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Abstract

When a dilute gas of neutral fermionic atoms, trapped in a magnetic or optical confining
potential, is cooled down to temperatures of a few tens of nanokelvins above absolute zero,
the gas undergoes a phase transition. The fermionic atoms form pairs, that can flow as in
an ideal fluid, without friction. This phenomenon is briefly introduced in the first chapter.

Such “superfluid” state also occurs for bosonic atoms, that however do not need to pair.
For Bose systems, Gross and Pitaevskii developed a successful description of the superfluid
state based on a macroscopic wavefunction. Unlike the many-particles wavefunction, which
depends on the positions of all atoms in the system, the macroscopic wavefunction depends
only on one position coordinate. Yet it reliably encodes many aspects of the behaviour of
the superfluid. The modulus squared of the macroscopic wavefunction is interpreted as the
density of supefluid particles, while the gradient of the phase is linked to the velocity field.
The superfluid properties follow from the partial differential equation that this macroscopic
wavefunction must satisfy. This differential equation is known for superfluid Bose gases,
but up to now there was no counterpart for fermionic system. The goal of this thesis is
to develop a description of superfluidity in fermionic systems in terms of a macroscopic
wavefunction and to employ it to study related phenomena such as dark solitons in Fermi
superfluids.

In this thesis an effective field theory (EFT) suitable to describe the superfluid phase
of an ultracold system of neutral fermionic atoms in a wide range of interaction and tem-
perature configurations is developed in the framework of the path-integral formulation of
quantum field theory [1]. At the heart of the EFT lies the hypothesis that the order
parameter varies slowly in both time and space. The calculations that, from this weak
assumption, lead to the final form of the EFT action are carried out in full detail.

The EFT is then applied to the study of various aspects of Fermi superfluids in the
BEC-BCS crossover interaction regime. By introducing fluctuations beyond mean field the
spectrum of the collective excitations and the corrections to the critical temperature are
evaluated, and the results are compared to those of other theoretical approaches.

Motivated by the interest gathered in recent years by the BEC polaron problem, an
analogous system where the Bose-Einstein condensate is replaced by a superfluid fermionic
gas is treated, and the corrections to the polaronic coupling constant and effective mass
due to the interaction of an impurity with the collective excitations of the superfluid are
evaluated [2]. The interaction dependence of the dispersion relations for the collective
modes enables to extend the analogy with the BEC polaron system, that in principle
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would be limited to the BEC limit, to a wider region of the BEC-BCS crossover.

The EFT is then applied to the study of various aspects of dark solitons in ultracold
Fermi gases. At first the stable soliton solutions in (quasi-)1D are studied and the effects of
interaction, temperature, and imbalance on the density profiles and dynamics are precisely
characterised [3]. The main finding in this context is the fact that the soliton core is an
energetically favorable place where the unpaired particles — present in the system because
of a nonzero population imbalance and/or finite temperature — can be accommodated.
Next the snake instability mechanism, responsible for the decay of dark solitons in 3D, is
considered. The spectrum of the unstable modes is examined and compared to the results
of other theoretical approaches [4]. The minimum size that the system can have in order
for the soliton to be stable is estimated and the behaviour of this quantity across the BEC-
BCS crossover is compared to other data found in literature. In the BEC regime the EFT
gives results in very good agreement with those of both the time-dependent Bogoliubov-
de Gennes (TDBAG) simulations and of the coarse grained Bogoliubov-de Gennes theory.
Moreover, it appears that the EFT is the only treatment that correctly describes the
change in the relevant length scale, from the healing length in the BEC regime, to the
pair coherence length in the BCS regime. The effects of imbalance on the soliton stability
are also examined, finding that for a fixed interaction strength, the critical size necessary
to avoid decay through the snake instability is larger for an imbalanced system than for
a balanced one. In principle this provides experimentalists with a method to stabilise
solitons by increasing the imbalance without being forced to reduce the dimensionality of
the cloud.

The description we develop in this thesis opens the way to many applications. Where
other models, such as the Bogoliubov-de Gennes theory, become computationally demand-
ing even for a single vortex or soliton, the current description has the advantage of allowing
a rapid implementation. Thus, in the future it will be possible to investigate the behaviour
of the system when it contains many vortices or solitons — similar as for superconductors
we can characterise vortex matter and learn to manipulate vortices and solitons. Also, the
theory can be easily extended to multi-component fermionic superfluids, which allows us
to investigate whether new phenomena — that do not occur in the individual superfluids —
can instead occur in such mixtures.



Nederlandstalige samenvatting

Wanneer een ijl gas van neutrale fermionische atomen, ingevangen in een magnetische of
optische val, wordt afgekoeld tot een temperatuur van enkele tientallen nanokelvins boven
het absolute nulpunt, ondergaat het gas een fasetransitie. De fermionische atomen vormen
paren, die kunnen vloeien als een ideale vloeistof, zonder dissipatie. Dit fenomeen wordt
kort ingeleid in het eerste hoofdstuk.

Dergelijke “superfluide” toestand treedt ook op voor bosonische atomen, zonder dat
deze moeten opparen. Voor bosonische atomen ontwikkelden Gross en Pitaevskii een suc-
cesvolle beschrijving van de superfluide toestand aan de hand van een “macroscopische”
golffunctie. In tegenstelling tot de veeldeeltjesgolffunctie, die afhangt van de posities van
alle atomen in het systeem, hangt de macroscopische golffunctie slechts af van één posi-
tiecoordinaat. Toch encodeert deze golffunctie getrouw het gedrag van het superfluidum.
De modulus kwadraat van de macroscopische golffunctie wordt als dichtheid van superfluide
deeltjes geinterpreteerd, en de fasegradiént is gelinkt aan het snelheidsveld. De superfluide
eigenschappen volgen uit de differentiaalvergelijking waaraan de macroscopische golffunc-
tie moet voldoen. Deze differentiaalvergelijking is gekend voor superfluide Bose gassen,
maar er was nog geen tegenhanger voor superfluide Fermi gassen. Het doel van deze thesis
is om een beschrijving van superfluiditeit in Fermi gassen op te stellen, gebaseerd op een
macroscopische golffunctie, en om aan de hand hiervan superfluide eigenschappen (zoals
solitonen) te beschrijven.

Daartoe ontwikkelen we in deze thesis een effectieve veldentheorie [1] die in staat is om
de superfluide toestand te beschrijven van een ultrakoud systeem van neutrale fermionische
atomen voor een groot bereik aan temperaturen en interactiesterktes. De afleiding van de
theorie is gebaseerd op de padintegraalbeschrijving, in combinatie met de aanname dat de
ordeparameter die het paarcondensaat beschrijft traag varieert zowel in tijd als in ruimte.
De berekeningen die, vertrekkend van deze aanname, leiden tot de veldvergelijking voor
de macroscopische golffunctie van het paarcondensaat, worden in detail uitgewerkt in het
tweede hoofdstuk.

De effectieve veldentheorie wordt in het derde hoofdstuk toegepast om verschillende
basis-aspecten van Fermi superfluida nader te beschrijven, in het de ganse overgangsregime
tussen Bardeen-Cooper-Schrieffer (BCS) paren en een Bose-Einstein condensaat (BEC)
van sterk gebonden moleculen. Door fluctuaties bovenop de gemiddeld-veld oplossing te
beschouwen, berekenen we het spectrum van collectieve excitaties en de correcties op de
gemiddeld-veld waarde voor de kritische temperatuur. We vergelijken deze resultaten met
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de reeds gepubliceerde waarden en vinden een goede overeenkomst.

In het vierde hoofdstuk zijn we toe aan een eerste uitgebreidere toepassing: polaronische
effecten in een Fermi superfluidum [2]. Deze effecten treden op wanneer we een onzuiver-
heidsatoom in een superfluid syteem brengen. In een Bose-Einstein condensaat zullen de
excitaties van het condensaat interageren met het onzuiverheidsatoom. Daardoor wordt
het atoom “aangekleed” met een wolk excitaties, en verandert bijvoorbeeld de effectieve
inertiéle massa van het onzuiverheidsatoom. Hier onderzoeken we dit effect met behulp van
onze theorie voor een fermionisch systeem. In de limiet van sterk gebonden moleculen van
twee fermionen bekomen we opnieuw het gekende resultaat voor een onzuiverheid in een
Bose-Einstein condensaat, maar onze theorie stelt ons in staat om de eigenschappen ook
te onderzoeken wanneer we de fermionische paren brengen in een regime waar ze zwakker
gekoppeld zijn en meer lijken op Cooperparen. We kwantificeren het effect hiervan op het
polaronisch effect, zowel voor de verlaging in grondtoestandsenergie als voor de verandering
van de inertiéle massa.

In het vijfde hoofdstuk komt de meest uitgebreide toepassing aan bod: de studie van
donkere solitonen. Dit zijn excitaties van het superfluidum, die de vorm aannemen van een
solitaire dip in de dichtheid die voortbeweegt aan een constante snelheid, zonder van vorm
te veranderen. Met onze theorie vinden we een analytische uitdrukking voor de vorm van
deze solitonen als functie van de parameters van het Fermi gas waaruit het superfluidum
gemaakt is en als functie van de temperatuur. Solitonen blijken in Fermi gassen alleen
maar stabiel voor ééndimensionale systemen, terwijl experimentatoren natuurlijk enkel
quasi-ééndimensionale invangingspotentialen kunnen maken voor Fermi superfluida. We
berekenen de kritische dikte die het quasi-ééndimensionaal systeem moet hebben om de
instabiliteit te doen optreden, aan de hand van het spectrum van excitaties. Zowel wat de
vorm van het soliton betreft, als voor de kritische dikte voor stabiliteit, kunnen we onze
resultaten vergelijken met de Bogoliubov-de Gennes theorie die voor het Bardeen-Cooper-
Schrieffer regime werd uitgewerkt, en vinden we een goede overeenkomst. Bovendien is
onze theorie de enige die de verandering van relevante lengteschaal (van coherentielengte
in het BEC regime naar correlatielengte in het BCS regime) kan beschrijven.

Als er bij het maken van fermionische paren meer van één type partner aanwezig is dan
van zijn paringspartner, dan spreken we van populatie-imbalans in het Fermi gas. Zo'n
populatie-imbalans zal, net zoals op een feestje waar er veel meer mannen dan vrouwen
zijn, de paarvorming frustreren. We vinden dat de dip in de dichtheid die met het soliton
samengaat, een goede plaats is om de overschot aan meerderheidspartner in te plaatsen
[3,4]. Dit blijkt het soliton zelf stabieler te maken, en biedt hiermee een uitweg aan
experimentatoren die stabiele solitonen willen produceren.

Ten slotte vatten we de resultaten samen in het laatste hoofdstuk. De beschrijving die
we in deze thesis ontwikkelen opent de weg naar heel wat toepassingen. Daar waar andere
modellen, zoals de Bogoliubov-de Gennes theorie, al snel computationeel erg veeleisend
worden zelfs voor een enkele vortex of soliton, heeft de huidige beschrijving het voordeel
dat ze een snelle implementatie toelaat. Hiermee kan in de toekomst ook onderzocht worden
wat er gebeurt wanneer er zich vele vortices of solitonen in het systeem bevinden — net
zoals in supergeleiders kunnen we de toestanden van vortexmaterie gaan karakteriseren en
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vortices en solitonen leren manipuleren. Ook valt de theorie uit deze thesis zonder veel
moeite uit te breiden naar mengsels van fermionische superfluida, waarbij we de vraag
kunnen onderzoeken of zulke mengsels toelaten om fenomenen teweeg te brengen die in de
invididuele superfluida niet optreden. Kortom, we hopen dat de theorie uit deze thesis voor
onderzoekers van superfluide Fermi gassen net zo nuttig kan worden als de beschrijving
van Gross en Pitaevskii dat was voor onderzoekers van superfluide Bose gassen.
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Introduction

The aim of the present thesis is to provide a detailed derivation as well as some applications
of an effective field theory (EFT) suitable to describe a system of ultracold fermions across
the BEC-BCS interaction regime in a wide range of temperatures below the critical one, T..

In Chapter 1 a brief overview about ultracold atomic gases, and in particular about
Fermi superfluids, is given.
The road to superfluidity in atomic gases started in 1924 when the seminal papers by Bose
and Einstein predicting Bose-Einstein condensation were published. The steps (both from
a theoretical and an experimental point of view) that from there led to the realisation,
in the first decade of the 2000’s, of fermionic superfluidity in laboratory are summarised.
Moreover some basic concepts which will play a crucial role in the remainder of the thesis,
such as the BEC-BCS crossover and population imbalance, are introduced.

Chapter 2 is dedicated to the detailed derivation of an effective field theory [1] for the
pairing order parameter capable of describing a fermionic superfluid across the BEC-BCS
crossover in a wide range of configurations of temperature (below the transition tem-
perature T.) and of taking into account an imbalance between the two spin-populations
composing the system. All the calculations that lead from the basic hypothesis of a slowly
varying order parameter to the final form of the EFT action are carried out in detail. The
more tedious parts of the calculations are isolated in subsections named “Calculations”
which can be avoided at a first read.

In Chapter 3 the first applications of the EF'T are analysed. The spectrum of the
collective excitations of the superfluid and the behaviour of the critical temperature as
a function of the interaction are examined and the results are compared to the available
literature.

Moreover a method for calculating correlation functions by using a generating functional
based on the EFT action is introduced and employed to calculate the condensate fraction
and the pair coherence length. The latter quantity is then used to test the hypothesis of
slow variation of the order parameter which lies at the heart of the EFT, and hence to give
an estimate of the range of reliability for the predictions of the theory.

The EFT is then compared in the opportune limiting situations to other widely used ef-
fective theories: the Gross-Pitaevskii equation, valid at 7" = 0 in the BEC regime, and the



time-dependent Ginzburg-Landau treatment valid in the vicinity of the transition temper-
ature. Also a brief introduction to the Bogoliubov-de Gennes theory is given.

Chapter 4 hosts an application of some of the results obtained in Chapter 3 about
the spectra of collective excitations and correlation functions. The results presented here
are collected in the manuscript [2]. In recent years much attention has been focused on
one particular realisation of the widely studied polaron problem: the BEC polaron [5-14],
which consists of an impurity interacting with the Bogoliubov excitations of a Bose-Einstein
condensate. In the present model the Bose-Einstein condensate is replaced by a Fermi su-
perfluid and the problem is treated in the weak coupling regime using perturbation theory.
The formerly known results are strictly valid only in the BEC limit, where the fermionic
system effectively becomes a BEC of tightly bound bosonic molecules. By using the infor-
mation about the interaction dependence of the spectrum of collective excitations derived
in Section 3.1 polaron theory is extended away from the BEC limit. The corrections to the
polaronic coupling constant and effective mass are described as a function of the impurity-
fermion pair and of the fermion-fermion interaction strengths.

Chapter 5 is dedicated to the application of the EFT to the description of dark solitons
in Fermi superfluids. The chapter is divided in two main parts based on the publications [3]
and [4] respectively. The first focuses on the study of stable soliton solutions in a quasi-1D
configuration. The shape properties of the soliton are examined in different conditions of
interaction, temperature, imbalance and soliton velocity. From these considerations and
from the comparison between the total density profiles and the order parameter profiles, it
emerges that the soliton core is a convenient place where the unpaired particles — present
in the system due to finite temperature and/or imbalance — can be accommodated. Also
some dynamical properties of the soliton solutions such as their effective mass and physical
mass are analysed.
The second part of the chapter is instead devoted to the study of the snake instability
mechanism responsible for the decay of solitons in experiment. While solitons in (quasi-
)1D are stable, in real 3D configurations the depletion plane is not rigid and can oscillate,
provoking the decay of the soliton into one (or more) vortex-like excitations. The maximum
transverse size that the atomic cloud can have in order for the soliton to be stable is
estimated and its behaviour in function of interaction across the BEC-BCS crossover is
compared to the predictions of other theories found in the literature. For the imbalanced
case (not yet treated in the existing literature), we find that this critical width is observed
to increase as a function of population imbalance, offering in principle a direct method to
stabilise solitons in experiment without being forced to reduce the system dimensionality.

Finally, in Chapter 6 we summarise the results and discuss the future prospects opened
by the work reported in this thesis.



Chapter 1

Ultracold quantum gases

1.1 History

The history of research about ultracold quantum gases started in the 1920’s with the sem-
inal papers by Bose [15] and Einstein [16] that predicted the phenomenon of Bose-Einstein
condensation. The key idea behind Bose-Einstein condensation is the fact that, when a
bosonic gas is cooled down to extremely low temperatures (in the vicinity of absolute zero),
a substantial fraction of the atoms coherently condenses into the lowest accessible quantum
state.

A gas at room temperature in three dimensions is well described by Boltzmann’s the-
ory, which considers the particles as mass points moving around and colliding with each
other with an average kinetic energy given by (p?)/2m = (3/2)kpT. From basic concepts
of quantum mechanics we know that atoms should not be considered as point-like mass
particles precisely labeled by their position and momentum coordinates, but instead as
wave(packet)s. The spread of the atoms’ position can be identified with the de Broglie

wavelength, defined as
2mh?
AaB = {/ )
B kaT

The average interparticle distance in a gas of density n can be estimated as d = n~
In order to have a parameter that gives a measure of the ratio between the interparticle
distance and the quantum mechanical uncertainty on the position of the particles in the
gas, the combination nA3; is used. The value of this parameter, often referred to as the
“gas parameter”, is very small in standard conditions of density and temperature, but when
the temperature is decreased to values close to absolute zero it can reach unity: then the
wavefunctions of different particles start overlapping and the quantum mechanical nature
of the atoms emerges, making the Boltzmann’s description of the system invalid. As
it is schematically shown in Fig. 1.1, if the gas is made of bosonic atoms the individual
wavefunctions start getting “in phase” and, when all particles share the same wavefunction,
Bose-Einstein condensation is obtained. In this novel phase of matter, all atoms are in the
same quantum state and can be described by a macroscopic wavefunction.

1/3.



4 1.2. Trapping and cooling methods
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Figure 1.1: Schematic depiction of the Bose-Einstein condensation mechanism.

The experimental realisation of Bose-Einstein condensation was achieved 70 years later,
in 1995, independently by E. A. Cornell and C. E. Wiemann and co-workers [17], by W.
Ketterle and co-workers [18], and by Hulet and co-workers [19]. This breakthrough result
earned Cornell, Wiemann, and Ketterle the 2001 Nobel Prize in physics.

1.2 Trapping and cooling methods

The main issues that needed to be addressed in order to obtain condensation in laboratory
are the trapping of the atomic cloud and the cooling of the gas to temperatures of the
order of 10 to 100 nanokelvins. In this subsection a short overview is given over the
methods employed in order to achieve the desired conditions of temperature and density in
experiments ultracold atomic gases. For more precise and exhaustive reviews on the topic
the reader is addressed to references [20-22] (for Bose gases), and 23] (for Fermi gases).

The first method developed to confine a cloud of neutral atoms was the use of a magnetic
trap [20,21|. Due to the Zeeman effect an atom in a spatially-inhomogeneous magnetic
field experiences a potential which varies in space. The energy of an atom in a state ¢ can
be written as F; = ¢; — u; B where ¢; is a constant term, u; is the magnetic moment of
the state and B is an external magnetic field. It is immediately clear that, if the magnetic
moment of the atom is positive, the atom will tend to go towards spatial regions where
the magnetic field B is stronger. This is the simple concept at the basis of magnetic traps:
a magnetic field with a convenient spatial modulation can be used to create a trapping
potential for a cloud of neutral atoms. It has to be remarked that in the case of neutral
atoms, the magnetic moment p; is not the intrinsic magnetic moment of the particle but
the one related to its cyclotron motion: the typical magnitude of such magnetic moments
is of the order of the Bohr magneton up = eh/2m, ~ 0.67kgK /T, and the depth of the
magnetic trap is u;B. Hence, given that the strength of the magnetic fields commonly
used in experiments is considerably less than 1T, the atoms must be cooled to tempera-
tures substantially lower than 1K in order to feel a sizable confining potential.

The operation mechanism of optical trapping exploits instead the energy shift caused by
the interaction between an atom and a laser beam due to the Stark effect. The interaction
between an atom and a (time- and space-dependent) electric field E,(r,t) with a charac-
teristic frequency w is described in dipole approximation, by H = d - E,(r,t), where d is
the electric dipole moment of the atom. The ground state energy shift AL, due to the
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Stark effect can be calculated in second order perturbation theory and results in

AE, = —%a(w)(Ew(r,t)>t
where (...); indicates a time average, and a(w) is the real part of the dynamical polar-
izability, which is positive when the frequency w of the electric field is smaller than the
atomic transition frequency (red detuning). As a consequence, a red detuned laser beam
can be used to produce a minimum in the spatial distribution of the energy of an atom in
the ground state and therefore obtain a trapping potential for the atomic cloud.

Up to now this introduction focused on bosonic systems: however a great advantage
of optical traps over magnetic ones becomes evident when considering the typical setup of
experiments with mixtures of fermionic atoms. In this case the atomic cloud is composed
of two populations of fermions with different hyperfine spin which would therefore respond
in different ways to a magnetic confinement. The optical trapping solves this problem since
the confining potential experienced by the atoms is independent of their internal magnetic
properties.

For what concerns the cooling, while a decrease in temperature increases the value of
the “gas parameter”, an additional aspect concerning the density has to be considered: in
the cooling process the system must be kept diluted enough that the gas does not expe-
rience a phase transition to the solid state. The solution to the problem was obtained in
the late eighties when the laser cooling method was perfectioned. The development of this
technique is due to the work of Phillips [24], Chu [25], and Cohen-Tannoudji [26], who in
1996 were awarded the Nobel Prize in physics.

The basic concept behind laser cooling is that a decrease in temperature corresponds to a
decrease in the average momentum of the particles composing the gas. In practice when an
atom experiences a head-on collision with a laser beam of frequency w corresponding to one
of its absorption lines, it absorbs a photon and consequently its momentum is reduced by
a quantity hk = hw/c. The now-excited atom spontaneously goes back to its initial state
by emitting a photon in an arbitrary direction. A sketch of the laser cooling mechanism is
shown in Fig.1.2. Still the total effect on the whole atomic cloud would not change the total
kinetic energy, as some atoms would be accelerated while others would be slowed down. If
however the frequency of the laser is red detuned with respect to w, as a consequence of
the Doppler effect, the photons will be preferably absorbed by the atoms moving towards
the source: a setup composed of two counterpropagating laser beams will then produce an
average decrease of the momentum of the atoms along the direction of the lasers providing
also a trapping effect on the atomic cloud. An additional positive effect of this technique
is a decrease in the total kinetic energy of the particles, in fact due to the Doppler shift the
re-emitted phonons have a higher frequency than the original photons from the laser. This
means that a part of the kinetic energy of the atoms has been transferred to the photons
which are free to escape the system.

The temperatures reached with laser cooling (typically tens of microkelvins) are how-
ever not low enough to reach Bose-Einstein condensation in experiments: a further step
is needed. This is provided by evaporative cooling: the key idea behind this method is
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Figure 1.2: Steps of the laser cooling mechanism: (a) the atom experiences a head-on
collision with the laser beam and absorbs a photon, (b) the momentum of the atom is
decreased by an amount equal to the momentum of the photon, (c) the atom spontaneously
re-emits a photon in an arbitrary direction. The re-emitted photon has a higher frequency
than the original one because of the Doppler effect.

that, if particles with high energy are allowed to escape, the average energy of the system
and, as a consequence, its temperature will be lowered. The most energetic atoms will
occupy regions close to the edges of the trap. Radiofrequency (rf) radiation resonant with
these atoms can be used to flip their magnetic moment from a low-field seeking one to a
high-field seeking one, hence expelling them from the trap. The process can be repeated in
order to eliminate atoms with lower and lower energy by adjusting the rf frequency. With
a combination of laser cooling and evaporative cooling the temperature of the system can
reach the values necessary to observe Bose-Einstein condensation, i.e. tens to hundreds
of nanokelvins. It must be remarked that in experiments with fermionic systems another
technique, named “sympathetic cooling” is used to obtain the needed conditions of temper-
ature. The evaporative cooling mechanism works only if, after the most energetic particles
have escaped the system, the remaining particles can relax back to an equilibrium state.
In bosonic systems the energy is redistributed by means of elastic scattering processes, but
fermions in the same quantum state cannot undergo such processes. Therefore, after evap-
orative cooling has been exploited on the separate populations, one spin-state component
is put into contact with the other thus making the redistribution of the energy in the whole
cloud possible [27].

1.3 From bosons to fermions: the BEC-BCS crossover

Due to the Pauli exclusion principle two identical fermions cannot share the same quan-
tum state and therefore Bose-Finstein condensation is not accessible in a fermionic system.
However, in 1911, Onnes measured that the resistivity of mercury drops to zero when the
metal is cooled to temperatures below 4.7K: in this condition the material is said to be-
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Figure 1.3: Evaporative cooling mechanism [20]: a radiofrequency radiation is employed
to flip the magnetic moment of the most energetic particles in the vicinity of the edge of
the trap. These particles can hence escape the trap and, as a result, the temperature of
the system is decreased.

come superconducting as the conduction electrons can flow freely without experiencing
resistance. This observation provided the first evidence of superfluidity of an electron gas.
In an attempt to understand this phenomenon, in 1958 Bardeen, Cooper and Schrieffer
proposed a theory that explains fermionic superfluidity in terms of Cooper pairs: weakly
bound pairs of electrons with dimension much larger than the interparticle spacing. The ex-
planation of the effective attractive interaction responsible for the binding of two electrons
despite the Coulomb repulsion that occurs between them was provided by polaron theory.
Starting with the seminal paper by Landau [28], the screening of the Coulomb potential
due to the interaction between electrons and the phonons describing the lattice deforma-
tions in a polar crystal was widely studied [29-31|. At the basis of the BCS description
lies the fact that the effective attractive interaction between electrons in a superconductor
is due precisely to this electron-phonon interaction. Contrary to the intuitive hypothesis
that fermionic superfluidity corresponds to condensation of electron pairs in real space, the
work of Bardeen, Cooper, and Schrieffer proved that it can be instead interpreted as the
condensation of Cooper pairs in momentum space. Despite the intrinsic difference between
BCS superconductivity and Bose-Einstein condensation, at the end of the 1960’s it was
proven [32-34] that the ansatz BCS ground state wavefunction provided a good descrip-
tion not only for a condensate of Cooper pairs, but also for a Bose-Einstein condensate
of tightly bound fermionic pairs. This represented the first evidence of the existence of
a bridge between BCS superfluidity and Bose-Einstein condensation. Just over ten years
later, in 1980 Leggett [35] demonstrated that the regimes of Cooper pairs and of tightly
bound diatomic molecules are linked through a smooth crossover: the so-called BEC-BCS
CTOSSover.

The first experimental realisation of a quantum degenerate Fermi system dates to 1999
and was achieved by the group of D. S. Jin at JILA [36]. The term “degenerate” here
means that the fermionic particles in the system are at an average distance smaller than
the de Broglie wavelength, and occupy (almost) all of the quantum states below a given
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energy (referred to as the Fermi energy). The achievement of degeneracy was a key step
towards observing superfluidity in a fermionic system. However the transition tempera-
ture T, predicted by the BCS theory for the onset of such phase was still out of reach for
experimentalists. In the conditions of temperature and density of an ultracold Fermi gas
the interaction between atoms is dominated by s-wave scattering processes, the strength
of which can be described in terms of a single parameter: the product kpas of the Fermi
momentum kpr and the s-wave scattering length as. Such simplification comes from the
consideration that the extreme diluteness assures that the main properties of ultracold
atomic systems are dominated by two-body collisions and that, at the same time, the
particles are at distances much larger than the range of the Van der Waals potential.
Moreover the low temperatures involved assures that also the de Broglie wavelength of
the atoms is larger than this typical range and that the interaction between the atoms
can be approximated by a (spherically symmetric) contact potential. The BCS transition
temperature can then be expressed, in the limit of kp|as| < 1, as T, ~ 0.28T e~/ (2krlas)
where Ty indicates the Fermi temperature. From the previous expression it emerges that
T. becomes exponentially small for small values of kr|as|. In order to bring T, to values
that are achievable in laboratory, experimentalists can in principle act on the two quan-
tities kr and ags. The Fermi momentum kp however is connected to the particle density
and must remain small to assure that gas remains dilute. The tool that made the step
towards Fermi superfluidity possible is the Feshbach resonance mechanism [37]. An ex-
ternal magnetic field is used to tune the energy of a molecular bound state and bring it
close to resonance with a scattering state of two free particles. In this way the value of
the s-wave scattering length and, as a consequence, the interaction parameter kras can
be modified as shown in Fig. 1.4. By exploiting the Feshbach resonance mechanism, in
2003 three groups independently achieved the creation of a Bose-Einstein condensate of
diatomic molecules. In these experiments the Feshbach mechanism was used to make the
energy of the molecular bound state lower than the energy of the free-particles scattering
state, reaching values of kpas; > 1 (BEC side of the resonance), and the condensation of
the bound fermion pairs was detected [38-40]. In the following years the full potential of
Feshbach resonances was put to use and different values of the coupling parameter kpas
became accessible to experimentalists, that were hence able to produce systems in config-
urations all across the BEC-BCS crossover regime [41-44]. In one of these experiments,
namely [42], the first direct evidence of fermionic superfluidity was observed as a lattice of
quantized vortices was detected.

The BEC-BCS crossover has been the focus of major attention also from a theoretical point
of view. Starting from the seminal work by Leggett [35] that gave the first description of
the system at T' = 0 at the mean field level, a substantial amount of literature has been
devoted to the study of this topic. In particular it is worth mentioning the first beyond
mean-field treatment of the finite temperature case, due to Noziéres and Schmitt-Rink [45]
and the path integral description developed by Sa de Melo and coworkers [46]. As a re-
sult of these studies a schematic interaction-temperature phase diagram for a system of
ultracold fermionic neutral atoms was obtained, an example of which can be seen in Fig.
1.5 [47]. The inclusion of fluctuations beyond-mean field enabled theorists to better analyse
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Figure 1.4: Observation of a Feshbach resonance in an untracold system of *°K atoms [37].
The external magnetic field B is used to tune the s-wave scattering length (here given in
units of the Bohr radius ag). Across the resonance the sign of the scattering length changes
from positive to negative.

the behaviour of the system and in particular to distinguish between two transition tem-
peratures: the one at which pairing occurs, T}, and the one that determines the onset of
the superfluid phase, T,. The intermediate regime between the BCS and BEC limits, the
so-called unitarity regime, has also drawn a lot of interest from a theoretical point of view:
the fact that in this configuration the s-wave scattering length diverges implies that the
only length scale of the system is given by the interparticle distance and the energy scale
by the Fermi energy. In these conditions the physics of the system is said to be universal
and properties such as the binding energy and the pair size are determined by universal
constants times the Fermi energy and the interparticle distance respectively.

1.4 Imbalanced Fermi systems

One of the properties that justify the large interest drawn by ultracold atomic gases is
their high degree of tunability. Experimentalists can modify a wide variety of parameters
of the system, ranging from interaction to temperature, geometry, dimensionality, and
population imbalance. In particular population imbalance will be the object of much
attention throughout the present thesis.

As mentioned above, the typical configuration of an ultracold fermionic system consists of
two populations of particles in different hyperfine states trapped in an optical potential.
These two hyperfine states will be relabeled as spin-up and spin-down states, and we



10 1.4. Imbalanced Fermi systems

0.6
Tpair
0.5+ /
0.44 O Preformed
Eanund fermion pairs Bose
b ermions liquid
- () !
= 0.34
= @ )
021® @
oo
_|Fermi . \
0.1 liquid Unitarity
\
BCS l |
O 1 1 1 I 1 1 1
-2 =15 -1 -05 0 0.5 1 1.5 2
1/kl:as

Weak attraction Strong attraction

Figure 1.5: Schematic phase diagram of a system of ultracold Fermi atoms as a function of
temperature and interaction (source: [47]). The BEC-BCS crossover regime is highlighted:
negative values of (kpa,)™' correspond to a BCS configuration of weakly bound Cooper
pairs, while large positive values indicate the limit of a BEC of tightly bound diatomic
molecules.

consider the system as a (pseudo-)spin 1/2 system. A nonzero population imbalance means
that the numbers of particles in the two spin populations are different, and this has a
substantial effect on the pairing mechanism, which was analysed by theorists since the early
1960’s, when the seminal papers by Clogston [48] and Chandrasekhar [49] about critical
magnetic fields in superconductors were published. To have a simple picture of how spin-
imbalance affects the formation of fermionic pairs in an ultracold gas it is useful to resort
to a toy model [50]. Figure 1.6 shows the Fermi surfaces (i.e. surfaces of constant energy
E = Ep) for the up- and down-spin particles as a function of the z- and y-components of
the momentum, in a balanced (panel A) and imbalanced (panel B) situation respectively.
Naming the superfluid bandgap A, the BCS ansatz requires that just the particles in the
interval [Er — A, Er+ A| participate to the pairing, therefore in the picture a shell of width
2A is drawn along the Fermi surfaces. On the one hand, in a spin-balanced system the
Fermi energies for the up- and down- spin particles are equal (Eps = Er) and the “pairing
shells” perfectly overlap. On the other hand, in presence of a nonzero spin imbalance the
Fermi energies are different (e.g. Epy > Ep| as in the case depicted in Fig. 1.6) and the
overlap between the “pairing shells” becomes smaller or ceases to exist, thus explaining the
detrimental effect that imbalance has on the fermion pairs’ formation mechanism.
Imbalance in ultracold Fermi systems was first experimentally engineered in 2006 [51,
52]. In these experiments it was observed that, in presence of imbalance, phase separation
can occur, meaning that beyond a critical imbalance the excess component particles and



1.5. Motivation and goal of the thesis 11

Figure 1.6: Schematic depiction of the effect of imbalance on the formation mechanism
of the fermionic pairs. In a balanced system the chemical potentials of the two spin
populations are equal (p+ = g ), while in presence of imbalance a difference arises (4 #
py). The overlap between the “pairing shells” is maximal in the balanced situation (panel
A) while it becomes smaller or even disappears in an imbalanced situation. Source: [50].

a “standard” balanced superfluid are spatially separated, with the former ones residing in
the more external regions of the atomic cloud and the latter the inner core. The concept
of phase separation can be clearly understood by looking at Fig. 1.7 where the densities
of the two spin components (panels A and B) are shown separately and compared to the
density difference (panel C). The search for possible superfluid states that can occur in an
imbalanced system is still ongoing and has produced a large amount of literature: between
the possible exotic superfluid phases that have been proposed as a solution to this problem,
it is worth mentioning the FFLO state, theorised in the 1960’s by Fulde and Ferrel [53],
and Larkin and Ovchinnikov [54], which predicts that an imbalanced superfluid can exist
provided that the Cooper pairs are created with nonzero momentum in contrast with the
BCS ansatz that requires the momentum of the fermion pairs to be zero.

In the remainder of the present work the effects of imbalance on various quantities will
be considered: in particular the effects of imbalance on the shape and on the dynamics of
dark solitons propagating in a Fermi superfluid are going to be investigated. Moreover the
stability of dark solitons with respect to decay through the snake instability is going to be
analysed for different levels of imbalance.

1.5 Motivation and goal of the thesis

As noted above, Bose-Finstein condensed gases can be described by a macroscopic wave
function. This macroscopic wave function has to satisfy a differential equation known as the
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Figure 1.7: Absorption images showing the density of the majority and minority spin
populations (panels A and B respectively), compared to the density difference between
the two compoennts (panel C). The slightly negative density detected at the center of the
cloud in panel C is due to experimental conditions. Source: [52].

Gross-Pitaevskii equation [55,56]. The macroscopic wave function and the Gross-Pitaevskii
equation allow for a useful hydrodynamic description of the system, by interpreting the
modulus squared of the wave function as a the density of the condensate and the phase
gradients as its superfluid velocity field. In particular the link between the velocity and
the phase is crucial to explain several properties of superfluidity: the quantization of
circulation, singly quantized vortices, persistent currents, and the Fairbank-Hess effect
[21,57] follow directly from it.

For superfluid Fermi gases, these characteristic expressions of superfluidity are also
present. Therefore it makes sense to look for an analogous description of those systems
in terms of a macroscopic wave function, whose modulus squared can be interpreted as a
density of fermion pairs, and whose phase gradient provides the superfluid velocity field.
The goal of this thesis is to provide such a description: we find the differential equation
that such a “pair wavefunction” has to obey and derive several properties of the fermionic
superfluid from the study of this equation and its solutions.

For superconductors, a related description based on a macroscopic wave function was
developed by Ginzburg and Landau [58], and used by Abrikosov [59] to introduce the
concept of a vortex. Ginzburg-Landau theory, which has proven to be extremely useful
for superconductors, was lacking a counterpart for superfluid Fermi gases. In this thesis,
we find this counterpart. Moreover, whereas the validity of Ginzburg-Landau theory is
restricted to temperatures close to the critical temperature, the theory that we derive here
will have a broader temperature range of applicability, and is valid across the BEC-BCS
Crossover.



Chapter 2

Effective field theory

The present chapter is devoted to the derivation of an effective field theory (EFT) suited
for describing the BEC-BCS crossover regime in ultracold Fermi gases. The main source of
inspiration for the formulation of this theory came from the well known Ginzburg-Landau
(GL) treatment. This was originally developed in 1950 [58] as a phenomenological model
that would allow to describe type-1 superconductors in terms of a macroscopic wavefunction
(interpreted as the order parameter for the superconducting transition) rather than in terms
of the microscopic degrees of freedom. Assuming a small value for the order parameter ®
close to the transition temperature, the free energy is expanded in series as

F(T,V)=F,(T,V)+V (a(T)|cI>|2+@|cby4+---) (2.1)
(where F,,(T,V) is the free energy for the normal state), and only the first few (typically
two) lowest-order terms are retained. The coefficients @ and b are fixed by the critical
magnetic field and by the London penetration depth [60], and are related to the binding
energy of the Cooper pairs and to the interaction amplitude between two pairs respectively.
Five years later, in 1955 Lev Gor’kov managed to derive the GL theory starting from a
microscopical model [61]. More recently, starting from the early 90’s with the paper by Sa
de Melo et al. [46], this treatment has been widely used to study many aspects of ultracold
Fermi gases [62-66].

With respect to the GL method — which is based on the key assumption of dealing
with a small order parameter — in the present study this hypothesis is substituted by the
weaker requirement of having a slowly varying order parameter. This relaxation of the ba-
sic assumption leads in principle to a wider applicability range of the effective field theory.
In particular, while the requirement of a small order parameter limits the validity of the
Ginzburg-Landau treatment to a small range of temperatures close to the critical temper-
ature T,, the validity range of the EFT is found to be substantially broader. An extensive
discussion about the practical range of validity of the theory including a comparison with
the results of the GL treatment will take place at a later stage in this thesis. In order to
have a basic picture of the system under consideration and an overview of the formalism
that we are going to employ in the present treatment, we begin our discussion by writing

13
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the Hamiltonian for an ultracold gas of fermions with spin imbalance.

ﬁ[:ﬁo‘i‘f{INT =
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+g@<r>¢1<rm<r>w>] (2.2)

In the last expression p represents the chemical potential while  can be seen as a difference
in the chemical potentials between the two hyperfine states 1 and |. The relations between
these two quantities and the chemical potentials for the spin 1 and spin | species are given
by !
_ Mt =t

2 2
The quartic term H 7~ describes the two body s-wave contact interaction between particles
with opposite spin. Notice that from now on the natural system of units h = 1, kp = 1,
2m = 1, will be adopted to simplify the notation. Here kg is the Fermi wavevector, fixed
by the total density n as kr = (27n)"/? in 2D and kr = (37%n)'/3 in 3D.

The derivation of the effective field theory is quite extensive and involves lengthy alge-

braic manipulations; in order to enable the reader to have an overview of the derivation
without being forced to go through the heavily algebraic parts, these have been isolated in
subsections labeled “Calculation” which can be skipped at a first read.
The remainder of the chapter is organised in the following way: in Sections 2.1-2.2 the
path integral formalism is introduced as a method to study ultracold Fermi gases, while in
Section 2.3 the assumption of a slowly varying order parameter is implemented by means
of a gradient expansion. Sections 2.4-2.6 host the actual calculation of the terms and co-
efficients of the effective field theory that are later brought together in Section 2.7 where
the complete EFT action is presented.

Ju

2.1 Path integral approach

The path-integral formulation of quantum mechanics, introduced by Richard Feynman in
1948 |67], is based on two axioms:

e the quantum mechanical amplitude of a process is a weighted sum of the amplitudes
of all possible realisations of the process.

e the weight is given by exp [1S/h] where S is the action of the system.

The fact that the different realisations are weighted by a “phase” factor ensures that the
formalism can account for interference, while the presence of the factor S/h at the expo-
nent provides that, in the classical limit (A — 0) the Lagrangian mechanics is retrieved.

from now on we will always refer to the two different hyperfine (pseudospin) states as spin states
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The path-integral approach has proven extremely powerful in the description of quantum
many-body systems [68]: in particular a substantial fraction of the literature on ultracold
quantum gases is based on this description.

The partition function of a system of ultracold fermions described by the Hamiltonian
(2.2) introduced in the previous section can be written as a path integral over all possible
configurations of the fermionic Grassmann fields 1, (r,7) and 1, (r, 7) as

Z = /Dl[}o(r,T)Dwg(’r,T)e_s[‘z"(r”)’w"(r’ﬂ]. (2.3)

The action S[¢), (7, 7), %, (7, 7)] is given by

_ B _ _
St vr) = [ ar [ [ar S bl 0nne 1) + H 1) bl (2)

where, with respect to (2.2), the Grassmann variables ¢, (7, 7) and 1, (r,7) replace the
field operators ¢! (r) and v, (r), and 3 = 1/(kgT) represents the inverse temperature.

2.1.1 Hubbard-Stratonovich transformation

Recalling the form of the Hamiltonian of the system (2.2), it follows that the action (2.4)
contains a term that is quartic in the fermionic variables. This means that the functional
integral appearing in the expression of the partition function (2.3) can not be computed ex-
actly. To overcome this problem a transformation is needed that decouples the interaction
term and reduces the action to an expression that is quadratic in the fermionic fields. This
goal can be achieved by means of the Hubbard-Stratonovich transformation. Exploiting a
basic equality for Gaussian integrals,

exp {—Q/Oﬁ/dr%(r,r)@(r,T)zm(r,f)zm(r,r)] =
:/m*(m)p@(m) exp [/Oﬁ/dr(é*(’"”;@("wﬁ

+®*(r, ) (7, 7)Y (1, T) + B (v, 7))y (7, 7)) (7, 7'))‘| , (2.5)

the quartic term can be removed at the cost of introducing the complex bosonic field
®(r,7) (and its conjugate ®*(r, 7)). This new bosonic field can be interpreted as the field
describing the fermion pairs. A schematic depiction of the HS transformation is shown
in Fig.2.1. The choice of this decomposition of the quartic term is often referred to in
literature as the Bogoliubov channel of the Hubbard-Stratonovich transformation. The
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Figure 2.1: Schematic depiction of the Hubbard-Stratonovich transformation: the interac-
tion term originally consists of a product of four fermion fields. After the HS transformation
it is decomposed in a term that represents two fermions of opposite spin pairing up, a term
describing the propagation of the “free” pairs (not shown) and a term for the pair breaking
up into two fermions.

resulting partition function is
z :/quo(r,f) /Dwa('r, - /D@*(r, o /m»(r, o
exp [— /B/dr(ZIZU(T,T) (8T . v ug) Y, (r, T)+
0 o2

_ O* (7, T;(D('f’, ) — (1, 7)Y, (v, T (v, T) — D(r, 7—)1;?(7'7 T)zzi(r, 7'))} . (2.6)

The action of the system is thus quadratic in the fermionic fields and can be rewritten in
an even simpler form by introducing the Nambu spinor ¥ defined as

_ (Urlr) U(r,7) = (Pp(r, 7 r,T
‘I]<T7T>_ (¢I(T’7)>’ \I}( ’ ) (Q/}T( ) )7%( ) )) (27)

The action in the new notation is

S— /OBdT/dr (@(r,T)AmT)qf(r,T) _ CI>*("’7)‘I)(’“’T>) _

9

B
= /0 dT/d’I’ U(r,7)A(r, 7)¥(r,7) + Sp, (2.8)

where in the last line Sp indicates the purely bosonic component of the action, i.e. the
quadratic term in the bosonic fields.

Inverse fermion propagator

In the last equation a compact expression for the action functional was presented in terms
of the Nambu spinors ¥ and W. The matrix A(r,7) appearing in (2.8) can be identified as
the inverse Green’s matrix for the interacting fermions and is defined as

0, —V2—p—C  —®(r,7) L,
Ar,7) = ( —‘I’*(?ﬁﬁ) 8T+V2+u—c> =G }(r,7). (2.9)
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Separating the diagonal and off-diagonal components we can write
_Gil(lra T) = _Gal(ra T) + IF(T’, T>7

where —G ! describes a free fermion and F is the part proportional to the pairing field ®,
namely

» (0 =V = 0
_GO (T7T) ( 0 aT+V2+M—C ) (210)

F(r,7) = (_(D*O _@(0""’7)) . (2.11)

(r,7)

It is convenient to have these expressions also in momentum-frequency representation: the
Fourier transform of —G~! is defined as

I i _—
—G_l(kz’,n'|k,n) — 5_‘// dT/d'f‘ elk r—iw,, T (—G_I(T,T)) 6—1k'7‘+1LUnT7
0

with V' the volume of the system and w,, = (2n+1)x /S the fermionic Matsubara frequency.
For the —G,'(r,7) component we can write

_Gal(kla nllkv TL) = - [GO(ka n)]il 5k,k’5n,n’

_ (=K —p=¢ 0
- ( 0 iw, + k% +p— C) Ok k' On. ' - (2.12)
The reciprocal space representation of the non-diagonal component [ is instead given by
F(k' n'|k,n) = ( . 0 _(I)k-l-k:’,n—i-n’) . (213)
_q)k+k’,n+n’ 0

From the last expressions it is clear that, contrary to the free fermion component, the
pairing term F has non-zero contributions coming from terms with k # k'.

Finally, defining the dispersion relation & = k?/(2m) — u, the Green’s function Gy(k,n)
for a free fermion reads

1 0
Go(k,n) = (lwn—ék% 1 ) . (2.14)

iwn+E€k+¢

Grassmann integration

Using the action (2.8), the partition function of the system in terms of the Nambu spinors
U and VU reads

Z = X/D@*/ch DV [ DV exp {—/Oﬁdr/dr U(r,7) (-G~ '(r,7)) ¥(r,7) — S5
(2.15)
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The sign factor y in front of the integration sign is due to the rearrangement of the fermionic
variables in the Nambu spinors notation: for each space-time point we have a minus sign
coming from the equality

/D\IJ/D\I/ = H Ud%(r,r)/dw(r,r)/d%(r,f)/d%(r,f)} =
— H(_l)/dwT(’P,T)/d@DT(T‘,T)/dqﬂi(r’f)/d@m(rﬂ_).

In order to transform the right hand side of the first line into the expression in the second
line (i.e. the integration measure appearing in (2.6)), the last two Grassmann integration
measures must be exchanged, thus generating a factor (—1) for each space-time point.
Since the term Sp at the exponent does not depend on the fermionic fields, the relevant
integral that must be computed is just

X/m, DU exp [— /OﬁdT/dr\If(r,T) (-G (r, 7)) U(r, 7). (2.16)

This is the textbook Grassmann integral for a quadratic action functional and its result is
simply

[[(-Ddet, (-G (r, 7)), (2.17)

r,T

where the subscript ¢ indicates that the determinant is taken over the 2 x 2 matrix between
the Nambu spinors. With some algebraic manipulation this quantity can be rewritten as

H(—l)detg(—Gl(r, 7)) = exp { /0 ar /d'r In [~det, (—G~(r, 7))] }

After performing the integration over the fermionic variables ¥ and W the resulting parti-
tion function is

Z :/D@*/D@ exp {—/Oﬁdr/dfr {—M — In [—det, (—G_I(T,T))}] } . (2.18)

Recasting equation (2.15) in reciprocal space notation is not as straightforward: introduc-
ing the momentum-frequency representation for the pair field ® in (2.15) gives

zz/ch*/ch DU D\I/exp[z

q?m

ES
(bqnnq)q,m .

S By, [G (K o )] \pk} |
9 k,n

K
k' n’

(2.19)
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where the following definitions for the Nambu spinors were used:

\Ilk:,n = (zz::j) and (&k,n,T ¢k,n,¢) .

As remarked in the previous subsection, even in reciprocal space the inverse fermion Green’s
function is not diagonal due to its pairing component F (2.13). The solution of this non-
diagonal Grassmann integration is described in detail in reference [69] and the general
result is

/Dw/D@D exp [— Z U [—G‘l(k',n'|k,n)} U | = x det [—G_l(k',n’|k,n)] )
k,n
k' n'

where y is again a sign factor that accounts for the change in the order of the integration
measures and the det is taken not only on the spinor degrees of freedom, but also on the
momentum and frequency ones. Through some basic matrix manipulation the previous
result can be recast in the following form

det (—G’l) = exp [ln (det (—G’l))] = exp [Tr (ln (—G’l))] .

As for the determinant, also the Tr in the last expression is taken over all k, n, o values.
The partition function finally results

;D
Z = X/DQ)*/D(I) exp [Z ‘WT‘“” +Tr[In (-G7)]| . (2.20)
q,m

It is worth remarking that the presence of the sign factor y in front of the integrals does
not affect the calculation of expectation values.

The result (2.20) can be finally rewritten in terms of an effective action depending only on
the bosonic fields ® and &*:

Serp=9Sp —Tr[In(-G™)]. (2.21)
From the decomposition of the matrix A and from the relation (2.12) it follows that

Sers=Sp —Tr[In (-Gy' +F)] =
=Sp —Tr [In (=G;")] — Tr[In (1 — GoF)] =

=1
=S5+ S0+ Y ; Tr [(GoF)?] =

p=1
=Sp+So+ Y SY. (2.22)
p=1

Notice that in the second to last passage, the logarithm was expanded in a power series as
In(l-2)=-3""°, %p.
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It is important to remark that this form of the action in terms of an expansion in powers
of the pairing field is a key element in many different approaches to beyond-mean field
treatments of ultracold Fermi gases. For example, in the context of a Ginzburg-Landau
treatment, at this point the action would be approximated by keeping just the first few
lower order terms in the series, corresponding to the assumption ® — 0. A brief overview
of the main approximation schemes adopted to calculate (2.22) is given in Subsection 2.1.2.
Instead in the following Section we will see how the entire series can be handled by imposing
the weaker requirement that the bosonic field ® varies slowly in both time and space.
Before going ahead with the calculation we show the explicit expression for the terms Sé,p )
introduced in the last line of (2.22):

1
Sé)p) :]—) Tr [(GoF)p] =

1
:5 /dxl cee / df,Up Tr [Go(l'l — l’g)]F(.’L’Q) Go(l’g — .Z'J)F(l’g) L Gg(l'p — 1’1)]]3?(331)]
(2.23)

Notice that in the last expression a compact notation for the 4-dimensional space-"time"
vectors was introduced, i.e.
(r,7) — x.

This notation will be often employed in the remainder of this chapter for the sake of brevity.

2.1.2 Overview of the possible approximations

e Saddle-point approximation [35]

1 1
Tr [(G()F)p] ~ Tr [G()Fsp] -+ 5 Tr [GUIFS]JGOFS]J] + g Tr [GOFspGOFspGO]FSp] +

Nk
=N =

1

p

The paring component [ is approximated by its saddle-point version F,, and the
whole sum over p is calculated.

e Gaussian pair fluctuations |45, 46]

[e.e]

1 1 1
>~ Tr[(GoF)’] ~ Tr (GoF (1)]45 Tr [GoF (1) GoF (w2)]+ 5 Tr [GoF oy GolF o Gl +

p=1 p

The space-time dependence of [F is accounted exactly but only up to p = 2.

e Gradient expansion

- 1 1
Z GOF ~ Tr [GOFgrad]+§ Tr [GOFgTadGOFgTad]+§ Tr [GOFSpGOFspGOFSp]—F
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Same as for the GPF treatment only the terms up to p = 2 are kept in the sum (2.23)
but the full F(zy — x1) is approximated by

F(x — x1) & Fgrag(z — x1) = Fo + 2 (VF)y + =2° (V*F),

2
Two possible choices of approximation are:

o Fg — 0. This assumption is valid close to T, and the usual Ginzburg-Landau
approach is retrieved.

o Fg — Fy, [64]. A version of the Ginzburg-Landau treatment with an extended
domain of validity is obtained.

e EFT treatment

1 1 1

> ) Tr [(GoF)?] ~ Tr (GoFyraal+5 T (GoFgraaGoForad+5 Tr [GoFapGoFgraaGoFgradl + -
p=1

Up to p = 2 this approach coincides with the usual gradient expansion. However
in the contributions corresponding to p > 2 (at most) two occurrences of F, are
replaced by Fy,.q and the entire sum over p is computed.

2.2 Saddle-point approximation

In general an analytic summation of the series appearing in (2.22) is impossible: as men-
tioned above, in order to overcome this problem an approximation is required. The easiest
way to simplify the summation in (2.22) is to consider the bosonic field ® to be a constant.
This hypothesis corresponds to setting

(I)Q,m — vV 5‘/5((1)5m,0 X A7 (224)
Do = VBV ()0 x A (2.25)

Therefore the major contribution to the bosonic integral is assumed to come from the
configuration in which the Cooper pairs are condensed in the g = 0 state. Performing this
approximation before the Grassmann integration over the fermionic fields leads to a great
simplification of the calculations: the saddle-point expression for the partition function in
momentum-space notation is

Z, = /D\IJ DY exp [l— ) Ukn [-G,)] \pkm},
k,n

where the saddle-point inverse fermion propagator is given by

o fiw, =K== A
Gsp (k7n)_< A iwn+k2+,u—C : (2'26)
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As it is intuitively clear the approximation (2.24) has made the inverse fermion propagator
diagonal in reciprocal space.
Integrating out the fermionic fields leads to

Zyp = exp {E — Zln [ det (~G1)] } _

9 kn
N T i By
= exp . Z n[(iw, — Ex 4+ () (—iw, — Ex — ()] ¢, (2.27)

where the single-particle excitation energy Fj has been introduced, i.e.

Eyp =1/ + A2 (2.28)

The saddle-point partition function can be rewritten in terms of the saddle-point thermo-
dynamic potential per unit volume (), as

Z, =exp{—pVQ,,}.
From (2.27), it follows that g, is defined as
AP

To obtain a more explicit expression for this quantity the fermionic Matsubara summation
over the frequency w, must be carried out. Doing this [68,69] leads to

= ~20 L5 S fcosh (950 + 2eosh (50)) - & } -

g Ve
Al? dke (1 Al
_ _87’Tkla - / 5 {5 [2 cosh (BEx) + 2cosh (BC)] — & — %} (220

where in the last line the regularised form of the coupling constant g [20, 68|

1 m / A3k m

g 4rkpa, (2m)3 k?
has been inserted and the continuum limit has been taken for the sum over the momentum
k.

From the expression for the thermodynamic potential (2.29) the explicit form for the gap
and number equations can be derived. The saddle-point gap equation is given by

09y,
OA

0

L dk sinh (S Ey) 11
dmkras / (2m)? [COSh (BER) +cosh (BC) By, k2]~ (2.30)
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The equation for the total density is instead
08y
O Iy

—n-f % [ " cosh <;gil>(f]i§ih 30 Al

while the equation for the excess particle density, accounting for a majority of particles in
one spin component in presence of imbalance, is

n—=—

(2.31)

oQ
on=— —=
! aC T, A
[ dk sinh (8¢)
= on= / (27)3 cosh (BEyg) + cosh (8¢) (232)

The saddle point values for the order parameter and for the chemical potential obtained
from the solution of these equations will be frequently used in the rest of this thesis:
therefore the reader is addressed to the review paper [69] for a detailed discussion about
the derivation of equations (2.30)-(2.32) and on their solution.

2.3 Gradient expansion of the order paramenter

Despite giving reliable results that offer a good agreement with experiment near 7' = 0, the
saddle point approximation proves to be unsuitable to describe the BEC-BCS crossover at
finite temperature. This is mainly due to two reasons:

e it does not account for excitation modes other than the single-particle Bogoliubov
mode described by the dispersion relation (2.38).

e it does not include the effect of fluctuations of the order parameter.

To overcome these limitations we propose a beyond saddle point effective field theory that
can describe Fermi superfluids in the BEC-BCS crossover at finite temperatures. The main
idea behind said effective field theory is to consider the order parameter ® to be slowly
varying in both time and space. This is a weaker assumption with respect to the one at
the basis of the saddle point approximation and of the normal Ginzburg-Landau treatment
and is ultimately expected to lead to a larger applicability domain for the theory.

To implement the slow-variation requirement we are going to employ a gradient expansion
for the field ®. In order to do so, as a first step we carry out in (2.23) a coordinate shift
with respect to? x = x;

T — T+ [#1

ZNotice that in the following = will be often identified with x;: the two notations are both going to be
employed. While the notation x; is used to make more apparent the order of the indices, which will prove
to be useful in the lengthy calculations of the following sections, the notation x is sometimes needed to
highlight the peculiar role of said variable.
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As a consequence of this shift the expression for the pairing component of the inverse
propagator F calculated in x; is given by

Fz) =F(z+a27) =F(r+7r,7+7) =

OF(r, T , O*F(r,T) ol
RS PRI LIRS pra e R
101

Keeping only the first few terms in this expansion corresponds precisely to the desired
assumption that the field ®(r,7) is slowly varying in space and time. Therefore in the
following calculations only the lowest-order non vanishing terms both in the space and time
derivatives will be retained. The effect of a gradient approximation on a generic function
f(zx) is schematically depicted in Fig.2.2 where the analytic function f(x) is compared with
its gradient-approximated form f(x;) 4+ df /dz|,,6x evaluated on a grid of spacing dx (for
two definitions of f). It is intuitively clear that the gradient approximation becomes more
accurate as the typical variation scale of the function gets larger.

1.o-ﬁ K_-

f(x)

Z— analytic function

gradient approximation ]
05 1.0

Figure 2.2: The two functions tanh(2z)” and tanh(10z)” are compared to their gradient-
expanded form. It is intuitive to see that the gradient expansion is more accurate for the
slower-varying function.

Before carrying out the summation over the index p in the expression for the effective
action S.rr (2.22) we separate every single term S((I,p) depending on the pairing field into

three components
S((I:‘p) — Sc(bpvo) _|_ Sépﬂ—) + S((I)p»"‘)

where

° Sfbp ) is the component without space or time derivatives;
o S describes the contributions coming from the inclusion of time derivatives;

o Sg’ ™) is the term accounting for the inclusion of spatial derivatives.
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2.4 Term without derivatives, Sép 0)

In the calculation of Sfbp’o), we consider just the contribution to the quantity Sg) coming
from the first term in the gradient expansion of the order parameter (2.33), i.e.

From (2.23), the explicit expression for S reads
1
50 - / dz- - / dz, Tr [Go(z — 22)F(x) Go(zy — 23)F(z) - - - Go(x, — 2)F(2)] . (2.34)

Inserting the Fourier series for Go(r, 7), which is given by

1

Go(’l",T) = B_V

Z ek r=inT G (k,n), (2.35)

k,n

into (2.34) and carrying out all (but one) of the space- and time-integrals — namely inte-
grating over I, ...,T, — we get

(p,O)_L 4951 v MF(2))?
8% = 57 32 [ e TGtk @Y

This is a strange-looking but convenient “mixed-representation”, where the Green’s func-
tions appear in their momentum-frequency notation, while the pairing matrices ' appear
in the time-space form. The introduction of the reciprocal space representation of the
propagator Gy leads to a great simplification of expression (2.34) obtained by the repeated
use of the integral representation of the delta function; on the other hand the time-space
representation for the matrix ' is a convenient choice since it enables to keep track of
what elements of the gradient expansion of ® (2.33) are being retained. To compute the

summation of the contributions Sfpp’o) to all orders in p,

p=1

it is now convenient to treat separately the terms with even and odd powers of G(F.

Odd powers — Tr [(GO]F)QIH}

Given the form of the matrices Gy (2.14) and IF (2.11) it is easy to see that by multiplying
them an odd number of times we always obtain a 2 by 2 matrix with elements arranged in

the following way
0 #0
#0 0 )°
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It is then trivial to see than the trace always gives 0. Therefore we conclude that

- (21+1,0) - 1 2+1]
;scp x> g [(Go(k,n)zﬁ‘(x)) ]_o.

=1

Even powers — Tr [(GUIF)W}

In order to study the behaviour of the elements Sél’o it is useful to consider the matrix

GoF)? and then calculate its integer powers, thus reproducing all the even powers of G(F.
g g

The product (GOF)2 is diagonal

o) 0
iwn 2_¢2
(Go(k,n)F(x))* = | ¢ +é) o r (2.36)

(iwn+()? *512@

Moreover from the explicit expression it emerges that the diagonal elements are equal. We
can thus write a simple formula for the trace of the terms with even powers of (GoFy),
namely

Tr (Go(k,n)lﬁ‘(x))ﬂ _ 2( |®(2)]? ) |

Consequently the component of the action coming from the first term in the gradient
expansion (2.33) is proportional to

=1 ( lewP \
ZQ_Z((iwn+C)2—€i) ‘

=1

The summation over [, including the prefactor 2, can be recast into the form

i (=) = —In(1+ z).

Therefore it follows that

l
1 |®(z) .
2§Z<(iwn+é)2—€i) -

In conclusion we have that

isgm = - i/dr/ﬁdfz In
p=1 BV 0 k,n

() ?
M e e, 1 0

) e

(0
6126 - (1wn + C)Q
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2.4.1 Digression: analysis of the term 95

Before going on with the calculation by tackling the sum over the fermionic Matsubara
frequencies appearing in (2.37) it is convenient to examine the term Sy. As it turns out,
combining the contributions of Sy and Sf;O before exploiting the Matsubara summation
makes this task easier, therefore the present derivation will follow this path. From the
definition in [69]
So = —In [—det (-G )],

the expression for Sy can be obtained by directly calculating the determinant of —Gg*
(2.35). This eventually leads to

So==> [ — (iw+)?].
k,n

* * *

The expressions of Sy and 3777 | Sé,p 9 can be now combined to obtain

So+25ép’o) =— Zln [f,z — (iw+()2} +
p=1 k,n

1 4
_B_V/dxzk (1“ )Z
1 4 | 2 . 2 2
—‘g—v/“zk (10 [& — (i, + O + [@(x)*])

Notice that, since the terms coming from Sy do not depend on the space-time coordinates
x, in order to collect everything under the integral sign, the identity ﬁiv [dr foﬁ dr =1
was used.

The Matsubara summation over the fermionic frequencies w,, is performed in the standard
way [68,69] and gives

D In[& = (iwn + €)% + [@(x)]*] = [2cosh (BEk(x)) + 2 cosh (5)] — B,

B(x)
" e G, 10

where Eg(z) is defined in analogy to (2.28) as

Fuln) = /a2 + o) 2.33)
The expression for Sé?c)f =Sp+ S0+ 2, 59 then reads

o [ fmle@))? / dk
Sesr = /d 1:{ dmas * (2m)3

%ln(2 cosh (BE(x)) + 2 cosh (8¢)) — & — m |ig$)| ] }
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Defining a thermodynamical potential Q,(|®|?) that has the same form of the saddle-point
thermodynamic potential but accounts for the dependence on the coordinates (r, 7) of the
order parameter ¢ as

(o)) = - ZE
dk_J 1 m| ()
_ / W{Bln [2 cosh (BEg(x)) + 2 cosh (5¢)] — & — T}’ (2.39)

the expression of Sé?c)f becomes simply

S,E?)f = Sp+ S+ S = /d% Q, (|0 (2))).

2.5 Term with spatial gradient S}"

After the calculation of the contribution Sg)l);T coming from the first term in the expansion
of the field matrix I, the next lowest order terms arising from the gradient expansion must
be considered in order to obtain the additional contributions to the EFT action: the form
of the gradient expansion (2.33) makes it possible to treat separately the terms involving a
“time”-derivative and those involving a space gradient. This section will be devoted to the
study of the corrections to the action coming from the elements of the gradient expansion
of the pair field matrix F involving spatial gradients, namely we set

/ O°F(z
F(x +z) =F(z) + 7 - Z o 8:1:;5 T, 15 + -

(since the notation can lead to misunderstandings it is worth remarking that in the following
the latin indices will always label the momenta relative to different Green’s functions, while
the greek indices o and 8 run only over the 3 spatial dimensions).

The action component S reads

/ d*x / d4xp

F(z)Go(z — x9

)X
X |F(r,7) + 7y -V, F(z) + 3 Zaﬁ affgiw ThoThg + - } Go(xg — x3) %
XTr | x |F(r,7)+ 75 VoF(z) + 53, 5 813 (%3 T3, T35+ * } Go(zz — x4) %

X

] -
X _IF(T‘, T) + - V. F(x) + Z B axpfaxpﬂ paxpﬁ + - } Go(z, — )

From the last expression it can be seen that the lowest order non vanishing terms in the
spatial gradients can have two possible origins:
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(a) terms linear in the second derivative 53" %%axw It has to be noticed that,

since our system is spherically symmetric, the only non-zero contribution to these
terms comes from those in which a = £.

(b) terms coming from the product of two first derivatives (V,F(z)) - (V,F(z)).

Again, given the form of the gradient expansion (2.33) it becomes clear that the contribu-
tions of these two kind of terms can be examined separately and then summed to obtain the
total component Sc(pp ) coming from all lowest-order terms with space derivatives, namely

S SCLES S CICRT )

p p

In the remainder of this section we will then proceed to the calculation of S¥™* and S
separately.

2.5.1 Term S{"™

In order to calculate S the contribution to the action coming from terms linear in
the second space-derivatives, the lowest-order non-zero contributions in

/ d*z / d*z,

Go(l' — $2)X

x <>+ 3, G <'2>{Go<x2—x3>x
<Tr | x [F()+1% er ) (24,)?| Gols — w4) %

Oé@x

- X )
F@) + 1 Y. 552 (@}0)?| Golw, — o)

must be isolated.

Calculation

Selecting only the terms where the second derivative appears one single time leads to

F(@)Go(x — 22)% 30 St (#50)2Go(wa — ) F(2)Go (s — 24) -+ F(2)Go(w, — 2)+

T | TF@Go(z — 22)F(2)Goles —23)3 3, i)jéj) (244)%Go(as — x4) - F(2)Golap — )+
+F(2)Go (& — 22)F(2)Go (22 — 23)F(2)Go(z3 — z4) --- 1 3, a[jjj(f)( 2)2Go(z, — )
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To simplify the calculations it is now convenient to perform a coordinate shift in the following way:
xizwifl—’—yi i:2737"',p7
which (remembering the identification x; = x form the previous section) corresponds to

To =T+ Y2
r3=T2+tyYs=T+y2+y3

- (2.41)
T =T Y =T 3 Y

xp:l‘p—1+yp:m+y2+y3+"'+yp

As a result of this shift (2.40) can be rewritten as

1
%T”=%/&mn/&%

F(2)Go(—y2) >_,, agi(g) (Y20)*Go(—y3)F(z) - - - F(2)Goly2 + - - + yp)+

v | TE@G0(—y2)F(@)Go(~ys) S T (v + 130)” - F(@)Golyz + -+ )+

+F(2)Go(—y2)F(2)Go(—ys)F(z) - - >, 62,9]2? (Y20 +++ + Ypa)*Goly2 + -+ +yp)

Inserting the Fourier expansion for Gg (2.35) in the terms of the sum inside the trace sign in (2.40) we

obtain

(pv"a) / dT/ dr - / dTp/dr/drz /dT‘p BV )P Z Z

F(2)Go(ka, 12) 3o 22 (454)2Go (s, ) F(x >Go<k4,n4> <>Go<k1,m>+
(z

+F ()G (2, n2)F(2)G <k3, 13) Yo T (U2 + y3a)? -+ F()Go(kn,m1)+
8%F (z)

+F(2)Go(k2, n2)F(2)Go(k3, n3)F(x) - >, S (Y20 + -+ + Ypa)?Go(k1, 1)

efik2~y27ik3-y37~-+ik:1-(y2+---+yp)eiwn2 ToHiwny T3+ —iwn, (T2+---+Tp) )

x Tr

The imaginary time integrations are trivial and give rise to Kronecker deltas: after summing over ng,--- ,n,
only the single fermionic frequency n; is left (that will be from now on renamed as n; — n), hence
(p,r a) _ / dT/d‘T’/d’l”Q /drp @BV Z Z
F(2)Go(kz,n) Y., 255 ><y2a>2<czo<k:3, n)F(2)Go(ka, n) -+ F(2)Go (ks n)+
2
x Ty | HE@Golks, F)Golks, m) X, 2o (y2a + ya)? - F(@)Go ko1, m)+
ot
2
(@) Golke, W) Golls, F(E) -5, T (2o + Ypa) *Gol(k1, n)
e ik2 y2—iks-ys—-+iki-(y2+-Fyp)
Defining the differential matrix
2
_9F@) (2.42)
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the above expression can be rewritten in a more compact notation as

spre) — /dT/dr/drz /drp BV Z Z

F(x)Go(k2,n) Y, (424)°Pa Go(k3, ) ( )Go(ka,n) -+ F(2)Go(k1,n)+

oy | TE@Go(ke, m)F(2)Go(ks, n) 3o, (V20 + Y3a)*Pa Go(ka,n) - - - F()Go (K, n)+
+ P +
+F(2)Go(k2, n)F(2)Go(k3, n)F(x)Go(ka,n) - -~ >, (Y2a + - + Ypa ) Pa Go(k1, 1)

o ik2y2—iks ys—+iki-(y2+ )

The space-integrals over r,ra,- -+, 7, still need to be computed, and to do so it is convenient to use the

relation

_ o o . . N . » R
Yinl ik2-y2—iks-ys3 ikpyp lak e ik y2—ik3 Y3 ikpyp — Jin€ ik2-y2—ik3-ys ikp ‘!:Ip7 (243)
(Yo

where the operators §;,, defined as ;o = i%, were introduced. Therefore

5
(pra) _ L . 1
04 [ o fo fog 5,5

]F(Z‘)Go(kg, TL) Za (yAQa)z]Pa Go(kg, TL)F(I)GO (k4, ’/l) e F(SE)Go(kl, ’I'L)+

o1y | TE@)Go(ke, n)F(2)Go(ks, n) 3 (G20 + §30)*Pa Go(kayn) - - - F(2)Go (ky, n)+
+F(2)Go(k2, n)F(2)Go (k3, n)F(2)Go(ka,n) - 30, (G20 + -+ + Ypa)*Pa Go(k1, n)
efik2~y271k3-y37~-+ik1-(y2+~--+yp).
It is finally possible to carry out the integrations over r, 7, -+ ,r, and it is straightforward to see that the
result is a series of Kronecker deltas that, together with the sum over k1, ks, - - , kp, lead to the condition
ki = ko =--- = k,, namely

S = / dr / dr——

F(2)Go(k, n) Za@za)zpa Go(k, n)F(z)Go(k,n) - - - F(2)Go(k,
+F(2)Go(k, n)F(2)Go(k, 1) 3, (J2a + 30)°Pa Go(k, n) - - F(2)Go(k, n)+ _

+F(2)Go(k, n)F(x )Go(km)F(ﬂ?)Go(k,n)"'Za(ﬂza+--~+@pa)2PaGo(k,n)

/dr/dr
kna

(G20.)°F(2)Go (k, n)P,, Go(k, n)F(2)Go(k,n) - - - F(x)Go(k,n)+
+(g2a + g3a)2F(x)G0(k7 TL)F(Z‘ GO(k7 ’I’L)Pa Go(kv n) T F(JT Go(k, n)+
+ e +
+ (G20 + -+ gjm)QF(x)Go(k, n)F(2)Go(k, n)F(z)Go(k,n) - - - Py Go(k,n)

x Tr

x Tr

Exploiting the cyclic permutation of the indices as

2 3 4 5 o o p—3 p—2 p—1 p
— p p—1 p—2 p—3 --- 5 4 3 2’ (2.44)
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i.e.
QZ — :l)p
QS — /gpfl

)

Yyp — U2

we can rearrange the terms in the last expression in order to bring the operator P, at the right side in
every line and hence group all the traces together as

T, 1 -~ 5 ',
S<(1>p’ “ 9 dT/drsz ypa ypa+yp71a)2+"'+(ypa+"'+y2a)2]

x Tr [Go(k,n)F(2)Go(k,n)F(2)Go(k,n) - - F(z)Go(k,n)Py] . (2.45)

p couples of operators

Exploiting the spherical symmetry of the system, the sum over the index « can be reduced in the following
way

oa\»—x

Z - ]V2F(2).

It can be demonstrated that the result of the integration by parts on the k-space (in the continuum limit
for the momenta k) consists in the change

p—1 p—s
[(gpa)Q + (ypoz 4 gp—la)z + -+ (gpa 44 QQQ)Q] _ = Z [S Zgiayi+sa] . (246)

It is useful to show how this substitution comes in place in the easiest possible case, i.e. when p = 2: the
integration that has to be carried out is

/dkz > Tr [Go(ky,n)F (€)Go(ka2, n)Pa] (g, ey} =

2
-/ *Y g - T [Co ket m)F()Golko. )Pl e, ) =

0
:+/dkz 8k1a@ﬂ [Go(k1,n)F(2)Go(k2, n)Pal (g, —g,—k) =
-/ 3 (510) (520) T Gollr, ()G )Pl s

where the subscripts for the momenta inside the trace were restored to make the notation more clear. From
the left hand side of (2.46) we can also calculate the total number of terms that arise from the integration
by parts; for p = 2[ this is found to be

20—1 2l—s
No=> [s 2(1)1 = éz (42 —1). (2.47)

s=1 i=1

In the last expression the sum inside the square brackets describes the number of terms appearing inside
each of the round brackets in (2.46), while the outer summation counts the number of separate round
bracket terms.
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Equation (2.45) becomes

pP—Ss
S((I?l,r,a) _ é%/ /d’l"i ana: [ ;@ia@i-&-sa

x Tr [Go(k1,n)F(2)Go(k2, n)F(2)Go(ks, n) - - - F(2)Go (kp, n) VoF ()]

(2.48)

s=1

ki=k

As in the calculation of the contribution coming from the terms without gradients, it is now necessary
to make a distinction between the terms with odd (s — 1) and those with even (s — 1). As it is clear
from (2.48) the number (s — 1) corresponds to the number of (couples of) operators GoF that lie between
Go(ki,n)F and Go(k;+s)F with ¢ and ¢ 4+ s being the indices of the momenta on which the two operators
9 act in every term of the summation over the index 3.

Terms with even (s — 1)

The term with s =1 is

6@0 (kz, n) 6Go(ki+1, TL)F

yiayi+1aG0(ki7 ’II)F(JZ)GO (ki+1, TL)F(JZ) kimhoisn = — akia F(ZIZ) 8ki+1a ki:ki+1' (249)
The momentum derivatives give
1
G (k; kio (om0 0 i
iaGo(ki,n) = # =i <( " 8ki+c) B 1 ) =i—Gq(ki,n) : (2.50)
i m (iwn+&r, +C) m
therefore (2.49) becomes
k‘2

UiaYi+1aGo(ki, n)F(2)Go(kit1,n)F(x)

= — 22 Gy (k, n)F ()]

k2 |® ()| 1 0
= -2 > : (2.51)
™ (g~ (i + 0 t

It must be noticed that there is a particular term appearing in the trace that needs special attention. This
is the term in which one of the § operators acts on the momentum that labels the Green’s function Gg
immediately to the left of the space derivative V2F(z) of the pairing component F. Also this term can be
rewritten as a diagonal matrix as

ki=k;1

) " (z)V2d(x) 0
G G 2 kS | (@-Gwat0)?)?
Yp—1aYpa O(k;nflv“)F(f) o(kp,n)VTF(x) ko i m 0 D(2)V2D* (2) : (2.52)

(§if(iwr”+()2)2
Given the form of the elements (2.51) and (2.52) all of the even-(s — 1) terms can be reduced to the shape
of the ones with s = 1.

Terms with odd (s — 1)
The lowest-s term with odd (s — 1) is the one with s = 2: to study it we calculate the quantity

UiaVi+20Go(ki, n)F(2)Go(kit1, n)F(2)Go(kiy2, n)F(2)Go(kivs, n)F(z) =

ki=kit1=kit2=kit3

2
k—Gl(k: n)F(x)Go(k,n)F(x)G1(k,n)F(2)Go(k,n)F(z) =
_ k2 @ ()| (((iwn+é)—§k)2 0 )
o m2 . 2 2 0 % ’
(gg — (iwn +©) ) (Gwn O +E0)
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The term with the space derivative V2F(z) becomes instead

?)p—2agpoc@0(kp—3vn)F(x)GO(kp—%n)]F(x)GO(kp—hn)F(x)GO(k:pv”)VE-F(x) ok ke ok

k2
= m—oé((}l(k,n)IF(a:)GO(k:,n)F(m)Gl(k,n)F(x)Go(k, n)ViF(x) =
2 *(2)Vi2(x)
_ ]L% @ ()] . ((iwn+¢)—€k)? o )vgq)*( :
" (&% — (iwn + C)z) 0 om0 TEr)?
2 O (2)V2D(x) 0
=~ ()| | ((ontO—&e) (lontOter)”
m? 0 () V20" (2)
((iwn+¢Q)—€r)* ((wn+¢)+€x)*

We can conclude that also for odd-(s — 1) terms all the elements are diagonal and so we can reduce every
other term to the form of the one relative to s = 2. The action component Ségl’r’a) results then

B8
@ra) 11 / 1
S == gq | dr—ﬁVE >

kn jJ

N3P T [(GoF)* '™ G2, Golky—3, 0)FGo (Ky—2, m)FGo(ky—1,)FGo Ky, n) VEF] +

(2.53)

+ NG T [(GoF)* 'Y -1, Go k-1, W (@)Go(Kkps m) VEF ()] ]
k1= =k,=k

The numbers NS and N{*“™ can be calculated in the same way as we have calculated Ny in (2.47):

21 2l—s l 2l—2m
= 3 (So)-x (S o)

s even, s=1 =1 m=1 =1
= %z (P-1), (2.54)
21 2l—s l 2l—2m-+1
N = 3 ( Z(l)) =y <<2m -1 > <1>> =
s odd, s=1 i=1 m=1 i=1
. (21 +1). (2.55)

3
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Including these explicit relations and those for the traces, the complete expression for the action component
5(2177‘70)
> (2.53) becomes

SZhma) — / dT/dr— -
k.n

2(12 — 1) 1 e - )
3 G —(wn+0?\ &—(wn+0)?

_ <I>*(z)V$<I>(z)2 0
fwn+¢)+¢
x Tr (i 0) ) a0 Vie*(2) +

((iwn‘i’o*&c)Q

L2l 1 (_ || )H y
5 (gl 0?) \ G et ()
O*(2)V2D(x) 0
- < 0 @(x)Vf@*(x)) 1

We can notice that in the previous expression the Matsubara frequencies w,, appear always in combinations
with (. We can therefore define new “shifted” Matsubara frequencies v,, such that

= iw, + C. (2.56)

With this substitution we get the following expression for S((;l’T’a):

sgr = L "4 / drﬁvz

202 +1 1 |(I)‘ l—lT d)*(x)Vf.@(x) 0
3 g i\ g+i) 0 P(x)v20%(x)) T

=1 " (2)V2P(x)
2 2 T @B VEE)
L2 =0 (|2 e | T g Gvnten)? 0
3 g +v2 0 ___ @)V, e"(x)
(il’nf‘gk)2(il’n+§k)4

It can be observed that, in the first term inside the square brackets, all the factors with exception of those

inside the trace are proportlonal to T + 7, hence the expression can be symmetrised with the replacement

v, — —v, and becomes

(2Lr.a) _ O*(2)V20(x) 0
Sy / dT/dr ZT < 0 () V20" (z) ) *
-1
202 +1 k2 1 B |®|? N
303m? (242’ \ &Gtvd

+2(12*1)L2|(I)|2 1 _ 25124 o |(§‘2 o (2 57)
3oosm NG+t G\ St ] |
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* * *

After the necessary simplifications, the final form of the action component Sgl’T’Q) yields

D :_‘/ dT/drﬁvzzam? ( )?Cb( i <I>($W%¢*($)) :

; il 2 & B |c1>|2 1
X <(§i+V§)2+3(l 1)(5126+V721)3> ( 51264‘7/%) . (2.58)

2.5.2 Term Sy

In this section we are going to discuss the calculation of the other term involving spatial
derivatives: Sq(pp b Even though the calculation can be again performed following the
procedure described in the previous subsection, we will now provide another method to
reach the result.

From (2.54), (2.55) and (2.57) it can be seen that, once the terms are classified between

even and odd, the coefficients of the traces appearing in the expression of S(era) are

polynomials of . The degree of such polynomials is one unit lower than the one of N;Um)
and Nledd). This is due to the presence of the factor p (here 21) at the denominator in front
of every term in the expansion (2.22) that cancels one power of [ at the numerator. In the
following we will use this observation to calculate the expression for S QLm0 The first step
in the calculation of the action component is then the determination of Ngl. The starting
expression is once again

/ d*z - / d4xp

)GQ(QJ — Ig)
[ () + 1“2 V. F(2)] Go(zg — 23) ¥
x Tr | % [F(z)+ 75 - V,.F(x)] Go(xg — x4) X
x [F(z) +r

/
p

-V, F(2)] Go(z, — 2)

Calculation

Using manipulation techniques analogous to those in the previous section — i.e. selecting the second
order terms in V,F, moving to the Fourier representation and performing the necessary time- and space-
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integrations — the last expression can be reduced to

ST — 21/ dT/erZi

n a=l1

Tt [FGo(k. n) (720 52 ) Golk, m) (G20 + sa) G2 ) Golke,)E x -+ x
- X FGo(k,n)FGo(k,n)+
+FGy(k, n) (gm ngw) Go(k,n)FGo(k, n)F x - - - x

- X Go(k,n) ((?Jza +- sza)ag(j)) Go(k,n)+

€T

+FCo(k,)FCo (k. 1) (Gan + ) - V) Golk, ) ((Gza + e + 1) G222
- x FGo(k,n)FGo(k,n)+

~HFGO(IC, R)FGo(k, TL) ((:gQa + ﬂga) . VT]F) Go(k, n)F X oo X

% Go(k, n) ((gm +oet ggla)agggj)) Go(k,n)+

4ot
+FGo(k,n)FGo(k,n)FGo(k, n)IF X -

% (G20 + -+ J-10) 52 )Go(k n) (20 + -+ G210) 52 ) Golk,m)| -

Notice that again, due to considerations on the diagonal or antidiagonal shape of the matrices, we

have introduced the condition p = 2[. To calculate the total number of terms N5; we first need to know
the total number of lines in (2.59). This is easily calculated as

(2.59)

2[—-1

Ngres =y (20— i) = (1 - 1)(20 — 1). (2.60)

=2
This means that the sum in brackets in (2.59) is composed by (I —1)(20 —1) lines where the generic addend
has the form
OF(x)
Ox

(matrices)(- - - + ;) ) with k € {j,...,p}.

As a first step we consider the first group of terms, those with j = 2: as shown by the green brackets in
(2.59) there are 2 — 2 of these elements, i.e.

OF(x) OF(x)

(matrices)(g2) (matrices)(J2 + J3)

(matrices)+

Ox Ox
+(matrices)(g2) 8[2(;3) (matrices) (g + s + a) 8[;5:) (matrices)+
4t
+(matrices)(g2) 8]1;5;) (matrices) (o + 93 + - - - + Ur) 812(;) (matrices)+
4t
Hmatrices) (i) ") (matrices) (g + g + -+ 5a1) "o (matrices).

Labeling every line with the highest subscript k of the operators ¢ in the brackets on the right, it emerges
that the k*" line is composed by k — 1 terms. The total number of terms with j = 2 is therefore

21

S (k—1)=(1-1)20+1).

k=3
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For what concerns the term with j = 3 we have

F(z
or
OF (z
or

)
~—

OF ()
or

(matrices) (g2 + ¥3) (matrices) (g2 + 93 + 9a) (matrices)+

~—

+(matrices) (g2 + ¥3) (matrices) (g2 + 93 + 1 + U5) 850 ) (matrices)+

Q

F(z

~—

OF(x)

+(matrices) (g2 + U3) (matrices) (g2 + 3 + Ga + - -+ + Uk) (matrices)

Ox Ox
OF OF
+(matrices) (g2 + ¥3) 8553) (matrices)(y2 + 93 + 94 + - - - + Y21) 855:) (matrices).

This time the k** line is composed of 2(k — 1) terms that add up to a total of

21

D 2(k—1) =201 +1)(2 - 3).

k=4

From these properties a general relation can be obtained that gives the total number of terms for a given

value of j: this reads
21

S (G -1k —1).

k=j+1

The total number of terms in (2.59) is then

20-1 21
Y G-Dk-1)= %z(z —1)(20 — 1)(61 — 1).
7=2 k=j+1

This is not yet the final result, in fact up to now we haven’t taken into account the fact that some of the
previously calculated terms are of the form §? and have to be treated differently. As seen in the previous
section the integration by parts in the k space has the result of substituting

v — —Gs > B (2.61)
s'#s

This means that every §2-term will give rise to 21 — 1 new terms. We can observe that for a given j, on
every line we have exactly (j — 1) §%-elements. So from the (j — 1)(k — 1) elements present on the k'" line
for a given j we have to subtract the (j —1) j?-elements and sum the (j —1)(2] — 1) elements that originate
from the integration by parts. This is not a trivial passage though: looking at the result of the integration
by parts (2.61) it can be noticed that some of the terms originating from it can cancel out some of the
original ones. Taking into account only the dependency on g, the schematic form of the expression inside
the trace of (2.59) for a generic value of | reads:

2-1 [ 2 j k
w0=3| 3 (o) (30)
j=2 | k=j+1 \i=2 =2
For example, for [ = 2 this becomes
Yo(2) =92 (92 + 93)+

+92 (G2 + 93 + §a)+
+(g2 +93) (Y2 + U3 + Ua).
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Exploiting the substitutions (2.61) due to the integration by parts in the k-space leads to
Y(2) = =1 (392 + §3) — J20a-

In general, an expression Y (I) can be defined that accounts for the effect of the integration by parts on
Yo(l). For a given value of [ this can be written as

21 2 Y1

= Z Z CW)iv 99 = (1 -+ G2a)CA) | :
i=1i=1 i

From the calculation of C(I) for a few values of I it becomes evident that the coeflicients on every line of
the matrices C(I) are related to the series

01 3 6 10 15 21 28 36

whose " element can be written in the compact expression E;:O k. Given this notion we can find a

general formula for Y (1), i.e.

21 21—j 21 21 i—(j+1)
YW =33 kg - D) Z k§ids,
7=2 k=0 j=21i=2 k=0

where the first term describes the first row of every matrix C(I) and the second term describes all of the
remaining rows. In order to find the total number of terms g;7;; we calculate

2l 2l—j 2l 21 i—(j+1)
tot
Na' =3 3 k33 30
j 2 k=0 j=21i=2 k=0
6Z(z —1)(20 + 1)(2L - 1), (2.62)

Therefore the combinatorial weights in the final expression of Sg L) are expected to be polynomials of
S<(1>2l ,m,b)

(at most) 3" degree. At this point the lower order terms of can be straightforwardly computed,

giving as a result

S =, (2.63)
5
(4mp) _ 1
Se —4/0d7'/dm Z3m2
8 34D (V, " - V, D)
X (w mTq} . oo o] | (2.64)
+m (BV,9")" + ($"V, )}
sEmH _ 1 / dr / dr—— Z X
® 4 Jo 3m? \ w2 +& +§k
¢ , (2.65)

X
2 416 & ) [V, %) + (3*V,d)2
* ((ﬁﬁ&ﬁ) 3 (w2+€2) ) [( Ve®?)"+ (@Y 2) }
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and

2
(87"17
/dT/dTBVZ?)m?( w2+§k> 8

S 34 (V, " - V, D)
x . (4 +f’;z§2 ) ) (2.66)
k * *
+ <(w%+£i)3 + (w%+§i)4) (29,0)? + (@"V, @)
(2l,r,b) .
Let us seek the general Sy in the form
@Lrb) _ =2
S /dT/dr6V23m2( w2+€k) X
x ) 5 ) ) ) (2.67)
k * *
+ (61 T ) (@V,07)? + (77,0
where the coefficients
o = a1l3+b1l2—|—61l+d1, (268)
B = azl® + bol® + col + da, (2.69)
n = a313 + bng + c3l + ds, (270)

are to be determined. Using (2.63) to (2.66), the following systems of equations are obtained,

a1 =0 ﬂl 0 m =0
ay = B2 =1 n =0
a3 =327 Bs =27 ng =%
Qg = 80 ﬂ4 =3 Ny = 20

which have to be solved for {aj,b1,c1,d1}, {ag,bs,co,da}, {as,bs,cs,ds} respectively. As a result, the
coefficients «;, 5;, and n; can be determined. By plugging the solutions in (2.68)-(2.70) we finally get
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* * *

The resulting contribution S eventually reads

B
GLbmb) :% / dr / dr (V,®* - V,®) x
-1
& 2/
ngQ (——z (I - 1>(H1)(§i+—v2)3> <_Ei+vz> +
+§/ dr/dr [(®*V, @)% + (BV,D*)*] x
0

1 2 I—1 1 £2 o\
X B_szm 3m2 <2 (52 + V2)3 + g(lQ _ 1)(l — 2) (52 + V2)4) (_52 n V2> .
(2.71)

2.5.3 Complete term S (2L)

The expressions of S&" and S¢™" can be finally rearranged in order to obtain a

complete and compact expression for the component of the effective action Sgpr involving
spatial derivatives of the order parameter, Sff“‘). As a first step an integration by parts
on the space-variable r is performed, namely

/d'r (@*(2)Vi®(z) + ®(z)Vod*(z)) |27 =

- / dr (20(0P7V (v,0" - V,) + (= ) [0 [V, 0)” + (27,07)7] ).

Given this substitution, S (2.58) becomes

SEhme) =2 /dT/dTV@* V,®) x
L W 1 4 & o\
X —= l + =l =1 — 4
W;?’mz (62 +v2)? 310 (& +v2)° &+02

E /Oﬁ dr / dr [(9°V,0)° + (0V,8")’] x

-2
1 k2 -1 411 & e
XW%W (2(§i+v2) R 1)(£i+v5)4)< €i+vﬁ> '

(21,7,b)

By comparing the last expression with the one for S (2.71) it becomes clear that
now the factors containing the derivatives have the same form and therefore the respective
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coefficients can be easily combined. We thus obtain an expression for the total contribution

ST — g@hral | L) o riginating from the terms with spatial derivatives in the gradient

expansion for I, i.e.
n_1f7
ST :5/ dT/d'r (V" - V,®) x
0

-1
R R N PSR- o
RN <l<5z+uz>”§l” _1)<5z+uz>3> (_fiwﬁ) .

k,n

%/0/3 dT/d'r [(@*V,®)” + (PV,d")*] x

-2
1 o1, £ |®|?
X GV 2 e (ﬁl” ‘”m) (_£i+v%> |

k,n

Introducing the coefficients C' and E the component ng" of the EFT action reads

§ — /d% [C(Qlil ) (v, 0" 7, ®) — fﬁg [(2*V,®)* + (<I>V,,<I>*)2]] . (2.72)

where the coefficients C' and E are defined, in function of |®|?, as
_ 1 k> 1 2 ¢ o2 \"'
C=% —Y —(l——+20P-1)—F (——) 2.73
ZW;%((&,%W 3 ><5,z+uz>3) 2T (2.73)
X1 k2 (1 £2 12\
E=Y —y [P -1)—— |||~
Zﬁvkzn:?) (3( )(gg+yg)4>| | ( 52+V%>

N ! B (L0 i @\
__E_:B_v;g_<§“l _1)<5,3+V,%)3> (_£i+v%) | &

The summations over the index [ can be carried out analytically and lead to

1 k2 1 Ag|®[?
=5 23, NE | T
SO (e (varee)) (v (v )
1 2l 4€2|D?
D) ol (2.75)
6 k.n m _(Vn+Ek) (Vn+Ek)
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and
_ <1 k2 (1 €2 o2 \"!
E=- — — (P -1)—k— <— ) =
; BV e 3m (3 (& +v2)’ &+ Vi
1 k2 262|®|?
BV 3m 2\t
k.n (V2+< €2+ |¢|2> )
1 K* o 262|9)?
=— _— 2.76
BV kzr; 3m (2 4 E2)° (2.76)
respectively.

Summations over the “shifted” Matsubara frequencies

The last remaining passage to obtain the final form of the coefficients C' and E is the
computation of the fermionic Matsubara summations present in (2.75) and (2.76). In
these expressions, the “shifted” Matsubara frequencies v, = w,, — i( always appear at the
denominator and in particular in the combination (12 + £}) elevated to an integer exponent.
To carry out the summations it is then convenient to define the functions f,(3, x, () with
s=1,2,... as

1 1 1 1
B W2+a22)° 8 =Js (el . 2.77
All the functions f, with index s higher than one can be easily obtained from
1 sinh(fSz
fl (/87 x, Q = ( )

2z cosh(fBx) + cosh(5C)

thanks to the recursive relation

fs+1(6,£€,<) = 1 af;(ﬁ,l’,()

2sx ox

. (2.78)

Coefficient C

The summation over [ present in the definition of C' (2.75) can be performed analytically
and gives

1 = 1 4€2|D)2
“ v L NG N
SO (e (varee)) (v (v )
1 P11 agjep
BV e=3m |2+ E})° (2 +E})'
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The last step needed is the computation of the two summations over the “shifted” Matsub-
ara frequencies v,. From the results of the previous section (see in particular the definition
(2.77) of the functions f;) we obtain

- 1 k?
C =7 Z 3 [f2(B, Ex, ¢) — A6 | P f4(8, Ex, )] .
— 3m
Transforming the sum on k into an integral on the k—space as

VZ / d3k

we get to the final result for C i.e.

_ d3k k:2
C:/ (2733 — [£2(8. B, €) — 460122118, B, )]

Coefficient £
Again the sum over [ of (2.76) is computed, obtaining as a result

> 1 k2 (1 3 IR
T am (ng—”m) (&%) -

=1 k,n
1 k? 282 |2

E

(s (veeTaR))

_1 S k2265|127

T BV = 3m (12 + B2)"

,n

The calculation of the Matsubara sum leads then to
= —2\<I>\ Z (6} f4(B. Ex, )] -

This can be rewritten as

3 2
E:2|<1>|2/(;“§ a — & [1(8, Ex, €).

Using the equality

(V2 [0)" = ('V,@)° + (OV, ") + 2|0 |V, 0],
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the action component ng") (2.72) can be recast into the form

s = [ at [ (OB 2BHRVIOE) gy EUOF) g, g
Defining the EFT coefficients C and E as
ClIOP) = [ o (5B ) = ClloP) — 2E(0PY 0P, (279)
BlloP) =2 [ g6 Bud) - B( oo, 2:50)

the final form of the component Sg) results
2 2
0~ [ atg [CUR) g g EQHD) (g gy
s = | x[Qm vt =0 (9, o)’
It is worth remarking that the notation and definition for the coefficients C' and E used

in this section (and in the remainder of the present thesis) coincides with the one used in
refs. [3,70], but slightly differs from the one used in the article [1] ?.

2.6 Term with time derivatives S;”

This section is devoted to the calculation of the terms of the expansion (2.22) arising from
the terms of the gradient expansion of ® with imaginary-time derivatives. The derivation
will be carried out separately for the terms involving first and higher order derivatives.
Again the starting point is the usual gradient expansion in which this time just the com-
ponents including time derivatives are kept, i.e.

F(z+ ) =F(z)+ Tl,@l[;ix) + %a ngx) (Tll)2 +... (2.81)

with the notation 7/ = 7, — 7. Substituting this expansion into the p-th term of the series
in powers of ® in the EFT action, leads to

~ 1
Sc(bp) :—/d4x1/d4x2.../d4xp
p
)

F (1) Go (21 — x2) )
2F (a;
X |F (z1) + 52T (z1) + %a 57(2 L(7)?| Go (x5 — x3)
X Tr{ x |F (1) + 5 2F (21) + 32500 (7)2| Gy (w5 — 24) § + ... (2.82)
X

P 2 T
| [F @) + 2R () + 32562 (7)”] Go Gy — ) |

The lowest order non-vanishing contributions to the action comes from two sources:

3The coefficients C' and E are related to C and £ in [1] by the relations C = C = C + 2&, E = £/|®|?
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e terms with a single first order time derivative;
e terms with second order time derivatives.

The second kind of terms can be in turn divided in two categories: (a) the terms linear
9%F(x)
or2

Tr (%F. . %F. . ) Correspondingly, the aforesaid action term is a sum of two different
J

in (b) terms constituted by the products of two first-order time derivatives i.e.

gradient terms. Using the notations of Section 2.5 we can write:

glrm) _ glorta) | gleto) (2.83)

The total sum over p is subdivided in the same way:

sp =3 [se7 50| = ospn+ L s st s
P p

p

pa m2.a 72
The terms S((I,p’ ), Sﬁf’ ), and Sép ) can be calculated separately, because up to the

second order, they enter the expression for the complete action in an additive way. In
order to keep the notation as clear as possible we introduce, in analogy with (2.42), the
differential matrices

OF O’F
Q= — and Q, = 55

Adopting again the coordinate transformation (2.41), the relevant terms of the gradient
expansion involving first and second order imaginary time derivatives can be written in
the form

,OF
F(xe) =F(x1 4+ y2) = F(x1) + TQ$ 4.
OF
F(xs) =F (21 + y2 + y3) = F(z1) + (1, + Té)% 4.
'’ , OF
Flay) =F +yo 15+ +3) = (@) + (b4 ) o)

Inserting this explicit form for the pairing field and employing the usual Fourier expansion
for Gy (2.35), the component of the action involving time derivatives can be recast into
the mixed (normal-and-reciprocal space) representation form already used in the previous
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sections as

B B
) _ 1 :
== dn [ d drs - -
9=t [an fon [Ca [an oS 5

k1 ni,...np—1

GO (kl,nl)]F
xGo (k1,n2) (F+ 7Q1 + 3(13)%Q)
x Gy (k1,n3) (F + (15 4+ 74) Q1 + 1 (7 + 74)° Qo)
x Tr | XGo (b, na) (F+ (75 + 75+ 71) Qu + 2 (75 + 75+ 70)* Q1)

X...X
x Gy (k1,n,) (IF+(75+Tg+...+r;)<@1+§(T§+...+T;)2@2)

—iwn - (T£+...+T;7)+iwn2 -Té+iwn3 -T§+...+iwnp -TZ/) +

X e O (2.85)

where the trivial integrations over the space-variables 75, ..., 7, have been already carried
out.

2.6.1 Term with first order time derivatives

The contribution to the complete effective field theory action coming from terms involving
a single first order imaginary-time derivative can be obtained by selecting the terms in
(2.85) in which the differential operator Q; occurs just once. The relevant contribution is
easily found to be

77'1 1w TH +1W3 T c—iwq (T T,
p /dT1/ dry - - /dT/d?"lﬁpv2:2:<322+33+ 1Tt Ty)

ni-n

Tr [Go(kl, n2)T£@1GO(k1, n3)IF(ac1) cee F(Il)G()(kil, nl)F(xl)—i—

+ Go (K1, n2)F(21)Go(ky,n3) (75 + 73)Q1 - - - F(21)Go (K1, n1)F (1) +

+ Go (K1, n2)F(21)Go(ky, n3)F(21) - - - (15 + - - - + 7, )QGo (k1,1 )F (1)

Calculation

Contrary to the integration on the space variables 73, ..., 7, the integrals on the imaginary time variables
T3y, T, are not trivial and need to be handled with care. Using the same procedure employed in
Section 2.5, the variables 73, ..., 7, can be replaced, in analogy with (2.43), by the corresponding operators
73,7, which act as

s 0
J Own,

With respect to the situation of Section 2.5, here a problem becomes manifest: the fermionic Matsubara
frequencies w,, are discrete, therefore the derivative in (2.86) is ill-defined. To overcome this problem the

(2.86)
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derivative can be thought as a finite difference, i.e.

iaf(wnj) N flwn, + QM) — flwn,)

A/
fw, ) = — 2.87
7jf (wn;) O, i, ’ (2.87)
where 2, is a bosonic Matsubara frequency of the form 2”7’” with m € Z. To put this strategy into
practice we calculate the auxiliary quantity S’g ™1 in which the substitution
/ iQ 7!
T, —> e (2.88)

is performed. Later on, after carrying out the fermionic Matsubara sum, we will retrieve the desired result
by exploiting the substitution

i, —w+is, & — 0%,

and next the limit

o(p,7,1 o(p,7,1
o S8 @) =S¢V

w—s0 w

(2.89)

The explicit expression for S&™") after the substitution (2.88) is

Sipr) 1/Bd /Bd / /ﬂd '/d 1 S Y gt b4
—— T e T r e E p
® plo o P o 7 Lprv

ni-np ki

Tr |:G0 (kl, 77,2)619""7—2/@1@0(’61, ng)F(l'l) v F(xl)@ro(kl, nl)F(x1)+

+ Go(k1, n2)F(x1)Go(kq, ”3)6mm(7§+7§)@1 < F(21)Go(ky,n1)F(z1)+
+Go(k1,n2)F(21) -+~ Gk, ny )P 2+ F70Qy - F(1)Go (ky, ) F 1)+

+ Golk1, n2)F(21)Go (K1, n3)F(z1) - - - ¥ (2T F7) QG (Ky, ma )F(21) |- (2.90)

In the last equation the different terms have been highlighted and labeled with the number of the line on
which they appear in order to keep track of them when the integrations over the variables 7o, --, 7, is
carried out. The basic integral over the imaginary time variable that needs to be calculated is of the form

. ;. ’ L ,
! iw; T —iwl T+, T
T J v —
/d ;€ 7 7 J 5n17n1—m-
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Carrying out the integrals, performing the sums over the indices ns,...,n,, and renaming n; — n leads

to
) l/ﬂd /dr S5
e T —_
® P Jo sV

Tr {Go(k, n—m)Q1Go(k,n)F(z) - F(z)Go(k,n)F(x

¥

+Go(k,n — m)F(x)Go(k,n)Qy - - - F(x)Go(k, n)F(z)+
+Golk, n)F(x)Go(k,n — m)Q: - F(2)Golk, n)F(x)+

+ ‘e J’_

+Go(k,n —m)F(z)-- Go(k, n)Qy - - - F(x)Go(k,n)F(z)+

ot
R Gl MY -+ F()Golk, m)F(z)+
+
—|—(Gr0(k:7 —m)F(z2)Go(k,n)F(z) - Go(k,n)Q1Go(k,n)F(x)+
+Go(k}7 )]F(i)@o(k, n — m)]F(x) 0(’477 H)QlGo(k, TL)IF(ZZ?)+
bt . (2.91)

+Go(k, n)F(2)Go(k, n)F(z) - - - Go(k,n — m)Q1Go(k, n)F(z)

Here two kind of terms can be recognised:
1. terms in which Go(k,n —m) and Q; are separated by an even number of couples F(x)Gg(k, n).
2. terms in which Go(k,n —m) and Q; are separated by an odd number of couples F(x)Go(k, n).

As already remarked in the previous sections, given the shape of Gy (2.14) and F (2.13) we can see that
the odd powers of GoF give off-diagonal matrices, while the even powers of GoF give diagonal matrices.
Therefore all of the even powers of GoF commute with all the matrices appearing in (2.91). Moreover this
consideration on the composition of the matrices tells us that again only the even-p terms contribute to
the action. Hence from now on we can safely set p = 21.

It is now necessary to count how many (1)-type (“even") terms and (2)-type (“odd") terms are there in
SC(I)ZI’T’D (i.e. in (2.91) after setting p = 2l). The first observation is that expression (2.90) is composed by
20 — 1 terms: it can be noticed that in the passage from (2.90) to (2.91) the j" line in (2.90) gives rise to
7 lines in (2.91), therefore the total number of terms in (2.91) reads

20—-1

In particular the number of (1)-type (“even") terms in the i** term of (2.91) is equal to the number of
odd numbers between 1 and ¢ and viceversa for the (2)-type (“odd") terms. For example the odd and even
numbers in the interval between the integers 1 and ¢ can be counted using respectively

Moaali) = 5 (z + sin? (;w» neven(i) = i — Nodali)

Hence the numbers of even and odd terms result:

20—1 20—1
Nievem) = Znodd y=12, N = Znem —1(1-1).

We can thus rewrite the terms in (2.91) by dividing them in two groups:
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e the (1)-type (“even”) terms assume the form
Go(k,n — m)Qu [Go(k, n)F(z))* . (2.92)
e the (2)-type (“odd”) terms assume the form
Go(k, n — m)F(x)Go(k, n)Q1 [Go(k, n)F(x)]* .

The action term becomes then

ST = 21/ dT/dr—

x [z? Tr (Go(k, n —m)Qs [Go(k, n)F(x)]”*) +

+1(1—1)Tr (Go(k, n — m)F(z)Go(k,n)Q1 [Go(k, n)F(x)fl*?) } —

1 /P 1

X [l Tr (Go(k,n —m)Q1Go(k,n)F(z) [Go(k, n)F(J:)}Zl_Q) +

+(-1)Tr (Go(k:, n — m)F(@)Go(k, n)Q; [Golk, n)]F(x)]2l_2) } . (2.93)

“Even” terms

From (2.36) we deduce that the expression for the diagonal elements of (GoF)* is

l
2
|®(z)| .
(iwn + C)2 - 6}%
this contribution can be therefore factored out of the trace and the relevant quantity that needs to be

calculated becomes the simplified trace

OF(x)
or

Tr [Go(k, n—m) GOF} .

The result is

0P* (x OP(x) 7 %

O () 25 . 5 (2)
(C+ & tiwn)(—C+ &k —i(wn — Um))  (—C+ &k —ium)(("‘fk i(wn = Q)

The numerators can now be rewritten in terms of the linear combinations of ® and its derivative, i.e.

I @(x)a%ifz) — 82796)@*(56), and ¢, = ®(x )8(I> @) 4 8(1)@*( ). It is easy to show that, when

integrating over 7, the contribution proportional to ¢+ gives zero, in fact

L S O

and

d a 2 2 2
| ars @) =2t = 9 - la(r =0)f* =o.
0
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where the last equality is motivated by the boundary conditions that the bosonic field ® satisfies in the

interval [0, 8]. Therefore just the contribution proportional to @(w)% - 8%5—."5)

it reads

®*(x) is non-zero, and

it (@) 251 — 2504 (z))
(C - gk + lwn)(c + fk + lwn)(g - gk + i(wn - Qm))(g + gk + i(wn - Qm)) .

“0Odd” terms

The same discussion valid for the “even” terms holds also here: the standard term has the form

Tr {Go(k:, n —m)GoF 512(;6)} .

After selecting the contribution proportional to @(x)% — Mg—(f)q)*(a:) we find

T

i€ (0(2) 2512 — 2520 ())

* * *

Now, in order to calculate the quantity inside the square brackets in the expression for 5,&,2“’1) (2.93), it
is necessary to sum [ times the contribution from the “even” terms plus (I — 1) times the contribution from
the “odd terms” and then multiply everything by the factor coming from the even powers of Gy that had
been factored out at an earlier stage. The resulting expression reads

640 () 2502 — P2 g () ( @) )H

(C - gk + iwn)(c + fk' + iwn)(( - gk + i(wn - Qm))(g + fk: + i(wn - Qm))

Exploiting the summation over the index [ present in (2.93) leads to

or
(=C+ & —i(wn — Q) (¢ + &k +i(wn — D)) (|<I>(:z;)|2 — (¢ +iwn)? + fi)
itk (B(0) 25— 22 g (1))
<<”” — Q)" + fi) (14% +E+ \<I>(x)|2)
il (0(a) 572 — 20 (o)

i€, (9(r) 251D 2 e ()

or or
(v = ) + ) 02+ ER)

)

where in the last line the dispersion for the single particle excitations Ej (2.38) was used. Even if it is
not transparent from the notation, Ej still carries the dependence on z given by the presence of the term
|®(2)|? in its explicit expression.

The next step is to calculate the sum over the fermionic Matsubara frequencies. To do this we momentarily
isolate from the integrand the terms depending on v, and define the auxiliary quantity

Qum, Ex) = = .
D Pl (e s
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The calculation of the sum over the shifted fermionic Matsubara frequencies v, gives

Q2 (f1(B,&¢) — f1 (B, Ex, €)) + (Bi — &) (f1 (B, &k, Q) — f1 (B, Bk, ()
O, + 200 (B} + &) + (B} — &)? '

Now, as anticipated at the start of the present section the formal substitution iQ,, — w+id (with § — 07T)
is performed and, in order to exploit the limiting operation (2.89) it is convenient to use the quantity

s(Ek) = lim Sw + 10, B) = $(0, Ek)

w—0 w

The explicit expression for s(Ey) is immediately found to be given by

Sk
[@()]?

and can be reintroduced into the full expression for the action component including first order time

s(Ex) = E [f1(8, &k, C) — f1(B, Bk, Q)]

derivatives.

The final result for S is

/dr/ d7< a@;( z) _ 82(:5)@*(@) x

x/( ) |(I>(§ I [f1(B, &k, ¢) — f1(B, Ex, C)] .

In order to make the analogy with the usual Ginzburg-Landau action functional [46] more
apparent, the component involving the first order imaginary-time derivative of the order
parameter can be finally rewritten as

sy = [t g0 (2wp) (2025 - Baw), (291

where the coefficient D is defined as

Do) = | (d"’) @f T 105,600 = (5. B ). (2.95)

2

2.6.2 Term with second order time derivatives/1: S}

As mentioned in Section 2.6 the calculation of the component of the action involving
imaginary-time derivatives of order higher than one is split in two parts that will be ex-
amined in the present and in the following subsection separately. Given the length and
intricacy of the algebra involved, in order to make the notation clearer, the derivation is
going to be performed in the situation without imbalance, i.e. for ( = 0. Only at the
end of the calculation the imbalance parameter is reintroduced by substituting the normal
fermionic Matsubara frequencies w,, with the “shifted” frequencies v,, defined in (2.56).
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The contribution Sff’“) can be obtained from (2.85) by selecting the terms that are linear
in the second order imaginary time derivative of the pairing matrix F. Similarly to the
case of the components of the action with space gradients, in order to exploit the integra-
tion over the imaginary time variables it is convenient to introduce again the operators 7;
defined in (2.86), which act on a generic function f of w,, as in (2.87). The relevant terms

%) can be then rewritten as

/dT/dr/ arj.. /

GU (k 77,1) IF

contributing to S

3

k ni,.

XGO (k, 712) (F —f-
XGO (k?, n3) (F + (7'2 + 7_3
XGQ (k:, 77,4) (IF + 3 (T2 + 7_3
X .

x Tr

% 6iw27’é+iw37§+~~-—iw1 (ro+--41,) )

xGo (k,np-1) (F+%(%§+%§+...+

Q)
"Q)

%) Q)
)’ Q)

(2.96)

As was the case in the previous sections, the introduction of the differential matrices

enables us to calculate the integrals over the imaginary time variables 75,..., 7

Again

) 'p*

these integrals give rise to Kronecker deltas that produce a nonzero contribution only when

the Matsubara frequencies nq,no, ...

/dT/d’l"—
Go(gc ) F

n
XGO k TLQ + % (7’2)2 Qg)
XGO (k, ng) (]F + L (7'2 + 7:3/’)2 @2)
X Gy (k,ny) (IF +3 (7'2 + 75+ 711)2 Qg)
X ...

XGo (k. mp 1) (F+3 (3 + 7 +...+7)

S(P)

x Tr

2

Calculation

Selecting the contributions proportional to Qs in (2.97) leads to

2a0) 1 [P 1
s »):7/ dr/dr—
® 2p Jo ﬁV,%;

(75)? Tr (Go (k,n1) Q2Go (k,n2) F x ...
+ (75 + 74)° Tr (Go (k, n1) FGo (k,n2) Qg X . ..
+...

+ (754 7+ ... 7)) T (Go (k,11) FGo (K, na) F x

o)

x FGo (k,n,) F)
x FGy (k,n,) F)

o X @QGU (k, ’er) F)

,n, are all equal to each other. Hence

(2.97)

{nj=n1}

{nj=n1}
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Using the invariance property of the trace for cyclic permutations, in all the terms the operator Q2 can be
brought to the last position, i.e.

p,T (l
Sa = 2p/ dT/dr—

(%2/)2 Tr (GO (k)7 TLQ) F X ... X FGO (k, np) FGO (k, 711) QQ)
+ (754 74)° Tr (G (k,n3) F x ... x FGq (k,n,) FGq (k,n1) FGq (k, n2) Q2)
“+ ...

+ (7474 4. 7)° Tr (Go (K, np) FGo (K, n1) FGo (kyna) F x ... x Q) )

A cyclic permutation of the indices labelling the fermionic Matsubara frequencies analogous to (2.44) leads

(1%0),

to the following compact expression for Sg,

(p72a) 1 /5 / 1
S =— [ dr [ dr—
® 2p Jo BV Z

(B2 + (poy 4 7)o+ (B4 7+ )]

( ) (2.98)
x Tr (GO (k, nl) IFGO (k, ng) Fx.. x GQ (k, np_l) FGO (k, np) Qg)

{nj=n1}

It is now necessary to calculate the total number of terms inside the round brackets in the previous
expression: the sum inside the square brackets can be rewritten as

2

P
> Z 242) #A

Jj=2 Jj=2 >3’

and the number of elements arising from this summation can be evaluated by solving
p
Np = Z p—j+1
Jj=2

The same consideration on the shape of the matrices inside the trace made in all of the previous sections

P,TQaa
(

leads to the conclusion that again only the contributions Sg with even p are non-zero. Therefore we
can set p = 2[, and as a consequence the action component becomes

(zz,Tz,a)_l/ﬁ / 1
Sa 1), dr drﬁVZ

( (%8 + (a7 o+ (G H 7)) )  (2s9)
x Tr (Go (k,n1)FGo (k,n2) F x ... x Go (k,noi—1) FGo (k,n2;) Qo) (ny=n}
and the total number of terms in (2.99) finally reads
21 1
Ny=>» (2-j+1)7°= S =1 -1) (2.100)

Jj=2

The elements in (2.99) can be further classified in three categories based on a consideration on the indices

of the pair of operators 7 j ]+S acting on the trace:

e terms with s = 0, i.e. terms of the kind (7 ) Tr[- - -]
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e terms with even s;
e terms with odd s.

The expression 7,7/, Tr[- -] gives, in the three different situations

2 ) *
|<I>\2(l b (CD*a ¢ —i-(I)a e >)\0, for s =0,

or? or?
2 FH*
|(I>|2(l 1) (@*g (f + (1)86@2) Ae, for s even,
_ L0%® 92 P*
@[ <<I> 57 TPy ))\O, for s odd.

where the factors A\, A\ and ), are obtained by letting the operators 7; (2.87) act on the corresponding
Green’s functions inside the trace sign, and are defined as

1
)\ - ’ .
T i (wn + ) — ) (i (wWn + Do) — €) (i + ) (2.101)
T i : : 2 (2.102)
(i (@n + ) = ) (i (wn + ) =€) (iwn +§)
1

Ao = — (2.103)

(i(wn + Q) — &) (i (wn + Q) + &) (W5 +€2)

The bosonic Matsubara frequencies (2,,, and €2, appear as a consequence of the use of the finite difference
form (2.87) of the two operators 7/ and 7/, . acting on the trace. To calculate the complete contribution

J Jts
2,77, . . . . : :
Sé ma) we will further proceed as done in Subsection 2.5.2: the combinatorial weights of the terms

. . - . 21,72,
proportional to Ay, A, and A, are derived from the explicit evaluation of Sé ) for a few small values

of I:
5(2”2’“)—1/5(1 /driz 222 o2 g (- B
¢ Ta )y T U e T Ve ) Tz

4‘r a 2@ 82(1)*
/dT/er@( 82>><

 [6X0 + 2Xe + 6X0] ,

67' ,a *8<I> (92(1)*
q) —12/d7/dr—2\q>| <<I> a2)><

1
wn

Since the total number of terms Ny, depends on [ to the 4" power, the combinatorial weights for Ay, Ae,
and ), are expected to be polynomials of (at most) order 3 in . Defining the general expression

217’ ,a 21—1 *82 0% P*
/ dT/dr—Z|<I>| (fb + 52 ) %

k.n

-2
1
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(where the prefactor 1/1 is included into the combinatorial weights), the generic polynomials

ap = a P4+ bil? + eyl + dy, (2.105)
B = agl3 + bng + col + da, (2.106)
m = azl® + b3l* + c3l + ds, (2.107)

can be determined by solving the following systems of equations:

ap =1 pr =0 mo =
ay = 3 , 62 =1 s 72 =2
Qs =35 63 = 14/3 3 —26/3

The resulting combinatorial weights are
o) = 20 — ].,
1
fi = 5= —5)
1
m = §<l —1)(4l+1).

It is easy to verify that the sum a; + 8; + 1 multiplied by [ correctly reproduces the value of Ny; (2.100).

7'2.(1
The last step towards the final form of Sgl’ @) is to reshape the factor depending on the pairing field ®
in the first line of (2.104). This can be done by using the equality

2 & *
/ dr B2 (@*a e 522 ):

o2 or?

B * 2\ 2
:7/0 dr 2|<1>\2<H>aai;%fﬂzq)@\?””) (aaqj )
le ) ,00° 0% 11 (9P 2

/dT/dr 675)7+|<1>2<8T) X

X (—WQ +52) [ o + Bide + Mo -

n k

Hence

The fermionic Matsubara summations will be performed after combining the total contribution to the
action coming from terms with second order imaginary time derivatives and summing the corrections to

all orders in the fluctuations by computing the sum over [.

* * *

(2[,72,a) .

The explicit expression for Sg is given by

S(2ra) 200700 1-1 ol P\*| / |o)* \"
/dT/drﬁvZ e T2 Uar w2ve) ~
. [252_le+(l_1>é4l_5)Ae+(l_l)?lﬂ)&].

(2.108)
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2.6.3 Term with second order time derivatives/2: S((I)T2’b)

Following the same path as in the previous subsection, the contribution SgQ’b) can be
obtained from (2.85) by selecting the terms that contain two first order imaginary time

derivatives of the pairing matrix F. The relevant terms contributing to S((I)TQ’b) can be
obtained from (2.85)

S 1/Bd /dr /Bd’ /ﬁd’ ! >y
® D Jo ! ' 0 2 o prV

k1 ni,...mp_1

712(@14_...)
(72 +73) Qi +--)
(2 + 73 +7) Qu+--)

ECEIC
+ 4+

x Tr XGO kl,n4

X oo X
xGo (k1,np) (F+ (7 +754+...+7) Q1 +--)

3 . / ! 3 ! H ! H =)
X e lwng (7’2—1—...+7’p)+1wn2 72+1wn3 7'3+...+1wnp Tp + o

by selecting the contributions that include the operator (Q; squared. In the last expression

the imaginary time variables 7, ..., 7, have been replaced by the corresponding operators
Ty, ..., T, defined in the previous section. This substitution enables us to carry out the
integrations over imaginary time: the resulting Kronecker deltas determine the condition
on the fermionic Matsubara frequencies w,, = w,, = ... = wy,,, leading to
sP =2 Edn/dniZZ
P Jo sV o m

Go (kil, nl) F
XGO (kl, TLQ)
xGo (k1,13
(

HQu+ )
) i
x Tr XGO k:l,n4) T

(F+
F+F+73)Q+---)
(F+(m+7+7)Q1+--+) ) (2.109)

X oo X
xGo (kr,np) (F+ (75 + 75+ ...+ 7) Qu+---)

{nj=n1}
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Calculation

(2t,7%,b)

The selection of the relevant terms leads to the basic expression for Sy , which reads

S — / dr / dr——

Tr [Go (k1,n1)FGq (kl’ n2) (73) Q1Go (k1,n3) (72 + 73) Q1
xGo (k1,n4) F - Go (k1,np) F+
+GO (kl, nl) ]FG() (kh n2) (’f—é) QlGO (klv Tlg) F
XGO (kl, 77,4) (’f'é + ’ﬁg + 7241) @1 to GO (khnp) F
+...+
—|—G0 (k}l, nl) FGO (kl, n2) (725) QlGO (k17 7?,3)
XGQ(kl,n4)F"'GO(k17np) <7A-£+7A-§+ 7A-1/7) Q1+

+Go (k1,m1) FGo (K1,m2) FGo (k1,713) (73 + 73) Q
xGo(kl,mQ(f'é-l—f'é+7A'41)Q1~-~G0(k:1,np)15‘

+...+

+Go (k1,11) FGo (K1, n2) FGo (klan?))( é+ 73) Q1
xGo(kl,n4)IF-~-G0(k17np) <7A'£+ +...+ ;/;) Q1+

+G0 (’{31, nl) FGQ (kl, ’I’LQ) FGO (kl, ’I’L3) FGO (kl, ’I’L4) Fx---x

xGo (k1,np-1) (75 + 75+ ...+ 7)_1) Qux : (2.110)

~/ ~/ ~/
XGO (kl, ’pr) (T2 + ’7'3 + ...+ Tp) Ql]{nj=n1}

where the curly brackets on the left group together the terms arising from the same line of expression
(2.109). Again, the first simplification comes from the analysis of the expressions inside the trace signs. It
is clear that, as was the case in all previous sections, only the contributions coming from terms with even
p are non-zero. Therefore we can safely set p = 2 in the remainder of the derivation.
The presence of two Q; elements in each trace makes it impossible to reduce all traces to the same form
by using the invariance of the trace for cyclical permutations and proceed as in the previous subsection.

Therefore here the combinatorial weights are obtained by explicitly calculating S'gl’Tz’b) for the few lowest-I
values. However, before proceeding, the total number of terms must be calculated so to give an upper
bound to the order of the polynomials of [ that constitute the combinatorial weights. We start by isolating
the first curly bracket in (2.110) and highlighting just the operators 7, i.e.

(B (4 )

o () (B H 7)o
+...+

o () (B F b+ )

Labelling every line with the highest subscript j of an operator in the second parenthesis, the single
operator Ty in the right parenthesis is combined with the j — 1 operators in the left one. The next curly
bracket in (2.110) becomes

Ty Tg) e (T F TR A7)+
+- (é+ié) (T + Ty T TE)
+
+- (A+A) Ty + T+ Ty)

Following the same procedure for labelling the lines used for the terms in the first bracket for all brackets
building up (2.110), the following general formula can be obtained for computing the total number of
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terms:
2l j—2

N2I—ZZJ—1

j=21i=1

z—m@p4xm_n.

Considering the prefactor 1/(2l) appearing in front of every term of S (20,7%,0) we can conclude that the

combinatorial weights must be polynomials of [ of (at most) 37¢ degree Hereunder the expressions for

5(21,7’2,1)) f .
P or a few small values of [ are given:

S((IDQ,TQ,b) —0,
sy —/ dr/dr— [(AH‘SAO) @22 (iAwiAﬁsxO) (‘9;;'2)]
[ ford ()
x [(3)\0 + %Ae + ? > \‘Plzaaqj g—f + (2)\0 + gAe + 28/\o> (88@;'2)] ;
0 [ fori Bfe)

17 ,00* 0D
(o0 ) e 08

2
<HA0+ 3)\e+93/\0> (3"1" )}
or

where the functions Ao, \¢, and A, depending on the fermionic (and bosonic) Matsubara frequencies are
the same as those defined in (2.101)-(2.103). Writing the general expression for arbitrary [ as

-2
(20,720) [P 1 |®|2
Sq:v - o dT drﬁ—v ; 70‘)721 +€2 X

0P* 0P
x {(az(l)/\o + 51(1))\e + 771(1)>\o) |‘I’\2ﬁg

0|®
+ (20 + B A + 1P 2,) ( |

)]

the combinatorial weights can be written as

al(l) = agl)l?’ b(l)l2 + c(l)l + d(l)
ﬂ(l) _ (1)l3 b(l)lz —|—c(1)l+d(1)
771( ) _ (1)13 +b(l)l2 —|—c(1)l+d(1)
al( ) = (2)13 + b(2)l2 + 0(2)1 + d(z)
51( ) = (2)13 + b(2)12 + c(z)l + d(2)
771( ) _ (2)l3 +b(2)l2 —|—c(2)l + d( )

and can be determined by solving the following systems of equations

agl) =0
agl) =1
ozél) =3’
afll) 3

gy =0 "
5 =0 ns”
gy =43 ng”
= ns”
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o =0 o o =0
o = 1/1 4 s W =3
of) =7/6 " P =573 7 ny) =28
al? =11/4 B =23/4 n? =93

The resulting combinatorial weights are:
al(l) =[-1,

5O =201 -2)

3
AV = 2= )@+,
o =a-1(3-5).
BP = (1-1) (iﬁ - gz + 172> 7
nt? = %(1—1) (312 — 41— 1)
* ox %
The final expression for Sg (21.720) is given by;

-2
(2[,7‘2,!)) . A 1 |(I)|2
S{) - ; dr d’rﬁ—v ; _w% T gz X
0P* 0P

x{(l—l) (/\0+§(l 2) A +6(4l+1) >|<1>!2 el

(l—1> 2 2 a|(b|2
+ (40— 5) Ao+ (31 = 8L+ 7) A + (31 —4l—1)AO}( 5 )}
(2.111)

2.6.4 Complete term SC(DTQ)

The contributions S 2L7%.9) and SEI,QZ’TQ’b) can finally be brought together by summing (2.108)

and (2.111), and the sum over the index [ can be performed. The initial expression for the

(21,72) is

-2
(W)__}/B / IR A L5
Spl=—g | dr drﬁV; 2ie)

0D* 8_<I>+
or Ot

—1)[2x0 + (I = 2) A + 1] (aglj?) }

complete term S

(Mo + (I — D)X [0

CD|H/—/H
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Calculation

The summation over [ can be carried out for the two terms of the sum inside the curly brackets separately:
in particular the results of the basic sums read

e’} B |(I)‘2 -2 B B

(w2 +€2)° [IB12(Mo — Ae) + No (02 +€2)]
|2 (w2 + &3 + |2[?) ’

i(_ |2 )”1(12_1) 200 + (I = 2) A +1Ao] =

— w2 + &2 6

(w2 +€2)°
3 (w2 + & + |2[2)*
X [0 + 410 (@2 +€2)) (o = A) + 30 + Xo) (w2 +€2)°]

Before proceeding to the fermionic Matsubara summations another step is necessary: the limit €2, — 0

must be taken. To do this it is convenient to treat separately the terms proportional to %g—f and to

2\ 2
(%) and treat individually the terms involving Ao, A, and A, respectively. In order to sketch the

strategy employed to exploit the limiting procedure we concentrate on the contribution proportional to

2
2
(—algj ) , which is the one that requires more care:

for the term proportional to Ag, i.e.

(w2 +62)° (32 +36 +[2) |

2 . 5
(Wi + & +12%)

0

e the contribution of A\g (2.101) is expanded in powers of Q,, around ,, =0

e the coefficient of the second order term is isolated by exploiting

9 ((w%+£i)2(3wi+3§2+|@2) )
2 Ao

902 2
0%z, (w2 + € + |O]) o
e the final form of the contribution proportional to Ag is
MO = 4(2¢¢ +2\<I>|2) 1 . 462 — 21\1<I>|2 1 i
312 (wi + &+ [2?) T (w2 + & +19%)

2 1
+
3[2[* (Wi + &k + 122)

(2.112)

Notice that the last expression was already manipulated in order to get rid of the dependence on
the fermionic frequencies w, in the numerators and make the Matsubara summations easier at a
later stage: this manipulation will be applied to all terms in the following.

for the contribution proportional to A, which reads

2
P (w4 60)” (doon + 465 + ) |
3 (w2 + &2 +[02)*

€
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e the contribution of A. (2.102) is expanded in powers of €2, and Qj around ©,, = 0,9 = 0.
o the coefficient of the second order term is isolated by exploiting

0 (PR D) (R a1 )
000 3(w + &+ ()] )

Q1 =0,02,=0

e the final form of the contribution proportional to A, is

M@ = 26 + |9 1 a6 — |2
"Wz rlep)t 310 (w2 e+ o)’
1 267 — |9)? 1 1

- ; (2.113)
B (w2 + €2+ |92)* 3|2 (Wi + & +[2[?)

for the contribution proportional to A,, which reads

(w2 +€2)"
(2 +€ + |0

4 (e})
)

e the contribution of A, (2.103) is expanded in powers of 2, and € around Q,, = 0, = 0.

e the coeflicient of the second order term is isolated by exploiting

9 @) |
OO \ (w2 + €2+ [o2)" "

e the final form of the contribution proportional to A, is

Q2,7 =0,Q2;,=0

1 1

MB) = — | . <+ 5 <.
(Wi + & +122)°  (wh + & +2?)

(2.114)

(2Z7T2)

The component of Sg proportional to %g—f can be treated in the same way, resulting in
270 — 26 + |2 1 R S S
" [ (W2 42+ 02)° [P wh + &+ |22

In light of these results, the complete contribution to the action coming from second-order imaginary-time

(21,7’2)

derivatives S<1> can be written as
272 1 [P 11 9%* 0P
s L [T [a = = (MO ——
@ 2A T/Tvkﬁn["&aﬁ
W @ . o) (22
+ (MO + M® + M) ) |

It is now possible to restore the dependence on the imbalance parameter ¢ by simply substituting the
normal fermionic Matsubara frequencies w,, with their “shifted” version v,,. By observing the form of the
arguments of the sum over the index n, it is clear that the Matsubara sums that need to be performed
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are all of the form (2.77) and can therefore be easily solved in terms of the functions fs(5,x,() with
s=1,2,3,4. The result is

i) 7”/ dT/d'r—

2
(B 0,50 ) - rhi(5.E0))

B2 - 3¢2
+ (Wfl(ﬁaEkac)—’— ’§|(I)|4kf2(ﬁaEk7C)+

4 (2E; — &)
3|@f?

(21,72)

The complete contribution Sg can be finally rewritten in the simple form

le acb*acb R (8]®2\?
/dT/dT_Z or or 2(87) ’

where the new EFT coefficients () and R are defined as

o o
or ot

2\ 2
16 Be0) + 280580 ) (S0 ) |

Q) =557 [ 755 L8, 0) = (B + (5. B ). 2115
R<|(I)|2)_/(2d:7)3 |:f1(/6aEka<) (3r¢_‘43§k)f2(5aEkag)_’_ (2.116)

(6 — 2E5)

3@ F3(B, Bk, O) + 2B, fu(B, B, C) | (2.117)

2.7 Complete effective field theory action

The results of the calculations performed in the previous sections can be finally collected to
obtain the expression for the complete EF'T action for a 3D system of ultracold Fermions
with spin-imbalance, which reads

P 0D 09" 0d R [0|®[*\°
SEFT—/dT/d’"‘ ( v %7)“2?5*5(7) *

C 2 E 2\ 2
vo.+ S wap - £ (v ep) ] (2.118)

where the definitions of the effective field theory coefficients Q,, C, D, E, ), and R are
given, in terms of the modulus squared of the order parameter, by (2.39), (2.79), (2.95),
(2.80), (2.115), and (2.117) respectively. Here these expressions are reported in order to
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have an overview of the definitions:

~m[®*| m|®]?
k2 Ara, '

B3k |1
Q, =— /W [B In (2 cosh (BEk) + 2cosh (BC)) — &k

Bk k2
C :/W% [f2(8, B, ) — 4&L|®[* f4(8, Ex, Q)] ,

PR &
D- / e (8 O = A5, Q).

d3k k2
E ZQ/Wg—mfi F4(8, Er. ),

Q=" / K (8. B €) — (B2 4 €2)fa(B, B )]

200P | (2n)°
_ dk fl(ﬁaEI%C)_{_(EQ_362)f2(67Ek7C)
. _/ (2)? { o i

(6 — 2E%)

3|®|2 f3(B, Ex, Q) + 2B f4(B, Er. O) |.



Chapter 3

EFT description of Fermi superfluids

The previous chapter was devoted to the development of an