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Samenvatting
Dit proefschrift situeert zich in het domein van de fysica van de gecondenseerde

materie, die breed kan worden gedefinieerd als de studie van hoe de macroscopische
eigenschappen van materie, zoals vaste stoffen, vloeistoffen of zelfs meer exotische
fasen, onstaan als gevolg van het gedrag van de microscopische bestanddelen ervan.
De grootste moeilijkheid bij de meeste vraagstukken in dit domein komt neer
op het uitzoeken hoe interacties een invloed uitoefenen op de verschillende delen
van het systeem die op zichzelf goed begrepen zijn. Inderdaad, terwijl de meeste
fysicastudenten de exacte kwantummechanische oplossing voor het gedrag van een
waterstofatoom op een stukje papier kunnen neerschrijven, wordt voor een wolkje
van honderden atomen dezelfde taak hopeloos zelfs met behulp van krachtige
supercomputers. Het doel van de fysicus is daarom, misschien in tegenstelling
tot wat vaak wordt gedacht, niet zozeer om altijd exacte oplossingen te vinden
maar eerder om te begrijpen welke processen essentieel zijn en hierrond juiste
benaderingen te kunnen maken. Speelt het gedrag van de atoomkern nu echt een
grote rol bij het begrijpen van de meeste eigenschappen van ons wolkje atomen?

Een interessante klasse van problemen die in deze thesis aan bod zullen komen
situeren zich in het deeldomein van polaronische fysica, waarbij een klein systeem
dat in wisselwerking staat met een groot extern systeem bestudeerd kan worden als
een onzuiverheid die wordt ingebracht in een medium of omgeving. De onzuiverheid
verstoort het medium en vormt een quasideeltje dat bestaat uit de onzuiverheid
samen met een wolk van excitaties van het medium, ook wel een polaron genoemd.
Het concept van een polaron is voor het eerst geïntroduceerd, en bleek ook enorm
succesvol te zijn, om de eigenschappen te beschrijven van een elektron dat door
een ionenrooster van een kristal beweegt. Hoewel polaronen nu al bijna een eeuw
in verschillende fysische systemen worden bestudeerd, werd het domein in een
geheel nieuwe richting geduwd door de recente experimenten waarbij polaronen zijn
gemaakt door onzuiverheidsatomen in te brengen in Bose-Einstein-condensaten.

De theoretische beschrijving van het Bose-polaron is om een aantal redenen
bijzonder uitdagend. De grote experimentele vrijheid in ultrakoude atomaire gassen
maakt het mogelijk om meer systeemparameters in te stellen en omstandigheden
te creëren waarin nieuwe soorten interactieprocessen tussen de onzuiverheid en het
condensaat belangrijk worden, die voorheen niet werden aangetroffen in andere
polaronische systemen. Afgezien van deze uitbreiding blijkt het Bose-polaron ook
meer kwantummechanisch gedrag te vertonen dan zijn tegenhanger in vaste stoffen,
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wat nieuwe theoretische moeilijkheden veroorzaakt. Er is bijvoorbeeld aangetoond
dat Feynmans variationele padintegraalmethode, die tot nu toe de theoretische
voorkeursmethode was voor het bestuderen van polaronen in de vastestoffysica,
niet in staat is om het Bose-polaron te beschrijven.

Gemotiveerd door dit probleem, is het doel van deze thesis om drie uitbreidin-
gen van de padintegraalmethode te bestuderen die de bestaande tekortkomingen
aanpakken en verbeteren in verschillende richtingen. In overeenstemming hiermee
worden de meest opvallende resultaten van het proefschrift ook gepresenteerd met
de nadruk op padintegratiemethoden, terwijl het Bose-polaronprobleem eerder de
leidraad zal vormen. Vooral in de tweede helft van de thesis zal duidelijk blijken dat
sommige van de methoden bredere toepassingen zouden kunnen hebben dan alleen
in de polaronfysica, in het bijzonder in de context van open kwantumsystemen of
variationele methoden voor veeldeeltjes systemen.

Hoofdstuk 1 van dit proefschrift bestaat uit een korte inleiding tot de po-
laronfysica. Na een overzicht te geven van de rijke geschiedenis van dit domein,
zal het Bose-polaronprobleem van een onzuiverheid in een condensaat worden
besproken. In het bijzonder zal de nadruk liggen op de verschillende experimenten
en theoretische modellen die zijn gebruikt om dit systeem te bestuderen.

In hoofdstuk 2 beginnen we met de bespreking van het falen van Feynmans
variationele padintegraalmethode voor het Bose-polaronprobleem – iets dat recent
veel aandacht heeft gekregen in de literatuur. We beschouwen een aantal mogelijke
uitbreidingen en tonen aan dat de padintegraalmethode voor dit probleem in
twee stappen enorm verbeterd kan worden. Er wordt aangetoond dat de nieuwe
aanpak uitstekend overeenkomt met rigoureuze diagrammatische Monte Carlo-
berekeningen, wat dus bevestigt dat de padintegraalmethode kan worden gebruikt
om dit uitdagendere polaronische systeem te bestuderen.

Om polaron vorming in Bose gassen te beschrijven, moet er ook rekening
worden gehouden met verstrooiingsprocessen van hogere orde tussen de onzuiver-
heden en excitaties in het gas, wat niet beschreven wordt door het voorheen veel
bestudeerde Fröhlich-model. In hoofdstuk 3 wordt een methode gepresenteerd om
een hersommatie van deze hogere-orde processen op het niveau van de effective
polaronactie uit te voeren, en wordt dit vervolgens toegepast op een enkelvoudig
Bose-polaron.

In de experimenten worden de onzuiverheden in eindige aantallen gecreëerd
en zijn ze bovendien bosonisch of fermionisch. Het is daarom noodzakelijk om
voorzichtig te zijn met deeltjesstatistiek en na te gaan wanneer deze in rekening
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gebracht moet worden. In het laatste deel van deze thesis richten we ons op het
ontwikkelen van een kader waarin het mogelijk zou zijn om dit soort problemen aan
te pakken, terwijl de vrijheid over het type omgeving zeer algemeen moet kunnen
blijven in lijn met de bevindingen van Hoofdstuk 2. Hiervoor wordt in Hoofdstuk
4 een formalisme gepresenteerd om bosonen met algemene geheugenkernels in het
canonische ensemble te beschrijven. Deze benadering wordt vervolgens uitgebreid
naar één-en tweepuntscorrelatiefuncties in Hoofdstuk 5. De belangrijkste focus
van de discussie is gericht op variationele modellen van kwantumsystemen met
meerdere deeltjes in een omgeving, waarvan Bose-polaronen een voorbeeld kunnen
zijn.

Ten slotte combineren we de verschillende methoden uit deze thesis in Hoofdstuk
6 om een aantal grondtoestandseigenschappen van een eindig aantal Bose-polaronen
bij nultemperatuur te bestuderen. We bespreken het belang van de voorgenoemde
hogere-orde verstrooiingsprocessen en vinden dat voor meerdere onzuiverheden
zelfs bij zwakke interacties deze processen een cruciaal stabiliserend effect vertonen.
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Abstract
This thesis is situated in the field of condensed matter physics which can be

broadly defined as the study of how the macroscopic properties of matter such
as solids, liquids or even more exotic phases arise following from the behavior of
its microscopic constituents. The main difficulty in almost any condensed matter
problem comes down to figuring out how interactions affect different parts of the
system that are by themselves well understood. Indeed, while any undergraduate
physics student can write down the exact quantum mechanical solutions for the
behavior of a hydrogen atom on a piece of paper, for hundreds such atoms this
same task becomes hopeless even with the aid of powerful supercomputers. The
goal of the physicist is therefore, perhaps contrary to popular belief, to make
approximations to the system that capture the processes that are essential for the
phenomenon of interest and neglect those that are not. Does the behavior of the
atomic nucleus really play a role in understanding the average properties of our
collection of atoms?

One interesting class of problems that will be studied in this thesis is found
in the subdomain of polaronic systems, where a small system of interest that is
interacting with a large external system is studied through the lens of an impurity
being immersed in a medium. The impurity disturbs the medium and together
with a surrounding cloud of excitations of the medium forms a quasiparticle called
a polaron. The concept of a polaron has first been introduced to understand the
properties of an electron moving through an ionic lattice of a solid crystal for which
it proved to be extremely successful. Although polarons have now been studied for
nearly a century in various physical systems, recent experiments where polarons
have been created by immersing impurity atoms in Bose-Einstein condensates have
pushed the domain in a completely new direction.

The theoretical description of the Bose polaron is particularly challenging
for a couple of reasons. The great experimental freedom in ultracold atomic
gases allows one to create conditions where novel types of interaction processes
between the impurity and condensate, that have previously not been encountered
in other polaronic systems, now become important. Aside from this extension,
the Bose polaron also seems to exhibit more quantum mechanical properties
than its solid state counterpart which creates new theoretical difficulties. In
particular, Feynman’s variational path integral treatment, that has thus far been
the theoretical method of choice in the description of polarons in solid state physics,
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has been shown to fail to describe the Bose polaron.
Motivated by this problem, the aim of the thesis is to study three extensions

of the path integral approach that address the current shortcomings and improve
upon them in various directions. In accordance, the most notable results of the
thesis are also presented with an emphasis on path integration methods, whereas
the Bose polaron problem will act as a guide towards points of improvement.
Especially towards the latter half of the thesis it will be shown that some of the
methods could have wider applications than just in polaron physics, in particular
in the context of open quantum systems or many body variational models.

Chapter 1 of this thesis consists of a brief introduction to polaron physics for
the unfamiliar reader. After providing an overview of the rich history of this field,
the Bose polaron problem of an impurity in a condensate will be discussed. In
particular, the focus will lie on the various experiments and theoretical models
that have been used to study this system.

In Chapter 2 we start by discussing the failure of Feynman’s variational path
integral approach to the Bose polaron problem which has received significant
attention in the literature in the past decade. We proceed by considering a number
of extensions and show that the path integral approach to this problem can be
tremendously improved in two steps that have been shown to produce only minor
corrections in previous solid state polaron studies. We show that the new approach
is in excellent agreement with rigorous diagrammatic Monte Carlo calculations
and establish that the path integral approach is capable of capturing the physics
of this more challenging polaronic system.

To describe polaron formation in Bose gases, higher-order scattering events
between the impurities and excitations in the gas have to be taken into account,
which requires one to go beyond the well-studied Fröhlich model. In Chapter 3, a
method is presented to perform a resummation of these higher-order scattering
events at the level of the effective polaron action, and is subsequently applied to a
single Bose polaron.

In the experiments the impurities are created at finite number and are either
bosonic or fermionic. It is therefore necessary to be cautious with particle statistics
and confirm case by case when such effects can be neglected. The final aim of
the thesis is to develop a framework that would allow us to tackle these types
of problems while keeping the freedom on the type of environment sufficiently
general, in accordance with the findings in Chapter 2. For this purpose, in Chapter
4 a formalism to describe bosons with general memory kernels in the canonical
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ensemble is presented. This approach is then extended towards one and two-point
correlation functions in Chapter 5. The main focus of the discussion is aimed
towards a generalization of previous path integral techniques and an application
to open quantum systems of identical particles, of which Bose polarons could be
one example.

Finally, in Chapter 6 we apply the many-impurity generalized approach to study
a number of properties of a finite number of Bose polarons at zero temperature.
We discuss the importance of the aforementioned higher-order scattering events
for multiple impurities and find that even at weak coupling they provide a crucial
stabilizing effect.
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CHAPTER 1
Polarons

Polarons have a long-standing history of study across multiple physical systems
requiring various theoretical techniques for their description. This chapter presents
a general overview of the topic and introduces useful concepts that reoccur through-
out the thesis. After covering the early history of polarons and their first theoretical
models, the emphasis is placed on the Bose polaron and its differences with the
solid state polaron.

1.1 A brief history of polarons

The concept of a polaron can be traced back to the seminal paper by Landau
nearly a century ago [1] in which he imagines the internal dynamics in a crystal
from the point of view of a single electron. As the electron moves through an ionic
crystal it naturally induces disturbances in the lattice as visualized in Figure 1.1,
which can be thought of as a polarization cloud following the electron. It turns
out to be useful to think of the electron together with all the disturbances in the
lattice as a single quasiparticle – later appropriately coined as the polaron by Pekar
[2]. The polaron has a number of interesting properties different from the bare
electron, such as a binding energy, effective mass or radius. If the polaron is small
enough, discrete lattice properties have to be taken into account described by the
Holstein polaron model [3], but in general we will be concerned with large polarons
in a continuous description. An important generalization that allowed to study
these properties more rigorously was a formulation of the problem in the language
of a many-body Hamiltonian in second quantization in the Fröhlich model [4].
Herein the electron is described as an impurity interacting with a quantum field
of excitations which represent the phonons of the lattice, a picture still used to
this day. Not long after the onset of these theoretic predictions the first polaronic
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Chapter 1 - Polarons

effects were observed in an experiment [5].

Figure 1.1: A visual depiction of the electron disturbing the ionic lattice
(left) and and impurity disturbing the particles in a Bose gas (right). Courtesy
of APS/Carin Cain; Physics 9, 86 (2016).

Although the Fröhlich model turns out to be suitable to describe large polarons,
the problem of theoretically studying a many-body quantum system is far from
easy and strongly depends on the system-specific properties. The first attempt
to crack open the problem was made by Pekar [2], relying on a classical product
ansatz in which the electron is strongly localized. At the time it was well known
that this approximation works well in the limit of strong coupling between the
impurity and phonons, but only recently a rigorous proof has been formulated
[6]. The other seminal approach in the literature is the Lee Low Pines approach
[7], where the crucial step can be thought of as an inverse Hubbard-Stratonovic
transformation. In this approach the electron is integrated out, and one remains
with a phonon field which now exhibits difficult quartic interactions that are
mediated by the electron. A mean-field approximation of this effective field yields
a description which is valid at weaker coupling.

The significant breakthrough that provided the all-coupling approach was
formulated by Feynman [8], which is perhaps the most illustrative case in non-
relativistic physics where the path integral approach yields a superior solution. In
this paper, the complicated polaron system of an electron and phonons described
by the Fröhlich model is mapped on a simple coupled harmonic oscillator model
for which then a variational criterion is formulated in the path integral approach.
In the semi-analytical realm, the approach is to this day arguably considered the
most successful principle due to its simplicity and remarkable accuracy for large
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1.2 - Bose-Einstein condensation

solid state polarons coupling to either the optical or acoustic phonons [9, 10]. In
the decades to follow numerous new theoretical investigations and experimental
results for polarons in materials have been obtained, which the interested reader
can find in the recent review [11].

The scope of polaronic physics has since then been significantly broadened to
the study of impurities interacting with excitations of some medium in which they
are immersed. For example, in (anti)ferromagnetic solids the charge carriers or
holes could mainly be coupled to magnetic excitations of the lattice instead of
the phonons, resulting in the spin polaron [12]. On the other hand, impurities
can still be electrons but on a completely different medium such as for example
liquid helium films [13] forming the ripplopolarons. As a final example, instead of
electrons, quasiparticles such as bound electron-hole pairs could be coupling to
the phonons, which form the class of exciton-polarons [14].

More recently, a new class of polarons in ultracold atomic quantum gases has
been the subject of intensive investigation. Here, an atom of a different type or
in a different spin state is immersed into either a Fermi gas or a Bose gas and
exhibits a polaronic effect due to disturbing the gas as shown in Figure 1.1. The
first type of experimental realizations concerned observing polaronic effects of
impurities in degenerate Fermi gases [15–18]. From an experimental point of view
Fermi gases were more accessible in initial studies due to the absence of inelastic
three-body collisions and a greater spatial extent [19]. For this reason it took longer
to realize the Bose polaron counterpart. Following upon a series of experimental
improvements [20–22], finally in 2016 two parallel experiments at JILA and Aarhus
have presented observations of Bose polarons up to the strong coupling regime
[19, 23]. More advanced experimental studies followed later, such as probing the
Bose polaron at criticality [24] or an investigation of the dynamics of Bose polaron
formation [25]. Even in the absence of impurities, Bose-Einstein condensates are
delicate systems and it is illustrative to first discuss them separately in the next
section.

1.2 Bose-Einstein condensation

1.2.1 Identical particles

Imagine two identically looking apples, or other fruit of choice, placed on a table
in front of you and then get cautiously interchanged in front of your eyes. As far
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Chapter 1 - Polarons

as you can tell the apples have no markings or other traces to tell them apart, and
to the best of your knowledge the setup looks identical as before. Yet if you were
asked the somewhat absurd question "Is the universe the same as before?" it is not
unlikely that your basic intuition would tell you that something has changed and
the two cases are somehow still distinct realizations of all the possible states of
the world. This is quite reasonable, and sometimes you can get away with this
intuition. For example, when describing the apples as classical objects one can
study the phase space of positions and momenta {r1,p1, r2,p2} with each of the
labels referring to a specific apple and obtain a perfectly valid classical physics
description.

However, at the fundamental level particles can be truly identical. When
assigning probabilities to finding particles at positions r1 and r2, there should
be no measurable way to tell one case apart from the other. In the language of
quantum mechanics this property is imposed on the quantum state Ψ of a system
through:

|Ψ(r1, r2)|2 = |Ψ(r2, r1)|2 . (1.1)

Any state Ψ that describes the probability density amplitude of the particles has
to be unchanged up to a global phase when the positions of identical particles
are exchanged. It turns out that as fundamental particles, only two classes are
known to exist: bosons and fermions with an exchange phase of respectively 1
or −1, where the former will be our main focus for now. This innocuous looking
restriction has a tremendous impact on the way combinatorics of different particle
states is performed, which in turn changes the particle statistics. We will return
to this statistical way of looking at the problem in great technical detail later
in this thesis, but let us first consider a qualitative discussion of bosons at low
temperatures.

1.2.2 Macroscopic ground state

As already alluded to previously, in some circumstances the quantum mechanical
or identical nature of particles can be completely ignored while in others it becomes
of crucial importance. The argument found in many textbooks on thermal physics
e.g. [26, 27] nicely captures a qualitative picture of the transition from a classical
to a quantum regime. Consider the case of a gas of N particles of mass m trapped
in a box of volume V at a temperature T . The typical length scale at which
individual particles in the gas exhibit quantum mechanical wavelike properties can
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1.2 - Bose-Einstein condensation

be estimated by the thermal de Broglie wavelength [26]:

λth =
√

2π~2

mkBT
, (1.2)

where ~ is the reduced Planck constant and kB the Boltzmann constant. When
this scale is far smaller than the average interparticle distance λth � (V/N)1/3

on average the particles do not feel each other’s wavelike nature and hence the
gas behaves as a classical system of point particles. As can be seen from (1.2)
this is typically the case when either the temperature is sufficiently high or when
the gas is sufficiently dilute. On the other hand, as the gas is cooled at some
critical temperature Tc the length scales become comparable and λth ≈ (V/N)1/3.
As the particle waves start to overlap in this regime the quantum effects become
dominant and a bosonic system forms a composite macroscopic matter wave as
depicted in Figure 1.2. Roughly speaking, in this regime the distinction between
separate particles is completely lost and the system behaves as a single quantum
mechanical wave packet forming the Bose-Einstein condensate (BEC).

Figure 1.2: As the temperature is decreased the quantum wavelike proper-
ties of the particles start to overlap and the gas forms a macroscopic wave.
Figure adapted from [27], with the permission of Springer Nature.

In 1995 at JILA [28] a gas of 87Rb atoms was cooled to temperatures of ∼ 170nK
at which observations of velocity profiles for the first time ever confirmed the
existence of a BEC, not much later followed by similar observations in experiments
at MIT [29] in gases of 11Na atoms. Similar experiments were being performed at
Rice, using 7Li atoms [30]. For these groundbreaking observations the 2001 Nobel
Prize in physics was awarded to E. Cornell, C. Wieman (from the JILA experiment)
and W. Ketterle (from the MIT experiment). The experimental details of how
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BECs are created and captured in typical experiments will be discussed in more
depth further on when discussing Bose polarons.

1.2.3 Bogoliubov Theory

The theoretical description of a Bose gas at low temperatures forms a great challenge
and has been the subject of intense theoretical study for many decades now.
Roughly speaking, the challenge lies in simultaneously capturing non-quadratic
interactions between the particles, quantum fluctuations of the system, and identical
particle statistics at non-zero temperature. Before proceeding to a discussion of
the method of choice, a few notable approaches should be mentioned. When
the temperature is assumed to be zero and quantum fluctuations are ignored
but interactions can be arbitrarily strong, the system is well described by the
Gross-Pitaevskii equation [31, 32]. On the other hand, if interactions are assumed
to be weak but quantum fluctuations are to be captured exactly, perturbative
approaches allow one to find corrections to the ground state [33]. Also note that
even when interactions are completely absent, describing a fixed number of bosons
at non-zero temperatures while correctly taking the identical nature into account
forms a difficult statistical problem [34, 35]. Finally, Monte Carlo methods can be
used to compute exact quantities of the system, but of course require far greater
computational resources and yield less physical transparency [36]. One approach
to the problem that conceptually lies somewhere between the Gross-Pitaevskii
equation and perturbation theory is Bogoliubov theory [37, 38]. In this approach a
perturbative expansion is performed around the macroscopically occupied ground
state of the gas, which implicitly assumes the temperature to be near-zero and
the interactions to be weak. Since Bogoliubov theory will be the framework of
choice through which a Bose gas will be viewed in this thesis, a brief summary is
presented below.

Consider a free interacting gas of bosonic particles with mass mb, in a box
of volume V , described in second quantization by the creation and annihiliation
operators â†k and âk that create or annihilate a boson with momentum ~k. The
Hamiltonian of the system is then given by:

ĤBEC =
∑

k
Ekâ

†
kâk + 1

2
∑

q
V

(BB)
q

∑
k,k′

â†k+qâ
†
k′−qâk′ âk. (1.3)

The first term describes the kinetic energy of the system with energy spectrum
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1.2 - Bose-Einstein condensation

Ek = ~2k2

2mb , and the second term represents the interaction part where V (BB)
q is the

boson-boson interaction amplitude in momentum space. In the rest of this thesis
the interaction between the bosons will be considered to be a contact interaction
for which the amplitude is set equal to a coupling constant V (BB)

q = gbb/V .
The trick now is to realize that if the ground state of the condensate is

macroscopically occupied, the operators that correspond to the k = 0 mode provide
the dominant contribution. The interaction contributions to the Hamiltonian can
now be expanded in terms of their order in the â0 operators. The Bogoliubov
approximation consists out of two steps. First, the terms of zeroth and first
order in â0 are discarded as they will be small in comparison to the higher order
contributions:

ĤBEC =
∑

k

~2k2

2mb
â†kâk + gbb

2V â
†
0â
†
0â0â0

+ gbb
2V

∑
k 6=0

(
4â†0â

†
kâkâ0 + â†kâ

†
−kâ0â0 + â†0â

†
0âkâ−k

)
. (1.4)

Next, a mean field approximation of the ground state operators is made
â0 = â†0 =

√
N0, where N0 is the number of atoms in the ground state. The fourth

order term is typically rewritten as:

â†0â
†
0â0â0 =

N −∑
k 6=0

â†kâk

N −∑
k 6=0

â†kâk

 ≈ N2 − 2
∑
k 6=0

â†kâk, (1.5)

where N is the total number of bosons. In the Bogoliubov approximation the
Hamiltonian becomes:

ĤBEC =gbbN
2

2V +
∑

k

~2k2

2mb
â†kâk + gbbn0

2
∑
k 6=0

(
2â†kâk + â†kâ

†
−k + âkâ−k

)
, (1.6)

where n0 is the density of the bosons in the ground state. The first term is the BEC
mean-field energy term that represents the energy of the fully condensed Bose gas
at T = 0, whereas the other terms capture the corrections from excitations caused
by interactions. The Hamiltonian is now completely quadratic in the operators
and can be diagonalized in a final step through the Bogoliubov transformation:

â†k =
(
ukα̂

†
k + v−kα̂−k

)
, (1.7)

âk =
(
ukα̂k + v−kα̂

†
−k

)
, (1.8)

21



Chapter 1 - Polarons

where the condition |uk|2 − |vk|2 = 1 imposes that the operators α̂ also obey
bosonic commutation relations. The parameters uk and vk can now be chosen
appropriately:

uk =

 ~2k2

2mb + gbbn0

2~ωk
+ 1

2

1/2

, (1.9)

vk =

 ~2k2

2mb + gbbn0

2~ωk
− 1

2

1/2

, (1.10)

such that in the new basis the Hamiltonian is diagonal:

ĤBEC = gbbN
2

2V + 1
2
∑
k 6=0

(
~ωk − gbbn0 −

~2k2

2mb
+ mbg

2
bbn

2
0

~2k2

)
+
∑
k 6=0

~ωkα̂
†
kα̂k

= E
(BEC)
0 +

∑
k 6=0

~ωkα̂
†
kα̂k. (1.11)

This is the Bogoliubov Hamiltonian which on top of the corrected ground state
energy yields an excitation spectrum of Bogoliubov quasiparticles with energy
spectrum:

~ωk =
√

~2k2

2mb

(~2k2

2mb
+ 2gbbn0

)
. (1.12)

In an undisturbed Bose gas at T = 0 all the quasiparticles are in the so called
Bogoliubov vacuum corresponding to k = 0 state, and hence the energy is given
by E(BEC)

0 . An increase in temperature or a disturbance of the Bose gas will then
create excitations in the Bose gas which can be easily described in this framework.
The low energy spectrum ωk ∼ k yields collective excitations that are sometimes
called the phonons of the gas, whereas at high energies ωk ∼ k2 the excitations are
particle like and represent condensed atoms getting expelled out of the condensate.
Note that an important length scale can be associated with the energy of crossover
~2/(mbξ

2) = 2gbbn0 in 1.12, which is defined as the healing length of the condensate
ξ =

√
~2/(2mgbbn0).

When an impurity is immersed into a Bose gas it creates a cloud of excitations
surrounding itself forming the Bose polaron. Bogoliubov theory therefore provides
a perfect analogy with the solid state polaron where the electron is interacting
with excitations of the lattice – the phonons. Before proceeding further with this
discussion let us first summarize a few experimental aspects of how Bose polarons
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are created. The discussion will mainly concern the Aarhus experiment where the
impurities themselves are bosonic. For all practical purposes of this thesis, the
JILA experiment studies similar quantities and the main difference is that the
impurities are fermions.

1.3 Observations of Bose polarons at Aarhus

In this section we provide a brief summary of the seminal experiment at Aarhus
[23]. The Aarhus experiment starts out by creating a BEC of 39K atoms in the
|1〉 = |1,−1〉 hyperfine state trapped in an optical dipole trap. This apparatus
is capable of trapping a cloud of neutral atoms in the minimum of its intensity
field. The basic principle is that the laser light induces a dipole moment in each
of the atoms, which then interacts with the gradient of the intensity of the laser
light creating a trapping force. For a more comprehensive discussion of this
trapping mechanism a review can be found in [39]. The trap therefore effectively
creates a harmonic trapping potential for the atoms with the following anisotropic
trapping frequencies in the experiment νx = 158Hz, νy = 167Hz and νz = 228Hz.
The average density of the condensate is given by n0 = 2.3× 1014cm−3 and the
temperature is estimated to be T = 160nK. Although the temperature is well
below the critical temperature, T ≈ 0.6Tc, such that the bosons are condensed, it
is not quite in the T � Tc regime and it is important to keep in mind that thermal
fluctuations could be of importance for a quantitative comparison. Nevertheless,
as will be argued in the next chapter, the description of the Bose polaron is
theoretically extremely challenging due to large quantum fluctuations and for this
reason many studies in the past years have focused on the T = 0 regime.

Next, the impurities in the experiment are created by transferring a fraction
of the |1〉 atoms into a different hyperfine state |2〉 = |1, 0〉 by shining a square
radiofrequency pulse of 100µs at a frequency ωRF . The |2〉 states are the impurities
of the polaron problem, forming a minority fraction in a majority of |1〉 condensed
atoms. The interactions between the two states can be described as s-wave contact
interactions with a scattering length aib, which can be tuned in the experiment
through the phenomenon of Feshbach resonances [40].

To understand the meaning of this parameter it is illustrative to think of the
scattering of the impurity on a box-potential with the same scattering length,
which is in detail described in numerous quantum mechanics textbooks e.g. [41].
When the box is extremely shallow, aib is small and negative and corresponds with
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effective attractive interactions, but as the depth of the box increases, aib keeps
growing in the negative direction. At some point the box becomes sufficiently deep
to support a shallow bound state which is exactly the aib → −∞ limit. From this
point onwards, there is always an available molecular ground state (where the
impurities form tightly bound molecules with the rest of the atoms). However when
the formation of the molecule is energetically prohibited, the particle experiences
a strong effective repulsion corresponding to the aib → +∞ limit. Increasing
the box depth further moves the shallow bound state deeper and decreases the
effectively repulsive interactions in the limit of aib → 0+. Accordingly, for aib > 0
in the experimental measurements, as shown in Figure 1.3, two branches can be
recognized, one corresponding to the state created by repulsive interactions and
the other to the molecular branch where the bosons get tightly bound to the
impurities. In the rest of the thesis we will largely, but not solely, be concerned
with the repulsive branch that gets measured in the experiments. As can also
been seen from this discussion it is more useful to use a−1

ib as a scaling parameter
which is precisely done in the experimental studies. By tuning this parameter,
the experimental setup therefore provides for the perfect ground to study the
properties of the impurity across an entire range of interaction regimes.

Figure 1.3: The Bose polaron spectroscopy measurements from the Aarhus
experiment. The experimentally measured spectroscopy signal (a) and theo-
retical calculations of the truncated basis method (b). The three polaronic
branches, attractive – bottom left, repulsive – top right, molecular – bottom
right, can be clearly distinguished. Figure adapted from [23], with the per-
mission of the American Physical Society.

In the presence of magnetic fields, the |1〉 → |2〉 transition has a corresponding
bare frequency ω0. Therefore, even in the absence of interactions between the
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states, a spectroscopy measurement in the RF domain yields a peak centered at ω0

with a finite width due to the short pulse duration. In the presence of interactions,
the experiment is repeated and a shift of the peak is observed towards a frequency
ω. The shift ∆ = ω − ω0 is therefore evidence of a dressing of the impurity, and
represents the energy of the Bose polaron. The full spectroscopy results at Aarhus
are shown in Figure 1.3 as a function of the inverse scattering length where the
color map represents the spectroscopic signal. We can easily recognize two main
branches which we will refer to as the attractive or repulsive polaron branches.
In addition, a third branch can be recognized corresponding to the molecular
bound state of the impurity and a boson. The attractive polaron has a negative
energy shift indicating a stable state that transitions into molecular bound states
as aib crosses to the positive domain. Numerous recent studies have discussed
the attractive branch [42–45] in great detail, where it was shown that the Efimov
effect is of crucial importance to correctly describe the bound states in this regime.
The repulsive branch has a positive energy shift and is therefore metastable. The
impurities want to be expelled out of the condensate and as can be seen from
the figure could also decay into the lower lying molecular states. Nevertheless,
the repulsive polaron lies much closer to the original polaron concept than the
molecular state of the attractive branch. The impurity does not bind to one of the
bosons and remains completely free to scatter of the phonons forming a difficult
many-body problem. In this thesis, mainly methods capable of correctly capturing
the repulsive branch will be discussed.

By fitting the center of the peaks observed in Figure 1.3 the experiments are
able to present a definite value of the polaron ground state energy as a function of
the interaction strength. While the experimental setup at the JILA experiment
[19] is quite different, they present measurements of similar results for the Bose
polaron energy in a heteronuclear gas of atoms. Also note that since the original
publication [23], a new analysis of the Aarhus experiment by taking into account
the inhomogeneity of the trap has slightly modified the values for the energy [46].

1.4 Theoretical models for Bose polarons

1.4.1 The Bogoliubov-Fröhlich Hamiltonian

Having obtained an idea of how Bose polarons are created in experiments, let
us proceed to introduce a theoretical model and its various simplifications. The
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model described here was first introduced for the Bose polaron [47, 48], and has
since then featured in numerous works which will be discussed more closely in
the next chapter. The Hamiltonian for NI impurities with masses m described by
first quantization operators for the momenta p̂i and positions r̂i interacting with
a Bose gas through contact interactions with strength gib is written as:

Ĥ = Ĥimp + ĤBEC + Ĥint =
NI∑
j

p̂2
j

2m + 1
2

NI∑
i 6=j

U(r̂i − r̂j)

+
∑

k
Ekâ

†
kâk + 1

2
∑

q
V BB

q
∑
k,k′

â†k+qâ
†
k′−qâk′ âk +

∑
q
V IB

q ρ̂q
∑

k
â†k−qâk.

(1.13)

The first two terms describe the impurities interacting between one another through
some direct interaction potential U(r̂i−r̂j). Since in the experiment this interaction
is small in comparison with the typical impurity-boson interaction strength, most
often this term will be discarded. The third and fourth terms are nothing else than
the Bose gas Hamiltonian (1.3) with contact interactions, discussed in Sec. 1.2.3.
Finally, the last term describes how the bosons in the gas can scatter off the
impurity density

ρ̂q =
NI∑
j=1

eiq·̂rj . (1.14)

Just like for the boson intraspecies interactions, we assume contact interactions
such that V (IB)

q = gib/V , where gib is the contact interaction strength between
the impurities and the Bose gas. The problem one faces now is that the full
Hamiltonian (1.13) is quite difficult, even in the absence of impurities.

For this reason, to obtain an approximate Hamiltonian in the regime of small
BEC depletion, the Bogoliubov approximation and transformation discussed in
Sec. (1.2.3) is performed on this Hamiltonian. For the first two terms of Hamiltonian
(1.13) this yields the following expression:

ĤBEC + Ĥimp = E
(BEC)
0 +

∑
k 6=0

~ωkα̂
†
kα̂k +

NI∑
j

p̂2
j

2m, (1.15)

where α̂†k, α̂k are the Bogoliubov operators of the previous section. The interaction
part Ĥint can also be taken into account within Bogoliubov theory. Let us start
by dividing the interaction part of the Hamiltonian in terms that couple to the
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condensate in second, first and zeroth order:

Ĥint = gib
V
â†0â0 + gib

V

∑
q 6=0

ρ̂q
(
â†0âq + â†−qâ0

)
+ gib
V

∑
k 6=0

∑
q 6=k

ρ̂qâ
†
k−qâk. (1.16)

In what follows we perform the Bogoliubov approximation to obtain â†0 = â0 ≈√
N0:

Ĥint = gibn0 + gib
√
N0

V

∑
q 6=0

ρ̂q
(
âq + â†−q

)
+ gib
V

∑
k 6=0

∑
q 6=k

ρ̂qâ
†
k−qâk, (1.17)

where n0 is the condensate density. First, let us consider the case where the
interactions between the impurity and the condensate are very weak such that
the presence of the impurity does not create too many excitations in the gas.
In this case the higher order terms in (1.17) can be discarded since they only
involve processes with particles out of the condensate. Performing the Bogoliubov
transformations (1.7) and (1.8) on the operators in the round brackets yields:

Ĥint = gibn0 + gib
√
N0

V

∑
k 6=0

ρ̂k
(
(uk + vk)α̂k + (u−k + v−k)α̂†−k

)
. (1.18)

Using the previously introduced parameters uk and vk in (1.9) and (1.10) it is not
difficult to show that

Vk = uk + vk =

 ~2k2

2mb
~2k2

2mb + 2gbbn0

1/4

. (1.19)

With this result we can now write down the full Hamiltonian:

Ĥ ≈ E(BEC)
0 + gibn0 +

NI∑
j

p̂2
j

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
.

(1.20)
The three terms on top of the constant energy shift in (1.20) form nothing else
than the seminal Fröhlich Hamiltonian [4]. To specify that the dispersion relation
and interaction amplitude are to be chosen for the Bose gas as a medium, this
model is also called the Bogoliubov-Fröhlich Hamiltonian:

ĤF =
NI∑
j

p̂2
j

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
(1.21)
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This Hamiltonian describes NI impurities with some many-body density operator
ρk interacting with the Bogoliubov excitations of the BEC with dispersion relation
ωk. The last term describes the simplest possible interaction between the systems,
where the impurities can either create or absorb excitations in the condensate
with an amplitude ∼ gibVk. One should not be deceived by the simplicity of this
Hamiltonian. Although the interaction term can be written compactly in this
form, remember that the impurity density operator (1.14) is of second order in
the impurity operators when written in second quantization. The Hamiltonian
therefore describes a many-body problem to third order and has no known analytic
solution.

1.4.2 The extended Fröhlich Hamiltonian

In the previous subsection we have discarded the higher order terms in expression
(1.17) to obtain the Fröhlich Hamiltonian. As emphasized, this step relies on the
fact that the number of excited atoms is sufficiently small to only take the impurity
kicking atoms out of the ground state (or returning them) into account. As the
coupling strength gib becomes larger, higher order interactions where the impurity
is interacting with the excited cloud it created can no longer be neglected. This
direction has been first explored in [49] and the extended-Fröhlich Hamiltonian
presented further was first explored at the mean-field dynamics level in [50]. If
the final term of (1.17) is taken into account as well, one obtains on top of the
Fröhlich Hamiltonian the following extended interaction terms:

gib
V

∑
s 6=0

∑
k 6=0

ρ̂k−sW
(1)
k,s α̂

†
sα̂k + 1

2
gib
V

∑
s6=0

∑
k 6=0

ρ̂k−sW
(2)
k,s

(
α̂†sα̂

†
−k + α̂kα̂−s

)
+ gib
V
NI

∑
k 6=0

v2
k (1.22)

The first term of this interaction part describes a phonon from the excitation
cloud scattering off an impurity and exchanging a momentum k− s. The second
term describes an impurity either creating or absorbing two phonons from the
excitation cloud hereby also absorbing momentum k− s. The amplitudes for the
two types of processes are given by respectively:

W
(1)
k,k′ = 1

2
(
VkVk′ + V −1

k V −1
k′
)
, (1.23)

28



1.4 - Theoretical models for Bose polarons

W
(2)
k,k′ = 1

2
(
VkVk′ − V −1

k V −1
k′
)
. (1.24)

The summation in the final term over the Bogoliubov coefficient ∑k v
2
k can be

shown to be equal to the number of excited bosons within Bogoliubov theory
n

(exc.)
bog in the absence of the impurity. Taking the boson operators into account up

to second order in the impurity-condensate interaction term (1.16) therefore also
yields a correction to the mean field term gibn0. Combining everything we obtain
for the full Bose polaron Hamiltonian:

Ĥ ≈ gib
(
n0 + n

(exc.)
bog

)
+

NI∑
j

p̂2
j

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
+ gib
V

∑
s6=0

∑
k 6=0

ρ̂k−sW
(1)
k,s α̂

†
sα̂k + 1

2
gib
V

∑
s 6=0

∑
k 6=0

ρ̂k−sW
(2)
k,s

(
α̂†sα̂

†
−k + α̂kα̂−s

)
,

(1.25)

where we will measure the energy relative to E(BEC)
0 . Note that in general n(exc.)

bog
is extremely small for weakly interacting Bose gases in three dimensions, and
within the confines of Bogoliubov theory we will just keep gibn0 as the mean field
energy term. Just as for the Fröhlich Hamiltonian, the contribution on top of the
mean-field shift can be defined as the extended-Fröhlich Hamiltonian:

ĤEF =
NI∑
j

p̂2
j

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
+ gib
V

∑
s 6=0

∑
k 6=0

ρ̂k−sW
(1)
k,s α̂

†
sα̂k + 1

2
gib
V

∑
s6=0

∑
k 6=0

ρ̂k−sW
(2)
k,s

(
α̂†sα̂

†
−k + α̂kα̂−s

)
.

(1.26)

It is important to remember that this Hamiltonian is still situated within the
confines of Bogoliubov theory for the condensate, and the number of excited atoms
is assumed to be small. However, the extended Fröhlich Hamiltonian provides the
first correction to also account for the interactions between the impurity and the
excited atoms.

1.4.3 Full Bose polaron energy

The approximate Hamiltonian is now written as:

Ĥ ≈ E(BEC)
0 + gibn0 + ĤF , (1.27)
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where ĤF should be replaced by ĤEF for the extended Fröhlich model, but the rest
of the discussion holds for both models. As long as the Bogoliubov approximation is
valid and n0 is constant, the BEC intraspecies interaction energy is not influenced
by the presence of the impurity and the Bose polaron energy can be measured
with respect to E(BEC)

0 . One slightly awkward feature of this system is that by
defining the Fröhlich Hamiltonian as (1.21) to make the connection with other
polaronic systems, one is left with the energy shift gibn0 that does depend on
the impurity interaction strength, but is not incorporated in the Hamiltonian of
interest. From an experimental point of view, it is of course interesting to measure
the energy with respect to gib = 0, while for theoretical work it is convenient to
discard this term and study the energy scales of the Fröhlich Hamiltonian (1.21)
directly. In addition, the mean-field impurity-condensate interaction energy gibn0

is not particularly interesting in that it merely represents the energy contribution
of the physical situation where the impurity is completely delocalized and not
influenced by the condensate in any shape or form and hence does not arise from
polaronic effects. For this reason, often the polaronic contribution to the energy
Ep is defined as the energy arising from ĤF such that the energy of the impurity
in the condensate is written as:

E = gibn0 + Ep (1.28)

There is an additional practical reason for why this distinction is useful. For
a wide range of interaction strengths the relatively trivial gibn0 term is much
larger than the more challenging Ep. It follows that when comparing different
theoretical approaches between one another to gauge their accuracy it could be
misleading to compare the full energy. Even approaches that completely fail to
describe the impurity-phonon many body state will look reasonably accurate in
such a comparison. In fact, if one completely discards any interactions between
the impurity and Ep ≈ 0, a reasonable agreement with experiment [19, 23] at
weak to intermediate coupling can still be obtained. This does however not at all
mean that the quantum state of the system described by the Fröhlich Hamiltonian
is close to that of a decoupled impurity and a condensate, but rather that the
energy is a difficult experimental metric to probe the more intricate physics of the
problem. To obtain other properties such as the effective mass or radius of the
Bose polaron, an accurate description of the polaronic effects is required, which
have as of this moment not yet been experimentally measured. Therefore, in the
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rest of this work, most often the polaronic energy Ep will be used in discussions
and figures.

1.4.4 Other Fröhlich Hamiltonians

In the previous parts we have defined the Hamiltonian with the Bose polaron
problem in mind from the start. However since in the following discussions we will
often be referring to the original Fröhlich model, it can be illustrative to briefly
discuss the differences between various Fröhlich models that have been studied.
For this purpose let us use a general definition for the Fröhlich Hamiltonian for a
single impurity:

ĤF = p̂2

2m +
∑

k
ε(k)α̂†kα̂k +

∑
k

(
ρ̂kṼkα̂k + ρ̂−kṼ

∗
k α̂
†
k

)
(1.29)

This is the general form of the Fröhlich Hamiltonian, but the dispersion relation
ε(k) and the interaction amplitude Ṽk depend on the specific system. The phonons
in the original Fröhlich Hamiltonian are longitudinal optical phonons [4] that
are very well approximated by a constant dispersion relation ε(k) = ~ωLO. The
interaction amplitude on the other hand goes slowly to zero at large momenta:

Ṽk = −i~ωLO
k

√
4πα
V

( ~
2mωLO

)1/4
(1.30)

where α is the coupling constant between the impurity and phonons which generally
depends on the material. Although the interaction amplitude is imaginary here,
this does not play any significant role as to what type of physics the model describes
and the observable quantities come out to be strictly real. This model with this
form of dispersion and interaction amplitude has been extensively studied in the
literature [51, 52]. One particularly nice feature of having no dispersion relation and
a simple ∼ 1/k interaction amplitude is that in almost any theoretical treatment
of the problem, the momentum dependence of the problem can be integrated out
analytically. This will not be possible in models with more difficult forms for ε(k)
and Ṽk which makes numerical computation significantly more difficult.

In most ionic crystals the electrostatic coupling to the LO phonons is dominant
which is the reason why the LO phonon Fröhlich model is most commonly studied
in the literature. However, the electrons can also be affected by the non-polar
vibration of the lattice through its effect on the band structure and hence couple
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Dispersion and interaction amplitude of different polaron systems
ε(k) Ṽk

Optical polaron (original Fröhlich) ∼ ωLO ∼ k−1

Acoustic polaron ∼ k ∼
√
k

Ripplopolaron ∼ k
3
2 ∼ k−

1
2

BEC polaron (weak coupling) ∼
√
k2(k2 + 2) ∼

(
k2/(k2 + 2)

) 1
4

Table 1.1: A few examples of the dispersion relation and interaction
amplitude of polaronic systems described by the Fröhlich Hamiltonian.

to the acoustic phonons of the crystal [53]. It turns out that even weak coupling to
the acoustic branch has a large effect on self trappig properties of the electron. The
polaronic formation caused by coupling to this branch is called the acoustic polaron
problem [54], where the dispersion relation of the phonons is unsurprisingly linear
ε(k) ∼ k with an interaction amplitude Ṽk ∼

√
αk. The acoustic polaron model is

the first one where the notion of a momentum cutoff Λ becomes of importance
since the energy has a UV divergence when taking phonons of arbitrarily large
momenta into account. However, this does not form an issue since the phonon
momentum in the physical system is limited to the first Brillouin zone, which sets
the value of the momentum cutoff.

The Fröhlich model is also encountered in more exotic polaronic systems
outside solid state physics. One such example is the ripplopolaron where electrons
are pressed against the surface of a liquid helium film by an electric field [55].
The electrons interact with the quantized surface oscillators of the film and form
polaronic quasiparticles described by the Fröhlich Hamiltonian with dispersion
relation ε(k) ∼ k3/2 and interaction amplitude Ṽk ∼ k−1/2. Finally of course we
have the Bose polaron described by the Fröhlich model at weak coupling derived
in the previous section where ε(k) ∼

√
k2(k2 + 2) and Vk ∼

√
k2/(k2 + 2).

In a recent mathematical physics paper that we will return to later on as
well, a classification of Fröhlich models is made based on the difficulty of their
UV behavior [56]. Briefly summarized, the UV behavior of the Hamiltonian is
largely determined by the two norms of the interaction amplitude a =

∫
dk|Vk|2

and b =
∫

dk|Vk|2/(k2 + 1). As long as one of the two is finite in the limit of
Λ → ∞ the model remains UV regular. This is the case for both the original
Fröhlich model and the ripplopolaron model (in 2D), whereas the acoustic polaron
model and Bogoliubov-Fröhlich model fall into the more difficult class of UV
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divergent Hamiltonians. For the acoustic polaron model this divergence presents
no problems since phonons with momenta beyond the Brillouin zone are physically
not present in the system. In addition, it turns out that even if this cutoff is taken
to infinity, standard theoretical methods are capable of capturing this divergence.
As we will discuss in great detail further in this thesis, it will turn out that the
Bogoliubov-Fröhlich model on the other hand is the most elusive of all the Fröhlich
models mentioned here, as also argued in [56].

1.5 Theoretical methods for polaron physics

In this section we review a number of theoretical tools in the literature to analyze
the ground state of the Bose polaron. The discussion will center around the
Bogoliubov-Fröhlich Hamiltonian (1.21) for a single impurity which is the simplest
case for the purpose of illustration. A nice review containing a thorough discussion
of most of these methods applied to the Bose polaron can be found in [57], but
for self containment of this thesis we provide a brief overview of the methods
relevant for future discussion. Where applicable, we provide references to the
extensions of these methods to the extended Fröhlich Hamiltonian (1.26) or to
multiple impurites.

1.5.1 Lee Low Pines mean field approach

The Lee Low Pines (LLP) approach has been first introduced for the original
Fröhlich problem in 1953 in [7]. The applications of the Lee-Low-Pines approach
to the Bose polaron can be found for a single particle in [50, 58] and for multiple
particles in [59]. The approach consists out of two steps, the first of which is a
completely general Lee Low Pines transformation of the Hamiltonian into the
impurity frame that also lies at the basis of more advanced approaches, and the
second is a mean field approximation in this frame. First, let us note that in the
Bogoliubov-Fröhlich Hamiltonian:

ĤF = p̂2

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
(1.31)

neither the impurity momentum p̂ nor the phonon momentum ∑
k ~kα̂†kα̂k are

conserved since
[
p̂, ĤF

]
6= 0 and

[∑
k ~kα̂†kα̂k, ĤF

]
6= 0. Unsurprisingly, in the lab

frame the impurity and phonon bath can exchange momentum and hence neither
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is conserved separately. This can be changed by transforming the Hamiltonian
with the following unitary transformation:

ÛLLP = exp
(
ir̂ ·

∑
k

kα̂†kα̂k

)
(1.32)

which yields:

ĤLLP = ÛLLPĤF Û
†
LLP

= 1
2m

(
p̂−

∑
k

~kα̂†kα̂k

)2

+
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
Vk
(
α̂k + α̂†−k

)
.

(1.33)

Note that in this frame, the physical meaning of the momentum operator p̂ changes
to that of a total momentum since any eigenstate still has to be transformed back
in the lab frame through (1.32). In addition, the Lee Low Pines Hamiltonian
(1.33) commutes with the momentum operator

[
p̂, ĤLLP

]
= 0 and hence for any

eigenstate p̂→ p is replaced by a c-number. In the simplest case where p = 0, e.g.
for the ground state at rest, the Hamiltonian becomes:

ĤLLP = 1
2m

(∑
k

~kα̂†kα̂k

)2

+
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
Vk
(
α̂k + α̂†−k

)
. (1.34)

We can see that the impurity variable has completely disappeared from the problem,
at the cost of inducing effective interactions between the excitations at fourth
order in (1.34). For this reason the Lee Low Pines transformation is often called a
transformation into the frame of the impurity, from the point of view of which the
phonons appear to have complicated induced interactions.

The Lee Low Pines Hamiltonian (1.33) is completely general and lies at the
basis of more advanced approaches discussed in later subsections of this chapter.
The second step of the original Lee Low Pines treatment [7] is to propose a coherent
state variational ansatz for the Bogoliubov excitations in the impurity frame:

|α〉 = exp
(∑

k
fkα̂k − f∗kα̂

†
k

)
|0〉 , (1.35)

where |0〉 is the Bogoliubov vacuum. The variational energy of the ground state is
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then written as:
E[fk] = 〈α| ĤLLP |α〉 . (1.36)

The energy minimum is reached for the following expression for the variational
parameters:

fk = −gib
√
N0

V

Vk

~ωk + ~2k2

2m
, (1.37)

which yields for the minimal energy:

EMF = −g
2
ibn0
V

∑
k

V 2
k

~ωk + ~2k2

2m
. (1.38)

The argument of the summation in (1.38) contains a UV divergence for |k| → ∞.
This is not the first time we will encounter a UV divergence and hence it is useful
from this point on to introduce a momentum cutoff Λ as an additional implicit
parameter of the Hamiltonian (1.31), in terms of which the divergent part can ad
hoc be regularized as follows:

EMF = −g
2
ibn0
V

Λ∑
k

V 2
k

~ωk + ~2k2

2m
+ g2

ibn0
~2

µ

π2 Λ, (1.39)

where µ−1 = m−1 + m−1
b is the reduced mass of the impurity and a boson. A

physical justification for the regularization step will be provided in the next
subsection.

The power of this approach lies in the fact that the mean-field approximation
is made in the impurity frame. It can be easily seen from the transformation
(1.32) that the variational ansatz in the lab frame is not simply a product state
between the impurity and the phonons and therefore captures some entanglement
between the two systems. The phonons on the other hand remain uncorrelated
since (1.35) is simply a product ansatz, which is a potential shortcoming of this
approach. In the original application to the Fröhlich model [51, 52], this did not
turn out to be a significant problem and this treatment yielded excellent results
from weak to intermediate coupling and was considered a seminal tool for the
study of large polarons in these regimes. As we will see in a later section, in the
class of Bogoliubov-Fröhlich model or its extensions, this could not be further
from the truth and at large cutoff away from extremely weak coupling the mean
field treatment spectacularly fails to capture the polaronic state, forming the first
indication of a regime of new physics not present in the original Fröhlich model.
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1.5.2 Lippmann-Schwinger regularization

Let us return to (1.39) and justify the regularization procedure on physical grounds.
Consider once again the full Bose polaron energy introduced in (1.28) where the
polaronic energy is now given by the mean field approach discussed in the previous
section:

E = gibn0 + EMF. (1.40)

The parameter gib is the constant in front of the idealized interatomic contact
interactions between the impurity and the bosons gibδ(ri − rb) introduced at the
very start in the full Hamiltonian (1.13). The relationship between the contact
interaction and the physically relevant scattering length aib is derived through the
Lippmann-Schwinger equation and depends on the cutoff [48]:

gib(Λ) = 2π~2aib
µ

1
1− 2π~2aib

µ
1
V

∑Λ
k

2µ
~2k2

. (1.41)

This expression immediately shows why contact interactions are to be treated
with care: the relationship between the a priori meaningless parameter gib in the
Hamiltonian and the physically relevant scattering length aib depends on the scale
at which one is probing the physics through the cutoff Λ. The problem is not
unique to Bose gases but commonly appears in other ultracold atomic systems
where contact interactions are used, for example in Fermi gases. For a more in
depth discussion of the problem in scattering theory we refer the interested reader
to [60].

In practice this means that to establish the connection between gib and aib

through (1.41), one first has to determine the extent to which the problem depends
on the cutoff. A theory that is completely UV convergent in its momentum
integrals is not probing the more intricate physics described in the corrections
of the denominator in (1.41) and hence it is sufficient to use the lowest-order
expression:

g
(0)
ib = 2π~2aib

µ
. (1.42)

On the other hand, in the case that the momentum integrals diverge as a power
of Λ such as observed in (1.38), this could indicate that the types of processes
captured in the theory are probing the physics further that what is described by
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g
(0)
ib and a correction should be made up to lowest relevant order in Λ. This is
obtained by expanding the denominator to obtain the lowest order dependence on
a power of Λ:

g
(1)
ib = g

(0)
ib +

(
g

(0)
ib

)2 1
V

Λ∑
k

2µ
~2k2 = g

(0)
ib +

(
g

(0)
ib

)2 1
π2
µΛ
~2 . (1.43)

In expression (1.40), this substitution should only be made in the first term given
that the second term already exhibits a UV divergence even at lowest order g(0)

ib .
This has the exact result of regularizing the divergence as performed in (1.39).

We will encounter these types of UV divergences of the polynomial type
numerous times in this thesis. The important message here is that they are an
artifact of using a constant gib for idealized contact interactions, whereas more
care reveals that potential corrections gib(Λ) are necessary for consistency. These
divergences are well understood and have been encountered in various ultracold
atomic systems where contact interactions are used to capture the low-energy
collisions that do not probe the shape of the interatomic potential.

1.5.3 Landau-Pekar approach

The Landau-Pekar approach is based on the early theories of the solid state
polaron of S.I. Pekar [2] following upon Landau’s initial treatment of the problem
[1]. The approach proposes a variational product ansatz to the problem without
any entanglement between the impurity and phonons:

|Ψ〉 = |ϕ〉I × |α〉 . (1.44)

For the phonon state, once again a simple coherent state ansatz is used:

|α〉 = e
∑

k fkα̂k−f∗k α̂
†
k |0〉 , (1.45)

and the impurity is assumed to be in a Gaussian state with some variational
parameter for its width λ:

ϕI(r) = A exp
(
−r2/λ2

)
. (1.46)

The main difference between this treatment and the more sophisticated Lee Low
Pines approach is that the ansatz (1.44) is proposed in the lab frame without first
performing the Lee Low Pines transformation.
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Regardless of its simplicity, this product ansatz in the lab frame turns out to
be the exact ground state solution of the original LO Fröhlich model in the strong
coupling limit α→∞ [6]. Therefore, in the original Fröhlich model, the weak to
intermediate coupling regime is captured by the Lee Low Pines treatment, whereas
the strong coupling approach reduces to the Landau-Pekar ansatz. An all coupling
approach that was capable of capturing both regimes has been first proposed by
Feynman in 1955 [8] and will be discussed in the next subsection.

For the Bose polaron, the Landau-Pekar approach has one significant concern:
the energy arising from ansatz (1.44) is UV convergent, while we have already
seen that the Lee-Low-Pines approach that a Lippmann-Schwinger regularization
procedure is necessary. The reason for this is the Gaussian ansatz (1.46) which
sharply cuts off the high momentum behavior of the impurity and hence the
UV behavior is not sufficiently probed. The simple Landau-Pekar approach
can therefore not be quantitatively compared to other approaches where such
regularization is necessary. This could perhaps be fixed by introducing a better
guess for the impurity function |ϕ〉I . However, as we will see, for the Bose
polaron the adiabatic ansatz cannot capture the strong coupling regime anyway,
in contrast to the original Fröhlich case. For this reason we will not be discussing
the Landau-Pekar ansatz when comparing different approaches in the literature
further on.

1.5.4 Feynman’s variational path integral treatment

The superior method that interpolates the Lee Low Pines and Landau Pekar
treatments for the original Fröhlich model has been proposed by Feynman in
1955 [8] based on his theory of path integrals. In this approach the Fröhlich
Hamiltonian is transformed into an action functional form that can be used in the
path integral formalism. We discuss the approach already immediately applied to
the Bogoliubov-Fröhlich Hamiltonian (1.21), but the general case for any Fröhlich
Hamiltonian can be trivially obtained by redefining the interaction strength used
in this section to a more general one

(
gib
√
N0/V

)
Vk → Vk. The action functional

equivalent to the Hamiltonian (1.21) for the path integral formalism in imaginary
time [61] is given by:
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Stot[r, Qk] =∫ ~β

0

mṙ2

2 + M

2
∑

k
Q̇∗kQ̇k +

∑
k

Mω2
k

2 Q∗kQk +
√
N0gib
V

∑
k
ρk

√
2Mωk

~
VkQk

 dτ.
(1.47)

In this formalism, the impurity operator has been promoted to a vector r with
a corresponding density ρk = exp(ik · r), and the phonons are represented by an
infinite set of scalar functions {Qk} with some mass M . Losing the quantum
mechanical operator nature comes at a cost, the action functional does not depend
on simply scalar values but on entire paths r(τ) and Qk(τ) of the particles on the
interval [0, ~β]. In the integral boundary, the inverse temperature β = (kBT )−1

appears, and hence thermal fluctuations can be naturally taken into account in
this method. In general we will mostly be interested in the zero temperature
limit β → ∞. The difficulty of studying the ground state properties of the
Fröhlich Hamiltonian (1.21), or the Hamiltonian formalism in general, is trying to
understand the interplay between the Hamiltonian operator and the sets of states
in the Hilbert space. For the path integral formalism, the difficulty of the problem
is now transformed to something entirely different. To access the partition function
of the system Z, which contains the energy and other thermodynamic quantities,
one has to be able to count over all possible paths r(τ) and Qk(τ) exponentially
suppressing their contribution by the value of the corresponding action functional
(1.47). Formally this is written down as the many-body path integral:

Z =
∫
Dr
∫
DQke

−Stot[r,Qk]/~, (1.48)

where the calligraphic differential D symbolically indicates a sum over all paths of
the corresponding variable. Technically, for the partition function only the cyclic
paths have to be counted, but it is common to omit this condition in the notation
since it is usually clear from the context. The path integral formalism allows one
to do the opposite of the Lee Low Pines transformation. Instead of integrating
out the impurity, now the phonons can be integrated out exactly:∫

DQke
−Stot[r,Qk]/~ = e−Seff[r]/~. (1.49)
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This completely eliminates the phonons from the problem and we can describe the
single impurity by its effective action functional:

Seff =
∫ ~β

0

mṙ2

2 dt− 1
V

∑
k

g2
ibn0
2~ V 2

k

∫ ~β

0
dτ

∫ ~β

0
dσGk (τ − σ) ρk(τ)ρ∗k(σ), (1.50)

where similar to the Lee Low Pines transformation, the impurity now experiences
a difficult retarded interaction mediated by the Green’s function of the excitations:

Gk(u) = cosh [ωk (|u| − ~β/2)]
sinh (ωk~β/2) . (1.51)

The remaining problem of computing the impurity path integral:

Z =
∫
Dre−Seff[r]/~, (1.52)

can not be solved analytically due to the non-quadratic interactions in the action
functional (1.50).

To proceed semi-analytically, an approximation has to be made at this point.
In his seminal paper on the polaron problem [8], Feynman just like his predecessors
chooses for a variational approach. In the path integral approach a powerful
variational inequality for the free energy is the Jensen-Feynman inequality [62].
This variational principle allows one to get an upper bound on the free energy
of the real action functional of a system S based on a simpler variational model
system with an action functional S0:

F ≤ F0 + 1
~β
〈S − S0〉0 . (1.53)

Here, the free energy F0 corresponds to that of the model system and the expecta-
tion value 〈...〉0 is defined with respect to the trial action:

〈A[r(τ)]〉0 =
∫
DrA[r(τ)]e−S0/~∫
Dre−S0/~

. (1.54)

Feynman’s next idea was to propose a simpler model action S0 to simulate the
physics of the difficult effective action (1.50), but one that still can be dealt with
analytically. The model system most often considered in this approach is shown in
Figure 1.4 where the effect of the infinite set of phonons with a difficult coupling
to the impurity is replaced by a simple fictitious particle with mass M and a
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harmonic coupling MW 2. Similarly to what has been done for the effective action,

Figure 1.4: The model system initially proposed by Feynman in his seminal
paper on the polaron [8], where a fictitious mass is harmonically coupled to
the impurity.

the fictitious mass is integrated out to obtain the model action for the system at
the same level as Seff:

S0 =
∫ ~β

0

mṙ2

2 dt+ MW 3

8

∫ ~β

0
dτ

∫ ~β

0
dσ

cosh [W (u− ~β/2)]
sinh (W~β/2) [r(τ)− r(σ)]2 .

(1.55)
The action functional S0 is still non-local in time, but the interaction term is
quadratic in the impurity variables which allows to compute the path integrals of
this system analytically. The variational free energy on the right hand side of the
inequality (1.53) can now be analytically computed to be:

Fv(M,W ) = 3
β

log
[
sinh

(~βΩ
2

)]
− 3
β

log
[
sinh

(~βW
2

)]
− 3

2β log
(
m+M

m

)

− 3
2β

M

M +m

[~βΩ
2 coth

(~βΩ
2

)
− 1

]
− g2

ibn0
~V

∑
k
V 2

k

~β/2∫
0

Gk(u)Fk(u)du, (1.56)

where Ω = W
√

1 +M/m and:

Fk(u) = exp
(

~k2

2 (M +mI)

[
u2

~β
− u+ M

Ω
cosh (Ω [~β/2− u])− cosh (~βΩ/2)

sinh (~βΩ/2)

])
.

(1.57)
This calculation has been first performed for the Bose polaron in [48] where the
interested reader can find the technical details of the calculation. In Chapter 2 we
will also present a far more general calculation from which this expression could
be found as well. The variational free energy (1.56) also contains the same ∼ Λ
UV divergence that can be removed through Lippmann-Schwinger regularization.

The hope is to find a close approximation the free energy of the real system
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by minimizing Fv with respect to the variational parameters M and W , which is
guaranteed to yield an upper bound by the Jensen inequality. Strictly speaking,
it cannot be excluded that while S0 produces a good upper bound to the energy
it could completely miss other polaronic quantities such as the effective mass.
This problem has however not been encountered before and it turns out that S0

produces a good description of the other polaronic quantities as well [63].

1.5.5 Correlated Gaussian Wavefunctions

In the context of the Bogoliubov-Fröhlich model, the method of correlated Gaussian
wavefunctions has been applied to the problem in [64]. This method is based on
variational coherent squeezed states more commonly encountered in photonics,
which have been previously proposed for polaron theory in [65–67]. Here, we
briefly summarize the method. The general idea is to start in the impurity frame
after the Lee Low Pines transformation, but now improve on the coherent state
ansatz for the phonon function proposed in (1.35). The crucial step lies in adding
an additional squeezing transformation which introduces entanglement between
phonon modes at different momenta k and k′:

|CGW 〉 = e
∑

k fkα̂
†
k−hc

(
e
∑

k,k′ Qk,k′ α̂
†
kα̂
†
k′−hc

)
|0〉 , (1.58)

where the variational parameters of the state are the functions fk and Qk,k′ . The
presence of the squeezing transformation significantly complicates the minimization
procedure and the optimal Qk,k′ has to be found numerically. In the initial
discussions of this method in the context of the original Fröhlich model this
minimization was deemed too difficult and approximate solutions were given
[66, 67]. However, the more recent paper where this method is applied to the
Bogoliubov-Fröhlich model [64] presents a new way of performing the minimization.
This allows the authors to variationally minimize the energy of the coherent
squeezed state E[fk, Qk,k′ ] for the Bose polaron. Very recent extensions of this
method to the attractive polaron branch in the extended Fröhlich model can be
found in [45].

1.5.6 Renormalization group theory

Renormalization group (RG) theory is a mathematical formalism, most commonly
used in statistical and quantum field theories, that studies the symmetries of a
class of transformations associated with the momentum cutoff Λ of the system.
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RG theory applications to both the Bogoliubov-Fröhlich Hamiltonian and its
extended versions [68–70] will form important references in the discussion of the
next chapters. For this reason we present a very brief discussion of renormalization
group (RG) theory for the interested reader based on the introduction in Shankar’s
review on this topic [71]. Since RG theory is quite technical and we will not be
needing the details in this thesis, we mainly focus on a conceptual discussion.

As the name suggests, RG has its roots in the procedure of renormalization
of quantum field theories. Imagine a quantum field theory with one or multiple
coupling constants α (such as the mass, interaction strength, etc.) where a finite
cutoff Λ is placed on all momentum integrals associated with the underlying field
φ(k). In contrast to problems in condensed matter physics, where a natural cutoff
value for Λ exists, one is eventually interested in understanding the theory at
Λ → ∞. However, in this limit often divergences can arise in the quantities of
interest such as the energy. The way that this problem can sometimes be dealt
with is to allow for the possibility that the coupling constants themselves depend
on the cutoff α→ α (Λ) in such a way that the quantities of interest come out to
be finite.

It turns out that this point of view can be incredibly useful to study systems
even where the momentum cutoff is finite. In particular, renormalization group
theory presents a systematic way to understand the difference between physics at
small and large momenta of a system, a question that can also be of interest even
if some large momentum cutoff Λ will not be sent to infinity. The general concept
of RG can be simply summarized as follows. Let us define an action functional
SΛ[φ] of a quantum field at some momentum cutoff Λ, where all field contributions
in momentum space below some Λ′ < Λ are called φ1 and all contributions in the
shell Λ′ < p < Λ are called φ2. Here, one can imagine the phonons of, for example,
the Bogoliubov-Fröhlich model to correspond to the momentum modes of such a
field. It is at least then in principle possible to integrate out the fast contributions:∫

Dφ2e
−SΛ[φ] = e−S

′[φ1] (1.59)

to obtain an effective action of the slow field S′[φ1]. After a number of additional
transformations where the new momentum domain and the remaining field φ1 get
rescaled, RG theory attempts to map the new effective action S′[φ1] onto the old
functional SΛ[φ] with modified coupling constants α′. Of course, this is merely the
general concept and in practice way more technical details are involved but fall
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beyond the scope of this discussion.
Renormalization Group theory became well known in condensed matter physics

in the context of the Kondo problem [72] which is the problem of understanding
the properties of conducting electrons in the presence of magnetic impurities in
the material which can induce a spin flip on a conducting electron. In particular,
any type of perturbative calculation failed at zero temperature as the resistivity
appeared to have an unphysical logarithmic divergence ∼ ln(T ). The first successful
approach to the problem was through renormalization group theory by Anderson
[73], where the solution consisted out of approximately integrating out the energy
scales as outlined in the previous paragraph. This problem has been later more
rigorously solved by Wilson [74] establishing the foothold of RG approaches to
condensed matter physics.

Renormalization Group theory approaches conceptually similar to Anderson’s
poor man’s scaling theory [73] have been successfully employed in a series of papers
to analyze the ground state properties of the Bogolibuov-Fröhlich [68, 69] model
and the extended Bogoliubov-Fröhlich model [70]. In the next chapter we will
start by discussing and comparing the various theoretical approaches outlined in
this chapter to the Bogoliubov-Fröhlich model.
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CHAPTER 2
The path integral approach for the

Bogoliubov-Fröhlich model

The majority of the contents of this chapter have been peer reviewed and published
in the Physical Review B journal of the American Physical Society with the
reference:
"T. Ichmoukhamedov, J. Tempere, General memory kernels and further corrections
to the variational path integral approach for the Bogoliubov-Fröhlich Hamiltonian,
Phys. Rev. B 105, 104304 (2022)"

In this chapter we start by comparing the different theoretical approaches that
have been introduced in the previous section for the Bogoliubov-Fröhlich model.
As has been observed in the literature and will be discussed here, Feynman’s
variational path integral approach exhibits discrepancies with diagrammatic Monte
Carlo (diagMC) calculations when the cutoff Λ in the model is large. The goal
of this chapter is to discuss the issues of Feynman’s approach and show how the
approach can be improved. This result lays the foundation for exploring the path
integral approach further in the rest of the thesis.

2.1 Feynman’s all coupling approach

We start the chapter by briefly reviewing Feynman’s variational path integral
approach [8] that was introduced in Chapter 1 and has since its inception been
regarded as the semi-analytical tool of choice to study the Fröhlich Hamiltonian
[4]. For any general Fröhlich Hamiltonian of the form (1.29) with an interaction
amplitude Ṽk, the phonon degrees of freedom can be integrated out exactly at the
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Chapter 2 - The path integral approach for the Bogoliubov-Fröhlich model

level of the partition function:

Z =
∫
Dr e−Seff[r]/~. (2.1)

This can be shown to yield an effective action Seff where the impurity is interacting
with itself at previous times:

Seff =
∫ ~β

0

mṙ2

2 dτ −
∑

k

1
2~

∣∣∣Ṽk

∣∣∣2 ~β∫
0

dτ

~β∫
0

dσ Gk (τ − σ) eik·[r(τ)−r(σ)] (2.2)

where:
Gk(u) = cosh [ωk (|u| − ~β/2)]

sinh (ωk~β/2) . (2.3)

A variational upper bound for the free energy corresponding to the effective action
can be found in terms of a simpler model action S0:

F ≤ F0 + 1
~β
〈Seff − S0〉 . (2.4)

Feynman’s original proposal for the model action [8, 62], given in expression (1.55)
of Chapter 1, consists out of a coupled harmonic oscillator with two variational
parameters, where one of the particles has been integrated out to simulate the
memory effects. The method to obtain the upper bound to the free energy
therefore comes down to minimizing the right hand side of (2.4) as a function of
two variational parameters which can numerically be easily performed.

Regardless of its simplicity, in previous studies of the Fröhlich model Feynman’s
approach shows remarkable agreement with diagrammatic Monte Carlo (diagMC)
calculations for the optical polaron [75] and the acoustic polaron [10] as illustrated in
Figure 2.1. Diagrammatic Monte Carlo is a computationally demanding approach
in which the sum over all non-negligible Feynman diagrams of the problem is
performed until the ground state energy is converged. Therefore, at least in
principle, Monte Carlo methods provide exact solutions for the Hamiltonian under
investigation and provide an excellent gauge for comparison to other theoretical
methods. Having such a powerful, but in some aspects opaque, computational
method is a significant advance. Nevertheless, it does not imply the end of
theoretical investigation and there are various reasons to try and understand the
physics of the problem from different angles. Even in light of ever increasing
processing power, Monte Carlo methods still remain computationally demanding
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to this day and require access to supercomputers with hundreds of nodes. In
addition, as we will also encounter further in this chapter, knowing how to capture
the physical state and the processes that are most relevant for a particular physical
quantity in a simpler theory often provides a deeper understanding of the system.

Figure 2.1: A comparison between the polaronic ground state energy in
Feynman’s approach and diagrammatic Monte Carlo performed by Vlietinck
et al. [10] for the optical polaron (left panel) and for the acoustic polaron
(right panel). Figure adapted from [10].

Returning to Feynman’s path integral method, at weak and strong coupling
the approach reduces to respectively the coherent state Lee-Low-Pines method [7]
and the strong-coupling Landau-Pekar ansatz1 [2] and has for this reason also been
called the all-coupling approach for the optical Fröhlich model. Two distinct ways
to improve even further upon Feynman’s original proposal can be found in the
literature. First, the model action can be generalized to the best quadratic action
functional [76, 77], which yields an improvement to Feynman’s result for the ground
state energy below 0.15%. Second, corrections beyond the first order variational
expansion can be made [78, 79] and yield improvements upon Feynman’s result
below 1.6%. These results provide an additional confirmation of the astounding
accuracy of the simple coupled oscillator model in solid state polaron theory. It
should be emphasized that, while this is true for the ground state energy, for the
dynamical response of the system, an application of the best quadratic action to
the optical polaron yields much larger improvements [80].

In this chapter we will focus on the application of Feynman’s approach to the
1Note that this is true for the optical or acoustic Fröhlich model, but in the Bogoliubov-Fröhlich

model Pekar’s ansatz does not capture the Lippmann-Schwinger regularization.
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Bogoliubov-Fröhlich Hamiltonian that has been introduced in Chapter 1:

Ĥ = p̂2

2m +
∑

k
~ωkα̂

†
kα̂k +

√
N0gib
V

∑
k
Vke

ik·r̂
(
α̂†−k + α̂k

)
, (2.5)

where:

~ωk =
√

~2k2

2mb

(~2k2

2mb
+ 2gbbn0

)
, (2.6)

Vk =

 ~2k2

2mb
~2k2

2mb + 2gbbn0

1/4

. (2.7)

Whereas in the original Fröhlich Hamiltonian, ωk is the constant frequency of
longitudinal optical phonons and Vk tends to zero at large momenta, in the
Bogoliubov-Fröhlich Hamiltonian the coupling amplitude remains finite and the
excitation spectrum becomes particle-like. This seemingly innocuous change
has dramatic consequences for the UV behavior of the model, which from a
mathematical physics point of view does not fall into any class of UV divergencies
previously encountered in Fröhlich-like Hamiltonians [56].

It is important to emphasize that beyond weak coupling between the impurity
and the gas, the physics of the Bose polaron is not accurately captured by the
Bogoliubov-Fröhlich Hamiltonian (2.5). At stronger interactions the Bogoliubov
approximation appears to suffer from an instability for attractive polarons [70,
81] which was explored in great detail in a more recent study [82]. In addition,
inclusion of higher order interactions on top of the lowest-order Fröhlich coupling
term have been considered and were shown to be of importance [49, 50, 70, 81].
Finally, Efimov physics has also been shown to play an important role in the
ground state of the attractive Bose polaron [42–45] which are not captured within
the non-extended Fröhlich model. In the rest of this chapter, we will solely focus
on a discussion of the Bogoliubov-Fröhlich model (2.5) with repulsive effective
interactions gib. The discussion will also concern results at stronger coupling,
which are not to be interpreted as a prediction for the Bose polaron in that regime,
but rather as a testing ground for corrections to the path-integral approach.
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2.2 - New theoretical approaches

2.2 New theoretical approaches

The Bogoliubov-Fröhlich model has been studied within this approach [48], where
Feynman’s original S0 has been used [62]. Just as is the case for the solid state
polaron, the variational upper bound reduces to the coherent state energy at
weak coupling [58] and is capable of providing an adiabatic ansatz at strong
coupling and hence was expected to work well for this Hamiltonian. However,
not long afterwards, very unexpectedly large discrepancies between the theory
and rigorous diagMC calculations [10] have been observed. In addition to the
previously discussed well known linear UV divergence in the momentum integrals,
associated with using contact interactions, a novel logarithmic UV divergence was
argued to be present in the diagMC study [68]. The logarithmic UV behavior
is completely absent in the variational approach [48], which is indicative of new
physics that is not captured within the approach.

In an impressive series of papers by F. Grusdt et al., employing a renormal-
ization group (RG) theory [57, 68, 69, 83], and by Shchadilova et al. employing
correlated Gaussian wavefunctions (CGW) [64], the Bogoliubov-Fröhlich model
has been studied in great detail. The authors show that the ground state of the
Bogoliubov-Fröhlich Hamiltonian contains entangled phonon modes at different
energies [64], and that adequately capturing quantum fluctuations in the RG or
CGW approaches gives rise to the logarithmic UV divergence in the momentum
cutoff of the ground state energy that has been observed in diagMC calculations
[10]. The momentum cutoff Λ therefore plays an important role in the problem,
dictating the importance of quantum fluctuations. In particular, at large cutoff in
the intermediate coupling regime α ≈ 1, the phonons are argued to be strongly
correlated forming the most challenging theoretical regime.

The comparison between the different methods in the literature is presented in
Figure 2.2 for the system parameters of a light 6Li impurity immersed in a heavier
23Na condensate with mb = 3.8m that have been used in the diagMC study [10].
As shown in [69], it turns out that the subtleties discussed in this chapter are more
prominent for a lighter impurity mass and hence this choice is excellent for the
purpose of comparison between different approaches. When compared at small
cutoff values and strong coupling, the Jensen-Feynman approach performs better
than perturbative RG [68] or CGW [64], and is in good agreement with diagMC
[10]. However, when Λ is large, Feynman’s approach fails to completely capture
the quantum fluctuations and the other approaches provide a far more accurate
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Figure 2.2: The comparison between various existing theoretical approaches
for the Bogoliubov-Fröhlich Hamiltonian. The polaronic contribution of the
ground state energy is presented as a function of the (repulsive) polaronic
coupling constant α for (a)-(c), and as a function of the momentum cutoff Λ
but at fixed α = 3 in (d). The Monte Carlo results from [10] are presented
as red squares (with error flags), the black dotted line is the Lee Low Pines
approach [7], the dashed green line is Feynman’s approach [48], the red
dashdotted line is perturbative RG [68] and the red solid line is CGW [64].
Results are presented at zero temperature for a mass ratio mb = 3.8m.
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description, in particular at weak and intermediate coupling. More recently, the
perturbative RG approach has been extended to also work well at strong coupling
[83] lifting it to the status of an all-coupling approach. On the other hand, CGW
[64] works well at weak to intermediate coupling but shows significant discrepancies
with diagMC towards strong coupling. It is curious to note that in the study of the
original Fröhlich model, Feynman’s approach is celebrated precisely for its ability
to capture quantum fluctuations when compared to adiabatic density functional
theory [84], which only emphasizes the elusiveness of the Bogoliubov-Fröhlich
model in comparison to its solid state counterpart.

Although the Bogoliubov-Fröhlich Hamiltonian is now better understood,
nevertheless the question remains as to why Feynman’s approach fails or how
it can be improved. This can be of interest purely from a mathematical point
of view [56], or as a first step towards future applications to multiple particles
in this model or extended Fröhlich Hamiltonians [50]. Most important of all,
the aim of starting with this chapter is to show the reader, who might have
heard of the issues surrounding Feynman’s approach in the context of the Bose
polaron discussed in the previous paragraphs, that the path integral method can
be significantly improved. The central technical goal of this chapter is therefore to
use the Bogoliubov-Fröhlich model as an illustration of the importance of further
corrections to the path integral method when applied to polaronic models where
quantum fluctuations cause additional UV divergences.

Note that in [68], a regularization procedure of this UV divergence is proposed
through effective mass corrections to the mean field impurity-condensate inter-
actions term gibn0, which we have not included in the Hamiltonian (2.5). Here,
we will not be concerned with this regularization since the goal is specifically to
discuss the mechanism of appearance of this UV behavior in Feynman’s approach.
Moreover, for an accurate comparison with realistic experiments the cutoff Λ
should be related to either the inverse van der Waals length of the atomic potential
[48, 70] or the first Efimov resonance [45]. For the current system the former value
corresponds to Λ ≈ 200ξ−1, and in what follows figures will be presented with
results up to Λ ≈ 4000ξ−1. For this reason, in addition to the Bogoliubov-Fröhlich
model being only valid at weak coupling, we emphasize that the results in their
current form are not suitable for direct comparison with experiment.

In this chapter we show that two modifications bring significant improvements
to Feynman’s approach for the Bogoliubov-Fröhlich Hamiltonian. In Sec. 2.3 we
consider the best quadratic action functional [77] as the model action for this
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system. While this correction is extremely small in the Fröhlich model, we show
that the largest correction to the ground state energy of the Bogoliubov-Fröhlich
model is obtained in this step. We obtain the optimal memory kernel which also
provides insights as to why Feynman’s original model fails. At strong coupling the
results show good agreement with diagMC, but near the challenging intermediate
coupling regime some noticeable discrepancy remains.

To obtain further corrections for the intermediate regime, in Sec. 2.5 we derive
an expression for the correction from the second-order cumulant expansion of
the partition function. This correction has been shown to be small [78, 79] in
the Fröhlich model, but turns out to be appreciable for the Bogoliubov-Fröhlich
model. Combining the two aforementioned improvements, we retrieve the loga-
rithmic divergence of the model and find excellent agreement with diagMC in the
intermediate regime.

2.3 Quadratic action with a general memory kernel

The derivation presented here has been performed for the optical Fröhlich model
in [76], and further addressed in [77]. Contrary to the treatment in [76, 77], the
Bogoliubov-Fröhlich model (2.5) is more difficult in the sense that the momentum
integrals cannot be analytically performed. The results obtained here can therefore
be applied to any general Fröhlich Hamiltonian. The central quantity in this
section will be the model action functional (working in units of ~ = 1 from now
on):

S0 = m

2

∫ β

0
ṙ2dτ + m

2β

∫ β

0

∫ β

0
dτdσ x(τ − σ)r(τ) · r(σ). (2.8)

The crucial step here is that we propose a general memory kernel x(τ − σ) with
far greater freedom than the commonly used Feynman model action. Note that
introducing an additional β in the denominator of the second term in (2.8) is purely
for convenience of notation further on. Following [76], we make the restriction to
β-periodic functions x(β− τ) = x(τ) and in addition assume

∫ β
0 x(τ)dτ = 0. While

the first assumption is necessary for the derivation, the second could in principle
be relaxed [76]. The variational free energy (2.4) instead of being a function of
two variational parameters M and W , as would be the case in Feynman’s original
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model, is now a functional of the memory kernel x(τ − σ):

Fv[x] = F0 + 1
β
〈Seff − S0〉 . (2.9)

Since the action functional is quadratic in the impurity degree of freedom, exact
expressions for all quantities in (2.9) can be obtained. In what follows we largely
follow the steps of [76], now applied to the Bogoliubov-Fröhlich model.

In principle, all expectation values of analytic functions of r(τ) can be computed
via a generating function, which satisfies the following identity for any vector
function g(τ) (in three dimensions):

〈
exp

 β∫
0

g(τ) · r(τ)dτ

〉 = exp

1
6

β∫
0

β∫
0

〈r(τ) · r(σ)〉g(τ) · g(σ)dτdσ

 . (2.10)
The property of β-periodicity allows to decompose the memory kernel in Fourier
space:

x(u) =
∞∑

n=−∞
xne

iνnu (2.11)

with Matsubara frequencies νn = 2πn/β. The covariance in expression (2.10) is
nothing else than the Green’s function of the corresponding classical equation of
motion, as commonly encountered in introductory quantum field theory [85]. Here,
it can also be obtained in first quantization:

〈r(τ) · r(σ)〉 = 6
mβ

∞∑
n=1

cos [νn(τ − σ)]
ν2
n + xn

. (2.12)

Expressions (2.10) and (2.12) are not new and have been derived in previous works
on this topic [76]. For the interested reader we note that this result can be easily
obtained using the propagator (4.7) from Chapter 4 for any vector function where∫ β

0 g(τ)dτ 6= 0, which all the functions g(τ) used in this chapter obey.
If an auxiliary parameter λ is introduced in the action functional (2.8) as a

scaling factor to the memory kernel x(τ − σ)→ λx(τ − σ), the partition function
Z and free energy F0 obtain a λ dependence:

Z(λ) = e−βF
(λ)
0 =

∫
Dre−

m
2

∫ β
0 ṙ2dτ+ m

2β

∫ β
0

∫ β
0 dτdσ λx(τ−σ)r(τ)·r(σ) (2.13)

By defining the expectation value with respect to the scaled action functional in

53



Chapter 2 - The path integral approach for the Bogoliubov-Fröhlich model

(2.13) as 〈〉λ it can be readily shown that:

∂F
(λ)
0
∂λ

= m

2β2

β∫
0

β∫
0

x(τ − σ) 〈r(τ) · r(σ)〉λ dτdσ. (2.14)

For the covariance this essentially corresponds to changing xn to λxn in (2.12).
Expression (2.14) can now be integrated over λ to obtain the free energy of the
model system:

F
(λ)
0 =− 1

β
log

[(
m

2πβ

)3/2
V

]
+ 3
β

∞∑
n=1

log
(

1 + λxn
ν2
n

)
. (2.15)

The kinetic energy contributions to the action functionals cancel in the second
term of (2.9) and hence it is useful to redefine S̃0 and S̃eff, where the absence of
the kinetic energy terms is emphasized by the tilde:

S̃0 = m

2β

∫ β

0

∫ β

0
dτdσ λx(τ − σ)r(τ) · r(σ), (2.16)

S̃eff = − 1
V

∑
k

g2
ibn0
2~ V 2

k

~β∫
0

dτ

~β∫
0

dσ Gk (τ − σ) eik·[r(τ)−r(σ)]. (2.17)

By once again introducing the auxiliary variable and taking the derivative of the
partition function with respect to λ, one can show:

1
β

〈
S̃0
〉

= ∂F
(λ)
0
∂λ

∣∣∣∣∣
λ=1

= 3
β

∞∑
n=1

xn
xn + ν2

n

. (2.18)

The generating function result (2.10) also immediately yields the expectation
value of the effective action (2.2). Note that the covariance (2.12) only depends
on the time difference |τ − σ| and is in addition β-periodic. In the limit of zero
temperature β →∞ this simplifies the double time integral from (2.2) to:

1
β

〈
S̃eff

〉
= −g

2
ibn0
V

∑
k
V 2

k

β/2∫
0

Gk(u)Fk(u)du (2.19)

where:
Fk(u) = exp

(
−2k2

mβ

∞∑
n=1

1− cos(νnu)
xn + ν2

n

)
. (2.20)
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In the β → ∞ limit the Matsubara summations in the previous expressions be
transformed into frequency integrals, where the coefficients xn become the Fourier
transform x(ν) of the memory kernel (notation not to be confused with the original
function):

Fk(u) = exp

− k2

πm

∞∫
0

dν
1− cos(νu)
x(ν) + ν2

 . (2.21)

Expression (2.19) contains a linear divergence in the momentum summation and
is regularized by relating gib to the s-wave scattering length aib up to second order in
the Lippmann-Schwinger equation in the Bose-polaron mean-field energy gibn0 [48]
as has also been extensively discussed in Chapter 1. This regularization eventually
comes down to simply using the lowest-order expression for gib = 2π~2aib/µ, where
µ−1 = m−1 +m−1

b is the reduced impurity-boson mass, but now subtracting the
divergent behavior from (2.19). For the Bose intraspecies interaction a lowest order
expression gbb = 4π~2abb/m is sufficient. Note that this regularization procedure
is not related to the phonon entanglement discussed in the introduction.
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Figure 2.3: The ground state energy at zero temperature (β = 200 used as a
cutoff) for (a) moderate Λ = 100ξ−1 and (b) large Λ = 3000ξ−1 cutoff values,
compared to the results taken from diagrammatic Monte Carlo calculations
[10] (scatter squares). The dashed line shows an application of Feynman’s
original model [48] to this system, while the solid line is our result obtained
with the general quadratic memory kernel. Note that for this comparison
the energy scale is defined using the boson mass mb = 3.8m.

Unless specified otherwise, in the rest of the chapter we will use polaronic
units in terms of the impurity mass m = 1, the condensate healing length ξ =
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~/
√

2mbgbbn0 = 1, and the corresponding energy scale ~2/(mξ2) = 1, which also
corresponds to setting ~ = 1. This rescaling has been performed in [48] and will
appreciably simplify the obtained expressions. For any physical analysis one can
unambiguously transform back into appropriate units. In the rest of this chapter
the mass ratio mb = 3.8m is used for all the figures for comparison with the
diagMC results of [10]. Note that to facilitate comparison with [10] where the
boson mass mb was preferred as the mass unit, an appropriate energy rescaling
is performed on the figures. We can now introduce the dimensionless coupling
constant of this model [48] as:

α = a2
ib

abbξ
, (2.22)

which makes the direct connection to polaronic physics in solids. Combining all
of the previous terms, taking the β →∞ limit, and also taking the volume V to
infinity, allows one to write the variational functional as:

Fv[x] = 3
2π

∞∫
0

dν

[
log
(

1 + x(ν)
ν2

)
− x(ν)
x(ν) + ν2

]

− α

4πµ2

Λ∫
0

dk k2V 2
k

β/2∫
0

Gk(u)Fk(u)du+ αΛ
2πµ. (2.23)

Here, Λ is the finite momentum cutoff discussed in Chapter 1, and the final term
arises from the contact interaction regularization. The functional that minimizes
the energy is found by taking the derivative with respect to a discrete Fourier
component ∂xnFv = 0 before the continuum limit is taken. Once the continuum
limit is taken, the following integral equation can be obtained for the memory
kernel:

x(ν) = α

3πµ2

Λ∫
0

dk k4V 2
k

β/2∫
0

Gk(u)Fk(u) sin
(
νu

2

)2
du. (2.24)

Since Fk(u) is itself a functional of x(ν) this equation has to be solved numerically.
This is done iteratively, starting by substituting the Lee-Low-Pines solution x(ν) =
0 into the right-hand side of (2.24) and obtaining an improved memory kernel on
the left-hand side. Depending on α, roughly one to ten iterations are needed until
the relative increase in the corresponding energy (2.23) becomes less than 1%,
which we accept as our final value. The next iteration yields further corrections of
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the order of 0.1% and can no longer be discerned on the graphs showed in this
manuscript. We find that the frequency at which the memory kernel reaches an
asymptotic value can become very large. For this reason we perform a scaling
transformation ν = ez − 1 and select N = 1000 Gauss-Legendre quadrature points
on the z-grid up to νmax = 108. The iterative improvement (2.24) is then performed
for each point.

The results are shown in Figure 2.3 where we compare the ground state
energy (2.23) for the optimized memory kernel with diagMC results from [10]. As
already observed in [10, 64, 68], the original Feynman model yields surprisingly
large discrepancies at strong coupling, especially at larger values of the cutoff
Λ = 3000ξ−1. This indicates that even in the limit of strong coupling quantum
fluctuations are of importance and the adiabatic ansatz included in Feynman’s
model fails. We can see that the result for the best quadratic action functional
(2.23) provides significant corrections to Feynman’s model and yields a variational
bound in good agreement with diagMC at strong coupling. However, as will be
shown in Figure 2.7 in the next section, in the challenging intermediate coupling
regime some discrepancies remain. To estimate corrections in this region, in the
next section we consider further corrections beyond the first order variational
inequality.

Let us also pay some attention to the optimized memory kernel itself. In
Figure 2.4 we show the obtained optimized solutions for x(ν) that lead to the
results shown in Figure 2.3. We can see that the UV limit of x(ν) agrees with the
analytic expression x(ν) = α

6πµ2
(
2µΛ3/3

)
. This limit can be readily obtained by

substituting the mean field guess x(ν) = 0 in the RHS of (2.24) and then taking
the ν → ∞ limit. Therefore, it appears that in the Bogoliubov-Fröhlich model
the UV limit of the optimal memory kernel does not converge as Λ→∞. On the
other hand, we have checked that the small frequency behavior shown on the inset
of Figure 2.4 is only very weakly influenced by the cutoff (while it does depend on
α).

Finally, in Figure 2.5 we compare the shape of the optimized memory kernel
to Feynman’s original model, which is given by xFeyn(ν) = MW 2ν2/(ν2 + W 2).
The memory kernel tends to zero quadratically in ν, in the ν → 0 limit. This
can be analytically shown in the first iteration by expanding expression (2.24) to
lowest order in ν, and for the optimized solution this behavior is shown in the inset
of Figure 2.4. However, as can be seen in the inset of Figure 2.5, the quadratic
behavior rapidly transitions into an extended linear regime. In principle, the
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Figure 2.4: The optimized memory kernel x(ν) at Λ = 3000ξ−1 (in polaronic
units) obtained for the energy plot in Figure 2.3b at three different coupling
strengths α = 1, 2, 3. The main plot shows the behavior at large ν on a
logarithmic frequency axis, whereas the inset indicates a quadratic behavior
at small frequencies. The dashed lines represent the analytic ν →∞ limit
mentioned in the text.

memory kernel of Feynman’s model system exhibits a similar behavior, it starts of
quadratic and then transitions into a linear regime before moving to an asymptotic
value. The problem however is that Feynman’s model has only two variational
parameters so that the ranges of the regimes can not all be chosen independently.
The quadratic behavior at small frequencies is dictated by the parameter MW 2

while the transition into the linear regime depends on W 2 in the denominator.
This forces the memory kernel of Feynman’s model system to make a compromise
and reach its asymptotic value far more quickly than the general solution.

2.4 Effective mass

When an impurity is immersed in a medium, it should come as no surprise that
its resistance to acceleration might become greater than the bare impurity mass.
At small velocities the impurity can therefore be described as having an effective
mass meff > m, a concept well known from the solid state polaron models [51, 52].
If the polaron system is to be modeled by Feynman’s model action, the total mass
in the model m+M provides a first rough approximation of the effective mass of
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Figure 2.5: A comparison between the general optimized memory kernel
x(ν) and Feynman’s original memory kernel. Inset shows the same plot at
smaller frequencies. Plots are made at Λ = 3000ξ−1 and α = 5.

the polaron [62]. The study of the effective mass in the Bogoliubov-Fröhlich model
at this level has been performed [48]. Although this simple approximation works
incredibly well for the optical Fröhlich model [8, 62] the more general formula
discussed in [8] and [86] should be used for other Fröhlich Hamiltonians to obtain
a more accurate expression for the effective mass. The effective mass of the
Bogoliubov-Fröhlich model has been compared between Feynman’s approach and
CGW or RG in [64, 68, 83]. In particular, the comparison in [83] reveals an artifact
of Feynman’s approach where in the intermediate coupling regime the effective
mass rapidly jumps nearly an order of magnitude and provides an extremely sharp
transition to the strong coupling regime as shown in Figure 2.6. In this part we
show that in the general memory kernel approach this artifact disappears and the
transition is smoothed out. Although the effective mass in the general memory
kernel approach in the context of the optical Fröhlich polaron has been rigorously
derived in [87], here we will follow the simple trick proposed by Feynman [8] in the
limit of low velocities. Although the trick might appear somewhat informal it has
been shown to be equivalent with more rigorous derivations [88]. We imagine a
velocity boost v on the impurity, which corresponds to the following transformation
in the interaction terms of both the effective and model actions:

r(τ)− r(σ)→ r(τ)− r(σ)− v (τ − σ) . (2.25)

The goal is now to once again derive the variational free energy Fv(v) after
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this boost and to expand this expression up to second order in v at small velocities.
The factor appearing in front of the second order term ∼ v2/2 then physically
represents the role of an effective mass at small velocities. It can be easily deduced
from [87] that in the two terms related to the model action: F0− 1

β 〈S0〉, the second
order contribution in the velocity will simply correspond to a kinetic energy term
with the bare mass of the impurity ∼ mv2/2. Consequently, to obtain the effective
mass correction on top of the bare impurity mass m, all we have to compute is
the following boosted expectation value:

〈Seff〉0 (v) = − 1
V

∑
k

g2
ibn0
2~ V 2

k

∫ ~β

0
dτ

∫ ~β

0
dσG (k, |τ − σ|)Fke

ik·v(τ−σ) (2.26)

and then identify its second order expansion term in v. Expression (2.26) is clearly
a function of |τ − σ| as changing a sign in the exponential can be lifted by merely
renaming k→ −k and obtaining an identical expression. For any such function
one can transform into the center of mass and relative coordinates of τ and σ to
show: ∫ β

0
dτ

∫ β

0
dσf(|τ − σ|) = 2

∫ β

0
(β − u)f(u)du. (2.27)

If this formula is applied to (2.26), for u→∞ the oscillation term will make the
function f(u) dampen out to zero, and we can therefore assume that the function
f(u) goes to zero at large u. Since we will be dividing (2.26) by an additional β to
get the correction in the free energy, we can drop the second term of the integrand
in (2.27) at zero temperature and use the identity:

∫ β

0
dτ

∫ β

0
dσf(|τ − σ|) = 2β

∫ ∞
0

f(u)du (2.28)

to find in this limit:

1
β
〈Seff〉0 (v) = − 1

V

∑
k
g2
ibn0 V

2
k

∫ β

0
duG (k, u)Fke

ik·vu. (2.29)

The second-order contribution of this expectation value is now given by

δFv2 = 1
2V

∑
k
g2
ibn0 V

2
k

∫ β

0
duG (k, u)Fk (k · v)2 u2, (2.30)
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Figure 2.6: The effective polaron mass meff at cutoff Λ = 200ξ−1 computed
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Landau-Pekar strong coupling results from [68].

where following identity for any d-dimensional integral of this form:∫
dkdf(k)(k · v)2 = 1

d

∫
dkf(k)k2v2 (2.31)

can now be used to write

δFv2 = v2 1
V

1
6
∑

k
g2
ibn0 V

2
k

∫ β

0
duG (k, u)Fkk

2u2. (2.32)

Finally, the effective mass of the polaron is given by:

meff = m+ 1
V

1
3
∑

k
g2
ibn0 V

2
k

∫ β

0
duG (k, u)Fkk

2u2, (2.33)

which in polaronic units yields:

meff = m+ α

12πµ2

∫
dkk4V 2

k

∫ ∞
0

duG (k, u)Fku
2. (2.34)

The result is presented at a cutoff of Λ = 200ξ−1 in Figure 2.6 to compare with
the extended RG approach. We can see that the main artifact of Feynman’s
approach is lifted in the general memory kernel method and the transition from
the weak to strong coupling regimes is smoothed out. Nevertheless, a noticeable
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discrepancy remains between our approach and RG going into the strong coupling
regime. Although the RG approach has been shown to be in good agreement with
diagMC for the ground state energy, we are not aware of any diagrammatic nor
experimental result for the effective mass of the Bogoliubov-Fröhlich model that
could be used as a gauge and hence the remaining discrepancy between the two
methods cannot be unanimously addressed.

Some observations favorable towards the general memory kernel result can
be made. Although no formal guarantee exists, it is reasonable to expect that
improving the model action from Feynman’s approach to the general memory
kernel formalism should also improve the accuracy of the effective mass. At
intermediate coupling around α ≈ 1.5 in Figure 2.6 the general kernel result for
the effective mass shifts closer towards RG, as would be expected. However, at
stronger coupling around α = 5 the improved approach shifts the result farther
away from RG. On the premise that improving the model action in the variational
formalism also improves the result for the effective we therefore have indications
that the RG approach might be underestimating the effective mass at strong
coupling.

2.5 Second order correction

In Section 2.3 we have shown that improving the model action to the general
memory kernel form already yields good agreement with diagMC at strong cou-
pling. However, as we will see in this section, this turns out to be insufficient at
intermediate coupling and hence the goal is to obtain even further corrections.
By adding and subtracting the model action functional S0 in the path integral of
the polaron partition function (2.1), the free energy of the system can be exactly
written as [89]:

F = F0 −
1
β

ln
(〈
e−∆S

〉)
, (2.35)

where ∆S = Seff − S0, and the expectation values are taken with respect to the
model action. The second term can be recognized as the cumulant-generating
function of the path integral, which can be expanded as [78, 89]

F = F0 + 1
β
〈∆S〉0 −

1
2!

1
β

〈
(∆S − 〈∆S〉)2

〉
+O

(
∆S3

)
. (2.36)

62



2.5 - Second order correction

Here, we can recognize the variational free energy in the first two terms, which
represent the Jensen-Feynman inequality (2.4) if all the higher order terms are
discarded.

In this section we perturbatively include the second order correction in the
cumulant expansion of (2.36). This correction has been studied and shown to
be small in the Fröhlich model [78, 79], but we find it to be non-negligible in
the Bogoliubiov-Fröhlich model. We emphasize that the resulting correction is
approximate for two reasons. First of all to the best of our knowledge, no general
inequalities that include higher orders of the expansion are known [90] and hence
from this point on the variational inequality can be violated. Second, the obtained
correction is significantly more difficult to compute than the one obtained in [79]
due to the fact that the momentum integrals cannot be analytically performed in
the Bogoliubov-Fröhlich model. For this reason a mean-field like approximation to
obtain a semi-analytic expression will be made. At weak to intermediate coupling
the obtained corrected energy is in excellent agreement with diagMC and exhibits
the exact logarithmic divergence that was observed in [10].

In what follows we are strictly interested in the β →∞ limit. For convenience
of notation, and to avoid having to write the formal limit everywhere, we will keep
the Matsubara summations in their discrete form and still write the factor β in
e.g. the integral boundaries. Such expressions are to be strictly interpreted on the
condition that β is very large and will be taken to infinity in the end, on which our
derivation relies. The cumulant in the second order correction can be written as:

1
2β
〈

(∆S − 〈∆S〉)2
〉

= 1
2β

[〈
S̃2
eff

〉
−
〈
S̃eff

〉2
]

+ 1
2β

[〈
S̃2

0

〉
−
〈
S̃0
〉2
]
− 1
β

[〈
S̃effS̃0

〉
−
〈
S̃eff

〉〈
S̃0
〉]
.

(2.37)

In Appendix (A) we show that if the following fivefold integral is defined:

σn[x(ν)] = 1
(2n+ 1)!

(
α

4πµ2

)2 Λ∫
0

dk

Λ∫
0

dsk2s2V 2
k V

2
s

×
β/2∫
0

du1

β/2∫
0

du2 Gk(u1)Gs(u2)Fk(u1)Fs(u2)
β/2∫
0

dz

(
ks

4 ζ(u1, u2, z)
)2n

,

(2.38)
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where:

ζ(u1, u2, z) =32
β

∞∑
n=1

[ 1
ν2
n + xn

cos(νnz) sin
(
νnu1

2

)
sin
(
νnu2

2

)]
, (2.39)

for any memory kernel x(ν), the second order correction (2.37) can be written as:

1
2β
〈

(∆S − 〈∆S〉)2
〉

=
∞∑
n=2

σn[x(ν)] +
[
σ1[x(ν)] + 1

2β

(〈
S̃2

0

〉
−
〈
S̃0
〉2
)

− 1
β

(〈
S̃effS̃0

〉
−
〈
S̃eff

〉〈
S̃0
〉)]

. (2.40)

Note that if x(ν) = 0 is substituted in the variational free energy (2.23) one obtains
the mean-field Lee-Low-Pines result at zero polaron momentum. Therefore, for
x(ν) = 0 we can interpret the result (2.40) as a correction to mean-field theory:

1
2β
〈

(∆S − 〈∆S〉)2
〉(MF)

=
∞∑
n=1

σn[0]. (2.41)

Incidentally, the polaron problem mean-field theory corresponds to first-order
perturbation theory [57], and hence (2.41) is also nothing else than the second
order perturbative correction. Due to the simplification x(ν) = 0, the sum in (2.41)
can be performed. However, mean-field theory completely misses the diagMC
polaronic energy in the Bogoliubov-Fröhlich Hamiltonian beyond weak coupling
as illustrated in Figure 2.2 and hence it is desirable to start from a better point.

Let us now consider the corrections on top of the best quadratic action functional
with the optimized memory kernel (2.24). As shown in Appendix (A), in this case
the terms in the square brackets in (2.40) all completely cancel and the summation
starts from n = 2

1
2β
〈

(∆S − 〈∆S〉)2
〉(best)

=
∞∑
n=2

σn[x(ν)]. (2.42)

Therefore an important feature of expanding around the best quadratic action is
to omit the dominant contribution from σ1 in the mean-field correction (2.41). In
contrast with previous approaches that have considered the second order correction
for the polaron, the momentum integrals in (2.38) cannot be performed analytically.
For any non-trivial memory kernel x(ν) one is hence left with a fivefold integral,
which we have not been able to compute efficiently.

Let us therefore in spirit of Feynman’s approach consider a simple semi-analytic
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approximation. We expand around the best quadratic action in (2.40) and use
this knowledge to cancel the term in the square brackets, but then approximate
the remaining contributions at the mean-field level:

1
2β
〈

(∆S − 〈∆S〉)2
〉(best)

≈
∞∑
n=2

σn[0]. (2.43)

The error of this approximation is roughly estimated by calculating the difference
in the first-order term σ1[x(ν)]− σ1[0], which is the only exception for which the
fivefold integral can be rather easily performed. This difference is obtained in
expression (A.21) in Appendix (A) (which is to be computed in the β →∞ limit):

σ1[x(ν)]− σ1[0] = 3
2β

∞∑
n=1

[
x2
n

(ν2
n + xn)2 −

x̃2
n

ν4
n

]
. (2.44)

Here, xn represents the optimal memory kernel, whereas x̃n is the first-order
iterative improvement obtained from substituting x(ν) = 0 into (2.24). For a
cutoff Λ = 2000ξ−1 the relative error on the correction is of the order of 3% for
α = 0.5 and of the order of 5% for α = 1. This justifies using the approximation
to get an accurate second order correction in the weak to intermediate coupling
regime, in particular for Figure 2.7. This error is however larger at large coupling
strengths, and we found an over correction towards energies below diagMC for
α > 5 when applied to Figure 2.3. This suggests that even higher order corrections
are likely needed to get exactly on diagMC in that regime, and in what follows we
only apply the correction in the weak to intermediate coupling regime.

As shown in Appendix (B), the full corrected energy on top of the minimized
Ev from (2.23), with this approximated correction is given by:

E = Ev − α2Q, (2.45)

where:

Q =
∞∑
n=2

1
(2n+ 1)

( 1
4πµ2

)2 Λ∫
0

dk

Λ∫
0

dsV 2
k V

2
s
k2+2ns2+2n (3a(k) + a(s))
a(k)2 (a(k) + a(s))2+2n , (2.46)

with a(k) = ωk + k2/(2m). This double integral can be readily performed and the
series converges within less than 0.1% after n = 10. If the sum is extended to
n = 0, the series expansion of xarctanh(x) can be recognized here which indicates
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Figure 2.7: The polaronic energy obtained from diagrammatic Monte Carlo
[10] (squares with error bars) at Λ = 2000ξ−1 is compared to the result of
Feynman’s original model action (dashed curve), to the result of the general
memory kernel method of Sec. 2.3 (dashdotted curve), and to the general
memory kernel result including the second order correction of Sec. 2.5 (solid
curve).
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that the integral could likely be more easily performed in the sinh(x)/x form in
(A.13) once the x(ν) = 0 approximation is made. Nevertheless, the series expansion
proves to be useful to discuss the differences of the corrections in (2.41) and (2.42).
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Figure 2.8: The polaronic energy contribution obtained within Feynman’s
original model (dashed), the general memory kernel method (dashdotted) and
the corrected energy (solid) with diagrammatic Monte Carlo [10] (squares)
are plotted for α = 3 as a function of the cutoff Λ on a logarithmic scale.

In Figure 2.7 we compare the results with diagMC values obtained at small to
intermediate coupling strengths [10] at a cutoff of Λ = 2000ξ−1. We see that a
significant correction to Feynman’s original model is obtained by using the general
memory kernel method, but nevertheless in the challenging intermediate coupling
regime noticeable discrepancies remain. The corrected energy to second order
discussed in this section yields excellent agreement with diagMC in this regime. It
should be emphasized that both the RG [68] and CGW [64] methods yield equally
good agreement with diagMC here.

Finally, in Figure 2.8 we show how the logarithmic divergence observed in
diagMC can be completely retrieved in the corrected energy. Once again, while the
general memory kernel approach yields significant improvements to the original
model system, the corrected energy is necessary to obtain further agreement with
diagMC. However, it should be noted that in this regime at α ≈ 3, especially at
small cutoff values, we leave the weak to intermediate coupling regime and the
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Bogoliubov-Fröhlich Hamiltonian at large cutoff Λ ≈ 2000− 3000ξ−1

Coupling regime α < 0.1 α ≈ 1 α ≈ 10 log-div?
Mean field X × × ×
Feynman X × × ×
CGW X X × ≈
perturbative RG X X × ≈
extended RG X X X X
(new) General memory X ≈ X ≈

↓ ↓
(new) Correction X X

Table 2.1: A qualitative comparison between the different theoretical ap-
proaches to the ground state energy of the Bogoliubov-Fröhlich Hamiltonian
as compared to diagMC. Rough estimators: (X) indicates good agreement
with diagMC, (×) indicates significant discrepancy, and (≈) indicates some
discrepancy from diagMC. The last two entries correspond to the methods
developed in this chapter where the arrows indicate a correction at interme-
diate coupling strengths.

approximation (2.43) can no longer be safely justified to accurately represent the
second order cumulant correction. Nevertheless, the expression appears to be in
excellent agreement with diagMC, but we leave open the possibility that the exact
second order correction would slightly overcorrect diagMC in this regime, to be
only brought back in the third order cumulant. Neglecting this caveat, we note
that the result obtained in Figure 2.8 is in better agreement with diagMC than
either perturbative RG or CGW that only capture the slope of the divergence
correctly but are shifted by an appreciable energy as shown in Figure 2.2. A
comparison with the extended RG method in this regime cannot be made since
this graph was not presented in [83], but based on the other results in the paper it
is expected that extended RG should be accurate here as well.

In Table 2.1 we present a comparison between the different methods, where
we emphasize that the labels are estimated qualitatively. We conclude that with
the inclusion of the higher order correction, the method developed in this chapter
compares better to diagMC than the two other extensively used approaches in the
literature in the last years: CGW and perturbative RG, and is comparable to the
more recent extended RG approaches. This is in particular noticeable at either
strong coupling or in the logarithmic divergence plot in Figure 2.8. Our approach
has one disadvantage worth mentioning – the second order correction is perturbative
in nature and is computed within an additional mean-field approximation. As
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demonstrated, this works well in the weak to intermediate coupling regime at large
cutoff. However, at strong coupling, roughly starting at α > 5 the perturbative
term yields an overcorrection of the energy and the obtained result drops slightly
below diagMC. This overcorrection is not large but nevertheless indicates that the
upper bound of the variational approach is lost.

On the other hand, our approach has a couple of nice properties. First of all,
thermal fluctuations of the impurity and phonons, or the presence of multiple
impurities, could be taken into account without any fundamental changes. It is
not clear how feasible this is in the other approaches in the literature. In addition
it is completely transparent at this point where the remaining corrections to our
approach are situated:

• The exact second order correction can be obtained by finding an efficient
way to compute the fivefold integral in (2.38).

• Any remaining discrepancies are guaranteed to be situated in the higher order
cumulant terms O

(
∆S3). Since we have presented a way to approximate the

second order correction here, perhaps the difficult higher order corrections
could be dealt with in a similar way. It would be interesting to see whether
a full series resummation of all the corrections can be obtained at this
approximate level.

We leave these questions open for future studies.

2.6 Conclusion

In conclusion, in this chapter we explored extensions of Feynman’s variational
path integral treatment of the Bogoliubov-Fröhlich model and addressed the issues
of this method that were brought up in a number of works [10, 64, 68]. The
main message of this chapter is that the variational path integral approach can be
improved to be of comparable or better accuracy as other modern theoretical tools
that were recently employed to study the difficult Bose polaron problem. We show
that two adjustments can be made to obtain major improvements to the original
approach to this model that was first studied in [48].

First, instead of considering a coupled oscillator for the model action, a general
quadratic action functional with a variational memory kernel is proposed. This
method has already been studied for the original Fröhlich model [76, 77] but
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was found to yield only minor corrections. We show that this step is absolutely
necessary to treat the Bogoliubov-Fröhlich model, and obtain relatively good
agreement with diagMC at strong coupling.

To capture the difficult intermediate regime where the phonons of the model
are strongly correlated [64], even with this improvement noticeable discrepancies
remain. For this reason we propose to include higher order corrections to the
energy beyond the first order variational inequality, expanded around the general
model action functional. These corrections have also been studied in the context
of the original Fröhlich model [78, 79, 89], but the studies were situated strictly
within Feynman’s approach and in addition the corrections were found to be
small. In this chapter we have generalized previous results to the general memory
kernel case and applied it to the Bogoliubov-Fröhlich model. To obtain an easy
semi-analytic expression for the correction we have proposed an approximation
that naturally presents itself within the general memory kernel treatment. We
estimated this approximation to be accurate in the weak to intermediate coupling
regime and obtain excellent agreement with diagMC. In addition, the correct
logarithmic divergence of the model is retrieved. Renormalization procedures of
the divergence are discussed in [56, 68]

This approach could be extended to many particles or to finite temperatures,
which could be a way to probe the effect of thermal fluctuations on a system where
quantum fluctuations are of great importance. Having seen how the second order
correction around the optimal quadratic action functional can be approximated by
subtracting a single term from the perturbative correction with respect to a free
particle, it would also be interesting to explore this in the context of higher order
corrections.

70



CHAPTER 3
The path integral approach for the

extended Fröhlich model

The majority of the contents of this chapter have been peer reviewed and published
in the Physical Review A journal of the American Physical Society with the
reference:
"T. Ichmoukhamedov, J. Tempere, Feynman path-integral treatment of the Bose
polaron beyond the Fröhlich model, Phys. Rev. A 100, 043605 (2019)"

In this chapter we will use the path integral approach to tackle the extended
Fröhlich Hamiltonian (1.26) introduced in Chapter 1. The focus will lie on
understanding the effect of the extended interactions on the polaron ground state
properties such as the ground state energy, effective mass and polaron radius. For
this reason, extensive comparison to the Fröhlich model will be made. In the
process we will encounter a problem of a completely different nature than in the
previous chapter. For the Fröhlich model, which has been studied in Chapter 2,
the effective action of the polaron Seff is exactly known and the problem lies in
variationally capturing its physics by improving the model action S0. However, for
the extended Bogoliubov-Fröhlich model, obtaining the effective action Seff forms
a significantly more difficult problem that was yet unsolved in the literature at
the moment of this study. In this chapter, our efforts will therefore be directed
towards finding a framework to obtain Seff of the extended Fröhlich model. In
contrast to the previous chapter, the resulting expression for the extended action
will be treated within Feynman’s original model action as most of the effects of
the extended interactions can already be qualitatively captured at this level.
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3.1 The extended action functional

We remind the reader that for a single particle immersed in a Bose-Einstein
condensate the extended Fröhlich Hamiltonian, introduced in (1.26) of Chapter 1,
is given by:

ĤEF = p̂2

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
+ gib
V

∑
s6=0

∑
k 6=0

ρ̂k−sW
(1)
k,s α̂

†
sα̂k + 1

2
gib
V

∑
s 6=0

∑
k 6=0

ρ̂k−sW
(2)
k,s

(
α̂†sα̂

†
−k + α̂kα̂−s

)
. (3.1)

Here, the first line corresponds to the thoroughly discussed Bogoliubov-Fröhlich
Hamiltonian of the previous chapter and the second line consists of the extended
terms with respect to the Fröhlich Hamiltonian with the two new interaction
amplitudes:

W
(1)
k,k′ = 1

2
(
VkVk′ + V −1

k V −1
k′
)
, (3.2)

W
(2)
k,k′ = 1

2
(
VkVk′ − V −1

k V −1
k′
)
. (3.3)

This extended Hamiltonian provides a correction to the Bogoliubov-Fröhlich model
by taking into account events where an impurity is interacting with two excitation
operators at once without direct coupling to the condensed state. These terms
allow for processes where an excitation of the condensate scatters off the impurity
multiple times before being absorbed.

To treat the Hamiltonian within the path integral formalism, first an expression
for its action functional Stot has to be found. This step can be seen as moving in
the opposite direction of quantizing a theory with the goal of obtaining a classical
description of the Hamiltonian (3.1). By following the same reasoning as Feynman
initially did to obtain the effective action of the Fröhlich model [62], we derive the
following extended Fröhlich Lagrangian in Appendix (C):

L =mṙ2

2 + M

2
∑

k
Q̇kQ̇−k −

∑
k

Mω2
k

2 Q−kQk −
√
N0gib
V

∑
k 6=0

ρk

√
2Mωk

~
VkQk

− gib
V

M

2
∑
k,s

ρk−sVkVs

√
ωkωs

~
Q−sQk −

gib
V

Mη

2
∑
k,s

V −1
k V −1

s
~√ωkωs

ρk−sQ̇kQ̇−s.

(3.4)
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where:

η =
(

1 + gib
V

∑
k

V −2
k

~ωk

)−1

(3.5)

vanishes at infinite cutoff if no regularization procedures of the contact interactions
are performed. The variables Q∗k = Q−k are now scalars suitable for path integra-
tion. The first four terms of (3.4) correspond to the Lagrangian of the Fröhlich
model and yield the Fröhlich action SF as given in (1.47). The additional terms in
(3.4) take into account the extended interactions beyond the Fröhlich model and
consist of a part depending on the phonon coordinates Qk multiplied by Vk, and a
part depending on the phonon velocities Q̇k along with V −1

k . Within a mean-field
approach where the excitation operators acquire a polaronic shift α̂k → α̂k − fk,
these velocity-dependent terms can be shown to arise due to a non-zero imaginary
contribution from fk and vanish for the saddle-point solution at rest [50, 59], while
the terms containing Vk arise due to the real part of fk and have a non-negligible
contribution to the ground-state energy resulting in a resonance shift. In the RG
approach [70] it is pointed out that the RG coupling constant corresponding to
the V −1

k terms has a small effect on the polaron wavefunction, but is expected to
be important when considering other qualitative properties such as the lifetime
of the polaron due to the appearance of bound states at lower energies. These
considerations are, however, beyond the scope of the goals of this chapter and we
will only consider the position-dependent terms of the extended interactions. In
this way we capture the same effects as the mean-field treatment but treat them
beyond the mean-field level. Hence, in the remainder of this chapter, we consider
the Euclidean polaron action functional,

S = SF + gib
V

M

2
∑
k,s

∫ ~β

0
dτρk−s(τ)VkVs

√
ωkωs

~
Q∗s(τ)Qk(τ), (3.6)

where

SF =∫ ~β

0

mṙ2

2 + M

2
∑

k
Q̇∗kQ̇k +

∑
k

Mω2
k

2 Q∗kQk +
√
N0gib
V

∑
k
ρk

√
2Mωk

~
VkQk

 dτ
(3.7)

is the action of the Fröhlich model.
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Chapter 3 - The path integral approach for the extended Fröhlich model

3.2 Perturbative expansion for the beyond Fröhlich
terms

The goal of this subsection is to integrate out the phonon variables Qk and obtain
the effective action Seff action corresponding to (3.6):

e−Seff/~

=
∫
D{Qk} exp

−gib
V

M

2
∑
k,s

VkVs

√
ωkωs

~2

∫ ~β

0
dτρk−s(τ)Qk(τ)Q∗s(τ)

 e−SF /~.
(3.8)

Within the Fröhlich model this path integral corresponds to a driven harmonic
oscillator and is readily solved. However, to the best of our knowledge, the type
of path integral in presence of off-diagonal extended terms Q∗s(τ)Qk(τ) has not
yet been encountered in the literature at the moment of study. In what follows,
we propose a strategy to find a solution by expanding the extended terms in a
perturbative series and search for patterns in the resulting terms. The efficacy of
this initial approach presented here has also motivated the development of a more
recent systematic treatment of this path integral in the context of the solid state
polaron in the presence of anharmonic interactions [91].

The idea is to take into account the exponential of the beyond-Fröhlich terms in
(3.8) perturbatively through a series expansion of the exponential and a subsequent
integration over the phonon degrees of freedom. The terms in the resulting
perturbation series can be obtained more straightforwardly with the generating
functional formalism. The generating functional is obtained by adding source
terms (and a prefactor that will simplify the algebra) to the Fröhlich action:

SF [Jk] = SF + 1
2

√
N0gib
V

∫ ~β

0

∑
k

√
2Mωk

~
Vk [Qk(τ)Jk(τ) +Q∗k(τ)J∗k(τ)] dτ.

(3.9)
The source terms resemble the Fröhlich impurity-phonon interaction term, and can
be added to it. Hence, including the source terms in the Fröhlich action amounts
to shifting ρk to ρk +Jk. The generating functional is then obtained by integrating
out the phonon degrees of freedom. The resulting effective action of the Fröhlich
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3.2 - Perturbative expansion for the beyond Fröhlich terms

model including source terms then becomes:

SFeff [Jk] =
∫ ~β

0

mṙ2

2 dt−
∑

k

g2
ibn0

2~V V 2
k

×
∫ ~β

0
dτ

∫ ~β

0
dσGk (τ − σ) [ρk(τ) + Jk(τ)] [ρ∗k(σ) + J∗k(σ)] .

(3.10)

In the series expansion of the exponential in (3.8) the phonon position variables
Qk can be replaced by functional derivatives with respect to Jk, which can be
brought out of the functional integral over Qk. After performing the path integral
over the phonon variables one is left with the following expression:

e−Seff/~ =
∞∑
n=0

(−1)n
n!

 ~
gibn0

∑
k,s

∫ ~β

0
dτρk−s(τ) δ

δJk(τ)
δ

δJ∗s (τ)

n e−SFeff[Jk]/~

∣∣∣∣∣∣
Jk=0

.

(3.11)
We will now provide an overview of the structure of the various terms appearing
in the generating functional series (3.11) and argue which terms can be neglected.
They can be classified in three categories.

3.2.1 Vacuum energy terms

It is illustrative to consider the n = 1 order in the expansion. After the first δ
δJ∗s (τ)

in (3.11) is applied to the exponential, one obtains

e−Seff/~ =

1− gib
2~V

∑
k,s

V 2
s

∫ ~β

0
dτρk−s(τ) δ

δJk(τ)∫ ~β

0
Gs (τ − σ) [ρs(σ) + Js(σ)] dσ

]
e−S

F
eff[Jk]/~

∣∣∣
Jk=0

. (3.12)

Now, there is a choice whether to apply the second operator δ
δJk(τ) to the exponen-

tial again or to the Js(t) in front. The former option leads to terms which will be
discussed in the next subsection. The latter option fully eliminates the impurity
variable and results in:

e−Seff/~ =
[
1− gibβ

2V
∑

k
V 2

k G (k, 0)
]
e−S

F
eff[Jk]/~

∣∣∣
Jk=0

. (3.13)
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In every order n of the expansion there will be 0 ≤ j ≤ n operator pairs in which
each individual pair is applied in the same way as in this example to eliminate the
impurity variable and merely yield the term in (3.13) to the power j multiplied
with a combinatorial factor. This allows to separate these terms and perform their
complete series summation, given that they are not to be counted from this point
on. The summation results in the following contribution to the effective action:

δSeff = gib~β
2V

∑
k
V 2

k G(k, 0). (3.14)

At zero temperature the corresponding energy shift is given by:

∆Evac = gib
2V

∑
k
V 2

k . (3.15)

This contribution is precisely of the same type as the divergent terms arising from
non-commuting variables in the derivation of the Lagrangian (3.4). First-order
corrections in gib to the ground-state energy are not observed in a rigorous perturba-
tive calculation [92] and we do not expect these terms to be of physical significance.
Furthermore note that (3.15) is UV divergent and can not be regularized by taking
the cutoff dependence of gib into account. Therefore we will discard contribution
(3.14) in the rest of our calculations.

3.2.2 Scattering terms

In the previous example of expansion order n = 1 we could have also applied the
second functional derivative to the exponential again in (3.12) to find:

e−Seff/~ = (1− gibO1 [Jk]) e−SFeff[Jk]/~
∣∣∣
Jk=0

, (3.16)

where O1 [Jk] is given by

O1 [Jk] = g2
ibn0

~ (2~V )2
∑

k1,k2

V 2
k1V

2
k2

∫ ~β

0
dτ1

∫ ~β

0
dτ2

∫ ~β

0
dτ3

[
ρ∗k1(τ1) + J∗k1(τ1)

]
× ρk1(τ2)ρ∗k2(τ2) [ρk2(τ3) + Jk2(τ3)]Gk1 (τ1 − τ2)Gk2 (τ2 − τ3) . (3.17)

This term can be interpreted in relation to a process where an impurity creates an
excitation out of the BEC at time τ1, scatters with this excitation at time τ2, and
finally returns it to the BEC at time τ3. Hence we will refer to this term as the
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3.2 - Perturbative expansion for the beyond Fröhlich terms

first-order scattering term. Every higher order term in the expansion will contain
precisely one combination where every pair of functional derivatives is applied only
to the exponential and contributes a power of O1. A short calculation shows that
these terms form the exponential power series:

e−Seff/~ =
[ ∞∑
n=0

(−1)ngnibOn1
n!

]
e−S

F
eff/~. (3.18)

Here, we use O1 as a notation for O1 [Jk = 0], i.e. where the source terms are set
to zero. We can proceed to derive the second-order scattering term O2. The n = 2
term in the expansion of (3.11) can be written as:

1
2!

~
n0

∑
k,s

∫ ~β

0
dτρk−s(τ) δ

δJk(τ)
δ

δJ∗s (τ)O1 [Jk] e−SFeff[Jk]/~
∣∣∣
Jk=0

. (3.19)

Applying one of the two functional derivatives in (3.19) to the exponential and
the other to O1 [Jk] and vice versa will result in two terms that are combined in:

g2
ibO2 [Jk] e−SFeff[Jk]/~

∣∣∣
Jk=0

, (3.20)

where

O2 [Jk] = g2
ibn0

(2~V )3~
∑

k1,k2,k3

V 2
k1V

2
k2V

2
k3

∫ ~β

0
dτ1

∫ ~β

0
dτ2

∫ ~β

0
dτ3

∫ ~β

0
dτ4

×
[
ρ∗k1(τ1) + J∗k1(τ1)

]
ρk1(τ2)ρ∗k2(τ2)ρk2(τ3)ρ∗k3(τ3) [ρk3(τ4) + Jk3(τ4)]

× Gk1 (τ1 − τ2)Gk2 (τ2 − τ3)Gk3 (τ3 − τ4) . (3.21)

For every term of order n > 2 in the expansion there will be a combination
of functional derivatives that will result in a contribution ∼ (n)(n − 1)On−2

1 O2.
Performing the explicit calculation shows that these terms can be combined with
the series of first-order scattering terms in (3.18) in the following way:

e−Seff/~ =
[ ∞∑
n=0

(−1)ngnibOn1
n!

] (
1 + g2

ibO2
)
e−S

F
eff/~. (3.22)

We will return to the factorization pattern appearing in (3.22) later. First we have
to address the terms that are not included in this reasoning.
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Chapter 3 - The path integral approach for the extended Fröhlich model

3.2.3 Excitation bath terms

In the n = 2 order of the expansion we could have also chosen to apply both
functional derivatives to O1 [Jk] in expression (3.19), which would result in:

g2
ib

Õ1
2 e−S

F
eff/~, (3.23)

where

Õ1 = 1
(2~V )2

∑
k1,k2

V 2
k1V

2
k2

∫ ~β

0
dτ1

∫ ~β

0
dτ2ρk1(τ1)ρ∗k2(τ1)ρk2(τ2)ρ∗k1(τ2)

× Gk1 (τ1 − τ2)Gk2 (τ1 − τ2) . (3.24)

This term can be related to a process where an impurity exchanges momentum
with the excitation bath without coupling to the BEC, i.e. without creating an
excitation from the condensate or scattering it back to the condensate through the
original Fröhlich process. Whereas the scattering terms discussed in the previous
subsection, such as (3.17), are proportional to n0 (the number of atoms in the
condensate), the enhancement factor n0 is absent in the excitation bath terms
such as (3.24).

The higher-power contributions of this term will present themselves as Õn/21
in all the even n > 2 expansion terms and together with (3.23) they form an
exponential power series as well:

e−Seff/~ =
[ ∞∑
n=0

1
n!

(
g2
ib

Õ1
2

)n]
e−S

F
eff/~. (3.25)

Just like for the scattering terms, this reasoning can be extended to higher order
terms Õn or to the combination of these terms with the scattering terms such
as Õ1O

n−2
1 . In general, terms uncoupled from the condensate, arise when both

functional derivatives δ
δJk(τ)

δ
δJ∗s (τ) in a pair in (3.11) are applied to the two source

terms contained in a scattering term On [Jk]. As mentioned above, the main
difference between the scattering terms and the excitation bath terms is that
the former contain a leading order n0, while the latter do not and are therefore
suppressed by a relative factor of abb/ξ, with abb the boson-boson scattering
length and ξ the coherence length of the BEC. Within the range of validity of
the Bogoliubov approximation, i.e. (n0a

3
bb) � 1, they are negligible. Note that

a similar argument has been made in a perturbative calculation [92] to ignore
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3.2 - Perturbative expansion for the beyond Fröhlich terms

diagrams where the impurity couples to bosons outside of the BEC. We will
therefore not include these excitation bath terms in the rest of our calculations.

Note that in a more recent study of a similar path integral problem for the
anharmonic solid state polaron [91] an additional factor 1/2 is obtained in front
of the Õ1 term (3.24), which is indicative of overcounting terms in our argument.
Taking a closer look and comparing with [91], we can see that by following
Feynman’s argument [62], which was valid for the Fröhlich model, and integrating
over all possible {Qk, Q

∗
k} as we have done here, we do indeed make the error

of counting each Õn twice for each Q∗k = Q−k. This subtlety was missed in our
original study [81] since the Õn terms were dropped from this point onwards.
Fortunately, this counting problem is not present for the On terms which are in
exact agreement with [91] as their origin is different. In summary, aside from this
small inconsequential error, our approach in this chapter remains valid.

3.2.4 Result

In the discussion of the scattering terms above we have found that the power series
in the first-order terms O1 and all the product terms O2O

n−2
1 compactly factorize

in expression (3.22). An explicit calculation shows that this factorization pattern
extends to higher-order scattering terms On:

e−Seff/~ =
( ∞∑
n=0

(−1)ngnib
n! On1

)
×
(

1 + g2
ibO2 + g4

ib

2! O
2
2 + ...

)
×
(
1− g3

ibO3 + ...
)
× (...) e−SFeff/~. (3.26)

Here, On represents an n-th order scattering process where an impurity creates an
excitation out of the BEC and scatters with it n times before scattering it into
the condensate again:

On = g2
ibn0

~ (2V ~)n+1

∫ ~β

0
dτ1...

∫ ~β

0
dτn+2

×
∑

k1,...,kn+1

n+1∏
j=1

V 2
kj
Gkj (τj+1 − τj) ρkj(τj)

∗ρkj(τj+1)

 . (3.27)

The factorization pattern appearing in (3.26) suggests that the effective action can
be written as:

Seff = SFeff − ~
∞∑
n=1

(−1)ngnibOn. (3.28)
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As we have mentioned before, the more recent approach to these types of path
integrals [91] yields exactly the same On terms and confirms validity of the effective
action (3.28) that will be used from this point onwards. It might be illustrative to
point out that even within the conventional Fröhlich model a similar structure can
be observed. Performing a perturbative expansion of the Fröhlich contribution in
(3.7) with respect to the free impurity yields:

e−S
F
eff/~ =

(
1 +O0 + 1

2!O
2
0 + ...

)
e−Sfree/~, (3.29)

where Sfree is the action functional of a non-interacting impurity and O0 is a
“zeroth-order” scattering term characterizing an impurity that creates an excitation
and absorbs it a time later, without any interaction in between. This series can be
resummed to obtain precisely the effective action of the Fröhlich model (3.10).

In what follows we will study the extended action, once again relying on the
Jensen-Feynman inequality:

F ≤ F0 + 1
~β
〈Seff − S0〉 . (3.30)

In contrast to the previous chapter, here we will use the simpler Feynman model
action with two variational parameters M and W :

S0 =
∫ ~β

0

mṙ2

2 dt+ MW 3

8

∫ ~β

0
dτ

∫ ~β

0
dσ

cosh [W (u− ~β/2)]
sinh (W~β/2) [r(τ)− r(σ)]2 .

(3.31)
The reason for this is twofold. First, the studies in this thesis have chronologically
not been performed in the same order as the chapters. At the moment of this study
we have not yet been employing the general memory kernel approach discussed in
Chapter 2. Second, as we will see, the simpler variational method will already be
sufficient to understand the ground state properties of the system and provide good
agreement with other approaches to the extended Hamiltonian. The difficulty in
applying the inequality to the extended model is that the expectation value of the
effective action (3.28) contains impurity density correlation functions at different
times, of an arbitrarily large order corresponding to the number of scattering
events in the scattering terms. This can explicitly be seen from the product in
(3.27). Unfortunately, we are not aware of any technique to exactly compute
such expectation values up to arbitrary order and in the next subsection an
approximation will be explored.
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3.2.5 Random phase approximation

To proceed analytically, an approximation of the impurity density correlations
can be made. Relative to the model system S0, the impurity density correlation
between the creation of an excitation at time τj and its absorption at time τj+1

depends only on the absolute value of the time step [48]:〈
ρ∗kj (τj)ρkj (τj+1)

〉
0

= Fkj (|τj − τj+1|) . (3.32)

For Feynman’s model action the memory function of the impurity Fk(u) is given
by:

Fk(u) = exp
(

~k2

2 (M +m)

[
u2

~β
− u+ M

Ωm
cosh (Ω [~β/2− u])− cosh (~βΩ/2)

sinh (~βΩ/2)

])
.

(3.33)
We consider a random phase approximation (RPA) where the dominant contribu-
tion to the correlation of a number of subsequent scattering events is given by the
correlations within one scattering event (3.32):〈

n+1∏
j=1

ρ∗kj (τj)ρkj (tj+1)
〉

0

≈
n+1∏
j=1

〈
ρ∗kj (τj)ρkj (τj+1)

〉
0

=
n+1∏
j=1
Fkj (|τj − τj+1|) .

(3.34)
Using Gkj (~β − u) = Gkj (u) and Fkj (~β − u) = Fkj (u) it is not difficult to show
that within this approximation the additional contributions to the effective action
constitute a power series:

〈Seff〉0 =
〈
SFeff

〉
0

+ gibn0~β
∞∑
n=2

(
− gib
~V

∑
k
V 2

k

∫ ~β/2

0
duGk (u)Fk (u)

)n
. (3.35)

After substituting the expectation value of the Fröhlich effective action (3.7)
with respect to the variational model system and adding the first-order energy
contribution gibn0, the expectation value of the full effective action becomes:

〈Seff〉0 =
〈∫ ~β

0

mṙ2

2

〉
0

+ gibn0~β
∞∑
n=0

(
− gib
~V

∑
k
V 2

k

∫ ~β/2

0
duGk (u)Fk (u)

)n
.

(3.36)

Each term inside the round brackets in (3.36) exhibits a UV divergence linear in
the UV cutoff Λ in the momentum integral. Therefore, the full effective action
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contains an entire polynomial series of divergences:

〈Seff〉
(UV)
0 ∼

∑
n

gn+1
ib O (Λn) . (3.37)

In contrast to the case for the Bogoliubov-Fröhlich model discussed in Chapter
1 where a second order correction in (1.43) was sufficient, this series can only be
exactly regularized by substituting the full Lippmann-Schwinger equation:

g−1
ib = µ

2π~2aib
− 1
V

∑
k

2µ
~2k2 , (3.38)

where µ =
(
m−1
b +m−1

)−1
is the reduced impurity-boson mass and aib is the

impurity-boson scattering length. The free energy F0 of the model system and
expectation value of the action of the model system 〈S0〉0 can be computed. Sub-
stitution into the Jensen-Feynman inequality (3.30) yields the following variational
free energy:

F = 3
β

ln
[
sinh

(~βΩ
2

)]
− 3
β

ln
[
sinh

(~βW
2

)]
− 3

2β ln
(
m+M

m

)
− 3

2β
M

M +m

[~βΩ
2 coth

(~βΩ
2

)
− 1

]
+ 2π~2n0

µ

1
a−1
ib − a

−1
0 (M,Ω, β)

.

(3.39)

Strictly speaking, by making the approximation in this section the variational
inequality is no longer guaranteed. However, unless divergences are found, on
the premise that the approximation makes a small error we proceed to use (3.39)
as an approximate variational expression. The variational parameters are Ω and
M and the relation between Ω and the original oscillator frequency in the model
system is given by Ω = W

√
1 +M/m, see [8, 48, 62] for a detailed description.

The free energy (3.39) is written in a suggestive form to make the analogy with
the resonance shift observed in [50, 70]. The resonance shift is UV convergent and
in our case depends on both the temperature and the variational parameters:

a−1
0 (M,Ω, β) = 2π~2

µV

[∑
k

2µ
~2k2 −

1
~
∑

k
V 2

k

∫ ~β/2

0
duGk (u)Fk (u)

]
. (3.40)

Note that to be able to neatly write the energy in this way, we have explicitly added
the mean field energy contribution 2π~2aibn0/µ to the energy, which is not included
in the expression given in [48]. Therefore the polaronic energy contribution is

82



3.2 - Perturbative expansion for the beyond Fröhlich terms

given by F − gibn0 with F as the optimal variational energy.
As a consistency check we consider the limit of weak coupling with a simplified

model system where the phonon mass of the Feynman model approaches zero,
M → 0, while the spring constant MW 2 remains fixed. At zero temperature
(β → ∞), the energy in the weak coupling limit Eweak is independent of the
variational parameters and given by:

Eweak = 2π~2n0
µ

1
a−1
ib − a

−1
0,weak

. (3.41)

In this limit the u-integral in a−1
0,weak can be analytically performed:

a−1
0,weak = 2π~2

µV

[∑
k

2µ
~2k2 −

∑
k

V 2
k

~ωk + ~2k2

2m

]
. (3.42)

Expression (3.41) with the resonance shift (3.42) is precisely the mean-field result
including extended interactions at zero polaron momentum P = 0 [50, 59], which
provides a confirmation of our result.

Feynman’s path-integral formalism allows us to calculate an effective mass
for the polaron mpol and a root mean square (RMS) estimate of the polaron size√
〈r2〉. The expression for the polaron radius depends only on the model system

and remains the same as in [48]:

〈
r2
〉

= 3~
2Ω

m+M

mM
coth

(~βΩ
2

)
. (3.43)

In Chapter 2 we have already discussed obtaining the polaron effective mass by in-
troducing a boost to the memory function of the system 〈exp (ik [r(τ)− r(σ)])〉0 →
〈exp (ik [r(τ)− r(σ)])〉0 × exp (ik · v (τ − σ)). This method is used in Feynman’s
seminal work on polarons within the Fröhlich model [8, 62]. However, to incorpo-
rate the effects on the effective mass of the extended Fröhlich contributions we
only apply this boost to the effective action after the RPA contributions have been
separated in (3.36). After deriving the energy as a function of v and expanding it
up to v2, the factor in front of v2/2 can be identified as the polaron effective mass:

mpol = m+ lim
β→∞

4
3
π2~3n0
µ2

Γ(M,Ω, β)(
a−1
ib − a

−1
0 (M,Ω, β)

)2 , (3.44)
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where Γ is given by:

Γ(M,Ω, β) = 1
V

∑
k
k2V 2

k

∫ ∞
0

du u2Gk (u)Fk (u) . (3.45)

As far as we are aware, Feynman’s prescription is only valid in the low temperature
limit, so the limit β → ∞ in expression (3.44) must be taken. The effect of
temperature is then estimated through the implicit temperature dependence of
the variational parameters M and Ω, as has been done in [86]. Note that in the
limit of M → 0 in the model system, also our result for the effective mass reduces
to the extended Fröhlich interactions mean-field result [59].

3.3 Results

3.3.1 Comparison with the Fröhlich model for the repulsive
polaron

First, we make a direct comparison between the results obtained with Feynman’s
variational description within the Fröhlich model in [48] and the results including
extended interactions derived in the previous section. Because the polaronic
contribution to the free energy within the Fröhlich model is the same on both
sides of the resonance we will only consider the repulsive polaron in this section.
It is important to note that on this side of the resonance various shallow bound
states are expected to exist at lower energies [49, 50] and we are only retrieving
the energy of the repulsive branch in our approach. We do not observe direct
evidence of Efimov bound states for an impurity in a BEC [42–44] in this approach,
but we keep open to the possibility that their effect on the repulsive branch is
captured. Within the Fröhlich model, the results at a given temperature can
be expressed as a function of a single dimensionless polaronic coupling constant
α = a2

ib/(ξabb). However, for (3.39) this is no longer the case, as the results depend
also explicitly on abb and hence in the extended model the coupling constant α
is no longer particularly useful. Nevertheless, for a fixed abb we can still plot our
results as a function of α at the repulsive side of the resonance for the purpose of
the comparison. Note that while previously we have compared energies at different
momentum cutoff values for the purpose of benchmarking different theoretical
approaches, in real systems a finite physical cutoff scale can be identified. In atomic
gases the natural cutoff corresponds to the range of the interatomic interaction,
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Figure 3.1: A comparison of the polaronic contribution to the free energy
including extended interactions (dashed lines) with that of the Fröhlich model
(full lines) as a function of the coupling constant α at various temperatures
β = ~2/(mkBTξ

2) = [4, 8, 20, 100]. For the purpose of the comparison
with [48], the same impurity-condensate parameters are taken: mb = 3.8m,
ξ = 450 nm, and abb = 2.8 nm. The inset shows the same results at stronger
coupling.
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Figure 3.2: A comparison of the RMS polaron radius of Feynman’s approach
including extended interactions (dashed lines) with that of the Fröhlich model (full
lines) as a function of the coupling constant α at various temperatures. The same
impurity-gas parameters are used as in Figure 3.1.

given by Λc ≈ 200ξ−1 for the current system which will be used for the comparison.
Figure 3.1 shows the results for the polaronic contribution to the free energy

Fp = F −2π~2aibn0/µ, in polaronic units (ξ = m = ~ = 1) at various temperatures.
At weak coupling both results coincide but they start to significantly differ around
α ≈ 3.5 where the Fröhlich model predicts a very steep decrease in energy, indicative
of self-trapping. The extended interactions appear to moderate this into a much
slower linear decrease of the free energy. The decrease of the polaronic contribution
is even slower than the increase of the first-order contribution 2π~2aibn0/µ, and the
full polaron energy for the extended interactions model never becomes negative.

Figure 3.2 presents a comparison of the polaron RMS radius (3.43) between
the two models. The first noticeable difference is that the sharp kink within the
Fröhlich model, previously identified with the transition into the strong coupling
regime around α = 3.5, is replaced by a smoother non-monotonic transition due
to the extended interactions. Most significant is the difference at extremely strong
coupling however. The inclusion of the extended interactions disproves previous
predictions of the asymptotically shrinking Bose polaron within this method,
which was suggestive of self-trapping as well, and shows that the polaron radius
approaches a finite non-zero value around ≈ 0.35ξ. Comparable conclusions follow
for the effective mass of the polaron (3.44), shown in Figure 3.3. The effective
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Figure 3.3: A comparison of the polaron effective mass of Feynman’s approach
including extended interactions (dashed lines) with that of the Fröhlich model (full
lines) as a function of the coupling constant α at various temperatures. The same
impurity-gas parameters are used as in Figure 3.1.

mass no longer exhibits a sudden and steep transition into the strong coupling
regime. A period of faster increase of the effective mass is still observed around
α = 5-10, but flattens out towards a value of roughly ≈ 20m at even stronger
coupling. Furthermore we can see that in the case of a light impurity such as
considered here, the effective mass is more sensitive to temperature differences
than the energy and radius. It has been pointed out that measurements of the
effective mass of the polaron are expected to be particularly useful to discern
between various theoretical models [57, 68]. Based on our results we expect this
to be even more the case when the temperature dependence is measured as well.

The converging effective mass and polaron radius together with the positive
free energy suggest that self-trapping does not take place for the repulsive polaron
when the extended interactions are included. This is qualitatively in agreement
with the findings of the RG approach [70], where no self-trapping is observed for
the repulsive polaron.

3.3.2 Comparison with other theoretical results

In this subsection we provide a comparison with other recent results in the
literature, specifically with the mean-field approach [50], the RG approach [68] and
Quantum Monte Carlo (QMC) calculations [46]. As mentioned above, the mean-
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field expressions for the energy and effective mass [50, 59] can also be obtained
from the weak coupling limit of Feynman’s model.

Before proceeding to the discussion, one aspect of the Feynman model has to
be addressed. As can be seen from expression (3.39), the variational landscape
can contain poles where the free energy diverges to negative (or positive) infinity,
accompanied by a divergence of the effective mass (3.44). On the negative side of
the resonance, even at weaker coupling, these poles are present. However, below a
critical coupling strength there exists a separated local minimum that corresponds
to the polaronic state. To plot the polaron energy of the attractive branch we
follow this local minimum starting from weak interactions up to the point where
it merges with one of the aforementioned poles, at which both the energy and
effective mass diverge.

To better understand the physical significance of these divergences, it is illus-
trative to observe that the same type of pole is present in the extended mean-field
treatment [50, 59], where it is independent of any additional variational parameters.
In the MF model this divergence can be shown to be accompanied by a rapid
depletion of the BEC, which is no longer accurately described within Bogoliubov
theory. We therefore believe that the poles observed within our treatment can be
interpreted as a runaway pathway related to the shortcomings of the Bogoliubov
approximation and regardless of the underlying physical reason for the divergence
the inclusion of higher order boson interactions should have a stabilizing effect. A
detailed discussion of similar divergences, observed in RG theory, is presented in
[70]. Note that in [44] no divergences are observed for the polaron at unitarity,
which we have initially interpreted as a stabilizing effect from Efimov physics.
However in approaches in lines of [44] only a small number of phonon excitations
are allowed and hence divergences associated with an infinite number of phonons
cannot be found. In a more recent study of the extended Fröhlich model [45]
within an approach that has been shown to capture Efimov physics and in addition
allows for an infinite number of excitations, qualitatively similar behavior to our
results is observed where a metastable state transitions into an unstable state on
the attractive branch due to the effect of Efimov physics. Therefore in retrospect
this provides indication that our approach and RG might be capturing traces of
Efimov physics.

For the repulsive polaron no runaway pathways exist at weak coupling and
we simply follow the global minimum of the variational landscape. Only at
extremely strong coupling, separated divergences start to appear and the polaronic
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Figure 3.4: A comparison of the polaron energy obtained with the path-integral
variational method including extended interactions (solid), the mean-field model
including extended interactions [50] (dotted), the RG approach [70] (connected dots)
and QMC [46] (diamonds). The impurity and condensate parameters correspond
to the experiment of Jørgensen et al. [23], given by m = mb and abb = 9a0,
a0 being the Bohr radius. We take a UV momentum cutoff of the range of the
Feshbach resonance Λc = (60a0)−1 ≈ 190ξ−1 in this experiment, given in [23]
and also used in [70]. On the figure the inverse scattering length is measured
in terms of kn =

(
6π2n0

)1/3. The temperature integral cutoff corresponds to
βc = ~2/(ξ2mkBT ) = 200 or 0.17 nK. For the purpose of the comparison with RG
we plot the repulsive branch up to (knaib)−1 ≈ 0.18. On the attractive branch
we can only show the RG data up to the lower range of fig. 9 in [70]. The inset
shows the high cutoff behavior of E(Λ)/E(Λc) in the Feynman approach at strong
coupling for (knaib)−1 = 0.3.
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state becomes a local minimum. This local minimum continues to exist across
the resonance towards negative scattering lengths, and it is not clear if we can
interpret it as the repulsive polaron state from this point on. For the purpose
of the comparison with RG in this subsection, we will restrict our study of the
repulsive branch to couplings below the critical coupling presented in [70]. At this
point the aforementioned transition into a local minimum has not yet taken place.

Figures 3.4 and 3.5 show a comparison of the polaron energies obtained with
various methods, across the resonance for impurity-condensate parameters used in
the experiments [23] and [19], respectively. To provide an accurate comparison
with RG, the same respective finite values of the momentum cutoff were used as
in [70]. As shown on the inset of 3.4, this result is not yet completely converged as
a function of the cutoff which is here taken to correspond to the physical length
scales associated with the interatomic potential. As we have discussed in great
detail in Chapter 2, the Bose polaron models are not necessarily UV convergent in
the Λ→∞ case when more advanced methods are used. For the purpose of the
comparison in Figure 3.4, where a relatively small cutoff is used, we do not expect
the logarithmic divergence to be of great importance. For both calculations finite
temperatures, at which the energy has converged beyond any noticeable difference
in the figures, were used to represent zero temperature. This convergence is shown
on the inset of 3.5.

For the repulsive polaron we observe a relatively good quantitative agreement
with QMC data in Figure 3.4 and an excellent agreement in Figure 3.5. Note,
however, that the QMC calculation does not rely on the Bogoliubov approximation
and hence the comparison is made within different models of the Bose polaron.
Our results predict no divergence of the repulsive branch energy in contrast to the
mean-field treatment, but towards stronger coupling a quantitative discrepancy
with the RG approach appears. However, as shown in Figure 3.6, a much better
agreement exists for the effective mass of the repulsive polaron between the two
methods. One possible explanation for the discrepancy in energy is the previously
discussed logarithmic divergence captured in the RG theory, to capture which we
need our more advanced approach of Chapter 2. The QMC study [46] does not
elaborate on the cutoff dependence so the status of the logarithmic divergences in
this method is unclear. On the negative side of the resonance we see qualitative
agreement with RG where the polaron energy and effective mass diverge at a
weaker interaction strength than predicted by the mean-field description or QMC.

The theoretical results can also be compared to the experimental data points

90



3.3 - Results

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

(knaib)
−1

E
/(
~2
k
2 n
/2
m
)

MF extended int.

RG Grusdt et al. (2017)

QMC Peña Ardila et al. (2018)

Feynman extended int.

0 500 1,000 1,500
0.999

1.000

1.001

~2/(ξ2mkBT )

E
(β

)/
E
(β

c
)

Figure 3.5: A comparison of the polaron energy obtained with the path-integral
variational method including extended interactions (solid), the mean-field model
including extended interactions [50] (dotted), the RG approach [70] (connected dots)
and QMC [46] (diamonds). The impurity and condensate parameters correspond
to the experiment of Hu et al. [19], given by mb = 2.17m and abb = 100a0, a0

being the Bohr radius. We take the same UV cutoff Λc = 103/ξ as used in [70].
The temperature integral cutoff corresponds to βc = ~2/(ξ2mkBT ) = 1000 or 0.3
nK. For the purpose of the comparison with RG we plot the repulsive branch up to
(knaib)−1 ≈ 0.25. The inset shows the low temperature convergence of E(β)/E(βc)
in the Feynman approach at strong coupling for (knaib)−1 = 0.3.

91



Chapter 3 - The path integral approach for the extended Fröhlich model

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

(knaib)
−1

m
p
o
l/
m

Feynman extended int.

MF extended int.

RG Grusdt et al. (2017)

Figure 3.6: A comparison of the polaron effective mass between Feynman’s model
including extended interactions (solid), the mean-field model including extended
interactions [50, 59] (dotted) and the RG approach [70] (connected dots). The
same impurity-condensate parameters were used as in 3.4 corresponding to the
experiment of Jørgensen et al. [23]. For the purpose of the comparison with RG
we plot the repulsive branch up to (knaib)−1 ≈ 0.18.

from [19, 23], which we have not explicitly added to the figures for the purpose
of clarity. At weak coupling all theoretical approaches are in excellent agreement
with experiments. For the repulsive branch as the coupling gets stronger, the data
points of Jørgensen et al. [23] lie at higher energies than QMC, even after the
non-homogeneity of the three-body decay processes is taken into account in the
spectroscopic signal [46]. As both RG and our results lie below QMC it follows that
the agreement with this experiment is not close in this regime. Several reasons for
this discrepancy are suggested in [46]. In contrast we find excellent agreement with
the experiment of Hu et al. [19] on the repulsive branch, which is also in much closer
agreement with QMC than the Jørgensen et al. experiment. The early divergence
for the attractive polaron that is found in our results and the RG approach is
observed in neither experiment, and as mentioned above, its understanding requires
a further study of the validity of the Bogoliubov approximation and the effects of
Efimov physics in that regime.
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Figure 3.7: The polaronic energy as a function of the interaction ratio η = gib/gbb

of Feynman’s extended approach is compared to RG theory (connected dots) [94],
diffusive Monte Carlo (DMC) calculations (diamonds) [94], the beyond-Fröhlich
mean-field approach [50] at zero polaron momentum (to which our theory reduces
at weak coupling) and the Feynman-Fröhlich approach [48].

3.4 Results in 1D

The Bose polaron has also been experimentally created in one-dimensional systems
by Catani et al. [93] in arrays of tubes that contain ≈ 180 bosonic Rb atoms with
≈ 1.4 K impurities per tube. The atoms are strongly trapped in the transverse
direction ensuring the 1D regime, and in addition trapped in along the tube
direction to stabilize the condensate. The impurities are then localized at the
center of the tube with a species-selective dipole beam, after which they are
released and imaged afterwards to measure the axial width displacement and the
effective (polaron) mass of the impurity.

While a number of open questions surrounding the 3D Bose polaron and the
importance of various contributions to the Hamiltonian remain, the 1D Bose
polaron is better understood in this regard. In particular, two recent seminal
theoretical studies of the problem rely on the RG and Monte Carlo approaches
[94] or condensate deformation methods [95] present a thorough discussion of
the problem. As argued in [94], the Bogoliubov-Fröhlich Hamiltonian (1.21) and
extended Fröhlich Hamiltonian (3.1) can be derived in exactly the same form
as they are in 3D, of course given that the operators and integrals are demoted
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to 1D. In doing so, a couple of important changes occur. First of all in the
Λ→∞ limit, Lippmann-Schwinger regularization is not necessary in 1D and the
simple expressions gib = −1/(µaib) and gbb = −2/(mbabb) yield the scattering
lengths. In addition, aside from the polynomial UV divergence it appears that the
logarithmic divergence discussed in Chapter 2 is absent in 1D as well. Therefore
both the Bogoliubov-Fröhlich model and its extension are well behaved in the
UV limit and the difficult problem of capturing phonon entanglement across a
broad range of momentum scales is not featured in this system. However, a new
infrared divergence arises in the ∼ gib

∑
k v

2
k correction to the impurity-condensate

mean field energy as derived in (1.26), essentially reflecting the fact that the
1D homogeneous condensate cannot exist. As shown in a comparison between
MF and RG in [94], an ad hoc removal of this term corresponds well with a
more formal regularization, and hence we simply remove the divergent term from
the Hamiltonian. Perhaps the most important feature of the 1D Bose polaron
demonstrated in both studies, is the observation that corrections beyond the
Bogoliubov approximation containing phonon interactions of third and fourth
orders can clearly not be neglected at stronger coupling. For the Bose polaron in
3D the effect of such interactions is not yet completely understood, in particular
since the QMC results in Figure 3.4 lie closer to the mean field approach than to
more advanced theoretical approaches. To gauge the accuracy of our approach,
in what follows we compare the results of Feynman’s method as described in this
chapter to [94] for the extended Fröhlich Hamiltonian in 1D.

Taking into account the aforementioned modifications into our derivation, the
variational energy in 1D at the level of (3.39) is given by:

F (M,Ω) = 1
β

[log (2 sinh (~βΩ/2))− log (2 sinh (~βW/2))]− 1
2β log

(
m+M

m

)
− 1

2β
M

M +m

[~βΩ
2 coth

(~βΩ
2

)
− 1

]
+ gibn0

1 + gib
~ Γ , (3.46)

where:

Γ = 1
(2π)

∫ ~β/2

0
du

∫ Λ

0
dkV 2

k Gk (u)F (k, u) . (3.47)

Expression (3.46) is derived on the condition that gibΓ/~ < 1, but as we will
see provides an excellent description if the analytic continuation of the series
corresponding to the last term of (3.46) is used. Similarly, the following expression
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Figure 3.8: The polaronic energy as a function of the interaction ratio η = gib/gbb

of Feynman’s extended approach is compared to RG theory (connected dots) [94],
diffusive Monte Carlo (DMC) calculations (diamonds) [94], the beyond-Fröhlich
mean-field approach [50] at zero polaron momentum (to which our theory reduces at
weak coupling) and the Feynman-Fröhlich approach [48]. The parameters here are
the same as in Figure 3.7, except that a weak boson-boson interaction corresponding
to γ = 0.014 was used.
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Figure 3.9: The 1D polaron effective mass as a function of the interaction
ratio η = gib/gbb of Feynman’s extended approach is compared to RG theory
(connected dots) [94], diffusive Monte Carlo (DMC) calculations (diamonds) [94],
the beyond-Fröhlich mean-field approach [50] at zero polaron momentum (to which
our theory reduces at weak coupling) and the Feynman-Fröhlich approach [48].

for the effective mass can be derived in 1D:

mpol = m+ g2
ibn0
~

Γ̃(
1 + gib

~ Γ
)2 , (3.48)

where:
Γ̃ = 1

(2π)

∫ ~β/2

0
du

∫ Λ

0
dkV 2

k Gk (u)F (k, u) k2u2. (3.49)

First, we can compare our results to the previously discussed article using
the RG approach and comparing to diffusive Monte Carlo (DMC) calculations
[94] in units of the 2011 Florence group experiment by Catani et al. [93]. The
boson density is given by n0ξ = 1.05 with ξ = ~/

√
2mbgbbn0 and the mass

ratio corresponds to mb/m = 87/41. From this we can derive gbb and all the
parameters besides aib are fixed. Figure 3.7 presents a comparison of the polaron
energy between various approaches as a function of η = gib/gbb up to strong
coupling. The RG and DMC data was obtained from [94]. The zero-momentum
extended mean-field approach [50] was reproduced by setting M = 0 in our
calculations, which corresponds to the method of Shchadilova et al. in [50]. We
have used the numerical momentum cutoff Λ = 103ξ−1 and a temperature cutoff
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Figure 3.10: The polaron energy of Feynman’s extended approach is compared
to QMC calculations (diamonds) [96] and the Feynman-Fröhlich approach [48] at
γ = 0.02 and γ = 0.2.

of β = 500. If the effective interactions between the bosons gbb are decreased
by tuning γ = gbbmb/(~2n0) = 0.014 for the same system, then the results in
Figure 3.8 are found where we still see relatively good agreement with RG, with
small differences appearing at strong coupling. This small difference is likely
caused by discarding the Õ-terms in (3.25), for which the argument relies on
the three dimensional case. Figures 3.7 and 3.8 also show the diffusive Monte
Carlo (DMC) results from [94] applied to the full impurity-boson Hamiltonian.
This clearly demonstrates how the extended Fröhlich Hamiltonian corrects upon
the Bogoliubov-Fröhlich Hamiltonian in the intermediate coupling regime and
extends the applicability of the model. While the extended model appears to
qualitatively capture the physics correctly, it is clear that for quantitatively exact
results at strong coupling further corrections are necessary. For the 1D polaron,
this extension has been performed in [95].

We can also make a comparison for the effective mass (3.48) in the Catani et
al. units in Figure 3.9 and find exact agreement with RG in the strong coupling
regime providing another confirmation of the accuracy of our approach. This raises
further interest as to why larger differences exist in 3D in Figure 3.6 or Figure 2.6.

Finally, Figure 3.10 presents a comparison between QMC calculations by Parisi
et al. [96] on the full impurity-boson Hamiltonian and our method for the extended
Fröhlich model at mb = m. The authors tune the boson-boson interactions through
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the parameter γ = gbbmb/(~2n0) and we compare the two weakest coupling results
at γ = 0.02 and γ = 0.2 which are expected to be still within the Bogoliubov
regime. In [96] the energy is presented on a log-log scale, and since the smallest
error in obtaining the data is significant in this case we provide the comparison
on a log-log scale as well. On this graph the energy is measured in units of
εF = ~k2

F /(2mb) where kF = πn0 and the impurity-boson coupling is quantified
by η̃ = 2gibµ/(~2n0). Once again we can see that in the intermediate coupling
regime the extended Fröhlich model is exact, but at stronger coupling quantitative
discrepancies appear.

3.5 Conclusion

In this chapter we have studied the ground-state properties of the Bose polaron
beyond the Fröhlich paradigm using Feynman’s variational path-integral formalism.
For this purpose we derived the Lagrangian of an impurity immersed in a condensate
within the Bogoliubov approximation. The extended Fröhlich interactions take the
form of quadratic position- and velocity-dependent terms in the phonon variables.
By expanding the position-dependent terms as a full perturbative series the path
integral over the phonon variables can be performed to obtain an effective action.
This is done within the Bogoliubov approximation, neglecting perturbative terms
that contain no coupling to the condensate. We do not expect the velocity-
dependent terms to contribute significantly to the ground-state properties based
on other theoretical studies in the literature. The Jensen-Feynman inequality
provides a variational expression for the upper bound on the free energy. Due to the
extended interactions it contains a series of impurity density correlations that, as
far as we know, does not reduce to an analytic expression. To proceed analytically
a random phase approximation is made that decomposes the higher order impurity-
excitation scattering correlations as a product of subsequent scattering correlations.
The RPA yields simple variational expressions for the polaron energy and effective
mass that reduce to the extended Fröhlich mean-field results in the weak coupling
limit. For the repulsive polaron we compared the predictions with those of the
Fröhlich model and found that the sharp transition to the strong coupling regime,
which was interpreted as a possible shortcoming of the path-integral approach
for the Fröhlich model, is now replaced by a smooth crossover suggestive of
the absence of self-trapping. For the attractive polaron we observed an abrupt
divergence of the energy and effective mass at a certain critical coupling strength.
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This is related to the local polaronic minimum getting absorbed by a runaway
pathway in the variational landscape, and is interpreted as a breakdown of the
Bogoliubov approximation within our approach. Application of this method
in 1D shows excellent agreement with other theoretical studies of the extended
Fröhlich Hamiltonian and provides a justification to the approximations made
in the derivation. In conclusion, we present a different approach to a problem
that is currently under extensive theoretical and experimental investigation, which
provides insight into how different processes arise and contribute to the ground
state properties of the system.

Various future perspectives for this method exist. While Feynman’s method in
theory captures the full effect of the excitations at the level of the effective action,
it relies on a simple two-parameter model system to capture their influence on the
impurity at the level of the free energy and effective mass. Moreover, we invoked an
additional approximation by using the random phase approximation. One future
perspective would be to consider an application of the general memory kernel
approach developed in Chapter 2 to this extended Fröhlich Hamiltonian as well.
Finally, at the impurity densities created in current experiments, many-polaron
effects are expected to be non-negligible already on a mean-field level [59]. The
variational path-integral approach has been used to study these effects for Fröhlich
polarons in solids [97, 98] and was applied to the study of the Bose bipolaron within
the Fröhlich model [99]. Combining the inclusion of the extended interactions
and the approximations made in this chapter with these methods would open a
possible avenue towards the study of bipolarons and many-polaron effects in Bose
gases beyond the mean-field level with the path-integral formalism.
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CHAPTER 4
Path integral techniques for many

particles with general memory:
Partition function

The majority of the contents of this chapter have been peer reviewed and published
in the Physical Review A journal of the American Physical Society with the
reference:
"T. Ichmoukhamedov, J. Tempere, Path-integral approach to the thermodynamics
of bosons with memory: Partition function and specific heat, Phys. Rev. A 104,
023322 (2021)"

So far we have explored the path integral approach for a single impurity
immersed in a condensate. In Chapter 2 we have seen that in contrast to the
previously studied polaronic systems, even for the compact Bogoliubov-Fröhlich
Hamiltonian which approximates the Bose polaron system at weaker coupling,
significant extensions to the variational approach are required to exactly capture
the ground state energy of the system. In Chapter 3 we have further demonstrated
the utility of the variational path integral approach for this problem and shown
that it can also be applied to more extended Hamiltonians that correct the simpler
Bogoliubov-Fröhlich Hamiltonian. Due to growing interest in the Bose polaron
problem, in the recent years various other beyond mean field approaches such as
RG or the method of Gaussian variational states have been applied to this problem
to which an extensive comparison was made in the previous chapters.

All of the aforementioned approaches, including the one presented in this
thesis, have so far been mainly focused on a single impurity. However, in typical
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experiments the impurities are created at finite numbers. A rough estimation
of the distances between the impurities in the experiment of [23] quickly yields
scales of comparable order to the condensate coherence length ξ and hence one
would naturally expect the polarons to interact with one another. In the Aarhus
experiment [23] the surprising observation is made that the energy per polaron
is barely dependent on the impurity fraction in the condensate, which indicates
that the ground state of a single polaron is not affected by the presence of
other impurities. In the JILA experiment [19] such a measurement has not been
performed which is the reason why we will more closely focus on the Aarhus system
[23] in what follows. The relevance of this observation of course hinges on the fact
that the single- or many-polaron ground state has completely been reached in the
experimental time window, a question towards which efforts are being made in
further experimental investigation.

More recently, the dynamics of polaron formation has been at the heart of two
experimental studies [25, 100] which indicate that the attractive single polaron
ground state is indeed formed in the typical experimental regimes considered in [23].
However, for the repulsive branch no results are presented and hence no conclusive
remarks can be made. In addition, an investigation of the many polaron ground
state is not performed in the experiments and its formation remains an open
question. Nevertheless, the experimental studies emphasize the interest of future
studies at higher impurity densities for the purpose of understanding many-polaron
interactions, including the repulsive branch [25, 100]. The theoretical study in the
rest of this thesis will be aimed at taking steps towards this direction.

Appreciable efforts have already been performed to theoretically understand
the many polaron ground state. Initial studies employing a mean field theory [101]
or the path integral approach [99] have studied the many polaron effects at the level
of the Bogoliubov-Fröhlich Hamiltonian. However, as we have argued before, even
for a singly impurity in this model more advanced approaches are required. The
extended Fröhlich Hamiltonian has also been tackled in mean field studies [59, 102]
that show how the energy gets shifted by many-polaron interactions. The mean
field approaches show good agreement with the experiment which at first glance
could be interpreted as an acceptable model. Unfortunately, this does not form a
satisfying final theoretical explanation and a number of questions remain. More
advanced beyond mean field theories such as RG or the path integral treatment in
Chapter 3, tackling exactly the same models, show a significant shift further away
from the experiment when compared to mean field approaches, as can for example
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be seen in Figures 3.4 and 3.5 of the previous chapter. The corrections obtained in
mean field theories for the repulsive branch at very strong coupling, due to either
many polaron effects or finite temperatures appear to be roughly of the same order
as corrections from beyond mean field effects for a single polaron. In addition, it
is reasonable to expect that higher-order phonon-phonon interactions could be of
importance even in the regime where finite temperature mean field theory appears
to work. This motivates the investigation of these phenomena in a beyond mean
field theory for a complete picture. Some work in this direction can already be
found. For example, the bound state between two polarons, the bipolaron, has
been studied on the attractive branch [103] with effective Schrödinger equations
and QMC methods. To the best of our knowledge no semi-analytical beyond
mean field studies have been yet applied to study the many polaron properties
beyond the Fröhlich model on the repulsive branch, which are of interest for future
experiments.1

For this reason, we are interested in generalizing the methods presented in
Chapter 2 to describe the many polaron ground state using the general memory
kernel method to also capture the interactions between the polarons. In the
past, only limited interest existed for such general memory approaches because
simple harmonic variational models, such as Feynman’s original model action, were
deemed already sufficient. Consequently, very few path integral techniques can be
found in the literature that can be applied to many particle systems with general
memory kernels.

In Chapter 2 we have presented a way to compute path integrals with general
memory kernels for a single particle. A first possible step to generalize the approach
is to consider a direct many particle extension of this method, which still forms
a non-trivial task that we will return to. However, when dealing with multiple
particles an additional question of accounting for particle statistics of identical
particles arises. The impurities in the experiment of Aarhus [23] are bosons and it
could be important to account for their statistics to describe the many polaron
state. Although it is not implausible to assume that at low impurity densities
at zero temperature the impurities could be approximated as distinguishable, it
remains to be a question of interest to be able to confirm this in a more general
approach. For this purpose, in the following two chapters we will develop a way to

1Very recently, around the time this thesis was finalized, mean field and QMC results for many
impurities in the full Bose polaron Hamiltonian have been obtained [104] which will form an
important benchmark for future studies.
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perform path integrals for many particles in the presence of memory, and to be as
general as possible also account for their identical nature. Although we will mainly
focus on bosons, the extensions to fermions could be considered within the same
framework. If it turns out that for bosons identical particle statistics play a small
role in the ground state energy, we can always simply reduce the approach to the
distinguishable particle case which still forms an interesting application that has
not yet been studied in the literature. We start by providing some context for the
techniques and methods used in this chapter.

4.1 Introduction

Since the initial proposal by Feynman [8], the variational path integral approach has
known various extensions towards improving the model action or improvements
towards other directions such as applications to multiple particles or entirely
different physical systems than polarons [105, 106]. The former case has already
been extensively discussed in Chapter 2, where we have shown that for more
difficult impurity systems than the Fröhlich model it can be interesting to be
able to extend the model action to a more general form than the commonly used
coupled oscillator system as has been first proposed in [76, 77].

On the other hand extensions towards small numbers of multiple particles
[97, 99] or even towards an arbitrary number of identical particles [98], have so
far relied on using the types of restricted model actions that are constructed by
integrating out harmonically coupled fictitious particles. Even in the absence of a
fictitious system, the canonical ensemble treatment of identical particles in the
path integral formalism significantly complicates the expressions for the partition
and correlation functions [107, 108]. This naturally raises the question as to
how these approaches could be extended to many identical particles using action
functionals with general memory kernels, yielding an all encompassing treatment.
In this chapter we answer the first part of this question by presenting a derivation
of the partition function for such a general action functional. When necessary to
emphasize that the memory kernels arise from the influence of an external system
we will also refer to this quantity as the reduced partition function.

It is important to emphasize that in the context of variational models, the
environment often plays merely the role of an intermediary used to obtain a
variationally suitable expression for the retarded interactions. However, the
thermodynamics that follows from the reduced partition function, interpreted as a
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toy model for an open quantum system, has been shown to display particularly
interesting behavior in itself [109, 110]. As an example of an application we will
show how our expression for the partition function with memory could provide
a new angle towards the study of the specific heat for identical particles in this
direction as well. Therefore, although the main motivation is to develop techniques
that can be used for polaron physics, it will be worthwhile to pause and consider
the thermodynamics following from these models as a standalone.

In this chapter we consider the following action functional (we will work in
units of ~ = 1) which forms a natural extension of the general model action in
Chapter 2 (2.8):

S(N)[r, x, y,κ] = m

2

N∑
i

∫ β

0
ṙi(τ)2dτ + m

2

N∑
i

∫ β

0
dτ

∫ β

0
dσx(τ − σ)ri(τ) · ri(σ)

+ m

2N

N∑
i,j

∫ β

0
dτ

∫ β

0
dσ [y(τ − σ)− x(τ − σ)] ri(τ) · rj(σ)

−m
N∑
i

∫ β

0
dτri(τ) · κi(τ). (4.1)

For the functional arguments the notations r = r1, ..., rN and κ = κ1, ...,κN are
used. This (Euclidean) action functional describes N particles with mass m at
temperature (kBβ)−1, that interact through memory kernels x(τ −σ) and y(τ −σ).
The memory kernels generally represent the effect of some external system or
medium that induces retarded interactions, and would arise after integrating out
the external system coupled to the particles. However, here they are taken to be
completely general and can also be defined to include harmonic trapping potentials.
One small difference with the definition in Chapter 2 is that here the memory
kernels are defined with an additional factor β to present the same convention
here as in the published version of this chapter [111]. To switch to the convention
of Chapter 2 we merely would have to redefine the Fourier components xn → βxn

at any point in the derivation later on.
In addition we introduce a set of completely general vector source functions

κi(τ), which may represent time-dependent external forces on the particles, but will
mainly prove to be useful for calculating expectation values. Expression (4.1) can be
rewritten to note that each particle interacts with itself through the memory kernel
1
N ((N − 1)x(τ − σ) + y(τ − σ)) and with any other particle through the memory
kernel 1

N (y(τ − σ)− x(τ − σ)), and hence the two can be tuned independently.
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We also restrict the memory kernels to be symmetric (x(τ), y(τ)) = (x(−τ), y(−τ))
and β-periodic (x(β − τ), y(β − τ)) = (x(τ), y(τ)). These are general properties
of bosonic Green’s functions [112] which are also assumed in the treatment for the
single-polaron in [77], and naturally arise in systems with a harmonic coupling
to an external system [48, 62, 81, 91, 97–99]. In addition we will assume that∫ β

0 x(τ)dτ 6= 0 and
∫ β
0 y(τ)dτ 6= 0, so that we do not need to introduce a finite

volume in our treatment - a technical step that occurs when taking the free particle
limit as the harmonic oscillator frequency tends to zero. We specifically consider
three dimensional systems and in further notation d = 3, unless specified otherwise.

The goal of this chapter is to obtain a recurrence relation for the partition
function of bosons described by the general action functional (4.1). To provide an
example of how our result can be applied to a specific choice of x and y, we also
consider an application using the type of memory kernels occurring in harmonic
systems [109]. Our approach generalizes the previously known calculations for a
system of harmonically coupled identical oscillators in [107, 108], which correspond
to a specific choice of memory kernels in (4.1). First, in Section 4.2 we will
extend the calculation performed in [113] to a many-particle system to obtain the
distinguishable particle propagator corresponding to Eq. (4.1). Next, in Section
4.3 we will discuss which steps of [107, 108] need to be generalized to take memory
effects for identical particles into account. Therefore, in a way the results of this
chapter can be seen as an application of the methods in [113] to generalize the
approach in [107]. Finally, in Section 4.4 we will apply the results to consider
the specific heat of an open quantum system of bosons, where the effects of the
environment are represented by the memory kernels arising from a harmonic
coupling to fictitious masses.

4.2 Propagator

Before taking the permutation symmetries of identical particles into account, first
the many particle propagator for N distinguishable particles has to be calculated:

KN [x, y,κ] (rT , β|r0, 0) =
∫ rT ,β

r0,0
Dr e−S(N)[r,x,y,κ]. (4.2)

The boundary points are indicated by rT = r(β) and r0 = r(0). To emphasize
that the expression for the propagator is still a functional of the memory kernels
and source functions, this dependence on x, y, and κ is indicated in the square
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brackets. The calculation of the propagator for N = 1 has been performed in [113],
and we largely base our derivation for the many-particle case in the rest of this
section on the methods presented in [113] and [107].

For a quadratic action functional given by expression (4.1), the path integral
can be expanded around the classical paths that minimize the action functional to
write:

KN [x, y,κ] (rT , β|r0, 0) = KN [x, y,0] (0, β|0, 0) e−Scl[x,y,κ](rT ,r0). (4.3)

Here, Scl [x, y,κ] (rT , r0) is the action functional (4.1) evaluated along the classi-
cal paths that are found as solutions to the following set of integro-differential
equations:

R̈(τ)−
∫ β

0
y(τ − σ)R(σ)dσ + K(τ) = 0, (4.4)

r̈i(τ)−
∫ β

0
x(t− σ)ri(σ)dσ −

∫ β

0
[y(τ − σ)− x(τ − σ)] R(σ)dσ + κi(τ) = 0.

(4.5)

The center of mass coordinate R = 1
N

∑N
i=1 ri decouples together with the center of

mass source term K = 1
N

∑N
i=1 κi yielding an equation that has already been solved

in [113]. Having obtained a solution to Eq. (4.4), the last two terms in Eq. (4.5) can
be seen as an effective source term, which allows to solve Eq. (4.5) using the same
approach. Substitution of the solutions into the action functional yields Scl(rT , r0),
which can then be used to derive the fluctuation factor KN [x, y,0] (0, β|0, 0) in
the same way as in [113]. This lengthy calculation can be somewhat shortened by
writing the paths in terms of fluctuations around the center of mass, for which the
derivation is presented in Appendix D.

As shown in Appendix D, the many-body propagator (4.2) factorizes in terms
of single-particle propagators just as in the case of a harmonically coupled system
[107]:

KN [x, y,κ] (rT , β|r0, 0)

= K[y,
√
NK](

√
NRT , β|

√
NR0, 0)

K[x,
√
NK](

√
NRT , β|

√
NR0, 0)

N∏
j=1

K[x,κj ](rj,T , β|rj,0, 0). (4.6)

The propagators on the right-hand side of Eq. (4.6) are the single particle propa-
gators for which the action functional (4.1) depends on a single memory kernel,
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making the notation of Eq. (4.2) somewhat redundant. Hence, let us separately
define the single particle propagator as a functional of only the memory kernel
x(τ − σ):

K[x,κ](rT , β|r0, 0) =
∫ rT ,β

r0,0
Dre−S(1)[r,x,κ], (4.7)

where:

S(1)[r, x,κ] =
∫ β

0

mṙ2

2 dt+m

2

∫ β

0
dτ

∫ β

0
dσx(τ−σ)r(τ) ·r(σ)−m

∫ β

0
dτr(τ) ·κ(τ).

(4.8)
In what follows, we will decompose the memory kernels and the source terms
in their Fourier components xn, yn and κn, respectively, using the convention
f(τ) = ∑∞

n=−∞ fne
iνnτ , with νn = 2πn/β the bosonic Matsubara frequencies.

Following the method of [113] and assuming the same stability conditions, we
derive the following expression for the single-particle propagator with memory:

K[x,κ](rT , β|r0, 0) =
(
m

2πβ

)d/2 ( 4
β3x0∆x

)d/2 1∏
k=1

(
1 + βxk

ν2
k

)d

× exp
[
−m2βAx(rT − r0)2 − m

2β
1

∆x
(rT + r0)2

+ 2m
β

1
∆x

∑
n

κn
ν2
n + βxn

· (rT + r0)

− 2m
β

β
2
∑
n6=0

iνn
ν2
n + βxn

κn

 · (rT − r0)

−2m
β

1
∆x

(∑
n

κn
ν2
n + βxn

)2

+ 2m
β

(
β2

4
∑
n

κn · κ−n
ν2
n + βxn

) .
(4.9)

In Eq. (4.9) we have chosen a slightly different notation from [113] to define the
following dimensionless functionals of the memory kernel x:

Ax =
∞∑

n=−∞

βxn
ν2
n + βxn

, (4.10)

∆x = 4
β2

∞∑
n=−∞

1
ν2
n + βxn

. (4.11)

In what follows we will generally assume Ax > 0 and ∆x > 0 to restrict ourselves to

108



4.3 - Partition function for identical particles with memory

propagators (4.9) that are convergent for any combination of the boundary points.
Note that due to the previous assumption of x0 6= 0 and y0 6= 0 the functionals are
well-defined when written in this form. Nevertheless taking the limit x0, y0 → 0 in
the propagators still yields the appropriate expression, and this distinction will
only become of importance in the partition function further on.

4.3 Partition function for identical particles with mem-
ory

The path-integral approach is naturally extended to the treatment of identical
particles by taking all possible permutations of the end-points into account [62].
In this way, the canonical partition function for bosons is written as:

Z(N) = 1
N !

∑
P

∫
dr
∫ P [r],β

r,0
Dr′ e−S(N)[r′,x,y,κ]. (4.12)

The path integral counts all possible paths from an ordered set of initial points
r = {r1, r2, ..., rN} to a final set of points P [r] = {Pr1, Pr2, ..., PrN} where the
coordinates are reordered by a permutation P on a set of N , using the commonly
used notation Pr1 = rP (1). All possible values of the set r are then integrated out,
and the sum over all possible permutations P is finally taken. The treatment can
be straightforwardly extended to fermions by adding a factor (−1)P that provides
a minus sign to all odd permutations.

The propagator (4.6) exhibits the same factorization pattern as a harmonically
coupled system of oscillators, and hence initially the approach of [107] can be
followed. The integration over all possible boundary points r can be extended to
include the center of mass variable through the introduction of a delta function,

∫
dr→

∫
dR

∫
dr δ

(
R − 1

N

∑
i

ri

)
, (4.13)

which is then written in its Fourier representation [107]. This allows to separate
the contribution of the center of mass propagators in Eq. (4.6) as follows:

Z(N) = 1
(2π)3

∫
dk ZR(N,k)Zr(N,k), (4.14)
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where:
ZR(N,k) =

∫
dR eik·R

K[y,0](
√
NR, β|

√
NR, 0)

K[x,0](
√
NR, β|

√
NR, 0)

, (4.15)

and

Zr(N,k) = 1
N !

∑
P

∫
dr

N∏
j=1

K[x,0](Prj , β|rj , 0)e−ik·rj/N . (4.16)

Note that we set the source functions κi = 0, as their main purpose was in
deriving the fluctuation factor, and from now on we consider the action functional
(4.1) without source terms. Following the standard approaches [62, 107], any
permutation P can be partitioned into M` disjoint permutation cycles of length `,
which allows to write:

Zr(N,k) =
∗∑

M1,M2,...,MN

N∏
`=1

1
`M`(M`)!

h`(k)M` , (4.17)

where the ∗ symbol above the summation symbol indicates a constrained sum-
mation that has to obey ∑N

`=1 `M` = N . In this representation the nested N -
dimensional integral in expression (4.16) factorizes as a product of `-fold integrals
that correspond to each permutation cycle:

h`(k) =
∫
dr1...

∫
dr` K[x,0](r1, β|r`, 0)...K[x,0](r3, β|r2, 0)

×K[x,0](r2, β|r10)e−i
1
N

k·
∑`

j=1 rj . (4.18)

The next step is to obtain an expression for h`(k), which requires the computation
of a q-dimensional integral in expression (4.18). While high dimensional Gaussian
integrals can always in principle be calculated by converting them into a linear
algebra problem of finding a determinant of a `-dimensional matrix, finding an
explicit expression for the latter is not always equally straightforward. In the
approach of [107] which we have thus far followed very closely, the integral (4.18)
is calculated by relying on the composition property of the propagators. If the
composition property holds, then h`(k) becomes the single-particle partition
function of exactly the same system as described by the single-particle propagator,
but at an inverse temperature `β and with additional delta-kicks to account for the
k-exponent. This partition function can then be readily computed with standard
path integration methods. This trick is not applicable here, as the propagator
with memory (4.9), does not obey the composition property. This can be easily
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seen by noting that the action functional (4.1) can not just be split into a sum of
two parts on respective time intervals. In Appendix E we show how integral (4.18)
can be directly computed and obtain the following result in d dimensions:

h`(k) = Q`dx
1∣∣∣2 sinh

(
`
2arccosh

[
Ax∆x+1
Ax∆x−1

])∣∣∣d exp
(
− `k2β

8N2m
∆x

)
, (4.19)

where:
Qx = 1∏

k=1

(
1 + βxk

ν2
k

) ( 1
β3x0

4
|Ax∆x − 1|

)1/2
. (4.20)

The functional form of h`(k) is very similar to that found in [107]. The main
differences are that the oscillator-frequency dependent parts are now replaced by
expressions containing ∆x and Ax, functionals of the memory kernel, appearing
in the argument of the hyperbolic sine and the exponential. An additional factor
Qx appears, which equals 1 when the memory kernel x corresponds to a harmonic
oscillator without memory.

The choice of writing expression (4.19) in terms of the hyperbolic sine has
the advantage of being maximally illustrative in regards to how changes due to
memory arise on top of previously known expressions in [107]. However, due to
this choice some particular care should be taken when ∆xAx < 1. In this case
each of the two factors in the determinant (E.14) in Appendix E can become
negative, and the complex modulus should be added after taking the square root
if the factors are to be separated as in (4.19) and (4.20). For simple harmonic
oscillator systems, and the model system considered in Section 4.4, ∆xAx > 1 and
this subtlety can be safely ignored.

The expression for the partition function (4.14) can now be computed. The
center of mass ZR(N,k) can be calculated from the propagators, and now that
the k-dependence of h`(k) is known, the k-integral in (4.14) can be performed.
After a some algebraic work one obtains:

Z(N) = Z(N)QNdx
(
βx0
βy0

)d/2 ∞∏
k=1

1 + βxk
ν2
k

1 + βyk
ν2
k

d . (4.21)
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with Z given by:

Z(N) =
∗∑

M1,M2,...,MN

N∏
`=1

1
`M`(M`)!

1∣∣∣2 sinh
(
`
2arccosh

[
Ax∆x+1
Ax∆x−1

])∣∣∣M`d
. (4.22)

Note that due to the presence of the additional factor in expression (4.21) it is
now the product QNdx Z(N) that represents the partition function in the absence
of two-body interactions, extending the result of [107]. Following the approach
in [107], the constrained summation (4.22) can be transformed into a recurrence
relation as shown in Appendix F:

Z(N) = 1
N

N−1∑
k=0

Z(k)
∣∣∣∣2 sinh

[(N − k)
2 arccosh

(
Ax∆x + 1
Ax∆x − 1

)]∣∣∣∣−d . (4.23)

The recurrence relation requires an initial value, and it can be seen that Z(0) = 1
yields the correct Z(1) result according to expression (4.21). Alternatively, the
factor Qx could be absorbed in the definition of Z(N), but then the recurrence
would have to start from Z(0) = QNdx .

As a consistency check, consider the specific choice x(τ − σ) = w2δ(τ − σ) and
y(τ − σ) = Ω2δ(τ − σ) for which the action functional (4.1) exactly corresponds
with the system of coupled oscillators in [107]. The different Matsubara sums and
products in Eq. (4.21) can now be readily computed to find:

(
βx0
βy0

)d/2 ∞∏
k=1

1 + βxk
ν2
k

1 + βyk
ν2
k

d =
sinh

(
βw
2

)d
sinh

(
βΩ
2

)d , (4.24)

and Qx = 1. In particular, the resulting hyperbolic cosine from

Ax∆x + 1
Ax∆x − 1 = cosh(βw) (4.25)

allows to cancel the inverse hyperbolic cosine in the weight factor of the recurrence
relation (4.23). Substituting these results, the expression for the partition function
in [107] is exactly retrieved in this limit.
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MW 2

Bosons External masses

mΩ2
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...
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Figure 4.1: A one dimensional depiction of the system described by (4.26).

4.4 Example application: open quantum system of
identical oscillators

In this chapter we present a brief example application of the derived expressions
to a stylized model of an open quantum system of identical particles. We consider
a system of N of non-interacting bosonic oscillators in a harmonic trap with
frequency Ω. As depicted in Figure 4.1, the effect of some environment is then
represented as the presence of memory kernels that arise from integrating out
fictitious harmonically coupled particles with mass M and frequency W . The
thermodynamics of systems in such an environment have been studied for distin-
guishable particles in [114, 115]. Note that because of the Bose statistics that
have to be imposed, this model is more than simply N unrelated copies of a single
oscillator with memory.

To obtain an expression for the memory kernels, the fictitious particles are
taken to be uncoupled and distinguishable, which could represent an environment
with a far slower relaxation than the bosonic system. Consider the (Euclidean)
Lagrangian of the full system corresponding to the partition function Ztot of the
system depicted in Figure 4.1:

Ltot =
N∑
i=1

(
m

2 ṙ2
i + mΩ2

2 r2
i + M

2 Q̇2
i + MW 2

2 (ri −Qi)2
)
, (4.26)
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and the Lagrangian of the external system is defined as:

Lf =
N∑
i=1

(
M

2 Q̇2
i + MW 2

2 Q2
i

)
. (4.27)

It is important to note that through (4.27) we adopt the view of the external
system as defined in [109]. The external system is considered to be the whole of
the fictitious particles and springs with constant MW 2 that are attached to the
degrees of freedom of interest. The fictitious particles can be integrated out as in
[48] to obtain the reduced partition function:

Z(N) = Ztot(N)
Zf (N) , (4.28)

where Zf is the partition function of the external system corresponding to (4.27).
Expression (4.28) appears to be exactly the identical particle extension of one of
the stylized models of an open quantum system considered in [109]. The resulting
Z(N) can now be cast in the form of (4.12), where the memory kernels in the
action functional (4.1) are given by:

x(τ−σ) = y(τ−σ) = MW 2

m

[
W 2 + m

MΩ2

W 2 δ(τ − σ)− W cosh(W [|τ − σ| − β/2])
2 sinh(Wβ/2)

]
.

(4.29)
This is the simplest translationally non-invariant model that provides a memory
kernel x(τ − σ) with non-trivial memory effects for the recurrence relation (4.23).
Having obtained an explicit expression for the memory kernels of interest, we
proceed to illustrate how our formalism can be applied.

The functionals Ax and ∆x are obtained after computing the Matsubara
summations in expressions (4.10) and (4.11):

Ax = βω+
2 coth

(
βω+

2

)
γ+ + βω−

2 coth
(
βω−

2

)
γ−, (4.30)

∆x = 2
βω+

coth
(
βω+

2

)
γ+ + 2

βω−
coth

(
βω−

2

)
γ−, (4.31)

where:

ω2
± =

m+M
m W 2 + Ω2 ±

√(
m+M
m W 2 + Ω2

)2
− 4W 2Ω2

2 , (4.32)
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γ± = 1
2

1±
Ω2 +

(
M
m − 1

)
W 2

ω2
+ − ω2

−

 . (4.33)

The frequencies ω± that diagonalize the full system [109] therefore naturally appear
in the calculation.

Since for this system yn = xn, the interaction factor in front of (4.21) cancels
out and the partition function Z(N) is written as a product of only two factors,
QNdx and the recurrence part Z(N). The Matsubara product in (4.20) can be
computed for the specific memory kernel (4.29), which allows to write:

Qx =
2 sinh

(
βW

2

)
βW

βω+

2 sinh
(
βω+

2

) βω−

2 sinh
(
βω−

2

) ( 1
β3x0

4
∆xAx − 1

)1/2
, (4.34)

with ∆x and Ax known from (4.31) and (4.30). In three dimensions the recurrence
relation (4.23) for Z(N) has no known solution, and has to be computed numerically.
As shown in the approach of [107] a numerically stable implementation is obtained
by defining:

b = e−q, q = arccosh
[∆xAx + 1

∆xAx − 1

]
, (4.35)

and without loss of generality proposing the following way of writing the recurrence
factor:

Z(N) =
N∏
j=1

ρj
b

3
2

(1− bj)3 . (4.36)

This fixes the first coefficient ρ1 = 1, and after substitution of (4.36) into (4.23) a
recurrence relation for ρN is found:

ρN = 1
N

(
1− bN

)3

(1− b)3

1 +
N−2∑
k=0

(1− b)3(
1− b(N−k))3

N−1∏
j=k+1

(1− bj)3

ρj

 . (4.37)

Due to the additional factor in the expression for the partition function Z(N) =
QNdx Z(N), the internal energy and specific heat of the system are written as a
sum of two terms:

U(N) = UQ(N) + U(N) = −3N∂β log(Qx)− ∂β log(Z), (4.38)

C(N) = CQ(N) + C(N) = 3NkBβ2∂2
β log(Qx) + kBβ

2∂2
β log(Z). (4.39)

Analytical expressions for UQ and CQ can straightforwardly be calculated from
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the factor Qx in (4.34). The recurrence relations for U(N) and C(N) are obtained
after computing the partial derivatives of log(Z) by combining (4.36) with (4.37):

U(N)
∂βq

= 1
N

1
ρN

(1− bN )3

(1− b)3

(
U(N − 1)
∂βq

+ 3
2

1 + b

1− b

+
N−2∑
k=0

(1− b)3(
1− b(N−k))3

[
U(k)
∂βq

+ 3(N − k)
2

1 + b(N−k)

1− b(N−k)

]
N−1∏
j=k+1

(1− bj)3

ρj

 ,
(4.40)

and

C(N)k−1
B = 1

N

N−1∑
k=0

1
(1− b(N−k))3

N∏
j=k+1

(1− bj)3

ρj

(
k−1
B C(k)

+ β2
[

3(N − k)
2

1 + b(N−k)

1− b(N−k)∂βq + U(k)− U(N)
] [

3(N − k)
2

1 + b(N−k)

1− b(N−k)∂βq + U(k)
]

+β23(N − k)2 b(N−k)

(1− b(N−k))2 (∂βq)2 − β2 3(N − k)
2

1 + b(N−k)

1− b(N−k)∂
2
βq

)
. (4.41)

Here, the recurrence formulas are initiated from U(0) = 0 and C(0) = 0, and the
partial derivatives ∂βq and ∂2

βq can be analytically computed from (4.35) since ∆
and A are known.

The specific heat (4.39) is shown in Figure 4.2 as a function of the temperature,
measured with respect to the critical temperature in the absence of the external
system kBTc = ~Ω (N/ζ(3))1/3, with ζ(x) the Riemann zeta function. We can
clearly observe the main bosonic condensation peak slightly below the critical
temperature, which at weak coupling to the environment corresponds exactly to
the result in [107]. The sharpness of the peak fades towards stronger coupling
with the external system but nevertheless remains visibly present. In addition to
the main condensation peak, at an intermediate coupling strength an anomalous
dip and peak are observed at low temperatures. These anomalous features in the
specific heat of open quantum systems have been studied for a distinguishable
particles in [109, 115, 116], where it is shown that the specific heat can even
become negative for certain systems. It is explained in [109, 115] by the fact that
the specific heat (4.39) is the difference of the specific heats of the system and the
trapped fictitious particles as defined in the partition function (4.28), and a more
extensive interpretation can be found in [116].

We can also note that the high and low temperature limits of the specific
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

T/Tc

C
kBN

W = 0.01Ωh

W = 4Ωh

W = 10Ωh

Figure 4.2: Specific heat per particle as a function of the temperature
of N = 100 non-interacting bosons in a harmonic potential coupled to an
environment of harmonically coupled fictitious particles with M = m. The
results are shown for three coupling strengths W = [0.01Ω, 4Ω, 10Ω] plotted
by respectively the dashed, filled and dotted lines.

heat are in agreement with [115]. From expression (4.34) we can see that at high
temperatures for β → 0, Qx approaches a finite value and hence the first part of
the specific heat CQ(N) in (4.39) goes to zero. In the same limit the recurrence
part of the partition function can be shown to diverge as Z ∼ β−dN , from which
follows C(N) = 3NkB. In the low-temperature limit β →∞ one can show that in
the presence of the environment Z remains finite, and Qx becomes an exponential
function of β, from which follows C(N) = 0.

An overview of the structure of the main condensation peak and the anomalous
dip is presented in Figure 4.3. For both a light and heavy mass M of the fictitious
particles, remnants of the bosonic condensation peak remain visible up to strong
coupling with the external system. At low temperatures and weaker coupling the
anomalous dip can be seen as region of lighter shading. Contrary to the single
particle case for this system [109], we find that the anomalous dip can drop below
zero for bosons in Figure 4.3 where the dashed loop indicates a region of negative
specific heat.

As can also be seen from Figure 4.3, coupling with the external system sig-
nificantly lowers the effective critical temperature of the bosons. This can be
understood by noting that the generalized bosonic recurrence relation (4.23) is
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nothing else than the recurrence relation for harmonically trapped bosons where
the trap frequency is replaced by a temperature-dependent quantity:

Ω̃(T ) = 1
β
arccosh

[∆xAx + 1
∆xAx − 1

]
, (4.42)

which allows to define an effective critical temperature as the solution of:

T̃c
Tc

= Ω̃(T̃c)
Ω . (4.43)

The results are plotted as the dotted lines on Figure 4.3 and agree well with the
behavior of the condensation peak. It is important to note that only the recurrence
part is correctly reproduced by substituting Ω→ Ω̃(T ) in the harmonic oscillator
result. The factor Qx in front of the partition function (4.21) is not retrieved this
way because it is entirely absent in the harmonic case. As the latter however can
be taken out of the recurrence relation it is no surprise that it should play no
significant role in the inherently bosonic features of the system, and the behavior of
the condensation peak is accurately reproduced by (4.43). The constant difference
between (4.43) and the condensation peak in Figure 4.3 is readily explained by the
fact that finite-particle effects have not been accounted for in the definition of Tc.

4.5 Conclusion

In this chapter we presented an approach that extends previous methods of
computing path integrals for identical particles to action functionals with general
memory kernels. First, the many-body propagator for distinguishable particles
was derived and shown to exhibit the same factorization pattern in terms of single-
particle propagators as seen in harmonically coupled systems without retardation
[107]. However, the main difference is that the single-particle propagators no longer
obey the composition property when the system has memory. This complicates
the computation of a class of integrals appearing in the derivation of the partition
function, for which we obtain explicit expressions by utilizing the properties
of circulant matrices. The resulting expression for the partition function is a
functional applicable to a general class of memory kernels, and is shown to reduce
to the known result for harmonically coupled systems without memory in the
appropriate limit.

As an illustration of the method to a specific choice of memory kernels, the
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Figure 4.3: The color map of the specific heat per particle C/(kBN) for
N = 500 bosons, for (a) M = m and (b) M = 10m. The dashed loop in
the bottom left corner indicates the region where the specific heat becomes
negative. The dotted line indicates the effective temperature obtained from
(4.43).

results were then applied to study the specific heat of non-interacting bosons
in a harmonic trap in the presence of memory kernels that arise from harmonic
couplings to fictitious particles. This provides the simplest model system that
yields non-trivial memory effects in the condensation recurrence relation. We show
that the presence of the environment shifts the bosonic condensation to lower
temperatures and significantly smooths out the Bose condensation peak in the
specific heat, which nevertheless remains visible even at strong coupling. To better
understand these types of open systems, and in particular to calculate the density
and the pair correlation functions, expressions for the identical particle one-and
two point generating functionals are required, which will be the focus of the next
chapter.
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CHAPTER 5
Path integral techniques for many

particles with general memory:
Correlation functions

The majority of the contents of this chapter have been peer reviewed and published
in the Physical Review A journal of the American Physical Society with the
reference:
"T. Ichmoukhamedov, J. Tempere, Path-integral approach to the thermodynamics
of bosons with memory: Density and correlation functions, Phys. Rev. A 104,
062201 (2021)"

In the previous chapter, the results of which can also be found in [111], the
partition sum and some derived thermodynamic quantities such as the internal
energy and the specific heat were calculated. However, for a more complete picture
and variational applications it is necessary to also know the one-and two-point
correlation functions. These quantities give access to expectation values of single-
particle operators (such as the density) and of two-body operators (such as the pair
correlation function). The goal of the current chapter is to derive the one-particle
reduced density matrix and the two-point correlation function. As an example, we
then apply these results to the same open quantum system of bosons coupled to a
model environment of distinguishable masses as discussed in Chapter 4.

In Sec. 5.1, a short review of previously obtained results is presented, and
the path-integral definitions of the one-particle reduced density matrix and the
two-point correlation function are given. We calculate expressions for the former
in Sec. 5.2, and for the latter in Sec. 5.3. The obtained result for the two-point
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correlation function provides a generalization of expressions found in [108] to
systems with memory. Our result for the one-particle reduced density matrix
allows for the computation of the effective states and occupation numbers of the
bosons. In Sec. 5.4 we apply these results to further explore the simplified model of
bosons in an environment introduced in Chapter 4 and in particular focus on the
behavior of density and condensate fraction. Conclusions are drawn in Sec. 5.5.

5.1 Quadratic many-body systems with memory

In Chapter 4 the distinguishable particle propagator corresponding to the general
memory action functional (4.1) was computed in (4.6). In this chapter we will
be relying on these results and using the same notation with minor additions. It
will further on be useful to separately define the fluctuation factor in front of the
single-particle propagator (4.9) as:

A =
(
m

2πβ

)1/2 ( 4
β3x0∆x(0)

)1/2 ∏
k=1

(
1 + βxk

ν2
k

)−1

. (5.1)

Note that we will also be using the shorthand notation for the single particle
propagator K[x] = K[x,0] further on, corresponding to setting all κn to zero in
expression (4.9), which leaves just the first two terms in the exponent. In contrast
to expression (4.11) of the previous chapter we will now require a time-dependent
∆(τ) and hence the dimensionless functionals Ax and ∆x(τ) appearing in the
propagator are defined as:

Ax =
∞∑

n=−∞

βxn
ν2
n + βxn

, (5.2)

∆x(τ) = 4
β2

∞∑
n=−∞

eiνnτ

ν2
n + βxn

. (5.3)

We will use the shorthand notation ∆x = ∆x(0) and in general we will assume
Ax > 0 and ∆x > 0 in this chapter to restrict the memory kernels to produce
bounded propagators as a function of the end-points (4.9).

Let us write the partition function of a system of bosons described by (4.1) as
Z[κ](N), where the dependence on the source functions is explicitly highlighted
in the functional. In Chapter 4 the partition function Z(N) = Z[0](N) for this
system without source terms, κ = 0, was calculated in (4.21) and applied to study
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the specific heat of a model of an open quantum system. The goal of this chapter
is to expand upon this calculation and derive expressions for the one-particle
reduced density matrix (from which the one-point correlation function readily
follows) and the two-point correlation function. The one-particle reduced density
matrix is computed in a similar way as the partition function in Chapter 4, but
now the integration variable r1 is removed from the integral resulting in an N − 1
dimensional integral over r̃ = {r2, ..., rN}, and in the boundary points of the path
integral r1 is replaced by respectively r and r′:

ρ1(r′|r) = 1
Z(N)

1
N !

∑
P

∫
dr̃
∫ P [{r′,r2,...,rN}],β

{r,r2,...,rN},0
Dr′′e−S(N)[r′′,x,y,0]. (5.4)

For the computation of the two-point correlation function, the structure of the
path-integral is somewhat simpler as all variables r = {r1, r2, ..., rN} are treated
on the same footing, but an additional weighing factor containing two different
variables r1 and r2 (identical for any i 6= j) appears:

〈
eiq·(r1(τ)−r2(σ))

〉
I

= 1
Z(N)

1
N !

∑
P

∫
dr
∫ P [r],β

r,0
Dr′ eiq·(ri(τ)−rj(σ))e−S

(N)[r′,x,y,0].

(5.5)

In the next two sections, we perform the many-body path integrations in expressions
(5.4) and (5.5).

5.2 One-particle reduced density matrix

The derivation of the one-particle reduced density matrix can be summarized
as a modification of the derivation of the partition function in Chapter 4, now
to account for the unequal treatment of the variables r and r′ in comparison to
the other variables r̃ = {r2, ..., rN}. The first step is to note that for any fixed
permutation, the path integral in (5.4) is given by the propagator (4.6), where the
center of mass part is unaffected by the permutations while the rest of the end
points have to be permuted accordingly. The center of mass can now be isolated
in the same spirit as in [107, 111] using a modified variable R̃ = 1

N

∑N
j=2 rj that

only contains integration variables. This allows us to write:

ρ1(r′|r) = 1
(2π)d

1
Z(N)

∫
dk PR̃(N,k)Pr(N,k), (5.6)
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where the center of mass contribution is the Gaussian integral:

PR̃(N,k) =
∫
dR̃ eik·R̃

K[y]
(√

NR̃ + 1√
N

r, β|
√
NR̃ + 1√

N
r′, 0

)
K[x]

(√
NR̃ + 1√

N
r, β|
√
NR̃ + 1√

N
r′, 0

) , (5.7)

which is readily computed if we assume that ∆x > ∆y. The remaining factor
contains the permutations:

Pr(N,k) = 1
N !

∑
P

∫
dr̃K[x]

(
rP (N), β|rN , 0

)
...K[x]

(
r′, β|rj , 0

)
× ...K[x]

(
rP (1), β|r, 0

)
e
−ik·

∑N

j=2 rj/N , (5.8)

where P (n) represents the element that ends up at the position of n after the
permutation on the ordered set {1, 2, ..., N}. Expression (5.8) illustrates how
the end-point r′ of the one-particle reduced density matrix is permuted to some
position j, while the initial point r remains in place and gets coupled with element
P (1).

(a)

r1 r2

r3

h3(k)

r4

r5

h2(k)

Z(N) cycles, N = 5 (b)

r′

r
r2

r3

O3(k)

r4

r5

h2(k)

ρ1(r
′|r) cycles, N = 5

Figure 5.1: Example of a cyclic decomposition for N = 5 where the arrows
represent the single-particle propagators (4.9). The cyclic decomposition of
the partition function in the absence of source terms, as performed in the
previous chapter, is illustrated in (a) where the closed cycles contribute a
factor h`(k) given by (5.10). The modified decomposition of the one body
reduced density matrix ρ1(r′|r) is shown in (b), where one cycle is now
opened up contributing a factor O`(k) in (5.9) while the remaining points
are still partitioned in terms of closed cycles.

We now follow the standard approach [62, 107, 111] to decompose the summa-
tion of permutations in (5.8) in terms of its cyclic decomposition, an argument
which will require some modification for the calculation of ρ1. It is easy to see
that most cycles will be completely unaffected by the presence of r and r′ and will
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yield exactly the same contribution h`(k) as computed for the partition function in
expression (4.19) of Chapter 4. In fact, there will be only one modified permutation
chain starting at r → rP (1) → ... that has to end at r′. As illustrated in Figure
5.1, this chain can be thought of as an open cycle with length ` the contribution
of which we will call O`(k). The summation in (5.8) can therefore be written as
the summation over all the possible open cycles O`(k) multiplied with the cyclic
decomposition on the remaining N − ` points (and taking the combinatorics into
account):

Pr(N,k) = 1
N

N∑
`=1

O`(k)
∗∑

M1,...,MN−`

N−`∏
n=1

hn(k)Mn

nMnMn! . (5.9)

Here, Mn is the number of cycles of length n in the decomposition and ∑∗
represents the constraint ∑nMn = N − `. The ordinary closed cycles hn(k) were
computed in expression (4.19) of Chapter 4:

h`(k) = Q`dx
1[

2
∣∣∣sinh

(
`
2arccosh

[
Ax∆x+1
Ax∆x−1

])∣∣∣]d exp
(
− `k2β

8N2m
∆x

)
, (5.10)

with:
Qx = 1∏

k=1

(
1 + βxk

ν2
k

) ( 1
β3x0

4
|Ax∆x − 1|

)1/2
, (5.11)

and the open cycles are given by:

O`(k) =
∫
dr2...

∫
dr` K[x](r′, β|r`, 0)...K[x](r3, β|r2, 0)

×K[x](r2, β|r, 0)e−
ik
N
·
∑`

j=2 rj . (5.12)

This integral is computed in Appendix G and is shown to be equal to:

O`(k) = A`d
 π`−1[

m
2β

(
Ax − 1

∆x

)]`−1
U`−1(ζ)


d/2

× exp
(
− βk2

8N2m
∆x

[
`−

√
Ax∆x tanh

(
`

2arccosh(ζ)
)]

− ik
2N · (r + r′)

[√
Ax∆x tanh

(
`

2arccosh(ζ)
)
− 1

]
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−m
β

√
Ax
∆x

tanh
(
`

2arccosh(ζ)
)

(r2 + r′2)− m

β

√
Ax
∆x

1
sinh(` arccosh (ζ))(r− r′)2

)
,

(5.13)

where
ζ = Ax∆x + 1

Ax∆x − 1 , (5.14)

and U`−1 is a Chebyshev polynomial of the second kind defined in expression (G.6)
of Appendix G for |ζ| > 1.

The closed cycles hn(k) (5.10) can be now substituted in (5.9) after which the
Fourier integral in (5.6) can be readily performed. The final expression for the one
particle reduced density matrix is found as:

ρ1(r′|r)

=
(2m
πβ

)d/2 1
N

N∑
`=1

Z(N − `)
Z(N)

 1[√
∆x
Ax

coth
(
`
2arccosh(ζ)

)
− 1

N (∆x −∆y)
]

d/2

1∣∣∣2 sinh
(
`
2arccosh(ζ)

)∣∣∣d exp
(
−m
β

√
Ax
∆x

tanh
(
`

2arccosh(ζ)
)

(r2 + r′2)
)

exp

−m2β
1
N (∆x −∆y)

√
Ax
∆x

tanh
(
`
2arccosh(ζ)

)
√

∆x
Ax

coth
(
`
2arccosh(ζ)

)
− 1

N (∆x −∆y)
(r + r′)2


exp

(
−m2β

[
1
N

(Ay −Ax) +
√
Ax
∆x

2
sinh(` arccosh (ζ))

]
(r− r′)2

)
. (5.15)

Here, Z(N) can be found as the solution to the recurrence relation (with Z(0) = 1)
studied in the previous chapter:

Z(N) = 1
N

N−1∑
k=0

Z(k) 1∣∣∣2 sinh
(

(N−k)
2 arccosh(ζ)

)∣∣∣d . (5.16)

Note that by relabeling k = N − ` it follows from (5.16) that for any N :

1
N

N∑
`=1

Z(N − `)
Z(N)

1∣∣∣2 sinh
(
`
2arccosh(ζ)

)∣∣∣d = 1, (5.17)

which guarantees that the one-particle reduced density matrix (5.15) is always
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normalized.
The diagonal of ρ1 in position space can be readily taken and yields the average

boson density n(r) = ρ1(r|r). Note that here and in the rest of this chapter the
density will be normalized to 1 rather than to N :

n(r) =
(2m
πβ

)d/2 1
N

N∑
`=1

Z(N − `)
Z(N)

 1[√
∆x
Ax

coth
(
`
2arccosh(ζ)

)
− 1

N (∆x −∆y)
]

d/2

× 1∣∣∣2 sinh
(
`
2arccosh(ζ)

)∣∣∣d exp

−2m
β

1√
∆x
Ax

coth
(
`
2arccosh(ζ)

)
− 1

N (∆x −∆y)
r2

 .
(5.18)

We can now consider a specific choice of memory kernels x(τ − σ) = ω2δ(τ − σ)
and y(τ −σ) = Ω2δ(τ −σ) in which case the action functional (4.1) reduces to that
of a system of harmonically trapped bosons all coupled by springs, as studied in
[108]. In this case the Matsubara summations (5.2) and (5.3) can be computed to
find ∆x = 2

βω coth
(
βω
2

)
, ∆y = 2

βΩ coth
(
βΩ
2

)
and Ax = βω

2 coth
(
βω
2

)
. In addition

ζ = cosh
(
βω
2

)
which nicely cancels with the arccosh function in the argument of

the hyperbolic sine. After substitution in (5.18), the expression for the density in
[108] is retrieved exactly.

5.3 Two-point correlation function

Let us now introduce the notation κ2 = (κ1,κ2, 0, ...), where the overline in κ2

indicates it being a vector of vectors, whereas κ2 is merely one of its components.
The goal of this section is to find an expression for the partition function with two
general non-zero source terms

Z[κ2](N) = 1
N !

∑
P

∫
dr
∫ P [r],β

r,0
Dr′ e−S(N)[r′,x,y,κ2], (5.19)

which after division by Z(N) and setting κ1(τ ′) = iq
m δ(τ − τ ′) and κ2(σ′) =

− iq
m δ(σ − σ′) yields exactly the two point correlation function (5.5). First, the

propagator (4.6) is substituted in (5.19) where two source terms are set non-zero.
Contrary to the approach in Section 5.2, all of the variables r are integrated out
in (5.19). The center of mass can therefore be separated using the complete CM

127



Chapter 5 - Path integral techniques for many particles with general memory:
Correlation functions

variables R = 1
N

∑N
i=1 ri and K2 = 1

N (κ1 + κ2) which allows to write:

Z[κ2](N) = 1
(2π)d

∫
dk ZR[κ2](N,k)Zr[κ2](N,k), (5.20)

where:
ZR[κ2](N,k) =

∫
dR K[y,

√
NK2](

√
NR, β|

√
NR, 0)

K[x,
√
NK2](

√
NR, β|

√
NR, 0)

, (5.21)

and:

Zr[κ2](N,k) = 1
N !

∑
P

∫
dr e−

ik
N
·
∑N

j=1 rj
N∏
j=3

K[x](Prj , β|rj , 0)

×K[x,κ2](Pr2, β|r2, 0)K[x,κ1](Pr1, β|r1, 0). (5.22)

In expression (5.22) all source functions are set to zero except for the two sources
κ1 and κ2 corresponding to the propagators starting in initial points r1 and r2.
Making use of expression (4.9) for the propagator, (5.22) can also be written as:

Zr[κ2](N,k) = 1
N !e

−S(1)
cl [x,κ1](0,0)−S(1)

cl [x,κ2](0,0)∑
P

∫
dr e−

ik
N
·
∑N

j=1 rj

×eã1(Pr1+r1)+b̃1(Pr1−r1)eã2(Pr2+r2)+b̃2(Pr2−r2)
N∏
j=1

K[x](Prj , β|rj , 0),

(5.23)

where the path-independent contribution of the propagators was taken out of the
integral by using the notation:

S
(1)
cl [x,κ] (0, 0) = 2m

β

1
∆x(0)

(∑
n

κn
ν2
n + βxn

)2

− 2m
β

(
β2

4
∑
n

κn · κ−n
ν2
n + βxn

)
. (5.24)

In addition we define the short-hand notation for the linear terms in the exponent
corresponding to the two source terms s = 1, 2:

ãs = 2m
β

1
∆x(0)

∑
n

κs,n
ν2
n + βxn

, b̃s = −2m
β

β
2
∑
n6=0

iνn
ν2
n + βxn

κs,n

 . (5.25)

The approach to compute (5.23) is once again to decompose the permutation in
terms of cycles just as in [108, 111] or Section 5.2, with some modifications.

Consider any general permutation on N points out of the summation in (5.23).
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For 2 ≤ ` ≤ N there will be N − ` points that form cycles that do not pass through
either r1 or r2 and yield the ordinary closed cycle contributions hn(k) as given
in (5.10). To account for the cycle(s) on the remaining ` points, the set of all
permutations has to be partitioned into two classes. In one class of permutations,
the points r1 or r2 will lie in two disjoint cycles of respectively length ` and `− j
with 1 ≤ j ≤ `− 1. We will call the contributions of each of those cycles H(1)

` (k)
and H(2)

`−j(k) which are structurally similar to the ordinary closed cycle hn(k), but
now contain the special points r1 or r2 due to the non-zero source term κ2. In
this first class of permutations the contribution of the two cycles can therefore be
written as a product H(1)

j (k)H(2)
`−j(k). In the second class of permutations, those

points will be in the same cycle of length ` and yield a single contribution χ`(k, j′)
which also depends on the distance between the two points j′ within this cycle,
with 1 ≤ j′ ≤ ` − 1. After taking the combinatorics into account, this result is
written down as:

Zr[κ2](N,k) = e−S
(1)
cl [x,κ1](0,0)−S(1)

cl [x,κ2](0,0)

N(N − 1)

 N∑
`=2

`−1∑
j=1

H
(1)
j (k)H(2)

`−j(k)

×
∗∑

M1,...,MN−`

N−`∏
n=1

hn(k)Mn

nMnMn! +
N∑
`=2

`−1∑
j′=1

χ`(k, j′)
∗∑

M1,...,MN−`

N−`∏
n=1

hn(k)Mn

nMnMn!

 , (5.26)

and after relabeling the integration variables we can write for n = 1, 2:

H
(n)
` (k) =

∫
dr1...

∫
dr` eãn(r2+r1)+b̃n(r2−r1)K[x](r1, β|r`, 0)...

×K[x](r2, β|r10)e−
ik
N
·
∑`

j=1 rj ,

(5.27)

and:

χ`(k, j) =
∫
dr1...

∫
dr` eã1(r2+r1)+b̃1(r2−r1)K[x](r1, β|r`, 0)...K[x](r2, β|r10)

e
− ik
N
·
∑`

j=1 rjeã2(rj+2+rj+1)+b̃2(rj+2−rj+1). (5.28)

In Appendix H expressions for both types of cycles are derived. If the notation
from Appendix H is used, a = m

2βAx, b = m
2β

1
∆x

, to keep the expressions compact,
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the cycles can be written as:

H
(n)
` (k) =Q`dx

1[
2
∣∣∣sinh

(
`
2arccosh (ζ)

)∣∣∣]d exp
(
− `k2

16N2b
− ik · ãn

4Nb

+ ã2
na− b̃2

nb

a− b
1

4
√
ab

coth
(
`

2arccosh (ζ)
)
− 1

4
ã2

n − b̃2
n

a− b

)
, (5.29)

and:

χ`(k, j) = Q`dx
1[

2
∣∣∣sinh

(
`
2arccosh (ζ)

)∣∣∣]d
× exp

(
−`k2

16N2b
− ik

4Nb · (ã1 + ã2) + 1
4
(
ã2

1 + b̃2
1 + ã2

2 + b̃2
2

)
D0

+ 1
4
(
ã2

1 − b̃2
1 + ã2

2 − b̃2
2

)
D1 + 1

2
(
ã1 · ã2 + b̃1 · b̃2

)
Dj

+1
4(ã1 − b̃1) · (ã2 + b̃2)Dj+1 + 1

4(ã1 + b̃1) · (ã2 − b̃2)Dj−1

)
, (5.30)

where:

D`(n) = 1
2
√
ab

cosh
[(

`
2 − n

)
arccosh (ζ)

]
sinh

(
`
2 arccosh (ζ)

) . (5.31)

All that remains now is to compute the Gaussian integral in the center of mass
part (5.21), and then combine the resulting expression with (5.26) to compute the
Fourier integral in (5.20). Although a rather lengthy calculation, it is reliant only
on basic Gaussian integrals and goniometric identities, and we proceed to the final
result:

Z[κ2](N)
Z(N) = 1

N(N − 1)e
−S̃[κ2]

N∑
`=2

Z(N − `)
Z(N) h`(0)Q−`dx

`−1∑
j=1

[
hj(0)h`−j(0)

h`(0)

× exp
(
−2m
β

1√
Ax∆x

[
J [κ1,κ1] coth

(
j

2arccosh (ζ)
)

+J [κ2,κ2] coth
(
`− j

2 arccosh (ζ)
)])

+ exp
(
−2m
β

1√
Ax∆x

[J [κ1,κ1] + J [κ2,κ2]] coth
(
`

2arccosh (ζ)
)
− 4m

β

1√
Ax∆x

J [κ1,κ2]
cosh

([
`
2 − j

]
arccosh (ζ)

)
sinh

(
`
2arccosh (ζ)

) − 4m
β
X [κ1,κ2]

sinh
([

`
2 − j

]
arccosh (ζ)

)
sinh

(
`
2arccosh (ζ)

)
 .

(5.32)
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Here the functionals of the two source terms (α, γ = 1, 2) in the exponents of the
cycle-dependent contributions are given by:

J [κα,κγ ] = − 1
Ax∆x − 1

[
Ax

(∑
n

κα,n
ν2
n + βxn

)(∑
n

κγ,n
ν2
n + βxn

)

−∆x

β
2
∑
n 6=0

iνn
ν2
n + βxn

κα,n

 ·
β

2
∑
n 6=0

iνn
ν2
n + βxn

κγ,n

 , (5.33)

X [κ1,κ2] = − 1
Ax∆x − 1

∑
n

κ1,n
ν2
n + βxn

·

β
2
∑
n6=0

iνn
ν2
n + βxn

κ2,n


−
∑
n

κ2,n
ν2
n + βxn

·

β
2
∑
n6=0

iνn
ν2
n + βxn

κ1,n

 , (5.34)

and the argument of the cycle-independent exponent in front is given by:

S̃[κ2] = −(N − 1)mβ
2N

∑
n

κ1,n · κ1,−n + κ2,n · κ2,−n
ν2
n + βxn

− mβ

2N
∑
n

κ1,n · κ1,−n + κ2,n · κ2,−n
ν2
n + βyn

+ mβ

2N
∑
n

2κ1,n · κ2,−n
ν2
n + βxn

− mβ

2N
∑
n

2κ1,n · κ2,−n
ν2
n + βyn

− 2m
β

[J [κ1,κ1] + J [κ2,κ2]] .

(5.35)

Expression (5.32) is precisely
〈

exp
(
m
∫ β

0 dτ1 (r1(τ1)κ1(τ1) + r2(τ1)κ2(τ1))
)〉

with
the expectation value taken with respect to the unsourced system. To obtain
the two-point correlation function (5.5) we set the two source functions equal
to respectively f1(τ1) = iq

m δ(τ1 − τ) and f2(τ2) = − iq
m δ(τ2 − σ), which leaves the

general form of expression (5.32) unchanged except for simplifying the functionals
J , X and S̃ to:

J [f1, f1] = q2β2

16m2
1

Ax∆x − 1

[
Ax∆x(τ)2 −∆x

(
β

2 ∂τ∆x(τ)
)2]

, (5.36)

J [f2, f2] = q2β2

16m2
1

Ax∆x − 1

[
Ax∆x(σ)2 −∆x

(
β

2 ∂σ∆x(σ)
)2]

, (5.37)
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J [f1, f2] = − q
2β2

16m2
1

Ax∆x − 1

[
Ax∆x(τ)∆x(σ)−∆x

(
β

2 ∂τ∆x(τ)
)(

β

2 ∂σ∆x(σ)
)]

,

(5.38)

X [f1, f2] = q2β2

16m2
1

Ax∆x − 1

[
∆x(τ)

(
β

2 ∂σ∆x(σ)
)
−∆x(σ)

(
β

2 ∂τ∆x(τ)
)]

,

(5.39)

S̃[κ2] = q2β

4mN [(N − 1)∆x + ∆y + ∆x(τ − σ)−∆y(τ − σ)]

− 2m
β

[J [f1, f1] + J [f2, f2]] . (5.40)

Note that in (5.36)-(5.40) the full time-dependence of ∆x(τ) as defined in (5.3)
is invoked, but for the purpose of keeping the expressions shorter we will use
∆x = ∆x(0) in the case of τ = 0, as has also been done in the rest of this section.
Although (5.32) has no closed form expression, the numerical solution mainly
requires knowing the factor Z(N), which is obtained by solving (5.16) as shown
in [111] or Chapter 4. Finally, just as considered in Section 5.2 for the density,
the coupled harmonic oscillator limit of the two-point correlation function can be
checked for τ = σ = 0, and exactly agrees with the results in [108].

5.4 Example application: density and pair correlation
functions in an open quantum system

In this section, as a further illustration of the method, the expressions derived in
Sections 5.2 and 5.3 are applied to study the particle density, condensed fraction
and two-point correlations of a system of bosons in a model environment proposed
in Chapter 4. To recap, consider N non-interacting bosonic oscillators labeled by
the coordinates r = {r1, r2, ..., rN}, coupled to a set of external distinguishable
masses labeled by Q = {Q1,Q2, ...,QN}, where the total system is described by
the previously introduced Lagrangian in (4.26):

Ltot =
N∑
i=1

(
m

2 ṙ2
i + mΩ2

2 r2
i + M

2 Q̇2
i + MW 2

2 (ri −Qi)2
)
. (5.41)

The bosons with mass m are trapped in a harmonic potential with frequency Ω.
The environment is modeled by integrating out the fictitious masses to obtain the
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memory kernels at the level of the action functional (4.1):

x(τ−σ) = y(τ−σ) = MW 2

m

[
W 2 + m

MΩ2

W 2 δ(τ − σ)− W cosh(W [|τ − σ| − β/2])
2 sinh(Wβ/2)

]
.

(5.42)
In the rest of this section only equal masses M = m will be considered, and W/Ω
will be used as the coupling parameter to the environment.

Note that contrary to the treatment in the previous chapter, every expression
studied in this section follows from expectation values, and there is no necessity
to explicitly define the external system relative to which the energy would be
measured. Having obtained the memory kernels (5.42) for this system, expressions
for ∆x, Ax, Qx and Z(N) can be computed and were discussed in Chapter 4.
Since for the two-point correlation functions we will restrict ourselves to equal
times τ = σ = 0, this is sufficient to compute any of the quantities from Section
5.2 and 5.3. Note that for this particular system we have numerically checked
that ∆xAx > 1 and hence ζ > 1, which restricts the use of all inverse hyperbolic
functions to their real domain and allows us to drop the absolute value signs.

Before proceeding to the presentation of the results let us consider the one-
particle reduced density matrix which simplifies quite a bit in the x = y case as
per (5.42):

ρ1(r′|r) =
(2m
πβ

)d/2 1
N

N∑
`=1

Z(N − `)
Z(N)

(√
Ax
∆x

tanh
(
`

2arccosh (ζ)
))d/2

1∣∣∣2 sinh
(
`
2arccosh(ζ)

)∣∣∣d exp
(
−m
β

√
Ax
∆x

tanh
(
`

2arccosh(ζ)
)

(r2 + r′2)

−m
β

√
Ax
∆x

1
sinh(` arccosh (ζ))(r− r′)2

)
. (5.43)

In general, the one-particle reduced density matrix (5.43) describes a mixed state
at the single particle level due to entanglement with the rest of the system and
can be decomposed in terms of a classical ensemble with occupation numbers.
In Appendix I we show how the spectral decomposition of (5.43) is obtained (in
d = 3):

ρ1(r′|r) =
∞∑

nx,ny ,nz

λnψ
∗
n(r)ψn(r′), (5.44)
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with the effective eigenstates and occupancy numbers given by:

ψn(r) = NnHnx

(√
αx
)
Hny

(√
αy
)
Hnz

(√
αz
)

exp
(
−αr2

)
, (5.45)

λn = 1
N

N∑
`=1

Z(N − `)
Z(N) e−( 1

2 +nx+ny+nz)` arccosh(ζ), (5.46)

where Hn is a Hermite polynomial, Nn is the normalization factor of the eigenstate,
and α = 2m

β

√
Ax
∆x

.
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Figure 5.2: The occupation numbers at T/Tc = 0.01 (Tc defined as the
condensation temperature for N = 100 at W = 0) of the ground state and
the first excited state (counting degeneracy) for respectively N = 1 and
N = 100, are shown as a function of W , the strength of the coupling to the
bath of distinguishable particles.

In Figure 5.2 the occupation numbers of the effective ground state and first
excited state are compared for respectively N = 100 bosons and for N = 1, of
which the latter is equivalent to the distinguishable particle case of the system.
The results are plotted as a function of the couplingW between the bosons and the
bath. For numerical purposes the temperature is taken to be finite T/Tc = 0.01,
where kBTc = ~Ω (N/ζ(3))1/3 for N = 100. In practice this represents the T = 0
case as the results have already converged as a function of temperature. At W = 0
and T = 0 each particle can be described by the same pure λ0 = 1 harmonic
oscillator ground-state ψ0(r) regardless of the particles being distinguishable or
not. This should not be surprising as in the T → 0 limit the ground state of
N distinguishable non-interacting particles also obeys the bosonic permutation
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symmetry. However, as W is increased, the N = 1 case rapidly loses its purity as
the excited states of the density matrix spike in their occupancy numbers. Bosons,
on the other hand, retain a macroscopic occupation of the ground state up to
far stronger coupling strengths, illustrating how condensation could protect the
system from entanglement with the environment.
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W = 90Ω

(b) T = 0.01Tc

Figure 5.3: Panel (a) presents the central density of N = 100 bosons
(normalized by its value in the absence of the environment) for a series of
low temperatures as a function of W . In panel (b) the spatial profile of the
ground state is shown at zero temperature (normalized by its maximum value
in the absence of an environment) for a set of coupling strengths W . The
height of the shaded region in the peak relative to the peak height represents
the occupation number λ0. This also indicates the central density of the
ground state fraction as this quantity is proportional to λ0.

The ground state ψ0(r) gets more sharply peaked when W is increased as can
be seen from (5.45), which combined with the behavior of λ0 leads to a peculiar
behavior of the particle density (5.18). As can be seen in Figure 5.3a, the central
density of the bosonic cloud obtains a non-monotonic behavior as a function of W
at low temperatures. The origin of this behavior is revealed in Figure 5.3b: the
initial increase in central density as a function of W is due to the compression of
the condensate wave function, whereas the subsequent decrease when W is further
increased is due to the depletion of the condensate, as depletion overtakes the
compression effect on the condensate wave function.

In the previous discussion we assume that the central density closely mirrors
the condensate central density. This is a qualitative argument that neglects the
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Figure 5.4: The density radial profile (a) and the pair correlation function
(b) of N = 100 bosons for a series of coupling strengths W at a temperature
T = 0.4Tc. The square scatters indicate the asymptotic model results given
by (5.48) and (5.49).

contribution from the excited states compared to the ground state. In contrast to
the bosonic case, distinguishable particles do not retain a macroscopic occupation
of the ground state and there the central density is determined by the excited
states. In this case the above argument will no longer hold which makes the
behavior in Figure 5.3 uniquely bosonic. We can also consider the radial profile of
the density n(r) shown in Figure 5.4a where the non-monotonic behavior is clearly
visible.

Having obtained an expression for the two-point correlation function (5.32), we
can compute the radial pair correlation function representing the average density
around each particle as [108]:

g(r) = N − 1
(2π)d

∫
dq
〈
eiq·(r1(0)−r2(0))

〉
e−iq·r. (5.47)

The radial profile of this correlation function is shown in Figure 5.4b and qualita-
tively looks nearly identical to the average density profiles. This is to be expected
since g(r) is still a measure for the particle density, only now conditional to a
boson being present at r = 0. The most noticeable difference is that at strong
coupling W , the pair correlation exhibits a sharp spike at small distances.

To understand this, it is illustrative to discuss the strong coupling limit of this
model. Since the external particles in (5.41) are distinguishable, taking W →∞
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effectively glues them to the bosons giving them a distinguishable label as depicted
in Figure 5.5. As a reminder, we are considering the equal masses case M = m,
and hence in this limit we should be able to describe the total system as a gas of
distinguishable non-interacting composite particles with mass m̃ = 2m that are
harmonically trapped by a frequency Ω̃ = Ω/

√
2. The density of such a system is

readily written down as the diagonal of the normalized propagator of the harmonic
oscillator with mass m̃ and frequency Ω̃:

ñ(r, T ) =

√2mΩ tanh
(
βΩ
2
√

2

)
π

d/2 exp
(
−
√

2mΩ tanh
(
βΩ
2
√

2

)
r2
)
. (5.48)

If the particles are distinguishable and non-interacting the pair correlation function
g̃ of this asymptotic model can be computed as:

g̃(r, T ) = (N − 1)
∫

dr′ñ(r′, T )ñ(r′ + r, T )

= (N − 1)

mΩ tanh
(
βΩ
2
√

2

)
√

2π

d/2 exp
(
− 1√

2
mΩ tanh

(
βΩ
2
√

2

)
r2
)
. (5.49)

These quantities are now plotted alongside the density and pair correlation functions
in Figure 5.4. For the density an exact agreement is seen which confirms that the
single-particle correlation functions lose all their bosonic properties. For the pair
correlation function at large distances an exact agreement is found, but at small
distances the pair correlation function exhibits a sharp kink which only disappears
in the true W → ∞ limit. Therefore we conclude that even when the bosons
acquire distinguishable labels, the bosonic properties remain robustly hidden at
short distances in the pair correlation functions.

5.5 Conclusion

In this chapter we derived the one particle reduced density matrix, the density,
and two-point correlation function for a general class of quadratic bosonic systems
with retarded interactions in the canonical ensemble. As the bosons obtain an
effective memory in this description, the commonly used composition properties of
path integral propagators no longer hold, and a more general approach to compute
the contribution of the permutation cycles is presented.

This formalism is then applied to a model of an open quantum system of
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(a) W ≈ Ω

1

23

4

5 6

(b) W →∞

1

23

4

5 6

(c)

g(r,W � Ω)

g(r ≈ 0,W � Ω)

1 2

1 2

Figure 5.5: A depiction of the asymptotic limit of the model. When W is
comparable to the trapping frequency Ω, the bosons can condense, largely
remaining indistinguishable (a). When W is increased the particles are glued
together and the bosons effectively acquire a distinguishable label (b). Finally
note that this picture is less accurate for two-point correlations, even with the
distinguishable labels the bosonic nature is retained in the pair-correlation
function at short distances (c).

identical oscillators where some external environment is modeled by the memory
effects of fictitious masses. We show how as the coupling strength with the
environment is increased in the case of distinguishable particles entanglement
with the environment results in a highly mixed state, whereas the bosonic case
retains its macroscopic occupation of the ground state up to far stronger coupling
strengths. This gives rise to uniquely bosonic non-monotonic behavior of the
particle density as a function of the coupling strength, where at an intermediate
coupling the bosons experience maximal trapping strength. In the context of the
density and pair correlation function the strong coupling limit is discussed, where
we show how at sufficiently strong coupling strength even at zero temperature the
bosons become distinguishable, while retaining a trace of the bosonic statistics in
the short-range part of the pair correlation function.

The presented results open up the semi-analytic treatment of an entirely new
class of action functionals for a finite number of identical particles in the path-
integral formalism. Retarded interactions have already proven to be a powerful
method in variational models for certain types of systems. With the present results,
all the prerequisites to formulate a general variational model for identical particles
are obtained, which will be discussed in more detail in the next chapter.
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CHAPTER 6
Ground state properties of many

polarons
In this final chapter of the thesis, we will proceed with what we set out to do in
the introductory parts of Chapter 4 and investigate the many polaron ground state
properties in a beyond mean field approach. This requires a synthesis of various
results and techniques from the previous chapters. As we have seen in Chapter
3, methods relying on the Bogoliubov transformation appear to suffer from an
instability on the attractive branch and for this reason mainly the repulsive branch
will be studied.

In Sec. 6.1 we discuss the applicability of the Fröhlich and extended Fröhlich
models for many polarons and argue that most of the techniques used for a single
impurity can be used for multiple impurities as well. In Sec. 6.2, we show that the
identical particle properties of the impurities become irrelevant for bosons at zero
temperature what concerns the variational minimization. This provides motivation
to proceed and study distinguishable impurities in Sec. 6.3. We study the ground
state properties of the Fröhlich and extended Fröhlich models in Sec. 6.4 and
Sec. 6.5.

6.1 Many particle extensions

6.1.1 The variational approach for identical particles

At the heart of the variational path integral approach lies the Jensen-Feynman
inequality:

F ≤ F0 + 1
~β
〈Seff − S0〉 , (6.1)
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which allows one to obtain a variational upper bound to the free energy F of
some difficult effective action Seff through a simpler model action S0. For a single
particle it is well known that as long as both action functionals are real the
application of the inequality is justified. Indeed, as has been extensively discussed
in Chapter 2, for a single impurity this approach can be successfully used to tackle
the single polaron in the Bogoliubov-Fröhlich Hamiltonian if a sufficiently general
S0 is chosen. However, the validity of the inequality is not always guaranteed in
more exotic circumstances. For example, in the presence of a magnetic field the
action functionals contain imaginary contributions and depending on the form of
the trial action, corrections beyond the inequality (6.1) might be required [117].

The question that concerns us going forward is whether or not the inequality
of the form (6.1) can be used for multiple particles. In case of distinguishable
particles in d dimensions, the answer can be easily obtained by noticing that in
this case the many body path integral is merely a standard particle path integral
in dN dimensions with the coordinates (x1, y1, ..., x2, y2, ..., xN , yN , ...) for which
the inequality is valid. However, for identical particles the end points of the path
integral for the partition function have to be permuted:

Z(N) = 1
N !

∑
P

(ξ)P
∫
dr
∫ P [r],β

r,0
Dr′ e−S(N)[r′,x,y,κ], (6.2)

where for fermions ξ = −1 and the terms gain an additional minus sign in every
odd permutation, and for bosons ξ = 1 such that all terms yield a positive
contribution. The question as to whether or not the Jensen-Feynman inequality
can be applied to (6.2) has been discussed by J. T. Devreese in [118]. In summary,
this work contains a simple demonstration of how for fermions the sign alternation
in (6.2) forms a significant problem in the application of the inequality. It has
been shown by Lemmens, Brosens and Devreese that the sign problem can be
cured by representing the path integrals in terms of diffusive processes and that
the variational inequality can be applied to fermions only on the condition of
placing several restrictions upon the trial action S0 [119]. However, for bosons the
summation in (6.2) consists only of positive terms such that the previous concerns
do not apply1. We can directly quote [118]:

"Fermion systems (with parallel spins) form an important class of
systems for which the Jensen-Feynman inequality is not directly ap-

1I am grateful to S. N. Klimin for clarifying this point to me in correspondence.
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plicable . . . The reason for this is that the path integral for fermions
with parallel spin, if expressed in the full coordinate space, is a super-
position of path integrals with all possible permutations of the particle
coordinates, with negative signs for all odd permutations. For bosons,
no negative signs result from the permutations, and the application of
the Jensen-Feynman inequality presents no problems . . . "
– J. T. Devreese in [118]

Rigorously proving the Jensen-Feynman inequality for bosons is beyond the
scope of the current chapter, and hence we proceed relying on the conclusions in
the aforementioned studies that the inequality (6.1) can be safely used for bosons
for any general model action functional S0. From the previous discussion it also
follows that without making any additional restrictions the completely general
action functional considered in Chapters 4 and 5 can be variationally applied to
bosonic impurities as is the case in the Aarhus experiment [23]. For fermions in
the JILA experiment [19] further restrictions on S0 have to be placed.

6.1.2 The effective action for multiple particles

In expression (1.21) of Chapter 1 we have introduced the Bogoliubov-Fröhlich
model described by

ĤF =
NI∑
j

p̂2
j

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
, (6.3)

where multiple impurities are accounted for in the density operator:

ρ̂k =
NI∑
j=1

eik·r̂j . (6.4)

It is clear that the function ρ̂k is unaffected by integrating out the phonons in
(6.3) and hence the effective action for the Bogoliubov-Fröhlich model remains
exactly the same as used for a single impurity:

S(F)
eff =

∫ ~β

0

mṙ2

2 dt− 1
V

∑
k

g2
ibn0
2~ V 2

k

∫ ~β

0
dτ

∫ ~β

0
dσGk (τ − σ) ρk(τ)ρ∗k(σ), (6.5)

with the emphasis that now the many-impurity density (6.4) is to be used.
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For the extended Fröhlich model

ĤEF =
NI∑
j

p̂2
j

2m +
∑

k
~ωkα̂

†
kα̂k + gib

√
N0

V

∑
k
ρ̂kVk

(
α̂k + α̂†−k

)
+ gib
V

∑
s 6=0

∑
k 6=0

ρ̂k−sW
(1)
k,s α̂

†
sα̂k + 1

2
gib
V

∑
s6=0

∑
k 6=0

ρ̂k−sW
(2)
k,s

(
α̂†sα̂

†
−k + α̂kα̂−s

)
(6.6)

broadly the same argument holds, but a few details have to be addressed first.
Note that the extended Fröhlich terms in (6.6) contain the impurity density in
the following form: ρ̂k−s. In the analysis of a single impurity in Chapter 3, for
convenience this expression has been occasionally split as ρ̂kρ̂

∗
s, which is of course

not valid for multiple impurities. Fortunately, in the set up of the derivation
expressed in (3.11) this simplification is not made and hence the general strategy
can equivalently be applied to the many particle case. Relying on the same
approximations that were argued in Chapter 3, the effective action for many
particles can still be written as:

Seff = SFeff − ~
∞∑
n=1

(−1)ngnibOn. (6.7)

However, for a single polaron, to write down the expression in (3.27):

O(sp)
n = g2

ibn0

~ (2V ~)n+1

∫ ~β

0
dτ1...

∫ ~β

0
dτn+2

×
∑

k1,...,kn+1

n+1∏
j=1

V 2
kj
Gkj (τj+1 − τj) ρkj(τj)

∗ρkj(τj+1)

 , (6.8)

we have made the aforementioned factorization ρk−s = ρkρ
∗
s for the singly impurity.

If the factorization is not used to simplify the scattering terms in Chapter 3, for
multiple polarons the appropriate expression reads:

On = g2
ibn0

~ (2V ~)n+1

∫ ~β

0
dτ1...

∫ ~β

0
dτn+2

∑
k1,...,kn+1

n+1∏
j=1

(
V 2

kj
Gkj (τj+1 − τj)

)

× ρ∗k1(τ1)

 n∏
j=1

ρkj−kj+1(τj+1)

 ρkn+1(τn+2), (6.9)

which exactly agrees with the form in [91], where the factorization for a single
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impurity was not implemented in the notation.
With this general form for On we run into an issue. It is not clear how

the random phase approximation that has been devised for a single impurity
and a posteriori justified in Chapter 3 generalizes to multiple impurities. This
approximation was used to compute 〈On〉 with respect to the model action – a
necessary step for the variational application. To explore this question for multiple
impurities, first note that in the expectation value of On only the product of
impurity densities in (6.9) will be of importance and hence the question of interest
is how to compute:

Wn =
〈
ρ∗k1(τ1)

 n∏
j=1

ρkj−kj+1(τj+1)

 ρkn+1(τn+2)
〉
. (6.10)

Even with respect to the most trivial model system of free particles, the integral in
(6.9) cannot be computed for arbitrary n. This should not come as a surprise, the
series in (6.7) contains arbitrarily large powers of the coupling parameter gib, and
hence knowing how to compute the expectation value 〈Seff〉 with respect to free
particles would be equivalent to knowing how to exactly compute contributions
of Feynman diagrams of any order in the full polaron action. To proceed we will
justify a random phase like approximation similar to the one proposed in Chapter
3, now applied to multiple particles.

First, consider the expectation value arising from the O1 term:

W1 =
〈
ρ∗k1(τ1)ρk1−k2(τ2)ρk2(τ3)

〉
=
∑
i2

〈∑
i1,i3

exp (ik1 · [ri2(τ2)− ri1(τ1)]) exp (ik2 · [ri3(τ3)− ri2(τ2)])
〉
.

(6.11)

A similar question as to how to approximate many-impurity correlations has been
encountered in a mean field study of this problem in [59]. The authors propose to
neglect the third central moment of W1 with the operators expanded around their
mean field value ρ− 〈ρ〉 in the following way:

∑
i1,i2,i3

〈eik1·(ri2 (τ2)−ri1 (τ1)) − 1
N2
I

∑
i1,i2

〈
eik1·(ri2 (τ2)−ri1 (τ1))〉
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eik2·(ri3 (τ3)−ri2 (τ2)) − 1
N2
I

∑
i1,i2

〈
eik2·(ri3 (τ3)−ri2 (τ2))〉〉 ≈ 0, (6.12)

from which follows:

∑
i1,i2,i3

〈
eik1·(ri2 (τ2)−ri1 (τ1))eik2·(ri3 (τ3)−ri2 (τ2))〉

≈ 1
NI

∑
i1,i2

〈
eik1·(ri2 (τ2)−ri1 (τ1))〉∑

i2,i3

〈
eik2·(ri3 (τ3)−ri2 (τ2))〉 . (6.13)

This directly implies the following approximation for the expectation value of
interest:

W1 ≈
1
NI

〈
ρ∗k1(τ1)ρk1(τ2)

〉 〈
ρ∗k2(τ2)ρk2(τ3)

〉
. (6.14)

Therefore, we precisely retrieve the random phase approximation made in Chapter
3, now for multiple impurities. Similar arguments can be constructed for the
general case to find:

Wn ≈
1
Nn
I

〈
ρ∗k1(τ1)ρk1(τ2)

〉 〈
ρ∗k2(τ2)ρk2(τ3)

〉
...
〈
ρ∗kn+1(τn+1)ρkn+1(τn+2)

〉
. (6.15)

It is easy to see that the normalization factor Nn
I in front of the right hand side has

to be there. For example, consider the case where all kj = 0. The left hand side
of (6.15) then yields Nn+2

I . The product of expectation values on the right hand
side yields N2(n+1)

I from which the necessity of the normalization factor can be
readily understood. We can now proceed to apply this approximation to compute
the effective action.

It is not difficult to show that for any function f(u) that obeys β periodicity
such that f(β − u) = f(u):

∫ β

0
dτ1...dτn+2f(τ1 − τ2)...f(τn+1 − τn+2) = β2n+1

(∫ β/2

0
f(u)

)n+1

= β2n+1
(

1
2β

∫ β

0
dτ

∫ β

0
dσf(τ − σ)

)n+1

.

(6.16)

If we also assume that the expectation value 〈ρk(τ)ρ∗k(σ)〉 only depends on the
time difference and is also β-periodic, we obtain our previous expression for the
random phase approximate effective action (3.36), now also accounting for the
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normalizing factor:〈
S̃eff

〉
0

= gibn0~β
∞∑
n=1

1
Nn−1
I

(
− gib
~V

1
2β
∑

k
V 2

k

∫ ~β

0
dτ

∫ ~β

0
dσGk (τ − σ) 〈ρk(τ)ρ∗k(σ)〉

)n
,

(6.17)

where we use the tilde to indicate the subtraction of the kinetic energy as in
Chapter 2. Remember that for NI impurities the mean-field impurity-condensate
shift NIgibn0 gets multiplied by NI as well, such that:

1
~β

〈
S̃eff

〉
0

+NIgibn0

= NIgibn0

∞∑
n=0

(
− gib
~V

1
2β
∑

k
V 2

k

∫ ~β

0
dτ

∫ ~β

0
dσGk (τ − σ) 〈ρk(τ)ρ∗k(σ)〉

)n
.

(6.18)

If Lippmann-Schwinger renormalization is now performed by substituting the full
expression for g(Λ) as given in (3.38), we obtain the following resummation of the
effective action:

1
~β

〈
S̃eff

〉
0

= gibn0NI

1 + gibΓ[x, y] −NIgibn0, (6.19)

with from this point onward, gib being just the lowest order expression at Λ = 0.
This result is of course nothing else than the energy term with the resonance shift
obtained in the last term of (3.39), where:

Γ[x, y] = 1
2~βV

∑
k
V 2

k

∫ ~β

0
dτ

∫ ~β

0
dσGk (τ − σ) 1

NI
〈ρk(τ)ρ∗k(σ)〉 − 1

V

∑
k

2µ
~2k2 ,

(6.20)
and the brackets indicate that Γ can still be a function(al) of variational parameters.
This allows us now to write the variational free energy for many polarons in the
extended Fröhlich model as:

F (EF)
v [x, y] = F0[x, y]− 1

~β
〈S0〉+ gibn0NI

1 + gibΓ[x, y] −NIgibn0, (6.21)

and the result for the Fröhlich model is found by expanding the expression up to
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lowest order in Γ:

F (F)
v [x, y] = F0[x, y]− 1

~β
〈S0〉 − g2

ibn0NIΓ[x, y]. (6.22)

While expression (6.22) is true regardless of the model action, in the previous
derivation of (6.21) we have assumed that 〈ρ(τ)ρ(σ)∗〉 only depends on the time
difference τ − σ and is in addition β-periodic to use the property (6.16).

6.2 General model system for bosons at zero tempera-
ture

In this section we will address an important point regarding the general action
functional formalism for bosons and illustrate how the variational model behaves
at zero temperature. As argued before in the previous section, to use S0[x, y] as
a variational model for bosons, no restrictions are required aside from the ones
discussed in Chapters 4 and 5. Therefore, in principle the most general form of S0

can be used as a variational model for a system of bosons without any issue (for
~ = 1):

S(N)[x, y] = m

2

N∑
i

∫ β

0
ṙi(τ)2dτ + m

2

N∑
i

∫ β

0
dτ

∫ β

0
dσx(τ − σ)ri(τ) · ri(σ)

+ m

2N

N∑
i,j

∫ β

0
dτ

∫ β

0
dσ [y(τ − σ)− x(τ − σ)] ri(τ) · rj(σ). (6.23)

However, not all realizations of S0 have a transparent physical interpretation. In
particular when the memory kernel x(τ − σ) 6= 0, a subtle issue can be observed
already on a qualitative level. In this case, a particle with coordinate ri interacts
with itself through a different memory kernel than with another particle with
coordinate rj . For example, consider the case where x 6= 0 and x = y, such that
each boson interacts only with itself and previous times, but is not affected by
any other boson. The natural question arises, what kind of physical system is
capable of creating an instance where identical particles are discerning between
one another in the past?

It therefore seems to be the case that while any S0 can be used as a trial
function, not every S0 of the form (6.23) actually corresponds to a realistic system
of bosonic particles. While this does not form a fundamental problem for the
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purposes of our applications, some caution is required to physically interpret
such realizations of S0. Indeed, precisely a system of this type was considered in
our example applications of Chapter 4 and Chapter 5. Although the results are
physically sound and the appropriate limiting cases are retrieved, one issue that
has not been addressed is already present in the Lagrangian (4.26) of Chapter 4.
By coupling the bosons to distinguishable particles in this way, we are making the
assumption that the distinguishable particles are somehow capable of discerning
the bosons, which is of course an unnatural coupling for realistic physical systems.
This in turn gives raise to the type of memory effects in the action functional
described in the previous paragraph. Therefore, we emphasize that thermodynamic
quantities or correlation functions corresponding to the most general form of the
action functional (6.23) are to be interpreted strictly in the context of the behavior
of variational models. This means that the free energy and the correlation functions
are to be interpreted as the quantities that respectively correspond to F0 and to
the expectation values 〈...〉 that are used in the inequality (6.1).

Having addressed this important caveat we now proceed to discuss the behavior
of the model system at zero temperature. We start by investigating the central
quantity that appears throughout the derivations in Chapter 4 and Chapter 5:

∆xAx − 1 = 4
β2

∞∑
n=−∞

1
ν2
n + x̃n

∞∑
n′=−∞

x̃n′

ν2
n′ + x̃n′

− 1, (6.24)

where for convenience of notation we have redefined x̃n = βxn. Let us now discern
two possible cases. The first option is that the memory kernel xn could be constant
in Fourier space which corresponds to a simple harmonic trap x̃n = ω2. In this
case the summations in (6.24) are readily performed to find:

∆xAx − 1 = coth
(
βω

2

)
− 1. (6.25)

In the limit of zero temperature β → ∞ this expression goes to zero and hence
some care should be taken since (6.25) appears at various places in our framework.
We have checked that in this case exactly at T = 0, all quantities of further interest
in this chapter such as the partition function or correlation functions reduce to
the distinguishable particle case and lose their bosonic properties. This should not
come as a surprise – from an energy point of view, at zero temperature both bosons
and distinguishable particles will simply completely fill up the non-degenerate
ground state and hence produce identical thermodynamic properties.
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Although this seems quite obvious for the case of harmonically trapped particles,
let us be more careful and check it in the presence of a non-trivial kernel x̃n 6= cst.
In this case expression (6.25) does not necessarily go to zero as β →∞, which can
also be easily checked from expressions (4.30) and (4.31) for our fictitious model
in Chapter 4. At zero temperature, the recurrence part of the partition function
therefore remains finite:

Z(N) = 1
N

N−1∑
k=0

Z(k)
∣∣∣∣2 sinh

[(N − k)
2 arccosh

(
Ax∆x + 1
Ax∆x − 1

)]∣∣∣∣−d . (6.26)

It follows that the last two terms drop out from the free energy of the model
action:

F0 =3(N − 1)
β

∞∑
k=1

log
(

1 + x̃k
ν2
k

)
+ 3
β

∞∑
k=1

log
(

1 + ỹk
ν2
k

)

+ 3N
2β log

(1
4βx̃0(∆xAx − 1)

)
− 1
β

log (ZN ) . (6.27)

which yields at zero temperature:

F0 =3(N − 1)
2π

∫ ∞
0

dν log
(

1 + x̃(ν)
ν2

)
+ 3

2π

∫ ∞
0

dν log
(

1 + ỹ(ν)
ν2

)
. (6.28)

This is precisely the free energy for distinguishable particles.
The next part of the inequality is the expectation value of the model action

with respect to itself
〈
S̃0
〉
. This identity is most easily computed by introducing a

scaling parameter λ to the interaction parts of S0 such that x→ λx and y → λx

to obtain the dependence of the free energy F0(λ) on the scaling parameter. The
expectation value is then computed as:

1
β

〈
S̃0
〉

= β∂λF0(λ)|λ=1 = 3(N − 1)
β

∑
k=1

x̃k
ν2
k + x̃k

+ 3
β

∑
k=1

ỹk
ν2
k + ỹk

+ 3N
2β

[
1 + ∂λAλx∆λx|λ=1

Ax∆x − 1

]
− 1
βZN

∂λZN (λ)|λ=1.

(6.29)

Given that both the partition function and Ax∆x are finite at zero temperature
for any λx, unless the derivatives ∂λ diverge the last two terms drop out and we
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once again obtain the zero-temperature expression of distinguishable particles:

〈
S̃0
〉

= 3(N − 1)
2π

∫ ∞
0

dν
x̃(ν)

ν2 + x̃(ν) + 3
2π

∫ ∞
0

dν
ỹ(ν)

ν2 + ỹ(ν) . (6.30)

It turns out that in the Bogoliubov-Fröhlich model at zero temperature the
expectation value of the effective action 〈Seff〉 can also be computed as if the
particles are distinguishable. The argument is slightly technical and an overview
is relegated to Appendix J. With this result, together with (6.28) and (6.30), we
conclude that at zero temperature for bosonic impurities identical particle statistics
can be neglected when it comes to an application of our variational framework.
Although we only prove it within the Bogoliubov-Fröhlich model, it is reasonable
to assume this to also be true for more general polaron models and hence we will
use this result for the extended Fröhlich model as well. Since for distinguishable
particles, the expectation value Fk(u) only depends on the time difference and
is β-periodic as well, in this case the result (6.21) can be used for the extended
Fröhlich model.

6.3 Distinguishable polarons

Relying on the previous discussion, we proceed to study the case of distinguishable
impurities which we have identified to be equivalent to bosonic impurities in the
zero temperature limit of the general memory variational framework. We note
that even this distinguishable particle limit forms a non-trivial extension of the
results in Chapter 2 and has thus far not been performed in the literature with
general memory kernels. To be able to make a clear comparison with the results of
Chapter 2 further on, from this point on we redefine the notation x̃n → xn to avoid
having to carry the tilde everywhere. As shown in Appendix J, the correlation
functions for distinguishable particles within the general memory kernel formalism
are given by:

Fk(τ − σ) = 〈ρk(τ1)ρ∗k(σ)〉 = NF (1)
k (τ − σ) +N(N − 1)F (2)

k (τ − σ), (6.31)

where:

F (1)
k (τ − σ) = exp

(
− k2

4mϕ(τ − σ)
)
, (6.32)
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F (2)
k (τ − σ) = exp

(
− k2

4mξ(τ − σ)
)
. (6.33)

The exponents are defined as:

ϕ(τ − σ) = 1
N
{(N − 1) [Dx(0)−Dx(τ − σ)] +Dy(0)−Dy(τ − σ)}, (6.34)

ξ(τ − σ) = 1
N

[(N − 1)Dx +Dy +Dx(τ − σ)−Dy(τ − σ)] , (6.35)

using a shorthand notation Dx = Dx(0), where:

Dx(u) = 4
β

∞∑
n=−∞

eiνnu

ν2
n + xn

. (6.36)

These expressions have the same symmetry as in the case of a single impurity,
which allows us to write the previously defined Γ[x, y] in (6.20) as:

Γ[x, y]

= 1
V

∑
k
V 2

k

∫ ~β/2

0
duGk (u)

[
F (1)

k (u) + (NI − 1)F (2)
k (u)

]
− 1
V

∑
k

2µ
~2k2 . (6.37)

After substituting F0 and 〈S0〉 into the variational free energies of the Fröhlich
(6.22) and extended Fröhlich models (6.21), respectively, we obtain:

F (F/EF)
v [x, y] = 3(N − 1)

β

∞∑
k=1

log
(

1 + xk
ν2
k

)
+ 3
β

∞∑
k=1

log
(

1 + yk
ν2
k

)

− 3(N − 1)
β

∑
k=1

xk
ν2
k + xk

− 3
β

∑
k=1

yk
ν2
k + yk

− g2
ibn0NIΓ[x, y]

1 + gibΓ[x, y](EF) .

(6.38)

where the ∼ gib correction in the denominator of the last term is only to be
accounted for in the extended Fröhlich model and neglected within the Fröhlich
model.

It is now a straightforward minimization problem to obtain the equations
for the variational minimum ∇x,yFv = 0 by deriving ∂xnFv = ∂ynFv = 0 and
obtaining:

x(ν) = 8
3π2

g2
ibn0

8m~
[J1 + (N − 1)J2 − Γ1(ν) + Γ2(ν)] , (6.39)
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y(ν) = 8
3π2

g2
ibn0

8m~
[J1 + (N − 1)J2 − Γ1(ν)− (N − 1)Γ2(ν)] , (6.40)

where the terms on the RHS are functionals of x and y themselves:

J1 =
∫
dkk4V 2

k

∫ ~β
2

0
duGk(u) exp

(
− k2

4mϕ

)
, (6.41)

J2 =
∫
dkk4V 2

k

∫ ~β
2

0
duGk(u) exp

(
− k2

4mξ

)
, (6.42)

Γ1(ν) =
∫
dkk4V 2

k

∫ ~β
2

0
duGk(u) exp

(
− k2

4mϕ

)
cos(νu), (6.43)

Γ2(ν) =
∫
dkk4V 2

k

∫ ~β
2

0
duGk(u) exp

(
− k2

4mξ

)
cos(νu). (6.44)

This approach forms a direct extension of the treatment of the single polaron in
Chapter 2 to multiple impurities, however to make a direct comparison some care
should be taken. In Chapter 2 we have implicitly assumed that the memory kernel
goes to zero in frequency space, i.e. x0 = 0, whereas starting from Chapter 4 we
have been working under the assumption x0 6= 0 and y0 6= 0.

To confirm that the limit x0 → 0 is still correctly captured in this approach and
yields no issues, let us try to retrieve the single polaron result in this formalism.
To do so, we start by setting the memory kernels equal to one another xn = yn

such that the induced impurity interactions in (6.23) drop out. It follows that in
this limit ϕ(u) = Dx(0) −Dx(u) and ξ(u) = Dx(0). For x0 → 0, we can clearly
see that Dx(0) as defined in (6.36) diverges, whereas this divergence cancels in
Dx(0)−Dx(u) for any u. This divergence of ξ(u) has the effect of exponentially
damping the second term F (2)

k (u) and removing it from the density correlation
function (6.31). We can see that the remaining correlation F (1)

k is simply the
single impurity result in (2.20) and the free energy (6.38) then corresponds to
the variational energy of the single polaron (2.23) obtained in Chapter 2, now
multiplied by NI . Therefore, it appears that the restriction can be lifted while
still retrieving the appropriate limits and hence we can omit the restriction x0 6= 0
in what follows.

Note that previously in our paper [111] we have made a comment regarding
restricting ∆x < ∆y for the purpose of stability conditions when performing the
center of mass integral. However, this restriction is in fact too strict, and this
center of mass integral could be performed later in the derivation similar to [107]
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where this condition would no longer be required. From the discussion in [107] we
can see that for attractive interparticle interactions, as will be shortly evidently
observed here, we have no such restrictions and we only have to make sure that
∆x > 0 and ∆y > 0. Given that in what follows we always obtain positive x(ν)
and y(ν) this condition is automatically satisfied.

Having addressed these points, we can proceed to solve equations (6.39) and
(6.40) with a similar iterative method as presented in Chapter 2. After an initial
guess for {xn, yn} is substituted in the right hand side of (6.39) and (6.40), one
obtains an improved suggestion for the memory kernels on the left hand side. This
procedure is then iterated, where after each step the free energy (6.38) is evaluated
and compared to the previous step until the difference drops below 1% which will
be accepted as the final value. To represent the continuous memory kernels, we
select a Gauss-Legendre quadrature on a logarithmically transformed ν = ez − 1
grid of 1000 points. Due to the smaller cutoff of Λ ≈ 190ξ−1 used further on we
can use a smaller frequency cutoff νmax = 106~/(mξ2).

We close the discussion of the energy minimization with one final word of
caution. For multiple impurities, the variational landscape will always contain
the non-interacting NI polaron state as a possible local minimum. It is therefore
now more important to be careful about whether the true minimum is reached.
In what follows we observe that the non-trivial solution, where the polarons are
strongly interacting, is most easily found either at large α or at large NI . When
making a plot as a function of α such as in Figure 6.1, it can therefore be useful
to first find the interacting non-trivial solution at large α such that xn 6= yn, and
then use this result as the initial guess for a smaller α− dα to track this solution.
At some sufficiently small critical value of α this solution appears to transition
into NI copies of the single polaron, indicating the absence of polaron binding in
this regime.

One other interesting quantity that will turn out to be illustrative further on is
the spatial distribution of the impurities. However, in the absence of an external
harmonic trapping potential as considered in Chapter 5, our focus should lie on
computing relative coordinates, rather than absolute density profiles themselves.
It is well known that for a single polaron the spatial profile of the impurity is
completely delocalized at any coupling strength. This can be easily seen from
expression (2.12), from which follows that if the optimal memory kernel at small
frequencies ν → 0 behaves as x(ν) ≈ νn with n > 1, which is indeed found to be
the optimal solution for a single polaron, the expectation value

〈
r2〉 diverges. This
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should not come as a surprise – the polaron system has translational symmetry and
hence only correlations between the impurity and the condensate become localized.
For example, the polaron radius studied in (3.43), is technically defined as the
relative coordinate between the impurity and the fictitious mass in Feynman’s
original system

〈
(r−Q)2〉 which is localized in contrast to

〈
r2〉. For this exact

reason, when probing the spatial properties of the many polaron system, it is most
convenient to study the correlations between ri and rj rather than the absolute
density profiles themselves. For i 6= j we define the average inter-impurity distance
that will be used in the following section as:

R12 =
√〈

(ri − rj)2
〉
. (6.45)

If we remember that:

F (2)
k (τ, σ) =

〈
eik[ri(τ)−rj(σ)]

〉
, (6.46)

for an optimized memory kernel xn we can obtain the average impurity separation
at zero temperature as:

R2
12 = − ∇2

kF
(2)
k (0, 0)

∣∣∣
k=0

= 6
4mDx(0) = 6

mπ

∫ ∞
0

dν
1

ν2 + x(ν) . (6.47)

From this expression we can see that if x(ν)→ 0 at small frequencies, the impurity
correlations will be delocalized. As discussed before, this solution corresponds to
the NI noninteracting polaron state and hence this is to be expected. However,
once non-trivial many polaron interactions start to become noticeable in the energy
the optimal memory kernel will have x(0) 6= 0 and a finite value for (6.47) is
obtained, indicating a localization of the impurity-impurity correlations.

We could go one step further and take a look at the two-point correlation
density g(r):

g(r) = 1
NI

1
(2π)3

∫
dk
〈∑
i 6=j

eik·[ri(0)−rj(0)]
〉
e−ik·r

= (NI − 1)
(

m

πDx(0)

)3/2
exp

(
− mr2

Dx(0)

)
. (6.48)

This quantity represents the effective density profile as seen in the frame of one
of the impurities, which allows one to avoid the aforementioned subtlety with
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localization. We can indeed see from (6.48) that it is normalized to NI − 1 and
that Dx(0)/m plays the role of the profile width as reflected in the radius (6.47).

6.4 Comparison between the Fröhlich and extended
Fröhlich models for multiple impurities

In this section we will compare the ground state energy of the Fröhlich and the
extended Fröhlich for multiple impurities in a BEC at zero temperature. As we
have previously argued within our variational framework, bosonic impurities at
zero temperature can be studied in the distinguishable particle approach of the
last section. For this reason we are mainly interested using the system parameters
of the Aarhus experiment [23], where bosonic 39K impurities were immersed in a
condensate of the same atoms in a different hyperfine state such that m = mb. For
further details of the experiment we refer the reader to the discussion in Chapter
1 or the papers accompanying the experiment [23, 46]. The cutoff value of the
momentum integrals is chosen equal to the Van der Waals length of 39K, which
roughly corresponds to Λ ≈ 190ξ−1 [23, 70]. To obtain the zero-temperature result
we use a large inverse temperature cutoff corresponding to β = 200~/(mξ2). Since
the effect of Efimov physics and going beyond the Bogoliubov approximation has
been argued to be important on the attractive branch [45] we will be focusing on
the repulsive branch here. The boson-boson scattering length is tuned to abb = 9a0

in the experiment and kept constant, and hence either α = a2
ib/(abbξ2) or (knaib)−1

with kn = (6π2n0)1/3 can both be unambiguously used as the interaction parameter
between the impurity and condensate on the repulsive branch where aib > 0. In
the experiment the impurities exhibit a weak direct attraction corresponding to
roughly aii = −20a0. Towards stronger coupling this value is far smaller than the
scattering length with the condensate aib. Moreover, the induced interactions on
the repulsive branch are attractive and any additional small attraction between the
impurities themselves should not significantly change the conclusions. Therefore,
we will be considering non-interacting impurities in what follows.

In Figure 6.1 we start by presenting a comparison between the ground state
energy per polaron within the Fröhlich and extended Fröhlich models. With the
mass ratio m = mb, the impurity is significantly heavier here than in the previously
considered case in Chapter 2. Hence, we can immediately observe that it takes
stronger interaction strengths α ≈ 6 for the single-impurity polaronic energy to
become negative, which is the point at which polaronic effects start to occur. This
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Figure 6.1: Polaronic energy per impurity within the Bogoliubov-Fröhlich
model (a) and the extended Fröhlich model (b) for the system parameters of
the Aarhus experiment [23], m = mb and Λ ≈ 190ξ−1 at zero temperature.
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Figure 6.2: Polaronic energy per impurity within the Bogoliubov-Fröhlich
model (solid circles) and the extended Fröhlich model (solid squares) as a
function of the impurity number in the units of the Aarhus experiment at
a fixed interaction strength (aibkn)−1 = 1.6 or α = 2.386. The energy is
measured with respect to ~2k2

n/(2m) to use the same convention as [23]. The
inset shows the extended model results op to NI = 500.
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Figure 6.3: Polaronic energy per impurity within the Bogoliubov-Fröhlich
model (solid circles) and the extended Fröhlich model (solid squares) as a
function of the impurity number. The system parameters of Chapter 2 for a
light impurity mb = 3.8m at moderately weak coupling α = 1 are used with
Λ = 200ξ−1. The inset presents the extended Fröhlich model results up to
NI = 100 impurities.

transition occurred at significantly weaker coupling around α ≈ 1 for the lighter
impurity at mb = 3.8m. The regime shown in the figure can therefore still be
considered as effectively a weak to intermediate coupling range what concerns the
impurity localization properties.

In Chapter 3 we have shown that for a single impurity the extended Fröhlich
effects start to become important once the polaronic contribution to the energy
becomes negative, corresponding to the impurity getting localized. Indeed, in
Figure 6.1 we can see that for NI = 1 the difference in ground state energy between
the Fröhlich and the extended Fröhlich model is rather small. This changes for
multiple impurities where this difference between the two models becomes much
more noticeable. While both models clearly predict a large multi-polaron binding
energy, the extended Fröhlich model decreases the sharp drop of the energy per
polaron to a much slower linear decrease. This is qualitatively consistent with
the results obtained for a single impurity in Chapter 3. However, for multiple
impurities this occurs at even weaker coupling when compared to the single polaron.
This provides an important indication that the original Fröhlich model should not
be used to analyze multiple impurities, even at weak coupling.
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To confirm this, in Figure 6.2 we present results for the ground state energy
per impurity at a fixed interaction strength as a function of the impurity number
where the Aarhus experiment system parameters are used. At the coupling used
in the figure α = 2.386, the Fröhlich and extended Fröhlich models appear to be
equivalent for a single impurity in Figure 6.1. However, it is now clearly evident
that as the number of impurities increases, even at a fixed coupling the qualitative
behavior of the two models drastically differs. While the Fröhlich model predicts
a sharp increase in polaronic binding energy with growing number of impurities,
the extended Fröhlich model severely restricts this behavior. Although the main
plot of Figure 6.2 seems to indicate a quickly converged energy in the extended
Fröhlich model, the inset shows that the energy still retains a weak dependence on
NI up to hundreds of impurities. The same plot is also presented in Figure 6.3 but
now for the case of a light impurity mb = 3.8m that has been studied in Chapters
2 and 3, at α = 1 with the remaining parameters as in [48]. Qualitatively identical
behavior is obtained.

6.5 Impurity pockets in the extended Fröhlich model

The goal of the previous section was to compare the Fröhlich model and the
extended Fröhlich model. We have thus far made two crucial observations. First,
it is obvious that, even more so than for the case of a singly impurity, the extended
Fröhlich model makes significant corrections to the Fröhlich model when multiple
impurities are present. Second, in Figure 6.2 and Figure 6.3 we have seen that
at some large number of impurities NI ≈ 100 the polaronic contribution to the
ground state energy per impurity becomes practically indifferent to the addition
of more impurities. In this section we will try to more closely understand this
behavior.

It turns out that a simple but illuminating step towards understanding the
behavior of the energy is to remember that the full Bose polaron energy is given
by:

E = Ep + gibn0NI (6.49)

As discussed in Chapter 1, this value represents the true energy of the impurities
with respect to the non-interacting state at gib = 0, which is also the quantity that
is experimentally accessible. In fact, as can be seen from expression (6.21) it is far
more natural to include this term in the energy when studying the extended Fröhlich
model, as we have also done to perform the Lippmann-Schwinger regularization
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Figure 6.4: Full polaron energy per impurity within the extended Fröhlich
model for the system parameters of the Aarhus experiment [23], m = mb and
Λ ≈ 190ξ−1 at zero temperature.

procedure. To avoid confusion, it is important to emphasize that the second term
in (6.49) is completely independent of the polaronic state and all of our previous
results for Ep remain completely valid and hence (6.49) is merely a trivial shift.

Nevertheless, it turns out that presenting the results of Figure 6.1 on a full
energy plot provides quite some insight for a physical interpretation. This is
done on Figure 6.4 where we have for comparison also added a larger number of
impurities NI = 10. We can now see that for a large number of impurities the
full polaron energy per impurity is not only indifferent to further increasing the
impurity number, but it is also very weakly dependent on the coupling strength. All
of this seems to indicate that at sufficiently high impurity number, the impurities
must be sharing a common depletion pocket in the condensate. The total energy in
Figure 6.4 still remains positive, and this is therefore a metastable state in which
the impurities are eventually preferably expelled out of the condensate. However,
in realistic experiments harmonic trapping is used which may prevent expulsion
of the impurities. This metastability is not something new, as the single polaron
on the repulsive branch is also metastable in this sense. In this case, we know
also that lower lying molecular states exist, and hence complete stability on the
repulsive branch should not be expected to begin with.

A very similar prediction regarding impurity pockets has been made in a 2020
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preprint by P. Naidon [120], where a mean-field like approach2 has been used to
analyze the properties of many impurities in the extended Fröhlich model. The
author concludes that repulsive polarons might form polaron bubbles, situated in
between full phase separation and a dilute mixture. However, more recently, a
note has been added to this preprint that refers to a more general approach to
this problem by the same author.

The more recent work cited in this note [121] approaches the problem from a
completely different angle. The authors, now together with D. S Petrov who has
authored the seminal work on BEC droplets [122], completely leave the polaronic
point of view behind and approach the problem of bubbles relying on the similar
ideas as in [122]. This work makes direct connection with the field of BEC mixtures
which has recently gained a lot of renewed experimental [123–127] and theoretical
[128–131] attention due to the observation of exotic droplet states in these systems.
However, all of these studies approach the problem from a BEC-BEC mixture
point of view, and the connection to a finite impurity polaronic limit is not always
completely clear. For example, to the best of our knowledge none of the approaches
made the connection to the Fröhlich model in the limit of weak coupling gib for
NI = 1, which is known to be valid at weak coupling for a single impurity. On the
other hand, making the connection to the BEC mixture limit lies beyond the scope
of the final chapter of the current thesis, as a completely new methodology would
have to be used. For this reason we proceed within the polaronic point of view,
but leave open the possibility that in the large NI limit the quantum fluctuations
arising from weak impurity-impurity interactions, which are completely neglected
here, could become of importance, as seems to be the case in the mixture methods
[128–131]. In general, the connection between the finite impurity limit and the
mixtures limit is not completely clear and hence we believe the multi-polaron
treatment to be an important first step towards establishing this link.

To confirm our suspicion that we are indeed dealing with an impurity cloud of
a limited size, let us present the results for the impurity separation radius (6.47)
in Figure 6.5. In the extended model we can see that between 5 impurities and 50
impurities, the average distance has barely changed which seems to support our
claim that the impurities form a localized cloud. This can also been seen on the
radial two-point density profile g(r) on the right panel. It is interesting to note
that Figure 6.5 provides further insight into the pathology of the Fröhlich model
for multiple polarons. In the limit of NI →∞ the impurities appear to collapse

2Different from Lee-Low-Pines theory
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Figure 6.5: The average distance between each impurity compared between
the Fröhlich and the extended Fröhlich model on the left panel (a) and the
radial two-point density profile of the extended Fröhlich results on the right
panel (b). The system parameters of the Aarhus experiment [23] are used
with m = mb and Λ ≈ 190ξ−1 at zero temperature and coupling strength
(knaib)−1 = 1.6.

into a highly dense and tightly bound structure. Since the impurities themselves
are non-interacting in our approach, the stabilization obtained in the extended
model therefore arises purely from the condensate.

Finally, let us consider the question of how these many-polaron effects would
look on an experimental scale for the repulsive branch in comparison with the
data obtained in the Aarhus [23] experiment. This experimental data has more
recently been adjusted to also account for the fact that on the repulsive branch the
impurities move towards lower condensate densities [46], which we will refer to as
the "modified Aarhus data". To the best of our knowledge, any potential binding
effects between impurities have not been taken into account in the modified Aarhus
analysis, but for completeness we will also present this data for comparison.

So far we were largely interested in the energy per polaron, which is the most
convenient measure for comparing different impurity numbers on a single graph.
However, if the many impurity state is tightly bound together and localized in

160



6.5 - Impurity pockets in the extended Fröhlich model

0 0.5 1 1.5 2 2.5−0.2

0

0.2

0.4

0.6

0.8

1

(aibkn)−1

E
/[
~2
k

2 n
/(

2m
)]

N = 1 N = 2
N = 3 N = 5
Data Aarhus Mod. data Aarhus

Figure 6.6: Full polaron ground state energy per impurity within the
extended Fröhlich model for the system parameters of the Aarhus experiment
[23], m = mb and Λ ≈ 190ξ−1 at zero temperature. Data for the repulsive
branch taken from Fig. 4 of [46].

space as seen from the previous discussions, then the spectroscopic signal should
be picking up on the total energy of the many-polaron state rather than the energy
per impurity. On the other hand if the impurities are completely delocalized and
uncorrelated one would rather expect the signal of relevance to be at the level of the
single polaron E/NI . An accurate analysis of how the radio signal interacts with
the polaron state is beyond the scope of the current chapter, and requires access
to the dynamics of the system. Therefore for our final comparison we will carefully
proceed with the assumption that once the impurities start binding together, the
relevant energy for comparison with experiment is the total many-polaron energy
E, not divided by the impurity number. From the calculations in Figure 6.1 we can
estimate that roughly around α ≈ 1 the binding energy of NI = 2 impurities starts
becoming discernible from the NI = 1 state. Therefore we start our comparison
to the experiment around (knaib)−1 = 2.5 corresponding to α = 0.97. For weaker
interactions before this point, the single polaron QMC energy is in relatively good
agreement with the modified data either way [46].

The results are presented on Figure 6.6 for a couple of different impurity
numbers. As has been previously discussed in Chapter 3, we can immediately
observe that the single polaron energy shows noticeable discrepancies from the
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Figure 6.7: Color map of the polaron binding energy per particle
(E(NI)−NIE(1)) /[NI~2k2

n/(2m)] in the extended Fröhlich model in pa-
rameters of the Aarhus experiment [23], m = mb and Λ ≈ 190ξ−1 at zero
temperature.

experimental data. Note that in the RG approach to the extended Fröhlich
Hamiltonian [70], the same discrepancy is seen in this regime for a single polaron
at zero temperature and hence this discrepancy is not inherent to our approach.
We can see on the figure that for multiple impurities the energy signature is shifted
upwards, and in particular around NI = 2 similar energy scales as observed in
the Aarhus experiment are to be expected. Our result indicates that if multi-
polaron E = ∑

nwnEn contributions would be appropriately taken into account
in a weighted average, the prediction for the spectroscopic energy following from a
complete theoretical calculation would shift upwards. In Figure 6.7 we also present
the polaron binding energy per particle to provide an estimate of the magnitude
of the many polaron effects on the energy. As expected, the largest binding energy
is observed at strong coupling and many impurities.

It is important to emphasize that there is currently no evidence that the
measurements of the experiment contain bipolaron or higher multipolaron signals.
For this reason we present Figure 6.6 mainly with the purpose of indicating how
multipolaron signatures would look in the measurements, rather than a suggestion
that many polaron effects are measured in the Aarhus experiment. In Figure 2
of the Aarhus experiment paper [23], the directly measured spectroscopic data is
presented. In the regime that we are currently discussing, only the spectroscopic
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signal at (knaib)−1 = 1.6 was reported. From this signal it is clear that higher
order many polaron peaks for NI > 2 are not visible in the signal in any discernible
way from the noise. However, the data points of the main peak at this coupling
strength are quite broadened and noisy, and at least in principle could cover the
energy scales of two peaks.

Nevertheless, there are many other effects that the discrepancy can be attributed
to. Quantum Monte Carlo calculations for a single impurity, when accounting
for higher order phonon-phonon interactions not present in the extended Fröhlich
model [46] slightly shift the single polaron repulsive branch energy upwards, which
partially but not completely eliminates the discrepancy. It has furthermore been
shown in a mean field theory that finite temperature effects associated with
condensate depletion can also increase the energy such that a better agreement
with experiment is obtained [102], although we emphasize that beyond mean field
effects are quite important at strong coupling.

6.6 Conclusion

In this final chapter we have combined different techniques from previous parts
of this thesis to study the ground state properties of multiple impurities in a
condensate. To describe the impurities we have proposed using the extended
Fröhlich Hamiltonian that has been introduced and thoroughly discussed for a
single polaron in Chapter 3. The tool of choice to tackle this problem has once
again been the variational path integral approach. We have used results from
Chapter 4 and Chapter 5 to argue that if the impurities are bosonic, then for the
variational inequality at zero temperature distinguishable particles can be used
in the variational model action. This allowed us to obtain the multiple impurity
extension of the general memory kernel method, that was shown to be highly
accurate in Chapter 2.

Previously, we have found that for a single impurity it is important to correct
the Bogoliubov-Fröhlich Hamiltonian with its extended version once the coupling
to the condensate becomes appreciable. Here, we find that this is even more
the case in the presence of multiple impurities. While the Bogoliubov-Fröhlich
Hamiltonian appears to predict extremely strongly bound and highly dense many
impurity states with an ever increasing binding energy as the number of impurities
grow, the extended Fröhlich model modifies this behavior such that a finite energy
per particle is obtained in the NI →∞ limit with a finite inter-impurity distance.
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Finally we have also made a prediction as to how many polaron energy signa-
tures on the repulsive branch would look in comparison to current experimental
measurements. We predict a significant binding energy for the multipolaron state
at strong coupling that definitely would fall in the measurable range of future exper-
iments. In particular, we find that at intermediate to strong coupling, the bipolaron
branch is quite close to the original experimental energy data points. This raises
the question as to why such signals have not been observed in current experiments
and provides further motivation, as already expressed by experimentalists, to
investigate this interesting question more closely.
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Conclusions

For many decades now an intimate link existed between polaron physics and
the path integral method, which provides a particularly simple description yielding
remarkable accurate results at all polaronic regimes. The supremacy of the path
integral method has been questioned with the advent of the novel Bose polaron
problem. Bose polarons present a new set of theoretical challenges which can be
roughly divided in three categories:

• (1) The Bose polaron appears to be a far more quantum mechanical object
than its solid state counterpart, as the phonons become highly entangled
even in the simplest weak coupling models [57, 64, 68, 69, 83]. To capture
this system, older theoretic polaron descriptions have to be improved or
fine-tuned.

• (2) As the coupling to the condensate becomes stronger, at the very least
next-order scattering events between the impurity and the phonons have to
be taken into account in the extended Fröhlich Hamiltonian [45, 49, 50, 70].
Similar contributions have only recently been encountered in other polaronic
systems [91].

• (3) In the Bose polaron experiments [19, 23] the impurities are created at
finite non-negligible number that can be controlled, providing a new ground
for exploring many polaron effects.

Whereas quite some advances have already been made regarding the first point,
the second and third points still form an area of active research with multiple open
questions. Moreover, at the start of this thesis research, no clear direction existed
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as to how these challenges could be addressed within the path integral approach,
which has proven to be a powerful tool in the past. The exploration of these topics
has precisely been the goal of this thesis.

The first issue was explored in Chapter 2, where it was shown that the crucial
step of improvement to capture the subtle phonon entanglement in the path
integral approach is to provide the model action with more variational freedom
through the use of general memory kernels. If perturbative corrections beyond the
first-order inequality are accounted for on top of the variational solution, excellent
agreement with diagrammatic Monte Carlo results is obtained.

The next challenge, namely including higher-order phonon scattering processes
in the effective polaron action, was addressed in Chapter 3. We have shown that
if the phonon scattering events are written out as a perturbative series at the
level of the effective action, a pattern for exact resummation can be recognized.
This problem has been tackled later on from a more general approach to these
terms [91], confirming our result. Unfortunately, it is not clear how the resulting
effective action can be computed exactly for variational applications, and at
this point, to proceed at a semi-analytical level, we have proposed a number of
approximations resulting in an approximate expression for the effective action.
These approximations can be a posteriori justified by noticing that an analytical
variational solution can be obtained at weak coupling, which exactly corresponds to
the Lee-Low-Pines mean field ground state of the extended Fröhlich Hamiltonian.
This indicates that our approach captures the same processes as the mean-field
approach, but treats them beyond the mean-field level.

Finally, to tackle the last and most difficult issue, namely the presence of
multiple impurities, we have first made a diversion and developed techniques to
perform many-body path integrals for bosons in the presence of general memory
kernels in Chapter 4 and Chapter 5. Aside from the application to specifically the
Bose polaron problem, these systems provide a completely new class of variational
model systems that could be used to study other bosonic many body systems in
the canonical ensemble. These methods are then applied in Chapter 6 to extend
the description of multiple impurities in the extended Fröhlich Hamiltonian on the
repulsive polaron branch. We find that at zero temperature the bosonic effects can
be ignored what concerns the variational ground state energy and the impurities
can be treated as distinguishable in the variational model system. This significantly
simplifies the approach and allows us to study various ground state properties
of multiple impurities and make several predictions of where to look for many
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polaron effects in future experiments.
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Outlook

We close off this very last chapter by making a couple of suggestions for future
studies in this domain. An important quantity throughout this thesis has been the
effective action of the extended Fröhlich Hamiltonian. This effective action was
derived relying on a number of approximations that have made a semi-analytic
treatment possible, hereby providing a first step to analyzing beyond-Fröhlich
Hamiltonians in the path integral approach. Although the results are physically
sound, improvements beyond the random phase approximation, or a rigorous
analysis of the neglected terms would be of great interest in the future. This has
broader relevance than just for the Bose polaron, since similar beyond Fröhlich
Hamiltonians were recently derived for solid state polarons. Having shown that
the Bogoliubov-Fröhlich Hamiltonian can be treated with great accuracy in the
improved general memory kernel path integral approach, tackling the extended
Fröhlich Hamiltonian with comparable rigor would be the next natural step.

For this reason we suggest a future effort to obtain a diagrammatic or diffusive
Monte Carlo description of the extended Fröhlich model. Such results would be
highly valuable, even for a single impurity. Numerous papers have come out in
the last couple of years analyzing this Hamiltonian using a wide range of methods
[45, 49, 50, 70, 81, 132], including the approach presented in this thesis. Having
some exact numerical data for comparison would allow one to benchmark different
approximations, and could in addition provide insights for similar problems in solid
state physics [91]. This has already been proven to be the case for the Bogoliubov-
Fröhlich model, where unexpected results came out of the diagMC study that
indicated the necessity of more advanced theoretical tools. It would therefore be
of great interest for future Monte Carlo studies to consider this direction on both
the attractive and repulsive polaron branch.

This immediately brings us to our next point. In this thesis we have not
considered the effects of higher order phonon-phonon interactions beyond the
Bogoliubov approximation, which could be of importance at strong coupling.
In one dimensional polarons [94] it has been shown that the extended Fröhlich
model qualitatively accurately captures the polaron state, but at strong coupling
a quantitatively significant reduction in energy on the repulsive branch is obtained
when including phonon-phonon interactions. When comparing QMC calculations
[46] on the repulsive branch with extended Fröhlich approaches such as [70] or
the ones in this thesis, it appears that in contrast to the 1D case, in 3D these
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interactions increase the polaron energy. We believe it would be interesting to
thoroughly study the effect of the phonon-phonon terms on the three dimensional
polaron and find the regimes where they become important. This avenue could be
explored by including phonon-phonon interactions within current approaches that
work for the extended Fröhlich model.

Finally, as mentioned before, there is growing interest in understanding many
polaron effects in future experiments [25, 100]. In this thesis we presented a
beyond mean field treatment of the ground state properties of multiple impurities,
and found that the binding energy of multiple polarons on the strongly repulsive
branch should definitely fall within the range of measurable frequencies in the
experiment. However, there is currently no reason to believe that these effects are
present in the data of the original Aarhus experiment [23]. This is indicative of the
fact that the many polaron metastable ground state is not reached and dynamical
experimental studies like in [100] as a function of impurity concentration would be
highly valuable to understand this question.
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APPENDIX A
Simplifying the second order correction
In this appendix the second order cumulant correction (2.37) of Chapter 2 is
computed. Written out in its full form, the effective action is given by:

S̃eff = − 1
8π

α

4πµ2

∫
dkV 2

k

∫ β

0
dτ

∫ β

0
dσGk(τ − σ)eik·[r(τ)−r(σ)]. (A.1)

The expectation value of the effective action with respect to the model system can
be written in terms of

Fk(τ − σ) =
〈
eik·[r(τ)−r(σ)]

〉
, (A.2)

as 〈
S̃eff

〉
= − α

4πµ2
1
2

∫ Λ

0
dk k2V 2

k

∫ β

0
dτ

∫ β

0
dσGk(τ − σ)Fk(τ − σ). (A.3)

Both Gk(τ − σ) and Fk(τ − σ) only depend on the difference |τ − σ| and are in
addition β-periodic. This allows to simplify the expectation value of the effective
action to:

1
β

〈
S̃eff

〉
= − α

4πµ2

∫ Λ

0
dk k2V 2

k

∫ β/2

0
duGk(u)Fk(u). (A.4)

As already seen in Sec. 2.3, for a general model action Fk(u) is given by:

Fk(u) = exp
(
−2k2

β

∞∑
n=1

1− cos(νnu)
xn + ν2

n

)
. (A.5)

The terms in the cumulant expansion (2.37) can be derived using the λ-trick that
has also been used in Sec. 2.3. It is not difficult to show that if a scaling parameter
x→ λx is introduced in the memory kernel, the last two terms of (2.37) can be
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written as:

1
2β

(〈
S̃2

0

〉
−
〈
S̃0
〉2
)

= −1
2
∂2F

(λ)
0

∂λ2

∣∣∣∣∣
λ=1

,

1
β

(〈
S̃effS̃0

〉
−
〈
S̃eff

〉〈
S̃0
〉)

= − 1
β

∂
〈
S̃eff

〉
λ

∂λ

∣∣∣∣∣∣
λ=1

.

The expression for F (λ)
0 is given by (2.15) and hence:

1
2β

(〈
S̃2

0

〉
−
〈
S̃0
〉2
)

= 3
2β

∞∑
n=1

x2
n

(ν2
n + xn)2 . (A.6)

Similarly,
〈
S̃eff

〉
is given by Expr. (A.3). To include the λ-dependence, xn is

substituted by λxn in the memory function Fk(u) after which the derivative can
be taken. This yields:

1
β

(〈
S̃effS̃0

〉
−
〈
S̃eff

〉〈
S̃0
〉)

= 4
β

∑
n=1

xn
(ν2
n + xn)2

× α

4πµ2

∫ Λ

0
dk k4V 2

k

∫ β/2

0
sin
(
νnu

2

)2
Gk(u)Fk(u)du. (A.7)

We can now recognize in (A.7) the right-hand side of the iterative equation (2.24).
This means that if we are considering a perturbative correction on top of the
memory kernel that solves (2.24), we can write:

1
β

(〈
S̃effS̃0

〉
−
〈
S̃eff

〉〈
S̃0
〉)

= 3
β

∑
n=1

x2
n

(ν2
n + xn)2 (A.8)

which yields for the full second order correction around the optimized model action:

1
2β
〈

(∆S − 〈∆S〉)2
〉

= 1
2β

(〈
S̃2
eff

〉
−
〈
S̃eff

〉2
)
− 3

2β

∞∑
n=1

x2
n

(ν2
n + xn)2 . (A.9)

Next, consider the variance of the effective action in the first square bracket of
(A.9). The first term of the variance can be written as:

〈
S̃2
eff

〉
= π2

(2π)6

(
α

4µ2

)2 ∫
dk
∫

dsV 2
k V

2
s

∫ β

0
dτ1

∫ β

0
dσ1

∫ β

0
dτ2

∫ β

0
dσ2

× Gk(τ1 − σ1)Gs(τ2 − σ2)
〈
eik·[r(τ1)−r(σ1)]+is·[r(τ2)−r(σ2)]

〉
. (A.10)
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The generating function result (2.10) can now be used to find:

〈
eik·[r(τ1)−r(σ1)]+is·[r(τ2)−r(σ2)]

〉
= Fk(τ1 − σ1)Fs(τ2 − σ2)

× exp
(
−k · s

4 ζ

(
τ1 − σ1, τ2 − σ2,

τ1 + σ1 − τ2 − σ2
2

))
, (A.11)

where ζ is given by:

ζ(u1, u2, s) = 32
β

∞∑
n=1

sin
(νnu1

2
)

sin
(νnu2

2
)

cos(νns)
ν2
n + xn

. (A.12)

The angle between k and s can be integrated out in (A.10) immediately. In addition
we can see that the imaginary time integrals in (A.10) contain four variables,
whereas the integrand only depends on τ1 − σ1, τ2 − σ2 and

( τ1+σ1−τ2−σ2
2

)
. This

allows to remove one integration variable and through the use of symmetry in the
limit β → ∞ significantly simplify the integral in similar spirit to what is done
in [79]. Note however that even when divided by β, the integral (A.10) will still
contain a divergence as β →∞ which is exactly canceled by subtracting its mean
squared. Therefore in the limit of β →∞ we take both (A.3) and (A.10) together
and obtain:

1
2β

(〈
S̃2
eff

〉
−
〈
S̃eff

〉2
)

=
(

α

4πµ2

)2 ∫ Λ

0
dkk2

∫ Λ

0
dss2V 2

k V
2

s

∫ β/2

0
du1

∫ β/2

0
du2

× Gk(u1)Gs(u2)Fk(u1)Fs(u2)
∫ β/2

0
dz

sinh
[
ks
4 ζ(u1, u2, z)

]
ks
4 ζ(u1, u2, z)

− 1

 . (A.13)

Contrary to the expression in [78, 79], the quantity in the inner integral is a
sinh(x)/x function rather than an arcsin(x)/x function due to the fact that the
momentum integrals cannot be performed analytically. It will prove to be useful
to replace the hyperbolic sine function by its Taylor expansion:

sinh(x)
x

=
∞∑
n=0

x2n

(2n+ 1)! (A.14)

which yields

1
2β

(〈
S̃2
eff

〉
−
〈
S̃eff

〉2
)

=
(

α

4πµ2

)2 ∫ Λ

0
dk k2

∫ Λ

0
ds s2V 2

k V
2

s

∫ β/2

0
du1

∫ β/2

0
du2
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× Gk(u1)Gs(u2)Fk(u1)Fs(u2)
∫ β/2

0
dz
∞∑
n=1

1
(2n+ 1)!

(
ks

4 ζ(u1, u2, z)
)2n

. (A.15)

Let us also define the individual terms of the sum, and emphasize their dependence
on the memory kernel x(ν):

σn[x(ν)] = 1
(2n+ 1)!

(
α

4πµ2

)2 ∫ Λ

0
dkk2

∫ Λ

0
dss2V 2

k V
2

s

×
∫ β/2

0
du1

∫ β/2

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dz

(
ks

4 ζ(u1, u2, z)
)2n

,

(A.16)

such that the entire second order cumulant is written as:

1
2β
〈

(∆S − 〈∆S〉0)2
〉

0
=
∞∑
n=1

σn[x(ν)]− 3
2β

∞∑
n=1

x2
n

(ν2
n + xn)2 . (A.17)

Note that the second term in (A.17) was obtained by assuming an expansion
around the optimal memory kernel action and hence the same has to be done for
the rest of the terms. Unfortunately, for a(n) (optimized) memory kernel x(ν) that
has no trivial expression we cannot analytically perform the five-fold integral in
(A.15) or (A.16), which is difficult even numerically. The exception to this is the
n = 1 expansion term:

σ1[x(ν)] = 1
6(4)2

(
α

4πµ2

)2 ∫ Λ

0
dkk4

∫ Λ

0
dss4V 2

k V
2

s

×
∫ β/2

0
du1

∫ β/2

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dzζ(u1, u2, z)2. (A.18)

By substituting ζ as given in (A.12) and using the orthogonality of the cosine, the
z integral can be performed:

∫ β/2

0
dzζ(u1, u2, z)2 = 322

4β

∞∑
n=1

sin
(νnu1

2
)2 sin

(νnu2
2
)2

(ν2
n + xn)2 . (A.19)

The remaining four-fold integral completely decouples in each term of the sum in
(A.19) and can be slightly simplified to:

σ1[x(ν)] =
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3
2β

∞∑
n=1

1
(ν2
n + xn)2

[
α

3πµ2

∫ Λ

0
dkk4V 2

k

∫ β/2

0
duGk(u)Fk(u) sin

(
νnu

2

)2
]2

(A.20)

The integral inside the square brackets is once again exactly the right-hand side of
the iterative equation (2.24) which means that for the optimal memory kernel:

σ1[x(ν)] = 3
2β

∞∑
n=1

x2
n

(ν2
n + xn)2 (A.21)

cancels with the contribution from the other terms in (A.17). For an expansion
around the optimal memory kernel the second order cumulant is written as:

1
2β
〈

(∆S − 〈∆S〉)2
〉

=
∞∑
n=2

σn[x(ν)]. (A.22)
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APPENDIX B
Approximating the second order

correction
In this appendix we will obtain a semi-analytic expression for the second order
correction within the approximation discussed in the main text of Sec. 2.5 in
Chapter 2:

1
2β
〈

(∆S − 〈∆S〉)2
〉(approx.)

=
∞∑
n=2

σn[0]. (B.1)

The fact that the memory kernel vanishes, significantly simplifies the integral.
First, expression (A.16) is rewritten using the symmetry around β/2 to fold the
u1,u2 integration domain in half:

σn[x(ν)] = 2
42n

1
(2n+ 1)!

(
α

4πµ2

)2 ∫ Λ

0
dkk2+2n

∫ Λ

0
dss2+2nV 2

k V
2

s

×
∫ β/2

0
du1

∫ u1

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dzζ(u1, u2, z)2n. (B.2)

Next, observe that for x(ν) = 0, the memory functions Fk(u) simplify and in the
limit of zero temperature this expression can be written as:

σn[0] = 2
42n

1
(2n+ 1)!

(
α

4πµ2

)2 ∫ Λ

0
dkk2+2n

∫ Λ

0
dss2+2nV 2

k V
2

s

×
∫ β/2

0
du1

∫ u1

0
du2e

−a(k)u1e−a(s)u2

∫ β/2

0
dzζ(u1, u2, z)2n, (B.3)

where the short hand notation with ωk from (2.6) is introduced:

a(k) = ωk + k2

2m. (B.4)
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As has already been observed in the weak-coupling limit of [79], in the absence
of a memory kernel the expression for ζ becomes quite simple (note that our ζ is
defined differently but the same structure holds):

ζ(u1, u2, z) =


4u2 for z < u1−u2

2 ,

2u1 + 2u2 − 4z for u1−u2
2 < z < u1+u2

2 ,

0 for u1+u2
2 < z.

The integral over z can now be analytically performed:

∫ β/2

0
dzζ(u1, u2, z)2n = 42nu2n

2
u1 − u2

2 + 42n u
2n+1
2

2n+ 1 . (B.5)

This allows to write (B.3) as:

σn[0] = 2
(2n+ 1)!

(
α

4πµ2

)2 ∫ Λ

0
dkk2+2n

∫ Λ

0
dss2+2nV 2

k V
2

s

×
∫ β/2

0
du1

∫ u1

0
du2e

−a(k)u1e−a(s)u2

[
u2n

2
u1 − u2

2 + u2n+1
2

2n+ 1

]
. (B.6)

The integrals over u1 and u2 are given by

∫ ∞
0

du1

∫ u1

0
du2e

−a(k)u1e−a(s)u2

[
u2n

2
u1 − u2

2 + u2n+1
2

2n+ 1

]

= (3a(k) + a(s))nΓ(2n)
a(k)2 (a(k) + a(s))2+2n . (B.7)

Since n is an integer nΓ(2n) = (2n)!/2 and therefore:

σn[0] = 1
(2n+ 1)

(
α

4πµ2

)2 ∫ Λ

0
dk

∫ Λ

0
dsV 2

k V
2

s
k2+2ns2+2n (3a(k) + a(s))
a(k)2 (a(k) + a(s))2+2n . (B.8)

Finally, we can define

Q =
∞∑
n=2

1
(2n+ 1)

( 1
4πµ2

)2 ∫ Λ

0
dk

∫ Λ

0
dsV 2

k V
2

s
k2+2ns2+2n (3a(k) + a(s))
a(k)2 (a(k) + a(s))2+2n , (B.9)

such that the full approximate second order correction is given by:

E2 = −α2Q. (B.10)
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APPENDIX C
Deriving the Lagrangian of the

extended Fröhlich model
In this appendix we derive the classical Lagrangian corresponding to the extended
Fröhlich Hamiltonian (3.1) at the heart of Chapter 3. The first step is to introduce
the following operators associated with the phonon field:

Q̂k =
√

~
2Mω(k)

(
α̂k + α̂†−k

)
, (C.1)

P̂k = i

√
~Mω(k)

2
(
α̂†k − α̂−k

)
. (C.2)

The operators can be easily confirmed to obey the commutation relations[
Q̂k, P̂k′

]
= i~δk,k′ and hence can be interpreted as position and momentum

variables associated with the phonon field. As also the case in [62], the operators
are not completely hermitian Q̂†k = Q̂−k, P̂ †k = P̂−k which implies that their
associated scalar variables can be complex. For the purpose of dimensionality,
in expressions (C.1) and (C.2), a completely arbitrary phonon mass M has been
introduced which will vanish in all physically relevant expressions and is not to
be confused with the model action mass M in Feynman’s model. On the other
hand, the frequency in ~ωk = ε(k) in (C.1) corresponds to the Bogoliubov energy
dispersion and plays an important role in the problem.

In terms of the new operators Q̂k and P̂k the extended Fröhlich Hamiltonian
can be written as:

Ĥ = p̂2

2m +
∑

k

Mω2
k

2 Q̂†kQ̂k +
∑

k

1
2M P̂ †kP̂k +

√
N0gib
V

∑
k 6=0

ρ̂k

√
2Mωk

~
VkQ̂k
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+ gib
V

∑
k,s

ρ̂k−sVkVs
M
√
ωkωs

2~ Q̂†sQ̂k + gib
V

∑
k,s

ρ̂k−sV
−1

k V −1
s

1
2M~√ωkωs

P̂ †kP̂s.

(C.3)

Two types of diverging terms containing the commutator
[
Q̂k, P̂k

]
arise in the

derivation of (C.3). The first one corresponds to the ground-state energy of
the introduced harmonic oscillators −∑k ~ωk/2. The other one arises from the
cross terms in the extended interactions and is given by − gib

2V
∑

k W
(1)
k,k. This

term contains a UV divergence that can not be regularized by taking the cutoff-
dependence of gib into account. Neither of these terms contains the impurity
coordinate and we will not include them in further discussion. The classical
Hamiltonian corresponding to (C.3) is now obtained by replacing the operators
with complex scalar variables that obey Q∗k = Q−k:

H = p2

2m +
∑

k

Mω2
k

2 Q−kQk +
∑

k

1
2MP−kPk +

√
N0gib
V

∑
k 6=0

ρk

√
2Mωk

~
VkQk

+ gib
V

∑
k,s

ρk−sVkVs
M
√
ωkωs

2~ Q−sQk + gib
V

∑
k,s

ρk−sV
−1

k V −1
s

1
2M~√ωkωs

P−kPs.

(C.4)

The Legendre transformation:

L =
∑

q

∂H

∂Pq
Pq + ∂H

∂p · p−H (C.5)

results in the classical Lagrangian:

L = mṙ2

2 −
∑

k

Mω2
k

2 Q−kQk +
∑

k

1
2MP−kPk −

√
N0gib
V

∑
k 6=0

ρk

√
2Mωk

~
VkQk

− gib
V

∑
k,s

ρk−sVkVs
M
√
ωkωs

2~ Q−sQk + gib
V

∑
k,s

ρk−sV
−1

k V −1
s

1
2M~√ωkωs

P−kPs,

(C.6)

where the impurity coordinate r has now been explicitly introduced. The La-
grangian (C.6) still has to be written as a function of the velocity of the phonon
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variables by using:

Q̇q = ∂H

∂Pq
=⇒ P−k = MQ̇k −

gib
V

∑
q
ρq−kV

−1
q V −1

k
1

~√ωqωk
P−q. (C.7)

To simplify the algebra we can multiply the RHS of (C.7) by Pk/(2M) and perform
the summation over k. The two momentum-dependent terms in the Lagrangian
can then be compactly written as:

L =mṙ2

2 −
∑

k

Mω2
k

2 Q−kQk +
∑

k

1
2Q̇kPk −

√
N0gib
V

∑
k 6=0

ρk

√
2Mωk

~
VkQk

− gib
V

∑
k,s

ρk−sVkVs
M
√
ωkωs

2~ Q−sQk. (C.8)

Next we shall look for an explicit expression for Pk. Expression (C.7) can be
equivalently written as:

Pk = MQ̇−k −
gib
V

∑
q
ρk−qV

−1
q V −1

k
1

~√ωqωk
Pq. (C.9)

Note that for a single impurity ρk−q = ρkρ−q. By multiplying (C.9) with V −1
k ρ−k√
~ωk

and performing the summation over k we find:

∑
k

V −1
k ρ−k√
~ωk

Pk =
∑

k

V −1
k ρ−k√
~ωk

MQ̇−k −
gib
V

∑
k

V −2
k

~ωk

∑
q

V −1
q ρ−q√
~ωq

Pq. (C.10)

Equation (C.10) can be algebraically solved to obtain:

∑
k

V −1
k ρ−k√
~ωk

Pk = η
∑

k

V −1
k ρ−k√
~ωk

MQ̇−k, (C.11)

where η =
(

1 + gib
V

∑
k
V −2

k
~ωk

)−1
. After substituting (C.11) into (C.9) the expression

for Pk becomes:

Pk = MQ̇−k −
gib
V
Mη

V −1
k ρk√
~ωq

∑
q

V −1
q ρ−q√
~ωq

Q̇−q. (C.12)

Finally we can substitute (C.12) in (C.8) to obtain the resulting Lagrangian of the
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extended Fröhlich model:

L =mṙ2

2 + M

2
∑

k
Q̇kQ̇−k −

∑
k

Mω2
k

2 Q−kQk −
√
N0gib
V

∑
k 6=0

ρk

√
2Mωk

~
VkQk

− gib
V

M

2
∑
k,s

ρk−sVkVs

√
ωkωs

~
Q−sQk −

gib
V

Mη

2
∑
k,s

V −1
k V −1

s
~√ωkωs

ρk−sQ̇kQ̇−s.

(C.13)
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APPENDIX D
Derivation of the distinguishable

particle propagator
In this appendix the factorization of the many-body propagator (4.6) discussed in
Chapter 4 will be proven. For the single-particle limit of (4.1), the classical action
is calculated in [113]. For completeness and due to slightly different notations,
we briefly summarize the calculation below. Consider the single-particle action
functional:

S(1)[r, x,κ] =
∫ β

0

mṙ2

2 dt+m

2

∫ β

0
dτ

∫ β

0
dσx(τ−σ)r(τ) ·r(σ)−m

∫ β

0
dτr(τ) ·κ(τ).

(D.1)
The classical path is found as the solution to the following integro-differential
equation with boundary conditions rT = r(β) and r0 = r(0):

r̈(τ)−
∫ β

0
x(t− σ)r(σ)dσ + κ(τ) = 0. (D.2)

In [113], the following Fourier decomposition is proposed:

rcl(τ) = r0 + (rT − r0) τ
β
− A0

2 τ(τ − β) +
∑
n6=0

An

ν2
n

(
eiνnτ − 1

)
, (D.3)

where after substitution into (D.2), the following solutions are found (assuming
x0 6= 0, otherwise the appropriate limit should be taken):

A0 = 4
β2∆x

(∑
n

κn
ν2
n + βxn

− 1
2(rT + r0)

)
, (D.4)
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Chapter D - Derivation of the distinguishable particle propagator

An = βxn
ν2
n + βxn

A0 + 1(
1 + βxn

ν2
n

) (κn + xn
rT − r0
iνn

)
. (D.5)

The coefficients can be substituted into (D.3) to obtain an explicit expression for
the classical solution rcl(τ) and its Fourier components rn. After integrating the
kinetic energy by parts, and writing the remaining source term integral in Fourier
space, the classical action can be written as:

S
(1)
cl [x,κ](rT , r0) = m

2 (ṙcl(β)rT − ṙcl(0)r0)− mβ

2
∑
n

rn · κ−n. (D.6)

By taking the derivative of (D.3) and substituting its boundary points to find the
first part, and performing the Fourier sum using rn = κn−An

βxn
to find the second

part, the single-particle classical action becomes:

S
(1)
cl [x,κ](rT , r0) = m

2βAx(rT − r0)2 + m

2β
1

∆x
(rT + r0)2

−2m
β

1
∆x

(rT + r0) ·
∑
n

κn
ν2
n + βxn

+ 2m
β

(rT − r0) ·
(
β

2
∑
n

iνnκn
ν2
n + βxn

)

+2m
β

1
∆x

(∑
n

κn
ν2
n + βxn

)2

− 2m
β

(
β2

4
∑
n

κn · κ−n
ν2
n + βxn

)
. (D.7)

For the source terms, some care should be taken regarding point-wise conver-
gence when performing calculations in Fourier space, as pointed out in [113]. For
example, when considering a source function κ(τ) = fδ(τ − σ) for σ = 0 or σ = β,
the correct result should be derived by considering σ ∈]0, β[ and respectively
taking the limit of σ → 0+ or σ → β− rather than direct substitution due to
discontinuities at the edge. Taking care of the appropriate limits, the known results
for e.g. the harmonic oscillator or the kicked particle are readily obtained from
(D.7).

To obtain the many-particle extension of this result for the action functional
(4.1), a similar but lengthier calculation was performed starting from equations
(4.4) and (4.5) by first finding Rcl(τ) with the previous method and then using this
result to solve the equation for r(i)

cl (τ). However, in line with [107], a somewhat
shorter argument yielding the same result can be formulated by switching to the
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variable ui = ri −R at the level of the classical equations:

R̈(τ)−
∫ β

0
y(τ − σ)R(σ)dσ + K(τ) = 0, (D.8)

üi(τ)−
∫ β

0
x(t− σ)ui(σ)dσ + κi(τ)−K(τ) = 0, (D.9)

with boundary conditions ui,(T,0) = ri,(T,0)−R(T,0). In addition, the solution is sub-
ject to the constraint ∑i ui(τ) = 0. The many-body classical action corresponding
to (4.1), written in terms of the coordinates ui and R yields:

Scl [x, y,κ] (rT , r0) =
N∑
i=1

S
(1)
cl [x,κi −K] (ui,T ,ui,0)

+ S
(1)
cl

[
y,
√
NK

] (√
NRT ,

√
NR0

)
. (D.10)

Here, we have used the property ∑i ui(τ) = 0 to drop a number of terms, and
add an additional source term in K(τ) to obtain the difference of source terms
κ−K in the first term of (D.10). Through direct substitution of the boundary
conditions ui,(T,0) = ri,(T,0) −R(T,0) and source term κi −K into (D.7), one can
easily confirm that:

Scl [x, y,κ] (rT , r0) =
N∑
i=1

S
(1)
cl [x,κi] (ri,T , ri,0) + S

(1)
cl

[
y,
√
NK

] (√
NRT ,

√
NR0

)
− S(1)

cl

[
x,
√
NK

] (√
NRT ,

√
NR0

)
.

(D.11)

Next, we have to find the fluctuation factor of the propagatorKN [x, y,0](0, β|0, 0)
as defined in Section 4.2. While the decomposition of the classical action (D.11)
strongly suggests a similar factorization for the fluctuation factor, let us present a
complete overview of the calculation. Following the approach in [113], we consider
the many-particle fluctuation factor KN [λx, λy,0] (0, β|0, 0) where the memory
kernels are scaled by a variable λ, and define:

J(λ) = log (KN [λx, λy,0](0, β|0, 0)) . (D.12)

The logarithm of the fluctuation factor J(1) can then be written as:

J(1) = J(0) +
∫ 1

0
dλ
∂J(λ)
∂λ

= J(0) +
∫ 1

0
dλ

∂
∂λKN [λx, λy,0](0, β|0, 0)
KN [λx, λy,0](0, β|0, 0) , (D.13)
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where of course J(0) = Nd
2 log

(
m

2πβ

)
is the known free-particle result in d dimen-

sions. In path-integral notation (4.2), one can write:

∂

∂λ
KN [λx, λy,0](0, β|0, 0)

= −
∫ 0,β

0,0
Dr
(
m

2

N∑
i

∫ β

0
dτ

∫ β

0
dσx(τ − σ)ri(τ) · ri(σ)

+ m

2N
∑
i,j

∫ β

0
dτ

∫ β

0
dσ [y(τ − σ)− x(τ − σ)] ri(τ) · rj(σ)

 e−S(N)[r,λx,λy,0].

(D.14)

By making use of functional derivatives with respect to the source terms κi
and taking them out of the path-integral, the propagator fraction in the λ-integral
of (D.13) can be written as:

∂
∂λKN [λx, λy,0](0, β|0, 0)
KN [λx, λy,0](0, β|0, 0) = −

(
1

2m

N∑
i

∫ β

0
dτ

∫ β

0
dσx(τ − σ) ∂

∂κ(i)(τ)
· ∂

∂κ(i)(σ)

+ 1
2Nm

∫ β

0
dτ

∫ β

0
dσ [y(τ − σ)− x(τ − σ)]

∑
i

∂

∂κ(i)(τ)
·
∑
j

∂

∂κ(j)(σ)


×e−Scl[λx,λy,κ](0,0)

∣∣∣
κ{i}=0

. (D.15)

Since Scl [λx, λy,κ] (0, 0) is known, the functional derivatives can be straightfor-
wardly performed to obtain:

∂
∂λKN [λx, λy,0](0, β|0, 0)
KN [λx, λy,0](0, β|0, 0)

= d

2(N − 1)

(∑
n

1
ν2
n + λβxn

)−1∑
n

βxn
(ν2
n + λβxn)2 −

∑
n

βxn
ν2
n + λβxn


+ d

2

(∑
n

1
(ν2
n + λβyn)2

)−1∑
n

βyn
(ν2
n + λβyn)2 −

∑
n

βyn
ν2
n + λβyn

 . (D.16)

The λ-integral in (D.13) can now be analytically computed to finally obtain
the many-body fluctuation factor:
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KN [x, y,0](0, β|0, 0) = K[x,0](0, β|0, 0)(N−1)K[y,0](0, β|0, 0), (D.17)

where the single-particle fluctuation factor in d dimensions is given by:

K[x,0](0, β|0, 0) =
(
m

2πβ

) d
2
( 4
β3x0∆x

) d
2

 1∏∞
k=1

(
1 + βxk

ν2
k

)

d

. (D.18)

This result together with (4.3) and (D.11) proves the factorization of the propagator
in (4.6).
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APPENDIX E
Explicit evaluation of closed loop

Gaussian integrals
In this appendix we compute the Gaussian integral (4.18) in Chapter 4. Let us
start by defining a shorthand notation for the single-particle propagator (4.9) with
κi = 0:

K[x,0](rT , β|r0, 0) = Ad exp
(
−a (rT − r0)2 − b (rT + r0)2

)
, (E.1)

where a = m
2βAx, b = m

2β
1

∆x
, and:

A =
(
m

2πβ

)1/2 ( 4
β3x0∆x

)1/2 1∏
k=1

(
1 + βxk

ν2
k

) . (E.2)

It follows from expression (4.18) and (E.1) that the cyclic integral h`(k) factorizes
as a product of each dimensional component h`(k) = h`(kx)h`(ky)h`(kz), where
each factor is of the form:

h`(kz) = A`
∫ ∞
−∞

dz1...

∫ ∞
−∞

dz`K[x, 0](z1, β|z`, 0)...K[x, 0](z3, β|z2, 0)

×K[x, 0](z2, β|z10)e−i
1
N
kz
∑`

j=1 zj . (E.3)

Here, the notation for K[x, 0](z1, β|z`, 0) as a function of scalar points zT and z0

rather than vector variables refers to the propagator (E.1) in one dimension d = 1.
After substitution of the propagators, expression (E.3) can also be calculated using
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the well-known Gaussian integral formula:

h`(kz) = A`
∫ ∞
−∞

dz1...

∫ ∞
−∞

dz` exp
(
−zTCz−BT z

)
= A`

√
π`

det(C) exp
(1

4BTC−1B
)
, (E.4)

where we invoke a vector notation for zT = (z1, ..., z`), BT = ikz
N (1, ..., 1) and

define the `-dimensional matrix as:

C =



2(a+ b) (b− a) 0 ... (b− a)
(b− a) 2(a+ b) (b− a) ... ...

0 (b− a) 2(a+ b) ... 0
... ... ... ... (b− a)

(b− a) ... 0 (b− a) 2(a+ b)


. (E.5)

The matrix C is a circulant matrix, characterized by the property that any
row or column is obtained by shifting the previous one by a single space (using
periodic boundary conditions at the edges). Every circulant matrix has the same
set of j = {0, 1, ..., `− 1} eigenvectors [133]:

yTj = 1√
`

(
ρ0
j , ρ

1
j , ..., ρ

`−1
j

)
, where ρj = e

2πi
`
j , (E.6)

with corresponding eigenvalues for this particular matrix [133]:

λj = 2(a+ b) + 2(b− a) cos
(2πj

`

)
. (E.7)

The goal now is to calculate both the determinant of C and the quadratic form
BTC−1B of its inverse to obtain an explicit expression of (E.4). An expression for
the determinant is readily written down as the product over all eigenvalues:

det(C) =
`−1∏
j=0

(
2(a+ b) + 2(b− a) cos

(2πj
`

))

= [2(a− b)]`
`−1∏
j=0

(
a+ b

a− b
− cos

(2πj
`

))
. (E.8)

Consider the strictly positive real numbers a and b and assume a 6= b. We can now
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define z̃ = arccosh
(
a+b
a−b

)
. For a+b

a−b > 1, z̃ is real and uniquely defined. However,
any a+b

a−b < 1 lies exactly on the branch cut of the arccosh-function, and z̃ is
complex and uniquely defined only up to the choice of whether the branch cut is
approached from above or below the real axis. Either of the two choices work, and
as we will show both yield the same result. Having converted a+b

a−b in this form,
the cosines in (E.8) can now be added:

det(C) = [2(a− b)]`
`−1∏
j=0

(
cos(iz̃)− cos

(2πj
`

))

= [4(a− b)]`
`−1∏
j=0

sin
(
πj

`
+ iz̃

2

) `−1∏
j=0

sin
(
πj

`
− iz̃

2

)
. (E.9)

We encountered a very concise proof of the resulting sine product series in [134].
First note that the following polynomial in c can be decomposed in terms of its
roots:

c` − 1 =
`−1∏
j=0

(
c− e

2πi
`
j
)
. (E.10)

Setting c = e2iz, this can be applied to factorize the sine function as follows:

sin(`z) = e−i`z

2i
(
e2i`z − 1

)
= e−i`z

2i

`−1∏
j=0

(
e2iz − e

2πi
`
j
)
. (E.11)

After some algebraic manipulations on (E.11) one readily obtains for any complex
z:

`−1∏
j=0

sin
(
πj

`
+ z

)
= 1

2`−1 sin(`z), (E.12)

which is the known result found in tables of product series [135]. Using this result
in (E.9) yields:

det(C) = 4 [(a− b)]` sinh
(
`

2 z̃
)2
. (E.13)

Let us now go back to the ambiguity of defining z̃ along the branch cut. If
−1 < a+b

a−b < 1, then z̃ is purely imaginary and only changes sign across the branch
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cut, which clearly doesn’t affect (E.13). If a+b
a−b < −1, then the real part of z̃

remains constant along the branch cut and the imaginary part jumps from π to
−π, which does not change (E.13) for an integer `. Therefore any choice gives the
same result, and we can unambiguously write:

det(C) = 4 [(a− b)]` sinh
(
`

2arccosh
(
a+ b

a− b

))2
. (E.14)

We want to emphasize that when a−b < 0 each of the two factors in (E.14) become
negative for odd cycles `, but the determinant always remains strictly positive and
hence the square root in (E.4) is well defined and real.

Next we have to find the quadratic form of the inverse matrix BTC−1B. For
this, we note that the matrix C is diagonalized as D = Q∗CQ [133], where Q
is the matrix with the normalized eigenvectors (E.6), and D is the matrix with
eigenvalues (E.7) on the diagonal. It readily follows that:

BTC−1B = BTQD−1Q∗B = −k
2
z`

N2
1
4b . (E.15)

The determinant (E.13) and quadratic form of the inverse (E.15) now yield:

h`(kz) = A`
 π`

4 [(a− b)]` sinh
(
`
2arccosh

(
a+b
a−b

))2


1/2

exp
(
−k

2
z`

N2
1

16b

)
. (E.16)

After substitution of a, b, A, and taking the dimensionality into account, we
exactly obtain expression (4.19) in Section 4.3.
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APPENDIX F
Recurrence relation

To prove the recurrence relation in (4.23) of Chapter 4, consider the generating
function:

G(u) =
∞∑
n=0

Z(n)un, (F.1)

with Z(n) as defined in (4.22). Remember that the summation in (4.22) restricts
the coefficients to ∑N

`=1 `M` = N , and hence the generating function can also be
written as:

G(u) =
∞∑
n=0

∗∑
M1,M2,...,Mn

n∏
`=1

u`M`

`M`(M`)!
1[

2 sinh
(
`βΩ̃

2

)]M`d
, (F.2)

where for short-hand notation we define βΩ̃ = arccosh
[

∆xn (0)A(xn)+1
∆xn (0)A(xn)−1

]
. For any

single term in n, and corresponding cycle decomposition {M1,M2, ...,Mn}, the
product in (F.2) can be extended to infinity through multiplication by the trivial
factors in Mn+1 = 0, Mn+2 = 0, ..., which corresponds to merely multiplying
by ones. Hence for every finite set of numbers V = {M1,M2, ...,Mn} appearing
in (F.2), we can associate an infinite set Ṽ = {M1,M2, ...,M∞} = {V, 0, 0, 0, ...}.
Now one can easily observe that the terms of (F.2) have a one-to-one mapping
with all possible sets Ṽ . The following expression also has the same one-to-one
mapping with all possible sets Ṽ and hence, assuming convergence, has to be the
same:

G(u) =
∞∏
`=1

 ∞∑
M`=0

u`M`

`M`(M`)!
1[

2 sinh
(
`βΩ̃

2

)]M`d

 = exp

 ∞∑
`=1

u`

`
[
2 sinh

(
`βΩ̃

2

)]d
 .

(F.3)
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From (F.1) follows that:

Z(N) = 1
N !

dN−1u

duN−1
d

du
G(u)

∣∣∣∣∣
u=0

. (F.4)

Applying this formula on the exponential form of (F.3), after some algebraic steps,
readily yields the recurrence relation:

Z(N) = 1
N

N−1∑
k=0

Z(k) 1(
2 sinh

(
(N−k)βΩ̃

2

))d . (F.5)
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APPENDIX G
Calculation of the open cycle

In this appendix an expression for O`(k) given in (5.12) of Chapter 5 is computed.
Since O`(k) factorizes in terms of its dimensional components it is sufficient to do
the derivation in d = 1:

O`(k) =
∫
dz2...

∫
dz` K[x](z′, β|z`, 0)...K[x](z3, β|z2, 0)

×K[x](z2, β|z, 0)e−
ik
N
·
∑`

j=2 zj . (G.1)

After substituting the expressions for the propagators (4.6) and performing the
Gaussian integral we can write:

O`(k) = A` exp
[
−(a+ b)(z′2 + z2)

]√ π`−1

det(T ) exp
(1

4
(
cuT +αT

)
T −1 (cu +α)

)
,

(G.2)

where precisely as in Appendix E we use the shorthand notations a = m
2βAx,

b = m
2β

1
∆x

. In addition we define the following vectors in (G.2): αT = (2(a −
b)z, 0, ..., 0, 2(a− b)z′), zT = (z2, z3, ..., z`), and uT = (1, 1, ..., 1) with c = −ik/N .
The main difference with the open cycles computed in Appendix E, corresponding
to the calculations performed in Chapter 4, is that now the central object is the
(`− 1)× (`− 1) dimensional tridiagonal Toeplitz matrix:

T =



2(a+ b) (b− a) 0 ... 0
(b− a) 2(a+ b) (b− a) ... ...

0 (b− a) 2(a+ b) ... 0
... ... ... ... (b− a)
0 ... 0 (b− a) 2(a+ b)


, (G.3)
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Chapter G - Calculation of the open cycle

which clearly loses the cyclic symmetry of the circulant matrices that appear in
calculations of closed cycles.

The j = {1, ..., `− 1} eigenvalues of the matrix T are similar to those of the
corresponding ciruclant matrix, but have a longer period in the cosine [136]:

λj = 2(a+ b) + 2(b− a) cos
(
jπ

`

)
. (G.4)

The determinant of this matrix is then given by [137]:

det(T ) = (a− b)`−1U`−1

(
a+ b

a− b

)
, (G.5)

where U`−1
(
a+b
a−b

)
is the Chebyshev polynomial of the second kind. Here, we define

ζ = a+b
a−b and restrict ourselves to strictly positive a and b with a 6= b. If a− b > 0

then ζ > 1 and U`−1(ζ) is strictly positive. If a− b < 0 then ζ < −1 and U`−1(ζ)
can become negative for odd ` − 1, which gets compensated by the additional
negative sign from (a− b)`−1. Therefore det(T ) is always positive and well-defined.

For |ζ| > 1 Chebyshev polynomials of the second kind can also be written as
(with any choice of approaching the branch cut of the arccosh function):

U`−1(ζ) = sinh(` arccosh (ζ))
sinh(arccosh (ζ)) . (G.6)

This yields the factor in front of (G.2), which leaves to find the quadratic form of
the inverse in the exponent. The inverse elements of matrix T are given by [137,
138] (where we have taken out an additional minus sign out of the Chebyshev
polynomials):

T−1
ij = σij = 1

a− b
Ui−1 (ζ)U`−1−j (ζ)

U`−1 (ζ) if i ≤ j,

T−1
ij = 1

a− b
Uj−1 (ζ)U`−1−i (ζ)

U`−1 (ζ) if i > j.

Since we have assumed a > 0 and b > 0 we can use the results of [138] to write:

(
T −1u

)
i

= si = 1 + (b− a)(σ1,i + σ1,`−i)
4b and uTT −1u = (`− 1) + 2(b− a)s1

4b .

(G.7)
This can now be used to compute all the necessary terms in the quadratic form in

196



the exponent of (G.2):

uTT −1u = 1
4b

[
`−

√
a

b
tanh

(
`

2arccosh(ζ)
)]

, (G.8)

αTT −1u =
[√

a

b
tanh

(
`

2arccosh(ζ)
)
− 1

]
(z + z′), (G.9)

αTT −1α =
(

4(a+ b)− 8
√
ab tanh

(
`

2arccosh(ζ)
))

(z2 + z′2)− 4(a− b)
U`−1(ζ) (z − z′)2,

(G.10)

where we have used the easily proven identity:

U`−2(ζ)
U`−1(ζ) + 1

U`−1(ζ) = a+ b

a− b
− 2
√
ab

a− b
tanh

(
`

2arccosh(ζ)
)
. (G.11)

Substituting both (G.5) and (G.8-G.10) into expression (G.2) finally yields:

O`(k) =A`
√

π`−1

(a− b)`−1U`−1(ζ) exp
(
− k2

16N2b

[
`−

√
a

b
tanh

(
`

2arccosh(ζ)
)]

− ik

2N

[√
a

b
tanh

(
`

2arccosh(ζ)
)
− 1

]
(z + z′)

−2
√
ab tanh

(
`

2arccosh(ζ)
)

(z2 + z′2)− (a− b)
U`−1(ζ)(z − z′)2

)
. (G.12)

After substitution of a, b and A, and after generalization to d = 3 this yields
exactly expression (5.13).
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APPENDIX H
Calculation of the closed correlation

cycles
In this appendix we will compute the two-point correlation cycle (5.28) of Chapter
5, which should also yield the one-point cycle (5.27) for κ2 = 0. Quite similarly to
Appendix G the computation is done in d = 1:

χ`(k, j) =
∫
dz1...

∫
dz` e

ã1(z2+z1)+b̃1(z2−z1)K[x](z1, β|z`, 0)...K[x](z2, β|z10)

e
− ik
N
·
∑`

j=1 zjeã2(zj+2+zj+1)+b̃2(zj+2−zj+1), (H.1)

and will be generalized at the end. Note that for j = `− 1 some care should be
taken as zj+2 loops back to z1. In the derivation below we will implicitly assume
1 < j < `− 1, but each step can be readily checked to hold for the boundary cases
as well and the obtained result holds for any 1 ≤ j ≤ `− 1. We can use the same
notation for c, u and A as in Appendix G (but in ` dimensions) and define the
vector:

wT
j =

(
ã1 − b̃1, ã1 + b̃1, 0, ..., ã2 − b̃2, ã2 + b̃2, 0, ...

)
, (H.2)

which has zeroes everywhere except for the positions: 1, 2, j + 1, j + 2. After
substitution of the propagators, the Gaussian integral in (H.1) is readily performed:

χ`(k, j) = A`
√

π`

det(C) exp
(1

4
(
cuT +wT

j

)
C−1 (cu +wj)

)
. (H.3)

The cycle considered here is closed and hence just like in Chapter 4 and
Appendix E the central object appearing is the `× ` dimensional three-circulant
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Chapter H - Calculation of the closed correlation cycles

matrix C that is defined by a periodic shifting of the first row:

C = circ (2(a+ b), (b− a), 0, ..., (b− a))

=



2(a+ b) (b− a) 0 ... (b− a)
(b− a) 2(a+ b) (b− a) ... ...

0 (b− a) 2(a+ b) ... 0
... ... ... ... (b− a)

(b− a) ... 0 (b− a) 2(a+ b)


, (H.4)

where the same shorthand notation for a and b is used as in Appendix G. The
properties of this matrix are discussed in [133] and the determinant was computed
in Appendix E:

det(C) = 4 [(a− b)]` sinh
(
`

2arccosh
(
a+ b

a− b

))2
. (H.5)

To find χ`(k, j) therefore only the quadratic form of the inverse matrix in the
exponent (H.3) has to be computed. Using circulant matrix properties [133]
we can write C−1 = QD−1Q∗. Here, D is the diagonal matrix of eigenvalues
λj = 2(a+ b) + 2(b− a) cos

(
2πj
`

)
and Q is the matrix that has the eigenvectors

yTj =
(
ρj0, ρj1, ..., ρj(`−1)

)
as columns, where ρ = exp

(
2πi
`

)
. For expressions

appearing in the first three terms of the quadratic form in (H.3) this readily yields:

uTC−1u = `

4b and wT
j C−1u = 1

2b (ã1 + ã2) . (H.6)

The computation of the last part wT
j C−1wj = wT

j QD
−1Q∗wj is slightly more

involved. First we start by explicitly writing:

(wT
j Q)m = (Q∗wj)∗m =

1√
`

[(
ã1 − b̃1

)
+ ρm

(
ã1 + b̃1

)
+ ρmj

(
ã2 − b̃2

)
+ ρm(j+1)

(
ã2 + b̃2

)]
, (H.7)

from which follows:

wT
j C−1wj =(
ã2

1 + b̃21 + ã2
2 + b̃22

)
D`(0) +

(
ã2

1 − b̃21 + ã2
2 − b̃22

)
D`(1) + 2

(
ã1ã2 + b̃1b̃2

)
D`(j)

+ (ã1 − b̃1)(ã2 + b̃2)D`(j + 1) + (ã1 + b̃1)(ã2 − b̃2)D`(j − 1), (H.8)
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where for any 0 ≤ n ≤ `:

D`(n) = 1
`

`−1∑
m=0

ρmn + ρ−mn

λm
= 2
`

`−1∑
m=0

1
λmρ−mn

. (H.9)

The reasoning below to compute D`(n) strongly relies on several properties of
circulant matrices discussed in [139]. For any general circulant matrix M =
circ (c0, c1, ..., c`−1) with eigenvalues given by [133]:

λm =
`−1∑
j=0

cjρ
mj , (H.10)

it is not difficult to see that the factors appearing in the denominator of (H.9) can
be written as:

λmρ
−mn =

`−1∑
j=0

cjρ
m(j−n) = cnρ

0 + cn+1ρ
m + cn+2ρ

2m + ... (H.11)

This is nothing else than the set of eigenvalues of a circulant matrix of which the
initial row has been shifted by n to the left P−nM = circ (cn, cn+1, ..., c`−1, c0, ...),
where Pn is defined as the circulant matrix that shifts all the rows ofM by one
column to the right in the notation of [139]. Since circulants commute under
multiplications it follows that (P−nM)−1 = PnM−1, which allows to write the
summation (H.9) as:

Dn = 2
`
Tr
(
PnC−1

)
. (H.12)

The inverse of a three-circulant (H.4) is computed in [139]:

C−1 = circ (d0, d1, ..., d`−1) (H.13)

from which follows for 0 < n ≤ `:

D`(n) = 2d`−n and D`(0) = 2d0. (H.14)

Following previous assumptions that the coefficients of the circulant matrix (H.4)
a and b are strictly positive with a 6= b, from [139] follows the following result after
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Chapter H - Calculation of the closed correlation cycles

some substitutions:

d`−n = 1
4
√
ab

(√
a+
√
b√

a−
√
b

)`/2−n
+
(√

a−
√
b√

a+
√
b

)`/2−n
(√

a+
√
b√

a−
√
b

)`/2
−
(√

a−
√
b√

a+
√
b

)`/2 . (H.15)

Having already cast all the expressions into a goniometric form in and Appendix
G and Appendix E, we can do the same here and write:

D`(n) = 1
2
√
ab

cosh
[(

`
2 − n

)
arccosh (ζ)

]
sinh

[
`
2 arccosh (ζ)

] , (H.16)

with ζ = a+b
a−b . After substituting (H.5), (H.6) and (H.8) into (H.3), we can write:

χ`(k, j) = A`
√√√√√ π`

4(a− b)` sinh
[
`
2arccosh (ζ)

]2 exp
(
−`k2

16N2b
− ik

4Nb (ã1 + ã2)

+ 1
4
(
ã2

1 + b̃21 + ã2
2 + b̃22

)
D`(0) + 1

4
(
ã2

1 − b̃21 + ã2
2 − b̃22

)
D`(1) + 1

2
(
ã1ã2 + b̃1b̃2

)
×D`(j) + 1

4(ã1 − b̃1)(ã2 + b̃2)D`(j + 1) + 1
4(ã1 + b̃1)(ã2 − b̃2)D`(j − 1)

)
.

(H.17)

To obtain the one-point cycle one has just to substitute ã2 = b̃2 = 0 and find:

H
(1)
` (k) = A`

√√√√√ π`

4(a− b)` sinh
[
`
2arccosh (ζ)

]2
exp

(
− `k2

16N2b
− ikã1

4Nb + ã2
1a− b̃21b
a− b

1
4
√
ab

coth
(
`

2arccosh (ζ)
)
− 1

4
ã2

1 − b̃21
a− b

)
.

(H.18)

The generalization to d = 3 yields the results presented in the main text in (5.29)
and (5.30).
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APPENDIX I
Spectral decomposition of the

one-particle reduced density matrix
In this appendix we will prove expression (5.44) in Chapter 5. The one-particle
reduced density matrix (5.43) can be written as a summation over Gaussian states:

ρ1(r′|r) = 1
N

N∑
`=1

g(`)(r′|r), (I.1)

and after rewriting the exponents in (5.43) the terms can be written as:

g(`)(r′|r) = C

(
γ − η
π

)d/2
exp

(
−γ`2 (r2 + r′2) + η`r · r′

)
. (I.2)

with:

C` = Z(N − `)
Z(N)

1∣∣∣2 sinh
(
`
2arccosh(ζ)

)∣∣∣d (I.3)

γ` = 2m
β

√
Ax
∆x

coth(` arccosh(ζ)), (I.4)

η` = 2m
β

√
Ax
∆x

1
sinh(` arccosh (ζ)) . (I.5)

Here, the Gaussian states were suggestively written in this form to use the results
from [140]. This allows to write down the solution to the Gaussian eigenvalue
problem for n = (nx, ny, nz) (in d = 3):∫

dr′g(`)(r|r′)ψ(`)
n (r′) = λ

(`)
n (r)ψ(`)

n (I.6)
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as:

λ
(`)
n = C` (1− ξ`)d ξnx+ny+nz

` , (I.7)

ψn(r)(`) = NnHnx (√α`x)Hny (√α`y)Hnz (√α`z) exp
(
−α`r2/2

)
, (I.8)

with Hn a Hermite polynomial, α` =
(
γ2
` − η2

`

)1/2, ξ` = η`
γ`+α` [140], and the

normalization factor Nn =
(

1
2nx+ny+nznx!ny !nz !

)1/2 (α`
π

)d/4. Remarkably, the `-
dependence in the coefficient α` drops out:

α = 2m
β

√
Ax
∆x

(
coth [` arccosh(ζ)]2 − 1

sinh [` arccosh (ζ)]2

)1/2

= 2m
β

√
Ax
∆x

.

(I.9)
This implies that every Gaussian state g(`)(r′|r) has the same set of eigenstates,
which are also immediately the eigenstates of (I.1):

ψn(r) = NnHnx

(√
αx
)
Hny

(√
αy
)
Hnz

(√
αz
)

exp
(
−αr2

)
. (I.10)

The factor ξ` does remain `-dependent:

ξ` = 1
sinh [` arccosh (ζ)]

1
1 + coth [` arccosh(ζ)] = e−` arccosh(ζ), (I.11)

and hence the eigenvalue of the full density matrix (I.1) corresponding to state
ψn(r) is given by:

λn = 1
N

N∑
`=1

Z(N − `)
Z(N)

1∣∣∣2 sinh
[
`
2arccosh(ζ)

]∣∣∣d
×
(
1− e−` arccosh(ζ)

)d
e−(nx+ny+nz)` arccosh(ζ). (I.12)

In the case that ζ > 1 this can be simplified even further:

λn = 1
N

N∑
`=1

Z(N − `)
Z(N) e−( 1

2 +nx+ny+nz)` arccosh(ζ). (I.13)
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APPENDIX J
The Bogoliubov-Fröhlich model at zero

temperature
In this appendix we will argue that in the context of our bosonic variational models
the expectation value of the effective polaron action of the Bogoliubov-Fröhlich
model 〈Seff〉 can be computed as if the impurities are distinguishable. We start
by noting that for the Bogoliubov-Fröhlich model, regardless of β-periodicity of
the expectation values, the remaining quantity of interest required to obtain the
variational free energy (6.22) is given by:

Γk = 1
~β

∫ ~β

0
dτ

∫ ~β

0
dσGk (τ − σ)Fk (τ, σ) (J.1)

with:

Fk(τ, σ) = 〈ρk(τ1)ρ∗k(σ)〉 = NF (1)
k (τ, σ) +N(N − 1)F (2)

k (τ, σ), (J.2)

and:

F (1)
k (τ, σ) =

〈
eik[ri(τ)−ri(σ)]

〉
, (J.3)

F (2)
k (τ, σ) =

〈
eik[ri(τ)−rj(σ)]

〉
for i 6= j. (J.4)

We have already learned to derive these type of two-point correlation functions
with respect to the bosonic model system in expression (5.32) of Chapter 5 for a
general source function. Applying the formalism to specifically (J.3) and (J.4) we
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obtain:

F (1)
k (τ, σ) = 1

N

N∑
`=1

1[
2 sinh

(
`
2q
)]d Z(N − `)

Z(N) exp
(
− k2

4m (ϕ1(τ − σ) + ϕ2(τ, σ))
)
,

(J.5)

F (2)
k (τ, σ) = 1

N(N − 1)

N∑
`=2

1[
2 sinh

(
`
2q
)]d Z(N − `)

Z(N)

×
`−1∑
j=1

[
hj(0)h`−j(0)

h`(0) × exp
(
− k2

4mξ1

)
+ exp

(
− k2

4mξ2

)]
. (J.6)

The exponents are given by:

ϕ1(τ − σ) = 1
N

[(N − 1)(Dx(0)−Dx(τ − σ)) +Dy(0)−Dy(τ − σ)] , (J.7)

ϕ2(τ, σ) = 1
2

1
1−BxDx

[
Bx (Dx(τ)−Dx(σ))2 −Dx (δx(τ)− δx(σ))2

]
×
(

1− 1√
BxDx

coth
(
`

2q
))

. (J.8)

and

ξ1 = 1
N

[(N − 1)Dx +Dy +Dx(τ − σ)−Dy(τ − σ)]

− 1
2I1(τ)

(
1− 1√

BxDx
coth

(
j

2q
))
− 1

2I1(σ)
(

1− 1√
BxDx

coth
(
`− j

2 q

))
(J.9)

ξ2 = 1
N

[(N − 1)Dx +Dy +Dx(τ − σ)−Dy(τ − σ)]

− 1
2

(
1− 1√

BxDx
coth

(
`

2q
))

[I1(τ) + I1(σ)]

− 1√
BxDx

I2(τ, σ)
cosh

([
`
2 − j

]
q
)

sinh
(
`
2q
) + I3(τ, σ)

sinh
([

`
2 − j

]
q
)

sinh
(
`
2q
) . (J.10)

Here, we have also redefined the notation of the J-factors (5.36) introduced Chapter
5:

I1(τ) = βJ1(τ) = 1
BxDx − 1

[
BxDx(τ)2 −Dxδx(τ)2

]
,

I2(τ, σ) = βJ2(τ, σ) = 1
BxDx − 1 [BxDx(τ)Dx(σ)−Dxδx(τ)δx(σ)] ,
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I3(τ, σ) = βX(τ, σ) = 1
BxDx − 1 [Dx(τ)δx(σ)−Dx(σ)δx(τ)] .

where functions ∆x, Ax and ∂τ∆x(τ) are given by:

Dx(u) = β∆x(u) = β
4
β2

∞∑
n=−∞

eiνnu

ν2
n + xn

,

Bx = 1
β
Ax = 1

β

∞∑
n=−∞

xn
ν2
n + xn

,

δx(u) = β

2 ∂τ∆x(τ) = 2
β

∞∑
n=−∞

iνne
iνnu

ν2
n + xn

,

and where we use the shorthand notation Dx(0) = Dx. In addition we have
introduced the following shorthand notation for the argument of the hyperbolic
sine in (J.5) and (J.6) as:

q = arccosh
[
Ax∆x + 1
Ax∆x − 1

]
). (J.11)

Next, we proceed to discuss the behavior of Γk in the zero temperature limit.
However, a major obstacle in doing this is that the function Fk(τ, σ) is not strictly
dependent on u = τ −σ, but also depends on τ +σ, and hence some care should be
taken with the typical symmetry arguments as used for a single impurity. Indeed,
the arguments in the exponentials: ϕ2, ξ1 and ξ2 do have some explicit τ and
σ-dependence. To deal with this problem, first we define the integrand of (J.1)
function:

IΓ(τ, σ) = Gk (u)Fk (τ, σ) . (J.12)

It is not too difficult to show, using the symmetries of the functions Dx(u) and
δx(u) that without any loss of generality, after transforming to relative u = τ − σ
and center of mass coordinates Q = (τ + σ)/2 the integral (J.1) can be written as:

Γk = 4
β

∫ β
2

0
du

[∫ β
2

u
2

dQ IΓ

[
Q+ u

2 , Q−
u

2

]
+
∫ u

2

0
dQ IΓ

[
Q+ u

2 , Q−
u

2

]]
.

(J.13)
We should now make the crucial observation that in the limit of β →∞ only the
section of this integral that diverges as ∼ β provides a non-vanishing contribution
to Γk, which significantly simplifies the approach in this limit. In (J.13) we have
already exploited the symmetries in the integrand to fold the parts where u > β/2
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Chapter J - The Bogoliubov-Fröhlich model at zero temperature

onto themselves, which allows us to write without loss of generality:

lim
β→∞

IΓ(τ, σ) = e−ωku 〈ρk(τ1)ρ∗k(σ)〉 . (J.14)

The triangle inequality can now be used to notice that the absolute value of
〈ρk(τ1)ρ∗k(σ)〉 is bounded by N2

I and hence for any value of Q the integrand to
goes to zero exponentially fast:

lim
β→∞

lim
u→β/2

IΓ(τ, σ) = 0 (J.15)

It naturally follows from this argument that the integrand of the second term in
(J.13) goes to zero much faster than the growth of the integration domain as u
increases and hence:

Γk = 4
β

∫ β
2

0
du

∫ β
2

u
2

dQ IΓ

[
Q+ u

2 , Q−
u

2

]
. (J.16)

Combining all of the previous observations, it appears that the ∼ β divergence in
the integral has to arise due to IΓ going to finite value as Q becomes large:

1
β

∫ β
2

u
2

dQ IΓ

[
Q+ u

2 , Q−
u

2

]
= 1

2 lim
Q→∞

IΓ

[
Q+ u

2 , Q−
u

2

]
+O

(
β−1

)
, (J.17)

which would allow us to write:

Γk = 2 lim
Q→∞

∫ β
2

0
du IΓ

[
Q+ u

2 , Q−
u

2

]
. (J.18)

Let us now confirm this and discuss this limit more carefully. From expressions
(J.5) and (J.6) we can see that the large Q limit will be determined by the behavior
of the four arguments of the exponential functions ϕ1, ϕ2, ξ1 and ξ2. Since ϕ1 only
depends explicitly on u, it remains unchanged in this limit. For ϕ2(τ, σ), we can
observe that in the presence of a non-constant memory kernel xn 6= cst, the factors
1−BxDx and

(
1− 1√

BxDx
coth

(
`
2q
))

remain finite in the temperature zero limit
and hence what concerns the limiting behavior of ϕ2 we can write:

lim
β→∞

ϕ2(τ, σ)

= finite non-zero factor ×
[
Bx (Dx(τ)−Dx(σ))2 −Dx (δx(τ)− δx(σ))2

]
.

(J.19)
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Both Dx(τ) and δx(τ) go to zero for large τ < β/2. For example, for the toy model
system we considered in Chapters 4 and 5, one can readily confirm that at low
temperatures:

Dx(τ) = 2γ+
ω+

e−ω+τ + 2γ−
ω−

e−ω−τ ,

δx(τ) = −
[
γ+e

−ω+τ + γ−e
−ω−τ ] .

At the same time we remember that in the integral (J.16) the large u behavior
is exponentially damped and while taking the Q→∞ limit we can just as well
assume that u� β/2. This regime of course corresponds to both τ and σ being
simultaneously large since τ = Q + u

2 and σ = Q − u
2 from which follows that

ϕ2 goes to zero in this limit. Through similar arguments the terms with explicit
dependence on τ and σ in ξ1 and ξ2 vanish such that:

ξ(τ − σ) = ξ1 = ξ2 = 1
NI

[(NI − 1)Dx +Dy +Dx(τ − σ)−Dy(τ − σ)] . (J.20)

We can now write:

F (1)
k (τ, σ) = 1

N

N∑
`=1

1[
2 sinh

(
`
2q
)]d Z(N − `)

Z(N) exp
(
− k2

4mϕ(τ − σ)
)
, (J.21)

F (2)
k (τ, σ) = 1

N(N − 1)

N∑
`=2

1[
2 sinh

(
`
2q
)]d Z(N − `)

Z(N) exp
(
− k2

4mξ(τ − σ)
)

×
`−1∑
j=1

[
hj(0)h`−j(0)

h`(0) + 1
]
. (J.22)

The remaining exponents no longer depend on the cyclic indicies ` and j and hence
can be taken outside of the summations. From (5.17) readily follows that:

1
NI

NI∑
`=1

1[
2 sinh

(
`
2q
)]d Z(NI − `)

Z(NI)
= 1 (J.23)

We can also use the following result from [108]:

NI∑
`=2

1[
2 sinh

(
`
2q
)]d Z(NI − `)

Z(NI)

`−1∑
j=1

[
hj(0)h`−j(0)

h`(0) + 1
]

= (NI − 1)NI . (J.24)

209



Chapter J - The Bogoliubov-Fröhlich model at zero temperature

The functions (J.21) and (J.22) simplify significantly to:

F (1)
k (τ, σ) = exp

(
− k2

4mϕ(τ − σ)
)
, (J.25)

F (2)
k (τ, σ) = exp

(
− k2

4mξ(τ − σ)
)
, (J.26)

which can be readily shown to be nothing else than the result for distinguishable
particles.
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