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Abstract

When a dilute gas of neutral fermionic atoms, trapped in a magnetic or optical con�ning
potential, is cooled down to temperatures of a few tens of nanokelvins above absolute zero,
the gas undergoes a phase transition. The fermionic atoms form pairs, that can �ow as in
an ideal �uid, without friction. This phenomenon is brie�y introduced in the �rst chapter.

Such �super�uid� state also occurs for bosonic atoms, that however do not need to pair.
For Bose systems, Gross and Pitaevskii developed a successful description of the super�uid
state based on a macroscopic wavefunction. Unlike the many-particles wavefunction, which
depends on the positions of all atoms in the system, the macroscopic wavefunction depends
only on one position coordinate. Yet it reliably encodes many aspects of the behaviour of
the super�uid. The modulus squared of the macroscopic wavefunction is interpreted as the
density of supe�uid particles, while the gradient of the phase is linked to the velocity �eld.
The super�uid properties follow from the partial di�erential equation that this macroscopic
wavefunction must satisfy. This di�erential equation is known for super�uid Bose gases,
but up to now there was no counterpart for fermionic system. The goal of this thesis is
to develop a description of super�uidity in fermionic systems in terms of a macroscopic
wavefunction and to employ it to study related phenomena such as dark solitons in Fermi
super�uids.

In this thesis an e�ective �eld theory (EFT) suitable to describe the super�uid phase
of an ultracold system of neutral fermionic atoms in a wide range of interaction and tem-
perature con�gurations is developed in the framework of the path-integral formulation of
quantum �eld theory [1]. At the heart of the EFT lies the hypothesis that the order
parameter varies slowly in both time and space. The calculations that, from this weak
assumption, lead to the �nal form of the EFT action are carried out in full detail.

The EFT is then applied to the study of various aspects of Fermi super�uids in the
BEC-BCS crossover interaction regime. By introducing �uctuations beyond mean �eld the
spectrum of the collective excitations and the corrections to the critical temperature are
evaluated, and the results are compared to those of other theoretical approaches.

Motivated by the interest gathered in recent years by the BEC polaron problem, an
analogous system where the Bose-Einstein condensate is replaced by a super�uid fermionic
gas is treated, and the corrections to the polaronic coupling constant and e�ective mass
due to the interaction of an impurity with the collective excitations of the super�uid are
evaluated [2]. The interaction dependence of the dispersion relations for the collective
modes enables to extend the analogy with the BEC polaron system, that in principle

iii



iv

would be limited to the BEC limit, to a wider region of the BEC-BCS crossover.
The EFT is then applied to the study of various aspects of dark solitons in ultracold

Fermi gases. At �rst the stable soliton solutions in (quasi-)1D are studied and the e�ects of
interaction, temperature, and imbalance on the density pro�les and dynamics are precisely
characterised [3]. The main �nding in this context is the fact that the soliton core is an
energetically favorable place where the unpaired particles � present in the system because
of a nonzero population imbalance and/or �nite temperature � can be accommodated.
Next the snake instability mechanism, responsible for the decay of dark solitons in 3D, is
considered. The spectrum of the unstable modes is examined and compared to the results
of other theoretical approaches [4]. The minimum size that the system can have in order
for the soliton to be stable is estimated and the behaviour of this quantity across the BEC-
BCS crossover is compared to other data found in literature. In the BEC regime the EFT
gives results in very good agreement with those of both the time-dependent Bogoliubov-
de Gennes (TDBdG) simulations and of the coarse grained Bogoliubov-de Gennes theory.
Moreover, it appears that the EFT is the only treatment that correctly describes the
change in the relevant length scale, from the healing length in the BEC regime, to the
pair coherence length in the BCS regime. The e�ects of imbalance on the soliton stability
are also examined, �nding that for a �xed interaction strength, the critical size necessary
to avoid decay through the snake instability is larger for an imbalanced system than for
a balanced one. In principle this provides experimentalists with a method to stabilise
solitons by increasing the imbalance without being forced to reduce the dimensionality of
the cloud.

The description we develop in this thesis opens the way to many applications. Where
other models, such as the Bogoliubov-de Gennes theory, become computationally demand-
ing even for a single vortex or soliton, the current description has the advantage of allowing
a rapid implementation. Thus, in the future it will be possible to investigate the behaviour
of the system when it contains many vortices or solitons � similar as for superconductors
we can characterise vortex matter and learn to manipulate vortices and solitons. Also, the
theory can be easily extended to multi-component fermionic super�uids, which allows us
to investigate whether new phenomena � that do not occur in the individual super�uids �
can instead occur in such mixtures.



Nederlandstalige samenvatting

Wanneer een ijl gas van neutrale fermionische atomen, ingevangen in een magnetische of
optische val, wordt afgekoeld tot een temperatuur van enkele tientallen nanokelvins boven
het absolute nulpunt, ondergaat het gas een fasetransitie. De fermionische atomen vormen
paren, die kunnen vloeien als een ideale vloeistof, zonder dissipatie. Dit fenomeen wordt
kort ingeleid in het eerste hoofdstuk.

Dergelijke �super�uïde� toestand treedt ook op voor bosonische atomen, zonder dat
deze moeten opparen. Voor bosonische atomen ontwikkelden Gross en Pitaevskii een suc-
cesvolle beschrijving van de super�uïde toestand aan de hand van een �macroscopische�
gol�unctie. In tegenstelling tot de veeldeeltjesgol�unctie, die afhangt van de posities van
alle atomen in het systeem, hangt de macroscopische gol�unctie slechts af van één posi-
tiecoördinaat. Toch encodeert deze gol�unctie getrouw het gedrag van het super�uïdum.
De modulus kwadraat van de macroscopische gol�unctie wordt als dichtheid van super�uïde
deeltjes geïnterpreteerd, en de fasegradiënt is gelinkt aan het snelheidsveld. De super�uïde
eigenschappen volgen uit de di�erentiaalvergelijking waaraan de macroscopische gol�unc-
tie moet voldoen. Deze di�erentiaalvergelijking is gekend voor super�uïde Bose gassen,
maar er was nog geen tegenhanger voor super�uïde Fermi gassen. Het doel van deze thesis
is om een beschrijving van super�uïditeit in Fermi gassen op te stellen, gebaseerd op een
macroscopische gol�unctie, en om aan de hand hiervan super�uïde eigenschappen (zoals
solitonen) te beschrijven.

Daartoe ontwikkelen we in deze thesis een e�ectieve veldentheorie [1] die in staat is om
de super�uïde toestand te beschrijven van een ultrakoud systeem van neutrale fermionische
atomen voor een groot bereik aan temperaturen en interactiesterktes. De a�eiding van de
theorie is gebaseerd op de padintegraalbeschrijving, in combinatie met de aanname dat de
ordeparameter die het paarcondensaat beschrijft traag varieert zowel in tijd als in ruimte.
De berekeningen die, vertrekkend van deze aanname, leiden tot de veldvergelijking voor
de macroscopische gol�unctie van het paarcondensaat, worden in detail uitgewerkt in het
tweede hoofdstuk.

De e�ectieve veldentheorie wordt in het derde hoofdstuk toegepast om verschillende
basis-aspecten van Fermi super�uïda nader te beschrijven, in het de ganse overgangsregime
tussen Bardeen-Cooper-Schrie�er (BCS) paren en een Bose-Einstein condensaat (BEC)
van sterk gebonden moleculen. Door �uctuaties bovenop de gemiddeld-veld oplossing te
beschouwen, berekenen we het spectrum van collectieve excitaties en de correcties op de
gemiddeld-veld waarde voor de kritische temperatuur. We vergelijken deze resultaten met
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de reeds gepubliceerde waarden en vinden een goede overeenkomst.
In het vierde hoofdstuk zijn we toe aan een eerste uitgebreidere toepassing: polaronische

e�ecten in een Fermi super�uïdum [2]. Deze e�ecten treden op wanneer we een onzuiver-
heidsatoom in een super�uïd syteem brengen. In een Bose-Einstein condensaat zullen de
excitaties van het condensaat interageren met het onzuiverheidsatoom. Daardoor wordt
het atoom �aangekleed� met een wolk excitaties, en verandert bijvoorbeeld de e�ectieve
inertiële massa van het onzuiverheidsatoom. Hier onderzoeken we dit e�ect met behulp van
onze theorie voor een fermionisch systeem. In de limiet van sterk gebonden moleculen van
twee fermionen bekomen we opnieuw het gekende resultaat voor een onzuiverheid in een
Bose-Einstein condensaat, maar onze theorie stelt ons in staat om de eigenschappen ook
te onderzoeken wanneer we de fermionische paren brengen in een regime waar ze zwakker
gekoppeld zijn en meer lijken op Cooperparen. We kwanti�ceren het e�ect hiervan op het
polaronisch e�ect, zowel voor de verlaging in grondtoestandsenergie als voor de verandering
van de inertiële massa.

In het vijfde hoofdstuk komt de meest uitgebreide toepassing aan bod: de studie van
donkere solitonen. Dit zijn excitaties van het super�uïdum, die de vorm aannemen van een
solitaire dip in de dichtheid die voortbeweegt aan een constante snelheid, zonder van vorm
te veranderen. Met onze theorie vinden we een analytische uitdrukking voor de vorm van
deze solitonen als functie van de parameters van het Fermi gas waaruit het super�uïdum
gemaakt is en als functie van de temperatuur. Solitonen blijken in Fermi gassen alleen
maar stabiel voor ééndimensionale systemen, terwijl experimentatoren natuurlijk enkel
quasi-ééndimensionale invangingspotentialen kunnen maken voor Fermi super�uïda. We
berekenen de kritische dikte die het quasi-ééndimensionaal systeem moet hebben om de
instabiliteit te doen optreden, aan de hand van het spectrum van excitaties. Zowel wat de
vorm van het soliton betreft, als voor de kritische dikte voor stabiliteit, kunnen we onze
resultaten vergelijken met de Bogoliubov-de Gennes theorie die voor het Bardeen-Cooper-
Schrie�er regime werd uitgewerkt, en vinden we een goede overeenkomst. Bovendien is
onze theorie de enige die de verandering van relevante lengteschaal (van coherentielengte
in het BEC regime naar correlatielengte in het BCS regime) kan beschrijven.

Als er bij het maken van fermionische paren meer van één type partner aanwezig is dan
van zijn paringspartner, dan spreken we van populatie-imbalans in het Fermi gas. Zo'n
populatie-imbalans zal, net zoals op een feestje waar er veel meer mannen dan vrouwen
zijn, de paarvorming frustreren. We vinden dat de dip in de dichtheid die met het soliton
samengaat, een goede plaats is om de overschot aan meerderheidspartner in te plaatsen
[3, 4]. Dit blijkt het soliton zelf stabieler te maken, en biedt hiermee een uitweg aan
experimentatoren die stabiele solitonen willen produceren.

Ten slotte vatten we de resultaten samen in het laatste hoofdstuk. De beschrijving die
we in deze thesis ontwikkelen opent de weg naar heel wat toepassingen. Daar waar andere
modellen, zoals de Bogoliubov-de Gennes theorie, al snel computationeel erg veeleisend
worden zelfs voor een enkele vortex of soliton, heeft de huidige beschrijving het voordeel
dat ze een snelle implementatie toelaat. Hiermee kan in de toekomst ook onderzocht worden
wat er gebeurt wanneer er zich vele vortices of solitonen in het systeem bevinden � net
zoals in supergeleiders kunnen we de toestanden van vortexmaterie gaan karakteriseren en
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vortices en solitonen leren manipuleren. Ook valt de theorie uit deze thesis zonder veel
moeite uit te breiden naar mengsels van fermionische super�uïda, waarbij we de vraag
kunnen onderzoeken of zulke mengsels toelaten om fenomenen teweeg te brengen die in de
invididuele super�uïda niet optreden. Kortom, we hopen dat de theorie uit deze thesis voor
onderzoekers van super�uïde Fermi gassen net zo nuttig kan worden als de beschrijving
van Gross en Pitaevskii dat was voor onderzoekers van super�uïde Bose gassen.
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Introduction

The aim of the present thesis is to provide a detailed derivation as well as some applications
of an e�ective �eld theory (EFT) suitable to describe a system of ultracold fermions across
the BEC-BCS interaction regime in a wide range of temperatures below the critical one, Tc.

In Chapter 1 a brief overview about ultracold atomic gases, and in particular about
Fermi super�uids, is given.
The road to super�uidity in atomic gases started in 1924 when the seminal papers by Bose
and Einstein predicting Bose-Einstein condensation were published. The steps (both from
a theoretical and an experimental point of view) that from there led to the realisation,
in the �rst decade of the 2000's, of fermionic super�uidity in laboratory are summarised.
Moreover some basic concepts which will play a crucial role in the remainder of the thesis,
such as the BEC-BCS crossover and population imbalance, are introduced.

Chapter 2 is dedicated to the detailed derivation of an e�ective �eld theory [1] for the
pairing order parameter capable of describing a fermionic super�uid across the BEC-BCS
crossover in a wide range of con�gurations of temperature (below the transition tem-
perature Tc) and of taking into account an imbalance between the two spin-populations
composing the system. All the calculations that lead from the basic hypothesis of a slowly
varying order parameter to the �nal form of the EFT action are carried out in detail. The
more tedious parts of the calculations are isolated in subsections named �Calculations�
which can be avoided at a �rst read.

In Chapter 3 the �rst applications of the EFT are analysed. The spectrum of the
collective excitations of the super�uid and the behaviour of the critical temperature as
a function of the interaction are examined and the results are compared to the available
literature.
Moreover a method for calculating correlation functions by using a generating functional
based on the EFT action is introduced and employed to calculate the condensate fraction
and the pair coherence length. The latter quantity is then used to test the hypothesis of
slow variation of the order parameter which lies at the heart of the EFT, and hence to give
an estimate of the range of reliability for the predictions of the theory.
The EFT is then compared in the opportune limiting situations to other widely used ef-
fective theories: the Gross-Pitaevskii equation, valid at T = 0 in the BEC regime, and the
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time-dependent Ginzburg-Landau treatment valid in the vicinity of the transition temper-
ature. Also a brief introduction to the Bogoliubov-de Gennes theory is given.

Chapter 4 hosts an application of some of the results obtained in Chapter 3 about
the spectra of collective excitations and correlation functions. The results presented here
are collected in the manuscript [2]. In recent years much attention has been focused on
one particular realisation of the widely studied polaron problem: the BEC polaron [5�14],
which consists of an impurity interacting with the Bogoliubov excitations of a Bose-Einstein
condensate. In the present model the Bose-Einstein condensate is replaced by a Fermi su-
per�uid and the problem is treated in the weak coupling regime using perturbation theory.
The formerly known results are strictly valid only in the BEC limit, where the fermionic
system e�ectively becomes a BEC of tightly bound bosonic molecules. By using the infor-
mation about the interaction dependence of the spectrum of collective excitations derived
in Section 3.1 polaron theory is extended away from the BEC limit. The corrections to the
polaronic coupling constant and e�ective mass are described as a function of the impurity-
fermion pair and of the fermion-fermion interaction strengths.

Chapter 5 is dedicated to the application of the EFT to the description of dark solitons
in Fermi super�uids. The chapter is divided in two main parts based on the publications [3]
and [4] respectively. The �rst focuses on the study of stable soliton solutions in a quasi-1D
con�guration. The shape properties of the soliton are examined in di�erent conditions of
interaction, temperature, imbalance and soliton velocity. From these considerations and
from the comparison between the total density pro�les and the order parameter pro�les, it
emerges that the soliton core is a convenient place where the unpaired particles � present
in the system due to �nite temperature and/or imbalance � can be accommodated. Also
some dynamical properties of the soliton solutions such as their e�ective mass and physical
mass are analysed.
The second part of the chapter is instead devoted to the study of the snake instability
mechanism responsible for the decay of solitons in experiment. While solitons in (quasi-
)1D are stable, in real 3D con�gurations the depletion plane is not rigid and can oscillate,
provoking the decay of the soliton into one (or more) vortex-like excitations. The maximum
transverse size that the atomic cloud can have in order for the soliton to be stable is
estimated and its behaviour in function of interaction across the BEC-BCS crossover is
compared to the predictions of other theories found in the literature. For the imbalanced
case (not yet treated in the existing literature), we �nd that this critical width is observed
to increase as a function of population imbalance, o�ering in principle a direct method to
stabilise solitons in experiment without being forced to reduce the system dimensionality.

Finally, in Chapter 6 we summarise the results and discuss the future prospects opened
by the work reported in this thesis.



Chapter 1

Ultracold quantum gases

1.1 History

The history of research about ultracold quantum gases started in the 1920's with the sem-
inal papers by Bose [15] and Einstein [16] that predicted the phenomenon of Bose-Einstein
condensation. The key idea behind Bose-Einstein condensation is the fact that, when a
bosonic gas is cooled down to extremely low temperatures (in the vicinity of absolute zero),
a substantial fraction of the atoms coherently condenses into the lowest accessible quantum
state.
A gas at room temperature in three dimensions is well described by Boltzmann's the-
ory, which considers the particles as mass points moving around and colliding with each
other with an average kinetic energy given by 〈p2〉/2m = (3/2)kBT . From basic concepts
of quantum mechanics we know that atoms should not be considered as point-like mass
particles precisely labeled by their position and momentum coordinates, but instead as
wave(packet)s. The spread of the atoms' position can be identi�ed with the de Broglie
wavelength, de�ned as

λdB =

√
2π~2

mkBT
.

The average interparticle distance in a gas of density n can be estimated as d = n−1/3.
In order to have a parameter that gives a measure of the ratio between the interparticle
distance and the quantum mechanical uncertainty on the position of the particles in the
gas, the combination nλ3

dB is used. The value of this parameter, often referred to as the
�gas parameter�, is very small in standard conditions of density and temperature, but when
the temperature is decreased to values close to absolute zero it can reach unity: then the
wavefunctions of di�erent particles start overlapping and the quantum mechanical nature
of the atoms emerges, making the Boltzmann's description of the system invalid. As
it is schematically shown in Fig. 1.1, if the gas is made of bosonic atoms the individual
wavefunctions start getting �in phase� and, when all particles share the same wavefunction,
Bose-Einstein condensation is obtained. In this novel phase of matter, all atoms are in the
same quantum state and can be described by a macroscopic wavefunction.

3



4 1.2. Trapping and cooling methods

Figure 1.1: Schematic depiction of the Bose-Einstein condensation mechanism.

The experimental realisation of Bose-Einstein condensation was achieved 70 years later,
in 1995, independently by E. A. Cornell and C. E. Wiemann and co-workers [17], by W.
Ketterle and co-workers [18], and by Hulet and co-workers [19]. This breakthrough result
earned Cornell, Wiemann, and Ketterle the 2001 Nobel Prize in physics.

1.2 Trapping and cooling methods

The main issues that needed to be addressed in order to obtain condensation in laboratory
are the trapping of the atomic cloud and the cooling of the gas to temperatures of the
order of 10 to 100 nanokelvins. In this subsection a short overview is given over the
methods employed in order to achieve the desired conditions of temperature and density in
experiments ultracold atomic gases. For more precise and exhaustive reviews on the topic
the reader is addressed to references [20�22] (for Bose gases), and [23] (for Fermi gases).

The �rst method developed to con�ne a cloud of neutral atoms was the use of a magnetic
trap [20, 21]. Due to the Zeeman e�ect an atom in a spatially-inhomogeneous magnetic
�eld experiences a potential which varies in space. The energy of an atom in a state i can
be written as Ei = ci − µiB where ci is a constant term, µi is the magnetic moment of
the state and B is an external magnetic �eld. It is immediately clear that, if the magnetic
moment of the atom is positive, the atom will tend to go towards spatial regions where
the magnetic �eld B is stronger. This is the simple concept at the basis of magnetic traps:
a magnetic �eld with a convenient spatial modulation can be used to create a trapping
potential for a cloud of neutral atoms. It has to be remarked that in the case of neutral
atoms, the magnetic moment µi is not the intrinsic magnetic moment of the particle but
the one related to its cyclotron motion: the typical magnitude of such magnetic moments
is of the order of the Bohr magneton µB = e~/2me ∼ 0.67kBK/T, and the depth of the
magnetic trap is µiB. Hence, given that the strength of the magnetic �elds commonly
used in experiments is considerably less than 1T, the atoms must be cooled to tempera-
tures substantially lower than 1K in order to feel a sizable con�ning potential.
The operation mechanism of optical trapping exploits instead the energy shift caused by
the interaction between an atom and a laser beam due to the Stark e�ect. The interaction
between an atom and a (time- and space-dependent) electric �eld Eω(r, t) with a charac-
teristic frequency ω is described in dipole approximation, by H = d ·Eω(r, t), where d is
the electric dipole moment of the atom. The ground state energy shift ∆Eg due to the
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Stark e�ect can be calculated in second order perturbation theory and results in

∆Eg = −1

2
α(ω)〈Eω(r, t)〉t

where 〈. . .〉t indicates a time average, and α(ω) is the real part of the dynamical polar-
izability, which is positive when the frequency ω of the electric �eld is smaller than the
atomic transition frequency (red detuning). As a consequence, a red detuned laser beam
can be used to produce a minimum in the spatial distribution of the energy of an atom in
the ground state and therefore obtain a trapping potential for the atomic cloud.

Up to now this introduction focused on bosonic systems: however a great advantage
of optical traps over magnetic ones becomes evident when considering the typical setup of
experiments with mixtures of fermionic atoms. In this case the atomic cloud is composed
of two populations of fermions with di�erent hyper�ne spin which would therefore respond
in di�erent ways to a magnetic con�nement. The optical trapping solves this problem since
the con�ning potential experienced by the atoms is independent of their internal magnetic
properties.

For what concerns the cooling, while a decrease in temperature increases the value of
the �gas parameter�, an additional aspect concerning the density has to be considered: in
the cooling process the system must be kept diluted enough that the gas does not expe-
rience a phase transition to the solid state. The solution to the problem was obtained in
the late eighties when the laser cooling method was perfectioned. The development of this
technique is due to the work of Phillips [24], Chu [25], and Cohen-Tannoudji [26], who in
1996 were awarded the Nobel Prize in physics.
The basic concept behind laser cooling is that a decrease in temperature corresponds to a
decrease in the average momentum of the particles composing the gas. In practice when an
atom experiences a head-on collision with a laser beam of frequency ω corresponding to one
of its absorption lines, it absorbs a photon and consequently its momentum is reduced by
a quantity ~k = ~ω/c. The now-excited atom spontaneously goes back to its initial state
by emitting a photon in an arbitrary direction. A sketch of the laser cooling mechanism is
shown in Fig.1.2. Still the total e�ect on the whole atomic cloud would not change the total
kinetic energy, as some atoms would be accelerated while others would be slowed down. If
however the frequency of the laser is red detuned with respect to ω, as a consequence of
the Doppler e�ect, the photons will be preferably absorbed by the atoms moving towards
the source: a setup composed of two counterpropagating laser beams will then produce an
average decrease of the momentum of the atoms along the direction of the lasers providing
also a trapping e�ect on the atomic cloud. An additional positive e�ect of this technique
is a decrease in the total kinetic energy of the particles, in fact due to the Doppler shift the
re-emitted phonons have a higher frequency than the original photons from the laser. This
means that a part of the kinetic energy of the atoms has been transferred to the photons
which are free to escape the system.
The temperatures reached with laser cooling (typically tens of microkelvins) are how-

ever not low enough to reach Bose-Einstein condensation in experiments: a further step
is needed. This is provided by evaporative cooling: the key idea behind this method is
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Figure 1.2: Steps of the laser cooling mechanism: (a) the atom experiences a head-on
collision with the laser beam and absorbs a photon, (b) the momentum of the atom is
decreased by an amount equal to the momentum of the photon, (c) the atom spontaneously
re-emits a photon in an arbitrary direction. The re-emitted photon has a higher frequency
than the original one because of the Doppler e�ect.

that, if particles with high energy are allowed to escape, the average energy of the system
and, as a consequence, its temperature will be lowered. The most energetic atoms will
occupy regions close to the edges of the trap. Radiofrequency (rf) radiation resonant with
these atoms can be used to �ip their magnetic moment from a low-�eld seeking one to a
high-�eld seeking one, hence expelling them from the trap. The process can be repeated in
order to eliminate atoms with lower and lower energy by adjusting the rf frequency. With
a combination of laser cooling and evaporative cooling the temperature of the system can
reach the values necessary to observe Bose-Einstein condensation, i.e. tens to hundreds
of nanokelvins. It must be remarked that in experiments with fermionic systems another
technique, named �sympathetic cooling� is used to obtain the needed conditions of temper-
ature. The evaporative cooling mechanism works only if, after the most energetic particles
have escaped the system, the remaining particles can relax back to an equilibrium state.
In bosonic systems the energy is redistributed by means of elastic scattering processes, but
fermions in the same quantum state cannot undergo such processes. Therefore, after evap-
orative cooling has been exploited on the separate populations, one spin-state component
is put into contact with the other thus making the redistribution of the energy in the whole
cloud possible [27].

1.3 From bosons to fermions: the BEC-BCS crossover

Due to the Pauli exclusion principle two identical fermions cannot share the same quan-
tum state and therefore Bose-Einstein condensation is not accessible in a fermionic system.
However, in 1911, Onnes measured that the resistivity of mercury drops to zero when the
metal is cooled to temperatures below 4.7K: in this condition the material is said to be-
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Figure 1.3: Evaporative cooling mechanism [20]: a radiofrequency radiation is employed
to �ip the magnetic moment of the most energetic particles in the vicinity of the edge of
the trap. These particles can hence escape the trap and, as a result, the temperature of
the system is decreased.

come superconducting as the conduction electrons can �ow freely without experiencing
resistance. This observation provided the �rst evidence of super�uidity of an electron gas.
In an attempt to understand this phenomenon, in 1958 Bardeen, Cooper and Schrie�er
proposed a theory that explains fermionic super�uidity in terms of Cooper pairs: weakly
bound pairs of electrons with dimension much larger than the interparticle spacing. The ex-
planation of the e�ective attractive interaction responsible for the binding of two electrons
despite the Coulomb repulsion that occurs between them was provided by polaron theory.
Starting with the seminal paper by Landau [28], the screening of the Coulomb potential
due to the interaction between electrons and the phonons describing the lattice deforma-
tions in a polar crystal was widely studied [29�31]. At the basis of the BCS description
lies the fact that the e�ective attractive interaction between electrons in a superconductor
is due precisely to this electron-phonon interaction. Contrary to the intuitive hypothesis
that fermionic super�uidity corresponds to condensation of electron pairs in real space, the
work of Bardeen, Cooper, and Schrie�er proved that it can be instead interpreted as the
condensation of Cooper pairs in momentum space. Despite the intrinsic di�erence between
BCS superconductivity and Bose-Einstein condensation, at the end of the 1960's it was
proven [32�34] that the ansatz BCS ground state wavefunction provided a good descrip-
tion not only for a condensate of Cooper pairs, but also for a Bose-Einstein condensate
of tightly bound fermionic pairs. This represented the �rst evidence of the existence of
a bridge between BCS super�uidity and Bose-Einstein condensation. Just over ten years
later, in 1980 Leggett [35] demonstrated that the regimes of Cooper pairs and of tightly
bound diatomic molecules are linked through a smooth crossover: the so-called BEC-BCS
crossover.

The �rst experimental realisation of a quantum degenerate Fermi system dates to 1999
and was achieved by the group of D. S. Jin at JILA [36]. The term �degenerate� here
means that the fermionic particles in the system are at an average distance smaller than
the de Broglie wavelength, and occupy (almost) all of the quantum states below a given
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energy (referred to as the Fermi energy). The achievement of degeneracy was a key step
towards observing super�uidity in a fermionic system. However the transition tempera-
ture Tc predicted by the BCS theory for the onset of such phase was still out of reach for
experimentalists. In the conditions of temperature and density of an ultracold Fermi gas
the interaction between atoms is dominated by s-wave scattering processes, the strength
of which can be described in terms of a single parameter: the product kFas of the Fermi
momentum kF and the s-wave scattering length as. Such simpli�cation comes from the
consideration that the extreme diluteness assures that the main properties of ultracold
atomic systems are dominated by two-body collisions and that, at the same time, the
particles are at distances much larger than the range of the Van der Waals potential.
Moreover the low temperatures involved assures that also the de Broglie wavelength of
the atoms is larger than this typical range and that the interaction between the atoms
can be approximated by a (spherically symmetric) contact potential. The BCS transition
temperature can then be expressed, in the limit of kF |as| � 1, as Tc ≈ 0.28TF e

−π/(2kF |as|)

where TF indicates the Fermi temperature. From the previous expression it emerges that
Tc becomes exponentially small for small values of kF |as|. In order to bring Tc to values
that are achievable in laboratory, experimentalists can in principle act on the two quan-
tities kF and as. The Fermi momentum kF however is connected to the particle density
and must remain small to assure that gas remains dilute. The tool that made the step
towards Fermi super�uidity possible is the Feshbach resonance mechanism [37]. An ex-
ternal magnetic �eld is used to tune the energy of a molecular bound state and bring it
close to resonance with a scattering state of two free particles. In this way the value of
the s-wave scattering length and, as a consequence, the interaction parameter kFas can
be modi�ed as shown in Fig. 1.4. By exploiting the Feshbach resonance mechanism, in
2003 three groups independently achieved the creation of a Bose-Einstein condensate of
diatomic molecules. In these experiments the Feshbach mechanism was used to make the
energy of the molecular bound state lower than the energy of the free-particles scattering
state, reaching values of kFas > 1 (BEC side of the resonance), and the condensation of
the bound fermion pairs was detected [38�40]. In the following years the full potential of
Feshbach resonances was put to use and di�erent values of the coupling parameter kFas
became accessible to experimentalists, that were hence able to produce systems in con�g-
urations all across the BEC-BCS crossover regime [41�44]. In one of these experiments,
namely [42], the �rst direct evidence of fermionic super�uidity was observed as a lattice of
quantized vortices was detected.
The BEC-BCS crossover has been the focus of major attention also from a theoretical point
of view. Starting from the seminal work by Leggett [35] that gave the �rst description of
the system at T = 0 at the mean �eld level, a substantial amount of literature has been
devoted to the study of this topic. In particular it is worth mentioning the �rst beyond
mean-�eld treatment of the �nite temperature case, due to Nozières and Schmitt-Rink [45]
and the path integral description developed by Sá de Melo and coworkers [46]. As a re-
sult of these studies a schematic interaction-temperature phase diagram for a system of
ultracold fermionic neutral atoms was obtained, an example of which can be seen in Fig.
1.5 [47]. The inclusion of �uctuations beyond-mean �eld enabled theorists to better analyse
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Figure 1.4: Observation of a Feshbach resonance in an untracold system of 40K atoms [37].
The external magnetic �eld B is used to tune the s-wave scattering length (here given in
units of the Bohr radius a0). Across the resonance the sign of the scattering length changes
from positive to negative.

the behaviour of the system and in particular to distinguish between two transition tem-
peratures: the one at which pairing occurs, Tpair, and the one that determines the onset of
the super�uid phase, Tc. The intermediate regime between the BCS and BEC limits, the
so-called unitarity regime, has also drawn a lot of interest from a theoretical point of view:
the fact that in this con�guration the s-wave scattering length diverges implies that the
only length scale of the system is given by the interparticle distance and the energy scale
by the Fermi energy. In these conditions the physics of the system is said to be universal
and properties such as the binding energy and the pair size are determined by universal
constants times the Fermi energy and the interparticle distance respectively.

1.4 Imbalanced Fermi systems

One of the properties that justify the large interest drawn by ultracold atomic gases is
their high degree of tunability. Experimentalists can modify a wide variety of parameters
of the system, ranging from interaction to temperature, geometry, dimensionality, and
population imbalance. In particular population imbalance will be the object of much
attention throughout the present thesis.
As mentioned above, the typical con�guration of an ultracold fermionic system consists of
two populations of particles in di�erent hyper�ne states trapped in an optical potential.
These two hyper�ne states will be relabeled as spin-up and spin-down states, and we
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Figure 1.5: Schematic phase diagram of a system of ultracold Fermi atoms as a function of
temperature and interaction (source: [47]). The BEC-BCS crossover regime is highlighted:
negative values of (kFas)

−1 correspond to a BCS con�guration of weakly bound Cooper
pairs, while large positive values indicate the limit of a BEC of tightly bound diatomic
molecules.

consider the system as a (pseudo-)spin 1/2 system. A nonzero population imbalance means
that the numbers of particles in the two spin populations are di�erent, and this has a
substantial e�ect on the pairing mechanism, which was analysed by theorists since the early
1960's, when the seminal papers by Clogston [48] and Chandrasekhar [49] about critical
magnetic �elds in superconductors were published. To have a simple picture of how spin-
imbalance a�ects the formation of fermionic pairs in an ultracold gas it is useful to resort
to a toy model [50]. Figure 1.6 shows the Fermi surfaces (i.e. surfaces of constant energy
E = EF ) for the up- and down-spin particles as a function of the x- and y-components of
the momentum, in a balanced (panel A) and imbalanced (panel B) situation respectively.
Naming the super�uid bandgap ∆, the BCS ansatz requires that just the particles in the
interval [EF−∆, EF +∆] participate to the pairing, therefore in the picture a shell of width
2∆ is drawn along the Fermi surfaces. On the one hand, in a spin-balanced system the
Fermi energies for the up- and down- spin particles are equal (EF↑ = EF↓) and the �pairing
shells� perfectly overlap. On the other hand, in presence of a nonzero spin imbalance the
Fermi energies are di�erent (e.g. EF↑ > EF↓ as in the case depicted in Fig. 1.6) and the
overlap between the �pairing shells� becomes smaller or ceases to exist, thus explaining the
detrimental e�ect that imbalance has on the fermion pairs' formation mechanism.

Imbalance in ultracold Fermi systems was �rst experimentally engineered in 2006 [51,
52]. In these experiments it was observed that, in presence of imbalance, phase separation
can occur, meaning that beyond a critical imbalance the excess component particles and
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Figure 1.6: Schematic depiction of the e�ect of imbalance on the formation mechanism
of the fermionic pairs. In a balanced system the chemical potentials of the two spin
populations are equal (µ↑ = µ↓), while in presence of imbalance a di�erence arises (µ↑ 6=
µ↓). The overlap between the �pairing shells� is maximal in the balanced situation (panel
A) while it becomes smaller or even disappears in an imbalanced situation. Source: [50].

a �standard� balanced super�uid are spatially separated, with the former ones residing in
the more external regions of the atomic cloud and the latter the inner core. The concept
of phase separation can be clearly understood by looking at Fig. 1.7 where the densities
of the two spin components (panels A and B) are shown separately and compared to the
density di�erence (panel C). The search for possible super�uid states that can occur in an
imbalanced system is still ongoing and has produced a large amount of literature: between
the possible exotic super�uid phases that have been proposed as a solution to this problem,
it is worth mentioning the FFLO state, theorised in the 1960's by Fulde and Ferrel [53],
and Larkin and Ovchinnikov [54], which predicts that an imbalanced super�uid can exist
provided that the Cooper pairs are created with nonzero momentum in contrast with the
BCS ansatz that requires the momentum of the fermion pairs to be zero.

In the remainder of the present work the e�ects of imbalance on various quantities will
be considered: in particular the e�ects of imbalance on the shape and on the dynamics of
dark solitons propagating in a Fermi super�uid are going to be investigated. Moreover the
stability of dark solitons with respect to decay through the snake instability is going to be
analysed for di�erent levels of imbalance.

1.5 Motivation and goal of the thesis

As noted above, Bose-Einstein condensed gases can be described by a macroscopic wave
function. This macroscopic wave function has to satisfy a di�erential equation known as the
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Figure 1.7: Absorption images showing the density of the majority and minority spin
populations (panels A and B respectively), compared to the density di�erence between
the two compoennts (panel C). The slightly negative density detected at the center of the
cloud in panel C is due to experimental conditions. Source: [52].

Gross-Pitaevskii equation [55,56]. The macroscopic wave function and the Gross-Pitaevskii
equation allow for a useful hydrodynamic description of the system, by interpreting the
modulus squared of the wave function as a the density of the condensate and the phase
gradients as its super�uid velocity �eld. In particular the link between the velocity and
the phase is crucial to explain several properties of super�uidity: the quantization of
circulation, singly quantized vortices, persistent currents, and the Fairbank-Hess e�ect
[21,57] follow directly from it.

For super�uid Fermi gases, these characteristic expressions of super�uidity are also
present. Therefore it makes sense to look for an analogous description of those systems
in terms of a macroscopic wave function, whose modulus squared can be interpreted as a
density of fermion pairs, and whose phase gradient provides the super�uid velocity �eld.
The goal of this thesis is to provide such a description: we �nd the di�erential equation
that such a �pair wavefunction� has to obey and derive several properties of the fermionic
super�uid from the study of this equation and its solutions.

For superconductors, a related description based on a macroscopic wave function was
developed by Ginzburg and Landau [58], and used by Abrikosov [59] to introduce the
concept of a vortex. Ginzburg-Landau theory, which has proven to be extremely useful
for superconductors, was lacking a counterpart for super�uid Fermi gases. In this thesis,
we �nd this counterpart. Moreover, whereas the validity of Ginzburg-Landau theory is
restricted to temperatures close to the critical temperature, the theory that we derive here
will have a broader temperature range of applicability, and is valid across the BEC-BCS
crossover.



Chapter 2

E�ective �eld theory

The present chapter is devoted to the derivation of an e�ective �eld theory (EFT) suited
for describing the BEC-BCS crossover regime in ultracold Fermi gases. The main source of
inspiration for the formulation of this theory came from the well known Ginzburg-Landau
(GL) treatment. This was originally developed in 1950 [58] as a phenomenological model
that would allow to describe type-1 superconductors in terms of a macroscopic wavefunction
(interpreted as the order parameter for the superconducting transition) rather than in terms
of the microscopic degrees of freedom. Assuming a small value for the order parameter Φ
close to the transition temperature, the free energy is expanded in series as

F (T, V ) = Fn(T, V ) + V

(
a(T )|Φ|2 +

b(T )

2
|Φ|4 + · · ·

)
(2.1)

(where Fn(T, V ) is the free energy for the normal state), and only the �rst few (typically
two) lowest-order terms are retained. The coe�cients a and b are �xed by the critical
magnetic �eld and by the London penetration depth [60], and are related to the binding
energy of the Cooper pairs and to the interaction amplitude between two pairs respectively.
Five years later, in 1955 Lev Gor'kov managed to derive the GL theory starting from a
microscopical model [61]. More recently, starting from the early 90's with the paper by Sá
de Melo et al. [46], this treatment has been widely used to study many aspects of ultracold
Fermi gases [62�66].

With respect to the GL method � which is based on the key assumption of dealing
with a small order parameter � in the present study this hypothesis is substituted by the
weaker requirement of having a slowly varying order parameter. This relaxation of the ba-
sic assumption leads in principle to a wider applicability range of the e�ective �eld theory.
In particular, while the requirement of a small order parameter limits the validity of the
Ginzburg-Landau treatment to a small range of temperatures close to the critical temper-
ature Tc, the validity range of the EFT is found to be substantially broader. An extensive
discussion about the practical range of validity of the theory including a comparison with
the results of the GL treatment will take place at a later stage in this thesis. In order to
have a basic picture of the system under consideration and an overview of the formalism
that we are going to employ in the present treatment, we begin our discussion by writing

13
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the Hamiltonian for an ultracold gas of fermions with spin imbalance.

Ĥ = Ĥ0 + ĤINT =

=

∫
dr

[(
ψ̂†↑(r)ψ̂†↓(r)

)(−~2∇2

2m
− µ− ζ 0

0 −~2∇2

2m
− µ+ ζ

)(
ψ̂↑(r)

ψ̂↓(r)

)
+

+ gψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r)

]
(2.2)

In the last expression µ represents the chemical potential while ζ can be seen as a di�erence
in the chemical potentials between the two hyper�ne states ↑ and ↓. The relations between
these two quantities and the chemical potentials for the spin ↑ and spin ↓ species are given
by 1

µ =
µ↑ + µ↓

2
ζ =

µ↑ − µ↓
2

The quartic term ĤINT describes the two body s-wave contact interaction between particles
with opposite spin. Notice that from now on the natural system of units ~ = 1, kF = 1,
2m = 1, will be adopted to simplify the notation. Here kF is the Fermi wavevector, �xed
by the total density n as kF = (2πn)1/2 in 2D and kF = (3π2n)1/3 in 3D.

The derivation of the e�ective �eld theory is quite extensive and involves lengthy alge-
braic manipulations; in order to enable the reader to have an overview of the derivation
without being forced to go through the heavily algebraic parts, these have been isolated in
subsections labeled �Calculation� which can be skipped at a �rst read.
The remainder of the chapter is organised in the following way: in Sections 2.1-2.2 the
path integral formalism is introduced as a method to study ultracold Fermi gases, while in
Section 2.3 the assumption of a slowly varying order parameter is implemented by means
of a gradient expansion. Sections 2.4-2.6 host the actual calculation of the terms and co-
e�cients of the e�ective �eld theory that are later brought together in Section 2.7 where
the complete EFT action is presented.

2.1 Path integral approach

The path-integral formulation of quantum mechanics, introduced by Richard Feynman in
1948 [67], is based on two axioms:

• the quantum mechanical amplitude of a process is a weighted sum of the amplitudes
of all possible realisations of the process.

• the weight is given by exp [iS/~] where S is the action of the system.

The fact that the di�erent realisations are weighted by a �phase� factor ensures that the
formalism can account for interference, while the presence of the factor S/~ at the expo-
nent provides that, in the classical limit (~ → 0) the Lagrangian mechanics is retrieved.

1from now on we will always refer to the two di�erent hyper�ne (pseudospin) states as spin states
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The path-integral approach has proven extremely powerful in the description of quantum
many-body systems [68]: in particular a substantial fraction of the literature on ultracold
quantum gases is based on this description.

The partition function of a system of ultracold fermions described by the Hamiltonian
(2.2) introduced in the previous section can be written as a path integral over all possible
con�gurations of the fermionic Grassmann �elds ψ̄σ(r, τ) and ψσ(r, τ) as

Z =

∫
Dψ̄σ(r, τ)Dψσ(r, τ)e−S[ψ̄σ(r,τ),ψσ(r,τ)]. (2.3)

The action S[ψ̄σ(r, τ), ψσ(r, τ)] is given by

S[ψ̄σ, ψσ] =

∫ β

0

dτ

[∫
dr
∑
σ

ψ̄σ(r, τ)∂τψσ(r, τ) +H[ψ̄σ(r, τ), ψσ(r, τ)]

]
, (2.4)

where, with respect to (2.2), the Grassmann variables ψ̄σ(r, τ) and ψσ(r, τ) replace the
�eld operators ψ̂†σ(r) and ψ̂σ(r), and β = 1/(kBT ) represents the inverse temperature.

2.1.1 Hubbard-Stratonovich transformation

Recalling the form of the Hamiltonian of the system (2.2), it follows that the action (2.4)
contains a term that is quartic in the fermionic variables. This means that the functional
integral appearing in the expression of the partition function (2.3) can not be computed ex-
actly. To overcome this problem a transformation is needed that decouples the interaction
term and reduces the action to an expression that is quadratic in the fermionic �elds. This
goal can be achieved by means of the Hubbard-Stratonovich transformation. Exploiting a
basic equality for Gaussian integrals,

exp

[
−g
∫ β

0

∫
drψ̄↑(r, τ)ψ̄↓(r, τ)ψ↓(r, τ)ψ↑(r, τ)

]
=

=

∫
DΦ∗(r, τ)DΦ(r, τ) exp

[ ∫ β

0

∫
dr

(
Φ∗(r, τ)Φ(r, τ)

g
+

+Φ∗(r, τ)ψ↓(r, τ)ψ↑(r, τ) + Φ(r, τ)ψ̄↑(r, τ)ψ̄↓(r, τ)

)]
, (2.5)

the quartic term can be removed at the cost of introducing the complex bosonic �eld
Φ(r, τ) (and its conjugate Φ∗(r, τ)). This new bosonic �eld can be interpreted as the �eld
describing the fermion pairs. A schematic depiction of the HS transformation is shown
in Fig.2.1. The choice of this decomposition of the quartic term is often referred to in
literature as the Bogoliubov channel of the Hubbard-Stratonovich transformation. The
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Figure 2.1: Schematic depiction of the Hubbard-Stratonovich transformation: the interac-
tion term originally consists of a product of four fermion �elds. After the HS transformation
it is decomposed in a term that represents two fermions of opposite spin pairing up, a term
describing the propagation of the �free� pairs (not shown) and a term for the pair breaking
up into two fermions.

resulting partition function is

Z =

∫
Dψ̄σ(r, τ)

∫
Dψσ(r, τ)

∫
DΦ∗(r, τ)

∫
DΦ(r, τ)

exp

[
−
∫ β

0

∫
dr

(∑
σ

ψ̄σ(r, τ)
(
∂τ −∇2 − µσ

)
ψσ(r, τ)+

− Φ∗(r, τ)Φ(r, τ)

g
− Φ∗(r, τ)ψ↓(r, τ)ψ↑(r, τ)− Φ(r, τ)ψ̄↑(r, τ)ψ̄↓(r, τ)

)]
. (2.6)

The action of the system is thus quadratic in the fermionic �elds and can be rewritten in
an even simpler form by introducing the Nambu spinor Ψ de�ned as

Ψ(r, τ) =

(
ψ↑(r, τ)
ψ̄↓(r, τ)

)
, Ψ̄(r, τ) =

(
ψ̄↑(r, τ), ψ↓(r, τ)

)
. (2.7)

The action in the new notation is

S =

∫ β

0

dτ

∫
dr

(
Ψ̄(r, τ)A(r, τ)Ψ(r, τ)− Φ∗(r, τ)Φ(r, τ)

g

)
=

=

∫ β

0

dτ

∫
dr Ψ̄(r, τ)A(r, τ)Ψ(r, τ) + SB, (2.8)

where in the last line SB indicates the purely bosonic component of the action, i.e. the
quadratic term in the bosonic �elds.

Inverse fermion propagator

In the last equation a compact expression for the action functional was presented in terms
of the Nambu spinors Ψ and Ψ̄. The matrix A(r, τ) appearing in (2.8) can be identi�ed as
the inverse Green's matrix for the interacting fermions and is de�ned as

A(r, τ) =

(
∂τ −∇2 − µ− ζ −Φ(r, τ)
−Φ∗(r, τ) ∂τ + ∇2 + µ− ζ

)
= −G−1(r, τ). (2.9)
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Separating the diagonal and o�-diagonal components we can write

−G−1(r, τ) = −G−1
0 (r, τ) + F(r, τ),

where −G−1
0 describes a free fermion and F is the part proportional to the pairing �eld Φ,

namely

−G−1
0 (r, τ) =

(
∂τ −∇2 − µ− ζ 0

0 ∂τ + ∇2 + µ− ζ

)
, (2.10)

F(r, τ) =

(
0 −Φ(r, τ)

−Φ∗(r, τ) 0

)
. (2.11)

It is convenient to have these expressions also in momentum-frequency representation: the
Fourier transform of −G−1 is de�ned as

−G−1(k′, n′|k, n) =
1

βV

∫ β

0

dτ

∫
dr eik′·r−iωn′τ

(
−G−1(r, τ)

)
e−ik·r+iωnτ ,

with V the volume of the system and ωn = (2n+1)π/β the fermionic Matsubara frequency.
For the −G−1

0 (r, τ) component we can write

−G−1
0 (k′, n′|k, n) = − [G0(k, n)]−1 δk,k′δn,n′

=

(
iωn − k2 − µ− ζ 0

0 iωn + k2 + µ− ζ

)
δk,k′δn,n′ . (2.12)

The reciprocal space representation of the non-diagonal component F is instead given by

F(k′, n′|k, n) =

(
0 −Φk+k′,n+n′

−Φ∗k+k′,n+n′ 0

)
. (2.13)

From the last expressions it is clear that, contrary to the free fermion component, the
pairing term F has non-zero contributions coming from terms with k 6= k′.
Finally, de�ning the dispersion relation ξk ≡ k2/(2m) − µ, the Green's function G0(k, n)
for a free fermion reads

G0(k, n) =

( 1
iωn−ξk+ζ

0

0 1
iωn+ξk+ζ

)
. (2.14)

Grassmann integration

Using the action (2.8), the partition function of the system in terms of the Nambu spinors
Ψ and Ψ̄ reads

Z = χ

∫
DΦ∗

∫
DΦ

∫
DΨ̄

∫
DΨ exp

[
−
∫ β

0

dτ

∫
dr Ψ̄(r, τ)

(
−G−1(r, τ)

)
Ψ(r, τ)− SB

]
.

(2.15)
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The sign factor χ in front of the integration sign is due to the rearrangement of the fermionic
variables in the Nambu spinors notation: for each space-time point we have a minus sign
coming from the equality∫

DΨ̄

∫
DΨ =

∏
r,τ

[∫
dψ̄↑(r, τ)

∫
dψ↑(r, τ)

∫
dψ↓(r, τ)

∫
dψ̄↓(r, τ)

]
=

=
∏
r,τ

(−1)

∫
dψ̄↑(r, τ)

∫
dψ↑(r, τ)

∫
dψ̄↓(r, τ)

∫
dψ↓(r, τ).

In order to transform the right hand side of the �rst line into the expression in the second
line (i.e. the integration measure appearing in (2.6)), the last two Grassmann integration
measures must be exchanged, thus generating a factor (−1) for each space-time point.
Since the term SB at the exponent does not depend on the fermionic �elds, the relevant
integral that must be computed is just

χ

∫
DΨ̄

∫
DΨ exp

[
−
∫ β

0

dτ

∫
dr Ψ̄(r, τ)

(
−G−1(r, τ)

)
Ψ(r, τ)

]
. (2.16)

This is the textbook Grassmann integral for a quadratic action functional and its result is
simply ∏

r,τ

(−1)detσ(−G−1(r, τ)), (2.17)

where the subscript σ indicates that the determinant is taken over the 2×2 matrix between
the Nambu spinors. With some algebraic manipulation this quantity can be rewritten as

∏
r,τ

(−1)detσ(−G−1(r, τ)) = exp

{∫ β

0

dτ

∫
dr ln

[
−detσ(−G−1(r, τ))

]}

After performing the integration over the fermionic variables Ψ and Ψ̄ the resulting parti-
tion function is

Z =

∫
DΦ∗

∫
DΦ exp

{
−
∫ β

0

dτ

∫
dr

[
−|Φ(r, τ)|2

g
− ln

[
−detσ

(
−G−1(r, τ)

)]]}
. (2.18)

Recasting equation (2.15) in reciprocal space notation is not as straightforward: introduc-
ing the momentum-frequency representation for the pair �eld Φ in (2.15) gives

Z =

∫
DΦ∗

∫
DΦ

∫
DΨ̄

∫
DΨ exp

[∑
q,m

Φ∗q,mΦq,m

g
−
∑
k,n
k′,n′

Ψ̄k,n

[
−G−1(k′, n′|k, n)

]
Ψk′,n′

]
,

(2.19)
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where the following de�nitions for the Nambu spinors were used:

Ψk,n =

(
ψk,n,↑
ψ̄k,n,↓

)
and

(
ψ̄k,n,↑ ψk,n,↓

)
.

As remarked in the previous subsection, even in reciprocal space the inverse fermion Green's
function is not diagonal due to its pairing component F (2.13). The solution of this non-
diagonal Grassmann integration is described in detail in reference [69] and the general
result is∫

Dψ̄
∫
Dψ exp

[
−
∑
k,n
k′,n′

Ψ̄k,n

[
−G−1(k′, n′|k, n)

]
Ψk′,n′

]
= χ det

[
−G−1(k′, n′|k, n)

]
.

where χ is again a sign factor that accounts for the change in the order of the integration
measures and the det is taken not only on the spinor degrees of freedom, but also on the
momentum and frequency ones. Through some basic matrix manipulation the previous
result can be recast in the following form

det
(
−G−1

)
= exp

[
ln
(
det
(
−G−1

))]
= exp

[
Tr
(
ln
(
−G−1

))]
.

As for the determinant, also the Tr in the last expression is taken over all k, n, σ values.
The partition function �nally results

Z = χ

∫
DΦ∗

∫
DΦ exp

[∑
q,m

Φ∗q,mΦq,m

g
+ Tr

[
ln
(
−G−1

)]]
. (2.20)

It is worth remarking that the presence of the sign factor χ in front of the integrals does
not a�ect the calculation of expectation values.
The result (2.20) can be �nally rewritten in terms of an e�ective action depending only on
the bosonic �elds Φ and Φ∗:

Seff = SB − Tr
[
ln
(
−G−1

)]
. (2.21)

From the decomposition of the matrix A and from the relation (2.12) it follows that

Seff =SB − Tr
[
ln
(
−G−1

0 + F
)]

=

=SB − Tr
[
ln
(
−G−1

0

)]
− Tr [ln (1−G0F)] =

=SB + S0 +
∞∑
p=1

1

p
Tr [(G0F)p] =

=SB + S0 +
∞∑
p=1

S
(p)
Φ . (2.22)

Notice that in the second to last passage, the logarithm was expanded in a power series as
ln(1− x) = −

∑∞
p=1

xp

p
.
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It is important to remark that this form of the action in terms of an expansion in powers
of the pairing �eld is a key element in many di�erent approaches to beyond-mean �eld
treatments of ultracold Fermi gases. For example, in the context of a Ginzburg-Landau
treatment, at this point the action would be approximated by keeping just the �rst few
lower order terms in the series, corresponding to the assumption Φ→ 0. A brief overview
of the main approximation schemes adopted to calculate (2.22) is given in Subsection 2.1.2.
Instead in the following Section we will see how the entire series can be handled by imposing
the weaker requirement that the bosonic �eld Φ varies slowly in both time and space.
Before going ahead with the calculation we show the explicit expression for the terms S(p)

Φ

introduced in the last line of (2.22):

S
(p)
Φ =

1

p
Tr [(G0F)p] =

=
1

p

∫
dx1 · · ·

∫
dxp Tr [G0(x1 − x2)F(x2)G0(x2 − x3)F(x3) · · ·G0(xp − x1)F(x1)]

(2.23)

Notice that in the last expression a compact notation for the 4-dimensional space-"time"
vectors was introduced, i.e.

(r, τ) −→ x.

This notation will be often employed in the remainder of this chapter for the sake of brevity.

2.1.2 Overview of the possible approximations

• Saddle-point approximation [35]

∞∑
p=1

1

p
Tr [(G0F)p] ≈ Tr [G0Fsp] +

1

2
Tr [G0FspG0Fsp] +

1

3
Tr [G0FspG0FspG0Fsp] + . . .

The paring component F is approximated by its saddle-point version Fsp and the
whole sum over p is calculated.

• Gaussian pair �uctuations [45,46]

∞∑
p=1

1

p
Tr [(G0F)p] ≈ Tr [G0F(x1)]+

1

2
Tr [G0F(x1)G0F(x2)]+

1

3
Tr [G0FspG0FspG0Fsp]+. . .

The space-time dependence of F is accounted exactly but only up to p = 2.

• Gradient expansion

∞∑
p=1

1

p
Tr [(G0F)p] ≈ Tr [G0Fgrad]+

1

2
Tr [G0FgradG0Fgrad]+

1

3
Tr [G0FspG0FspG0Fsp]+. . .
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Same as for the GPF treatment only the terms up to p = 2 are kept in the sum (2.23)
but the full F(x2 − x1) is approximated by

F(x− x1) ≈ Fgrad(x− x1) = F0 + x (∇F)0 +
1

2
x2
(
∇2F

)
0

Two possible choices of approximation are:

� F0 → 0. This assumption is valid close to Tc and the usual Ginzburg-Landau
approach is retrieved.

� F0 → Fsp [64]. A version of the Ginzburg-Landau treatment with an extended
domain of validity is obtained.

• EFT treatment
∞∑
p=1

1

p
Tr [(G0F)p] ≈ Tr [G0Fgrad]+

1

2
Tr [G0FgradG0Fgrad]+

1

3
Tr [G0FspG0FgradG0Fgrad]+. . .

Up to p = 2 this approach coincides with the usual gradient expansion. However
in the contributions corresponding to p > 2 (at most) two occurrences of Fsp are
replaced by Fgrad and the entire sum over p is computed.

2.2 Saddle-point approximation

In general an analytic summation of the series appearing in (2.22) is impossible: as men-
tioned above, in order to overcome this problem an approximation is required. The easiest
way to simplify the summation in (2.22) is to consider the bosonic �eld Φ to be a constant.
This hypothesis corresponds to setting

Φq,m →
√
βV δ(q)δm,0 ×∆, (2.24)

Φ∗q,m →
√
βV δ(q)δm,0 × ∆̄. (2.25)

Therefore the major contribution to the bosonic integral is assumed to come from the
con�guration in which the Cooper pairs are condensed in the q = 0 state. Performing this
approximation before the Grassmann integration over the fermionic �elds leads to a great
simpli�cation of the calculations: the saddle-point expression for the partition function in
momentum-space notation is

Zsp =

∫
DΨ̄

∫
DΨ exp

[
|∆|2

g
−
∑
k,n

Ψ̄k,n

[
−G−1

sp

]
Ψk,n

]
,

where the saddle-point inverse fermion propagator is given by

−G−1
sp (k, n) =

(
iωn − k2 − µ− ζ ∆

∆ iωn + k2 + µ− ζ

)
. (2.26)
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As it is intuitively clear the approximation (2.24) has made the inverse fermion propagator
diagonal in reciprocal space.
Integrating out the fermionic �elds leads to

Zsp = exp

{
|∆|2

g
−
∑
k,n

ln
[
− det

(
−G−1

sp

)]}
=

= exp

{
|∆|2

g
−
∑
k,n

ln [(iωn − Ek + ζ) (−iωn − Ek − ζ)]

}
, (2.27)

where the single-particle excitation energy Ek has been introduced, i.e.

Ek =
√
ξ2
k + ∆2. (2.28)

The saddle-point partition function can be rewritten in terms of the saddle-point thermo-
dynamic potential per unit volume Ωsp as

Zsp = exp {−βV Ωsp} .

From (2.27), it follows that Ωsp is de�ned as

Ωsp = −|∆|
2

g
− 1

βV

∑
k,n

ln [(iωn − Ek + ζ) (−iωn − Ek − ζ)] .

To obtain a more explicit expression for this quantity the fermionic Matsubara summation
over the frequency ωn must be carried out. Doing this [68,69] leads to

Ωsp = −|∆|
2

g
− 1

V

∑
k

{
1

β
[2 cosh (βEk) + 2 cosh (βζ)]− ξk

}
=

= − |∆|2

8πkFas
−
∫

dk

(2π)3

{
1

β
[2 cosh (βEk) + 2 cosh (βζ)]− ξk −

|∆|2

2k2

}
, (2.29)

where in the last line the regularised form of the coupling constant g [20, 68]

1

g
=

m

4πkFas
−
∫

d3k

(2π)3

m

k2

has been inserted and the continuum limit has been taken for the sum over the momentum
k.
From the expression for the thermodynamic potential (2.29) the explicit form for the gap
and number equations can be derived. The saddle-point gap equation is given by

0 =
∂Ωsp

∂∆

⇐⇒ − 1

4πkFas
=

∫
dk

(2π)3

[
sinh (βEk)

cosh (βEk) + cosh (βζ)

1

Ek

− 1

k2

]
. (2.30)
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The equation for the total density is instead

n =− ∂Ωsp

∂µ

∣∣∣∣
T,ζ,∆

⇐⇒ n =

∫
dk

(2π)3

[
1− sinh (βEk)

cosh (βEk) + cosh (βζ)

ξk
Ek

]
, (2.31)

while the equation for the excess particle density, accounting for a majority of particles in
one spin component in presence of imbalance, is

δn =− ∂Ωsp

∂ζ

∣∣∣∣
T,µ,∆

⇐⇒ δn =

∫
dk

(2π)3

sinh (βζ)

cosh (βEk) + cosh (βζ)
. (2.32)

The saddle point values for the order parameter and for the chemical potential obtained
from the solution of these equations will be frequently used in the rest of this thesis:
therefore the reader is addressed to the review paper [69] for a detailed discussion about
the derivation of equations (2.30)-(2.32) and on their solution.

2.3 Gradient expansion of the order paramenter

Despite giving reliable results that o�er a good agreement with experiment near T = 0, the
saddle point approximation proves to be unsuitable to describe the BEC-BCS crossover at
�nite temperature. This is mainly due to two reasons:

• it does not account for excitation modes other than the single-particle Bogoliubov
mode described by the dispersion relation (2.38).

• it does not include the e�ect of �uctuations of the order parameter.

To overcome these limitations we propose a beyond saddle point e�ective �eld theory that
can describe Fermi super�uids in the BEC-BCS crossover at �nite temperatures. The main
idea behind said e�ective �eld theory is to consider the order parameter Φ to be slowly
varying in both time and space. This is a weaker assumption with respect to the one at
the basis of the saddle point approximation and of the normal Ginzburg-Landau treatment
and is ultimately expected to lead to a larger applicability domain for the theory.
To implement the slow-variation requirement we are going to employ a gradient expansion
for the �eld Φ. In order to do so, as a �rst step we carry out in (2.23) a coordinate shift
with respect to2 x ≡ x1

xl −→ x+ x′l l 6= 1

2Notice that in the following x will be often identi�ed with x1: the two notations are both going to be
employed. While the notation x1 is used to make more apparent the order of the indices, which will prove
to be useful in the lengthy calculations of the following sections, the notation x is sometimes needed to
highlight the peculiar role of said variable.
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As a consequence of this shift the expression for the pairing component of the inverse
propagator F calculated in xl is given by

F(xl) =F(x+ x′l) = F(r + r′l, τ + τ ′l ) =

=F(r, τ) + τ ′l
∂F(r, τ)

∂τ
+ r′l · ∇rF(r, τ) +

1

2

∑
i,j

∂2F(r, τ)

∂xli∂xlj
x′lix

′
lj + · · · (2.33)

Keeping only the �rst few terms in this expansion corresponds precisely to the desired
assumption that the �eld Φ(r, τ) is slowly varying in space and time. Therefore in the
following calculations only the lowest-order non vanishing terms both in the space and time
derivatives will be retained. The e�ect of a gradient approximation on a generic function
f(x) is schematically depicted in Fig.2.2 where the analytic function f(x) is compared with
its gradient-approximated form f(xi) + df/dx|xiδx evaluated on a grid of spacing δx (for
two de�nitions of f). It is intuitively clear that the gradient approximation becomes more
accurate as the typical variation scale of the function gets larger.

Figure 2.2: The two functions tanh(2x)2 and tanh(10x)2 are compared to their gradient-
expanded form. It is intuitive to see that the gradient expansion is more accurate for the
slower-varying function.

Before carrying out the summation over the index p in the expression for the e�ective
action Seff (2.22) we separate every single term S

(p)
Φ depending on the pairing �eld into

three components
S

(p)
Φ = S

(p,0)
Φ + S

(p,τ)
Φ + S

(p,r)
Φ ,

where

• S(p,0)
Φ is the component without space or time derivatives;

• S(p,τ)
Φ describes the contributions coming from the inclusion of time derivatives;

• S(p,r)
Φ is the term accounting for the inclusion of spatial derivatives.
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2.4 Term without derivatives, S
(p,0)
Φ

In the calculation of S(p,0)
Φ , we consider just the contribution to the quantity S(p)

Φ coming
from the �rst term in the gradient expansion of the order parameter (2.33), i.e.

F(x+ x′l) −→ F(x).

From (2.23), the explicit expression for S(p,0)
Φ reads

S
(p,0)
Φ =

1

p

∫
dx · · ·

∫
dxp Tr [G0(x− x2)F(x)G0(x2 − x3)F(x) · · ·G0(xp − x)F(x)] . (2.34)

Inserting the Fourier series for G0(r, τ), which is given by

G0(r, τ) =
1

βV

∑
k,n

eik·r−iωnτG0(k, n), (2.35)

into (2.34) and carrying out all (but one) of the space- and time-integrals � namely inte-
grating over x2, . . . , xp � we get

S
(p,0)
Φ =

1

βV

∑
k,n

∫
d4x

1

p
Tr [(G0(k, n)F(x))p] .

This is a strange-looking but convenient �mixed-representation�, where the Green's func-
tions appear in their momentum-frequency notation, while the pairing matrices F appear
in the time-space form. The introduction of the reciprocal space representation of the
propagator G0 leads to a great simpli�cation of expression (2.34) obtained by the repeated
use of the integral representation of the delta function; on the other hand the time-space
representation for the matrix F is a convenient choice since it enables to keep track of
what elements of the gradient expansion of Φ (2.33) are being retained. To compute the
summation of the contributions S(p,0)

Φ to all orders in p,

∞∑
p=1

S
(p,0)
Φ ,

it is now convenient to treat separately the terms with even and odd powers of G0F.

Odd powers −→ Tr
[
(G0F)2l+1

]
Given the form of the matrices G0 (2.14) and F (2.11) it is easy to see that by multiplying
them an odd number of times we always obtain a 2 by 2 matrix with elements arranged in
the following way (

0 6= 0
6= 0 0

)
.
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It is then trivial to see than the trace always gives 0. Therefore we conclude that
∞∑
l=1

S
(2l+1,0)
Φ ∝

∞∑
l=1

1

2l + 1
Tr
[
(G0(k, n)F(x))2l+1

]
= 0.

Even powers −→ Tr
[
(G0F)2l

]
In order to study the behaviour of the elements S2l,0

Φ it is useful to consider the matrix
(G0F)2 and then calculate its integer powers, thus reproducing all the even powers of G0F.
The product (G0F)2 is diagonal

(G0(k, n)F(x))2 =

 |Φ(x)|2
(iωn+ζ)2−ξ2k

0

0 |Φ(x)|2
(iωn+ζ)2−ξ2k

 . (2.36)

Moreover from the explicit expression it emerges that the diagonal elements are equal. We
can thus write a simple formula for the trace of the terms with even powers of (G0F0),
namely

Tr
[
(G0(k, n)F(x))2l

]
= 2

(
|Φ(x)|2

(iωn + ζ)2 − ξ2
k

)l

.

∗ ∗ ∗

Consequently the component of the action coming from the �rst term in the gradient
expansion (2.33) is proportional to

∞∑
l=1

1

2l

(
|Φ(x)|2

(iωn + ζ)2 − ξ2
k

)l

.

The summation over l, including the prefactor 2, can be recast into the form
∞∑
p=1

(−x)p

p
= − ln(1 + x).

Therefore it follows that

2
∞∑
l=1

1

2l

(
|Φ(x)|2

(iωn + ζ)2 − ξ2
k

)l

= − ln

[
1 +

|Φ(x)|2

ξ2
k − (iωn + ζ)2

]
.

In conclusion we have that
∞∑
p=1

S
(p,0)
Φ =− 1

βV

∫
dr

∫ β

0

dτ
∑
k,n

(
ln

[
1 +

|Φ(x)|2

ξ2
k − (iωn + ζ)2

])
. (2.37)
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2.4.1 Digression: analysis of the term S0

Before going on with the calculation by tackling the sum over the fermionic Matsubara
frequencies appearing in (2.37) it is convenient to examine the term S0. As it turns out,
combining the contributions of S0 and Sp,0Φ before exploiting the Matsubara summation
makes this task easier, therefore the present derivation will follow this path. From the
de�nition in [69]

S0 = − ln
[
− det

(
−G−1

0

)]
,

the expression for S0 can be obtained by directly calculating the determinant of −G−1
0

(2.35). This eventually leads to

S0 =−
∑
k,n

ln
[
ξ2
k − (iω + ζ)2

]
.

∗ ∗ ∗

The expressions of S0 and
∑∞

p=1 S
(p,0)
Φ can be now combined to obtain

S0 +
∞∑
p=1

S
(p,0)
Φ =−

∑
k,n

ln
[
ξ2
k − (iω + ζ)2

]
+

− 1

βV

∫
d4x

∑
k,n

(
ln

[
1 +

|Φ(x)|2

ξ2
k − (iωn + ζ)2

])
=

=− 1

βV

∫
d4x

∑
k,n

(
ln
[
ξ2
k − (iωn + ζ)2 + |Φ(x)|2

])
.

Notice that, since the terms coming from S0 do not depend on the space-time coordinates
x, in order to collect everything under the integral sign, the identity 1

βV

∫
dr
∫ β

0
dτ = 1

was used.
The Matsubara summation over the fermionic frequencies ωn is performed in the standard
way [68,69] and gives∑

n

ln
[
ξ2
k − (iωn + ζ)2 + |Φ(x)|2

]
= [2 cosh (βEk(x)) + 2 cosh (βζ)]− βξk,

where Ek(x) is de�ned in analogy to (2.28) as

Ek(x) ≡
√
ξ2
k + |Φ(x)|2. (2.38)

The expression for S(0)
eff = SB + S0 +

∑∞
p=1 S

(p,0)
Φ then reads

S
(0)
eff =−

∫
d4x

{
m |Φ(x)|2

4πas
+

∫
dk

(2π)3

[
1

β
ln (2 cosh (βEk(x)) + 2 cosh (βζ))− ξk −

m |Φ(x)|2

k2

]}
.
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De�ning a thermodynamical potential Ωs(|Φ|2) that has the same form of the saddle-point
thermodynamic potential but accounts for the dependence on the coordinates (r, τ) of the
order parameter Φ as

Ωs(|Φ|) =− m|Φ(x)|2

4πas
+

−
∫

dk

(2π)3

{
1

β
ln [2 cosh (βEk(x)) + 2 cosh (βζ)]− ξk −

m |Φ(x)|2

k2

}
, (2.39)

the expression of S(0)
eff becomes simply

S
(0)
eff = SB + S0 + S

(0)
Φ =

∫
d4xΩs(|Φ(x)|).

2.5 Term with spatial gradient Sp,rΦ

After the calculation of the contribution S(0)
EFT coming from the �rst term in the expansion

of the �eld matrix F, the next lowest order terms arising from the gradient expansion must
be considered in order to obtain the additional contributions to the EFT action: the form
of the gradient expansion (2.33) makes it possible to treat separately the terms involving a
�time�-derivative and those involving a space gradient. This section will be devoted to the
study of the corrections to the action coming from the elements of the gradient expansion
of the pair �eld matrix F involving spatial gradients, namely we set

F(x+ x′l) = F(x) + r′l · ∇rF(x) +
1

2

∑
α,β

∂2F(x)

∂xlα∂xlβ
x′lαx

′
lβ + · · ·

(since the notation can lead to misunderstandings it is worth remarking that in the following
the latin indices will always label the momenta relative to di�erent Green's functions, while
the greek indices α and β run only over the 3 spatial dimensions).
The action component S(p)

Φ reads

S
(p)
Φ =

1

p

∫
d4x · · ·

∫
d4xp

×Tr



F(x)G0(x− x2)×
×
[
F(r, τ) + r′2 · ∇rF(x) + 1

2

∑
α,β

∂2F(x)
∂x2α∂x2β

x′2αx
′
2β + · · ·

]
G0(x2 − x3)×

×
[
F(r, τ) + r′3 · ∇rF(x) + 1

2

∑
α,β

∂2F(x)
∂x3i∂x3j

x′3αx
′
3β + · · ·

]
G0(x3 − x4)×

× · · ·×
×
[
F(r, τ) + r′p · ∇rF(x) + 1

2

∑
α,β

∂2F(x)
∂xpα∂xpβ

x′pαx
′
pβ + · · ·

]
G0(xp − x)


From the last expression it can be seen that the lowest order non vanishing terms in the
spatial gradients can have two possible origins:
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(a) terms linear in the second derivative 1
2

∑
α,β

∂2F(x)
∂xlα∂xlβ

x′lαx
′
lβ. It has to be noticed that,

since our system is spherically symmetric, the only non-zero contribution to these
terms comes from those in which α = β.

(b) terms coming from the product of two �rst derivatives (∇rF(x)) · (∇rF(x)).

Again, given the form of the gradient expansion (2.33) it becomes clear that the contribu-
tions of these two kind of terms can be examined separately and then summed to obtain the
total component S(p,r)

Φ coming from all lowest-order terms with space derivatives, namely

S
(r)
Φ =

∑
p

S
(p,r)
Φ =

∑
p

(
S

(p,r,a)
Φ + S

(p,r,b)
Φ

)
.

In the remainder of this section we will then proceed to the calculation of S(p,r,a)
Φ and S(p,r,b)

Φ

separately.

2.5.1 Term S
(p,r,a)
Φ

In order to calculate S(p,r,a)
Φ , the contribution to the action coming from terms linear in

the second space-derivatives, the lowest-order non-zero contributions in

1

p

∫
d4x · · ·

∫
d4xp

× Tr



F(x)G0(x− x2)×
×
[
F(x) + 1

2

∑
α
∂2F(x)

∂x22j
(x′2α)2

]
G0(x2 − x3)×

×
[
F(x) + 1

2

∑
α
∂2F(x)

∂x23j
(x′3α)2

]
G0(x3 − x4)×

× · · ·×
×
[
F(x) + 1

2

∑
α
∂2F(x)

∂x2pj
(x′pα)2

]
G0(xp − x)


must be isolated.

Calculation

Selecting only the terms where the second derivative appears one single time leads to

S
(p,r,a)
Φ =

1

p

∫
d4x

∫
d4x2 · · ·

∫
d4xp

×Tr


F(x)G0(x− x2) 1

2

∑
α
∂2F(x)
∂x2

2α
(x′2α)2G0(x2 − x3)F(x)G0(x3 − x4) · · ·F(x)G0(xp − x)+

+F(x)G0(x− x2)F(x)G0(x2 − x3) 1
2

∑
α
∂2F(x)
∂x2

3α
(x′3α)2G0(x3 − x4) · · ·F(x)G0(xp − x)+

+ · · ·+
+F(x)G0(x− x2)F(x)G0(x2 − x3)F(x)G0(x3 − x4) · · · 1

2

∑
α
∂2F(x)
∂x2
pα

(x′pα)2G0(xp − x)

 .
(2.40)
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To simplify the calculations it is now convenient to perform a coordinate shift in the following way:

xi = xi−1 + yi i = 2, 3, ..., p ,

which (remembering the identi�cation x1 = x form the previous section) corresponds to

x2 = x+ y2

x3 = x2 + y3 = x+ y2 + y3

· · ·
xi = xi−1 + yi = x+

∑i
j=2 yj

· · ·
xp = xp−1 + yp = x+ y2 + y3 + · · ·+ yp

. (2.41)

As a result of this shift (2.40) can be rewritten as

S
(p,r,a)
Φ =

1

2p

∫
d4x · · ·

∫
d4xp

×Tr


F(x)G0(−y2)

∑
α
∂2F(x)
∂x2
α

(y2α)2G0(−y3)F(x) · · ·F(x)G0(y2 + · · ·+ yp)+

+F(x)G0(−y2)F(x)G0(−y3)
∑
α
∂2F(x)
∂x2
α

(y2α + y3α)2 · · ·F(x)G0(y2 + · · ·+ yp)+

+ · · ·+
+F(x)G0(−y2)F(x)G0(−y3)F(x) · · ·

∑
α
∂2F(x)
∂x2
α

(y2α + · · ·+ ypα)2G0(y2 + · · ·+ yp)

 .
Inserting the Fourier expansion for G0 (2.35) in the terms of the sum inside the trace sign in (2.40) we
obtain

S
(p,r,a)
Φ =

1

2p

∫ β

0

dτ

∫ β

0

dτ2 · · ·
∫ β

0

dτp

∫
dr

∫
dr2 · · ·

∫
drp

1

(βV )p

∑
k1,··· ,kp

∑
n1,··· ,np

×Tr


F(x)G0(k2, n2)

∑
α
∂2F(x)
∂x2
α

(y2α)2G0(k3, n3)F(x)G0(k4, n4) · · ·F(x)G0(k1, n1)+

+F(x)G0(k2, n2)F(x)G0(k3, n3)
∑
α
∂2F(x)
∂x2
α

(y2α + y3α)2 · · ·F(x)G0(k1, n1)+

+ · · ·+
+F(x)G0(k2, n2)F(x)G0(k3, n3)F(x) · · ·

∑
α
∂2F(x)
∂x2
α

(y2α + · · ·+ ypα)2G0(k1, n1)


e−ik2·y2−ik3·y3−···+ik1·(y2+···+yp)eiωn2τ

′
2+iωn3τ

′
3+···−iωn1(τ ′2+···+τ ′p).

The imaginary time integrations are trivial and give rise to Kronecker deltas: after summing over n2, · · · , np
only the single fermionic frequency n1 is left (that will be from now on renamed as n1 −→ n), hence

S
(p,r,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

∫
dr2 · · ·

∫
drp

1

(βV )p

∑
k1,··· ,kp

∑
n

×Tr


F(x)G0(k2, n)

∑
α
∂2F(x)
∂x2
α

(y2α)2G0(k3, n)F(x)G0(k4, n) · · ·F(x)G0(k1, n)+

+F(x)G0(k2, n)F(x)G0(k3, n)
∑
α
∂2F(x)
∂x2
α

(y2α + y3α)2 · · ·F(x)G0(k1, n)+

+ · · ·+
+F(x)G0(k2, n)F(x)G0(k3, n)F(x) · · ·

∑
α
∂2F(x)
∂x2
α

(y2α + · · ·+ ypα)2G0(k1, n)


e−ik2·y2−ik3·y3−···+ik1·(y2+···+yp).

De�ning the di�erential matrix

Pα =
∂2F(x)

∂x2
α

, (2.42)
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the above expression can be rewritten in a more compact notation as

S
(p,r,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

∫
dr2 · · ·

∫
drp

1

(βV )p

∑
k1,··· ,kp

∑
n

×Tr


F(x)G0(k2, n)

∑
α(y2α)2PαG0(k3, n)F(x)G0(k4, n) · · ·F(x)G0(k1, n)+

+F(x)G0(k2, n)F(x)G0(k3, n)
∑
α(y2α + y3α)2PαG0(k4, n) · · ·F(x)G0(k1, n)+

+ · · ·+
+F(x)G0(k2, n)F(x)G0(k3, n)F(x)G0(k4, n) · · ·

∑
α(y2α + · · ·+ ypα)2PαG0(k1, n)


e−ik2·y2−ik3·y3−···+ik1·(y2+···+yp).

The space-integrals over r, r2, · · · , rp still need to be computed, and to do so it is convenient to use the
relation

yiαe
−ik2·y2−ik3·y3−···−ikp·yp = i

∂

∂kiα
e−ik2·y2−ik3·y3−···−ikp·yp ≡ ŷiαe−ik2·y2−ik3·y3−···−ikp·yp , (2.43)

where the operators ŷiα, de�ned as ŷiα ≡ i ∂
∂kiα

, were introduced. Therefore

S
(p,r,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

∫
dr2 · · ·

∫
drp

1

βV p

∑
k1,··· ,kp

∑
n

×Tr


F(x)G0(k2, n)

∑
α(ŷ2α)2PαG0(k3, n)F(x)G0(k4, n) · · ·F(x)G0(k1, n)+

+F(x)G0(k2, n)F(x)G0(k3, n)
∑
α(ŷ2α + ŷ3α)2PαG0(k4, n) · · ·F(x)G0(k1, n)+

+ · · ·+
+F(x)G0(k2, n)F(x)G0(k3, n)F(x)G0(k4, n) · · ·

∑
α(ŷ2α + · · ·+ ŷpα)2PαG0(k1, n)


e−ik2·y2−ik3·y3−···+ik1·(y2+···+yp).

It is �nally possible to carry out the integrations over r, r2, · · · , rp and it is straightforward to see that the
result is a series of Kronecker deltas that, together with the sum over k1,k2, · · · ,kp, lead to the condition
k1 = k2 = · · · = kp, namely

S
(p,r,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

1

βV

∑
k

∑
n

×Tr


F(x)G0(k, n)

∑
α(ŷ2α)2PαG0(k, n)F(x)G0(k, n) · · ·F(x)G0(k, n)+

+F(x)G0(k, n)F(x)G0(k, n)
∑
α(ŷ2α + ŷ3α)2PαG0(k, n) · · ·F(x)G0(k, n)+

+ · · ·+
+F(x)G0(k, n)F(x)G0(k, n)F(x)G0(k, n) · · ·

∑
α(ŷ2α + · · ·+ ŷpα)2PαG0(k, n)

 =

=
1

2p

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

∑
α

×Tr


(ŷ2α)2F(x)G0(k, n)PαG0(k, n)F(x)G0(k, n) · · ·F(x)G0(k, n)+

+(ŷ2α + ŷ3α)2F(x)G0(k, n)F(x)G0(k, n)PαG0(k, n) · · ·F(x)G0(k, n)+
+ · · ·+
+(ŷ2α + · · ·+ ŷpα)2F(x)G0(k, n)F(x)G0(k, n)F(x)G0(k, n) · · ·PαG0(k, n)

 .
Exploiting the cyclic permutation of the indices as

2 3 4 5 · · · p− 3 p− 2 p− 1 p
−→ p p− 1 p− 2 p− 3 · · · 5 4 3 2

, (2.44)
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i.e. 
ŷ2 −→ ŷp

ŷ3 −→ ŷp−1

· · ·
ŷp −→ ŷ2

,

we can rearrange the terms in the last expression in order to bring the operator Pα at the right side in
every line and hence group all the traces together as

S
(p,r,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

∑
α

[
(ŷpα)2 + (ŷpα + ŷp−1α)2 + · · ·+ (ŷpα + · · ·+ ŷ2α)2

]
×Tr [G0(k, n)F(x)G0(k, n)F(x)G0(k, n) · · ·F(x)G0(k, n)Pα]︸ ︷︷ ︸

p couples of operators

. (2.45)

Exploiting the spherical symmetry of the system, the sum over the index α can be reduced in the following
way

[· · · ]Pα =
1

3

3∑
α=1

[· · · ]Pα =
1

3
[· · · ]∇2

rF(x).

It can be demonstrated that the result of the integration by parts on the k-space (in the continuum limit
for the momenta k) consists in the change

[
(ŷpα)2 + (ŷpα + ŷp−1α)2 + · · ·+ (ŷpα + · · ·+ ŷ2α)2

]
−→ −

p−1∑
s=1

[
s

p−s∑
i=1

ŷiαŷi+s α

]
. (2.46)

It is useful to show how this substitution comes in place in the easiest possible case, i.e. when p = 2: the
integration that has to be carried out is∫

dk
∑
α

(ŷ2α)
2

Tr [G0(k1, n)F(x)G0(k2, n)Pα]{k1=k2=k} =

=−
∫
dk
∑
α

∂2

∂k2
2α

Tr [G0(k1, n)F(x)G0(k2, n)Pα]{k1=k2=k} =

= +

∫
dk
∑
α

∂

∂k1α

∂

∂k2α
Tr [G0(k1, n)F(x)G0(k2, n)Pα]{k1=k2=k} =

=−
∫
dk
∑
α

(ŷ1α) (ŷ2α) Tr [G0(k1, n)F(x)G0(k2, n)Pα]{k1=k2=k} ,

where the subscripts for the momenta inside the trace were restored to make the notation more clear. From
the left hand side of (2.46) we can also calculate the total number of terms that arise from the integration
by parts; for p = 2l this is found to be

N2l =

2l−1∑
s=1

[
s

2l−s∑
i=1

(1)

]
=

1

3
l
(
4l2 − 1

)
. (2.47)

In the last expression the sum inside the square brackets describes the number of terms appearing inside
each of the round brackets in (2.46), while the outer summation counts the number of separate round
bracket terms.
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Equation (2.45) becomes

S
(2l,r,a)
Φ =− 1

3

1

4l

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

∑
α

p−1∑
s=1

[
s

p−s∑
i=1

ŷiαŷi+s α

]
(2.48)

×Tr
[
G0(k1, n)F(x)G0(k2, n)F(x)G0(k3, n) · · ·F(x)G0(kp, n)∇2

rF(x)
] ∣∣∣

ki=k
.

As in the calculation of the contribution coming from the terms without gradients, it is now necessary
to make a distinction between the terms with odd (s − 1) and those with even (s − 1). As it is clear
from (2.48) the number (s− 1) corresponds to the number of (couples of) operators G0F that lie between
G0(ki, n)F and G0(ki+s)F with i and i+ s being the indices of the momenta on which the two operators
ŷ act in every term of the summation over the index i.

Terms with even (s− 1)

The term with s = 1 is

ŷiαŷi+1αG0(ki, n)F(x)G0(ki+1, n)F(x)
∣∣∣
ki=ki+1

= −∂G0(ki, n)

∂kiα
F(x)

∂G0(ki+1, n)

∂ki+1α
F(x)

∣∣∣
ki=ki+1

. (2.49)

The momentum derivatives give

ŷiαG0(ki, n) = i
∂G0(ki, n)

∂kiα
= i

kiα
m

( 1

(iωn−ξki+ζ)
0

0 − 1

(iωn+ξki+ζ)

)
≡ i

kiα
m

G1(ki, n) : (2.50)

therefore (2.49) becomes

ŷiαŷi+1αG0(ki, n)F(x)G0(ki+1, n)F(x)
∣∣∣
ki=ki+1

= −k
2
α

m
[G1(k, n)F(x)]

2

=
k2
α

m

|Φ(x)|2(
ξ2
k − (iωn + ζ)

2
)2

(
1 0
0 1

)
. (2.51)

It must be noticed that there is a particular term appearing in the trace that needs special attention. This
is the term in which one of the ŷ operators acts on the momentum that labels the Green's function G0

immediately to the left of the space derivative ∇2
rF(x) of the pairing component F. Also this term can be

rewritten as a diagonal matrix as

ŷp−1αŷpαG0(kp−1, n)F(x)G0(kp, n)∇2
rF(x)

∣∣∣
kp−1=kp

=
k2
α

m

 Φ∗(x)∇2
rΦ(x)

(ξ2k−(iωn+ζ)2)
2 0

0
Φ(x)∇2

rΦ∗(x)

(ξ2k−(iωn+ζ)2)
2

 . (2.52)

Given the form of the elements (2.51) and (2.52) all of the even-(s− 1) terms can be reduced to the shape
of the ones with s = 1.

Terms with odd (s− 1)

The lowest-s term with odd (s− 1) is the one with s = 2: to study it we calculate the quantity

ŷiαŷi+2αG0(ki, n)F(x)G0(ki+1, n)F(x)G0(ki+2, n)F(x)G0(ki+3, n)F(x)
∣∣∣
ki=ki+1=ki+2=ki+3

=

=
k2
α

m2
G1(k, n)F(x)G0(k, n)F(x)G1(k, n)F(x)G0(k, n)F(x) =

=
k2
α

m2

|Φ(x)|4(
ξ2
k − (iωn + ζ)

2
)2

(
1

((iωn+ζ)−ξk)2
0

0 1
((iωn+ζ)+ξk)2

)
.
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The term with the space derivative ∇2
rF(x) becomes instead

ŷp−2αŷpαG0(kp−3, n)F(x)G0(kp−2, n)F(x)G0(kp−1, n)F(x)G0(kp, n)∇2
rF(x)

∣∣∣
kp=kp−1=kp−2=kp−3

=

=
k2
α

m2
G1(k, n)F(x)G0(k, n)F(x)G1(k, n)F(x)G0(k, n)∇2

rF(x) =

=
k2
α

m2

|Φ(x)|2(
ξ2
k − (iωn + ζ)

2
)2

 Φ∗(x)∇2
rΦ(x)

((iωn+ζ)−ξk)2
0

0
Φ(x)∇2

rΦ∗(x)

((iωn+ζ)+ξk)2

 =

=
k2
α

m2
|Φ(x)|2

 Φ∗(x)∇2
rΦ(x)

((iωn+ζ)−ξk)4((iωn+ζ)+ξk)2
0

0
Φ(x)∇2

rΦ∗(x)

((iωn+ζ)−ξk)2((iωn+ζ)+ξk)4

 .

We can conclude that also for odd-(s− 1) terms all the elements are diagonal and so we can reduce every

other term to the form of the one relative to s = 2. The action component S
(2l,r,a)
Φ results then

S
(2l,r,a)
Φ =− 1

3

1

4l

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

∑
j[

N
(odd)
2l Tr

[
(G0F)

2(l−2)
ŷp−2ŷpG0(kp−3, n)FG0(kp−2, n)FG0(kp−1, n)FG0(kp, n)∇2

rF
]

+

+N
(even)
2l Tr

[
(G0F)

2(l−1)
ŷp−1ŷpG0(kp−1, n)F(x)G0(kp, n)∇2

rF(x)
] ]∣∣∣∣∣

k1= ···=kp=k

. (2.53)

The numbers N
(odd)
2l and N

(even)
2l can be calculated in the same way as we have calculated N2l in (2.47):

N
(odd)
2l =

2l∑
s even, s=1

(
s

2l−s∑
i=1

(1)

)
=

l∑
m=1

(
2m

2l−2m∑
i=1

(1)

)
=

=
2

3
l
(
l2 − 1

)
, (2.54)

N
(even)
2l =

2l∑
s odd, s=1

(
s

2l−s∑
i=1

(1)

)
=

l∑
m=1

(
(2m− 1)

2l−2m+1∑
i=1

(1)

)
=

=
1

3
l
(
2l2 + 1

)
. (2.55)
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Including these explicit relations and those for the traces, the complete expression for the action component

S
(2l,r,a)
Φ (2.53) becomes

S
(2l,r,a)
Φ =− 1

12

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

k2

m[
2(l2 − 1)

3

1

ξ2
k − (iωn + ζ)

2

(
− |Φ|2

ξ2
k − (iωn + ζ)

2

)l−1

×

× Tr

− Φ∗(x)∇2
rΦ(x)

((iωn+ζ)+ξk)2
0

0 − Φ(x)∇2
rΦ∗(x)

((iωn+ζ)−ξk)2

+

+
2l2 + 1

3

1(
ξ2
k − (iωn + ζ)

2
)2

(
− |Φ|2

ξ2
k − (iωn + ζ)

2

)l−1

×

× Tr

(
Φ∗(x)∇2

rΦ(x) 0
0 Φ(x)∇2

rΦ∗(x)

)]
.

We can notice that in the previous expression the Matsubara frequencies ωn appear always in combinations
with ζ. We can therefore de�ne new �shifted� Matsubara frequencies νn such that

iνn = iωn + ζ. (2.56)

With this substitution we get the following expression for S
(2l,r,a)
Φ :

S
(2l,r,a)
Φ =− 1

12

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

k2

m2[
2l2 + 1

3

1

(ξ2
k + ν2

n)
2

(
− |Φ|2

ξ2
k + ν2

n

)l−1

Tr

(
Φ∗(x)∇2

rΦ(x) 0
0 Φ(x)∇2

rΦ∗(x)

)
+

+
2(l2 − 1)

3

(
− |Φ|2

ξ2
k + ν2

n

)l−1

Tr

− Φ∗(x)∇2
rΦ(x)

(iνn−ξk)4(iνn+ξk)2
0

0 − Φ(x)∇2
rΦ∗(x)

(iνn−ξk)2(iνn+ξk)4

]

It can be observed that, in the �rst term inside the square brackets, all the factors with exception of those
inside the trace are proportional to 1

ξ2k+ν2
n
, hence the expression can be symmetrised with the replacement

νn −→ −νn and becomes

S
(2l,r,a)
Φ =− 1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

Tr

(
Φ∗(x)∇2

rΦ(x) 0
0 Φ(x)∇2

rΦ∗(x)

)
×

[
2l2 + 1

3

k2

3m2

1

(ξ2
k + ν2

n)
2

(
− |Φ|2

ξ2
k + ν2

n

)l−1

+

+
2(l2 − 1)

3

k2

3m2
|Φ|2

(
1

(ξ2
k + ν2

n)
3 −

2ξ2
k

(ξ2
k + ν2

n)
4

)(
− |Φ|2

ξ2
k + ν2

n

)l−2 ]
. (2.57)



36 2.5. Term with spatial gradient Sp,rΦ

∗ ∗ ∗

After the necessary simpli�cations, the �nal form of the action component S(2l,r,a)
Φ yields

S
(2l,r,a)
Φ =− 1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

k2

3m2
Tr

(
Φ∗(x)∇2

rΦ(x) 0
0 Φ(x)∇2

rΦ∗(x)

)
×

×

(
1

(ξ2
k + ν2

n)
2 +

4

3
(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
3

)(
− |Φ|2

ξ2
k + ν2

n

)l−1

. (2.58)

2.5.2 Term S
(p,r,b)
Φ

In this section we are going to discuss the calculation of the other term involving spatial
derivatives: S(p,r,b)

Φ . Even though the calculation can be again performed following the
procedure described in the previous subsection, we will now provide another method to
reach the result.
From (2.54), (2.55) and (2.57) it can be seen that, once the terms are classi�ed between
even and odd, the coe�cients of the traces appearing in the expression of S(2l,r,a)

Φ are
polynomials of l. The degree of such polynomials is one unit lower than the one of N (even)

2l

and N (odd)
2l . This is due to the presence of the factor p (here 2l) at the denominator in front

of every term in the expansion (2.22) that cancels one power of l at the numerator. In the
following we will use this observation to calculate the expression for S(2l,r,b)

Φ . The �rst step
in the calculation of the action component is then the determination of N2l. The starting
expression is once again

1

p

∫
d4x · · ·

∫
d4xp

× Tr


F(x)G0(x− x2)×
× [F(x) + r′2 · ∇rF(x)]G0(x2 − x3)×
× [F(x) + r′3 · ∇rF(x)]G0(x3 − x4)×
× · · ·×
×
[
F(x) + r′p · ∇rF(x)

]
G0(xp − x)

 .

Calculation

Using manipulation techniques analogous to those in the previous section � i.e. selecting the second
order terms in ∇rF, moving to the Fourier representation and performing the necessary time- and space-
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integrations � the last expression can be reduced to

S
(2l,r,b)
Φ =

1

2l

∫ β

0

dτ

∫
dr

1

βV

∑
k

∑
n

3∑
α=1

2l − 2
lines



Tr
[
FG0(k, n)

(
ŷ2α

∂F(x)
∂xα

)
G0(k, n)

(
(ŷ2α + ŷ3α)∂F(x)

∂xα

)
G0(k, n)F× · · ·×

× · · · × FG0(k, n)FG0(k, n)+
+ · · ·+
+FG0(k, n)

(
ŷ2α

∂F(x)
∂xα

)
G0(k, n)FG0(k, n)F× · · ·×

× · · · ×G0(k, n)
(

(ŷ2α + · · ·+ ŷ2lα)∂F(x)
∂xα

)
G0(k, n)+

2l − 3
lines


+FG0(k, n)FG0(k, n) ((ŷ2α + ŷ3α) · ∇rF)G0(k, n)

(
(ŷ2α + ŷ3α + ŷ4α)∂F(x)

∂xα

)
×

× · · · × FG0(k, n)FG0(k, n)+
+ · · ·+
+FG0(k, n)FG0(k, n) ((ŷ2α + ŷ3α) · ∇rF)G0(k, n)F× · · ·×

× · · · ×G0(k, n)
(

(ŷ2α + · · ·+ ŷ2lα)∂F(x)
∂xα

)
G0(k, n)+

+ · · ·+

1 line

{ +FG0(k, n)FG0(k, n)FG0(k, n)F× · · ·×
×
(

(ŷ2α + · · ·+ ŷ2l−1α)∂F(x)
∂xα

)
G0(k, n)

(
(ŷ2α + · · ·+ ŷ2lα)∂F(x)

∂xα

)
G0(k, n)

]
. (2.59)

Notice that again, due to considerations on the diagonal or antidiagonal shape of the matrices, we
have introduced the condition p = 2l. To calculate the total number of terms N2l we �rst need to know
the total number of lines in (2.59). This is easily calculated as

N lines
2l =

2l−1∑
i=2

(2l − i) = (l − 1)(2l − 1). (2.60)

This means that the sum in brackets in (2.59) is composed by (l−1)(2l−1) lines where the generic addend
has the form

(matrices)(· · ·+ ŷj)
∂F(x)

∂x
(matrices)(

k∑
s=2

ŷs)
∂F(x)

∂x
(matrices) with k ∈ {j, ..., p}.

As a �rst step we consider the �rst group of terms, those with j = 2: as shown by the green brackets in
(2.59) there are 2l − 2 of these elements, i.e.

(matrices)(ŷ2)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3)

∂F(x)

∂x
(matrices)+

+(matrices)(ŷ2)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3 + ŷ4)

∂F(x)

∂x
(matrices)+

+ · · ·+

+(matrices)(ŷ2)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3 + · · ·+ ŷk)

∂F(x)

∂x
(matrices)+

+ · · ·+

+(matrices)(ŷ2)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3 + · · ·+ ŷ2l)

∂F(x)

∂x
(matrices).

Labeling every line with the highest subscript k of the operators ŷ in the brackets on the right, it emerges
that the kth line is composed by k − 1 terms. The total number of terms with j = 2 is therefore

2l∑
k=3

(k − 1) = (l − 1)(2l + 1).
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For what concerns the term with j = 3 we have

(matrices)(ŷ2 + ŷ3)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3 + ŷ4)

∂F(x)

∂x
(matrices)+

+(matrices)(ŷ2 + ŷ3)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3 + ŷ4 + ŷ5)

∂F(x)

∂x
(matrices)+

+ · · ·+

+(matrices)(ŷ2 + ŷ3)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3 + ŷ4 + · · ·+ ŷk)

∂F(x)

∂x
(matrices)

+ · · ·+

+(matrices)(ŷ2 + ŷ3)
∂F(x)

∂x
(matrices)(ŷ2 + ŷ3 + ŷ4 + · · ·+ ŷ2l)

∂F(x)

∂x
(matrices).

This time the kth line is composed of 2(k − 1) terms that add up to a total of

2l∑
k=4

2(k − 1) = 2(1 + l)(2l − 3).

From these properties a general relation can be obtained that gives the total number of terms for a given
value of j: this reads

2l∑
k=j+1

(j − 1)(k − 1).

The total number of terms in (2.59) is then

2l−1∑
j=2

2l∑
k=j+1

(j − 1)(k − 1) =
1

6
l(l − 1)(2l − 1)(6l − 1).

This is not yet the �nal result, in fact up to now we haven't taken into account the fact that some of the
previously calculated terms are of the form ŷ2 and have to be treated di�erently. As seen in the previous
section the integration by parts in the k space has the result of substituting

y2
s −→ −ŷs

∑
s′ 6=s

ŷs′ . (2.61)

This means that every ŷ2-term will give rise to 2l − 1 new terms. We can observe that for a given j, on
every line we have exactly (j − 1) ŷ2-elements. So from the (j − 1)(k− 1) elements present on the kth line
for a given j we have to subtract the (j−1) ŷ2-elements and sum the (j−1)(2l−1) elements that originate
from the integration by parts. This is not a trivial passage though: looking at the result of the integration
by parts (2.61) it can be noticed that some of the terms originating from it can cancel out some of the
original ones. Taking into account only the dependency on ŷ, the schematic form of the expression inside
the trace of (2.59) for a generic value of l reads:

Y0(l) ≡
2l−1∑
j=2

 2l∑
k=j+1

(
j∑
i=2

ŷi

)(
k∑

i′=2

ŷi′

) .
For example, for l = 2 this becomes

Y0(2) =ŷ2 (ŷ2 + ŷ3)+

+ŷ2 (ŷ2 + ŷ3 + ŷ4)+

+(ŷ2 + ŷ3) (ŷ2 + ŷ3 + ŷ4).
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Exploiting the substitutions (2.61) due to the integration by parts in the k-space leads to

Y (2) = −ŷ1(3ŷ2 + ŷ3)− ŷ2ŷ4.

In general, an expression Y (l) can be de�ned that accounts for the e�ect of the integration by parts on
Y0(l). For a given value of l this can be written as

Y (l) =

2l∑
i=1

2l∑
i′=1

C(l)ii′ ŷiŷi′ =
(
ŷ1 · · · ŷ2l

)
C(l)

 ŷ1

...
ŷ2l

 .

From the calculation of C(l) for a few values of l it becomes evident that the coe�cients on every line of
the matrices C(l) are related to the series

0 1 3 6 10 15 21 28 36 · · ·

whose ith element can be written in the compact expression
∑i
k=0 k. Given this notion we can �nd a

general formula for Y (l), i.e.

Y (l) = −
2l∑
j=2

2l−j∑
k=0

k ŷ1ŷj −
2l∑
j=2

2l∑
i=2

i−(j+1)∑
k=0

k ŷiŷj ,

where the �rst term describes the �rst row of every matrix C(l) and the second term describes all of the
remaining rows. In order to �nd the total number of terms ŷiŷi′ we calculate

N
(tot)
2l =

2l∑
j=2

2l−j∑
k=0

(1) k +

2l∑
j=2

2l∑
i=2

i−(j+1)∑
k=0

(1) k =

=
1

6
l(l − 1)(2l + 1)(2l − 1), (2.62)

Therefore the combinatorial weights in the �nal expression of S
(2l,r,b)
Φ are expected to be polynomials of

(at most) 3rd degree. At this point the lower order terms of S
(2l,r,b)
Φ can be straightforwardly computed,

giving as a result

S
(2,r,b)
Φ = 0, (2.63)

S
(4,r,b)
Φ =

1

4

∫ β

0

dτ

∫
dx

1

βV

∑
k,n

k2

3m2
×

×

 8
ξ2k

(ω2
n+ξ2k)

4 Φ∗Φ (∇rΦ∗ · ∇rΦ)

+ 1

(ω2
n+ξ2k)

3

[
(Φ∇rΦ∗)

2
+ (Φ∗∇rΦ)

2
]
 , (2.64)

S
(6,r,b)
Φ =

1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

k2

3m2

(
− w

ω2
n + ξ2

k

)
×

×

 32
ξ2k

(ω2
n+ξ2k)

4 Φ∗Φ (∇rΦ∗ · ∇rΦ)

+

(
2

(ω2
n+ξ2k)

3 + 16
3

ξ2k

(ω2
n+ξ2k)

4

)[
(Φ∇rΦ∗)

2
+ (Φ∗∇rΦ)

2
]
 , (2.65)
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and

S
(8,r,b)
Φ =

1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

k2

3m2

(
− w

ω2
n + ξ2

k

)2

×

×


80ξ2k

(ω2
n+ξ2k)

4 Φ∗Φ (∇rΦ∗ · ∇rΦ)

+

(
3

(ω2
n+ξ2k)

3 +
20ξ2k

(ω2
n+ξ2k)

4

)[
(Φ∇rΦ∗)

2
+ (Φ∗∇rΦ)

2
]
 . (2.66)

Let us seek the general S
(2l,r,b)
Φ in the form

S
(2l,r,b)
Φ =

1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

k2

3m2

(
− w

ω2
n + ξ2

k

)l−2

×

×

 αl
ξ2k

(ω2
n+ξ2k)

4 Φ∗Φ (∇rΦ∗ · ∇rΦ)

+

(
βl

1

(ω2
n+ξ2k)

3 + ηl
ξ2k

(ω2
n+ξ2k)

4

)[
(Φ∇rΦ∗)

2
+ (Φ∗∇rΦ)

2
]
 , (2.67)

where the coe�cients

αl = a1l
3 + b1l

2 + c1l + d1, (2.68)

βl = a2l
3 + b2l

2 + c2l + d2, (2.69)

ηl = a3l
3 + b3l

2 + c3l + d3, (2.70)

are to be determined. Using (2.63) to (2.66), the following systems of equations are obtained,


α1 = 0
α2 = 8
α3 = 32
α4 = 80

,


β1 = 0
β2 = 1
β3 = 2
β4 = 3

,


η1 = 0
η2 = 0
η3 = 16

3
η4 = 20

,

which have to be solved for {a1, b1, c1, d1}, {a2, b2, c2, d2}, {a3, b3, c3, d3} respectively. As a result, the
coe�cients αl, βl, and ηl can be determined. By plugging the solutions in (2.68)-(2.70) we �nally get

αl =
4

3
l (l − 1) (l + 1) ,

βl = l − 1,

ηl =
2

3
(l − 1) (l − 2) (l + 1) .
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∗ ∗ ∗

The resulting contribution S(2l,r,b)
Φ eventually reads

S
(2l,r,b)
Φ =

1

2

∫ β

0

dτ

∫
dr (∇rΦ∗ · ∇rΦ)×

× 1

βV

∑
k,n

k2

3m2

(
−2

3
l(l − 1)(l + 1)

ξ2
k

(ξ2
k + ν2)

3

)(
− |Φ|2

ξ2
k + ν2

)l−1

+

+
1

2

∫ β

0

dτ

∫
dr
[
(Φ∗∇rΦ)2 + (Φ∇rΦ∗)2]×

× 1

βV

∑
k,n

k2

3m2

(
l − 1

2 (ξ2 + ν2)3 +
1

3
(l2 − 1)(l − 2)

ξ2
k

(ξ2 + ν2)4

)(
− |Φ|2

ξ2 + ν2

)l−2

.

(2.71)

2.5.3 Complete term S
(2l,r)
Φ

The expressions of S(2l,r,a)
Φ and S

(2l,r,b)
Φ can be �nally rearranged in order to obtain a

complete and compact expression for the component of the e�ective action SEFT involving
spatial derivatives of the order parameter, S(2l,r)

Φ . As a �rst step an integration by parts
on the space-variable r is performed, namely∫

dr
(
Φ∗(x)∇2

rΦ(x) + Φ(x)∇2
rΦ∗(x)

)
|Φ|2(l−1) =

=

∫
dr
(

2l |Φ|2(l−1) (∇rΦ∗ · ∇rΦ) + (l − 1) |Φ|2(l−2) [(Φ∗∇rΦ)2 + (Φ∇rΦ∗)2]) .
Given this substitution, S(2l,r,a)

Φ (2.58) becomes

S
(2l,r,a)
Φ =

1

2

∫ β

0

dτ

∫
dr (∇rΦ∗ · ∇rΦ)×

× 1

βV

∑
k,n

k2

3m2

(
l

1

(ξ2
k + ν2

n)
2 +

4

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
3

)(
− |Φ|2

ξ2
k + ν2

n

)l−1

+

+
1

2

∫ β

0

dτ

∫
dr
[
(Φ∗∇rΦ)2 + (Φ∇rΦ∗)2]×

× 1

βV

∑
k,n

k2

3m2

(
l − 1

2 (ξ2
k + ν2

n)
3 +

4

3

l − 1

2
(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
4

)(
− |Φ|2

ξ2
k + ν2

n

)l−2

.

By comparing the last expression with the one for S(2l,r,b)
Φ (2.71) it becomes clear that

now the factors containing the derivatives have the same form and therefore the respective
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coe�cients can be easily combined. We thus obtain an expression for the total contribution
S

(2l,r)
Φ = S

(2l,r,a)
Φ +S

(2l,r,b)
Φ originating from the terms with spatial derivatives in the gradient

expansion for F, i.e.

S
(2l,r)
Φ =

1

2

∫ β

0

dτ

∫
dr (∇rΦ∗ · ∇rΦ)×

× 1

βV

∑
k,n

k2

3m2

(
l

1

(ξ2
k + ν2

n)
2 +

2

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
3

)(
− |Φ|2

ξ2
k + ν2

n

)l−1

+

+
1

2

∫ β

0

dτ

∫
dr
[
(Φ∗∇rΦ)2 + (Φ∇rΦ∗)2]×

× 1

βV

∑
k,n

k2

3m2

(
1

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
4

)(
− |Φ|2

ξ2
k + ν2

n

)l−2

.

Introducing the coe�cients C̄ and Ē the component S(r)
Φ of the EFT action reads

S
(r)
Φ =

∫
d4x

[
C̄(|Φ|2)

2m
(∇rΦ∗ · ∇rΦ)− Ē(|Φ|2)

2m|Φ|2
[
(Φ∗∇rΦ)2 + (Φ∇rΦ∗)2]] , (2.72)

where the coe�cients C̄ and Ē are de�ned, in function of |Φ|2, as

C̄ =
∞∑
l=1

1

βV

∑
k,n

k2

3m

(
l

1

(ξ2
k + ν2

n)
2 +

2

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
3

)(
− |Φ|2

ν2
n + ξ2

k

)l−1

(2.73)

Ē =
∞∑
l=1

1

βV

∑
k,n

k2

3m

(
1

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
4

)
|Φ|2

(
− |Φ|2

ξ2
k + ν2

n

)l−2

=−
∞∑
l=1

1

βV

∑
k,n

k2

3m

(
1

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
3

)(
− |Φ|2

ξ2
k + ν2

n

)l−1

. (2.74)

The summations over the index l can be carried out analytically and lead to

C̄ =
1

βV

∑
k,n

k2

3m

 1(
ν2
n +

(√
ξ2
k + |Φ|2

)2
)2 −

4ξ2
k|Φ|2(

ν2
n +

(√
ξ2
k + |Φ|2

)2
)4

 =

=
1

βV

∑
k,n

k2

3m

[
1

(ν2
n + E2

k)
2 −

4ξ2
k|Φ|2

(ν2
n + E2

k)
4

]
, (2.75)
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and

Ē =−
∞∑
l=1

1

βV

∑
k,n

k2

3m

(
1

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
3

)(
− |Φ|2

ξ2
k + ν2

n

)l−1

=

=
1

βV

∑
k,n

k2

3m

2ξ2|Φ|2(
ν2 +

(√
ξ2 + |Φ|2

)2
)4 =

=
1

βV

∑
k,n

k2

3m

2ξ2|Φ|2

(ν2 + E2
k)

4 (2.76)

respectively.

Summations over the �shifted� Matsubara frequencies

The last remaining passage to obtain the �nal form of the coe�cients C̄ and Ē is the
computation of the fermionic Matsubara summations present in (2.75) and (2.76). In
these expressions, the �shifted� Matsubara frequencies νn = ωn − iζ always appear at the
denominator and in particular in the combination (ν2

n + ξ2
k) elevated to an integer exponent.

To carry out the summations it is then convenient to de�ne the functions fs(β, x, ζ) with
s = 1, 2, ... as

1

β

∑
n

1

(ν2
n + x2)s

=
1

β

∑
n

1

((ωn − iζ)2 + x2)s
≡ fs(β, x, ζ). (2.77)

All the functions fs with index s higher than one can be easily obtained from

f1(β, x, ζ) =
1

2x

sinh(βx)

cosh(βx) + cosh(βζ)

thanks to the recursive relation

fs+1(β, x, ζ) =
1

2s x

∂fs(β, x, ζ)

∂x
. (2.78)

Coe�cient C̄

The summation over l present in the de�nition of C̄ (2.75) can be performed analytically
and gives

C̄ =
1

βV

∑
k,n

k2

3m

 1(
ν2
n +

(√
ξ2
k + |Φ|2

)2
)2 −

4ξ2
k|Φ|2(

ν2
n +

(√
ξ2
k + |Φ|2

)2
)4

 =

=
1

βV

∑
k,n

k2

3m

[
1

(ν2
n + E2

k)
2 −

4ξ2
k|Φ|2

(ν2
n + E2

k)
4

]
.
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The last step needed is the computation of the two summations over the �shifted� Matsub-
ara frequencies νn. From the results of the previous section (see in particular the de�nition
(2.77) of the functions fs) we obtain

C̄ =
1

V

∑
k

k2

3m

[
f2(β,Ek, ζ)− 4ξ2

k|Φ|2f4(β,Ek, ζ)
]
.

Transforming the sum on k into an integral on the k−space as

1

V

∑
k

−→
∫

d3k

(2π)3
.

we get to the �nal result for C̄ i.e.

C̄ =

∫
d3k

(2π)3

k2

3m

[
f2(β,Ek, ζ)− 4ξ2

k|Φ|2f4(β,Ek, ζ)
]
.

Coe�cient Ē

Again the sum over l of (2.76) is computed, obtaining as a result

Ē =−
∞∑
l=1

1

βV

∑
k,n

k2

3m

(
1

3
l(l2 − 1)

ξ2
k

(ξ2
k + ν2

n)
3

)(
− |Φ|2

ξ2
k + ν2

n

)l−1

=

=
1

βV

∑
k,n

k2

3m

2ξ2
k|Φ|2(

ν2
n +

(√
ξ2
k + |Φ|2

)2
)4 =

=
1

βV

∑
k,n

k2

3m

2ξ2
k|Φ|2

(ν2
n + E2

k)
4 .

The calculation of the Matsubara sum leads then to

Ē =
1

V
2|Φ|2

∑
k

k2

3m

[
ξ2
k f4(β,Ek, ζ)

]
.

This can be rewritten as

Ē = 2|Φ|2
∫

d3k

(2π)3

k2

3m
ξ2
k f4(β,Ek, ζ).

∗ ∗ ∗

Using the equality (
∇r |Φ|2

)2
= (Φ∗∇rΦ)2 + (Φ∇rΦ∗)2 + 2|Φ|2 |∇rΦ|2 ,
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the action component S(r)
Φ (2.72) can be recast into the form

S
(r)
Φ =

∫
d4x

[(
C̄(|Φ|2)− 2Ē(|Φ|2)/|Φ|2

)
2m

(∇rΦ∗ · ∇rΦ)− Ē(|Φ|2)

2m|Φ|2
(
∇r |Φ|2

)2

]
De�ning the EFT coe�cients C and E as

C(|Φ|2) =

∫
dk

(2π)3

k2

3m
f2(β,Ek, ζ) = C̄(|Φ|2)− 2Ē(|Φ|2)/|Φ|2, (2.79)

E(|Φ|2) = 2

∫
dk

(2π)3

k2

3m
ξ2
kf4(β,Ek, ζ) = Ē(|Φ|2)/|Φ|2, (2.80)

the �nal form of the component S(r)
Φ results

S
(r)
Φ =

∫
d4x

[
C(|Φ|2)

2m
|∇rΦ|2 − E(|Φ|2)

2m

(
∇r |Φ|2

)2
]
.

It is worth remarking that the notation and de�nition for the coe�cients C and E used
in this section (and in the remainder of the present thesis) coincides with the one used in
refs. [3, 70], but slightly di�ers from the one used in the article [1] 3.

2.6 Term with time derivatives Sp,τΦ

This section is devoted to the calculation of the terms of the expansion (2.22) arising from
the terms of the gradient expansion of Φ with imaginary-time derivatives. The derivation
will be carried out separately for the terms involving �rst and higher order derivatives.
Again the starting point is the usual gradient expansion in which this time just the com-
ponents including time derivatives are kept, i.e.

F (x+ x′l) = F (x) + τ ′l
∂F (x)

∂τ
+

1

2

∂2F (x)

∂τ 2
(τ ′l )

2
+ . . . (2.81)

with the notation τ ′l ≡ τl − τ . Substituting this expansion into the p-th term of the series
in powers of Φ in the EFT action, leads to

S̃
(p)
Φ =

1

p

∫
d4x1

∫
d4x2 . . .

∫
d4xp

× Tr



F (x1)G0 (x1 − x2)

×
[
F (x1) + τ ′2

∂
∂τ
F (x1) + 1

2
∂2F(x1)
∂τ2

(τ ′2)2
]
G0 (x2 − x3)

×
[
F (x1) + τ ′3

∂
∂τ
F (x1) + 1

2
∂2F(x1)
∂τ2

(τ ′3)2
]
G0 (x3 − x4)

× . . .
×
[
F (x1) + τ ′p

∂
∂τ
F (x1) + 1

2
∂2F(x1)
∂τ2

(
τ ′p
)2
]
G0 (xp − x1)


+ . . . (2.82)

The lowest order non-vanishing contributions to the action comes from two sources:

3The coe�cients C and E are related to C and E in [1] by the relations C = C̃ = C + 2E , E = E/|Φ|2
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• terms with a single �rst order time derivative;

• terms with second order time derivatives.

The second kind of terms can be in turn divided in two categories: (a) the terms linear
in ∂2F(x)

∂τ2
, (b) terms constituted by the products of two �rst-order time derivatives i.e.

Tr
(
∂
∂τ
F . . . ∂

∂τj
F . . .

)
. Correspondingly, the aforesaid action term is a sum of two di�erent

gradient terms. Using the notations of Section 2.5 we can write:

S
(p,τ2)
Φ = S

(p,τ2,a)
Φ + S

(p,τ2,b)
Φ . (2.83)

The total sum over p is subdivided in the same way:

S
(τ)
Φ ≡

∑
p

[
S

(p,τ)
Φ + S

(p,τ2)
Φ

]
=
∑
p

S
(p,τ)
Φ +

∑
p

[
S̃

(p,τ2,a)
Φ + S̃

(p,τ2,b)
Φ

]
. (2.84)

The terms S(p,τ)
Φ , S

(p,τ2,a)
Φ , and S

(p,τ2,b)
Φ can be calculated separately, because up to the

second order, they enter the expression for the complete action in an additive way. In
order to keep the notation as clear as possible we introduce, in analogy with (2.42), the
di�erential matrices

Q1 ≡
∂F
∂τ
, and Q2 ≡

∂2F
∂τ 2

.

Adopting again the coordinate transformation (2.41), the relevant terms of the gradient
expansion involving �rst and second order imaginary time derivatives can be written in
the form

F(x2) =F(x1 + y2) = F(x1) + τ ′2
∂F(x1)

∂τ
+ · · ·

F(x3) =F(x1 + y2 + y3) = F(x1) + (τ ′2 + τ ′3)
∂F(x1)

∂τ
+ · · ·

· · ·

F(xp) =F(x1 + y2 + y3 + · · ·+ yp) = F(x1) + (τ ′2 + τ ′3 + · · ·+ τ ′p)
∂F(x1)

∂τ
+ · · ·

Inserting this explicit form for the pairing �eld and employing the usual Fourier expansion
for G0 (2.35), the component of the action involving time derivatives can be recast into
the mixed (normal-and-reciprocal space) representation form already used in the previous



2.6. Term with time derivatives Sp,τΦ 47

sections as

S
(p)
Φ =

1

p

∫ β

0

dτ1

∫
dr1

∫ β

0

dτ ′2 · · ·
∫ β

0

dτ ′p
1

βpV

∑
k1

∑
n1,...,np−1

× Tr



G0 (k1, n1)F
×G0 (k1, n2)

(
F + τ ′2Q1 + 1

2
(τ ′2)2Q

)
×G0 (k1, n3)

(
F + (τ ′2 + τ ′3)Q1 + 1

2
(τ ′2 + τ ′3)2 Q2

)
×G0 (k1, n4)

(
F + (τ ′2 + τ ′3 + τ ′4)Q1 + 1

2
(τ ′2 + τ ′3 + τ ′4)2 Q2

)
× · · ·×
×G0 (k1, np)

(
F +

(
τ ′2 + τ ′3 + . . .+ τ ′p

)
Q1 + 1

2

(
τ ′2 + . . .+ τ ′p

)2 Q2

)


× e−iωn1 ·(τ ′2+...+τ ′p)+iωn2 ·τ

′
2+iωn3 ·τ

′
3+...+iωnp ·τ ′p + . . . , (2.85)

where the trivial integrations over the space-variables r2, . . . , rp have been already carried
out.

2.6.1 Term with �rst order time derivatives

The contribution to the complete e�ective �eld theory action coming from terms involving
a single �rst order imaginary-time derivative can be obtained by selecting the terms in
(2.85) in which the di�erential operator Q1 occurs just once. The relevant contribution is
easily found to be

S
(p,τ,1)
Φ =

1

p

∫ β

0

dτ1

∫ β

0

dτ ′2 · · ·
∫ β

0

dτ ′p

∫
dr1

1

βpV

∑
n1···np

∑
k1

eiω2τ ′2+iω3τ ′3+···−iω1(τ ′2+···+τ ′p)

Tr

[
G0(k1, n2)τ ′2Q1G0(k1, n3)F(x1) · · ·F(x1)G0(k1, n1)F(x1)+

+ G0(k1, n2)F(x1)G0(k1, n3)(τ ′2 + τ ′3)Q1 · · ·F(x1)G0(k1, n1)F(x1)+

+ · · ·+

+ G0(k1, n2)F(x1)G0(k1, n3)F(x1) · · · (τ ′2 + · · ·+ τ ′p)Q1G0(k1, n1)F(x1)

]
Calculation

Contrary to the integration on the space variables r2, . . . , rp the integrals on the imaginary time variables
τ ′2, . . . , τ

′
p are not trivial and need to be handled with care. Using the same procedure employed in

Section 2.5, the variables τ ′2, . . . , τ
′
p can be replaced, in analogy with (2.43), by the corresponding operators

τ̂ ′2, . . . , τ̂
′
p which act as

τ̂ ′j ≡ −i
∂

∂ωnj
. (2.86)

With respect to the situation of Section 2.5, here a problem becomes manifest: the fermionic Matsubara
frequencies ωn are discrete, therefore the derivative in (2.86) is ill-de�ned. To overcome this problem the
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derivative can be thought as a �nite di�erence, i.e.

τ̂ ′jf(ωnj ) = −i
∂f(ωnj )

∂ωnj
→

f(ωnj + Ωm)− f(ωnj )

iΩm
, (2.87)

where Ωm is a bosonic Matsubara frequency of the form 2πm
β with m ∈ Z. To put this strategy into

practice we calculate the auxiliary quantity S̃
(p,τ,1)
Φ in which the substitution

τ ′j −→ eiΩmτ
′
j (2.88)

is performed. Later on, after carrying out the fermionic Matsubara sum, we will retrieve the desired result
by exploiting the substitution

iΩm −→ ω + iδ, δ −→ 0+,

and next the limit

lim
ω−→0

S̃
(p,τ,1)
Φ (ω)− S̃(p,τ,1)

Φ (0)

ω
. (2.89)

The explicit expression for S̃
(p,τ,1)
Φ after the substitution (2.88) is

S̃
(p,τ,1)
Φ =

1

p

∫ β

0

dτ1

∫ β

0

dτ ′2 · · ·
∫ β

0

dτ ′p

∫
dr1

1

βpV

∑
n1···np

∑
k1

eiω2τ
′
2+iω3τ

′
3+···−iω1(τ ′2+···+τ ′p)

1st line

{
Tr

[
G0(k1, n2)eiΩmτ

′
2Q1G0(k1, n3)F(x1) · · ·F(x1)G0(k1, n1)F(x1)+

2nd line

{
+ G0(k1, n2)F(x1)G0(k1, n3)eiΩm(τ ′2+τ ′3)Q1 · · ·F(x1)G0(k1, n1)F(x1)+

+ · · ·+

jth line

{
+ G0(k1, n2)F(x1) · · ·G0(k1, nj)e

iΩm(τ ′2+···+τ ′j)Q1 · · ·F(x1)G0(k1, n1)F(x1)+

+ · · ·+

p− 1th line

{
+ G0(k1, n2)F(x1)G0(k1, n3)F(x1) · · · eiΩm(τ ′2+···+τ ′p)Q1G0(k1, n1)F(x1)

]
. (2.90)

In the last equation the di�erent terms have been highlighted and labeled with the number of the line on
which they appear in order to keep track of them when the integrations over the variables τ2, · · · , τp is
carried out. The basic integral over the imaginary time variable that needs to be calculated is of the form

∫
dτ ′je

iωjτ
′
j−iω1τ

′
j+iΩmτ

′
j = δnj ,n1−m.
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Carrying out the integrals, performing the sums over the indices n2, . . . , np, and renaming n1 → n leads
to

S̃
(p,τ,1)
Φ =

1

p

∫ β

0

dτ

∫
dr

1

βV

∑
n

∑
k

1st line
{

Tr

[
G0(k, n−m)Q1G0(k, n)F(x) · · ·F(x)G0(k, n)F(x)+

2nd line

{
+G0(k, n−m)F(x)G0(k, n)Q1 · · ·F(x)G0(k, n)F(x)+
+G0(k, n)F(x)G0(k, n−m)Q1 · · ·F(x)G0(k, n)F(x)+

+ · · ·+

jth line

{ +G0(k, n−m)F(x) · · ·G0(k, n)Q1 · · ·F(x)G0(k, n)F(x)+
+ · · ·+

+G0(k, n)F(x) · · ·G0(k, n−m)Q1 · · ·F(x)G0(k, n)F(x)+

+ · · ·+

p− 1th line


+G0(k, n−m)F(x)G0(k, n)F(x) · · ·G0(k, n)Q1G0(k, n)F(x)+
+G0(k, n)F(x)G0(k, n−m)F(x) · · ·G0(k, n)Q1G0(k, n)F(x)+

+ · · ·+

+G0(k, n)F(x)G0(k, n)F(x) · · ·G0(k, n−m)Q1G0(k, n)F(x)

] . (2.91)

Here two kind of terms can be recognised:

1. terms in which G0(k, n−m) and Q1 are separated by an even number of couples F(x)G0(k, n).

2. terms in which G0(k, n−m) and Q1 are separated by an odd number of couples F(x)G0(k, n).

As already remarked in the previous sections, given the shape of G0 (2.14) and F (2.13) we can see that
the odd powers of G0F give o�-diagonal matrices, while the even powers of G0F give diagonal matrices.
Therefore all of the even powers of G0F commute with all the matrices appearing in (2.91). Moreover this
consideration on the composition of the matrices tells us that again only the even-p terms contribute to
the action. Hence from now on we can safely set p = 2l.
It is now necessary to count how many (1)-type (�even") terms and (2)-type (�odd") terms are there in

S
(2l,τ,1)
Φ (i.e. in (2.91) after setting p = 2l). The �rst observation is that expression (2.90) is composed by

2l− 1 terms: it can be noticed that in the passage from (2.90) to (2.91) the jth line in (2.90) gives rise to
j lines in (2.91), therefore the total number of terms in (2.91) reads

Nl =

2l−1∑
j=1

j.

In particular the number of (1)-type (�even") terms in the ith term of (2.91) is equal to the number of
odd numbers between 1 and i and viceversa for the (2)-type (�odd") terms. For example the odd and even
numbers in the interval between the integers 1 and i can be counted using respectively

nodd(i) =
1

2

(
i+ sin2

(
i

2
π

))
neven(i) = i− nodd(i)

Hence the numbers of even and odd terms result:

N
(even)
l =

2l−1∑
i=1

nodd(i) = l2, N
(odd)
l =

2l−1∑
i=1

neven(i) = l(l − 1).

We can thus rewrite the terms in (2.91) by dividing them in two groups:
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• the (1)-type (�even�) terms assume the form

G0(k, n−m)Q1 [G0(k, n)F(x)]
2l−1

. (2.92)

• the (2)-type (�odd�) terms assume the form

G0(k, n−m)F(x)G0(k, n)Q1 [G0(k, n)F(x)]
2l−2

.

The action term becomes then

S̃
(2l,τ,1)
Φ =

1

2l

∫ β

0

dτ

∫
dr

1

βV

∑
n

∑
k

×
[
l2 Tr

(
G0(k, n−m)Q1 [G0(k, n)F(x)]

2l−1
)

+

+ l(l − 1) Tr
(
G0(k, n−m)F(x)G0(k, n)Q1 [G0(k, n)F(x)]

2l−2
)]

=

=
1

2

∫ β

0

dτ

∫
dr

1

βV

∑
n

∑
k

×
[
lTr

(
G0(k, n−m)Q1G0(k, n)F(x) [G0(k, n)F(x)]

2l−2
)

+

+ (l − 1) Tr
(
G0(k, n−m)F(x)G0(k, n)Q1 [G0(k, n)F(x)]

2l−2
)]
. (2.93)

�Even� terms

From (2.36) we deduce that the expression for the diagonal elements of (G0F)
2l
is(

|Φ(x)|2

(iωn + ζ)2 − ξ2
k

)l
:

this contribution can be therefore factored out of the trace and the relevant quantity that needs to be
calculated becomes the simpli�ed trace

Tr

[
G0(k, n−m)

∂F(x)

∂τ
G0F

]
.

The result is

Φ(x)∂Φ∗(x)
∂τ

(ζ + ξk + iωn)(−ζ + ξk − i(ωn − Ωm))
+

∂Φ(x)
∂τ Φ∗(x)

(−ζ + ξk − iωn)(ζ + ξk + i(ωn − Ωm))
.

The numerators can now be rewritten in terms of the linear combinations of Φ and its derivative, i.e.

φ− = Φ(x)∂Φ∗(x)
∂τ − ∂Φ(x)

∂τ Φ∗(x), and φ+ = Φ(x)∂Φ∗(x)
∂τ + ∂Φ(x)

∂τ Φ∗(x). It is easy to show that, when
integrating over τ , the contribution proportional to φ+ gives zero, in fact

φ+ = Φ(x)
∂Φ∗(x)

∂τ
+
∂Φ(x)

∂τ
Φ∗(x) =

∂

∂τ
|Φ(x)|2 ,

and ∫ β

0

dτ
∂

∂τ
|Φ(x)|2 = |Φ(τ = β)|2 − |Φ(τ = 0)|2 = 0,
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where the last equality is motivated by the boundary conditions that the bosonic �eld Φ satis�es in the

interval [0, β]. Therefore just the contribution proportional to Φ(x)∂Φ∗(x)
∂τ − ∂Φ(x)

∂τ Φ∗(x) is non-zero, and
it reads

−
iξkΩm

(
Φ(x)∂Φ∗(x)

∂τ − ∂Φ(x)
∂τ Φ∗(x)

)
(ζ − ξk + iωn)(ζ + ξk + iωn)(ζ − ξk + i(ωn − Ωm))(ζ + ξk + i(ωn − Ωm))

.

�Odd� terms

The same discussion valid for the �even� terms holds also here: the standard term has the form

Tr

[
G0(k, n−m)G0F

∂F(x)

∂τ

]
.

After selecting the contribution proportional to Φ(x)∂Φ∗(x)
∂τ − ∂Φ(x)

∂τ Φ∗(x) we �nd

iξkΩm

(
Φ(x)∂Φ∗(x)

∂τ − ∂Φ(x)
∂τ Φ∗(x)

)
(ζ − ξk + iωn)(ζ + ξk + iωn)(ζ − ξk + i(ωn − Ωm))(ζ + ξk + i(ωn − Ωm))

.

∗ ∗ ∗

Now, in order to calculate the quantity inside the square brackets in the expression for S̃
(2l,τ,1)
Φ (2.93), it

is necessary to sum l times the contribution from the �even� terms plus (l− 1) times the contribution from
the �odd terms� and then multiply everything by the factor coming from the even powers of G0F that had
been factored out at an earlier stage. The resulting expression reads

iξkΩm

(
Φ(x)∂Φ∗(x)

∂τ − ∂Φ(x)
∂τ Φ∗(x)

)
(ζ − ξk + iωn)(ζ + ξk + iωn)(ζ − ξk + i(ωn − Ωm))(ζ + ξk + i(ωn − Ωm))

(
|Φ(x)|2

(iωn + ζ)2 − ξ2
k

)l−1

.

Exploiting the summation over the index l present in (2.93) leads to

iξkΩm

(
Φ(x)∂Φ∗(x)

∂τ − ∂Φ(x)
∂τ Φ∗(x)

)
(−ζ + ξk − i(ωn − Ωm))(ζ + ξk + i(ωn − Ωm))

(
|Φ(x)|2 − (ζ + iωn)2 + ξ2

k

)
=

iξkΩm

(
Φ(x)∂Φ∗(x)

∂τ − ∂Φ(x)
∂τ Φ∗(x)

)
(

(νn − Ωm)
2

+ ξ2
k

)(
ν2
n + ξ2

k + |Φ(x)|2
)

=
iξkΩm

(
Φ(x)∂Φ∗(x)

∂τ − ∂Φ(x)
∂τ Φ∗(x)

)
(

(νn − Ωm)
2

+ ξ2
k

)
(ν2
n + E2

k)
,

where in the last line the dispersion for the single particle excitations Ek (2.38) was used. Even if it is
not transparent from the notation, Ek still carries the dependence on x given by the presence of the term
|Φ(x)|2 in its explicit expression.
The next step is to calculate the sum over the fermionic Matsubara frequencies. To do this we momentarily
isolate from the integrand the terms depending on νn and de�ne the auxiliary quantity

s̃(iΩm, Ek) =
1

β

∑
n

iξkΩm(
(νn − Ωm)

2
+ ξ2

k

)
(ν2
n + E2

k)
.
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The calculation of the sum over the shifted fermionic Matsubara frequencies νn gives

s̃(iΩm, Ek) = iξkΩm
Ω2
m (f1 (β, ξk, ζ)− f1 (β,Ek, ζ)) + (E2

k − ξ2
k) (f1 (β, ξk, ζ)− f1 (β,Ek, ζ))

Ω4
m + 2Ωm(E2

k + ξ2
k) + (E2

k − ξ2
k)2

.

Now, as anticipated at the start of the present section the formal substitution iΩm → ω+iδ (with δ → 0+)
is performed and, in order to exploit the limiting operation (2.89) it is convenient to use the quantity

s(Ek) = lim
ω→0

s̃(ω + iδ, Ek)− s̃(0, Ek)

ω
.

The explicit expression for s(Ek) is immediately found to be given by

s(Ek) =
ξk

|Φ(x)|2
[f1(β, ξk, ζ)− f1(β,Ek, ζ)] ,

and can be reintroduced into the full expression for the action component including �rst order time

derivatives.

∗ ∗ ∗

The �nal result for S(τ)
Φ is

S
(τ)
Φ =

1

2

∫
dr

∫ β

0

dτ

(
Φ(x)

∂Φ∗(x)

∂τ
− ∂Φ(x)

∂τ
Φ∗(x)

)
×

×
∫

dk

(2π)3

ξk
|Φ(x)|2

[f1(β, ξk, ζ)− f1(β,Ek, ζ)] .

In order to make the analogy with the usual Ginzburg-Landau action functional [46] more
apparent, the component involving the �rst order imaginary-time derivative of the order
parameter can be �nally rewritten as

S
(τ)
Φ =

∫
d4x

1

2
D
(
|Φ(x)|2

)(
Φ(x)

∂Φ∗(x)

∂τ
− ∂Φ(x)

∂τ
Φ∗(x)

)
, (2.94)

where the coe�cient D is de�ned as

D
(
|Φ(x)|2

)
≡
∫

dk

(2π)3

ξk
|Φ(x)|2

[f1(β, ξk, ζ)− f1(β,Ek, ζ)] . (2.95)

2.6.2 Term with second order time derivatives/1: S
(τ2,a)
Φ

As mentioned in Section 2.6 the calculation of the component of the action involving
imaginary-time derivatives of order higher than one is split in two parts that will be ex-
amined in the present and in the following subsection separately. Given the length and
intricacy of the algebra involved, in order to make the notation clearer, the derivation is
going to be performed in the situation without imbalance, i.e. for ζ = 0. Only at the
end of the calculation the imbalance parameter is reintroduced by substituting the normal
fermionic Matsubara frequencies ωn with the �shifted� frequencies νn de�ned in (2.56).
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The contribution S(τ2,a)
Φ can be obtained from (2.85) by selecting the terms that are linear

in the second order imaginary time derivative of the pairing matrix F. Similarly to the
case of the components of the action with space gradients, in order to exploit the integra-
tion over the imaginary time variables it is convenient to introduce again the operators τ̂ ′j
de�ned in (2.86), which act on a generic function f of ωnj as in (2.87). The relevant terms

contributing to S(τ2,a)
Φ can be then rewritten as

S
(p)
Φ =

1

p

∫ β

0

dτ

∫
dr

∫ β

0

dτ ′2 . . .

∫ β

0

dτ ′p
1

βpV

∑
k

∑
n1,...,np

× Tr



G0 (k, n1)F
×G0 (k, n2)

(
F + 1

2
(τ̂ ′2)2 Q2

)
×G0 (k, n3)

(
F + 1

2
(τ̂ ′2 + τ̂ ′3)2 Q2

)
×G0 (k, n4)

(
F + 1

2
(τ̂ ′2 + τ̂ ′3 + τ̂ ′4)2 Q2

)
× . . .

×G0 (k, np−1)
(
F + 1

2

(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p

)2 Q2

)


× eiω2τ ′2+iω3τ ′3+···−iω1(τ ′2+···+τ ′p). (2.96)

As was the case in the previous sections, the introduction of the di�erential matrices
enables us to calculate the integrals over the imaginary time variables τ ′2, . . . , τ

′
p. Again

these integrals give rise to Kronecker deltas that produce a nonzero contribution only when
the Matsubara frequencies n1, n2, . . . , np are all equal to each other. Hence

S
(p)
Φ =

1

p

∫ β

0

dτ

∫
dr

1

βV

∑
k

∑
n1

× Tr



G0 (k, n1)F
×G0 (k, n2)

(
F + 1

2
(τ̂ ′2)2 Q2

)
×G0 (k, n3)

(
F + 1

2
(τ̂ ′2 + τ̂ ′3)2 Q2

)
×G0 (k, n4)

(
F + 1

2
(τ̂ ′2 + τ̂ ′3 + τ̂ ′4)2 Q2

)
× . . .

×G0 (k, np−1)
(
F + 1

2

(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p

)2 Q2

)



∣∣∣∣∣∣∣∣∣∣∣∣∣
{nj=n1}

. (2.97)

Calculation

Selecting the contributions proportional to Q2 in (2.97) leads to

S
(p,τ2,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(τ̂ ′2)2 Tr (G0 (k, n1)Q2G0 (k, n2)F× . . .× FG0 (k, np)F)

+ (τ̂ ′2 + τ̂ ′3)
2

Tr (G0 (k, n1)FG0 (k, n2)Q2 × . . .× FG0 (k, np)F)
+ . . .

+
(
τ̂ ′2 + τ̂ ′3 + . . . τ̂ ′p

)2
Tr (G0 (k, n1)FG0 (k, n2)F× . . .×Q2G0 (k, np)F)


∣∣∣∣∣∣∣∣
{nj=n1}

.
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Using the invariance property of the trace for cyclic permutations, in all the terms the operator Q2 can be
brought to the last position, i.e.

S
(p,τ2,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(τ̂ ′2)2 Tr (G0 (k, n2)F× . . .× FG0 (k, np)FG0 (k, n1)Q2)

+ (τ̂ ′2 + τ̂ ′3)
2

Tr (G0 (k, n3)F× . . .× FG0 (k, np)FG0 (k, n1)FG0 (k, n2)Q2)
+ . . .

+
(
τ̂ ′2 + τ̂ ′3 + . . . τ̂ ′p

)2
Tr (G0 (k, np)FG0 (k, n1)FG0 (k, n2)F× . . .×Q2)


∣∣∣∣∣∣∣∣
{nj=n1}

.

A cyclic permutation of the indices labelling the fermionic Matsubara frequencies analogous to (2.44) leads

to the following compact expression for S
(p,τ2,a)
Φ :

S
(p,τ2,a)
Φ =

1

2p

∫ β

0

dτ

∫
dr

1

βV

∑
k,n( [

(τ̂ ′p)
2 +

(
τ̂ ′p−1 + τ̂ ′p

)2
+ . . .+

(
τ̂ ′2 + τ̂ ′3 + . . . τ̂ ′p

)2]
×Tr (G0 (k, n1)FG0 (k, n2)F× . . .×G0 (k, np−1)FG0 (k, np)Q2)

)∣∣∣∣∣
{nj=n1}

. (2.98)

It is now necessary to calculate the total number of terms inside the round brackets in the previous
expression: the sum inside the square brackets can be rewritten as p∑

j=2

τ̂ ′j

2

=

p∑
j=2

(τ̂ ′j)
2 + 2

∑
j>j′

τ̂ ′j τ̂
′
j′

and the number of elements arising from this summation can be evaluated by solving

Np =

p∑
j=2

(p− j + 1)
2

The same consideration on the shape of the matrices inside the trace made in all of the previous sections

leads to the conclusion that again only the contributions S
(p,τ2,a)
Φ with even p are non-zero. Therefore we

can set p = 2l, and as a consequence the action component becomes

S
(2l,τ2,a)
Φ =

1

4l

∫ β

0

dτ

∫
dr

1

βV

∑
k,n( [

τ̂2
2l + (τ̂2l−1 + τ̂2l)

2
+ . . .+ (τ̂ ′2 + τ̂ ′3 + . . . τ̂ ′2l)

2
]

×Tr (G0 (k, n1)FG0 (k, n2)F× . . .×G0 (k, n2l−1)FG0 (k, n2l)Q2)

)∣∣∣∣∣
{nj=n1}

, (2.99)

and the total number of terms in (2.99) �nally reads

N2l =

2l∑
j=2

(2l − j + 1)
2

=
1

3
l(4l − 1)(2l − 1) (2.100)

The elements in (2.99) can be further classi�ed in three categories based on a consideration on the indices
of the pair of operators τ̂ ′j τ̂

′
j+s acting on the trace:

• terms with s = 0, i.e. terms of the kind (τ̂ ′j)
2 Tr[· · ·];
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• terms with even s;

• terms with odd s.

The expression τ̂ ′j τ̂
′
j+s Tr[· · ·] gives, in the three di�erent situations

|Φ|2(l−1)

(
Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
λ0, for s = 0,

|Φ|2(l−1)

(
Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
λe, for s even,

|Φ|2(l−1)

(
Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
λo, for s odd.

where the factors λ0, λe and λo are obtained by letting the operators τ̂j (2.87) act on the corresponding
Green's functions inside the trace sign, and are de�ned as

λ0 =
1

(i (ωn + Ωm)− ξ) (i (ωn + Ωm)− ξ) (iωn + ξ)
2 , (2.101)

λe =
1

(i (ωn + Ωm)− ξ) (i (ωn + Ωk)− ξ) (iωn + ξ)
2 , (2.102)

λo = − 1

(i (ωn + Ωm)− ξ) (i (ωn + Ωk) + ξ) (ω2
n + ξ2)

. (2.103)

The bosonic Matsubara frequencies Ωm and Ωk appear as a consequence of the use of the �nite di�erence
form (2.87) of the two operators τ̂ ′j and τ̂

′
j+s acting on the trace. To calculate the complete contribution

S
(2l,τ2,a)
Φ we will further proceed as done in Subsection 2.5.2: the combinatorial weights of the terms

proportional to λ0, λe, and λo are derived from the explicit evaluation of S
(2l,τ2,a)
Φ for a few small values

of l:

S
(2,τ2,a)
Φ =

1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(
Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
[λ0]

(
− 1

ω2
n + ξ2

)−1

,

S
(4,τ2,a)
Φ =

1

8

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

|Φ|2
(

Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
×

× [6λ0 + 2λe + 6λo] ,

S
(6,τ2,a)
Φ =

1

12

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

|Φ|4
(

Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
×

× [15λ0 + 14λe + 26λo]

(
− 1

ω2
n + ξ2

)
.

Since the total number of terms N2l depends on l to the 4th power, the combinatorial weights for λ0, λe,
and λo are expected to be polynomials of (at most) order 3 in l. De�ning the general expression

S
(2l,τ2,a)
Φ =

1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

|Φ|2l−1

(
Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
×

×
(
− 1

ω2
n + ξ2

k

)l−2

[αlλ0 + βlλe + ηlλo] , (2.104)
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(where the prefactor 1/l is included into the combinatorial weights), the generic polynomials

αl = a1l
3 + b1l

2 + c1l + d1, (2.105)

βl = a2l
3 + b2l

2 + c2l + d2, (2.106)

ηl = a3l
3 + b3l

2 + c3l + d3, (2.107)

can be determined by solving the following systems of equations: α1 = 1
α2 = 3
α3 = 5

,

 β1 = 0
β2 = 1
β3 = 14/3

,

 η1 = 0
η2 = 2
η3 = 26/3

.

The resulting combinatorial weights are

αl = 2l − 1,

βl =
1

3
(l − 1)(4l − 5),

ηl =
1

3
(l − 1)(4l + 1).

It is easy to verify that the sum αl + βl + ηl multiplied by l correctly reproduces the value of N2l (2.100).

The last step towards the �nal form of S
(2l,τ2,a)
Φ is to reshape the factor depending on the pairing �eld Φ

in the �rst line of (2.104). This can be done by using the equality∫ β

0

dτ |Φ|2(l−1)

(
Φ∗
∂2Φ

∂τ2
+ Φ

∂2Φ∗

∂τ2

)
=

= −
∫ β

0

dτ

[
2 |Φ|2(l−1) ∂Φ∗

∂τ

∂Φ

∂τ
+ (l − 1) |Φ|2(l−2)

(
∂|Φ|2

∂τ

)2
]
.

Hence

S
(2l,τ2,a)
Φ =

1

4

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

[
2
∂Φ∗

∂τ

∂Φ

∂τ
+
l − 1

|Φ|2

(
∂|Φ|2

∂τ

)2
]
×

×
(
− |Φ|
ω2
n + ξ2

k

)2(l−1)

[αlλ0 + βlλe + ηlλo] .

The fermionic Matsubara summations will be performed after combining the total contribution to the

action coming from terms with second order imaginary time derivatives and summing the corrections to

all orders in the �uctuations by computing the sum over l.

∗ ∗ ∗

The explicit expression for S
(2l,τ2,a)
Φ is given by

S
(2l,τ2,a)
Φ =

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

[
|Φ|2∂Φ∗

∂τ

∂Φ

∂τ
+
l − 1

2

(
∂|Φ|2

∂τ

)2
](
− |Φ|2

ω2
n + ξ2

k

)l−2

×

×
[

2l − 1

2
λ0 +

(l − 1)(4l − 5)

6
λe +

(l − 1)(4l + 1)

6
λo

]
. (2.108)
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2.6.3 Term with second order time derivatives/2: S
(τ2,b)
Φ

Following the same path as in the previous subsection, the contribution S
(τ2,b)
Φ can be

obtained from (2.85) by selecting the terms that contain two �rst order imaginary time
derivatives of the pairing matrix F. The relevant terms contributing to S

(τ2,b)
Φ can be

obtained from (2.85)

S
(p)
Φ =

1

p

∫ β

0

dτ1

∫
dr1

∫ β

0

dτ ′2 · · ·
∫ β

0

dτ ′p
1

βpV

∑
k1

∑
n1,...,np−1

× Tr



G0 (k1, n1)F
×G0 (k1, n2) (F + τ̂ ′2Q1 + · · · )
×G0 (k1, n3) (F + (τ̂ ′2 + τ̂ ′3)Q1 + · · · )
×G0 (k1, n4) (F + (τ̂ ′2 + τ̂ ′3 + τ̂ ′4)Q1 + · · · )

× · · ·×
×G0 (k1, np)

(
F +

(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p

)
Q1 + · · ·

)


× e−iωn1 ·(τ ′2+...+τ ′p)+iωn2 ·τ

′
2+iωn3 ·τ

′
3+...+iωnp ·τ ′p + . . .

by selecting the contributions that include the operator Q1 squared. In the last expression
the imaginary time variables τ ′2, . . . , τ

′
p have been replaced by the corresponding operators

τ̂ ′2, . . . , τ̂
′
p de�ned in the previous section. This substitution enables us to carry out the

integrations over imaginary time: the resulting Kronecker deltas determine the condition
on the fermionic Matsubara frequencies ωn1 = ωn2 = . . . = ωnp , leading to

S
(p)
Φ =

1

p

∫ β

0

dτ1

∫
dr1

1

βV

∑
k1

∑
n1

× Tr



G0 (k1, n1)F
×G0 (k1, n2) (F + τ̂ ′2Q1 + · · · )
×G0 (k1, n3) (F + (τ̂ ′2 + τ̂ ′3)Q1 + · · · )
×G0 (k1, n4) (F + (τ̂ ′2 + τ̂ ′3 + τ̂ ′4)Q1 + · · · )

× · · ·×
×G0 (k1, np)

(
F +

(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p

)
Q1 + · · ·

)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
{nj=n1}

. (2.109)



58 2.6. Term with time derivatives Sp,τΦ

Calculation

The selection of the relevant terms leads to the basic expression for S
(2l,τ2,b)
Φ , which reads

S̃
(p,τ2,b)
Φ =

1

p

∫ β

0

dτ

∫
dr

1

βV

∑
n

∑
k

p− 1 lines



Tr
[
G0 (k1, n1)FG0 (k1, n2) (τ̂ ′2)Q1G0 (k1, n3) (τ̂ ′2 + τ̂ ′3)Q1

×G0 (k1, n4)F · · ·G0 (k1, np)F+
+G0 (k1, n1)FG0 (k1, n2) (τ̂ ′2)Q1G0 (k1, n3)F
×G0 (k1, n4) (τ̂ ′2 + τ̂ ′3 + τ̂ ′4)Q1 · · ·G0 (k1, np)F

+ . . .+
+G0 (k1, n1)FG0 (k1, n2) (τ̂ ′2)Q1G0 (k1, n3)F
×G0 (k1, n4)F · · ·G0 (k1, np)

(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p

)
Q1+

p− 2 lines


+G0 (k1, n1)FG0 (k1, n2)FG0 (k1, n3) (τ̂ ′2 + τ̂ ′3)Q1

×G0 (k1, n4) (τ̂ ′2 + τ̂ ′3 + τ̂ ′4)Q1 · · ·G0 (k1, np)F
+ . . .+
+G0 (k1, n1)FG0 (k1, n2)FG0 (k1, n3) (τ̂ ′2 + τ̂ ′3)Q1

×G0 (k1, n4)F · · ·G0 (k1, np)
(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p

)
Q1+

+ · · ·+

1 line


+G0 (k1, n1)FG0 (k1, n2)FG0 (k1, n3)FG0 (k1, n4)F× · · ·×
×G0 (k1, np−1)

(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p−1

)
Q1×

×G0 (k1, np)
(
τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′p

)
Q1

]
{nj=n1}

, (2.110)

where the curly brackets on the left group together the terms arising from the same line of expression
(2.109). Again, the �rst simpli�cation comes from the analysis of the expressions inside the trace signs. It
is clear that, as was the case in all previous sections, only the contributions coming from terms with even
p are non-zero. Therefore we can safely set p = 2l in the remainder of the derivation.
The presence of two Q1 elements in each trace makes it impossible to reduce all traces to the same form
by using the invariance of the trace for cyclical permutations and proceed as in the previous subsection.

Therefore here the combinatorial weights are obtained by explicitly calculating S̃
(2l,τ2,b)
Φ for the few lowest-l

values. However, before proceeding, the total number of terms must be calculated so to give an upper
bound to the order of the polynomials of l that constitute the combinatorial weights. We start by isolating
the �rst curly bracket in (2.110) and highlighting just the operators τ̂ , i.e.

· · · (τ̂ ′2) · · · (τ̂ ′2 + τ̂ ′3) · · ·+
+ · · · (τ̂ ′2) · · · (τ̂ ′2 + τ̂ ′3 + τ̂ ′4) · · ·
+ . . .+
+ · · · (τ̂ ′2) · · · (τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′2l) · · ·

.

Labelling every line with the highest subscript j of an operator in the second parenthesis, the single
operator τ̂2 in the right parenthesis is combined with the j − 1 operators in the left one. The next curly
bracket in (2.110) becomes

· · · (τ̂ ′2 + τ̂ ′3) · · · (τ̂ ′2 + τ̂ ′3 + τ̂ ′4) · · ·+
+ · · · (τ̂ ′2 + τ̂ ′3) · · · (τ̂ ′2 + τ̂ ′3 + τ̂ ′4 + τ̂ ′5) · · ·
+ . . .+
+ · · · (τ̂ ′2 + τ̂ ′3) · · · (τ̂ ′2 + τ̂ ′3 + . . .+ τ̂ ′2l) · · ·

.

Following the same procedure for labelling the lines used for the terms in the �rst bracket for all brackets
building up (2.110), the following general formula can be obtained for computing the total number of
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terms:

N2l =

2l∑
j=2

j−2∑
i=1

(j − 1)i =
1

6
l(l − 1)(2l − 1)(6l − 1).

Considering the prefactor 1/(2l) appearing in front of every term of S̃
(2l,τ2,b)
Φ we can conclude that the

combinatorial weights must be polynomials of l of (at most) 3rd degree. Hereunder the expressions for

S̃
(2l,τ2,b)
Φ for a few small values of l are given:

S̃
(2,τ2,b)
Φ = 0,

S
(4,τ2,b)
Φ =

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

[(
λ0 +

3

2
λo

)
|Φ|2 ∂Φ∗

∂τ

∂Φ

∂τ
+

(
1

4
λ0 +

1

4
λe + 3λo

)(
∂|Φ|2

∂τ

)]
,

S
(6,τ2,b)
Φ =

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(
− |Φ|2

ω2
n + ξ2

)
×

×
[(

3λ0 +
4

3
λe +

13

3
λo

)
|Φ|2 ∂Φ∗

∂τ

∂Φ

∂τ
+

(
7

6
λ0 +

5

3
λe + 28λo

)(
∂|Φ|2

∂τ

)]
,

S
(8,τ2,b)
Φ =

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(
− |Φ|2

ω2
n + ξ2

)2

×

×
[(

3λ0 + 4λe +
17

2
λo

)
|Φ|2 ∂Φ∗

∂τ

∂Φ

∂τ
+

(
11

4
λ0 +

23

4
λe + 93λo

)(
∂|Φ|2

∂τ

)]
,

where the functions λ0, λe, and λo depending on the fermionic (and bosonic) Matsubara frequencies are
the same as those de�ned in (2.101)-(2.103). Writing the general expression for arbitrary l as

S
(2l,τ2,b)
Φ =

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(
− |Φ|2

ω2
n + ξ2

)l−2

×

×
[(
α

(1)
l λ0 + β

(1)
l λe + η

(1)
l λo

)
|Φ|2 ∂Φ∗

∂τ

∂Φ

∂τ
+
(
α

(2)
l λ0 + β

(2)
l λe + η

(2)
l λo

)(∂|Φ|2
∂τ

)]
,

the combinatorial weights can be written as

α
(1)
l = a

(1)
1 l3 + b

(1)
1 l2 + c

(1)
1 l + d

(1)
1 ,

β
(1)
l = a

(1)
2 l3 + b

(1)
2 l2 + c

(1)
2 l + d

(1)
2 ,

η
(1)
l = a

(1)
3 l3 + b

(1)
3 l2 + c

(1)
3 l + d

(1)
3 ,

α
(2)
l = a

(2)
1 l3 + b

(2)
1 l2 + c

(2)
1 l + d

(2)
1 ,

β
(2)
l = a

(2)
2 l3 + b

(2)
2 l2 + c

(2)
2 l + d

(2)
2 ,

η
(2)
l = a

(2)
3 l3 + b

(2)
3 l2 + c

(2)
3 l + d

(2)
3 ,

and can be determined by solving the following systems of equations
α

(1)
1 = 0

α
(1)
2 = 1

α
(1)
3 = 3

α
(1)
4 = 3

,


β

(1)
1 = 0

β
(1)
2 = 0

β
(1)
3 = 4/3

β
(1)
4 = 4

,


η

(1)
1 = 0

η
(1)
2 = 3/2

η
(1)
3 = 13/3

η
(1)
4 = 17/2

,
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
α

(2)
1 = 0

α
(2)
2 = 1/4

α
(2)
3 = 7/6

α
(2)
4 = 11/4

,


β

(2)
1 = 0

β
(2)
2 = 1/4

β
(2)
3 = 5/3

β
(2)
4 = 23/4

,


η

(2)
1 = 0

η
(2)
2 = 3

η
(2)
3 = 28

η
(2)
4 = 93

.

The resulting combinatorial weights are:

α
(1)
l = l − 1,

β
(1)
l =

2

3
(l − 1)(l − 2),

η
(1)
l =

1

6
(l − 1)(4l + 1),

α
(2)
l = (l − 1)

(
1

3
l − 5

12

)
,

β
(2)
l = (l − 1)

(
1

4
l2 − 2

3
l +

7

12

)
,

η
(2)
l =

1

12
(l − 1)

(
3l2 − 4l − 1

)
.

∗ ∗ ∗

The �nal expression for S
(2l,τ2,b)
Φ is given by;

S
(2l,τ2,b)
Φ =

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(
− |Φ|2

ω2
n + ξ2

)l−2

×

×
{

(l − 1)

(
λ0 +

2

3
(l − 2)λe +

1

6
(4l + 1)λo

)
|Φ|2∂Φ∗

∂τ

∂Φ

∂τ
+

+
(l − 1)

12

[
(4l − 5)λ0 +

(
3l2 − 8l + 7

)
λe +

(
3l2 − 4l − 1

)
λo
](∂|Φ|2

∂τ

)}
.

(2.111)

2.6.4 Complete term S
(τ2)
Φ

The contributions S(2l,τ2,a)
Φ and S(2l,τ2,b)

Φ can �nally be brought together by summing (2.108)
and (2.111), and the sum over the index l can be performed. The initial expression for the
complete term S

(2l,τ2)
Φ is

S
(2l,τ2)
Φ = −1

2

∫ β

0

dτ

∫
dr

1

βV

∑
k,n

(
− |Φ|2

ω2
n + ξ2

)l−2

×

×
{

(λ0 + (l − 1)λe) |Φ|2
∂Φ∗

∂τ

∂Φ

∂τ
+

+
1

6

(
l2 − 1

)
[2λ0 + (l − 2)λe + lλo]

(
∂|Φ|2

∂τ

)}
.
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Calculation

The summation over l can be carried out for the two terms of the sum inside the curly brackets separately:
in particular the results of the basic sums read

∞∑
l=1

(
− |Φ|2

ω2
n + ξ2

)l−2

(λ0 + (l − 1)λe) =

= −
(
ω2
n + ξ2

k

)2 [|Φ|2(λ0 − λe) + λ0

(
ω2
n + ξ2

k

)]
|Φ|2 (ω2

n + ξ2
k + |Φ|2)

,

∞∑
l=1

(
− |Φ|2

ω2
n + ξ2

)l−2
1

6

(
l2 − 1

)
[2λ0 + (l − 2)λe + lλo] =

=

(
ω2
n + ξ2

k

)2
3 (ω2

n + ξ2
k + |Φ|2)

4×

×
[(
|Φ|4 + 4|Φ|2

(
ω2
n + ξ2

k

))
(λ0 − λe) + 3(λ0 + λo)

(
ω2
n + ξ2

k

)2]
.

Before proceeding to the fermionic Matsubara summations another step is necessary: the limit Ωm → 0
must be taken. To do this it is convenient to treat separately the terms proportional to ∂Φ∗

∂τ
∂Φ
∂τ and to(

∂|Φ|2
∂τ

)2

and treat individually the terms involving λ0, λe, and λo respectively. In order to sketch the

strategy employed to exploit the limiting procedure we concentrate on the contribution proportional to(
∂|Φ|2
∂τ

)2

, which is the one that requires more care:

for the term proportional to λ0, i.e.

2

(
ω2
n + ξ2

k

)2 (
3ω2

n + 3ξ2
k + |Φ|2

)
(ω2
n + ξ2

k + |Φ|2)
2 λ0

• the contribution of λ0 (2.101) is expanded in powers of Ωm around Ωm = 0

• the coe�cient of the second order term is isolated by exploiting

− ∂

∂Ω2
m

(
2

(
ω2
n + ξ2

k

)2 (
3ω2

n + 3ξ2
k + |Φ|2

)
(ω2
n + ξ2

k + |Φ|2)
2 λ0

)∣∣∣∣∣
Ωm=0

• the �nal form of the contribution proportional to λ0 is

M (1)
n ≡−

4
(
2ξ2

k + |Φ|2
)

3|Φ|2
1

(ω2
n + ξ2

k + |Φ|2)
3 −

4ξ2
k − 2|Φ|2

3|Φ|4
1

(ω2
n + ξ2

k + |Φ|2)
2

+
2

3|Φ|4
1

(ω2
n + ξ2

k + |Φ|2)
(2.112)

Notice that the last expression was already manipulated in order to get rid of the dependence on
the fermionic frequencies ωn in the numerators and make the Matsubara summations easier at a
later stage: this manipulation will be applied to all terms in the following.

for the contribution proportional to λe, which reads

−
|Φ|2

(
ω2
n + ξ2

k

)2 (
4ω2

n + 4ξ2
k + |Φ|2

)
3 (ω2

n + ξ2
k + |Φ|2)

4 λe,



62 2.6. Term with time derivatives Sp,τΦ

• the contribution of λe (2.102) is expanded in powers of Ωm and Ωk around Ωm = 0,Ωk = 0.

• the coe�cient of the second order term is isolated by exploiting

− ∂

∂Ωm∂Ωk

(
−
|Φ|2

(
ω2
n + ξ2

k

)2 (
4ω2

n + 4ξ2
k + |Φ|2

)
3 (ω2

n + ξ2
k + |Φ|2)

4 λe

)∣∣∣∣∣
Ωm=0,Ωk=0

• the �nal form of the contribution proportional to λe is

M (2)
n ≡ 2ξ2

k + |Φ|2

(ω2
n + ξ2

k + |Φ|2)
4 +

1

3|Φ|2
4ξ2

k − |Φ|2

(ω2
n + ξ2

k + |Φ|2)
3 +

+
1

3|Φ|4
2ξ2

k − |Φ|2

(ω2
n + ξ2

k + |Φ|2)
2 −

1

3|Φ|4
1

(ω2
n + ξ2

k + |Φ|2)
; (2.113)

for the contribution proportional to λo, which reads(
ω2
n + ξ2

k

)4
(ω2
n + ξ2

k + |Φ|2)
4λo,

• the contribution of λo (2.103) is expanded in powers of Ωm and Ωk around Ωm = 0,Ωk = 0.

• the coe�cient of the second order term is isolated by exploiting

− ∂

∂Ωm∂Ωk

( (
ω2
n + ξ2

k

)4
(ω2
n + ξ2

k + |Φ|2)
4λo

)∣∣∣∣∣
Ωm=0,Ωk=0

• the �nal form of the contribution proportional to λo is

M (3)
n ≡− |Φ|2 1

(ω2
n + ξ2

k + |Φ|2)
4 +

1

(ω2
n + ξ2

k + |Φ|2)
3 . (2.114)

The component of S
(2l,τ2)
Φ proportional to ∂Φ∗

∂τ
∂Φ
∂τ can be treated in the same way, resulting in

M (0)
n ≡ 2ξk + |Φ|2

|Φ|4
1

(ω2
n + ξ2

k + |Φ|2)
2 −

1

|Φ|4
1

ω2
n + ξ2

k + |Φ|2

In light of these results, the complete contribution to the action coming from second-order imaginary-time

derivatives S
(2l,τ2)
Φ can be written as

S
(2l,τ2)
Φ = −1

2

∫ β

0

dτ

∫
dr

1

V

∑
k

1

β

∑
n

[
M (0)
n

∂Φ∗

∂τ

∂Φ

∂τ
+

+
(
M (1)
n +M (2)

n +M (3)
n

)(∂|Φ|2
∂τ

)2 ]
.

It is now possible to restore the dependence on the imbalance parameter ζ by simply substituting the
normal fermionic Matsubara frequencies ωn with their �shifted� version νn. By observing the form of the
arguments of the sum over the index n, it is clear that the Matsubara sums that need to be performed
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are all of the form (2.77) and can therefore be easily solved in terms of the functions fs(β, x, ζ) with
s = 1, 2, 3, 4. The result is

S
(2l,τ2)
Φ = −1

2

∫ β

0

dτ

∫
dr

1

V

∑
k[(

2ξk + |Φ|2

|Φ|4
f2(β,Ek, ζ)− 1

|Φ|4
f1(β,Ek, ζ)

)
∂Φ∗

∂τ

∂Φ

∂τ
+

+

(
1

3|Φ|4
f1(β,Ek, ζ) +

E2
k − 3ξ2

k

3|Φ|4
f2(β,Ek, ζ)+

−
4
(
2E2

k − ξ2
k

)
3|Φ|2

f3(β,Ek, ζ) + 2E2
kf4(β,Ek, ζ)

)(
∂|Φ|2

∂τ

)2 ]
.

The complete contribution S
(2l,τ2)
Φ can be �nally rewritten in the simple form

S
(2l,τ2)
Φ =

∫ β

0

dτ

∫
dr

1

V

∑
k

[
Q
∂Φ∗

∂τ

∂Φ

∂τ
+
R

2

(
∂|Φ|2

∂τ

)2
]
,

where the new EFT coe�cients Q and R are de�ned as

Q(|Φ|2) =
1

2|Φ|2

∫
dk

(2π)3

[
f1(β,Ek, ζ)− (E2

k + ξ2
k)f2(β,Ek, ζ)

]
, (2.115)

R(|Φ|2) =

∫
dk

(2π)3

[
f1(β,Ek, ζ) + (E2

k − 3ξ2
k)f2(β,Ek, ζ)

3|Φ|4
+ (2.116)

+
4(ξ2

k − 2E2
k)

3|Φ|2
f3(β,Ek, ζ) + 2E2

kf4(β,Ek, ζ)

]
. (2.117)

2.7 Complete e�ective �eld theory action

The results of the calculations performed in the previous sections can be �nally collected to
obtain the expression for the complete EFT action for a 3D system of ultracold Fermions
with spin-imbalance, which reads

SEFT =

∫ β

0

dτ

∫
dr

[
1

2
D

(
∂Φ∗

∂τ
Φ− Φ∗

∂Φ

∂τ

)
+Q

∂Φ∗

∂τ

∂Φ

∂τ
+
R

2

(
∂|Φ|2

∂τ

)2

+

+ Ωs +
C

2m
|∇rΦ|2 − E

2m

(
∇r|Φ|2

)2

]
, (2.118)

where the de�nitions of the e�ective �eld theory coe�cients Ωs, C, D, E, Q, and R are
given, in terms of the modulus squared of the order parameter, by (2.39), (2.79), (2.95),
(2.80), (2.115), and (2.117) respectively. Here these expressions are reported in order to
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have an overview of the de�nitions:

Ωs =−
∫

d3k

(2π)3

[
1

β
ln (2 cosh (βEk) + 2 cosh (βζ))− ξk −

m|Φ|2

k2

]
− m|Φ|2

4πas
,

C =

∫
d3k

(2π)3

k2

3m

[
f2(β,Ek, ζ)− 4ξ2

k|Φ|2 f4(β,Ek, ζ)
]
,

D =

∫
d3k

(2π)3

ξk
|Φ|2

[f1(β, ξk, ζ)− f1(β,Ek, ζ)] ,

E =2

∫
d3k

(2π)3

k2

3m
ξ2
k f4(β,Ek, ζ),

Q =
1

2|Φ|2

∫
dk

(2π)3

[
f1(β,Ek, ζ)− (E2

k + ξ2
k)f2(β,Ek, ζ)

]
,

R =

∫
dk

(2π)3

[
f1(β,Ek, ζ) + (E2

k − 3ξ2
k)f2(β,Ek, ζ)

3|Φ|4
+

+
4(ξ2

k − 2E2
k)

3|Φ|2
f3(β,Ek, ζ) + 2E2

kf4(β,Ek, ζ)

]
.



Chapter 3

EFT description of Fermi super�uids

The previous chapter was devoted to the development of an e�ective �eld theory capable of
describing the properties of a fermionic super�uid in terms of the bosonic order parameter,
in a broad range of temperatures and across the BEC-BCS crossover. In the present chapter
the �rst applications of the EFT will be considered.

In Section 3.1 the beyond mean-�eld �uctuations are considered and the spectrum of
the collective excitations (Bogoliubov-Anderson modes) is obtained and described as a
function of interaction and temperature. This is done by separating the mean-�eld and
�uctuation contributions to the pairing �eld and then expanding the resulting action up
to quadratic order in the �uctuations. The sound velocity cs and the coe�cient λ of the
correction to the linear dispersion proportional to q3 are computed in terms of the EFT
coe�cients and compared to the predictions of other theoretical treatments [71�74].

Section 3.2 is instead devoted to the evaluation of the �uctuation contribution to the
total particle density, obtained by correcting the saddle point density equation with the
addition of a relevant �uctuation component by applying the Nozières Schmitt-Rink [45]
approach. The behaviour of the critical temperature as a function of the interaction pa-
rameter (kFas)

−1 is analysed and the EFT predictions are compared with the results of
the widely employed Gaussian pair �uctuations theory.

In Section 3.3 it is demonstrated how the correlation functions of any order can be
obtained from the EFT action by introducing a generating functional. The condensate
fraction and the pair correlation length, measuring the number of condensed pairs in the
system and the typical size of a Cooper pair respectively, are evaluated at mean �eld level
and the e�ects of interaction and temperature are described.

The results about the pair correlation length are used in Section 3.4 in order to obtain
an indirect determination of the region of validity of the EFT. As highlighted in Chapter
2 the assumption at the core of the e�ective �eld theory is that the super�uid order
parameter varies slowly in both time and space. To verify the validity of this hypothesis
some results from Chapter 5 about the shape of a stable dark soliton in a Fermi super�uid
are anticipated: in particular the typical size of the soliton, evaluated as the width at half
height of the density dip, is compared to the size of a Cooper pair. The validity range of the
EFT is identi�ed with the domain in the {T, ζ, (kFas)−1}−space where the pair correlation
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length is substantially smaller than the soliton width.
The last part of the chapter, Section 3.5, is dedicated to the comparison, in the oppor-

tune limiting situations, between the EFT and other widely used e�ective theories: the
Gross-Pitaevskii equation, valid at T = 0 in the BEC regime, and the time-dependent
Ginzburg-Landau treatment valid in the vicinity of the transition temperature. Finally in
Subsection 3.5.3 a brief introduction to the Bogoliubov-de Gennes theory is given.

3.1 Collective excitations

In this section the spectra of the collective excitation modes of a system of ultracold
fermions are calculated in the context of the e�ective �eld theory developed in Chapter 2.
The theoretical treatment employed here to study the corrections to the mean �eld theory
caused by the contribution of �uctuations aims to establish a correspondence between the
EFT and the Gaussian pair �uctuations (GPF) approach. Before proceeding a remark
must be made: the literature about the GPF treatment of beyond mean �eld e�ects can
be classi�ed in two categories. The �uctuations about the saddle point are introduced by
writing the pairing �eld as

Φ(x, τ) = ∆ + ϕ(x, t), Φ∗(x, τ) = ∆∗ + ϕ∗(x, t). (3.1)

Here ϕ(x, t) describes the �uctuations while ∆ is the constant solution of the saddle-point
gap equation for a uniform system

∂Ωsp

∂∆
= 0, (3.2)

where Ωsp is the saddle point thermodynamic potential already encountered in Section 2.2.
Denoting the �uctuation contributions to the thermodynamic potential with Ωfl, the total
thermodynamic potential can be written as

Ω = Ωsp + Ωfl (3.3)

The two main approaches to the treatment of Gaussian �uctuations di�er in the way this
quantity is treated in relation to the number equation. The total density and the density of
the excess component particles are related to the total thermodynamic potential through

n = − ∂Ω

∂µ

∣∣∣∣
T,ζ

,

δn = − ∂Ω

∂ζ

∣∣∣∣
T,µ

.

when inserting (3.3) into the last expression, this becomes

n = − ∂Ωsp

∂µ

∣∣∣∣
T,ζ

− ∂Ωfl

∂µ

∣∣∣∣
T,ζ

,

δn = − ∂Ωsp

∂ζ

∣∣∣∣
T,µ

− ∂Ωfl

∂ζ

∣∣∣∣
T,µ

.
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However, when we consider explicitly the dependence of Ω on the pairing �eld, an additional
term has to be considered, i.e.

n = − ∂Ωsp

∂µ

∣∣∣∣
T,ζ,∆

− ∂Ωfl

∂µ

∣∣∣∣
T,ζ,∆

− ∂Ωfl

∂∆

∣∣∣∣
T,ζ,µ

∂∆

∂µ

∣∣∣∣
T,ζ

, (3.4)

δn = − ∂Ωsp

∂ζ

∣∣∣∣
T,µ,∆

− ∂Ωfl

∂ζ

∣∣∣∣
T,µ,∆

− ∂Ωfl

∂∆

∣∣∣∣
T,ζ,µ

∂∆

∂ζ

∣∣∣∣
T,µ

. (3.5)

The two main approaches in the context of the GPF theory are the NSR treatment, intro-
duced by Nozières and Schmitt-Rink [45], and the full GPF treatment (sometimes referred
to as NSR-2). In particular the �rst retains just the �rst two terms in the right hand side of
(3.4) and (3.5), while the second considers the full equations. Up to now no agreement has
been found in the theoretical community about which of the two approaches is the best:
each one has proven to give better predictions in speci�c situations but worse in others.
References in which the full GPF method is used are for example [75,76] by Hu et al., re-
cent papers [77,78] by Randeria et al., [79] by Keeling et al., [80] by Lerch et al., or [69,81]
by Tempere et al.. For references based on the application of the NSR method the reader
is addressed to the work by Strinati et al. [82�85], by Ohashi et al. [86�88], or to earlier
papers by Randeria et al. [46]. A brief discussion of the advantages and disadvantages of
each method is included in the already mentioned paper [81]; the review article by Levin et
al. [89] o�ers instead a more extended and detailed presentation of the principal methods
to treat �uctuations beyond mean �eld.
In the present work a hybrid between the EFT and the standard NSR method is adopted.
In fact it has been demonstrated that the application of the full GPF treatment to the
standard �uctuation action and, even more signi�cantly to the EFT action, can lead to a
non-physical negative contribution to the �uctuation correction nfl to the density.

The starting point to add �uctuations to the mean �eld treatment is to insert the shift
(3.1) into the expression of the EFT action (2.118). This results in

S
(fl)
EFT =

∫ β

0

dτ

∫
dr

[
1

2
D ((∆ + ϕ)(∆∗ + ϕ∗))

(
∂(∆∗ + ϕ∗)

∂τ
(∆ + ϕ)− (∆∗ + ϕ∗)

∂(∆ + ϕ)

∂τ

)
+

+Q
∂(∆∗ + ϕ∗)

∂τ

∂(∆ + ϕ)

∂τ
− R

2

(
∂(∆ + ϕ)(∆∗ + ϕ∗)

∂τ

)2

+

+ Ωs((∆
∗ + ϕ∗)(∆ + ϕ)) +

C

2m
[∇r(∆∗ + ϕ∗)∇r(∆ + ϕ)] +

− E

2m
[∇r ((∆∗ + ϕ∗)(∆ + ϕ))]2

]
, (3.6)

where, on the basis of the discussion of Chapter 2, the full dependence of the EFT coe�-
cients D and Ωs on |Φ|2 has been considered. Collecting the terms up to second order in
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the �uctuations the quadratic part of the action takes the form

S
(quad)
EFT =

∫ β

0

dτ

∫
dr

[
1

2
D̃
(
|∆|2

)(∂ϕ∗
∂τ

ϕ− ϕ∗∂ϕ
∂τ

)
+Q

∂ϕ∗

∂τ

∂ϕ

∂τ
− R

2

(
∂ϕ∗

∂τ
∆ + ∆∗

∂ϕ

∂τ

)2

+

+W (|∆|2)
(
|ϕ|2

)
+ U(|∆|2)

(
1

2
ϕ2 +

1

2
(ϕ∗)2

)
+

C

2m
[∇rϕ

∗ · ∇rϕ] +

− E

2m
(∆∇rϕ

∗ + ∆∗∇rϕ)2

]
. (3.7)

Here the new coe�cients A, D̃, U and W are introduced as:

A =
∂Ωs(|∆|2)

∂|∆|2
, D̃ =

∂ [|∆|2D(|∆|2)]

∂|∆|2
, (3.8)

U = |∆|2∂
2Ω(|∆|2)

∂(|∆|2)2
, W = A+ U. (3.9)

The coe�cients U and W are in principle di�erent but, when the gap equation is applied
they become equal since A = ∂Ωsp/∂|∆|2 is nothing but the left hand side of the saddle-
point gap equation (3.2). Even if this simpli�cation is possible, the coe�cients will be
kept distinct because, proceeding with the NSR-scheme, when taking derivatives of U and
W with respect to the chemical potential to compute the �uctuation correction to the
density, the derivative of the di�erence W − U = A may give non-zero contributions. It
is worth remarking that the terms of order zero in the �uctuations add up to a constant
contribution to the action that does not a�ect the physics of the system. The terms of
order one on the other hand identically vanish, as expected.
By using the Fourier expansion for the �uctuation coordinates, i.e.

ϕ(r, τ) =
1√
βV

∑
q,m

eiq·r−iΩmτϕq,m

ϕ∗(r, τ) =
1√
βV

∑
q,m

e−iq·r+iΩmτϕ∗q,m

the quadratic action can be rewritten in reciprocal space notation as

S
(quad)
EFT =

1

2

∑
q,m

(
ϕ∗q,m ϕ−q,−m

)
M (q, iΩn)

(
ϕq,m

ϕ∗−q,−m

)
, (3.10)

The matrix M (q, iΩn) is determined, in terms of the EFT coe�cients, by:

M (q, iΩn) =

(
W + C

2m
q2 − iΩmD̃ + Ω2

mQ U − |∆|2
(
E
m
q2 +RΩ2

m

)
U − |∆|2

(
E
m
q2 +RΩ2

m

)
W + C

2m
q2 + iΩmD̃ + Ω2

mQ

)
. (3.11)
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It is worth noticing that simple relations exist between the di�erent elements of the matrix,
i.e.

M22 (q, iΩn) = M11 (q,−iΩn) , M21 (q, iΩn) = M12 (q, iΩn) . (3.12)

The spectrum of bosonic excitations is determined after the transformation iΩm → ω by
solving the equation

detM (q, ω) = 0. (3.13)

The solution is then expanded in powers of q up to the fourth order, resulting in

ω2
q = c2

sq
2 +

(
1

2m

)2

λq4 +O
(
q6
)
. (3.14)

In accordance with the Goldstone theorem the dispersion relation for the Bogoliubov ex-
citation is linear at small momenta, i.e. ωq = csq + . . .: this relation introduces the sound
velocity cs which will be one of the main focuses of the present chapter. In addition the
�rst correction, due to the terms in (3.14) that are quartic in q will be computed. The
sound velocity can be readily obtained by taking the square root of the coe�cient at q2 in
(3.14):

cs =

√
2U

C + |∆|2E
D̃2 + 2U (Q+ |∆|2R)

. (3.15)

The second coe�cient, denoted with λ, is instead given by

λ = D̃2
(C + 2|∆|2E)

(
C
(
D̃2 + 4|∆|2UR

)
− 2|∆|2E

(
D̃2 + 4UQ

))
(
D̃2 + 2U (Q+ |∆|2R)

)3 (3.16)

where, in the last two expression we have set U = W since in this context A = 0. The
dispersion relation of the pair excitation (the Bogoliubov-Anderson mode) can be �nally
written as

~ωq = ~q

√
c2
s + λ

(
~q
2m

)2

. (3.17)

where the factors ~ have been momentarily restored to get a better picture of the units
in play. The expansion of the square root in powers of q up to second order leads to the
following form for the energy of the collective excitations:

~ωq = ~csq

[
1 +

λ

8

(
~q
csm

)2

+ . . .

]
. (3.18)

This expression highlights the fact that the �rst correction to the linear dispersion is due
to terms in q3 and makes it easier to compare the notation with that of other articles,
e.g. [74], where moreover the coe�cient λ is named γ.
The behaviour of the sound velocity cs as a function of the interaction parameter (kFas)

−1
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is depicted in Fig. 3.1 for di�erent temperatures. It is important to notice that the BEC
limit of cs → (vF/2)

√
µB/mB [90] and the BCS limit of cS → 1/

√
3vF are both correctly

reproduced. In addition the EFT data for T = 0 have been compared with the calculations
by Salasnich et al. [71] obtained in the framework of Gaussian pair �uctuations theory: a
good agreement is found throughout the entire interaction domain, and in particular at
unitarity and on the BCS side of the resonance.
The coe�cient λ of the term proportional to q3 in (3.18) can be interpreted, as will become
clearer in Chapter 4, as a correction to the mass of the bosonic excitation, which will be
de�ned as mB = m/

√
λ. Fig. 3.2 shows the behaviour of λ across the BEC-BCS crossover.

The dependence on temperature is found to be very weak and becomes sizable just in the
BCS regime. The BEC limit of λ→ 1/4, which in turn means that mB → 2m, is correctly
retrieved. A remark must be added in regard of the behaviour of λ: it appears that the
EFT cannot capture the fact that λ is expected to assume large negative values on the
BCS side of the resonance, as predicted in [72�74]. This emerges clearly from Fig. 3.3
where the EFT predictions for λ across the BEC-BCS crossover are compared to those of
Kurkjian et al. [74]. While the two curves match in the BEC limit, going towards unitarity
they separate with the EFT data (full black line) remaining always positive, while the red
dashed line representing the results of [74] bends down and reaches negative values in the
near BCS limit.

TTF 0

TTF 0.01

TTF 0.1

TTF 0 Salasnich, 2013

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

kFas
1

c
S
v
F

Figure 3.1: Sound velocity as a function of the interaction parameter (kFas)
−1 in di�erent

conditions of temperature, i.e. T = 0 (black full line), T = 0.01TF (blue dashed line),
T = 0.1TF (red dot-dashed line). The EFT values for cs are shown across the entire BEC-
BCS crossover and compared to the prediction by Salasnich et al. [71] (green �nely-dashed
line). The velocity is plotted in units of the Fermi velocity vF = kF/m.
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Figure 3.2: Coe�cient λ of the q3 term in the dispersion relation ωq (3.18) as a function of
the interaction parameter (kFas)

−1 across the BEC-BCS corssover in di�erent conditions
of temperature, i.e. T = 0 (black full line), T = 0.01TF (blue dashed line), T = 0.1TF (red
dot-dashed line).

EFT

Kurkjian 2016
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Figure 3.3: The EFT predictions for the coe�cient λ of the q3 term in the dispersion
relation ωq (3.18) (full black line) are compared to the analogous data from [74] (red dashed
line) as a function of the interaction parameter (kFas)

−1 across the BEC-BCS corssover.

3.2 Critical temperature

The next goal of this chapter is to study the equation of state for a Fermi super�uid within
the EFT formalism. This in turn allows us to determine the critical temperature and to
describe the temperature dependence of di�erent parameters of the system in the super�uid
state.
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3.2.1 Fluctuation contribution to the density

As mentioned earlier, in the present treatment a combination of EFT formalism and NSR
approach is employed: the equation of state is obtained as a joint solution of the saddle-
point gap equation (2.30),

∂Ωsp

∂∆
= 0,

and the density equation,

n = −∂Ω

∂µ
, (3.19)

where Ω = Ωsp + Ωfl is a sum of the saddle-point and �uctuation contributions to the
thermodynamic potentials. The density is in turn subdivided into the two corresponding
components:

n = nsp + nfl, nsp = −∂Ωsp

∂µ
, nfl = −∂Ωfl

∂µ
. (3.20)

The saddle-point expression for the density was given in Chapter 2 in equation (2.31). In
the following we will focus on the evaluation of the �uctuation correction to that expression.
As already mentioned, this will determined by adopting the NSR scheme, i.e. the derivative
∂Ω
∂µ

is considered a partial derivative keeping ∆ as an independent parameter and the
third term on the right hand side of (3.4) and (3.5) is neglected. According to (3.20) the
�uctuation contribution to the fermion density is obtained as minus the derivative with
respect to the chemical potential of the component of the grand canonical thermodynamic
potential due to �uctuations: this is given by

Ωfl(T, µ, ζ; ∆) =
1

2β

∑
q,m

ln {det [M (q, iΩm)]}

=
1

2β

∑
q,m

ln [Γ (q, iΩm)] (3.21)

where, Γ (q, iΩm) is de�ned exploiting the relations between the elements of M(q, iΩm)
(3.12), as

Γ (q, iΩm) = M1,1 (q, iΩm)M1,1 (q,−iΩm)−M1,2 (q, iΩm)M1,2 (q,−iΩm) .

The logarithm of the determinant of M (q, iΩm) in (3.21) appears as a consequence of
the Gaussian integration over the bosonic variables ϕ̄ and ϕ: a similar situation was
encountered already in Chapter 2. The �uctuation contribution to the total particle density
is related to Ωfl through (3.20). To compute this quantity also the derivatives of the
elements of M with respect to µ are needed. To simplify the notation in the following
calculations this sort of derivatives will be indicated by the subscript µ, e.g. Uµ ≡ ∂U/∂µ.
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With the additional substitution iΩm → z the derivatives read

∂M1,1 (q, z)

∂µ
= Wµ + Cµq

2 − D̃µz −Qµz
2 = Uµ + Aµ + Cµq

2 − D̃µz −Qµz
2, (3.22)

∂M1,2 (q, z)

∂µ
= Uµ − 2Eµq

2 +Rµz
2. (3.23)

On the other hand, for the matrix elements, the simpli�cation U = W discussed in the
previous section can be exploited:

M1,1 (q, z) = U +
C

2m
q2 − D̃z −Qz2, M1,2 (q, z) = U − |∆|2

(
E

m
q2 +Rz2

)
. (3.24)

Taking the derivative of (3.21) the �uctuation contribution to the density yields:

nfl = − 1

4π2

1

β

∞∑
m=−∞

∫ ∞
0

q2dq J (q, iΩm) (3.25)

where the function J (q, z) is de�ned as

J (q, z) ≡ 1

Γ (q, z)

[
M1,1 (q,−z)

∂M1,1 (q, z)

∂µ
+
∂M1,1 (q,−z)

∂µ
M1,1 (q, z) +

− 2M1,2 (q,−z)
∂M1,2 (q, z)

∂µ

]
(3.26)

When expanding the numerator of (3.26) in powers of (q, z), only the terms consistent with
the long-wavelength approximation at the basis of the EFT must be kept. These terms
are those up to the second order in powers of q and to �rst order in powers of z. This last
condition is set because z is proportional to ωq which, for large values of the momentum
q is in turn proportional to q2 (as can be easily veri�ed by expanding (3.17) in powers of
q for q → ∞). Due to symmetry reasons, the linear terms in z do not give contributions
to the summation over m, therefore the numerator of J (q, z) (3.26) can be rewritten in
terms of the EFT coe�cients as

UAµ +

[
C (Uµ + Aµ) + CµU + 2 (EUµ + EµU) +

− v2
s

(
D̃D̃µ +Q (Uµ + Aµ) + U (Qµ +Rµ) +RUµ

)]
q2. (3.27)

To simplify the notation, the terms are distinguished in function of their dependence on q
and on the sound velocity cs: by introducing the coe�cients

α1 = UAµ, (3.28a)

α2 = CAµ + U
(
Cµ + 2|∆|2Eµ

)
+
(
C + 2|∆|2E

)
Uµ, (3.28b)

α3 = D̃D̃µ +
(
Q+ |∆|2R

)
Uµ + U

(
Qµ + |∆|2Rµ

)
+QAµ, (3.28c)
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formula (3.27) can be rewritten as:

α1 +
(
α2 − c2

sα3

)
q2. (3.29)

In the same way the denominator of (3.26), Γ (q, z), is expanded about the poles in z =
±ωq, where ωq is the pair excitation frequency (3.17). The result is:

Γ (q, z) ≈ −
(
D̃2 + 2U

(
Q+ |∆|2R

)) (
z2 − ω2

q

)
.

Thus the �uctuation contribution to the density becomes:

nfl =
1

β

∞∑
m=−∞

1

2π2

∫ ∞
0

q2dq
α1 + (α2 − c2

sα3) q2

D̃2 + 2U (Q+ |∆|2R)

1

(iΩm)2 − ω2
q

=

=
1

β

∞∑
m=−∞

1

4π2

∫ ∞
0

q2dq
α1 + (α2 − c2

sα3) q2

D̃2 + 2U (Q+ |∆|2R)

1

ωq

(
1

iΩm − ωq
− 1

iΩm + ωq

)
.

This expression can be further simpli�ed by using the symmetry m ↔ −m: for a generic
function f the equality

∞∑
m=−∞

[f (iΩm) + f (−iΩm)] = 2
∞∑

m=−∞

f (iΩm)

holds, therefore the quantity nfl can be again simpli�ed and reads

nfl =
1

β

∞∑
m=−∞

1

2π2

∫ ∞
0

q2dq
α1 + (α2 − c2

sα3) q2

D̃2 + 2U (Q+ |∆|2R)

1

ωq

(
1

iΩm − ωq

)
.

The Matsubara sum over the bosonic frequencies Ωm is performed by transforming it into
a contour integration in the standard way [68,91], i.e.

1

β

∞∑
m=−∞

f (iΩm) =
1

π

∫ ∞
−∞

dω
Im f (ω + iδ)

eβω − 1
, δ → +0 (3.30)

Therefore the �nal result for the �uctuation contribution to the density is

nfl = − 1

2π2

1

D̃2 + 2U (Q+ |∆|2R)

∫ ∞
0

q2dq
1

ωq

α1 + (α2 − c2
sα3) q2

eβωq − 1
, (3.31)

or, restoring the explicit dependence on the EFT coe�cients,

nfl = − 1

2π2

1

D̃2 + 2U (Q+R)

∫ ∞
0

q2dq
1

ωq

1

eβωq − 1

×
{
U
∂A

∂µ
+

[
∂

∂µ
(WC + 2UE)− c2

s

2

∂

∂µ

(
D̃2 + 2

(
WQ+ U |∆|2R

))]
q2

}
. (3.32)
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3.2.2 Results for the critical temperature

The coupled solution of the gap equation and of the number equation (3.20) with the
�uctuation correction to the density nfl given by (3.32) enables us to evaluate the critical
temperature Tc at which pairing occurs.
The behaviour of this quantity is analysed in Fig. 3.4 as a function of the interaction
parameter (kFas)

−1 across the BEC-BCS crossover. The EFT results are compared to
the predictions of the mean-�eld theory, as well as to those of the NSR treatment in two
di�erent implementations, by Perali et al. [84], and by Sá de Melo et al. [46] respectively. It
appears clear that the mean-�eld calculations give quantitatively good results only limited
to the BCS regime and increasingly overestimate Tc going towards the BEC side of the
resonance. The other three approaches all agree in the BEC limiting case, but show sizable
di�erences in the intermediate interaction range and in the BCS limit where the transition
temperature determined in the implementation of the NSR scheme by Sá de Melo appears
to be lower than in the other approaches. On the other hand at unitarity and in the near-
BEC regime the predictions the present EFT and of Sá de Melo's NSR theory remain close
to each other while the NSR treatment by Perali predicts a higher TC .

EFT

mean field

NSR, Perali, 2004

NSR SádeMelo, 1993

1.5 1.0 0.5 0.0 0.5 1.0 1.5
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Figure 3.4: Critical temperature (in units of the Fermi temperature TF ) as a function of
the interaction parameter (kFas)

−1 across the BEC-BCS crossover. The predictions of the
e�ective �eld theory developed in this work (full black line) are compared to the results of
the mean-�eld theory (blue dashed line), the implementation of the NSR scheme by Perali
et al. [84] (red dot-dashed line) and the implementation of the NSR scheme by Sá de Melo
et al. [46] (green �ne-dashed line).
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3.3 Correlation functions: condensate density and cor-

relation length

The present section is dedicated to the calculation of two relevant quantities in the de-
scription of a fermionic super�uid:

• the condensate fraction, which gives a measure of the number of particles that take
part in the pairing mechanism;

• the pair correlation length, that is an estimate of the characteristic size of the Cooper
pairs forming the fermionic condensate.

Both these quantities can be calculated in terms of correlation functions: in the following
we will show how fermionic correlation functions of all orders can be obtained with the use
of a generating functional.
The calculations exploited in this section are at mean-�eld level: the expressions obtained
will then be used in Chapter 4 where a simple model to study the polaronic e�ects produced
by an impurity in a Fermi super�uid is developed. The corrections to these correlation
functions due to beyond-mean-�eld e�ects are outside the scope of the present work, but
many studies can be found in literature, e.g. in [92] for the condensate density and in [93,94]
for the pair correlation length.

3.3.1 Generating functional

The generating functional necessary to calculate the fermionic correlation functions can be
obtained by modifying the partition sum (2.3) with the inclusion of sinks and sources λ̄,
and λ:

Z̃
[
λ̄, λ
]

=

∫
Dψ̄

∫
Dψ e−S̃[ψ̄,ψ;λ̄,λ], (3.33)

where the extended action S̃ is de�ned as

S̃ =

∫ β

0

dτ

∫
dr
∑
σ=↑,↓

ψ̄σ (r, τ)

(
∂

∂τ
−∇2

r − µσ
)
ψσ (r, τ)

+ g

∫ β

0

dτ

∫
dr ψ̄↑ (r, τ) ψ̄↓ (r, τ)ψ↓ (r, τ)ψ↑ (r, τ)

−
∫ β

0

dτ

∫
dr

[
λ̄↑ (r, τ)ψ↑ (r, τ) + ψ̄↑ (r, τ)λ↑ (r, τ)

−λ̄↓ (r, τ)ψ↓ (r, τ)− ψ̄↓ (r, τ)λ↓ (r, τ)
]
. (3.34)

Since the starting action was an even function of fermionic Grassmann variables, to insure
consistency and preserve the symmetry properties, also the sources λ↓ (r, τ), λ↑ (r, τ),
λ̄↑ (r, τ), and λ̄↓ (r, τ) must be grassmanian symbols.
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The generating functional is de�ned in terms of the normal and extended partition
sums as the normalised expression

P
[
λ̄, λ
]

=
Z̃
[
λ̄, λ
]

Z
, (3.35)

which becomes unity when all the sources are switched o�, i.e. when all
{
λ̄, λ
}
are equal

to zero. The explicit form for P
[
λ̄, λ
]
is:

P
[
λ̄, λ
]

=

〈
exp

[∫ β

0

dτ

∫
dr

[
λ̄↑ (r, τ)ψ↑ (r, τ) + ψ̄↑ (r, τ)λ↑ (r, τ)
−λ̄↓ (r, τ)ψ↓ (r, τ)− ψ̄↓ (r, τ)λ↓ (r, τ)

]]〉
. (3.36)

In the last expression the symbols 〈. . .〉 indicate an average taken in terms of the normal
fermionic action S. In the remainder of this section we will show how the generating
functional can be instead expressed in terms of an average taken with respect to the
e�ective �eld action derived in Chapter 2.

In order to have a simpler notation, further on, we drop the arguments (r, τ) of the
�elds appearing in the action. As a consequence the expressions for the quantities S̃ and
P [λ̄, λ] in the compact notation read

S̃ =

∫ β

0

dτ

∫
dr
∑
σ=↑,↓

ψ̄σ

(
∂

∂τ
−∇2

r − µσ
)
ψσ

+ g

∫ β

0

dτ

∫
dr ψ̄↑ψ̄↓ψ↓ψ↑ −

∫ β

0

dτ

∫
dr

(
λ̄↑ψ↑ + ψ̄↑λ↑ − λ̄↓ψ↓ − ψ̄↓λ↓

)
, (3.37)

and

P
[
λ̄, λ
]

=

〈
exp

[∫ β

0

dτ

∫
dr

(
λ̄↑ψ↑ + ψ̄↑λ↑ − λ̄↓ψ↓ − ψ̄↓λ↓

)]〉
(3.38)

respectively.
Performing the Hubbard-Stratonovich transformation on the original action produces

the same results obtained in the derivation carried out in Chapter 2 and the extended
action can be written as:

S̃ =

∫ β

0

dτ

∫
dr
∑
σ=↑,↓

ψ̄σ

(
∂

∂τ
−∇2

r − µσ
)
ψσ

+

∫ β

0

dτ

∫
dr
(
Φ∗ψ↑ψ↓ + Φψ̄↓ψ̄↑

)
−
∫ β

0

dτ

∫
dr

1

g
Φ∗Φ + δS

[
λ̄, λ
]
. (3.39)

This extended HS action di�ers from the HS action (2.8) just by the presence of the terms
involving the sources λ̄, and λ, i.e.

δS
[
λ̄, λ
]

= −
∫ β

0

dτ

∫
dr
(
λ̄↑ψ↑ + ψ̄↑λ↑ − λ̄↓ψ↓ − ψ̄↓λ↓

)
. (3.40)
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Reintroducing the fermionic Nambu spinors Ψ̄ and Ψ (2.7), together with the additional
spinors involving the sources

Λ ≡
(
λ↑
λ̄↓

)
, Λ̄ ≡

(
λ̄↑, λ↓

)
,

in matrix notation, the extended action becomes:

S̃ = −
∫ β

0

dτ

∫
dr

[
Ψ̄
[
G−1 (r, τ)

]
Ψ−

(
Ψ̄Λ + Λ̄Ψ

)
− 1

g
Φ∗Φ

]
, (3.41)

where the inverse fermion propagator G−1 (r, τ) already encountered in (2.9) was intro-
duced. The action written in this way still poses the problem of the integration of the
fermionic variables, which is complicated by the presence of the terms in Λ̄ and Λ. This
issue can be solved by performing a shift of the fermionic variables and by requiring that
the terms that couple the sources to the fermionic �elds, i.e. the terms involving products
of the form λ̄↑ψ↑, ψ̄↑λ↑, λ̄↓ψ↓, ψ̄↓λ↓, must vanish. The result of this shift is

S̃ → S̃ ′ = −
∫ β

0

dτ

∫
dr

[
Ψ̄′
[
G−1 (r, τ)

]
Ψ′ − 1

g
Φ∗Φ− Λ̄GΛ

]
. (3.42)

where Ψ̄′ and Ψ′ represent the new shifted fermionic Nambu spinors. Since the shift of the
fermionic variables does not a�ect the result of the integration in the partition sum, from
now on the primes can (and will) be safely dropped. The new action S ′ is related to the
action S (2.8) through

S̃ ′ = S + δS
[
λ̄, λ
]
, (3.43)

where the term δS
[
λ̄, λ
]
is de�ned as

δS
[
λ̄, λ
]

= −
∫ β

0

dτ

∫
dr

∫ β

0

dτ ′
∫

dr′ Λ̄ (r′, τ ′)G (r′, τ ′|r, τ) Λ (r, τ) (3.44)

As intended, the source term δS does not depend on the original fermionic �elds Ψ̄ and
Ψ anymore but only on the pair �eld Φ∗,Φ. The sources were thus successfully decoupled
from the fermionic part of the action.
The fermionic part of the action is now exactly equal to the one treated in detail in Chapter
2 and can be therefore replaced by the EFT action (2.118). Hence the generating functional
can be expressed as an average with respect to the e�ective bosonic action rather than to
the fermionic one. The resulting form for P

[
λ̄, λ
]
is

P
[
λ̄, λ
]

=
〈
e−δS[λ̄,λ]

〉
SEFT

=
〈
e
∫ β
0dτ

∫
dr Λ̄GΛ

〉
SEFT

=

〈
exp

[∫ β

0

dτ

∫
dr

∫ β

0

dτ ′
∫

dr′ Λ̄ (r′, τ ′)G (r′, τ ′|r, τ) Λ (r, τ)

]〉
SEFT

. (3.45)
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This functional allows to determine any correlation function of the fermion variables at
any order through the calculation functional derivatives of the generating functional with
respect to the sources λ̂ and λ followed by the limit λ̂ → 0 and λ → 0. For example in
the present chapter we will focus on the determination of the correlation functions that
provide the condensate density and the pair correlation length which are given by

〈ψ↑ (r, τ)ψ↓ (r′, τ)〉 = − δ

δλ̄↑ (r, τ)
P
[
λ̄, λ
] δ

δλ̄↓ (r′, τ ′)

∣∣∣∣
λ̄,λ=0

, (3.46)

and 〈
ψ̂↑ (r, τ) ψ̂↓ (r′, τ)ψ↓ (r′, τ)ψ↑ (r, τ)

〉
=

=
δ

δλ↓ (r′, τ)

δ

δλ↑ (r, τ)
P
[
λ̄, λ
] δ

δλ̄↑ (r, τ)

δ

δλ̄↓ (r′, τ ′)

∣∣∣∣
λ̄,λ=0

. (3.47)

3.3.2 Condensate fraction

Inserting the explicit expression (3.45) of the generating functional in terms of the EFT
action into the de�nition of the condensate density (3.46), we obtain the relation between
the fermion and boson average:

〈ψ↑ (r, τ)ψ↓ (r′, τ)〉 = −〈G12 (r, τ |r′, τ)〉SEFT , (3.48)

where G12 indicates the {1, 2} element of the matrix representation of the fermionic Green's
function (2.9) encountered in Chapter 2. It is important to remark that the last expression
is independent of the sources λ̄, λ. This is a consequence of the procedure for calculat-
ing averages described at the end of the previous section which requires that, after the
functional derivatives with respect to the sources λ̄, λ, these must be set equal to 0. The
expression for the condensate density is [68,95]:

nc =
1

V

∫
dr

∫
dr′ |〈G12 (r, τ |r′, τ)〉EFT |

2
. (3.49)

In order to obtain a closed form for nc is now convenient to move to Fourier representation:
this can be done by again following the derivation of Chapter 2. The Fourier representation
of G12 (r, τ |r′, τ), is given by

G12 (r, τ |r′, τ ′) =
1

βV

∑
k′,n′

∑
k,n

G12 (k, n|k′, n′) e−ik′·r′+iωn′τ
′
eik·r−iωnτ (3.50)
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In turn formula (3.49) becomes

nc =
1

β2V 3

∫
dr

∫
dr′

∑
k′,n′

∑
k,n

〈G12 (k, n|k′, n′)〉SEFT e
−ik′·r′+iωn′τeik·r−iωnτ

×
∑
k′1,n

′
1

∑
k1,n1

〈G∗12 (k1, n1|k′1, n′1)〉SEFT e
ik′1·r′−iωn′1

τ
e−ik1·r+iωn1τ

=
1

V β2

∑
k′,n′

∑
k,n

∑
n′1

∑
n1

〈G12 (k, n|k′, n′)〉Seff 〈G
∗
12 (k, n1|k′, n′1)〉Seff

× e−i
(
ωn+ωn′1

−ωn1−ωn′
)
τ
.

Since the system under consideration is stationary, the condensate fraction nc must be
independent on time, therefore we can set

n+ n′1 − n′ − n1 = 0 =⇒ n− n′ = n1 − n′1.

and the expression for the condensate density is simpli�ed. Renaming the indices by setting
m ≡ n− n′ = n1 − n′1, we obtain

nc =
1

V β2

∑
q,m

∑
k,n,n′

〈G12 (k, n|k + q, n+m)〉SEFT 〈G
∗
12 (k, n′|k + q, n′ +m)〉SEFT (3.51)

The last necessary step to calculate the saddle-point expression for the condensate density
is to recall the saddle-point form of the inverse fermion propagator, which is given by

G−1
sp (k, n|k′, n′) = δn′,nδk′,k

(
iωn − ξk + ζ −∆
−∆ iωn + ξk + ζ

)
, (3.52)

The fermionic Green's function can be obtained by simply inverting the previous matrix,
and reads

Gsp (k, n|k′, n′) = −δn′,nδk′,k

(
iωn+ξk+ζ

(ωn−iζ)2+ξ2k+∆2

∆
(ωn−iζ)2+ξ2k+∆2

∆
(ωn−iζ)2+ξ2k+∆2

iωn−ξk+ζ

(ωn−iζ)2+ξ2k+∆2

)
(3.53)

Hence the condensate density at saddle-point level can be written, in terms of the Mat-
subara frequency ωn, as

n(sp)
c = ∆2

∫
dk

(2π)3

(
1

β

∑
n

1

(ωn − iζ)2 + E2
k

)2

.

The computation of the Matsubara sum yields the �nal expression for nc, i.e.:

n(sp)
c = ∆2

∫
dk

(2π)3

1

4E2
k

(
sinh (βEk)

cosh (βEk) + cosh (βζ)

)2

=

=
∆2

2π2

∫ ∞
0

k2dk [f1 (β,Ek, ζ)]2 (3.54)
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which coincides with the well known result found in literature [92,95].
The condensate fraction νc is de�ned as the ratio between (twice) the condensate density

and the total density, i.e.
νc ≡ 2nc/n. (3.55)

The factor 2 in the de�nition has been added to normalise the condensate fraction to 1. As
discussed in reference to the solution of the number equation, we consider the total density
n to be normalised to the value n = 1/ (3π2), therefore the condensate fraction is given by

ν(sp)
c =

3

2
∆2

∫ ∞
0

k2dk [f1 (β,Ek, ζ)]2 (3.56)

Figure 3.5 shows the behaviour of νc in di�erent temperature conditions across the BEC-
BCS crossover. As expected, in the extreme BEC limit the fraction approaches 1, i.e.
all the particles of the system are paired and the tightly bound bosonic molecules that
they form are all condensed. While the value of νc in the BEC regime is weakly a�ected
by temperature, the presence of unpaired particles due to �nite temperature, reduces the
number of atoms that participate to the pairing in other regimes. In particular it can
be observed that at higher temperatures the condensate fraction on the BCS side of the
resonance is completely suppressed: this is due to the fact that at �nite temperatures no
super�uid order can be achieved in said interaction region.
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Figure 3.5: Saddle-point condensate fraction across the BEC-BCS crossover at di�erent
temperatures: T = 0.01TF (full black line), T = 0.1TF (blue dashed line), and T = 0.2TF
(red dot-dashed line).
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3.3.3 Pair correlation length

The pair correlation length represents an estimate of the typical size of a Cooper pair.
In this section we will proceed to its calculation by employing the generating functional
method described at an earlier stage in this chapter. Following the theoretical description
given in [93,94] the pair correlation length is determined in terms of the correlation function

g↑↓ (r) =
〈
ψ̄↑

(
R +

r

2

)
ψ̄↓

(
R− r

2

)
ψ↓

(
R− r

2

)
ψ↑

(
R +

r

2

)〉
−
(n

2

)2

, (3.57)

(where n is the fermionic density), as

ξpair =

(∫
dr r2g↑↓ (r)∫
dr g↑↓ (r)

)1/2

. (3.58)

In expression (3.57) the space dependence is described by separating the center of mass
coordinate R and the relative coordinate r. It is demonstrated [93] that at the mean-
�eld level the pair correlation function g↑↓ can be factorised as a product of single particle
averages as

g
(sp)
↑↓ (r) =

〈
ψ↓

(
R− r

2

)
ψ↑

(
R +

r

2

)〉〈
ψ̄↑

(
R +

r

2

)
ψ̄↓

(
R− r

2

)〉
=

=
∣∣∣〈ψ↓ (R− r

2

)
ψ↑

(
R +

r

2

)〉∣∣∣2 . (3.59)

Since the system under consideration is uniform, this quantity must be independent of the
center of mass coordinate R, therefore the previous expression can be further simpli�ed to
give

g
(sp)
↑↓ (r) =

∣∣∣〈ψ↓ (−r

2

)
ψ↑

(r
2

)〉∣∣∣2 . (3.60)

Following the procedure outlined in the previous section, it is convenient to write the
expressions at the numerator and at the denominator of (3.58) in reciprocal space notation.
It is straightforward to observe that the expression at the denominator coincides exactly
with the one of the condensate density nc (3.54). For what concerns the numerator we
have ∫

dr r2g↑↓ (r) = ∆2

∫
dk

(2π)3

(
∇k

1

2Ek

sinh (βEk)

cosh (βEk) + cosh (βζ)

)2

= ∆2

∫
dk

(2π)3 [∇kf1 (β,Ek, ζ)]2 . (3.61)

Remembering the recursive relation (2.78) that relates the functions fs (β,Ek, ζ) with dif-
ferent indices s, the last line can be again simpli�ed and becomes

∆2

∫
dk

(2π)3 [∇kf1 (β,Ek, ζ)]2 = ∆2

∫
dk

(2π)3 [−4k ξkf2 (β,Ek, ζ)]2
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Exploiting the spherical symmetry of the system the �nal expression for the mean-�eld
pair correlation length �nally reads

ξpair =

(∫∞
0
k2dk [4k ξkf2 (β,Ek, ζ)]2∫∞
0
k2dk [f1 (β,Ek, ζ)]2

)1/2

. (3.62)

The pair correlation length will be used in the following section to test the reliability of the
predictions of the EFT. From the comparison between ξpair, which measures the typical
size of the Cooper pairs, and the width of the solitons examined in that context, the region
of validity of the EFT can be identi�ed. The theory presented in this thesis is based on the
hypothesis that the order parameter varies slowly in both time and space: it can therefore
be assumed that the analysis is valid when the characteristic length scale of object under
consideration (in this case the soliton) is larger than the size of the Cooper pairs.
Figure 3.6 depicts the dependence of ξpair on the interaction parameter (kFas)

−1 across the
BEC-BCS crossover. As was the case for the condensate fraction, the e�ect of temperature
is negligible in the BEC limit, but becomes more substantial at unitarity and in the BCS
regime. In particular the size of the Cooper pairs is reduced as the temperature increases.
The two data sets relative to higher temperatures in the �gure do not span the entire
interaction regime because in those temperature conditions the super�uid order parameter
drops to zero for large negative values of (kFas)

−1.
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Figure 3.6: Saddle-point pair correlation length across the BEC-BCS crossover at di�erent
temperatures: T = 0.01TF (full black line), T = 0.1TF (blue dashed line), and T = 0.2TF
(red dot-dashed line).
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3.4 Validity range of the EFT

In this section the correlation functions calculated in the previous section will be employed
in order to obtain an indirect determination of the validity domain of the e�ective �eld
theory derived in the present work. To do so we are going to anticipate some results about
the shape of dark solitons in Fermi super�uid that will be discussed in full detail in Chapter
5.

In Chapter 2 it was repeatedly highlighted that one of the cornerstones on which the
e�ective �eld theory presented in this thesis is built is the assumption that the order param-
eter changes slowly in both time and space, corresponding to a long-wavelength approxi-
mation. In order to verify the validity of this hypothesis we consider the system consisting
of a dark soliton in a uniform fermionic super�uid. This appears as dip in the density
pro�le of the condensate with width and depth determined by the conditions of temper-
ature, imbalance, and interaction, i.e. by the combination of parameters {β, ζ, (kFas)−1}.
A detailed analysis of the dependence of the soliton properties on these three parameters
will be carried out in the following chapter.
One way to indirectly verify the slow variation hypothesis at the basis of the EFT is to
compare the characteristic length scale for the uniform system, i.e. the typical size ξpair of
the Cooper pairs, to the characteristic length relative to the particular phenomenon that
is being examined, i.e. the soliton width. The soliton width is closely related to the phase
coherence length or healing length. According to this reasoning the region of validity of
the EFT can be therefore identi�ed as the region of the {β, ζ, (kFas)−1} -space for which
the size of the soliton is much larger than ξpair. As already mentioned, the typical size of
the Cooper pairs can be estimate by calculating the correlation length ξpair (often referred
to as Pippard length [91]). This quantity was studied in detail in Section 3.3 by using a
generating functional to calculate the necessary four-fermion correlation function. Here we
report just its expression obtained in the context of the present EFT, which reads:

ξpair =

√∫
dk k2 (4k ξkf2 (β,Ek, ζ))2∫

dk k2 (f1 (β,Ek, ζ))2 . (3.63)

To describe the characteristic size of the soliton two di�erent estimates are considered (and
compared): in addition to the width at half height of the soliton dip ξn (that will represent
the main measure of the width in the analysis of Chapter 5), here also the phase coherence
length ξphase will be studied. In the case of a black soliton (with velocity vS = 0), ξphase is
determined by making an ansatz on the shape of the spatial pro�le of the order parameter:
employing as a trial function for the amplitude modulation of the form

Φ(x) = Φ∞a(x), a(x) = tanh

(
x√

2ξvar

)
, (3.64)

the free energy of the system is then minimised with respect to the variational parameter
ξvar. As discussed in [93] a rescaling coe�cient is needed in order to connect the variational
parameter ξvar to the healing length ξphase. To this purpose, the convention of rescaling
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ξvar to the value of ξphase at T = 0 in the BCS limit was adopted, obtaining the relation
ξphase = 1.175 ξvar.
Fig.3.7 shows the comparison between the characteristic size of the soliton and of the
Cooper pairs as a function of the interaction parameter (kFas)

−1 across the BEC-BCS
crossover. The two plots are relative to two di�erent temperature regimes: in particular,
the left panel focuses on the situation in which the temperature is much lower than the
critical temperature (T/Tc = 0.1), while the right panel considers the �Ginzburg-Landau�
typical regime where the temperature is close to Tc, i.e. T/Tc = 0.95. In the high tempera-
ture situation (Fig.3.7(right panel)) it emerges that the soliton width remains substantially
larger than the Cooper pair size in the entire interaction regime, thus guaranteeing a good
degree of reliability for the EFT. On the other hand, in the low temperature con�gura-
tion (Fig. 3.7(left panel)) the same conclusion remains true only on the BEC side of the
resonance. When moving towards unitarity and further on towards the BCS regime the
soliton width approaches more and more closely the pair correlation length until the two
quantities become practically equal. Another observation that must be made is that the
two di�erent evaluations of the soliton size, i.e. ξphase and ξn are in extremely good agree-
ment in both the BEC and the BCS limit, but a di�erence can be seen when considering
intermediate interaction regimes: such a discrepancy can be explained by considering the
ansatz (3.64) on the form of the trial function used to determine ξphase. In fact, while in
both the BEC [96, 97] and BCS [98] limits the amplitude modulation of the soliton is ex-
pected to be modeled by a hyperbolic tangent, the same is not in general true at unitarity
and in the intermediate regimes. To have a more comprehensive picture of the domain of
validity of the e�ective �eld theory presented in this thesis, in Fig.3.8 the ratio between
the pair correlation length ξpair and the healing length ξphase is plotted as a function of
both the temperature (normalised to the critical temperature) and the interaction param-
eter (kFas)

−1. The color runs from a lighter, to a darker shade as the ratio ξpair/ξphase
decreases. Therefore the region of reliability of the EFT can be identi�ed with the dark
blue/purple region of the contour plot. The result is consistent with what discussed before:
the EFT proves to be fully reliable at high enough temperatures, but, as the temperature
decreases, its validity is not guaranteed on the BCS side of the resonance.
In order to understand the e�ect of population imbalance on the validity range of the EFT,
in Fig. 3.9 the ratio ξpair/ξphase is plotted as a function of the imbalance parameter ζ and
again of temperature (this time normalised to the Fermi temperature). The imbalance
does not a�ect substantially the ratio between the two length scales in the vast majority
of the con�guration. Only in a small region of the {ζ, T/TF} space a non monotonic be-
haviour is observed. This feature is a consequence of the nature of the dependence of the
order parameter on imbalance (see for reference the inset of �gure 5.10 in Chapter 5): the
modulus of the order parameter as a function of ζ varies slowly in the entire domain of
values of imbalance until a critical value ζ(crit) is closely approached. Only at that point
the �eld Φ shows a sudden change as it abruptly drops to zero.
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Figure 3.7: (left panel) Comparison between inverse pair crrelation length and inverse
soliton width (in units of kF ) across the BEC-BCS crossover for T/Tc = 0.1. The full
black line represents the inverse healing length without imbalance. The dashed blue line
describes the inverse soliton width. The dashed green line represents the inverse pair
correlation length. The dotted red line represents the inverse pair correlation length with
imbalance ζ = 0.5EF . (right panel) Comparison between inverse pair correlation length
and inverse soliton width across the BEC-BCS crossover for T/Tc = 0.95: the dashing/color
code is the same as for (a).

3.5 Comparison with other theoretical approaches

3.5.1 BEC limit

The goal of this subsection is to demonstrate that the EFT naturally retrieves the results
predicted by the Gross-Pitaevskii equation in the BEC limit, when the fermion pairs be-
come tightly bound bosonic dimers. To begin with, it is important to notice that the terms
with second order time derivatives, i.e. those involving coe�cients Q and R, do not have
a counterpart in the Gross-Pitaevskii equation. For the moment they will be therefore ig-
nored: later this simpli�cation will be justi�ed by demonstrating that such terms become
negligible in the BEC limit. In order to obtain the equation of motion that governs the
real-time dynamics of the system, the simpli�ed version (Q = 0, R = 0) of the e�ective
�eld action (2.118) must be converted from Euclidean- to real-time notation. This is done
by exploiting the formal replacement

τ → it, S(β)→ iS(ta, tb).

The real-time action is given in terms of the real-time Lagrangian density L by

S(ta, tb) =

∫ tb

ta

dt

∫
drL,
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Figure 3.8: Contour plot depicting the behaviour of the ratio ξpair/ξphase between the pair
ccorrelation length and the variationally determined healing length as a function of the
inverse scattering length as and the temperature. The values of the scattering length span
the entire BEC-BCS crossover, while the temperature range goes from 0 to the critical
temperature Tc.

where L is de�ned as

L =
i

2
D

(
∂Φ∗

∂t
Φ− Φ∗

∂Φ

∂t

)
+ Ωs +

C

2m
|∇rΦ|2 − E

2m

(
∇r|Φ|2

)2
.

The equation of motion can be therefore simply obtained from the Euler-Lagrange equa-
tions

∂L
∂Φ
− ∂

∂t

∂L
∂(∂tΦ)

= 0,

and is found to read

iD̃
∂Φ

∂t
= − C

2m
∇2

rΦ +

(
A+

E

m
∇2

r|Φ|2
)

Φ . (3.65)

The additional coe�cients A and D̃ appearing in the previous expression are the modi�ed
EFT coe�cient already encountered in (3.8). To cast the equation of motion (3.65) into a
form that more closely resembles the Gross-Pitaevskii equation it is convenient to divide
both sides of the equality by D̃: this leads to

i
∂Φ

∂t
= − C

2mD̃
∇2

rΦ +

(
A

D̃
+

E

mD̃
∇2

r|Φ|2
)

Φ .

The �rst term in the left hand side of the last equation, i.e. the kinetic term, has the same
form of the kinetic term in the GP equation, but with a prefactor given by the ratio C/D̃.
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Figure 3.9: Dependence of the pair correlation length on the imbalance parameter ζ and
temperature T at (kFas)

−1 = −1 on the BCS side of the resonance. The non-monotonic
behaviour of ξpair(ζ) is apparent. Lengths are in units of k−1

F and ζ is in units of EF .

From Fig.3.10(a) it appears that this ratio tends to 1/2 in the BEC limit, suggesting that
this term now describes the kinetic energy of a particle of mass M = 2m. On the other
hand, panel (b) of Fig.3.10 shows how the term proportional to the EFT coe�cient E
becomes less and less relevant as the interaction becomes stronger.
The last term that needs to be taken into consideration is (A/D̃)Φ. This needs to reproduce
the nonlinear term of the GP equation which reads U |Φ|2Φ, where U represents the coupling
constant for the boson-boson interaction. The expansion of the thermodynamic potential
Ωs in powers of the order parameter can be written as

Ωs(|Φ|2) = Ω(0) + a|Φ|2 +
1

2
b|Φ|4 + . . . (3.66)

From the de�nition of A (3.8) we can deduce the equality

A = a+ b|Φ|2 + . . .

and, in turn, the coe�cients a and b can be written in terms of A as

a = A||Φ|=0 b =
∂A(|Φ|2)

∂|Φ|2

∣∣∣∣
|Φ|=0

As discussed in [1] the coe�cients a and b obtained in such way exactly reproduce those
obtained in the time-dependent Ginzburg-Landau treatment by Sà de Melo et al. in [46]. In
the same paper it is demonstrated how, in the strong coupling BEC limit, the contribution
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Figure 3.10: The ratios C/D̃ and E/D̃ are displayed in function of the interaction param-
eter (kFas)

−1 for three di�erent values of the temperature. The ratio C/D̃ tends to the
value 1/2 thus reproducing the numerical prefactor of the kinetic term for a boson of mass
M = 2m. The quantity E/D̃ tends instead to 0 as the coupling becomes stronger.

(a|Φ|2 + 1
2
b|Φ|4)/d correctly tends to the nonlinear term U |Φ|2Φ, with

U =
8πkFas

2m
=

4πkFaB
M

i.e. the interaction strength for a boson of mass M and e�ective s-wave boson-boson
scattering length aB = 2aF . The same procedure leads to the same conclusion in the
context of the present e�ective �eld theory.
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In light of this discussion we can conclude that, in the BEC limit (and for values of |Φ|
small enough that Ωs is well approximated by its expansion up to quartic order (3.66)),
the EFT equation of motion (3.65) reduces to the Gross-Pitaevskii equation for composite
bosons of mass M = 2m that interact through a s-wave contact potential described by the
scattering length aB = 2aF .
At the beginning of the present subsection the terms with time derivatives of order (or
power) higher than one were neglected. The complete equation of motion accounting for
the presence of these contributions is given in [1]: later in the thesis it will be made clear
that the coe�cients of terms with second order derivatives can be considered constants and
equal to their value in the uniform system con�guration. This simpli�cation leads us to
understand that the coe�cient ratios which weight the contributions coming from the extra
terms in the equation of motion are Q/D̃ and R/D̃. The two panels of Fig.3.11 con�rm
the validity of the hypothesis that the terms of the EFT action (2.118) proportional to Q
and R can be neglected in the deep BEC limit.

3.5.2 EFT vs. time-dependent Ginzburg-Landau theory

At the start of Chapter 2 it was stated that the present e�ective �eld theory is inspired
by the Ginzburg-Landau approach. This assertion is true in the sense that both theories
describe the system of ultracold fermions in terms of a macroscopic wavefunction (identi�ed
with the order parameter), and � from a mathematical point of view � follow a similar path
in the treatment of the corrections to the mean-�eld theory. Moreover the analysis of Fig.
3.8 indicates that at unitarity and in the BCS regime the reliability range of the EFT
reduces to the vicinity of Tc similarly to the GL treatment. In this section we show that
a more careful comparison between the two approaches leads to the revelation of a crucial
di�erence.
As mentioned in the previous subsection the coe�cients a and b of the quadratic and
quartic terms (in |Φ|) of the time-dependent Ginzburg-Landau theory developed in [46]
can be exactly reproduced in the context of the present e�ective �eld theory when the limit
of small order parameter i.e |Φ| → 0 is taken. While the same is true for the coe�cient c
of the kinetic term, a particular attention must be given to the coe�cient d of the term
involving the �rst-order time derivative. The counterpart of d in the present EFT is D̃ but,
even in the small-|Φ| limit, these two coe�cients remain substantially di�erent. On the one
hand D̃ is always real across the entire interaction domain; on the other hand, from the
de�nition of d in [46], it is immediately clear that this coe�cient has a non-zero imaginary
part. In particular the imaginary part of d is dominant in the weak coupling BCS side of the
Feshbach resonance, meaning that the dynamics of Φ in this regime is essentially damped.
When the coupling becomes stronger, in the BEC regime, Im(d) tends to 0, and, in the
small-Φ limit, Re(d) → D̃, so the dynamics of Φ is propagative and the analogy between
EFT, TDGL, and Gross-Pitaevskii theory is restored. It is worth mentioning that the
behaviour of the imaginary part of the coe�cient d predicted in [46] was retrieved also by
Machida and Toyama [62] who independently derived a time-dependent Ginzburg-Landau
treatment for fermionic gases in the BEC-BCS crossover starting from the fermion-boson
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Figure 3.11: The ratios Q/D̃ and R/D̃ are displayed in function of the interaction param-
eter (kFas)

−1 for three di�erent values of the temperature. Both quantities tends instead
0 as the coupling becomes stronger.

model.

3.5.3 Bogoliubov-de Gennes theory

In Chapter 5 we are often going to compare the EFT predictions with the results available
in the literature based on the numerical solution of the Bogoliubov-de Gennes (BdG)
equations. These results are expected to be reliable across the BEC-BCS crossover but, on
the downside, require a large amount of computation time and memory. For comparison
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a calculation that can take a whole day following the BdG approach can be reduced to
minutes if performed in the framework of an e�ective �eld theory [99].
This subsection is therefore devoted to give a brief overview of the BdG theory. In the
mean �eld approximation, following the derivation of [100], the BCS Hamiltonian for a
balanced system in absence of external con�nement can be written as:

ĤBCS =
∑
σ

∫
drψ̂†σ(r)

(
−~∇2

2m
− µ

)
ψ̂σ(r)+

−
∫

dr

{
∆(r)

[
ψ̂†↑(r)ψ̂†↓(r)− 1

2

〈
ψ̂†↑(r)ψ̂†↓(r)

〉]
+ h.c.

}
(3.67)

where the term of the form ∆〈ψ̂†↑ψ̂
†
↓〉 in the second line is introduced to avoid double

counting. The Hamiltonian (3.67) can be diagonalized by performing the Bogoliubov-
Valatin transformation on the �eld operators ψ̂†σ(r) and ψ̂σ(r), i.e.

ψ̂†σ(↑) =
∑
n

[
u∗n(r)γ̂†n↑ + vn(r)γ̂n↓

]
ψ̂†σ(↓) =

∑
n

[
u∗n(r)γ̂†n↓ + vn(r)γ̂n↑

]
(3.68)

ψ̂σ(↑) =
∑
n

[
un(r)γ̂n↑ + v∗n(r)γ̂†n↓

]
ψ̂σ(↓) =

∑
n

[
un(r)γ̂n↓ + v∗n(r)γ̂†n↑

]
. (3.69)

The original fermionic �eld operators are hence rewritten as linear combinations of the new
operators γ̂†σ and γ̂σ, which should still satisfy the fermionic anticommutation relations{

γ̂nσ, γ̂
†
mσ′

}
= δnmδσsigma′ {γ̂nσ, γ̂mσ′} = 0.

From the anticommutation relations for ψ̂†σ(r) and ψ̂σ(r) the additional condition∑
n

[u∗n(r)un(r′) + vn(r)v∗n(r′)] = δ(r − r′)

is obtained.
After the transformations (3.68) and (3.69), the Hamiltonian (3.67) results in

ĤBCS = (E0 − µN) +
∑
n,σ

εnγ̂
†
nσγ̂nσ (3.70)

The requirement that the operators γ̂†σ and γ̂σ diagonalize the Hamiltonian (3.67) �nally
leads to the Bogoliubov-de Gennes equations(

−~∇2

2m
− µ ∆(r)

∆∗(r) −~∇2

2m
− µ

)(
un(r)
vn(r)

)
= εn

(
un(r)
vn(r)

)
(3.71)

which determine the amplitudes un and vn. The order parameter ∆(r) is in general a
complex, position dependent function and is determined by the self-consistency equation

∆(r) = −g〈ψ̂↓(r)ψ̂↑(r)〉 = g〈ψ̂↑(r)ψ̂↓(r)〉. (3.72)
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In conclusion the BdG equations represent an extension of the standard BCS treatment
useful to describe non-uniform con�gurations of a Fermi super�uid such as quantized vor-
tices, or solitons. A comparison between the vortex pro�les calculated within the BdG
approach [101] and within the EFT presented in this thesis was reported in [1]: in Fig.
3.12 we report the results. Consistently with the discussion about the validity domain
of Section 3.4, it emerges that the EFT results agree with those of the BdG approach if
the ratio T/Tc is large or the interaction is tuned towards the BEC regime. A sizable
disagreement is found at unitarity and in the BCS regime for low temperatures.
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Figure 3.12: Amplitude modulation function of the order parameter a(r) = |Φ(r)|/|Φ(∞)|
for a vortex at di�erent temperatures and scattering lengths. The results of the present
EFT (heavy curves) are compared with the BdG data of reference [101] (thin curves).
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Chapter 4

EFT applied to polarons in Fermi

super�uids

The polaron concept was �rst introduced by Landau [28] as a quasiparticle consisting
of an electron and the polarization cloud that it drags along while moving in a polar
crystal. Since then, many di�erent physical systems � ranging from solid state to high
energy physics � have been mapped on the polaron problem. Among these realisations,
one that has been the focus of much attention in the recent years is the BEC polaron, i.e.
a quasiparticle arising from the interaction of an impurity with the Bogoliubov excitations
of a Bose-Einstein condensate.

The theoretical descriptions of the polaron problem can be classi�ed according to the
strength of the impurity-boson interaction for which they are valid. The weak coupling
regime has been mostly studied by means of a perturbative treatment �rst developed by
Fröhlich [30] or by a canonical transformation proposed by Lee-Low-Pines [29] based on
a suggestion by Tomonaga [50, 102]. For the strong coupling regime the treatments, in-
troduced by Landau and Pekar [31] and by Bogoliubov and Tyablikov [103], are based
respectively on the use of a trial localized wavefunction and again on a canonical transfor-
mation. In addition an all-coupling theory was developed by Feynman based on the path
integral formalism [67], the results of which were more recently reproduced by using the di-
agrammatic Monte Carlo method [104]. All these treatments were later applied to the case
of the BEC polaron � see for example [5, 6] for weak coupling, [7�11] for strong coupling,
and [12] for all coupling. In addition, also a renormalisation group study [13] and a Quan-
tum Monte Carlo treatment [14] both applicable to all coupling regimes were developed.
In 2015 an experimental setup suitable to investigate the BEC polaron was engineered
consisting of Cs neutral impurities coupled to a Rb Bose-Einstein condensate [105]; one
year later two groups achieved the experimental realisation of a BEC polaron in a system
of 87Rb with 40K fermionic impurities [106], and of 39K with impurities of the same species
but in a di�erent hyper�ne state [107].

In the context of Fermi gases, polaronic e�ects are expected in highly imbalanced Fermi
gases in the extreme limit of a single down-spin particle coupled to an ideal gas of up-spins;
the so called Fermi polaron has been examined both from a theoretical [108�111] and from
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an experimental point of view [112, 113]. Recently, a polaron-like problem has also been
studied in the context of a fermionic system consisting of three spin populations by using
a variational approach [114].

In this section a di�erent version of the polaron problem in a Fermi system is proposed.
In particular we consider the interaction of a single impurity atom with the collective ex-
citations of a fermionic super�uid by mapping it on the same Hamiltonian used in the
BEC polaron case. This ansatz is in principle valid only in the extreme BEC side of
the Feshbach resonance where the main contribution to the physics of the system should
come from the Bogoliubov excitations on top of a molecular BEC. In the framework of
the e�ective �eld theory derived in Chapter 2 this molecular condensate is described by
a macroscopic wavefunction. The description in terms of a macroscopic wavefunction re-
mains valid also when moving away from the BEC limit and towards unitarity, provided
the coe�cients of the �eld equation are properly adapted. This fact was used in Section
3.1 to calculate the dispersion relation for the Bogoliubov excitations of the super�uid,
accounting for the e�ect of interaction, as the system goes across the BEC-BCS crossover.
In turn, this enables us to study how the properties of the BEC polaron change when the
underlying condensate no longer consists of pointlike bosons, but of Cooper pairs. The
polaron problem is then studied in the weak coupling limit by employing the well known
T = 0 perturbative treatment and the behaviour of e�ective mass and polaronic coupling
constant is examined as function of the impurity-boson interaction and of the fermion-
fermion interaction in the underlying super�uid. In experiments investigating impurities
in Bose Einstein condensates, the polaronic coupling constant can be tuned by acting on
the bare boson-boson and boson-impurity scattering lengths. Although methods have been
proposed that could boost the polaronic coupling constant and make the strong-coupling
regime accessible [105,115], up to now only the weak coupling situation has been achieved,
hence motivating our focus on this interaction regime.

4.1 Mapping the fermionic problem on the BEC-polaron

problem

The problem of a single impurity in a Bose-Einstein condensate can be described by an
Hamiltonian of the form

Ĥ = EGP + gIBNc +
p̂2

2mI

+
∑
q

~ωqα̂
†
qα̂q + gIB

√
Nc

∑
q

√
εq
~ωq

e−iq·r̂
(
α̂q + α̂†−q

)
(4.1)

where EGP represents the Gross-Pitaevskii energy of the condensate, Nc is the number
of particles in the condensate, p̂2

2mI
is the kinetic energy of the impurity of mass mI , and

εq = ~2q2
2mB

is the dispersion for a free boson of mass mB. In the last two terms, α†q (αq)
and ωq are respectively the creation (annihilation) operators and dispersion relation for
the Bogoliubov excitations of the bosonic condensate (that play the role of the phonons in
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analogy with the solid state Fröhlich polaron case). The boson-impurity and boson-boson
contact interactions are assumed to be s-wave and are governed respectively by the cou-
pling constants gIB and gBB that can be related to the corresponding scattering lengths
aIB and aBB trough the solution of the Lippmann-Schwinger equation. The fermionic su-
per�uid is described by the EFT action (2.118) but, in order to avoid confusion, in the
present section the fermion-fermion scattering length will be denoted with aFF (instead of
the usual aS) and the fermion mass with mF (instead of the usual m).
Super�uid Fermi gases exhibit bosonic collective excitations (turning into the usual Bogoli-
ubov modes in the BEC limit), as well as fermionic excitations (turning into broken Cooper
pairs in the BCS limit). However, if one stays away from the BCS limit, the fermionic exci-
tations are strongly gapped and hence suppressed at low temperatures. Therefore we only
consider the dressing of the impurity by the bosonic collective excitations. This implies
that we do not wander too far away from the BEC regime, and that our results are re-
stricted to temperatures well below the super�uid critical temperature. In this context, the
Hamiltonian (4.1) is assumed to remain valid. As mentioned above the goal of this section
is to describe the system away from the extreme BEC limit by employing the Hamilto-
nian (4.1) with a modi�ed dispersion relation for the bosonic excitation modes and with a
modi�ed condensate density. Both the dispersion relation and the condensate density now
depend on the fermionic interaction strength 1/aFF .
The number of particles in the condensate Nc = V nc in (4.1) is calculated via the appro-
priate expression for a fermionic system that was derived, at saddle point level, in Section
3.3.
For what concerns the �phonon� dispersion ωq, Section 3.1 the spectrum of collective ex-
citations for an ultracold Fermi gas was calculated up to third order in q, resulting in the
dispersion relation (3.17) that we report here for convenience

~ωq = ~q

√
c2
s + λ

(
~q

2mF

)2

. (4.2)

With the introduction of the interaction-dependent mass for the bosonic excitationmB(λ) =
mF/
√
λ and the characteristic length ξ ≡ ~√

2mB(λ)cs
, the last expression becomes

~ωq =
~2

2mB(λ)
q
√
q2 + 2/ξ2. (4.3)

Thanks to the expressions for cs (3.15) and λ (3.16) derived in the early stages of the present
chapter in terms of the EFT coe�cients, equation (4.3) can describe the dispersion relation
for the collective excitations of the Fermi super�uid in di�erent interaction con�gurations
across the BEC-BCS crossover. Before proceeding with the theoretical treatment, the
coe�cient λ deserves a further remark: as it becomes clear from the de�nition of mB(λ), λ
can be interpreted as a correction to the mass of the collective excitation. Fig. 3.2 shows
the behaviour of this quantity across the BEC-BCS crossover for di�erent temperatures:
as already mentioned, in the BEC limit the value of λ tends to 1/4 thus making the mass
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of the bosonic excitation tend to the expected BEC value of m(BEC)
B = 2mF . Given this

consideration we use the quantity mB(λ) to de�ne the energy εq (that in the BEC polaron
case represented the dispersion for a free boson) as εq ≡ ~2q2

2mB(λ)
.

Finally it has to be noted that in principle both the boson-boson and impurity-boson
scattering lengths aBB and aIB could be related to the fermion-fermion scattering length
(see for example [83, 116, 117]) but this would require a systematic treatment that lies
beyond the scope of the present work. However, these quantities will combine into a
dimensionless coupling strength, as a function of which we will study the results of our
formalism.

4.2 Weak coupling limit for an impurity in a BEC con-

densate

In order to study the weak coupling regime for the system consisting of an impurity in-
teracting with the collective Bogoliubov excitations of a fermionic super�uid at T = 0 we
employ second order perturbation theory [5]. The operator part of the Hamiltonian (4.1)
is divided in an unperturbed part

Ĥ0 =
p̂2

2mI

+
∑
q

~ωqα̂
†
qα̂q (4.4)

accounting for the kinetic energy of the free impurity and the gas of non-interacting col-
lective excitations, plus a perturbation component

V̂ = gIB
√
Nc

∑
q

√
εq
~ωq

e−iq·r̂
(
α̂q + α̂†−q

)
. (4.5)

We start from an unperturbed state of the form |ψk〉 |∅〉 consisting of a free impurity
described by a plane-wave eigenfunction ψq = eik·r/

√
V and the vacuum state for the

Bogoliubov excitations of the pair condensate |∅〉, with energy E(0)
k = 〈∅| 〈ψk|H0 |ψk〉 |∅〉 =

~2k2
2mI

. The �rst order correction to the energy ∆E
(1)
k is identically zero while the second

order correction ∆E
(2)
k is

∆E
(2)
k =

∑
|exc〉6=|ψk〉|∅〉

∣∣∣〈exc| V̂ |ψk〉 |∅〉
∣∣∣2

E
(0)
k − E

(0)
exc

. (4.6)

The only excited states |exc〉 contributing to this quantity are those consisting of the free
impurity plus a single Bogoliubov excitation, therefore the second order energy correction
is

∆E
(2)
k = Ncg

2
IB

∑
q

√
q2

q2+2/ξ2[
~2k·q
mI
− ~2q2

2mI
− ~2

2mB
q
√
q2 + 2

ξ2

] , (4.7)



4.2. Weak coupling limit for an impurity in a BEC condensate 99

where in the last line we have introduced the expression for the Bogoliubov dispersion ωq

in terms of the healing length ξ given in (4.3). Substituting the sum over momenta q with
an integral and expanding the integrand in powers of the momentum k of the impurity
leads to

∆E
(2)
k = −Nc

(
g

(0)
IB

)2 V

(2π)2

∫ ∞
0

dQ 2Q2×

×


√

Q2

Q2+ 2
ξ2

~2Q2

2mI
+ ~2

2mB(λ)2
Q
√
Q2 + 2

ξ2

+

(
~2QK

2mI

)2

√
Q2

Q2+ 2
ξ2

3
(

~2Q2

2mI
+ ~2

2mB(λ)
Q
√
Q2 + 2

ξ2

)3 + · · ·


(4.8)

where the dimensionless variables Q (and K) are de�ned as Q = ξq (and K = ξk). The
term constant in K is divergent for large values of Q. This divergence is removed by
including the regularised form of the boson-impurity coupling constant gIB.
The solution of the Lippmann-Schwinger equation up to second perturbative order gives

gIB =
2π~2aIB
V mR(λ)

+ α
ε0
4π

(
mI

mR(λ)

)2 ∫
dQ

mR(λ)

mI

(4.9)

where we have introduced, in analogy with the case of an impurity in a BEC, the modi�ed

reduced mass mR(λ) =
(

1
mB(λ)

+ 1
mI

)−1

, the energy unit ε0 = ~2
mIξ2

, and the interaction
parameter

α =
a2
IB

a∗ξ
(4.10)

The quantity a∗ is de�ned as a∗ = 1/ (16πncc
2
s/ε

2
0): in analogy with the BEC polaron

case [12] � where the polaronic coupling constant is de�ned as α = a2
IB/(aBBξ) � we expect

it to represent a dimensionless coupling parameter expressing the strength of the interaction
between the impurity and the bosonic modes of the pair condensate. Substituting (4.9) and
(4.10) in the term NcgIB of the Hamiltonian provides us with the regularisation necessary
to have a converging integral for the energy that now reads

E
(2)
k = EGP +

2π~2aIB
mR(λ)

nc +
K2

2
ε0+

+ α
ε0
4π

(
mI

mR(λ)

)2 ∫ ∞
0

dQQ2×

×

mR(λ)/mI

Q2
−

√
Q2

Q2+2

Q2 + mI
mB(λ)

Q
√
Q2 + 2

−K2Q2

√
Q2

Q2+2

3
(
Q2 + mI

mB(λ)
Q
√
Q2 + 2

)3 + · · ·


(4.11)
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It is important to notice that the previous expression is consistent with the theoretical
predictions for the weak coupling BEC polaron obtained from the all-coupling Feynman
treatment: see for reference equation (22) in [12].

4.3 Interaction parameter and e�ective mass of the po-

laron

As it is clear from (4.11), the dimensionless parameter α � often referred to as the pola-
ronic coupling constant � is the quantity that determines the magnitude of the perturbative
corrections to the energy. Figure 4.1 depicts its dependence on the fermion-fermion inter-
action parameter (kFaFF )−1 in the BEC-BCS crossover. A monotonic increase is found for
α as the system approaches the BEC side of the Feshbach resonance. Moreover its value
at �xed (kFaFF )−1 increases with aIB. As expected, when the boson-impurity scattering
length aIB is equal to zero α is also identically zero as the impurity does not interact with
the super�uid.
From the expression for the energy (4.11), also the e�ective mass of the polaron m∗ can
be calculated by using the de�nition

1

m∗
=

1

~2

∂2
(
E

(2)
k

)
∂k2

∣∣∣∣∣∣
k→0

(4.12)

Inserting the explicit expression (4.11) for E(2)
k in the last equation and solving for m∗ we

obtain

m∗ = mI

1− α ε0
4π

(
mI

mR(λ)

)2 ∫ ∞
0

dQQ4

√
Q2

Q2+2

3
(
Q2 + mI

mB(λ)
Q
√
Q2 + 2

)3


−1

(4.13)

Figure 4.2 shows the behaviour of the ratio between the e�ective mass of the polaron and the
mass of the impurity across the BEC-BCS crossover for �xed values of aIB. A maximum for
the ratio m∗/mI is found for small positive values of the interaction parameter (kFaFF )−1.
Similar to the case of the interaction parameter α, as could be intuitively expected, also
the value of the e�ective mass at �xed fermion-fermion interaction strength increases with
the boson-impurity scattering length.
From both Fig.4.1 and Fig.4.2 it appears that a region of major relevance in the domain of
values of the interaction parameter is the one around (kFaFF )−1 ∼ 0.4. For the polaronic
coupling constant α this is the region where a marked change in the slope of the curves in
Fig.4.1 is observed. On the other hand, considering the behaviour of the e�ective mass,
from Fig.4.2 we notice that the maximum of the ratio m∗/mI is also localised around this
position. The importance of this region of the interaction parameter domain was also
pointed out in reference [3] where a peak in the inverse pair coherence length is detected
suggesting a direct link between the appearance of particular features in this range of values
of (kFaFF )−1 and the intrinsic nature of the system.
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Figure 4.1: Dependence of the dimensionless interaction parameter α on the fermion-
fermion interaction strength (kFaFF )−1 across the BEC-BCS crossover for di�erent values
of the boson-impurity scattering length at T = 0

Figure 4.2: Ratio between the e�ective mass of the polaron and the mass of the impurity
as a function of the fermionic interaction parameter (kFaFF )−1 for di�erent values of aIB
at T = 0.

4.4 Discussion and conclusions

In this section we have studied a system composed by a single impurity atom interacting
with the collective excitations of a fermionic super�uid by employing the Fröhlich-like
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Hamiltonian widely used to study the similar BEC polaron problem and extending its
validity � in principle limited to the extreme BEC side of the Feschbach resonance � to
a wider region of the BEC-BCS crossover. This was done by employing the (kFaFF )−1-
dependent form of the dispersion relations for the Bogoliubov excitations of the Fermi
super�uid obtained in Section 3.1 in the context of the e�ective �eld theory derived in
Chapter 2. The system was studied in the weak coupling regime in perturbation theory.
In order for this kind of treatment to be valid we had to restrict the analysis to the T = 0
situation. However, as discussed in Section 3.4 as well as in [3] in regard to dark solitons,
this requirement on the temperature introduces a limitation on the reliability of the EFT
away from the BEC limit. Given this consideration we remark that the results at unitarity
and in the BCS regime can be seen just as qualitative predictions.
The main focus of this section was the calculation of the e�ective mass of the polaron and
the analysis of how it changes as one moves away from the extreme BEC limit. For a �xed
value of the fermion-fermion interaction strength (kFaFF )−1 the e�ective mass is shown
to slightly increase with the impurity-boson scattering length. The behaviour across the
BEC-BCS crossover is not monotonic: in particular a broad peak in the value of m∗ is
found on the near BEC side of the resonance. In the extreme BEC limit the results of the
BEC polaron problem are correctly retrieved. The polaron e�ective mass has already been
successfully measured in experiments on ionic crystals and polar semiconductors [118]. The
recently achieved experimental realisation of the BEC polaron [106, 107] opens the door
to the possibility of measuring this property also in systems like the one considered in the
present work.
Also the variation of the polaronic coupling parameter α was studied as a function of the
fermion-fermion interaction, �nding a monotonic increase as the system goes from the BCS
towards the BEC regime.



Chapter 5

EFT applied to dark solitons in Fermi

super�uids

5.1 Introduction

The goal of the present chapter is to study the properties of dark solitons in super�uid
fermionic systems in the framework of the e�ective �eld theory developed in Chapter 2.

Solitons are nonlinear localized excitations that propagate trough a medium without
changing their shape. They have been studied in an extremely broad range of �elds,
from �uid dynamics to quantum optics. Starting in the early 2000's, Bose Einstein con-
densates were added to the list of �elds in which solitons can be examined from both a
theoretical [96,97] and an experimental [119�122] point of view. The �rst lab realisation of
soliton-like excitations in Fermi systems is even more recent, dating back to 2013; however
the theoretical literature investigating this phenomenon is already extended [123�126]. The
main technique employed to create dark solitons in experiments with cold gases is called
�phase imprinting� [119�122,127,128]: after the atomic cloud is cooled and con�ned, laser
light is shone on one half of it thus locally changing the phase of the super�uid order
parameter. This results in a phase jump between the two halves of the condensate and,
in turn, in the appearance of the desired soliton. In a 3D system this appears as a region
(plane) of lower particle density that can be detected with appropriate imaging methods.
For what concerns Bose Einstein condensates the most employed technique is absorption
imaging after a time-of-�ight expansion [119�122]; for fermionic systems in addition a rapid
ramp towards the BEC side of the resonance is required during the time-of �ight expansion
in order to improve the contrast [127,128].
The stability of solitons in cold atom systems has been widely investigated from a theo-
retical point of view: for what concerns Bose Einstein condensates it was demonstrated
[129�131] that, while solitons in 1D con�gurations are stable, in higher dimensionalities
they are subject to a transverse instability mechanism that drastically limits their lifetime.
This decay process is commonly known as snake instability, as it was named for the �rst
time in an article by Zakharov and Rubenchik in 1974 [132]: after the soliton is created
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inside the atomic cloud, the depletion plane starts oscillating until it breaks leaving a
cascade of decay products behind. Stable solitons in 3D systems were predicted in BECs
subject to an external potential [133], and in dipolar BECs [134, 135]; moreover stable
Jones-Roberts solitons were recently created by imprinting a triangular phase pattern on
a three dimensional BEC [136]. The �rst experimental observation of the soliton decay in
BECs was performed in 2014 [137]. For what concerns fermionic systems theorists have
analyzed the snake instability mechanism by employing di�erent methods, e.g. the hydro-
dynamic approximation, the RPA approach, the numerical solution of the time-dependent
Bogoliubov-de Gennes equations [138], and calculations [139] based on a coarse-grained
version of the BdG equations introduced in [99]. The experimental observation proved
to be more challenging: in particular in the �rst experiment on dark solitons in Fermi
super�uids performed in 2013 at MIT [127], solitary waves were detected and were at �rst
identi�ed as solitons, but their surprisingly high e�ective mass and long lifetime led to
a reinterpretation of the results as solitonic vortices, product of the decay through snake
instability of a short lived dark soliton [128]. More recently the cascade of excitations
generated by the death of a dark soliton was more precisely described and detected [140].
A way to stabilise the solitonic excitation against this transverse instability is to make
the con�nement in the directions perpendicular to the propagation very tight, so that the
geometry of the system is reduced to a quasi-1D con�guration. At a later stage in this
work a possible alternative method is discussed which could lead to soliton stabilisation
through spin-imbalance, without compromising the 3D nature of the system.

In the �rst part of the chapter, from Section 5.2 to Section 5.3, the properties of stable
dark solitons will be described by analysing the order parameter and density pro�les: the
main references for this part of the thesis are [3, 70]. Considering excitations moving at
constant speed in a quasi-1D geometry it will be shown that the equations of motion for
amplitude and phase of the pair �eld admit an exact analytic solution. This, in turn, gives
access to the calculation of the density pro�le of the atomic cloud, which will be examined
in various conditions of temperature and interaction. Spin imbalance and soliton velocity
are two additional parameters that can be varied and produce changes in the density
pro�le. In particular, �nite temperature and/or a nonzero imbalance prevent a portion of
the particles of the system from forming Cooper pairs, and the soliton core is a convenient
place where these unpaired particles can be stored.
Finally some of the main dynamic properties of solitons are derived and compared to the
data available from literature. In addition the importance of the inclusion of the higher-
than-�rst order time derivatives in the EFT action of the system is discussed.

The second part of the chapter, starting from Section 5.4, is instead dedicated to the
description of the snake instability mechanism responsible for dark soliton decay: these
results were reported in the manuscript [4]. The stable soliton solution is modi�ed by
adding a transverse perturbation, and the spectrum of the instability is obtained. The
snake instability is a long wavelength phenomenon, therefore the inverse of the minimum
momentum kc for which the imaginary part of the perturbation frequency becomes zero,
i.e. k−1

c , can be used to estimate the maximum transverse size of the system necessary
to observe a stable wave. This estimate is then compared to the other data available
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in literature such as hydrodynamic approximation, RPA, time dependent Bogoliubov-de
Gennes simulations, and recent theoretical predictions based on the coarse-grained version
of the BdG equations. The EFT results show a reliable behaviour across the entire BEC-
BCS crossover, nicely capturing the change in the relevant length scales from the pair
coherence length in the BCS regime to the healing length in the BEC limit. Also the
presence of imbalance is considered: it is demonstrated that the maximum transverse size
for a soliton to be stable is larger in a system with unequal spin populations with respect to
a balanced system. This in principle provides experimentalists with a method to stabilise
solitons without making the transverse con�nement extremely tight and therefore reducing
the dimensionality of the system.

Finally Section 5.6 hosts the conclusions of the study carried out in the present chapter
together with a brief summary of the results obtained.

5.2 Model

In Chapter 2, the e�ective �eld theory real-time action SEFT was derived: the �nal expres-
sion for this quantity was given in (2.118) and reads:

SEFT =

∫ β

0

dτ

∫
dr

[
1

2
D

(
∂Φ∗

∂τ
Φ− Φ∗
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2

(
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)
+

+ Ωs +
C

2m
|∇rΦ|2 − E
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(
∇r|Φ|2

)2

]
.

The goal of this section is to obtain a soliton solution for the equations of motion for the
�eld Φ and describe the dynamics of the excitation. In order to achieve this objective,
as already mentioned in Subsection 3.5.1 it is necessary to move from the imaginary-time
formalism to the real-time one. In the aforementioned Section this derivation was brie�y
sketched for the simpli�ed action without second order imaginary-time derivatives: here
the procedure will be applied to the most general case. The formal replacements that need
to be exploited are

τ −→ it, (5.1)

SEFT (β) −→ −iSEFT (tB, tA) (5.2)

the �rst substitution modi�es the imaginary-time derivatives according to ∂
∂τ
→ −i ∂

∂t
, thus

the action becomes

SEFT (β) =− i

∫
dt

∫
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[
i
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2

(
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∂t
Φ

)
+Q

∂Φ

∂t

∂Φ̄
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− R

2

(
∂|Φ|2

∂t

)2

−H

]
, (5.3)

where the terms not involving time derivatives were collected by de�ning

H = Ωs +
C

2m
|∇rΦ|2 − E

2m

(
∇r|Φ|2

)2
(5.4)
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Figure 5.1: Typical amplitude (left) amd phase (right) pro�les of the order parameter Φ for
a dark soliton in a fermionic super�uid. The sets are calculated in the case of a balanced
system (ζ = 0)) for a soliton of velocity vS = 0.1vF , at temperature T = 0.01TF , and
interaction strength (kFas)

−1 = 0.25.

The second substitution, i.e. (5.2), ultimately leads to the �nal expression for the real-time
action:

SEFT (tB, tA) =

∫ tB

tA

dt
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(5.5)

From the relation between the action and the Lagrangian density L, which is given by

S(tB, tA) =

∫ tB

tA

dt

∫
drL,

the explicit expression for L can be written as
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As can be seen from Fig.5.1, the two main signatures of a soliton in a quantum gas are:

• a localised change in the amplitude pro�le of the order parameter. If the order
parameter has a dip the soliton is called dark (or grey); if the order parameter
exhibits a peak the soliton is called bright.

• a sudden jump in the phase pro�le of the order parameter.

In order to account for the presence of a soliton a formalism is needed that can account
for both these features: therefore the order parameter Φ(r, t) is considered as the product
of an amplitude factor and a phase factor as

Φ(r, t) ≡ |Φ(r, t)| eiθ(r,t) (5.7)
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Moreover the amplitude factor can be split in two subfactors in order to highlight the
change with respect to its background value (i.e. the value it assumes in the case of a
uniform system) due to the presence of the solitonic excitation, namely

|Φ(r, t)| = a(r, t) |Φ∞| (5.8)

where |Φ∞| represents the background value of the order parameter while a(r, t) describes
the coordinate-dependent modulation of the amplitude. We can now introduce the regu-
larised version of L that is obtained by substituting H with H̄ = H−Ωs(Φ∞). Performing
this subtraction does not change the physics of the system since this operation can be seen
just as a rede�nition of the zero-energy. The consequence of this rede�nition is that all
the values of the energy considered in the following are in fact energy di�erences calcu-
lated with respect to the energy of the uniform system. After the substitutions (5.7) and
(5.8), the regularised Lagrangian density (that from now on will simply be denoted with
L, dropping the �bar�-symbol for the sake of notational clarity) becomes

L =− κ(a)a2∂θ
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2
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1

2
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2

]
(5.9)

The coe�cient κ(a) of the term with �rst order time-derivative, the quantum pressure coef-
�cient ρqp(a) and the super�uid density ρsf (a) are de�ned, in terms of the EFT coe�cients
C (2.79), D (2.95) and E (2.80), as

κ(a) =D(a) |Φ∞|2 (5.10)

ρsf (a) =
C(a)

m
|Φ|2 (5.11)

ρqp(a) =
C(a)− 4 |Φ|2E(a)

m
|Φ∞|2 , (5.12)

in the same way as in [70], [1], and [3]. The super�uid density is associated with phase
sti�ness, and it can be identi�ed with the prefactor of (∇rθ)

2/2. The quantum pressure
typically characterises the energy cost of amplitude changes of the wavefunction. It acts
as a pressure, for example counteracting the con�nement of the wavefunction to smaller
volumes. In analogy with the ρsf , we then denote the prefactor of the (∇ra)2/2 term by
ρqp.
In general it is impossible to �nd a closed-form solution for the equations of motion cor-
responding to the Lagrangian (5.9). However in the remainder of this section we will
demonstrate how a simple solution can be found under the assumption that the soliton
propagates with constant velocity vS along the direction x. This hypothesis is not very
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accurate when it comes to describe the typical situation investigated in experiments on
dark solitons in ultracold quantum gases: in fact the presence of a harmonic trapping
potential is expected to cause an acceleration of the soliton. Nevertheless our assumption
is expected to become more accurate in the case of an elongated condensate, i.e. when
the trapping along the x direction is weak. Also, recent progress in experiments [141] has
introduced the possibility to con�ne the atomic cloud by using box-like potentials, mak-
ing the present treatment extremely reliable. Under the aforementioned assumption, the
space-time dependence of the order parameter is simpli�ed according to the relation

f(x, t) = f(x− vSt). (5.13)

This enables us to eliminate the time derivatives and replace them with spatial derivatives
using the equality

∂f(x− vSt)
∂t

= −vS
∂f(x)

∂x

Hence, after substituting
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the Lagrangian becomes

L =κ(a)a2vS
∂θ

∂x
+Qv2

S|Φ|2
(
∂θ

∂x

)2

+
(
Q− 2R|Φ∞|2a2

)
v2
S|Φ∞|2

(
∂a

∂x

)2

+

− [Ωs(a)− Ωs(a∞)]− 1

2
ρqp(a)

(
∂a

∂x

)2

− 1

2
ρsf (a)

(
∂θ

∂x

)2

. (5.14)

De�ning the modi�ed (velocity dependent) super�uid density and quantum pressure coef-
�cient as

ρ̃sf (a) =ρsf (a)− 2Qv2
S|Φ|2, (5.15)

ρ̃qp(a) =ρqp(a)− 2
(
Q− 2R|Φ∞|2a2

)
v2
S|Φ∞|2, (5.16)

we can recast the Lagrangian density in the same form as in [1, 3, 70], i.e.

L = κ(a)a2vS
∂θ

∂x
− [Ωs(a)− Ωs(a∞)]− 1

2
ρ̃qp(a)

(
∂a

∂x

)2

− 1

2
ρ̃sf (a)

(
∂θ

∂x

)2

. (5.17)

The equation of motion for the phase and the amplitude can now be derived by solving
the Lagrange equations for L (5.17). The equation of motion for the phase can be easily
be found to be

∂

∂x

[
κ(a)a2vS − ρ̃sf (a)

(
∂θ

∂x

)]
= 0 (5.18)
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The solution of this equation is

∂θ

∂x
=
κ(a)a2vS + c

ρ̃sf (a)
(5.19)

with c a constant whose value can be �xed by imposing the boundary condition for a dark
soliton

∂θ

∂x
−→ 0 for x −→ ±∞,

stating that the velocity �eld goes to zero at in�nity. This leads to

κ(a∞)a2
∞vS + c

ρ̃sf (a∞)
= 0.

Remembering that a∞ = 1 and de�ning the bulk value of κ(a) as κ∞ ≡ κ(a∞) the value
of the constant c results c = −κ∞vS. Therefore

∂θ

∂x
=

vS
ρ̃sf (a)

(
κ(a)a2 − k∞

)
. (5.20)

From the last expression it follows that the phase pro�le of the order parameter in presence
of a dark soliton is described by

θ(x) = vS

∫ x

−∞
dx′

κ(a(x′))a(x′)2 − κ(a∞)

ρ̃sf (a(x′))
. (5.21)

The Lagrange equation for the amplitude is

∂

∂a

(
κ(a)a2vS

) ∂θ
∂x
− ∂Ωs

∂a
− 1

2

∂ρ̃qp
∂a

(
∂a

∂x

)2

− ∂

∂x

(
ρ̃qp

∂a

∂x

)
− 1

2

∂ρ̃sf
∂a

(
∂θ

∂x

)2

= 0

=⇒− ∂

∂x

(
ρ̃qp

∂a

∂x

)
=

1

2

∂ρ̃qp
∂a

(
∂a

∂x

)2

+
∂Ωs

∂a
− ∂

∂a

(
κ(a)a2vS

) ∂θ
∂x

+
1

2

∂ρ̃sf
∂a

(
∂θ

∂x

)2

Inserting in the last expression the solution (5.20) for ∂θ
∂x
, we �nd

− ∂

∂x

(
ρ̃qp

∂a

∂x

)
=

1

2

∂ρ̃qp
∂a

(
∂a

∂x

)2

+
∂Ωs

∂a
− 1

2
v2
S

∂

∂a

(
[κ(a)a2 − k∞]

2

ρ̃sf

)
(5.22)

The boundary conditions for the amplitude are

∂a

∂x

∣∣∣∣
x→±∞

= 0, a∞ = 1.

It is convenient to notice that equation (5.22) does not allow for a straightforward solution
for a as a function of x but can still be solved if we look for a solution for x as a function
of a instead. This leads to the solution

x = ± 1√
2

∫ a

a0

da′
√
ρ̃qp(a′)√

X(a′)− v2
SỸ (a′)

(5.23)
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where the auxiliary functions

X(a) ≡ Ωs(a)− Ωs(a∞),

Ỹ (a) ≡ [κ(a)a2 − κ∞]
2

2ρ̃sf (a)
,

were introduced to simplify the notation. Furthermore, from (5.23) we deduce that the
amplitude in the center of the soliton a0 ≡ a(x = 0) is given by the solution of

X(a0)− v2
SỸ (a0) = 0. (5.24)

In conclusion the phase and amplitude pro�les of the order parameter for a dark soliton
in a Fermi super�uid can be completely determined, given the input values of inverse
temperature β, imbalance parameter ζ, and soliton velocity vS by solving (5.21), (5.23),
and (5.24) respectively.

Before proceeding to the study and analysis of the order parameter pro�les resulting
from the solution of the equations derived in this section, it is necessary to make a further
remark. One of the cornerstones of the e�ective �eld theory derived in Chapter 2 is a
gradient expansion of the order parameter up to second order in both space and (imaginary-
)time derivatives. It is therefore necessary to carefully consider whether the dependence of
the EFT coe�cients on the order parameter must or must not be taken into account, in
order to assure that the treatment that will be carried out in the following sections remains
inside the limits of approximation. From the analysis of the full expression for the EFT
action (2.118) it emerges that, for the coe�cients of zeroth and �rst order in the gradients,
i.e. for the thermodynamic potential Ωs and the coe�cient D, the full Φ-dependence must
be considered. On the other hand, the coe�cients of the terms involving higher-than-�rst
order gradients (in both time and space), i.e. C, E, Q, and R, have to be considered
constant and equal to their value in the case of a uniform system.

5.3 Results for a stable soliton

This section is devoted to the presentation of the results obtained in the framework of the
theoretical treatment developed in the previous section for the study of dark solitons in
fermionic super�uids. In particular, given the approximation (5.13), the data presented in
this section are to be intended as relative to dark solitons moving with velocity vS in a
quasi-1D super�uid. In subsection 5.3.1 the equations (5.21) and (5.23) for the phase and
amplitude pro�le of the order parameter are solved, and the basic features of the resulting
pro�les are described for di�erent con�gurations of temperature, population imbalance
and soliton velocity. A part of the subsection is also dedicated to the analysis of the
relevance of the corrections due to the inclusion of terms involving higher-than-�rst order
time derivatives into the action of the system (2.118).
Subsection 5.3.2 is instead devoted to the study of some of the dynamical properties of
the solitonic excitations: in particular, for what concerns the e�ective mass of the dark
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soliton a disagreement between the predictions of the present EFT and other theoretical
approaches is detected and discussed.

5.3.1 Shape of the soliton

The solution of equations (5.21) and (5.23) results in the determination of a spatial pro�le
for the order parameter showing the characteristic dip in the amplitude and jump in the
phase that were sketched in Fig.5.1. The decrease of a(x) where the soliton is located
corresponds to a dip in the density of the condensate cloud, which can be detected with
appropriate imaging techniques in experiment. In order to calculate the density pro�le of
the fermionic system starting from the spatial distributions a(x) and θ(x), the mean-�eld
local density approximation (LDA) is employed. Using the relation

n(LDA) = −∂Ωs

∂µ
, (5.25)

with the space pro�le of Φ(x) as an input, the density pro�le is obtained. Corrections
to these pro�les due to the inclusion of �uctuations were discussed in [70] but are not
considered in the present work.
Before starting to observe the e�ects of other tunable parameters such as imbalance or
soliton velocity, it is worth remarking an aspect that is due just to the temperature and
interaction regime. When a black soliton (a stationary soliton with vS = 0) is considered,
the phase pro�le is a step function that shows a sudden jump in x = 0 from the value
θ = π to θ = 0, while the amplitude pro�le shows the characteristic dip and goes to 0 at
the soliton center. The fact that Φ(0) is zero means that there are no fermionic pairs in
the center of the soliton. Comparing the amplitude pro�le to the density pro�le, as done
in Fig.5.2, shows that the latter is non-zero in x = 0. This is a �rst indication that the
�lling of the soliton core is partly due to the presence of unpaired particles. At non-zero
temperature, pair-breaking excitations appear in the BCS regime. These act as a �normal�
component that starts to �ll the soliton core, as is evident from Fig.5.2. As the system is
tuned towards the BEC regime, these pair-breaking excitations become strongly gapped,
leading to less unpaired particles and a total density that follows the condensate density.
It should be noted that, as the fermionic system becomes more and more similar to a
real Bose Einstein condensate of tightly bound fermion pairs, i.e. as the interaction is
tuned towards the deep BEC regime and the temperature is set to a value substantially
lower than the critical one Tc, one expects that the square of the order parameter becomes
equivalent to the (bosonic) particle density. To prove this point, in �gure 5.3 the density at
the center of the soliton is plotted as a function of the temperature for di�erent interaction
strengths. It is immediately clear that in the situation in which the system most closely
resembles a real BEC the density at the center of the black soliton becomes zero, same as
the amplitude of order parameter.

In order to �nd more evidence about the nature of the particles that are stored in the
core of the soliton it is useful to introduce a population imbalance. Doing so increases the
number of particles that can not participate in the pairing mechanism. To this regard, in
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Figure 5.2: Amplitude pro�le (full black line) and corresponding density pro�le (blue
dashed line) for a dark soliton at T = 0.01TF , ζ = 0., in the near BEC regime, i.e.
(kFas)

−1 = 0.25. It is important to notice that at the soliton center a non-zero fermion
density is found while the order parameter is zero, thus giving a �rst evidence of the fact
that the soliton core is �lled by unpaired fermions.

kFas
1
0.25

kFas
1
0.5

kFas
1
0.75

kFas
1
1.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

TFT

n
0
n

Figure 5.3: Fermion density at the center of a black soliton for di�erent values of the
interaction parameter, ranging from the near BEC regime with (kFas)

−1 = 0.25 (black full
line) to the deep BEC regime with (kFas)

−1 = 1 (green dotted line), with the intermeadiate
con�gurations (kFas)

−1 = 0.5 (blue dashed line) and (kFas)
−1 = 0.75 (red dot-dashed line).



5.3. Results for a stable soliton 113

Figure 5.4 the fermion density pro�le of a dark soliton of velocity vS = 0.2vF
1 (normalised

to the bulk density) is shown as a function of the distance from its center, for di�erent
values of the imbalance parameter ζ. Consistently with the hypothesis made above about
the �lling of the soliton core by unpaired particles, it can be observed that the presence
of imbalance increases the density at the soliton center. For increasing values of ζ, the
soliton gets �lled with a growing amount of particles, becoming shallower and broader at
the same time. The inset of Fig. 5.4, highlights this last aspect in particular: the inverse
soliton width (measured at half the height of the density dip) ξ−1

n is seen to decrease when
the value of ζ increases; this e�ect takes place in all interaction regimes, as demonstrated
by the three di�erent data sets plotted in the inset which show the BCS (blue dot-dashed
line), unitarity (green dashed line) and BEC regime (red full line) respectively.
Figures 5.5-5.6 also show the fermion density pro�le, for di�erent values of velocity vS
and temperature T/TF respectively. As it was the case for imbalance, also an increase in
temperature makes the soliton shallower and broader: this can be intuitively understood
because at higher temperatures less particles are available for forming Cooper pairs. A
similar �lling e�ect is observed when the soliton velocity becomes higher. In particular it
is worth remarking that for high velocities the contribution of terms with higher-than-�rst
order time derivatives in the EFT action (2.118) becomes sizable and cannot be neglected.
This point is brie�y discussed later on in a separate subsection.

The soliton core �lling for increasing spin imbalance can be examined more speci�cally
by considering the spatial distribution of the density di�erence δn(x) between the �spin-up�
and �spin-down� populations. In �gure 5.7 the δn(x) pro�le, normalised to the value at the
soliton center δn(0), is plotted for di�erent levels of imbalance. The bottom inset indicates
that the peak density di�erence δn(0) increases almost monotonously with ζ across the
BEC-BCS crossover.
As the imbalance between the two spin populations increases, so does the amount of
unpaired particles that cannot participate in the super�uid state of condensed pairs. At
�nite temperatures, a part of these normal state particles coexist with the condensate in
the form of a thermal gas, but any additional majority component particles have to be
spatially removed from the pair condensate. The soliton dip o�ers a convenient location
where the excess normal state particles can be accommodated, and therefore it �lls up with
an increasing quantity of unpaired atoms as the population imbalance becomes higher.
Correspondingly to the broadening of the soliton density dip observed in Fig. 5.4, the
upper inset of Fig. 5.7 shows that also the width of the δn(x)/δn(0) curves increases with
ζ.
Again changes in temperature and/or soliton velocity strongly a�ect the distribution of
the excess component density in a way that is consistent with the previous observations
regarding the fermion density, as it can be seen from Figure 5.8 and 5.9 respectively. In
this regard it is worth remarking that a decrease in temperature produces an enhancement
of the degree of localisation for the distribution of excess-spin component particles.
The insets of Fig.5.5 and Fig.5.8 focus on the width ξn of the soliton and the width ξδn of

1Notice that the Fermi velocity in the natural units used throughout this work is vF = kF /m = 2.
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Figure 5.4: Density pro�les at T = 0.1TF , vS = 0.4 on the BEC side of the resonance
(kFas)

−1 = 0.5 for di�erent values of the imbalance parameter ζ. The inset show the
behaviour of the inverse soliton width (ξn)−1 in the BCS (blue dot-dashed line), unitarity
(green dashed line) and BEC (red line) regimes as a function of ζ. The position x and
widths ξn are given in units of k−1

F , the imbalance parameter ζ is in units of EF and the
velocities are in units of vF .

the excess component population. A critical value of the soliton velocity can be determined
for which the depth of the pro�les n(x) and δn(x) goes to zero and, at the same time, the
width goes to in�nity. in Fig.5.10 the e�ect of imbalance on this critical width is examined
for three di�erent interaction regimes spanning the BEC-BCS crossover. The comparison
with the behaviour of the mean �eld bulk value of the order parameter as a function of
imbalance in the same regimes (inset) clearly demonstrates that the value of the imbalance
parameter ζ for which the critical velocity v(crit)

S goes to zero is the same ζ(crit) for which
the normal state becomes more energetically favorable then the super�uid one, i.e. the
minimum of the free energy corresponds to Φ∞ = 0.

To conclude the discussion about the shape properties of stable dark solitons in quasi-
1D systems, in Fig.5.11 the inverse width of the soliton is plotted as a function of the
interaction parameter (kFas)

−1 across the BEC-BCS crossover. The di�erent stroke-color
combinations identify various conditions of imbalance, making clear that the imbalance
substantially a�ects the shape of the soliton in the intermediate and BCS regime while
leaving them unchanged as the BEC limit is approached. In all situations, with or without
imbalance, the maximum width and the maximum depth of the soliton are reached in the
near-BEC regime around (kFas)

−1 = 0.4.
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Figure 5.5: Density pro�les at T = 0.1TF , ζ = 0.15 on the BEC side of the resonance
(kFas)

−1 = 0.5 for di�erent values of the soliton velocity. The insets show the behaviour of
the inverse soliton width (ξn)−1 in the BCS (blue dot-dashed line), unitarity (green dashed
line) and BEC (red line) regimes as a function of vS. The position x and widths ξn are
given in units of k−1

F , the imbalance parameter ζ is in units of EF and the velocities are in
units of vF .

Remark: relevance of the terms in Q and R

In Section 5.2 it was demonstrated how the inclusion of the terms of the action involving
imaginary-time derivatives of order higher than one produces equations for the amplitude
and phase pro�les of the order parameter that have the same form as those obtained in
the simpli�ed case (with just �rst order derivatives) [1, 3, 70] provided that the standard
super�uid density ρsf (5.11) and quantum pressure coe�cient ρqp (5.12) are replaced by
their modi�ed velocity-dependent versions ρ̃sf (5.15) and ρ̃qp (5.16) respectively. From the
explicit expressions it is clear that the additional terms in ρ̃sf and ρ̃qp are proportional to
the square of the soliton velocity vS, therefore it is immediate to conclude that for a black
soliton, i.e. when vS = 0, the terms of the action with higher-than-�rst order imaginary-
time derivatives do not give any contribution to the physics of the system. The stability
of stationary solitons is going to be the main topic of Sections 5.4-5.5 later in this chapter:
according to the previous discussion in the theoretical treatment the terms proportional to
the EFT coe�cients Q and R will be neglected at that stage.

To give a clearer picture of the e�ect of the inclusion of the terms with imaginary-time
derivatives of order higher than one in the action of the system, it is useful to examine
how this a�ects the order parameter pro�le. Figure 5.12 shows the value of the amplitude
modulation coe�cient a calculated at the center of the soliton, namely a0, as a function
of the soliton velocity, in the BEC (black and blue lines) and BCS (red and green lines)
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Figure 5.6: Density pro�les at ζ = 0.15, vS = 0.4 on the BCS side of the resonance
(kFas)

−1 = −0.5 for di�erent values of the temperature. The insets show the behaviour of
the inverse soliton width (ξn)−1 in the BCS (blue dot-dashed line), unitarity (green dashed
line) and BEC (red line) regimes as a function of T . The position x and widths ξn are
given in units of k−1

F , the imbalance parameter ζ is in units of EF and the velocities are in
units of vF .

regimes respectively. The dashed lines are relative to the complete action with Q 6= 0
and R 6= 0, while the full lines describe the simpli�ed case with Q = 0 and R = 0. In
both interaction con�gurations the contribution from the terms in Q and R becomes more
relevant as the soliton velocity increases.
The same behaviour can be observed when the pro�le of the amplitude modulation a of
the order parameter is considered as a function of the spatial coordinate x, as it is done in
Fig.5.13. There the amplitude pro�le a(x) in two di�erent velocity regimes � vS = 0.1 (black
and blue lines) and vS = 0.5 (red and green lines) � are shown in the situation with (dashed
lines) and without (full lines) the inclusion of higher-than-�rst order time derivatives in the
EFT action. Again it can be noticed that for small velocities the di�erence in the amplitude
pro�les between the two situations is extremely small, but as the velocity becomes larger,
a sizable e�ect is observed. This behaviour becomes even apparent when the insets of
the plot are taken into consideration: the insets show the absolute value of the di�erence
between the curves calculated with and without the terms in Q and R. The maximum
value of such di�erence in the case of high soliton velocity (vS = 0.5) is two orders of
magnitude larger than the one for vS = 0.1.
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Figure 5.7: Excess component density at T = 0.1TF , vS = 0.4 on the BEC side of the
resonance (kFas)

−1 = 0.5 for di�erent values of the imbalance. The left [right] insets
show the behaviour of the ratio δn(0)/n(0) [inverse width (ξδn)−1 of the excess component
distribution] in the BCS (blue dot-dashed line), unitarity (green dashed line) and BEC
(red line) regimes as a function of the imbalance. The position x and widths ξn are given
in units of k−1

F , the imbalance parameter ζ is in units of EF and the velocities are in units
of vF .

5.3.2 Dynamical properties

Up to this point only features of the soliton connected to its shape have been analysed.
When one wants to study the dynamics of the system, the momentum and the energy must
be evaluated. From the basic principles of the Lagrangian theory, the momentum can be
determined as

Ps =
∂L

∂vS
(5.26)

Carrying out explicitly the partial derivative of the Lagrangian L =
∫∞
−∞ L (with the

Lagrangian density L given in (5.17)) with respect to the soliton velocity leads to

Ps =

∫ ∞
−∞

dx

[
−κ(a)a2 ∂θ

∂x
+ 2vSQ|Φ|2

(
∂θ

∂x

)2

+ 2vS(Q− 2R|Φ∞|2a2)|Φ∞|2
(
∂a

∂x

)2
]

The energy is instead de�ned as

Es = vSPs − L, (5.27)
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Figure 5.8: Excess component density at T = 0.1TF , ζ = 0.15 on the BEC side of the
resonance (kFas)

−1 = 0.5 for di�erent values of the soliton velocity.The left [right] insets
show the behaviour of the ratio δn(0)/n(0) [inverse width (ξδn)−1 of the excess component
distribution] in the BCS (blue dot-dashed line), unitarity (green dashed line) and BEC
(red line) regimes as a function of the soliton velocity. The position x and widths ξn are
given in units of k−1

F , the imbalance parameter ζ is in units of EF and the velocities are in
units of vF .

corresponding to the explicit expression

Es =

∫ ∞
−∞

dx

[
v2
SQ|Φ|2

(
∂θ

∂x

)2

+ v2
S(Q− 2R|Φ∞|2a2)|Φ∞|2

(
∂a

∂x

)2

+

+ [Ωs(a)− Ωs(a∞)] +
1

2
ρ̃qp(a)

(
∂a

∂x

)2

+
1

2
ρ̃sf (a)

(
∂θ

∂x

)2
]

(5.28)

In [70] it was analytically proven that, within the special version of the e�ective �eld theory
excluding terms with higher-than-�rst order time derivatives (i.e. in the case with Q =
R = 0), a soliton obeys the energy-momentum relation of classic Hamiltonian dynamics

∂ES
∂PS

= vS, (5.29)

i.e. the soliton behaves as if it were a classic particle. The same relation was later on veri�ed
also in the case of a Fermi super�uid with population imbalance [3]. When considering the
most general form of the action (2.118) (with second order time derivatives), the relation
between energy and momentum could in principle be a�ected by the presence of additional
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Figure 5.9: Excess component density at ζ = 0.15, vS = 0.4 on the BCS side of the
resonance (kFas)

−1 = −0.5 for di�erent values of the temperature. The left [right] insets
show the behaviour of the ratio δn(0)/n(0) [inverse width (ξδn)−1 of the excess component
distribution] in the BCS (blue dot-dashed line), unitarity (green dashed line) and BEC
(red line) regimes as a function of the temperature. The position x and widths ξn are given
in units of k−1

F , the imbalance parameter ζ is in units of EF and the velocities are in units
of vF .

terms proportional to the EFT coe�cients Q and R. To demonstrate that equation (5.29)
still holds we are going to use the results of [70] and study how the additional terms a�ect
the analytic procedure. It is therefore convenient to separate momentum and energy into
the component coming from the simpli�ed theory and the additional terms, i.e.

Ps = P(0)
s + P(1)

s =

= P(0)
s + 2vS

∫ ∞
−∞

dx

[
Q|Φ|2

(
∂θ

∂x

)2

+ (Q− 2R|Φ∞|2a2)|Φ∞|2
(
∂a

∂x

)2
]

(5.30)

Es = E (0)
s + E (1)

s =

= E (0)
s + v2

S

∫ ∞
−∞

dx

[
Q|Φ|2

(
∂θ

∂x

)2

+ (Q− 2R|Φ∞|2a2)|Φ∞|2
(
∂a

∂x

)2
]

(5.31)

Relation (5.29) is more easily proven by rewriting

∂ES
∂PS

=

(
∂ES
∂vS

)(
∂PS
∂vS

)−1

=

∂
(
E (0)
s + E (1)

s

)
∂vS

∂
(
P(0)
s + P(1)

s

)
∂vS

−1
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Figure 5.10: (Color online) Critical velocity of the soliton as a function of the imbalance at
T = 0.1TF across the BEC-BCS crossover. The inset shows the corresponding behaviour
of |Φ∞|. The imbalance parameter ζ is given in units of EF , the velocities in units of vF
and |Φ∞| in units of EF .

The equality

∂E (0)
S

∂P(0)
S

= vS

has been demonstrated in detail in ref. [70]. The missing piece needed to con�rm the
validity of (5.29) in the most general case is the veri�cation that

∂E (1)
S

∂P(1)
S

= vS.

This last passage is trivial: from (5.30) and (5.31) it is clear that P(1)
s and E (1)

s have the
same expression with the exception of the prefactor in front of the space integral, which is
2vS for P(1)

s and v2
S for E (1)

s . The derivative with respect to the soliton velocity acts only
on the prefactors and gives 2 and 2vS respectively, thus proving that equality (5.3.2) holds
and, as a consequence, that the general relation (5.29) is true.
The soliton's motion can then be therefore treated as the motion of a classical particle
moving with velocity vS and an e�ective mass Ms which can be de�ned in terms of the
soliton momentum PS (5.27) or of the soliton energy ES (5.28) as in [97], i.e.

MS ≡
∂PS
∂vS

≡ 1

vS

∂ES
∂vS

. (5.32)
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Figure 5.11: Inverse width of the soliton, calculated as the width at half height of the den-
sity pro�le, across the BEC-BCS crossover. The inset shows the corresponding behaviour
n(0): the density at the soliton center. All the data sets are calculated at T = 0.1TF and
vS = 0.1vF : the full black lines correspond to ζ = 0, the blue dashed lines to ζ = 0.2 and
the red dot-dashed lines to ζ = 0.4.

The e�ective mass is a negative quantity because it must have the same sign as the soliton's
physical mass that is de�ned as the missing mass of the particles that would �t into the
soliton dip if the system were uniform. Figure 5.14 depicts the behaviour of the absolute
value of the e�ective mass calculated at vS = 0 across the BEC-BCS crossover for di�erent
values of the temperature. The e�ect of temperature is small both in the BCS and far BEC
limit, while it is sizable in the interval of values of the interaction parameter ranging roughly
between 0 and 1. For the lowest temperature con�guration considered, i.e. T/TF = 0.01 a
sharp peak centered around (kFas)

−1 = 0.5 appears. At higher temperatures this peak is
smoothed out and |MS| monotonically increases as the interaction changes from the BCS
side towards the BEC side of the Feshbach resonance. Also population imbalance has a
non trivial e�ect on the behaviour ofMS: �gure 5.15 shows the dependence of the absolute
value of the e�ective mass on the interaction parameter (kFas)

−1 for various values of ζ.
In the BCS regime |Ms| decreases with increasing ζ consistently with what we observed in
relation to the �lling of the soliton by unpaired particles. In the opposite limit, for high
positive values of (kFas)

−1 instead the e�ective mass is not a�ected by imbalance: this is
due to the fact that in the deep BEC regime the background value of the order parameter
is not a�ected by a non-zero ζ. As was the case for temperature dependence, the unitary
region shows the most interesting features. In the immediate vicinity of (kFas)

−1 = 0 in
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Figure 5.12: Value of the amplitude modulation coe�cient a(x) of the order parameter
calculated at the soliton center, a0, at temperature T = 0.01TF , in the near BEC regime
(kFas)

−1 = 0.5 as a function of the soliton velocity vS. The full lines show the results in the
simpli�ed case without the inclusion of higher-than-�rst order time derivatives respectively
in the BEC (black line) and BCS (red line) regime. Correspondingly the dashed lines show
the e�ect of the inclusion of the terms proportional to Q and R, again in the BEC (blue
line) and BCS (green line) regime.

fact, a higher value of |MS| is observed for high values of the imbalance (ζ = 0.4), whereas
in all other regions |Ms| is largest for the balanced system (full black line).
It is important to remark that a discrepancy is found between the predictions of the present
EFT and the results of Bogoliubov-de Gennes simulations [125, 126, 142]. The absolute
value of the e�ective mass according to the EFT treatment is substantially lower than the
one expected by the BdG theory. Another evidence in favor of a high value of |Ms| is the
experimental observation by Yefsah et al. [127] relative to solitonic vortices that observed
an increase of the ratio between the e�ective mass and the physical mass as the interaction
strength changes from the BEC to the BCS regime. The most probable source of this
discrepancy can be identi�ed in the fact that the physics of Andreev bound states is not
captured by the e�ective �eld theory derived in the present work. Andreev bound states
are a typically fermionic phenomenon, which is expected to give sizable contributions to
the dynamics of the system especially in the BCS regime: due to the bosonic nature of the
EFT, a straightforward inclusion of such e�ects in the theoretical description is di�cult.
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Figure 5.13: Order parameter amplitude pro�les at T = 0.01TF , on the BEC side of the
resonance (kFas)

−1 = 0.5 for di�erent values of the soliton velocity. The insets show the
absolute di�erence between the pro�les calculated with or without the corrections due to
the presence of the terms with second order imaginary-time derivatives.

5.4 Perturbative treatment

The study carried out in this section is based on the perturbation of stationary soliton solu-
tions which are obtained from the analytic expressions for the phase and amplitude pro�les
of the order parameter derived in Section 5.2. As discussed before, these expression provide
a good description of the physical system in the quasi-1D con�guration corresponding to
a highly elongated shape of the atomic cloud, or, in the 3D uniform con�guration. While
the �rst case does not allow for the inclusion of transverse perturbations because of the
reduced dimensionality, the second does, and moreover the recent realization of box-like
optical traps [141] provides the possibility to reproduce this setup in experiment.
Thorughout this analysis we will focus on stationary solitons (with vS = 0), therefore, as
remarked in Section 5.3, we can neglect the terms of the EFT action (2.118) and consider
the simpli�ed Euclidean-time action functional given by

SEFT (β) =

∫ β

0

dτ

∫
dr

[
D

2

(
Φ̄
∂Φ

∂τ
− ∂Φ̄

∂τ
Φ

)
+H

]
, (5.33)

where the Hamiltonian H has the same form as in (5.4). The simpli�ed and regularised
version of the real-time Lagrangian density (5.6) is

L = i
D

2

(
Φ̄
∂Φ

∂t
− ∂Φ̄

∂t
Φ

)
− (H− Ωs(Φ∞)) . (5.34)
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Figure 5.14: (Color online) Absolute value of the e�ective mass of the soliton as a func-
tion of the interaction parameter (kFas)

−1 for di�erent values of the temperature without
imbalance (ζ = 0). The mass is given in units of 2m.

As mentioned above, the subtraction of the term Ωs(Φ∞) means that in the present treat-
ment we consider the energy di�erence with respect to the value of the thermodynamic
potential for the uniform system.
From the e�ective �eld Lagrangian, the simpli�ed (vS = 0) equation of motion for the pair
�eld Φ of the Fermi super�uid can be obtained, reading

iD̃(|Φ|2)
∂Φ

∂t
= − C

2m
∇2

rΦ +

(
A(|Φ|2) +

E

m
∇2

r|Φ|2
)

Φ . (5.35)

The solution of this equation in the quasi-1D con�guration was discussed at length in the
previous sections of the thesis.
In order for the snake instability to develop a perturbation representing a small oscilla-
tion in the direction perpendicular to the propagation direction of the soliton must be
added. Therefore to describe the deformation of the soliton plane that leads to its decay, a
transverse perturbation is added to the stationary 1D solution Φs in the following way [143]

Φ(x, z, t) = Φs(x− vst) + Φp(x− vst, z, t) , (5.36)

where the perturbation Φp(x − vst, z, t) is assumed to be small. The space- and time-
dependence of the perturbation is assumed to have the form x − vst, meaning that it
propagates in the x direction with velocity vs in the same way as the soliton does. The
perturbation is further assumed to consist of a combination of plane wave components
propagating in opposite directions along the z axis:

Φp(x− vst, z, t) = φ1(x− vst)ei(kz−Ωt) + φ∗2(x− vst)e−i(kz−Ω∗t) (5.37)

The next step then is to insert this perturbed solution into the equation of motion (5.35)
and to perform an expansion around the stationary solution up to �rst order in Φp. From
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Figure 5.15: (Color online) Absolute value of the e�ective mass of the soliton as a function
of the interaction parameter (kFas)

−1 at temperature T = 0.1TF for di�erent values of the
imbalance chemical potential (given in units of EF ). The mass is given in units of 2m.

previous considerations, we know that the coe�cients C and E can be kept constant and
equal to their value in the uniform system case. On the other hand, the dependence of both
D̃ and A on the order parameter has to be fully taken into account. A Taylor expansion
of these two coe�cients up to �rst order around the stationary solution leads to

D̃(|Φ|2) = D̃(|Φs|2) +
∂D̃(|Φs|2)

∂|Φs|2
[
(Φ∗sφ1 + Φsφ

∗
2) ei(kz−Ωt) + (Φsφ

∗
1 + Φ∗sφ2) e−i(kz−Ωt)

]
+ . . .

(5.38)

A(|Φ|2) = A(|Φs|2) +
∂A(|Φs|2)

∂|Φs|2
[
(Φ∗sφ1 + Φsφ

∗
2) ei(kz−Ωt) + (Φsφ

∗
1 + Φ∗sφ2) e−i(kz−Ωt)

]
+ . . .

(5.39)
After inserting (5.38) and (5.39) into the equation of motion and expanding the temporal
and spatial derivatives, the terms of order zero in the perturbation can be collected, leading
to

iD̃(|Φs|2)
∂Φs

∂t
= − C

2m
∇2

rΦs +

(
A(|Φs|2) +

E

m
∇2

r|Φs|2
)

Φs (5.40)

which is, as expected, just the equation of motion for the stationary solution. From the
selection of the terms that are linear in the perturbation, two coupled di�erential equations
are obtained for the perturbation amplitudes φ1 and φ2:

α1
∂2φ1

∂x2
− α2

∂φ1

∂x
+ α3(Ω)φ1 − α4

∂2φ2

∂x2
− α5

∂φ2

∂x
− α6φ2 = 0 (5.41)

α1
∂2φ2

∂x2
− α∗2

∂φ2

∂x
+ α∗3(−Ω)φ2 − α∗4

∂2φ1

∂x2
− α∗5

∂φ1

∂x
− α∗6φ1 = 0 (5.42)
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where the coe�cients αj, j = 1, 2, 3, 4, 5, 6 are de�ned as

α1 =
C

2m
− E

m
|Φs|2 (5.43)

α2 = ivsD̃s + 2
E

m
Φs
∂Φ∗s
∂x

(5.44)

α3 = ΩD̃s −
C

2m
k2 − ∂s

(
|Φs|2As

)
− ivs∂sD̃s

∂Φs

∂x
Φ∗s+

− E

m

∂2|Φs|2

∂x2
− E

m
Φs
∂2Φ∗s
∂x2

+
E

m
|Φs|2k2 (5.45)

α4 =
E

m
Φ2
s

∂2φ2

∂x2
(5.46)

α5 = 2
E

m
Φs
∂Φs

∂x

∂φ2

∂x
(5.47)

α6 = ∂sAsΦ
2
s + ivs∂sD̃s

∂Φs

∂x
Φs +

E

m
Φs
∂2Φs

∂x2
− E

m
Φ2
sk

2 (5.48)

For the sake of notational aesthetics, in the last set of expressions we introduced the
notations

A(|Φs|2) = As ,
∂A

∂|Φs|2
= ∂sA,

D̃(|Φs|2) = D̃s ,
∂D̃

∂|Φs|2
= ∂sD̃.

5.5 Results for the snake instability

From the system of coupled di�erential equations (5.41) and (5.42) one can obtain in-
formation about the perturbation's frequency spectrum Ω(k). In particular, the soliton
solution will be unstable for every wavevector k that corresponds to an imaginary value of
the frequency. Therefore, the �rst goal of the present section is to analyze the imaginary
part of the spectrum Ω(k) and obtain a description of the growth rate of the instability
in di�erent interaction regimes across the BEC-BCS crossover. To do this, the system of
equations is approached as an eigenvalue problem of the form(

W11 W12

W21 W22

)(
φ1

φ2

)
= Ω

(
φ1

φ2

)
(5.49)

and is solved numerically for the case of a stationary soliton (vS = 0) [144]. A large space
grid is used to discretize the positions, and the space derivatives are approximated by �nite
central di�erences: for example the �rst derivative of a generic function f calculated at
the position xi corresponding to the ith grid point, is given by

f ′(xi) =
f(xi+1)− f(xi−1)

2δx
,
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where δx represents the grid spacing.
Figure 5.16 shows the results for the imaginary part of the eigenvalues Ω(k) at T = 0.01TF
and for di�erent values of the interaction parameter (kFas)

−1. 2 It is clear that the
snake instability is a long-wavelength phenomenon that only exists up to a maximum
wavenumber kc since the imaginary part of the frequency Ω is zero for k > kc. The full red
line interpolates between the values of Im [Ω(k)] calculated in k = kc/

√
2. As predicted by

Muryshev et al. in the case of Bose Einstein condensates [129], this line nicely connects
the maxima of the dispersion relations for di�erent (kFas)

−1 across the entire BEC-BCS
crossover.
Fig.5.17 and Fig.5.18 compare the results for (kFas)

−1 = 0 and (kFas)
−1 = 0.2 with the
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Figure 5.16: Dispersion relations for the snake instability for di�erent interaction strengths
across the BEC-BCS crossover, i.e. on the BCS side of the resonance at (kFas)

−1 = −0.4
(black dashed line), at unitarity (kFas)

−1 = 0 (green dot-dashed line), in the near-BCS
regime (kFas)

−1 = 0.4 (blue dotted line) and further towards the BEC limit at (kFas)
−1 =

0.8 (orange wide-dashed line). The full red line connects the values of Im[Ω(k)] calculated
in k = kc/

√
2 for di�erent values of (kFas)

−1. The markers correspond to values of (kFas)
−1

ranging from −1 to 1 in steps of 0.1.

corresponding spectra that were calculated in Ref. [138]. There, the authors made use of
three di�erent approaches to analyze the spectra of the snake instability: a hydrodynamic
approximation, the random-phase approximation (RPA) and the solution of the time-
dependent Bogoliubov-de Gennes (TDBdG) equations. As far as the width of the band
of unstable wavelengths goes, the latter method shows the best agreement with the EFT
results. The RPA results on the other hand show a sharp decrease of Im[Ω], which might

2The choice of T = 0.01TF is motivated by the requirement of an extremely low temperature coming
from the fact that the perturbation theory adopted in the present treatment is technically valid just at
T = 0: the study of the actual T = 0 case can cause problems in the numerical implementation, but the
behaviour at low enough temperatures appears to be hardly distinguishable from the real T = 0 situation.
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be caused by the necessary use of an energy cuto� in this type of calculations, an issue
that does not occur in the presently used EFT. Another consequence of this cuto� is that
the RPA method fails to �nd any imaginary frequency at all for (kFas)

−1 > 0.2. The
hydrodynamic approximation, that describes a linear relation between Ω and k, is only
expected to hold near k = 0, where it indeed agrees quite well with the initial slope of the
EFT results.
The existence of a minimum wavenumber kc for which Im(Ω) becomes zero implies that
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Figure 5.17: Dispersion relations for the snake instability at unitarity for (kFas)
−1 = 0.

The full black line represents the EFT prediction and it is compared to the results of
hydrodynamic approximation (green dashed line), of the RPA (blue circles), and of the
time dependent Bogoliubov-de Gennes simulations (orange squares) [138]

there exists a minimal transverse length the ultracold gas must have in order for the soliton
to decay. If the transverse width is smaller than this minimal value, the soliton is expected
to be stable as the wavelength of the perturbation cannot �t the system width. A good
estimate for this critical length is given by the inverse of kc. In �gure 5.19 this quantity is
compared to the RPA and TDBdG results of [138] as well as to the data from [139] relative
to a treatment based on the coarse-grained BdG equation introduced by Simonucci and
Strinati [99]. Numerical factors have been introduced after a cross-comparison between
Refs. [129, 138, 139] in order to overcome the di�erence in the de�nitions of the healing
lengths 3. The values calculated in the framework of the EFT (black line) appear to be in
good agreement with the results of the time-dependent Bogoliubov-de Gennes equations
(blue circles with error bars) across the whole range of available data. Moreover it seems
that the present EFT is the approach that better captures the fact that the characteristic
length of the system changes from the healing length in the BEC regime (purple dot-dot-
dashed line) to the correlation length in the BCS regime (green dashed line). In the far

3In [139] the quantity r0 is de�ned as r0 =
(
π/
√
−2λ

)
ξ. Therefore the data plotted in Fig. 5.19, i.e.

r0/
(√

2π
)
describe a �corrected healing length� accounting for the modulation e�ect due to the variation

of the (bound) ground state eigenvalue λ across the BEC-BCS crossover. The factor 1/
√

2 comes instead
from a di�erence in the de�nition of ξ with respect to [129]
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Figure 5.18: Dispersion relations for the snake instability in the near BEC regime for
(kFas)

−1 = 0.2. The full black line represents the EFT prediction and it is compared to
the results of hydrodynamic approximation (green dashed line), of the RPA (blue circles),
and of the time dependent Bogoliubov-de Gennes simulations (orange squares) [138]

BEC limit the EFT results are in excellent agreement with both the data from [139] (red
dot-dashed line) and with the healing length obtained from the standard Gross-Pitaevskii
treatment. The in�uence of temperature on the characteristic length are examined in 5.20:
while on the BEC side of the crossover temperature has no e�ect, on the BCS side at higher
temperatures the critical transverse width of the system is enhanced.
In Figure 5.21 the e�ect of spin imbalance on the critical transverse size is examined. It
appears that the presence of unpaired particles stabilises the soliton: the value of kc at a
�xed interaction strength decreases when increasing the imbalance parameter ζ, meaning
that for a given width of the atomic cloud a soliton in an imbalanced setup can be stable
while one in a balanced system is unstable. This can be qualitatively explained in terms
of the observation that in an imbalanced con�guration the soliton core is an energetically
favorable place to accommodate the unpaired particles [3]. Because of this the system may
favor the soliton con�guration over the vortex one since the former o�ers more space to
store the excess component particles. To conclude it is important to remark that this last
observation is consistent with the discussion about the e�ects of temperature (Fig.5.20)
since, similarly to imbalance, an increase in temperature also enhances the number of
unpaired particles in the system in the BCS regime.

5.6 Discussion and conclusions

In the previous sections an extensive description of the properties of dark solitons in a
Fermi super�uid was carried out in the framework of the e�ective �eld theory presented
in [1, 70] and derived in detail in Chapter 2 of this thesis. The �rst part of the chapter
was dedicated to the study of the soliton solutions of the equation of motion for the La-
grangian (5.6) in terms of the amplitude and phase of the order parameter Φ. The e�ect of
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Figure 5.19: The EFT prediction for the minimum transverse dimension necessary for
observing soliton decay through the snake instability (full black line) is compared to the
results of the RPA (orange squares), of the time dependent Bogoliubov-de Gennes simu-
lations (blue circles) [138], and of the calculations by Muñoz Mateo and Brand [139] (red
dot-dashed line) based on the coarse-grained BdG theory [99]. In addition the BCS coher-
ence length ξC(green dashed line) and BEC healing length ξH (purple dot-dot-dashed line)
are shown. The numerical factors are introduced to overcome di�erences in the de�nitions
of the healing lengths between Refs. [129,138,139] as discussed in [4].

temperature and population imbalance were analysed across the BEC-BCS crossover. The
fact that in the building of the EFT no hypothesis is made requiring the pair �eld to be
small, in principle extends the range of validity of this theory with respect to the widely
employed Ginzburg-Landau and BdG approaches enabling us to consider also the e�ect of
temperature on the system. From the discussion of Section 3.4 it emerged that, while the
calculations relative to the BEC regime are valid for all temperatures in the range from 0
to Tc, at unitarity and on the BCS side of the resonance this is true just for temperatures
close to the critical one.
Based on analytic expressions for the amplitude and phase spatial pro�les, the density
and the density of the excess-spin component were obtained in the LDA approximation
using for the bulk value of the order parameter the mean �eld results. By systematically
analyzing the density pro�les we have observed how increasing the imbalance (and con-
sequently decreasing the number of particles available for pairing) results in a �lling of
the soliton core that thus proves to be a convenient place where the unpaired particles
can be stored. This translates into a decrease of the modulus of the e�ective mass of the
soliton with increasing imbalance. However, in the crossover region in the vicinity of the
unitarity regime we observe that the e�ect of the imbalance on Ms is reversed. A discrep-
ancy was observed between the EFT predictions concerning the e�ective mass across the
BEC-BCS crossover and those reported in other papers all based on the solution of the
time-dependent Bogoliubov-de Gennes equations [125,126,142] at zero temperature.
Keeping in mind the experimental setup employed in the investigation of solitons in ul-
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Figure 5.20: Minimum size of the atomic cloud k−1
c /
√

2 for the occurrence of the snake
instability across the BEC-BCS crossover for di�erent temperatures, i.e. T = 0.01TF (full
black line), T = 0.02TF (blue dashed line), T = 0.02TF (green dotted line) and ζ = 0.1
(red dot-dashed line).

tracold gases a substantial part of our results was presented as a function of the soliton
velocity vS in order to facilitate a direct comparison with future experimental results.

Motivated by the theoretical predictions and experimental observations of the decay of
dark solitons through the snake instability mechanism, in the second part of the chapter this
phenomenon was studied as a function of interaction strength and population imbalance.
The distortion of the depletion plane characteristic of the onset of the snake instability is
treated by adding a transverse perturbation in the form (5.37) to the stable solution Φs

of the equations of motion for the quasi-1D con�guration described in Section 5.2. The
numerical solution of the coupled system of nonlinear di�erential equations describing the
perturbation amplitude provides the spectra of the instability. The dispersion Ω(k) is
examined in di�erent interaction regimes and the BEC prediction [129] for the position of
the maxima of Im[Ω(k)] is veri�ed and extended to the BCS-side of the resonance. The
minimal transverse size for the soliton decay is qualitatively estimated as k−1

c , kc being
the maximal wave number for which unstable modes exist. The results obtained show
a good quantitative agreement with those of the coarse-grained BdG theory [139] in the
BEC-regime and the available numerical results of the TDBdG calculations [138] across
the crossover. Moreover the EFT results seem to correctly characterise the change in the
relevant length scale, from the condensate healing length in the BEC limit to the correlation
length in the BCS regime.
At a later stage in Section 5.5 the e�ects of spin-imbalance and temperature on the stability
of the soliton are discussed. The maximum transverse size that the atomic cloud can
have in order for the soliton to be stable is shown to increase in the presence of spin-
imbalance or at higher temperatures. This could in principle o�er a way to stabilise the
soliton con�guration in experiments without being forced to reduce the transverse size of
the trap. The analysis carried out in the present work is based on the perturbation of
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Figure 5.21: Minimum transverse size of the atomic cloud k−1
c /
√

2 for the occurrence of
the snake instability across the BEC-BCS crossover for di�erent values of the imbalance
parameter ζ, i.e. ζ = 0 (full black line), ζ = 0.2 (green dashed line) and ζ = 0.4 (red
dot-dashed line). The lines for ζ 6= 0 do not cover the entire interaction domain due to the
fact that in the presence of imbalance the super�uid state does not exist across the whole
BEC-BCS crossover.

stable solitons solutions derived in Section 5.2 and published in [3,70] which were obtained
under the hypothesis of a uniform system. While most experiments concerning ultracold
quantum gases employ harmonic traps to con�ne the atomic cloud, recently box-like optical
traps that well approximate a uniform con�guration were developed [141]: such setups can
provide the opportunity of directly testing the predictions of this work in experiment.



Chapter 6

Conclusions and outlook

In this thesis an e�ective �eld theory suitable to describe the super�uid phase of a system
of ultracold Fermi atoms in terms of the pairing order parameter was developed.

Starting from the weak requirement of having an order parameter that varies slowly in
both time and space, in Chapter 2 the mathematical derivation of the EFT in the frame-
work of the path integral formalism was carried out in full detail. The result is an e�ective
�eld action that includes terms with space and time derivatives up to second order of the
super�uid order parameter Φ. Thanks to the form of the gradient expansion of Φ exploited
in order to enforce the requirement of slow variations, the di�erent terms can be calculated
separately. In Section 2.7 the �nal expression for the e�ective action SEFT was given, along
with the de�nitions of the EFT coe�cients, which formally still depend on Φ.

In Chapter 3 the �rst simple applications of the EFT were reviewed. In Section 3.1
the spectrum of the collective excitations of the super�uid was calculated starting from a
quadratic expansion of the EFT action in terms of the beyond mean-�eld �uctuations of the
order parameter. In the long-wavelength limit the dispersion relation for the Bogoliubov
modes is determined by a linear term plus a cubic correction, with prefactors that can be
determined in terms of the EFT coe�cients: the dependence of the latter on Φ permits
to describe how the spectrum changes in function of the interaction. The prefactor of the
linear term is interpreted as the sound velocity cS, and a comparison between the EFT
predictions and those by Salasnich et al. [71] shows a very good agreement across the entire
BEC-BCS crossover. The same level of agreement was not found when the coe�cient λ of
the cubic correction was compared to the results of Kurkjian et al. [74]: while in the BEC
limit the predictions coincide, a discrepancy arises and becomes more and more relevant
when going towards the BCS side of the resonance. In particular the EFT version of λ
remains positive across the entire interaction regime, while the one of [74] crosses zero
around unitarity and becomes negative in the BCS regime.
In Section 3.2 the �uctuation correction to the total density were calculated using a hybrid
EFT-NSR approach. The transition temperature Tc was calculated and the results com-
pared to the implementations of the NSR scheme by Perali et al. [84] and by by Sá de Melo
et al. [46] �nding an overall good agreement. In the BCS limit the mean-�eld prediction
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was correctly retrieved.
Section 3.3 is dedicated to the calculation of correlation functions starting from the EFT
action. To do so a generating functional method was derived that enables to calculate
correlation functions of all orders. This method was then applied to the calculation of
the condensate fraction and of the pair coherence length at the mean-�eld level. The pair
coherence length serves as an estimate of the size of the Cooper pairs and, in Section 3.4,
this quantity was employed to test whether the requirement of slow variations of the order
parameter that lies at the basis of the EFT is ful�lled in di�erent interaction regimes. This
test yielded an indirect estimate of the region of validity for the predictions of the theory.
In particular it was demonstrated that the EFT provides very good results in the BEC
regime at all temperatures below Tc but, when going towards the BCS side of the resonance
the reliability of the predictions at low temperatures decreases. In the BCS limit the EFT
still remains valid close to Tc similar to the Ginzburg-Landau treatment.
In Subsection 3.5.1 it was demonstrated that, in the BEC limit at T = 0, the EFT equation
of motion becomes equivalent to the Gross-Pitaevskii equation for bosonic particles of mass
M = 2m that interact through a contact potential with an e�ective boson-boson scattering
length equal to twice the fermion-fermion one. Comparing the EFT coe�cients to those of
the time-dependent Ginzburg-Landau theory developed by Sá de Melo and coworkers [46],
in Subsection 3.5.2, a very good agreement is found for all of the coe�cients, with the only
exception of the coe�cient D of the �rst order time derivative. The EFT coe�cient D
is real in all interaction regimes, while its TDGL counterpart has an imaginary part that
becomes more and more important as the interaction is tuned towards the BCS regime.
This imaginary part accounts for a damped dynamics of the order parameter which is not
captured by the present e�ective �eld theory.

In Chapter 4 a system composed by a single impurity atom interacting with the col-
lective excitations of a fermionic super�uid was studied by mapping the problem on the
Fröhlich Hamiltonian which, in recent years, has been widely used to study the similar
BEC polaron problem. The validity of the parallel between the present problem and the
BEC polaron one is in principle limited to the extreme BEC side of the Feshbach resonance.
Thanks to the fact that the EFT can describe the interaction dependence of the spectrum
of the collective excitations of the super�uid (that play the role of the phonons in the stan-
dard condensed matter version of the polaron problem), this similitude is extended to a
wider region of the BEC-BCS crossover. The (generally small) corrections to the polaronic
coupling constant and e�ective mass are estimated for di�erent values of the strength of
the fermion-fermion and of the boson-impurity interaction.

In Chapter 5 various aspects of dark solitons in Fermi super�uids were investigated.
The �rst part of the chapter focuses on the properties of stable dark solitons in a quasi-1D
con�guration. The predictions obtained are well-suited for comparison with the results of
experiments that employ an elongated trap which enables the soliton to move almost freely
in one direction while being tightly con�ned in the transverse plane. The behaviour of the
width and depth of the soliton was described in detail in di�erent interaction regimes across
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the BEC-BCS crossover, and di�erent conditions of temperature, imbalance and soliton ve-
locity were considered. The main result of this part of the chapter is the conclusion that
the soliton core is an energetically convenient place where the unpaired particles (which
may be present in the system because of �nite temperature and/or nonzero population
imbalance) can be accommodated. Also some dynamical properties of the soliton, such as
its e�ective mass, were examined. A discrepancy was found between the EFT predictions
for this quantity and the corresponding results obtained within the Bogoliubov-de Gennes
treatment. The soliton e�ective mass in the BCS regime appears to be underestimated
in the EFT approach: the source of the discrepancy may be that the bosonic nature of
the EFT cannot capture the contribution to this quantity due to the presence of Andreev
bound states in the soliton core, which is expected to become more and more relevant as
the BCS limit is approached.
The second part of the chapter is dedicated to the study of the snake instability mechanism
responsible for the decay of dark solitons into one (or more) vortex-like excitations. The
stable soliton solution was modi�ed with the addition of a transverse perturbation in the
form of a combination of plane waves and the spectrum of the instability was obtained by
linearising the equation of motion in the perturbation amplitudes and solving the corre-
sponding eigenvalue problem for the frequency. The prediction by Muryshev et al. [129]
about the position of the maximum of the dispersion relation for the unstable mode, made
in the context of Bose-Einstein condensate, is con�rmed and extended to the whole BEC-
BCS crossover. Moreover a good qualitative agreement was detected in the comparison of
the dispersion curves with the data obtained from time-dependent Bogoliubov-de Gennes
calculations in [138]. The quantity that represents the main focus of this part of the chap-
ter is the maximum transverse size that the atomic cloud can have in order for the soliton
to be stable. The snake instability is a long-wavelength phenomenon: this means that
above a critical value of the momentum kc no unstable modes are detected. The inverse
of the critical momentum, i.e. k−1

c , can therefore be used as an estimate of the critical
transverse size of the system. The dependence of k−1

c on the fermion-fermion interaction
was studied and the results were compared to the ones from the TDBdG treatment [138]
and of the coarse-grained version of the BdG equation [139]: the EFT results agree with
the predictions of both these methods on the BEC side of the resonance. Moreover the
EFT data seem to be the only ones that correctly capture the change in the relevant length
scale from the healing length in the BEC regime to the pair coherence length in the BCS
regime.
In the �nal part of the chapter the e�ect of imbalance on the critical transverse size was
examined. We �nd that, in the BCS regime, the value of k−1

c for a given interaction
strength is larger for an imbalanced system than for a balanced situation. This considera-
tion, together with the similar observation made in regard to the �nite-temperature case,
represents another indication that the soliton core is a favorable place where the unpaired
particles can be stored. In fact a soliton o�ers more space that can be used for this purpose
than a vortex (which would be the product of the soliton's decay through the snake insta-
bility). Moreover it o�ers a possible direct method for stabilising solitons in experiment
through imbalance, without having to reduce the dimensionality of the system.
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In this thesis we have given an overview of only a part of the research about Fermi
super�uids that has been carried out in the framework of the e�ective �eld theory derived
in Chapter 2. The EFT has been employed also in the study of two-component fermionic
systems [1] and of vortex con�gurations [145,146]. Moreover a study about soliton collisions
is currently ongoing: the inelasticity of the collisions, the spatial displacement of the
solitons after the collision, and the collective waves that originate from the collisions are
being systematically analysed.
Other directions of further study concern the precise identi�cation of the causes, and
the solution, of some of the discrepancies between the predictions of the EFT and of other
approaches found in literature. As highlighted in the course of the present work disagreeing
results are most often found when considering the BCS regime, where the fermionic nature
of the system strongly a�ects the physics. However it is not yet clear whether an elegant
and direct way to incorporate fermionic corrections to the intrinsically bosonic EFT can
be implemented.

The EFT description opens the way to many applications. With respect to other mod-
els, such as the Bogoliubov-de Gennes theory, that are computationally demanding even
when a single vortex or soliton is considered, the current treatment has the advantage of
requiring much less computational time and memory. Thus, in the future it will be possible
to study the behaviour of the system when it contains many vortices or solitons. Moreover,
this theory allows for an easy extension to multi-component systems, which enables us to
investigate whether new phenomena � that do not occur in individual super�uids � can
instead occur in multi-component mixtures.
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