide
𝑁 stars and 𝑝2 − 1 bars over 𝑁 + 𝑝2 − 1 positions. Or in other words, the number
of ways to distribute 𝑁 balls over 𝑁 + 𝑝2 − 1 boxes (with a maximum of 1 bar at
each position). The expression for this is given by a simple binomial coefficient,
since the distribution of the 𝑁 balls determines the remaining spots of the bars.
Thus, we obtain that the number of coefficients one needs to keep track of for 𝑁
𝑝-level systems is given by

𝑛𝑐𝑜𝑒 𝑓 𝑓 =

(
𝑁 + 𝑝2 − 1

𝑁

)
. (B.7)

Note that, from a physical point of view, this type of graphical proof was also
used by Paul Ehrenfest and Heike Kamerlingh Onnes as a simple proof for Max
Planck’s expression of complexions, i.e. the number of possible ways to distribute
𝐸 energy elements over 𝑁 resonators [221, 222].
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B.2 - A code example of the permutational invariant solver

B.2 A code example of the permutational invariant
solver

Here we give an example of the usage of the solver we have implemented into
Python, we will refer to it as permutational_invariant_solver in the following. It
allows for the construction of the Liouvillian of all-to-all connected 𝑝-level systems.
As an example we will calculate the Liouvillian for the model studied in chapter 6.
The code is dependent on the NumPy module, the SciPy module, as well as the
QuTiP module.

Next, one has to define the system parameters. For our example we use
parameters similar to those of Fig. 6.1, but for five all-to-all connected 3-level
systems.

Having defined the parameters we can now move onto defining the constructors
for the dissipation operators (called collapse operators in the code), the local
Hamiltonian terms and the nearest-neighbour Hamiltonian.

Note that each term of the local Hamiltonian is implicitely accompanied by
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a sum over all sites, i.e. it consists of collective operators. Similarly, the terms
of the nearest-neighbour, i.e. non-local Hamiltonian, is accompanied by a sum
over all sites and a sum over their respective neighbours. Importantly, this is
different from a sum over the links by a factor 2, which is also the reason that
for the model under consideration the Hermitian conjugate part present in the
model Hamiltonian need not be explicitely taken into account in the definition of
Hnonlocal.

Having defined all objects that govern the time evolution, and thus the Liou-
villian, we can use them to construct the permutational solver and calculate all
operators needed in the permutationally reduced basis.

For the last step we calculate the Liouvillian.

As an example we can use the calculated Liouvillian in combination with
the QuTiP functionallity to calculate its eigenvalues and eigenvectors. For the
considered system size this can still be done with the standard method.

It can also be combined with the method from chapter 9 since the calculated
Liouvillian can be used to simulate the time evolution of the system.
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APPENDIX C
Mean-field validity XYZ model

C.1 Mean-field stability analysis: local dissipation

We consider the model presented in section 5.1. To compare the mean-field analysis
to the full quantum solution, we interpret the all-to-all coupled spin system as a
𝑑-dimensional system. Every time we add a spin the dimension of the system is
also increased by one. This implies that a 𝑑-dimensional system consists of 𝑑 spins
and that infinite dimensions are reached when the system has an infinite amount
of spins. The coordination number can be written as 𝑍 = 𝑑 − 1. The mean-field
equations for the magnetization read

𝑑 〈𝜎 (𝑥)𝑛 〉
𝑑𝑡

= −𝛾2 〈𝜎
(𝑥)
𝑛 〉 +

2
𝑍

∑︁
𝑚

(
𝐽𝑦 〈𝜎 (𝑧)𝑛 〉〈𝜎

(𝑦)
𝑚 〉 − 𝐽𝑧 〈𝜎

(𝑦)
𝑛 〉〈𝜎 (𝑧)𝑚 〉

)
,

𝑑 〈𝜎 (𝑦)𝑛 〉
𝑑𝑡

= −𝛾2 〈𝜎
(𝑦)
𝑛 〉 +

2
𝑍

∑︁
𝑚

(
𝐽𝑧 〈𝜎 (𝑥)𝑛 〉〈𝜎 (𝑧)𝑚 〉 − 𝐽𝑥 〈𝜎 (𝑧)𝑛 〉〈𝜎 (𝑥)𝑚 〉

)
,

𝑑 〈𝜎 (𝑧)𝑛 〉
𝑑𝑡

= −𝛾
(
〈𝜎 (𝑧)𝑛 〉 + 1

)
+ 2
𝑍

∑︁
𝑚

(
𝐽𝑥 〈𝜎 (𝑦)𝑛 〉〈𝜎 (𝑥)𝑚 〉 − 𝐽𝑦 〈𝜎 (𝑥)𝑛 〉〈𝜎

(𝑦)
𝑚 〉

)
.

(C.1)

Note that the sum with index 𝑚 is a sum over the neighbours, i.e. there are
𝑍 = 𝑑 − 1 terms in the sum. The fixed point solution is given by 〈𝜎 (𝑥)𝑛 〉 = 0,
〈𝜎 (𝑦)𝑛 〉 = 0 and 〈𝜎 (𝑧)𝑛 〉 = −1. This is defined as the paramagnetic (PM) phase. We
now study the influence of small perturbations 𝛼𝑛 to this fixed point solution, i.e.
through the substitution 〈𝜎 (𝛼)𝑛 〉 → 〈𝜎 (𝛼)𝑛 〉 + 𝛼𝑛 with 𝛼 = 𝑥,𝑦, 𝑧. We can thus rewrite
the equations as
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𝑑𝑥𝑛

𝑑𝑡
= −𝛾2𝑥𝑛 +

2
𝑍

∑︁
𝑚

(
𝐽𝑦 (−1 + 𝑧𝑛)𝑦𝑚 − 𝐽𝑧𝑦𝑛 (−1 + 𝑧𝑚)

)
,

𝑑𝑦𝑛

𝑑𝑡
= −𝛾2𝑦𝑛 +

2
𝑍

∑︁
𝑚

(𝐽𝑧𝑥𝑛 (−1 + 𝑧𝑚) − 𝐽𝑥 (−1 + 𝑧𝑛)𝑥𝑚) ,

𝑑𝑧𝑛

𝑑𝑡
= −𝛾𝑧𝑛 +

2
𝑍

∑︁
𝑚

(
𝐽𝑥𝑦𝑛𝑥𝑚 − 𝐽𝑦𝑥𝑛𝑦𝑚

)
.

(C.2)

From the last equation we find that 𝑧𝑛 = 0 for all 𝑛 in the steady-state solution as
the terms 𝑥𝑛𝑦𝑚 contribute to second order and can be neglected. We wish to study
the stability of the paramagnetic phase to a ferromagnetic or antiferromagnetic
perturbation of the system. To this end we perform a Fourier transform and con-
sider 𝑑-dimensional perturbations with wave vector ®𝑘 = (𝑘1, 𝑘2, ..., 𝑘𝑑 ). Remember
that for a 𝑑-dimensional lattice there are 𝑍 = 𝑑 − 1 possible summations over 𝑚.
The remaining two equations can thus be written as

𝑑

𝑑𝑡

∑︁
𝑘

𝑥𝑘𝑒
𝑖 ®𝑘.®𝑛 = −𝛾2

∑︁
𝑘

𝑥𝑘𝑒
𝑖 ®𝑘.®𝑛 + 2

𝑍

(
−𝐽𝑦

∑︁
𝑚

∑︁
𝑘

𝑦𝑘𝑒
𝑖 ®𝑘. ®𝑚 + 𝐽𝑧

∑︁
𝑚

∑︁
𝑘

𝑦𝑘𝑒
𝑖 ®𝑘.®𝑛

)
, (C.3)

𝑑

𝑑𝑡

∑︁
𝑘

𝑦𝑘𝑒
𝑖 ®𝑘.®𝑛 = −𝛾2

∑︁
𝑘

𝑦𝑘𝑒
𝑖 ®𝑘.®𝑛 + 2

𝑍

(
−𝐽𝑧

∑︁
𝑚

∑︁
𝑘

𝑥𝑘𝑒
𝑖 ®𝑘.®𝑛 + 𝐽𝑥

∑︁
𝑚

∑︁
𝑘

𝑥𝑘𝑒
𝑖 ®𝑘. ®𝑚

)
. (C.4)

The summation over 𝑚 can be written as∑︁
𝑚

𝑒𝑖
®𝑘. ®𝑚 = 𝑒𝑖

®𝑘.®𝑛
(
𝑒𝑖𝑘1 + 𝑒𝑖𝑘2 + ... + 𝑒𝑖𝑘𝑑 + 𝑒𝑖 (𝑘1+𝑘2) + 𝑒𝑖 (𝑘1+𝑘3) + ...

+ 𝑒𝑖 (𝑘1+𝑘2+𝑘3) + ... + 𝑒𝑖 (𝑘1+𝑘2+...+𝑘𝑑 )
)
.

(C.5)

As there is only one neighbour in each direction, i.e. ®𝑚 = ®𝑛 + 1𝑙 with 1𝑙 a 𝑑-
dimensional vector with a one on the entries where ®𝑛 does not coincide with ®𝑚,
i.e. the translation needed to go from site 𝑚 to 𝑛. The wave numbers 𝑘𝑖 can take
the values 𝑘𝑖 = 0, 𝜋 . Now, we note that the system of equations (3) and (4) can be
written as a linear system, and the time evolution of the small perturbations 𝑥𝑛
and 𝑦𝑛 diverge when the eigenvalues of the 2 × 2 matrix of this linear system are
positive. We denote the sum between the brackets of equation (C.5) as 𝑆, if we
write down the above condition for the eigenvalues we find:

− 𝛾
2

16 >

(
𝑆

𝑍
𝐽𝑥 − 𝐽𝑧

) (
𝑆

𝑍
𝐽𝑦 − 𝐽𝑧

)
. (C.6)
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To check whether an antiferromagnetic (AFM) phase can occur we look at the
instability when 𝑘𝑖 = 𝜋 for all 𝑖. We find that the term 𝑆 in the brackets from (C.5)
is equal to

− 𝑑 +
(
𝑑

2

)
−

(
𝑑

3

)
+ ... =

𝑑∑︁
𝑖

(−1)𝑖
(
𝑑

𝑖

)
. (C.7)

Using
∑𝑑

𝑖=1
(
𝑑
𝑖

)
𝑟 𝑖 = (1 + 𝑟 )𝑑 − 1 and 𝑟 = −1 we find that this equals −1. Substituting

this in (C.6) we find in the thermodynamic limit 𝑑 →∞

− 𝛾
2

16 > 𝐽 2
𝑧 . (C.8)

This equation cannot be satisfied for any value 𝐽𝑧 , which has to be real.
The ferromagnetic (FM) phase results from the instability of the PM phase to
𝑘𝑙 = 0 for all 𝑙 . The sum from (C.5) then becomes equal to 𝑆 = 𝑍 . We obtain

− 𝛾
2

16 > (𝐽𝑥 − 𝐽𝑧)
(
𝐽𝑦 − 𝐽𝑧

)
, (C.9)

which is identical to the nearest-neighbor mean-field result. The phase diagram
thus only consists of a PM phase and FM phase.

C.2 Collective dissipation only: Symmetry and rela-
tion with superradiant light-matter models

In the main text in chapter 5, we mainly consider the presence of either local and
collective dissipation, or only of the local one. Here, let us briefly consider the
properties of the system in the presence of collective dissipation only, Γ ≠ 0 and
𝛾 = 0 in Eq. (3.3) [98, 99, 101]. In this case, the total spin length

𝑆2 =

(
𝑆𝑥

)2
+

(
𝑆𝑦

)2
+

(
𝑆𝑧

)2
, (C.10)

is a conserved quantity, [
𝑆2, 𝐻

]
=

[
𝑆2, 𝑆−

]
= 0, (C.11)

and therefore the presence of conserved quantities implies the existence of several
steady states for the Lindbladian dynamics [67, 184]. In more physical terms, this
indicates that there exist different multiplets, which are eigenstates of 𝑆2, that are
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not connected by the dissipative dynamics. These multiplets are known as Dicke
ladders [163].

This terminology is inherited from the study of the Dicke model. The sim-
ilarities between the all-to-all connected XYZ and Dicke models are both due
to mathematical similarities, which become even more apparent when exploiting
the permutational symmetry, and because this is another benchmark model thor-
oughly used to investigate both quantum phase transitions and dissipative phase
transitions, this time in the field of cavity QED and quantum optics [101], instead
of spin models.

Describing the collective interaction between an ensemble of two-level systems
with a unique photonic field, the Dicke model is known to display superradiant
photon emission in the presence of collective dissipation [223–225]. Superradiance
is also know to occur in crystals of molecular nanomagnets [226]. Here with
superradiant emission we refer to the fact that the light emission intensity scales
as 𝑁 2 and occurs on a timescale that shrinks with the size of the system, a macro-
scopic manifestation of cooperative behavior. Note that this phenomenon does
not require any strong coupling between light and matter to occur (differently
from the superradiant phase transitions), so that one can map the light-matter
model to an effective spin model that fulfils Eq. (C.11), with 𝐻 = 𝜔𝑧𝑆

𝑧 , where 𝜔𝑧

is the resonance frequency. Superradiance has also recently been experimentally
observed in novel optical materials, such as Erbium-doped Yttrium Orthosilicate
[227] and Lead Halide Perovskite [228].

Note that, in the presence of collective coupling only, a Holstein-Primakoff
transformation can be performed to map the system to a bosonic model [229],
whose first-order approximation is valid in the low-excitation regime and is good
in the thermodynamic limit. The main assumption of coupling only to a collective
field is based on the assumption of identical two-level systems (spins) and their
identical coupling to the photonic field. When these assumptions are relaxed,
intermediate superradiant regimes can still be obtained [32, 36, 230–233], resulting
from the population of different Dicke ladders [160, 234], experimentally verified
in solid-state systems [176, 180, 182]. In that case, a bosonic approximation in
terms of polaritonic populations can be performed, but only in the low-excitation
regime [234, 235]. In the presence of local incoherent pumping and collective
dissipation, the superradiant phase [236] and steady-state superradiant emission
[237] have been proposed and observed in cavity QED setups with atomic clouds
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[238, 239]. Similarly, trapped ions and atomic lattices provide the opportunity to
engineer long-range interactions and dissipation [240, 241], relevant also for the
implementation of the anisotropic Heisenberg models [242].
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APPENDIX D
Time-dependent variational principle

for the (cluster-)Gutzwiller ansatz
The time-dependent variational principle ensures that the time evolution of a
variational wave function with the system’s Hamiltonian is restricted to the
manifold of the wave function under consideration [243]. Let us for a moment
assume that our variational wave function is given by a single-site Gutzwiller
ansatz

|𝜓 〉 =
⊗
𝑖

|𝜓𝑖〉, (D.1)

and we wish to use it to calculate the time evolution of a system governed by an
effective Hamiltonian

𝐻eff = 𝐻 − 𝑖 𝛾2
∑︁
𝑖

𝐿
†
𝑖
𝐿𝑖 =

∑︁
𝑘

𝐻𝑘 +
∑︁
〈𝑘,𝑘′〉

𝐻𝑘,𝑘′, (D.2)

where 𝐻 consists of a sum over local terms 𝐻𝑘 as well as a sum over nearest-
neighbour interactions 𝐻𝑘,𝑘′. In the quantum trajectory approach this corresponds
to a (unnormalized) time evolution between the jumps that is given by

|𝜓 (𝑡)〉 = exp
(
−𝑖𝐻eff

)
|𝜓0〉, (D.3)

with |𝜓0〉 an initially normalized wave function of the Gutzwiller form (D.1). Since
the Hamiltonian 𝐻eff consists of a sum of operators acting on the various sites in
the system (as well as its neighbors), its action on |𝜓0〉 will result in a “new” wave
function that is no longer of the form (D.1). In other words, the wave function has
left the variational manifold of Gutzwiller wave functions. After each time step one
thus has to project back onto this variational manifold. To remedy this, one can
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employ the time-dependent variational principle. It is based on the minimization
of the functional

F
[
𝜓,𝜓 †

]
=

〈
𝜓

���𝜕𝑡 + 𝑖𝐻eff

���𝜓 〉
, (D.4)

which leads to an expression for a “new” Hamiltonian whose action keeps the
wave function in the variational manifold at all times. Derivation of F

[
𝜓,𝜓 †

]
with respect to 〈𝜓𝑖 |, which coincides with restricting the wave function |𝜓 〉 to the
manifold of Gutzwiller states, and equating the result to zero yields(⊗

𝑗≠𝑖

〈
𝜓 𝑗

���) [(
𝜕𝑡 + 𝑖𝐻eff

) ���𝜓 〉]
= 0. (D.5)

This allows us to write for every |𝜓𝑖〉, by using the last term of the equality in
(D.2) and the fact that 〈𝜓 𝑗 |𝜓 𝑗 〉 = 1, the following expression

𝜕

𝜕𝑡
|𝜓𝑖〉 = −𝑖

(
𝐻𝑖 +

∑︁
𝑗≠𝑖

〈𝜓 𝑗 |𝐻𝑖, 𝑗 |𝜓 𝑗 〉
)
|𝜓𝑖〉, (D.6)

with the sum
∑

𝑗≠𝑖 running over the nearest neighbours 𝑗 of the site 𝑖. The terms
〈𝜓 𝑗 |𝐻𝑖, 𝑗 |𝜓 𝑗 〉 are nothing more than the mean-field terms, i.e. those terms across
the boundary of the applied cluster (in our example here a single-site cluster).
By writing 𝐻𝑖, 𝑗 as the product of the local operators acting on site 𝑖 and 𝑗 this
becomes immediately clear

〈𝜓 𝑗 |𝐻𝑖, 𝑗 |𝜓 𝑗 〉 =
∑︁
𝑟

𝐽 𝑟𝑖 𝑗 〈𝜓 𝑗 |𝑋 𝑟
𝑖 ⊗ 𝑌 𝑟

𝑗 |𝜓 𝑗 〉 =
∑︁
𝑟

𝐽 𝑟𝑖 𝑗𝑋
𝑟
𝑖 〈𝜓 𝑗 |𝑌 𝑟

𝑗 |𝜓 𝑗 〉, (D.7)

with 𝐽 𝑟𝑖 𝑗 a coupling parameter for an interaction of type 𝑟 and 𝑋 𝑟
𝑖 and 𝑌 𝑟

𝑗 the
corresponding operators acting on site 𝑖 and 𝑗 respectively. This derivation can be
straight-forwardly extended to bigger cluster sizes, leading exactly to an equation
of the form (7.12). Using the cluster notation introduced in section 7.2 and for
local dissipation with a jump operator 𝐿𝑖 we can write

𝜕𝑡 |𝜓C〉 = −𝑖
[
𝐻C + 𝐻B(C) − 𝑖

𝛾

2
∑︁
𝑖∈C

𝐿
†
𝑖
𝐿𝑖

]
|𝜓C〉, (D.8)

which is the non-Hermitian time evolution where the variational ansatz never
leaves the manifold of cluster-Gutzwiller wave functions, as desired.
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Algorithm 1 Arnoldi iteration

Input: 𝜎, a random initial density matrix; L the superoperator; the number 𝑚 of
required eigenvalues; tolerance 𝜏 .
Output: The 𝑚 pairs (𝜆eff

𝑗 , 𝜌eff
𝑗 ) of approximated eigenvalues and eigenmatrices.

1: 𝜎1 ← 𝜎/‖𝜎 ‖]
2: 𝑘 ← 1
3: while Convergence is not reached do
4: 𝑘 ← 𝑘 + 1
5: 𝜈 ← L𝜎𝑘−1
6: for 1 ≤ 𝑗 ≤ 𝑘 − 1 do
7: 𝑙 𝑗,𝑘−1 ← Tr

[
𝜎
†
𝑗
𝜈

]
=

〈
𝜎 𝑗 |𝜈

〉
[recall that 𝑙 𝑗,𝑘−1 are the elements of Leff

𝑛 in
(9.7)]

8: 𝜈 ← 𝜈 − 𝑙 𝑗,𝑘−1𝜎 𝑗
9: end for

10: 𝑙𝑘,𝑘−1 ← ‖𝜈 ‖
11: diagonalize Leff

𝑛 and define the pairs (𝜆eff
𝑗 , 𝜌eff

𝑗 )
12: if 𝑙𝑘,𝑘−1 = 0 (numerically) or ‖(L − 𝜆eff

𝑙
)𝜌eff

𝑗 ‖ < 𝜏 for all 𝑙 < 𝑚 then
13: Convergence is reached
14: else
15: 𝜎𝑘 ← 𝜈/‖𝜈 ‖
16: end if
17: end while

194



Algorithm 2 Krilov time evolution

Input: 𝜎, a random initial density matrix; 𝐻 the Hamiltonian; {𝐽𝜇} the set of
jump operators; time 𝑇 for each step; the number 𝑚 of required eigenvalues;
tolerance 𝜏 .
Output: The 𝑚 pairs (𝜆eff

𝑗 , 𝜌eff
𝑗 ) of approximated eigenvalues and eigenmatrices

of the Liouvillian.

1: define two functions, one which returns L𝜌 (𝑡), and one which returns 𝜌 (𝑡 +𝑇 )
given 𝜌 (𝑡) using the Hamiltonian 𝐻 , {𝐽𝜇} and the jump operators. We will
indicate them as L𝜌 and E𝜌 even if L or E are never explicitly used

2: 𝜎1 ← 𝜎/‖𝜎 ‖]
3: 𝑘 ← 1
4: while Convergence is not reached do
5: 𝑘 ← 𝑘 + 1
6: 𝜈 ← time evolution of 𝜎𝑘−1 for a time 𝑇
7: for 1 ≤ 𝑗 ≤ 𝑘 − 1 do
8: 𝑒 𝑗,𝑘−1 ← Tr

[
𝜎
†
𝑗
𝜈

]
=

〈
𝜎 𝑗 |𝜈

〉
[recall that 𝑒 𝑗,𝑘−1 are the elements of Eeff

𝑛 in
(9.13)]

9: 𝜈 ← 𝜈 − 𝑒 𝑗,𝑘−1𝜎 𝑗
10: end for
11: 𝑒𝑘,𝑘−1 ← ‖𝜈 ‖
12: diagonalize Eeff

𝑛 and define the pairs (𝜖eff
𝑗 , 𝜌eff

𝑗 )

13: if 𝑒𝑘,𝑘−1 = 0 (numerically) or




Tr

[(
𝜌eff
𝑗

)†
L𝜌eff

𝑗

]



2
−




Tr

[(
𝜌eff
𝑗

)†
L2𝜌eff

𝑗

]



 <

𝜏 for all 𝑙 < 𝑚 then
14: Convergence is reached
15: else
16: 𝜎𝑘 ← 𝜈/‖𝜈 ‖
17: end if
18: end while
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