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Abstract
Randomized Benchmarking (RB) is een efficiënte en robuuste methode die veel

gebruikt wordt in experimentele set-ups om de gemiddelde nauwkeurigheid van
een set logische poorten op een kwantumcomputer in te schatten. Het bench-
marken van een kwantumcomputer is een schaalbaar proces dat robuust is tegen
State-preparation-and-measurement (SPAM) errors. De scriptie bespreekt Stan-
daard Randomized Benchmarking (SRB), de eenvoudigste methode om de gemid-
delde nauwkeurigheid van een kwantumsysteem te bepalen, en Interleaved Ran-
domized Benchmarking (IRB) om de kenmerken van een enkele logische poort op
een kwantumcomputer te kunnen onderzoeken. Het voordeel van het gebruik van
een RB-protocol is de mogelijkheid om SPAM-fouten te isoleren en tegelijkertijd
zowel SPAM-fouten als specifieke fouten in de logische poorten te karakteriseren.
Het nadeel is dat alleen de gemiddelde nauwkeurigheid van de logische poorten kan
worden geëxtraheerd door de specifieke fouten te versterken in een depolariserend
kanaal, terwijl de SPAM-fouten constant blijven. De fit parameters (A en B) geven
dus de invloed van SPAM-fouten of de kwaliteit van de experimentele opstelling aan,
wat een van de belangrijkste voordelen van RB is. De wiskundige inzichten om een
RB-protocol af te leiden zijn drieledig: Ten eerste kan de gemiddelde nauwkeurigheid
van de logische poorten worden bepaald als een kwantumkanaal zich gedraagt als een
depolariserend kanaal. Ten tweede is een depolariserend kanaal een ’twirled’ operatie
van een unitary 2-design, zoals de Clifford-groep. Ten derde leiden speciefiek poort-
en tijdonafhankelijke fouten tot een exponentiële afname van de nauwkeurigheid van
het kwantumkanaal. Een fysische qubit wordt verkregen door een elektron in een
kwantumdot te isoleren en een magnetisch veld toe te passen. De Zeeman-splitsing
splitst de ontaarding van de energie van een gëısoleerd elektron in een |0⟩- of |1⟩-
toestand, vergelijkbaar met de 0- of 1-waarden in een klassieke bit. De elektron-spin-
resonantietechniek roteerd de qubit d.m.v. een radiofrequentiepuls. De qubit begint
te roteren van de spin-up toestand naar de spin-down toestand en terug. De ro-
tatieas kan verschoven worden door de fase in de radiofrequentiepuls te veranderen.
De faseverschuiving kan experimenteel worden toegepast door IQ mixing waarbij een
sinus- en cosinuspuls wordt gegenereerd via een AWG die een single-sideband up-
conversion uitvoert. Hierdoor is de output een cosinus radiofrequentiepuls, waarbij
de fase van de qubit kan worden veranderd door de fase van de cosinuspuls. Uitein-
delijk genereert een Python Class sequenties om RB-experimenten uit te voeren op
de experimentele opstelling bij Imec. Hierbij was het mogelijk om de willekeurige
sequenties op de digitizer te genereren, wat aantoont dat de experimentele imple-
mentatie van het RB-protocol, zoals beschreven en uitgevoerd in deze scriptie, kan
worden gebruikt voor verder onderzoek.
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Abstract
Randomized Benchmarking is an efficient and robust method that is widely used

in practice to estimate the average fidelity of a gate set implemented on a quantum
computing device. Benchmarking a quantum computer is a scalable process that is
robust to state-preperation-and-measurement (SPAM) errors. The thesis discusses
Standard Randomized Benchmarking (SRB), the most hands-on method to extract
the average fidelity of a quantum system, and Interleaved Randomized Benchmark-
ing (IRB) to retrieve the characteristics of a single gate on a quantum device. The
advantage of using an RB protocol is the ability to isolate SPAM errors and simulta-
neously characterize both SPAM errors and gate errors. A drawback is that only the
average gate fidelity can be extracted by amplifying the gate errors in a depolarizing
channel while leaving the SPAM errors constant. Hence, the A and B parameters
indicate the influence of SPAM errors or the quality of the experimental setup, which
is one of the major advantages of RB. The mathematical insights to derive an RB
protocol are threefold: First, the average gate fidelity can be extracted if a quan-
tum channel behaves as a depolarizing channel. Second, a depolarizing channel is a
twirled operation of a unitary 2-design, such as the Clifford group. Third, gate and
time-independent errors lead to an exponential fidelity decay. A physical qubit is
obtained by isolating an electron in a quantum dot and applying a magnetic field.
The Zeeman splitting splits the degeneracy of the energy of an isolated electron in a
|0⟩- or |1⟩-state. Comparable with the 0 or 1 values in a classical bit. The electron
spin resonance technique drives the current through a radiofrequency pulse. The
qubit starts to rotate from the spin-up state to the spin-down state and back. The
rotation axis can be shifted by changing the phase in the radiofrequency pulse. The
phase shift can be experimentally applied by IQ mixing where a sine and cosine
wave are generated through an AWG performing single-sideband upconversion so
the output is a cosine radiofrequency pulse. The phase of the qubit can be regulated
by changing the phase of the cosine wave. Eventually, a Python Class generates se-
quences to execute RB experiments on the experimental set-up at Imec. The thesis’s
outcome shows the ability to generate random sequences on the digitizer, proving
that the RB protocol’s experimental implementation, as described and executed in
this thesis, can be used for further research purposes.
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Chapter 1

Introduction

Quantum computers are considered one of the most promising technologies of this
century, due to their ability to harness the principles of quantum mechanics to per-
form calculations at unprecedented speeds. Quantum parallelism enables quantum
computers to process vast amounts of information in parallel, potentially solving
complex problems that are intractable for classical computers. Quantum comput-
ing holds the promise of revolutionizing fields such as cryptography, drug discovery,
optimization, and machine learning [1, 2].
The thesis focuses on silicon spin qubit systems used at Imec to perform quantum
computing. Silicon spin qubit systems are a promising approach to the search for
scalable and fault-tolerant quantum computing architectures [3]. Systems based on
silicon semiconductor technology harness the spin states of individual electrons or
nuclei confined within silicon-based nanostructures as quantum bits (qubits). In
this thesis, only individual electrons are used to build up a physical qubit. Silicon’s
exceptional material properties, including isotopic purity resulting in relatively long
coherence times, make it an attractive platform for realizing stable and reproducible
qubits [4, 5, 6, 7]. The foundation of silicon spin qubits lies in manipulating and
controlling electron spins, typically achieved through applying magnetic fields, using
the Zeeman effect. Quantum information is encoded in the spin states of these par-
ticles, with coherent driving performed using microwave or radiofrequency pulses.
Silicon spin qubits benefit from decades of research and development in silicon-based
electronics, enabling compatibility with existing fabrication techniques and classic
circuit control integration.
One of the major advantages of silicon spin qubits is their capability to perform
single- and multi-qubit operations, i.e., the potential for scalability. Together with
their feasibility of quantum error correction protocols [8, 9, 4].

As more and larger quantum computers arise, there is a growing need for methods
to extract the fidelity of the outcomes and specific gate characteristics. Straightfor-
ward tomography-based methods, such as Quantum Process Tomography (QPT),
provide information about a single gate and require measurements that scale ex-
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Chapter 1 – Introduction

ponentially with the number of qubits. Therefore, it is not scalable. In addition,
tomography-based methods depend highly on state-preparation and measurement
errors (SPAM) errors [10, 11]. To overcome these liabilities, a new approach, such
as Randomized Benchmarking (RB), is an efficient and robust method and is widely
used in practice for estimating the average fidelity of a gate set implemented on a
quantum computing device and was first introduced by E. Knill in 2008 [12]. Bench-
marking a quantum computer is a scalable process, robust to SPAM errors [10, 13].
The thesis discusses Standard Randomized Benchmarking (SRB), the most hands-
on method to extract the average fidelity of a quantum system, and Interleaved
Randomized Benchmarking (IRB) to retrieve the characteristics of a single gate on
a quantum device.

SRB serves as the foundational form of randomized benchmarking, originally
introduced as a figure of merit to quantify the average error rate of quantum gates
without requiring detailed knowledge of the underlying noise sources. The core
principle of SRB involves repeatedly applying a sequence of randomly chosen gate
operations to a quantum system, followed by a measurement to determine the fi-
delity of the gate set. By analyzing the sequence fidelity decay with increasing
sequence length, SRB provides valuable information about the average gate error
rate, offering a comprehensive approach to gate performance over a wide range of
experimental conditions [14, 15]. A drawback is the gate independence of this proto-
col, for example, SRB may overlook specific error mechanisms that are not captured
by the randomized gate sequences.
In addition, IRB incorporates interleaved gates alongside the target gates to probe
specific error mechanisms. By systematically varying the interleaved gates and an-
alyzing their impact on the overall fidelity, IRB provides deeper insights into the
nature and origins of errors affecting quantum gates, enabling more refined error
mitigation strategies through analyzing the ratio of the SRB and IRB decay param-
eters [16, 17, 7]. While SRB offers a straightforward and efficient means to estimate
average gate error rates, IRB provides a more nuanced understanding of gate perfor-
mance by isolating and characterizing individual error contributions. Both protocols
will be mathematically derived, discussed, and simulated in the thesis using the IBM
quantum environment [18].

Gates are physically generated using the electron spin resonance (ESR) tech-
nique, where radiofrequency pulses drive the qubit around a certain axis to induce
π- and π/2-pulses. A phase difference in the pulse causes a qubit rotation in the (x,
y)-plane, making it feasible to physically implement quantum computational gates.
Hence, a pulse with a series of phase differences physically defines a gate sequence.
The thesis will cover the experimental implementation of these pulses for the one-
qubit spin quantum device at Imec.
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Chapter 1 – Introduction

1.1 Thesis outline

Overall, the thesis consists of three major parts: The mathematical approach to
RB, simulating SRB and IRB experiments, and the practical implementation of RB
sequences on the quantum device at Imec.

• Chapter 2: Mathematical background of applied quantum mechan-
ics
Chapter 2 provides some background information about the difference between
classical bits and qubits, continuing with the difference between classic logic
gates and quantum logic gates. In addition, a broad mathematical background
in quantum channels and fidelity is needed to understand the derivations in
Chapter 3.

• Chapter 3: Theoretical approach of the Standard and Interleaved
Randomized Benchmarking protocol
Chapter 3 provides a theoretical approach to the RB protocol, where some fun-
damental mathematical topics are discussed, such as twirling quantum chan-
nels, Clifford operators, and fidelity decay in randomized sequences. At the
end, a distinction is made between SRB and IRB.

• Chapter 4: Simulations of Standard and Interleaved Randomized
Benchmarking experiments
Chapter 4 provides the simulations of both one-qubit SRB and IRB experi-
ments using the IBM quantum environment and Qiskit, an open-source Python
package from IBM. Simulations are performed exclusively on local devices.

• Chapter 5: Practical implementation of gate sequences on a silicon
spin qubit system
The last chapter provides a practical implementation of quantum gates on a
silicon spin qubit system, using the ESR technique. First, a mathematical de-
scription of the ESR technique is essential to link the coherent driving pulse of
a qubit with a quantum gate. Next, we will look into the experimental setup
and how an RB experiment can be performed on it.

• Chapter 6: Conclusion and outlook
At last, the thesis is summarized in Chapter 6 and raises a few questions for
further research in the outlook.
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Chapter 2

Mathematical background of
applied quantum mechanics

The chapter first introduces the concept of qubits and the evolution of quantum me-
chanical systems. Following by the concept of quantum gates is discussed in more
detail, and some mathematical techniques are eventually required to understand
the derivations in the next chapter. These techniques contain the concept of Kraus
operators, depolarizing channels, advanced quantum state representations, and the
concept of quantum state fidelity.

2.1 From bits to qubits

In a classical computer, a bit (representation of a binary digit) can hold 0 or 1.
On-off switches in the hardware generate bits, forming patterns that represent other
numbers and, in the case of computers, letters, and symbols. Transistors are com-
monly used as on-off switches in classic computer hardware. Moore’s law expected
that the number of transistors in an integrated circuit doubles every two years [19].
These days, the increase in computational power of classical computers is flattened.
The transistors are getting too small causing malfunctions due to quantum mechan-
ical effects, such as quantum tunneling. However, quantum mechanics may provide
a solution in terms of qubits and, in general, quantum computers.

A qubit or quantum bit is the counterpart of the conventional binary digit (bit)
and the fundamental unit of quantum information in quantum computing and quan-
tum information systems. A qubit can exist in a superposition of both (0, 1)-states,
making it a more powerful tool than the conventional binary bit [4, 20]. The quan-
tum state of a qubit is given by

|Ψ⟩ = α |0⟩+ β |1⟩ (2.1)
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Chapter 2 – Mathematical background of applied quantum mechanics

where |α|2 + |β|2 = 1 and α, β ∈ C. This is the simplest form for a qubit
representation. A more intuitive notation uses the Bloch sphere to depict the qubit
state and can be written as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (2.2)

where θ is the polar angle and ϕ the azimuthal. A graphical representation is
given in figure 2.1.

Figure 2.1: Graphical representation of the Bloch sphere. When the qubit state |Ψ⟩
is located in the equatorial plane, the |0⟩-and-|1⟩-states are both equally populated.
Which results in maximal superposition of the quantum state. Source: Quantum
Inspire (QuTech)

The changes of a quantum state over time can be described by the Schrödinger
equation. The time-dependent Schrödinger equation states:

iℏ
∂

∂t
|Ψt⟩ = H |Ψ(t)⟩ , (2.3)

and is the most general form of the Schrödinger equation, where ℏ is the re-
duced Planck constant and H the Hamiltonian operator. The wavefunction |Ψ(t)⟩
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represents the probability amplitude of the quantum state and iℏ ∂
∂t the energy oper-

ator. The evolution of the quantum state |Ψ(t)⟩ from time t0 to t, can be described
through the time-evolution operator (or propagator) U(t, t0) as

|Ψ(t)⟩ = U(t, t0) |Ψ(t0)⟩ , (2.4)

and |Ψ(t0)⟩ the initial quantum state and U(t, t0) a unitary propagator. For a
time-dependent Hamiltonian, the unitary propagator is given by

U = exp

{
−i
∫
H(t) dt

}
, (2.5)

if [H(t), H(t
′
)] = 0 for any combination of t and t

′
[4].

Another commonly used representation is through density matrices, where the off-
diagonal elements depict the mixed states of a qubit.

ρ =
∑
j

pj |ψj⟩ ⟨ψj | , (2.6)

where ρ ∈ Hd and d = 2n with n the number of qubits. Hd is the d-dimensional
Hilbert space. The evolution of the quantum state is therefore given by

U(ρ0) = ρ(t)U(t, t0)ρ(t0)U
†(t, t0). (2.7)

A qubit must meet certain criteria to build a gate-based quantum computer.
DiVincenzo’s criteria, proposed by theoretical physicist David P. Di Vincenzo in
2000, explain the physical implementation requirements for quantum computers.
The DiVincenzo criteria described in [4] are listed below:

1. Scalability: The qubit system should be scalable to a large number of qubits,
allowing for the construction of a quantum computer with a sufficient number
of qubits to perform meaningful computations. In addition, a qubit must be
“well-characterized”, meaning the internal Hamiltonian of the qubit, couplings
with other states, or interactions with other qubits are well known. As well as
the couplings to external fields to drive the qubit. Ignorance of these matters
leads to decoherence of the qubit.

2. Qubit Initialization: The ability to initialize the qubits to a well-defined
state. If the purity of the initialized state is too low, the use of the qubit
for quantum computing results in incorrect outcomes. In addition, the mea-
surement qubits should be initialized before every manipulation. A typical
read-out sequence consists of three steps: initialization, manipulation, and
read-out. Hence, the initialization needs to be fast enough.
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3. Long Qubit Coherence Time: Qubits should have a sufficiently long co-
herence time 1, meaning they can maintain their quantum state for a duration
long enough to perform quantum computations. The coherence time or de-
phasing time is the time for the quantum state to be lost by 1/e without any
correction and is denoted by T ∗

2 . To perform decent calculations, The decoher-
ence time needs to be much longer than the time needed to perform a π-pulse.

4. Universal Set of Quantum Gates: The ability to perform a universal set of
quantum logic operations (quantum gates) on the qubits, allowing for the im-
plementation of any quantum algorithm. Hence, any unitary operator should
be able to be implemented as a quantum gate.

5. Qubit Measurement: The ability to measure the qubits accurately and re-
liably, extracting the results of quantum computations. The read-out fidelity
determines the reliability in the absence of other imperfections, the reliability
is also sometimes referred to as quantum efficiency.

2.2 Quantum gates

Assume a problem where a yes-or-no (boolean) question needs to be solved for
each asset. For ten assets, the problem space becomes 210 = 1024. It is doable
for almost all classic algorithms on our personal computers. But if we expand our
collection from ten to a hundred assets, the problem space becomes 2100 = 1 267
650 600 228 229 401 496 703 205 376 a problem that can no longer be solved with
a personal computer and even very difficult (and maybe impossible) for the world’s
most powerful supercomputers.
Due to the enormous size of the problem space, computer scientists these days are
heading more toward quantum computing, where qubits are used instead of classical
bits. Working with qubits gives three major advantages [21]:

1. Superposition: While a classical bit can only be in the state 0 or 1, a qubit
can have the state 0, 1, or a superposition of 0 and 1 (and thus an infinite
amount of states).

1The T ∗
2 time, often referred to as the ”dephasing time” or ”coherence time,” is a measure of

how long a qubit can maintain its superposition state before losing coherence due to environmental
noise. In other words, it indicates the timescale over which the quantum information encoded in
the qubit’s state remains intact [21, 4]. The T2 time refers to the natural dephasing time caused by
atomic or molecular interactions [22]. Whereas the T ∗

2 time refers to the observed dephasing time
caused by other secondary factors such as magnetic fields, inhomogeneities, etc. In addition, the T1

is used to indicate the relaxation time or amplitude damping and indicates the loss of energy from
the system. [23]
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2. Entanglement: Entanglement is a phenomenon where the quantum states of
two or more qubits become correlated in such a way that the state of one qubit
depends on the state of the others, even when they are physically separated.
This correlation enables the qubits to share information instantaneously, re-
gardless of the distance between them.

3. Interference: Quantum interference is a phenomenon where the probability
amplitudes of different quantum states interfere constructively or destructively,
depending on their relative phases. This interference allows quantum comput-
ers to amplify the probability of obtaining the correct answer while suppressing
the probability of obtaining incorrect answers. Quantum algorithms exploit
interference to enhance computational efficiency and speed.

These three characteristics of quantum parallelism are fundamental features of
quantum computing that underpin its potential for achieving exponential speedups
in certain computational tasks. Using quantum parallelism effectively requires an
intensive and precise development of quantum algorithms and techniques to exploit
the unique properties of quantum systems. The mechanisms used in computers to
think and execute commands are logic gates, they have a quantum equivalent called
quantum logic gates. Although both gates of the same family will give the same an-
swer, due to quantum parallelism, the underlying behavior of quantum logic gates is
completely different from the classical ones. Figure 2.2 depicts the quantum CNOT
gate and the classical XOR gate, and as seen in the figure, the outcome of both
gates is identical.

Quantum gates exploit quantum parallelism to perform computations on multi-
ple states simultaneously. Classical logic gates are not inherently reversible, while
quantum gates are reversible. This property of quantum gates is essential for preserv-
ing quantum coherence and enabling quantum algorithms to run efficiently. Overall,
while classical and quantum logic gates serve similar functions in their respective
computing paradigms, their underlying principles, behaviors, and capabilities are
fundamentally different due to the unique properties of classical and quantum sys-
tems.

Note that a quantum gate is mathematically equal to unitary operations. The
simplest form of writing a quantum state is via a quantum statevector. The final
state of a quantum system can be calculated by applying the unitary operations, rep-
resented by the gates, on the statevector representing the initial state. The outcome
is again a statevector. Applying unitary operators, which is the same as executing
a quantum circuit, requires 2n×2n matrices, with n the number of qubits. The next
section gives a mathematical overview of quantum channels and how to work with
them to obtain the fidelity.
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Figure 2.2: Comparison of classic and quantum logic gates.
Left: The quantum logic CNOT gate. Right: The classical logic XOR gate. The
outcome of both gates is identical, although the behavior is different.
Source: Einstein Relatively easy [24]

2.3 Overview of quantum channels and measurement
fidelity

2.3.1 Quantum channels

Quantum channels can be represented as a series of gates, i.e., unitary operations,
transformations, and measurements [21, 25, 26]. In real devices, gates contain noise
and will not return the pure statevector. Consider a pure quantum state ρ, the
transformation of the quantum state in a quantum channel is given by

G : ρ −→ G(ρ) ∈ Hd, (2.8)

and can be seen as a linear operation on density matrices. The map G represents
the quantum channel and G(ρ) the final state after the process occurs. A quantum
system can be divided into two subsystems: the system of interest or principal
system and the environment, forming a closed quantum system together. Assume
the system-environment state as a product state ρ ⊗ ρenv, the final state of ρ after
some unitary transformation U can be extracted by taking the partial trace over the
environment:

G(ρ) = Trenv

[(
U(ρ)⊗ ρenv

)
U †
]
. (2.9)
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The final state G(ρ) can be seen as the reduced state of the system. Another
way of describing quantum channel is through the Operator-sum representation:

G(ρ) =
∑
i

⟨ei|U
[
ρ⊗ |e0⟩ ⟨e0|

]
U † |ei⟩ (2.10)

=
∑
i

KiρK
†
i , (2.11)

where Ki = ⟨ei|U |e0⟩ and completeness relation

∑
i

K†
iKi = 1. (2.12)

Equation 2.10 is known as the Kraus representation. The Kraus operators Ki

are Completely Positive Trace Preserving CPTP maps, which means that the final
state after application of the map has nonnegative probabilities for measuring the
eigenstate of a certain observable (i.e., the density matrix is always semidefinite).
CPTP map on a subsystem ensures a valid final quantum state. Trace-preserving
means there is no leakage in the channel or “conservation of probability”:

1 =
∑
m

p(m) = Tr
[(∑

m

Gm
)
(p)
]
. (2.13)

A non-trace-preserving map (or quantum channel) results in

∑
k

K†
iKi < 1 −→ Tr

(
G(ρ)

)
< Tr(ρ). (2.14)

Kraus operators are commonly used to describe quantum channels and quantum
error correction, and according to [21], if and only if a map has an operator-sum
representation it satisfies these axioms:

1. A1: Tr[G(ρ)] is the probability the process represented by G occurs, when ρ is
the initial state. Thus, 0 ≤ Tr[G(ρ)] ≤ 1 for any state ρ.

2. A2: G is a convex-linear map on the set of density matrices, that is, for prob-
abilities pi: G

(∑
i piρi

)
=
∑

i piG(ρi).

3. A3: G is a completely positive map. That is, if G maps density operators of
system Q1 to density operators of system Q2, then G(A) must be positive for
any positive operator A.

11
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The above axioms are just to indicate that Kraus operators are well-defined oper-
ators, and we do not need to worry about some mathematical nuances or difficulties.
However, composing channels becomes ugly very quickly

A ◦ B =
M∑
i=1

N∑
j=1

AiBiρB
†
iA

†
i , (2.15)

and is a drawback of using Kraus operators. Subsequently, the Kraus represen-
tation of quantum channels is not unique.

2.3.2 Deplorazing channels

A valuable quantum channel is a depolarizing channel, describing a noisy channel
where quantum information dissipates equally in all directions [21, 7, 11]. The most
important application of the depolarizing channel is the randomized benchmarking
protocol, which is the scope of this thesis. Depolarizing noise serves as a powerful
noise model for analyzing the performance of error correction circuits. For a single
qubit, a maximally depolarizing state can be achieved by the operator:

Kdepmax(ρ) =
ρ+XρX + Y ρY + ZρZ

4
=
I

2
. (2.16)

For any ρ, will the depolarizing channel return a completely mixed state, i.e., a
depolarized state. If the quantum channel is depicted as an n-qubit CPTP map using
Kraus operators, Λ(ρ) =

∑N
i=1KiρK

†
i , the maximum-depolarizing channel gives rise

to the Kraus operators in the form: I/2, X/2, Y/2 and Z/2.
The depolarizing channel can be generalized as:

Kdep = (1− p)ρ+ p
I

d
(2.17)

=
1− 3p

4
ρ+

p

4
(XρX + Y ρY + ZρZ), (2.18)

where the quantum state ρ is preserved with probability p−1 and with probability
p the state is depolarized. The parameter p is therefore known as the depolarizing
parameter, and can be seen as a measurement for the infidelity of the quantum
channel. The dimension d = 2n, for n the number of qubits. The Kraus operators
in this form are given through

√
1− 3p/4I,

√
pX/2,

√
pY/2 and

√
pZ/2.

When Kdep is repeated N times

lim
N→∞

KN
dep(ρ) = Kdepmax = I, (2.19)

12
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the quantum state evolves in a totally mixed state, a characteristic of the de-
polarizing channel which allows us to experimentally extract the depolarizing error
rate [7]. The depolarizing channel will later prove useful in the derivation of the
randomized benchmarking protocol.

2.3.3 The Pauli transfer matrix and the superoperator formalism

The Kraus operators can be further decomposed into the Pauli basisKi =
∑d2

j=1 aijPj
and a X -matrix which leads to a useful representation of a quantum map [11, 7]:

Λ(ρ) =
∑
i

KiρK
†
i =

∑
jk

(∑
i

aija
∗
ik

)
PjρPk

=
N∑

j,k=1

XjkPjρPk,

where N = d2 and Xij=
∑

i aijaik, a d
2 × d2 complex-valued matrix, Hermitian

and positive semidefinite, hence, holds the completeness relation
∑

jk XjkPkPj = I.
The X -matrix completely determines the map Λ. The Pauli operators Pi belongs to
the n-qubit Pauli group {I,X, Y, Z}⊗n = P⊗n.

Using the Kraus operators from equation 2.17, the X -matrix for the depolarizing
channel can be written as

Xdep =


1−3p
4 0 0 0
0 p

4 0 0
0 0 p

4 0
0 0 0 p

4

 . (2.20)

While the process matrix experiences significant attention in the literature, it’s
important to note that the X -matrices are not suited for direct multiplication.
Therefore, determining the X -matrix of a quantum circuit (or channel) doesn’t in-
volve simply multiplying the X -matrices of individual quantum operations within
the channel. Superoperators, on the other hand, are designed to overcome this is-
sue and conveniently describe quantum operations in channels. The Pauli Transfer
Matrix (PTM) is a widely used representation of superoperators and can be written
as:

ΛK
ij =

1

d
Tr
[
PiK(Pj)

]
, (2.21)

maps a Pauli operator Pj (input) to another Pauli operator Pi (output) with
coefficients ΛK

ij [7]. The PTM for a depolarizing channel is given by

13
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Λdep =


1 0 0 0
0 1− p 0 0
0 0 1− p 0
0 0 0 1− p

 . (2.22)

In general, the superoperator formalism states that density operators ρ ∈ Hd

are represented as vectors |ρ⟩⟩ in the Hilbert-Schmidt space of dimension d2 [11,
27]. Linear maps on density operators, i.e. quantum operations, are represented as
matrices of dimension d2 × d2. The Hilbert-Schmidt inner product is defined as

⟨⟨A|B⟩⟩ = Tr{A†B}
d

, (2.23)

where A and B are density operators. The map composition is represented as
matrix multiplication through the definition of the inner product, a diagonalization
can be performed to easily extract the trace of the matrix multiplication. It is
convenient to write the superoperators in the Pauli basis, using normalized Pauli
operators Pi → Pi/

√
d = {I/

√
d,X/

√
d, Y/

√
d, Z/

√
d}, the superoperator therefore

given by

|ρ⟩⟩ = 1

d

d2∑
i=1

|Pi⟩ ⟨Pi| |ρ⟩ , (2.24)

where ⟨Pi|ρ⟩ = Tr{Piρ}. Note that superoperators can be defined to any basis
of Hn. As an example, the density matrix of a single qubit can be expanded in the
Pauli basis:

ρ =
1

2
(I + rxX + ryY + rzZ), (2.25)

and r = (rx, ry, rz) the Bloch vector. In the superoperator formalism, a single
qubit state is represented by

|ρ⟩⟩ = 1√
2


Tr(ρI)
Tr(ρX)
Tr(ρY )
Tr(ρZ)

 =
1√
2


1
rx
ry
rz

 . (2.26)
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2.3.4 Fidelity and Measurement of quantum channels

The fidelity is a useful metric that represents the distance between quantum states
[21, 26]. The fidelity between state ρ and ρ

′
can be written as

F (ρ, ρ′) = Tr
[√√

ρρ′
√
ρ
]
∈ [0, 1], (2.27)

and is a symmetric comparison between the two states. If the outcome is 1, the
states are identical. If F (ρ, ρ′) < 1, then ρ ̸= ρ′ and the corresponding purifications
or eigenvectors: |ψ⟩ ̸= |φ⟩. When calculating the fidelity between a state ρ and a
pure state |ψ⟩, it can be seen that

F (|ψ⟩ , ρ) = Tr
[√

⟨ψ| ρ |ψ⟩ |ψ⟩ ⟨ψ|
]
, (2.28)

the fidelity is equal to the square root of the overlap between the state ρ and
the pure state |ψ⟩. Another property of fidelity is its invariance under unitary
transformations [21]:

F (UρU †, Uρ′U †) = F (ρ, ρ′). (2.29)

The fidelity can be written in multiple forms, using the X -matrices and the
Hilbert-Schmidt inner product from equation 2.20 and 2.23, the process or entan-
glement fidelity [7] can be written as

Fp = Tr[XexpXideal] (2.30)

= Tr
[
ΛexpΛ

−1
ideal

]
, (2.31)

where the second expression is the same using PTM representation. A general
expression for the average gate fidelity of the noisy experimental implementation G̃
of an ideal unitary channel G, is given by [26]

F [G̃,G] =
∫

dψ Tr
[
G†(ψ)G̃(ψ)

]
. (2.32)

The noisy channel can be decomposed as follows: G̃ = Λ ◦ G with Λ the error
caused by implementing the gate G.
The fidelity can be used as a metric to define the accuracy of the outcome of a
quantum channel. A quantum measurement or positive operator-valued measure
(POVM) Em, is trace-preserving

∑
mEm = 1 [11, 28]. An ideal POVM with eigen-

states |ψm⟩ is given by Em = |ψm⟩ ⟨ψm|. So in an ideal situation, the probability,
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or measurement fidelity of state m can be calculated through the overlap of the
measurement Em and a pure state |ψ⟩ ⟨ψ| [7]:

Pm = Tr
[
|ψ⟩ ⟨ψ|Em

]
. (2.33)

Another way is to use the superoperator representation in equation 2.26, so a
single qubit POVM [7] becomes

⟨⟨Em| =
1√
2

(
1,Tr(EmX),Tr(EmY ),Tr(EmZ)

)
. (2.34)

In experimental setups, measuring a single qubit in the {|0⟩ ⟨0| , |1⟩ ⟨1|}-basis
results in a POVM consisting of a statistical mixture given by

Ee0 = (1− ϵ0) |0⟩ ⟨0|+ ϵ1 |1⟩ ⟨1| (2.35)

Ee1 = ϵ0 |0⟩ ⟨0|+ (1− ϵ1) |1⟩ ⟨1| , (2.36)

where ϵ0 and ϵ1 are the read-out errors of the single qubit eigenstates [7]. Sub-
sequently, the measurement fidelity is given by

F0 = Tr(Ee0E0) = Tr(E0 |0⟩ ⟨0|) = 1− ϵ0 (2.37)

F1 = Tr(Ee1E1) = Tr(E1 |1⟩ ⟨1|) = 1− ϵ1. (2.38)

Note that the read-out errors describe the errors in the state projection. Hence,
this error model is incomplete because the wrong mapping of the projection states
is not taken into consideration. The readout apparatus can assign the wrong projec-
tion state. To read out a measurement, a device (readout apparatus) uses classical
signals, such as currents, RF signals, etc., to map the projected states. Mapping the
projection state to a wrong signal, or assigning the signal to a wrong binary value
causes errors, identified as “mapping errors” [7]. The mapping errors are depicted
with η where η0 is the error to map |0⟩ onto |1⟩ and η1 to map |1⟩ to |1⟩. Both
errors, on the state projection and the mapping during the readout, can occur at
the same time. Which results in a correct outcome. The measurement fidelity can
be extended to

F0 = (1− ϵ0)(1− η0) + ϵ0η1, (2.39)

F1 = (1− ϵ1)(1− η1) + ϵ1η0. (2.40)

The gate sequences applied in the RB protocol in Chapter 5 are combinations of
π- and π/2-pulse with rotations around the x- and y-axis
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F = {Ix, Iy, Xπ, Xπ/2, Yπ, Yπ/2,−Xπ/2,−Yπ/2}, (2.41)

where Ix and Iy are identity gates, performing a 2π-rotation about the x- or
y-axis Ix = X2π and Iy = Y2π. Using the superoperator formalism and the gate
set, a complete basis of input states {Fi|ρideal0 ⟩⟩} and a complete measurement basis
{⟨⟨Eideal0 |Fi} can be set up. Therefore, we define a state and POVM as ρideal0 = |0⟩ ⟨0|
and Eideal0 = |0⟩ ⟨0|. Eventually, SPAM errors are defined as the errors making ρideal0

and Eideal0 imperfect:

ρ0 = (1− ϵ) |0⟩ ⟨0|+ ϵ |1⟩ ⟨1| , (2.42)

E0 = (1− η0) |0⟩ ⟨0|+ η1 |1⟩ ⟨1| , (2.43)

where ϵ and η0,1 represent the SPAM errors. The advantage of using an RB
protocol is the ability to isolate SPAM errors and simultaneously characterize both
SPAM errors and gate errors. The price paid is that only the average gate fidelity
can be extracted by amplifying the gate errors in a depolarizing channel while leav-
ing the SPAM errors constant.
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Chapter 3

Theoretical approach of the
Standard and Interleaved
Randomized Benchmarking
protocol

Chapter 2 covers the theoretical approach of the standard and interleaved random-
ized benchmarking protocol. First, we will dig deeper into twirling quantum channels
and how we need them to extract the average gate fidelity of a quantum channel.
The second part motivates the use of Clifford operators in the RB protocol and
derives the decay parameters for zero- and first-order approximations of the error
channel. At last, the mathematical insights shall be used to explain the SRB and
IRB protocol.

3.1 The exact Haar Twirl

In quantum information theory, “twirling” refers to a technique used to analyze and
simplify quantum channels. It could be anything from a simple quantum gate to a
more complex operation like a noisy quantum channel [29, 30]. Twirling a quantum
channel is essentially averaging it over certain operations to simplify its properties.
The twirl performs an average over a set of operations that form a group, such as
all possible unitary transformations or all possible permutations. This averaging
process helps to understand the overall behavior of the channel and often simplifies
calculations. Twirling is particularly useful in quantum information theory because
it can help us identify symmetries and invariant properties of quantum channels.
These symmetries can be exploited for various purposes, such as error correction,
quantum state estimation, or characterizing the capacity of quantum communication
channels. The exact Haar twirl is defined by
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Λave =

∫
dU U † ◦ Λ ◦ U

=

∫
dU U †Λ(U |ψ⟩ ⟨ψ|U †)U (3.1)

where
∫
dU = 1, uniform distribution over unitaries, i.e., the Haar measure.

The goal of twirling quantum channels in this thesis is to manipulate quantum oper-
ations so that a simple experiment can be used to extract this gate fidelity in a more
efficient way than through QPT. By definition, the Haar measure (with respect to
the unitary group) is a topological measure that defines a uniform distribution over
Kraus operators [30].

Figure 3.1: Discretized schematic representation of Twirling a quantum channel.
The averaging can be written as Λ(ρ) =

∑
i pr(Ui)U

†
i ◦Λ◦Ui(ρ), where pr(Ui) is the

probability distribution over U .
Source: Magesan, E. et al. [29]

To see how the Twirl of a quantum channel is useful to extract the average
gate fidelity, we follow the steps depicted in [30], and start from a quantum channel
represented by the superoperator ΛU and use Kraus representation to define this
operator:

G =
∑
i

KiρK
†
i (3.2)

Rewrite this by interleaving the identity operator twice using unitaries gives

G =
∑
i

(KiU
†)UρU †(UK†

i ). (3.3)
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Next, we define a new operator

Λ =
∑
i

(KiU
†)⊗ (UK†

i ) =
∑
i

KiU
† ⊗ (KiU

†)†, (3.4)

so that G(ρ) = Λ(UρU †), recall G̃ = Λ◦G from the previous section. By defining
this new operator Λ, the error that differentiates the operator (or map) G from the
intended unitary operator U is encapsulated. The gate fidelity from equation 2.28
can now be rewritten as

F (U |ψ⟩ ⟨ψ|U †,G(|ψ⟩ ⟨ψ|)) = F ((U |ψ⟩)(⟨ψ|U †),Λ((U |ψ⟩)(⟨ψ|U †)), (3.5)

the invariance of the Haar measure allows renaming the variable of integration
from U |ψ⟩ to |ϕ⟩, so that

F (U,G) = F (I,Λ). (3.6)

Where we showed that the fidelity of the of G and the ideal unitary operator
U is equal to the fidelity of Λ, the superoperator that encapsulates the error, and
the identity operator. Next, it’s easy to verify that the fidelity of a superoperator
Λ with the identity operator is the same as the fidelity of the exact Haar twirl of Λ
with the identity:

F
(∫

dU U † ◦ Λ ◦ U, I
)
=

∫
dψ tr

(
⟨ψ|
( ∫

dU U †Λ(U |ψ⟩ ⟨ψ|U †)U |ψ⟩
)

=

∫
dU

∫
dψ tr

(
(⟨ψ|U †)Λ((U |ψ⟩)(⟨ψ|U †))(U |ψ⟩)

)
=

∫
dϕ tr

(
⟨ϕ|Λ(|ϕ⟩ ⟨ϕ|) |ϕ⟩

)
= F (Λ, I), (3.7)

where the transformation is used again d(U |ψ⟩) = d(|ϕ⟩) according to the Haar
measure. The average gate fidelity can be Fg can then be calculated by average the
gate fidelity of G over the uniform unitary distribution:
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F g =

∫
dU F (G, U) =

∫
dU F (Λ, I)

=

∫
dU F

(∫
dU ′ U

′† ◦ Λ ◦ U ′
, I)

=

∫
dU F

(
(1− p)ρ+ pI, I

)
=

∫
dU

∫
dψ tr

(
⟨ψ| (1− p) |ψ⟩ ⟨ψ|+ p

I

d
) |ψ⟩

)
=

∫
dU

(
1− p+

p

d

)
= 1− p+

p

d
, (3.8)

where we used in the third line that the Twirl of a quantum channel induces a
depolarizing channel [30], and p =

∫
dU p the average depolarizing parameter of

the twirled channel. Remember, the depolarizing parameter indicates the probabil-
ity that the quantum state is fully mixed, and with probability p - 1, the state is
preserved. Hence, the depolarizing parameters indicate the infidelity of a quantum
channel. When measuring a quantum channel, the fidelity is extracted. This means
that the p-parameter of the fidelity decay is a measure of the fidelity of the chan-
nel. Therefore, we need to make the following substitution: pf = 1 − p, and pf is
the depolarizing parameter indicating the probability of staying in the initial state
(fidelity). The depolarizing channel can be rewritten as

Λdep = pfρ+ (1− pf )
I

d
, (3.9)

and the average fidelity becomes

F g = pf +
1− pf
d

. (3.10)

With the above derivations, we have shown that: If a quantum channel be-
haves as a depolarizing channel, the average gate fidelity can be extracted.

3.2 Unitary 2-designs

In quantum mechanics, the concept of a unitary t-design is a set of unitary operators
with specific properties. When averaging (or twirling) over the unitary set, the twirl
accurately approximates the average behavior of all unitary operators acting on a
certain number of quantum bits or qubits [29, 31]. In simpler terms, a unitary t-
design is a set of unitary operations that, when applied repeatedly to a quantum
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state and averaged over, behaves similarly to the average behavior of all possible
unitary operations on the same number of qubits. The twirl of a channel Λ(ρ) over
a discrete unitary 2-design (Ui ∈ U) can be written as

Λ(ρ) =

|U |∑
i

piU
†
i ◦ Λ ◦ Ui(ρ)

=

|U |∑
i

pi

(
U †
i Λ(UiρU

†
i ) ◦ Ui

)
. (3.11)

Equation 3.8 stated that if a quantum channel behaves as a depolarizing channel,
the average gate fidelity can be extracted. It seems that a twirl of Λ(ρ) over the
Haar measure is a depolarizing channel [26]. The proof of this statement is beyond
the scope of the thesis.

3.3 The one qubit Clifford group C1
In general, the n-qubit Clifford group Cn is the normalizer of the Pauli group (Pn)
[26]:

Cn = {U ∈ U(2n)|σ ∈ ±Pn =⇒ UσU † ∈ ±Pn}. (3.12)

The above statement means that any one-qubit unitary operator with this prop-
erty is an element of the Clifford group C up to a global phase eiϕ. A normalizer
maps elements of a certain group to it self under conjugation. The action of U ∈ C1
is completely determined by the images of X and Z, UXU † and UZU † must anti-
commute. Let’s start with X, the operator can go to any element of ±P1, or all the
six directions in three-dimensions. But Z can only go to ±P1 \{±UXU †}, or four
directions in three-dimensions when one axis is already fixed. Hence |C1| = 6 × 4 =
24. When starting in the ground or excited state of a qubit, Clifford rotations on the
Bloch sphere always end up in an eigenstate of a Pauli operator. One-qubit gates
of the Clifford group are basically combinations of π and π/2 pulses. In addition,
the Hadamard (H) and phase gates H are generators of the Clifford group. This
can easily be demonstrated: HXH† = Z, HZH† = X, and SXS† = Y , SZS† = Z.
Hence, the H and S gates with their variants are also members of the Clifford group.

So, why Cliffords? First, the Gottesman – Knill theorem says that circuits of
Clifford gates are easy to simulate classically [25]. What makes them convenient for
data processing and analysis. Cliffords enables the scalability of RB experiments,
where the inverse of the first m operators needs to be calculated efficiently. Second,
the Clifford gates have the property that errors introduced during their application
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do not propagate throughout the entire computation [30]. Errors tend to stay local
in Clifford circuits. This property is fundamental to the efficiency of quantum error
correction schemes based on the stabilizer formalism. In a Clifford circuit, all gates
belong to the Clifford group, which consists of unitary operations that map Pauli op-
erators to Pauli operators under conjugation. Since Pauli operators represent local
errors (e.g., bit-flip, phase-flip, etc.) on individual qubits, Clifford gates transform
these local errors into other local errors.

At last, the Clifford group is a unitary 2-design. The averaging or twirl over the
Clifford group is discrete, and can be written as

∫
dU U †ΛU ∼ 1

K

∑
j

C†
jΛCj , (3.13)

and j = 1, ..., K where K is the number of gates in the Clifford group. Twirling
a quantum operation over the Clifford group (or any unitary 2-design) produces a
depolarizing channel:

1

K

∑
j

C†
jΛCj ≈ Λ(ρ) = pfρ+ (1− pf )

I

d
. (3.14)

In the sections above we derived a formula for the average gate fidelity in func-
tion of the depolarizing parameter. The derivation was under assumption that the
quantum channel was a depolarizing channel. The twirl of a random generated
Clifford circuit will always produce a depolarizing channel. Which is the
second important mathematical insight to understand the theoretical approach of
the RB protocol.

3.4 The standard Randomized Benchmarking protocol

3.4.1 Expected fidelity decay for random Clifford sequences

The following section derives the fidelity decay for random generated Clifford cir-
cuits, and are based on the derivations of Easwar Magesan [32, 33, 34, 35]. Assume
the superoperator Λij ,j the gate and time-dependent error for every Clifford gate,
the error for each Km sequence is given by

Sim = ⃝m+1
j=1

(
Λij ,j ◦ Cij

)
(3.15)

= Λim+1,m+1 ◦ Cim+1 ◦ Λim,m ◦ Cim ◦ ... ◦ Λi1,1 ◦ Ci1 (3.16)

Next, we define a new random superoperator
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Dij = Cij+1 ◦ ... ◦ Ci1 , (3.17)

associated with a new random Clifford gate D. The new superoperator satisfies

Cij = Dij ◦D
†
ij−1

, (3.18)

since Cij ◦ C
†
ij

= 1. Inserting D in equation 3.15 gives

Sim = Λim+1,m+1 ◦Dim+1 ◦D
†
im

◦ Λim,m ◦Dim ◦D†
im−1

◦ ... ◦D†
i1
Λi1,1 ◦Di1

= Λim+1,m+1 ◦⃝m
j=1

(
D†
ij
Λij ,j ◦Dij

)
. (3.19)

Next, we introduce the average sequence operation

Sm =

∫
im,...,i1

1

Km
Sim ≈ 1

Km

Km∑
im

Sim ,

where we use the discrete representation in the Clifford group. Starting in state
|ϕ⟩, the fidelity of a single sequence is given by Tr[EψSim(ρψ)], which equals the
measurement fidelity from equation 2.33, where Eψ is a POVM element. According
to [32], a perturbative expansion of the error superoperator can be performed to
isolate the mean value Λ from a small perturbative part

Λij ,j = Λ+ δΛij ,j . (3.20)

A zeroth-order approximation corresponds to Λij ,j = Λ, where only gate and
time-independent errors are considered. A first-order approximation yields one gate
and time-dependent error in the m+1 sequence. When increasing the order to k =
m+1, all the gate and time-dependent errors of the m+1 gates in the sequence are
taken into account. The average sequence fidelity of the k-th order is given by

F (k)
seq (m,ψ) = Tr

[(
m+1∑
k=0

Sim

)
(ρψ)Eψ

]
. (3.21)

The zeroth-order approximation

Consider the zeroth-order approximation, where we assume gate and time-independent
errors Λij ,j = Λ. According to [33, 32, 35], the independent elements (D†

ij
◦Λij ,j◦Dij )

from equation 3.19 corresponds to the average channel superoperator, depicted in
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equation 3.1. The averaged sequence in the zeroth-order approximation is therefore
given by

S(0)
m =

∫
im,...,i1

1

Km
Λ ◦ Λave ◦ ... ◦ Λave (3.22)

≈ ⟨⟨Eψ|Λ ◦ (Λave)◦m|ρψ⟩⟩, (3.23)

where the superoperator Λ is absorbed into the measurement Eψ [7]. Remember,
that the average sequence operator results in the depolarizing channel operator λave
= Λdep for unitary 2-designs, such as the Clifford group. Eventually, the fidelity
decay can be extracted by calculating the sequence fidelity of the average sequence
in the zeroth-order approximation:

F (0)
seq(m,ψ) = Tr

[
S0
m(ρψ)Eρ

]
= Tr

[
Λ ◦ (Λave)◦m(ρψ)Eψ

]
= Tr

[
Λ
(
pρ+ (1− p)

I

d

)◦m
Eψ

]
= Tr

[
Λ
(
pρ+

I

d

)
pmEψ

]
+Tr

[
Λ
(I
d
Eψ

)]
= A0p

m +B0, (3.24)

where A0 and B0 absorb the SPAM errors. Note, that the depolarizing param-
eter extracts the fidelity and indicates the probability for the quantum channel to
stay in the initial state. The substitution pf = 1 - p is already considered in equation
3.24 with p = pf .

Equation 3.24 shows the strength of RB protocols, the SPAM errors due to the
imperfections of the initial state ρψ and measurement Eψ are encapsulated in the
constants A0 and B0. In addition, the depolarizing parameter is isolated, not influ-
enced by the SPAM errors. If there are no SPAM errors, the “visibility window” is
given by [B0, A0+B0] = [0.5, 1.0], graphically depicted in figure 3.2. Hence, the A0

and B0 parameters are an indication of the influence of SPAM errors or the quality
of the experimental setup, which is one of the major advantages of RB compared
with QPT.

Overall, the RB protocol can be summarized with three important mathematical
insights:

1. If a quantum channel behaves as a depolarizing channel, the average gate
fidelity can be extracted:

F g = p+
1− p

d
.
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Figure 3.2: Zeroth-order approximation for the fidelity decay F
(0)
seq(m,ψ) = A0p

m +
B0. The fidelity of the initial state saturates to B0 = 0.5 when the quantum state
is a fully mixed state, due to the increasing number of depolarizing steps Λm .
Source: Xue, X. (TUDelft) [7]

2. The twirled operation of a unitary 2-design, such as the Clifford group, is a
depolarizing channel:

1

K

∑
j

C†
jΛCj ≈ Λ(ρ) = pρ+ (1− p)

I

d
.

3. Gate and time-independent errors lead to an exponential decay of the fidelity:

F (0)
seq(m,ψ) = A0p

m +B0 (3.25)

where the depolarizing parameter p indicates the probability of staying in the
initial state.

The first-order approximation

Let’s add a gate and time-dependent error to the random generated sequence ofm+1
Clifford gates. A gate-dependent error is fixed in the sequence on a certain gate.
However, a time-dependent error propagates to different positions in the sequence.
Hence, m+1 first-order perturbation terms are linked to the different positions of the
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time-dependent error. We refer to Easwar Magesan [33] for the math, the first-order
fidelity decay eventually becomes

F (1)
seq(m,ψ) = A1p

m +B1 + C1(m− 1)(q − p2)pm−2, (3.26)

where A1, B1, and C1 absorb the SPAM errors. The extra term q - p2 can be seen
as a measure of the gate dependence of the errors. Magesan stated that second-order
approximations and higher can be neglected if the variation of the noise is smaller
than 1/(m+ 1). In the next chapter, both zeroth and first-order approximation are
compared to extract the average gate fidelity.

3.4.2 The standard Randomized Benchmarking protocol

The experimental implementation of an SRB protocol can be summarized as follows
[15]:

1. For a set of sequence lengths m ∈ {m1,m2, ...mM}

2. Generate n sequences (number of samples) of m Clifford gates and for each
sequence G = Gm...G2G1:

(a) Prepare the state |ρ⟩⟩ which is the pure state |0...0⟩

(b) Apply G

(c) Apply Ginv = G†

(d) Measure ⟨⟨0..0|GinvG|ρ⟩⟩ many times (k) to estimate the survival rate

F
(0,1)
seq (m,ψ). With k, the number of shots per sequence.

The total random generated sequences N is therefore equal to N = M × n

3. Average over all n samples for each length m to obtain f(m)

4. Fit the model f(m) = Apm +B to extract p =
d.F g−1
d−1

The experimental procedure is schematically shown in figure 3.3. An RB exper-
iment is nothing more than a Monte-Carlo simulation where a random sampling of
Clifford sequences extracts the average gate fidelity.
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Figure 3.3: Experimental implementation of an RB protocol as mentioned in the
text. Source: Itoko, T. et al. [15]

3.5 Interleaved Randomized Benchmarking

The last section covers the theoretical background of the interleaved RB protocol.
The IRB is a useful tool to determine the estimated gate error of a certain Clifford
operator [16, 17]. An IRB protocol is twofold: first, an SRB experiment is performed
to extract the depolarizing parameter. Second, an IRB experiment is executed to
extract the depolarizing parameter of the interleaved sequences with a certain Clif-
ford gate, shown in figure 3.4. The ratio of both depolarizing parameters, gives us
an estimation of the Clifford’s gate error.

Assume C the gate we want to investigate (target gate). The first step is to
interleave the target gate in the random generated sequences. The superoperator
representing the interleaved sequence is given by

Vim = Λim+1 ◦ Cim+1 ◦
(
⃝m
j=1

[
C ◦ ΛC ◦ Λij ◦ Cij

])
, (3.27)

where ΛC is the superoperator encapsulating the error of the interleaved gate C.
Measuring each sequence Tr

[
EψVim

]
gives the same fidelity decay from the previous

section. Let pC be the depolarizing parameter from the interleaved sequences. The
estimated gate error of the target gate is therefore given as

restC =
(d− 1)(1− pC/p)

d
, (3.28)

which is equal to rC = 1 - F C and F C the average fidelity extracted through the
interleaved sequences. According to [16], restC must lie in the range [restC - E, restC +
E], and
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E = min

{
(d−1)[|p−pC/p|+(1−p)]

d
2(d2−1)(1−p)

pd2
+ 4

√
1−p

√
d2−1

p .
(3.29)

If Λ is depolarizing, E = 0, and above bounds are an overestimation of the gate
error [16]. The simulations performed in the next chapter use the IRB protocol to es-
timate the gate error of a native gate in the quantum environment of the experiment.

Figure 3.4: (a)-(b) Sequences for SRB and IRB protocols. (b) A target gate (green)
is interleaved in random sampled Clifford gates (orange). The inverse gate (red) is
attached at the end to return the initial state |ψ⟩.
Source: Magesan et al. [16]
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Chapter 4

Simulations of the Standard and
Interleaved Randomized
Benchmarking experiments

Chapter 4 covers the simulations of SRB and IRB protocols using the IBM quantum
environment and Qiskit, an open-source Python package from IBM [18]. The first
part of this chapter outlines the code we use to simulate the RB protocols. So, the
results obtained can be scrutinized in the most transparent way. The simulations
are executed exclusively in a local environment. The local environment is used to
test and generate the RB protocol. Therefore, backends simulate a quantum envi-
ronment on our personal computer. The IBM quantum environment also provides
non-local backends to execute the code on real quantum computers at IBM’s facil-
ities, but we shall not use them due to the costs involved. The simulations aim to
gain experience with RB protocols and Qiskit and see how a certain gate performs
on a quantum computer.

4.1 Code outline

A python class ONEQ RBClass executes the SRB and IRB experiments on a given
backend and can be consulted in Appendix D.2. The following class parameters set
up the experiment:

1. circuit lengths:
List the number of gates of each circuit m, e.g., [m1, m2, m3, m4, m5] = [5,
10, 50, 100, 250].

2. sample amount:
Number of sequences with a given lengthm that needs to be generated. Hence,
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the total number of sequences N in an RB experiment is N = circuit lengths
× sample amount = M × n.

3. seeds:
A list of length N , filled with integers, representing the generated sequences.
Each seed value corresponds to a sequence of generated gates for a given ran-
dom number generator, i.e., a seed. So, if you provide the same seed twice,
you get the same sequence of quantum gates twice. In this way, each sequence
is randomly composed and the Monte-Carlo simulation still holds so that each
experiment can be repeated exactly. This gives a major advantage for re-
searchers to repeat an RB experiment with different experimental parameters
and conditions to see how the quantum computer behaves.

4. initial state:
To simulate different or mixed initial states of the quantum computer, the class
parameter initial state can be set as a Qiskit QuantumCircuit object to define
the initial quantum state of each sequence. The quantum circuit depicting the
initial state is added to the front of the randomly generated sequences.

5. Backend
A backend is a code or server that represents the quantum environment of the
quantum computer. In Qiskit, a backend can be used on local devices (personal
computers) and IBM servers. The fake provider package [?] contains backends
(python files) to simulate the behavior of the real quantum computers. The
Fake1Q is the default backend and mimics a one-qubit quantum computer.
Hence, a small quantum computer can be simulated on a local device like our
personal computer. A second option is to use the Aer package [36] to build
a custom-made noise model. For example, it contains a depolarizing error,
thermal relaxation error, etc. At last, the sequences can be executed on a
real quantum computer by calling the IBM Runtime service [37]. The callable
quantum computers depend on your current access plan at the IBM Quantum
Platform. However, we are using the free access plan, and the RB experiment
requires a lot of time due to the number of different circuits that need to be
measured. Therefore, we shall not use the Runtime service, due to the limited
access to the servers.

6. interleaved:
Class parameter is a boolean. Set True to generate random sequences for an
interleaved RB simulation.
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7. interleaved gate:
Class parameter is a qiskit.circuit.library.standard gates object that indicates
the gate to be interleaved for IRB experiments.

8. state fidelity:
Class parameter is a boolean. Set True to measure the process fidelity of the
gate sequences instead of the shot measurement. Therefore, two density matri-
ces are saved at the beginning and end of each sequence, following equations
2.23 and 2.27. Note that the cleanest way to describe a quantum state is
through statevectors. However, we need noise models to simulate the quan-
tum environment and the qubit’s behavior, which leads to mixed states in the
quantum channels/sequences. Hence, density matrices are used to calculate
the process fidelity if asked.

The function random clifford circuit samples random Clifford gates and calcu-
lates the inverse circuit to attach at the end of the gate sequence. Then, Qiskit’s
transpiler, transpiles the generated circuit to a circuit that can be run on the given
backend. The circuit is, therefore, decomposed into the backend’s native gates. The
transpiler is also an optimization, so the optimization level is set to zero to prevent
the transpiler from returning one identity gate. Figure 4.1 shows the generated and
transpiled quantum 5-gate circuit for the default Fake1Q backend.

As shown in figure 4.1, a 5-gate circuit has actually ten gates. The reason for
this is that Qiskit mirrors the random generated circuit. The first five gates are
randomly chosen by a certain seed, the other five circuits mirror the first five. The
length of each sequence doubles, so the outcome is always the initial state in a
perfect simulation. In real RB experiments, just one m+1 gate is defined such that
the circuit returns the initial quantum state. The set of gates to sample the random
generated circuits consists of both Pauli’s and generators of the Clifford group:

F = {X,Y, Z,H, S, S†,
√
X,

√
X

†
}. (4.1)

The matrix representation of the Clifford gates can be consulted in appendix A.1.
An RB simulation can be set up by defining an ONEQ RBClass Class object, with
the corresponding class parameters to characterize the simulation and experimental
environment. Eventually, the function execute randomized benchmarking samples
and measures the sequences to gather the results. The measurement fidelity is the
probability of measuring the initial state (|0⟩-state by default) and is defined as the
ratio of the number of counts the initial state returns over the number of shots.
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(a) Random generated quantum circuit

(b) Transpiled quantum circuit

Figure 4.1: The Random quantum circuit is generated with lucky number seed =
42. The Fake1Q backend uses native gates: U1(λ)=U(0, 0, λ), a single-qubit rotation
about the Z axis. U2(ϕ, λ) = U

(
π
2 , ϕ, λ

)
, a single-qubit rotation about the X and Z

axis, and U3(θ, ϕ, λ) = U
(
θ, ϕ, λ

)
, a generic single-qubit rotation gate with 3 Euler

angles. For example, in this backend, the Hadamard gate (H) can be transpiled asH
= U2(0, π). The matrix representation of these gates can be consulted in appendix
A.3.

4.2 Simulations of standard RB experiments

4.2.1 The AER noise models

The first SRB simulation uses a noise model from the Aer package to build a custom
noise model. The Aer custom noise backend transpiled the circuit in U1,2,3 gates
and preserves the X gate, depicted in figure 4.2.

Figure 4.2: Transpiled circuit (seed = 42) with the Aer custom noise backend. Here,
the X and even the

√
X gate is a native gate and must not be transpiled. Similar to

the Fake1Q backend, the Aer uses U1, U2, and U3 gates. The “rho1” object at the
beginning of the circuit is where the first density matrix is saved. The second density
matrix is determined at the end of the circuit when the state fidelity is calculated.

To build up the noise model, the native gates U2 and U3 will be linked to certain
errors. First, a depolarizing error with p = 0,01 is attached to the U2 gate. So,
with a one percent probability, the U2 gate returns an identity gate (mixed state of
gates). Second, a thermal relaxation error is linked to the U3 gate. The thermal
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relaxation error requires the T1 time, T2 time, and t gate time parameters, satisfying
the condition T2 ≤ 2T1. The noise model uses a T1/T2 ∼ 102 ratio and the default
gate time of 100. The code can be consulted in Appendix D.1.

The data acquired by running the experiment is given in appendix C.1, to illus-
trate how the returned data file could look like. The means of the samples associated
with a certain circuit length are used to fit the zeroth and first-order approxima-
tion of the fidelity decay. Both the average fidelity and the average length of the
transpiled circuits are determined within the samples to acquire those mean values.
Remember the zeroth and first-order approximation is given by

F (0)
seq(m) = A0p

m +B0 (4.2)

F (1)
seq(m) = A1p

m +B1 + C1(m− 1)(q − p2)pm−2. (4.3)

To eventually determine the average gate fidelity F g(ρ) = p + (1−p)
d , propagation

of uncertainty [38] is applied to calculate the accuracy of the average gate fidelity.
The standard deviation is therefore given by

σF =

∣∣∣∣dF gdp

∣∣∣∣σp
=
σp
2
, (4.4)

where d = 2n = 2. Figure 4.6 shows the results and fits of the SRB simulation
with the Aer custom noise model, fits are generated by the Scipy curve fitting tool.
According to table 4.1, p0 < p1, the same holds for their accuracies, but the R2-value
of the first order approximation is lower, so might say also less reliable compared
to the zeroth order approximation. Calculating the average gate fidelity for both
approximations gives

F
(0)
g = 0.99699± 9.0e− 5 (4.5)

F
(1)
g = 0.999982± 1.5e− 6 (4.6)

Although both results look very similar, the fidelity obtained in the first-order
approximation is an order of magnitude more accurate compared to the zeroth-order
approximation. This would be an astonishing advancement of the device’s accuracy
in real experiments. The same can be done by obtaining the state fidelity, shown in
figure 4.7. The results are gathered in table 4.2, where it is immediately noticeable
that the first-order approximation gives a p-value equal to one. The state fidelity
method is a more mathematical way of obtaining fidelity. Therefore, the outcome
will be higher than the simulations where the fidelity is obtained by measuring the
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quantum circuits. A p = 1 is only possible in pure mathematical simulations and is
not physical, simulations where the circuits are measured will always result in p <
1 and F g < 1. Note, that the fidelity decay saturates after 600 native gates, where
the final quantum state is a mixed state. The probability for measuring a 0 or 1
is equally distributed and therefore equals 0,5. The average gate fidelity eventually
becomes

F
(0)
g = 0.99695± 9.0e− 5, (4.7)

where the first-order approximation is left out, due to the fact this is a non-
physical result.

Table 4.1: Zeroth and first-order fidelity decay approximation for measurement fi-
delity, for the Aer custom noise model.

Measurement fidelity

order of approxi-
mation

p-value p accuracy
(std)

R2-value

0th approx. (p0) 0.99398 0.00017 0.999
1st approx. (p1) 0.999964 0.000030 0.984

Table 4.2: Zeroth and first-order fidelity decay approximation for state fidelity, for
the Aer custom noise model.

State fidelity

order of approxi-
mation

p-value p accuracy
(std)

R2-value

0th approx. (p0) 0.99393 0.00018 0.999
1st approx. (p1) 1.0 ∼ 10−11 0.983

The next question arises whether the std depends on the number of sequence
lengths in the simulation. Let’s run the same simulation with 13 sequence lengths
([5, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 450, 600]) and seed = list(range(130)).
The measurement fidelity returns p-values with higher accuracy, shown in table 4.3,
although the R2-value for the first-order fit is decreased. The noise model uses uni-
tary matrices to calculate the final quantum state, where some errors are added with
a certain probability. But, still, the required calculations are done with 2x2 matri-
ces, in the one-qubit experiments. Our personal computers are really performant in
computing with 2x2 matrices. The number of gates we could add in a sequence is
almost endless, and so is the number of lengths. The point of these simulations is
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to work with a fixed number of sequence lengths and seeds, so the simulations are
comparable, and by tuning the noise parameters, we can see the simulated behavior
of a quantum channel with a given error. In real devices, the thermal relaxation
time (T1) limits the number of gates that can be executed on the qubit. Where the
accuracy can be increased by taking more intermediate lengths.

Table 4.3: Zeroth and first-order fidelity decay approximation for state fidelity, for
the Aer custom noise model with 13 different sequence lenghts.

State fidelity

order of approxi-
mation

p-value p accuracy
(std)

R2-value

0th approx. (p0) 0.99402 0.00013 0.999
1st approx. (p1) 0.9999986 0.0000030 0.926

Noise model with p = 0,05 on SX and U1 gate and thermal relaxation
error on U3

Another noise model where a 5% depolarizing error is attached to the SX and U1
gate. Along with the thermal relaxation error on the U3 gate from the previous
simulation. The results for the zeroth order approximation are gathered in table
4.4. The first-order approximation is ignored due to the low R2 value: R2 = 0,515.

Table 4.4: Results for the zeroth fidelity decay approximation for measurement
fidelity, for the Aer custom noise model with a 5% depolarizing probability on the
X and U1 gate.

Measurement fidelity

order of approxi-
mation

p-value p accuracy
(std)

R2-value

0th approx. (p0) 0.97754 0.00060 0.999

The average fidelity for the zeroth order approximation becomes

F
(0)
g = 0.98877± 3.0e− 4, (4.8)

and so the average fidelity decreases with one order of magnitude (from 0,99 to
0,98) compared to the previous noise model. The zeroth order fidelity decay, de-
picted in figure 4.8, is clearly steeper compared to the first noise model in figure 4.6,
which results in a lower p-value and hence, average fidelity.
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FakeSherbrooke Backend

Let us investigate the average gate fidelity of a real quantum computer. The Sher-
brooke, for example, is a real 127-qubit quantum computer, which can be used via
the IBM quantum platform. The coupling map of the Sherbrooke is depicted in
figure 4.4. The available quantum computers at the IBM quantum platform are all
127-qubit quantum computers. Therefore, we chose one of them to investigate on
our personal computer via the FakeSherbrooke backend, a backend that mimics the
behavior of the actual Sherbrooke quantum computer. The focus will be on the
performance of the first qubit since the SRB is a one-qubit protocol. The other 126
qubits are kept idle and are so-called ancilla qubits (or auxiliary qubits), which do
not depend on the input state.

The fakeSherbrooke backend transpiles the seed = 42 circuit in native gates: X,
SX and Rz (shown in figure 4.3). When performing an extensive RB experiment
with parameters: lengths = [5, 10, 50, 100, 150, 200, 250, 300, 350, 450, 600]; sam-
ples = 20 and seeds = list(range(220)). The lowest measured fidelity is in the range
of 0,86 - 0,88 as seen in figure 4.9, and the expected saturation point at 0,5 can not
be reached. Because the backend represents a real quantum computer, the fidelity
can only be extracted through measuring the circuit.

Figure 4.3: Transpiled circuit for seed = 42, with the FakeSherbrooke backend. Only
the first four qubits are shown, other ancilla qubits are ignored.

Table 4.5: Zeroth and first order approximation for the FakeSherbrooke backend.

Measurement fidelity

order of approxi-
mation

p-value p accuracy
(std)

R2-value

0th approx. (p0) 0.9999684 0.000028 0.999
1st approx. (p1) 0.9999 0.0037 0.999

The p-values are gathered in table 4.5. Both approximations gives a p-value in
the order of 0,9999 which is much higher compared to the noise models, what we
expected from the fidelity decay in figure 4.9. Along with the high p-values,
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Figure 4.4: Coupling map of IBM’s Sherbrooke 127-qubit quantum computer. The
color of the qubits represents the T1 time. For the first qubit q(0): T1 = 482,76 µs.
The connections between the qubit give an indication of the ECR error. The ECR
gate is an echoed RZX(π/2) gate. This is equivalent to a CNOT up to single-qubit
pre-rotations, where the echoing procedure mitigates some unwanted terms in an
experiment. Source: IBM quantum [18]

the R2-value for both approximation equals 0,999 which results in a high ac-
curacy, especially for the zeroth order approximation. The average gate fidelity
becomes

F
(0)
g = 0.9999842± 0.000014 (4.9)

F
(1)
g = 0.9999± 0.0019, (4.10)

where the accuracy for the zeroth order approximation is lower than the returned
digits for the p-value in the Scipy package. It seems that the Sherbrooke is an ex-
tremely performant quantum computer. The next section will again rely on noise
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models to determine the gate error of a specific gate.

4.3 Simulations of interleaved RB experiments

An Interleaved RB experiments aims to extract the estimated gate error restC of a
target gate C. The sequences of quantum gates are interleaved with the target gate,
to perform an RB experiment on the interleaved sequences. The ratio of the p-values
from the SRB and IRB simulations can be exploited to estimate the gate error of
the target gate given by

restC =
(d− 1)(1− pC/p)

d
, (4.11)

within the range [restC - E, restC + E], as seen in chapter 3. The noise model with
the 5% depolarizing error on the SX and U1 gate, and thermal relaxation error on
the u3 gate is used to simulate the effectiveness of IRB experiments.

Interleaved gate: SX

First, The SX gate is interleaved in the same sequences from the standard RB
experiments. An example of an interleaved sequence and transpiled sequence is
given in figure 4.5.

(a) Interleaved circuit with target gate: SX

(b) Transpiled quantum circuit

Figure 4.5: Interleaved quantum circuit and transpiled circuit with seed = 42. The
SX gate is a native gate in the Aer package.
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Table 4.6: Zeroth approximation for the IRB simulation with target gate: SX.

Measurement fidelity

order of approxi-
mation

p-value p accuracy
(std)

R2-value

0th approx. (p0) 0.98715 0.00051 0.999

The results are gathered in 4.6 and depicted in figure 4.10. We only consider the
zeroth order approximation to be comparable with the SRB experiment with the
same noise model. The decay parameter is higher compared with the standard RB
simulation, which indicates that the thermal relaxation error is the most dominant
error in the circuits. The estimated error rate is restC = -0,0049 with bounds [-0,021;
0,011]. A negative error rate is, of course, not a physical result. The depolarizing
parameters in real IRB experiments, seen in the literature, are always lower com-
pared to the SRB experiments. Although a specific gate can be really performant
compared to the other gates in the experimental setup. I assume that the ran-
domization (and the Monte-Carlo sampling) of the sequences, in the averaging (or
twirl ), results in a proper depolarizing channel, where the depolarizing parameter
is higher compared with interleaved sequences. However, this is a topic that needs
more scrutiny in further research. Here, in a custom noise model, the specific gate
errors can differ from each other in a way the error rate for a low-error gate becomes
negative.

Interleaved gate: S

The S gate is not a native gate in the backend, the gate is transpiled in a U3(θ, φ, λ)
= U3(−π/2,−π/2, π/2). The fidelity decay is shown in figure 4.11. The decay pa-
rameter in the zeroth order approximation is shown in table 4.7, where the p-value is
lower compared to the SRB simulation. The fidelity decay is depicted in figure 4.11.
Executing the IRB simulation results in an estimated error rate of = 0,0066 with
bounds [0; 0,024]. To conclude, the U3 has a maximum estimated error rate of 2,4 %.

Table 4.7: Zeroth approximation for the IRB simulation with target gate: S.

Measurement fidelity

order of approxi-
mation

p-value p accuracy
(std)

R2-value

0th approx. (p0) 0.9646 0.0015 0.999
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4.4 Simulations: Fidelity decays

Figure 4.6: SRB simulation. Noise model with p= 0,01 on U2 and thermal relaxation
error on U3. Measurement fidelity. Simulation parameters: lengths = [5, 10, 25, 50,
100, 150, 200, 250, 300, 350]; samples = 10; seeds = list(range(100))

Figure 4.7: SRB simulation. Noise model with p= 0,01 on U2 and thermal relaxation
error on U3. State fidelity. Simulation parameters: lengths = [5, 10, 25, 50, 100,
150, 200, 250, 300, 350]; samples = 10; seeds = list(range(100))
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Figure 4.8: SRB simulation. Noise model with p = 0,05 on U1 and SX, thermal
relaxation error on U3. State fidelity. Simulation parameters: lengths = [5, 10, 25,
50, 100, 150, 200, 250, 300, 350]; samples = 10; seeds = list(range(100))

Figure 4.9: SRB simulation. FakeSherbrooke backend with simulation parameters:
lengths = [5, 10, 50, 100, 150, 200, 250, 300, 350, 450, 600]; samples = 20; seeds =
list(range(220))
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Figure 4.10: IRB simulation on SX gate. Noise model with p = 0,05 on U1 and SX,
thermal relaxation error on U3. State fidelity. Simulation parameters: lengths = [5,
10, 25, 50, 100, 150, 200, 250, 300, 350]; samples = 10; seeds = list(range(100))

Figure 4.11: IRB simulation on S gate. Noise model with p = 0,05 on U1 and SX,
thermal relaxation error on U3. State fidelity. Simulation parameters: lengths = [5,
10, 25, 50, 100, 150, 200, 250, 300, 350]; samples = 10; seeds = list(range(100))
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Chapter 5

Practical implementation of a
Randomized Benchmarking
protocol

The last chapter covers the practical implementation of an RB protocol. From
a technical overview of the gate-controlled silicon quantum dots to the quantum
implementation of electron spin resonance, to link the hardware to the gate set.
Eventually, IQ-mixing provides the last step to implement a gate sequence on a real
quantum device. The ultimate goal is to have an RB protocol generating a random
sequence of gates with given lengths, where the last gate puts the quantum state
back in the initial state. That can be executed on the quantum hardware at Imec.

5.1 The quantum dot

A basic understanding of gate-controlled silicon quantum dots (SiQDs) is necessary
to understand the steps to go from SiQDs to full working qubits. The following
section briefly overviews the physics behind a gate-controlled quantum dot and how
it’s used to extract the spin-up fraction of an isolated electron. A Schematic circuit
of a single quantum dot is shown in Figure 5.1. A gate-controlled quantum dot con-
sists of a dot in the middle on top of the gate junction. The Fermi energy, i.e., the
chemical potential, can be tuned through the (plunger) gate [19]. The source/drain
junctions are located on opposite sites of the dot. When the Fermi energy matches
the quantum dot’s energy levels, a current flows through the dot. Hence, the current
can be changed in the dot by tuning the gate voltage.

The induced charge in the dot is given by the product of the dot’s capacitance
and potential difference. A capacitance matrix Cij relates the induced charge on
each of the electrodes to the potential difference Vj :
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Figure 5.1: Schematic circuit of a single quantum dot, with the capacitance CS,D
and resistance RS,D of the source and drain. The plunger gate, with capacitance
CG tunes the Fermi level, i.e., the chemical potential in the dot.
Source: Fuhner, C. (University of Hannover) [39]

Qi =

n∑
j=0

CijVj . (5.1)

The j indices relate to the electrodes. The quantum dot, source, drain, and gate
are denoted as j = 0, 1, 2, and 3, respectively. According to [40, 41] the electrostatic
potential is given by

V0(Q0) =
1

CΣ

(
Q0 −

n∑
j=1

C0jVj

)
. (5.2)

The total capacitance is defined as CΣ =
∑n

j=1C0j . The induced charge Q =
−eN , with N the number of electrons in the dot. The electrostatic energy of an
isolated dot U(N) can be found by taking the integral of the electrostatic potential:

U(N) =

∫ −eN

0
V0(Q0) dQ0 =

(eN)2

2CΣ
+ eN

(
n∑
j=1

C0j

CΣ
Vj

)
, (5.3)

where the first term is due to Coulomb repulsion, the second is the electrostatic
energy of charges in the potential. The total energy E(N) is the sum of the single-
particle energies εi and the electrostatic energy and is given by

E(N) =
N∑
i=1

εi +
(eN)2

2CΣ
+ eN

(
n∑
j=1

C0j

CΣ

)
, (5.4)
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Figure 5.2: Schematic overview of the coulomb blockade. a) The chemical potential
can be shifted with respect to the source/drain potential by alternating the gate
voltage VG. b) Coulomb resonances and blockades in function of the gate voltage.
The plunger voltage, resulting in current ISD at the point with the red slope, depicts
the potential state in the SET. c) A Coulomb staircase is the result of the variation
of the bias voltage VSD.
Source: Fuhner, C. (University of Hannover) [39]
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according to the constant interaction model [40]. Next, the chemical potential is
defined as the energy needed to add the Nth particle to the dot

µN = E(N)− E(N − 1) = ϵN +
e2

CΣ
(n− 1/2) + e

(
n∑
j=1

C0j

CΣ
Vj

)
, (5.5)

where we assume the difference between single-particle energies εN+1 - εN can be
ignored. At last, the energy to add one electron to the dot is given by the difference
of µN+1 and µN :

µN+1 − µN =
e2

CΣ
. (5.6)

Due to the coulomb blockade, a quantum dot can only contain discrete levels
(i), containing N + i electrons. A schematic representation is depicted in Figure
5.2. By variating the gate voltage, the number of electrons can be tuned to a stable
situation where there is no current and N electrons are captured in the dot.

5.2 A physical qubit

SiQDs provide a platform for isolating and manipulating electrons and are the fun-
damental devices for creating physical qubits or spin qubit devices. The qubit |0⟩-
and |1⟩-states are obtained by applying an external magnetic field B = Bêz. The
Hamltonian of an electron due to the electron spin in an external magnetic field is
given by Ĥ = -µ̂.B, and µ̂ = -geµBS the magnetic (dipole) moment, where ge is the
electron g-factor and µB = eℏ

2me
the Bohr magneton. The direction of the electron

spin is opposite to the direction of the magnetic dipole moment. The single electron

spin Hamiltonian can be rewritten as Ĥ =
(
geeℏ
2me

)
B.S = ω̂.Ŝz, where ω̂ = geeB

2me
êz

and Ŝz = 1
2ℏσ̂z. A general expression for the energy of an electron in an external

magnetic field (also known as Zeeman splitting) can be written as

E = geµBmsB = ±1

2
ℏω, (5.7)

where ms = ±1/2 is the spin magnetic quantum number, according to [1, -1] the
eigenvalues of the σ̂z-operator. The lowest energy level, ms = -1/2, is obtained when
the magnetic field is aligned with µ̂ and counter-aligned with S. The lowest energy
state is therefore referred to as the spin-down or |0⟩-state (the ground state). When
ms = 1/2, the electron spin is aligned with the magnetic field and counter-aligned
with µ̂, which results in the highest energy state. The ms = 1/2 energy state is
sometimes referred to as the spin-up or |1⟩-state. A schematic representation of a
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physical qubit is depicted in figure 5.3.

Figure 5.3: Schematic representation of a physical qubit in SiQDs. The |1⟩-state or
spin-up state is aligned with the external magnetic field. The |0⟩-state is counter-
aligned and therefore the ground state. A π/2-pulse brings the qubit in superposition

where |Ψ⟩ = |0⟩+|1⟩√
2

. Adapted from: Beckers, A. (ResearchGate) [42].

As discussed in the previous section, changing the gate voltage shifts the available
energy levels. When a block curve with alternating a positive and negative period is
applied to the gate. The positive voltage period induces the migration of electrons
from the reservoir to the dot, i.e., loading the dot. When the negative voltage is
applied, only spin-up particles in the |1⟩-state can migrate back to the reservoir,
as shown in Figure 5.4. This results in a displacement of charge which induces a
change of current that can be measured through a Single Electron Transistor (SET).

A SET, as shown in figure 5.5, serves as a charge sensor. A distinction is made
between the plunger voltage (Vp) and the top gate voltage (Vg). The plunger voltage
regulates the chemical potential in the quantum dot and, hence, captures an isolated
electron in the spin-up or spin-down state. The top gate controls the chemical po-
tential of the reservoir and thereby determines the number of electrons that can
accumulate on the SET. The gate voltage is chosen to induce a current in the SET
with a steep slope, depicted in figure 5.2 b). Therefore, the sensitivity of the current
through the SET for charge displacement is set maximally. The SET becomes a
highly performant charge sensor, enabling the detection of individual electrons.
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Figure 5.4: Graphical representation of the load and read period of the quantum
dot. a) The energy level of spin-down (|0⟩) particles is too low to migrate back to
the reservoir. No current is measured. b) The migration of spin-up (|1⟩) particles
to the reservoir in the read period results in a current, measured in a SET.

Figure 5.5: The single electron transistor (SET). a) Schematic representation of a
SET with the quantum dot (QD) in the middle and left and right barrier gates on
both sides (LB and RB). On to the top gate (ST). b) Top-down false-color SEM
image of the charge sensor. The top gate accumulates the charge (Vg), and (Vp)
regulates the energy levels in the quantum dot. The location of the quantum dot is
indicated with the red circle. Adapted from: Dumoulin Stuyck, N. (KUL) [41]
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5.3 Electron spin resonance: Applying quantum gates

So far, an electron with a specific quantum state is captured in a quantum dot, of
which the spin-up fraction can be measured. The next step is to manipulate the
isolated electron, in a way quantum gates can be performed on our qubit. Coherent
driving rotates the qubit around the (x,y)-plane (the polar angle), so the qubit goes
from the spin-up to the spin-down state and back. In this way the qubit can be
brought into superposition, or a Z-gate (spin-flip) can be applied. The electron
spin resonance (ESR) technique is a useful tool to perform coherent driving on an
isolated electron and also provides the possibility to perform phase shifts in the
(x,y)-plane, such that the axis of rotation can be varied to perform other gates such
as X- and Y-gates. The derivations below show mathematically the necessary steps
to perform coherent driving on a qubit. The previous section derived the energy
and Hamiltonian for an isolated electron, where the Hamiltonian

Ĥ = −ℏωσ̂z
2

= −ℏω
2
(|0⟩ ⟨0| − |1⟩ ⟨1|), (5.8)

depicted the energy for an electron in an applied magnetic field. According to
the Schrödinger equation from 2.3 and the unitary propagator in equation 2.5, the
time evolution of a state |ψ(t)⟩ of a closed quantum system is described by

|ψ(t)⟩ = e−iHt/ℏ |ψ(0)⟩ , (5.9)

so the initial state of the qubit is given by |ψ(0)⟩ = e
iωt
2 |0⟩, and can be written

in the Bloch sphere representation from equation 2.2, with θ = π/2 and φ = −ωt.
The Hamiltonian represents a rotation around the êz-axis with Lamor frequency ω
[43, 44, 5]. The energy difference between the two states is given by

∆E = ℏω = geµBB0, (5.10)

where ω = gzµBB0

ℏ . Rotations between the |0⟩- and |1⟩-states are performed by
applying ∆E, the resonance energy of the spin qubit. The ESR technique uses an
oscillating magnetic field to generate radiofrequency waves with energy equal to the
resonance energy ∆E, so the qubit starts rotating. The oscillating magnetic field is
given by

B1 = B1 cos (ωpt+ ϕp)êx (5.11)

where ωp is the magnetic field frequency and ϕp a phase. Total Hamiltonian
from the previous section can be written as:
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Ĥ = −µ.B = |γ|S.B
= |γ0|ŜxBz + |γ1|ŜxBx

=
1

2
|γ0|Bzσ̂z +

1

2
|γ1|B1 cos (ωpt+ ϕp)σ̂x

=
ℏω
2
σ̂z +

ℏω1

2
cos (ωpt+ ϕp)σ̂x (5.12)

where ω1 = gµ1B1

ℏ . The oscillating magnetic field can be generated through a
radio wave antenna next to the SET. The Hamiltonian is twofold: the first part of
the Hamiltonian is time-independent and named the qubit Hamiltonian Ĥqubit. The

second part is time-dependent Ĥint, the interaction Hamiltonian. In the following
discussion, we will derive an expression for the quantum state at a certain time,
which is crucial for subsequently obtaining expressions for various gates that can
be applied to the spin qubit. The derivations are based on [45, 46, 43, 47, 44, 48].
Decomposition of the interaction Hamiltonian gives

cos (ωpt+ ϕp) =
1

2

[(
cos (ωpt+ ϕp)êx + sin (ωpt+ ϕp)êy

)
+
(
cos (ωpt+ ϕp)êx − sin (ωpt+ ϕp)êy

)]
, (5.13)

which is equivalent to taking two sources. Until now, the Hamiltonians were
written in the laboratory (LAB) frame. To continue, we go to the rotating frame,
so Ĥint is time-independent. Inserting the equation above gives:

Ĥ(t) =
ℏω
2
σ̂z +

ℏω1

4

[
cos (ωpt+ ϕp)σ̂x + sin (ωpt+ ϕp)σ̂y

]
+

ℏω1

4

[
cos (ωpt+ ϕp)σ̂x − sin (ωpt+ ϕp)σ̂y

]
, (5.14)

where
[
cos (ωpt+ ϕp)σ̂x+sin (ωpt+ ϕp)σ̂y

]
and

[
cos (ωpt+ ϕp)σ̂x−sin (ωpt+ ϕp)σ̂y

]
are the new frames of the new defined rotating frame. Replace the Pauli operators
with ladder operators σ̂+ and σ̂−, gives some advantages later in the derivations,
see Appendix B.1. The first frame can be rewritten as
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cos (ωpt+ ϕp)σ̂x + sin (ωpt+ ϕp)σ̂y =

 0 cos (ωpt+ ϕp)

cos (ωpt+ ϕp) 0



+

 0 −i sin (ωpt+ ϕp)

i sin (ωpt+ ϕp) 0



=

 0 e−i((ωpt+ϕp))

ei((ωpt+ϕp)) 0


= ei((ωpt+ϕp))σ̂+ + e−i((ωpt+ϕp))σ̂−, (5.15)

and by analogy, the second frame becomes

cos (ωpt+ ϕp)σ̂x − sin (ωpt+ ϕp)σ̂y = e−i((ωpt+ϕp))σ̂+ + ei((ωpt+ϕp))σ̂−. (5.16)

Inserting the new frames with ladder operators in the total Hamiltonian gives

Ĥ(t) =
ℏω
2
σ̂z +

ℏω1

4

[
ei((ωpt+ϕp))σ̂+ + e−i((ωpt+ϕp))σ̂−

]
+

ℏω1

4

[
e−i((ωpt+ϕp))σ̂+ + ei((ωpt+ϕp))σ̂−

]
. (5.17)

Next, a unitary propagator transforms the LAB frame into the rotating frame,
where the interaction Hamiltionan is time-independent. The unitary operator is
defined as [47, 48]

Û(t, 0) = e−i
1
2
ωptσ̂z = e−i

θ
2
σ̂z

= cos
(θ
2

)
Î − i sin

(θ
2

)
σ̂z, (5.18)

where θ = ωpt. The qubit’s quantum state in the rotating frame is therefore
given by

|Ψrot⟩ = Û |ΨLAB⟩ . (5.19)

The transformation of the Hamiltonian in the rotating frame is defined as [45, 48]
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Ĥrot = iℏÛ
∂Û−1

∂t
+ ÛĤLABÛ

−1 (5.20)

= i ˆ̇UÛ † + ÛĤLABÛ
†. (5.21)

The following steps derive the above equation. First, for unitary Û Û † = Î and
Hermitian operators, the inverse operator can be written as

Û−1 = Û † = ei
1
2
ωptσ̂z . (5.22)

Next, the first part of equation 5.20 becomes

iℏÛ
∂Û−1

∂t
= ie−i

1
2
ωptσ̂z

(
i
ωp
2
σ̂z
)
ei

1
2
ωptσ̂z

=
−ωp
2
σ̂z (5.23)

The second term of equation 5.20 gives

ÛĤLABÛ
† =

ℏω
2
Û σ̂zÛ

† +
ℏω1

4

(
ei(ωpt+ϕp)Û σ̂+Û

† + e−i(ωpt+ϕp)Û σ̂−Û
†
)

+
ℏω1

4

(
e−i(ωpt+ϕp)Û σ̂+Û

† + ei(ωpt+ϕp)Û σ̂−Û
†
)
, (5.24)

where the ladder operators are sandwiched between the unitary operators. Writ-
ing this out gives

Û σ̂+Û
† =

(
cos
(θ
2

)
Î − i sin

(θ
2

)
σ̂z

)
σ̂+

(
cos
(θ
2

)
Î + i sin

(θ
2

)
σ̂z

)
=
(
cos
(θ
2

)
Î − i sin

(θ
2

)
σ̂z

)(
cos
(θ
2

)
σ̂+ + i sin

(θ
2

)
σ̂+σ̂z

)
= cos

(θ
2

)2
σ̂+ + i sin

(θ
2

)
cos
(θ
2

)
σ̂+σ̂z + i sin

(θ
2

)
cos
(θ
2

)
σ̂zσ̂+ + sin

(θ
2

)2
σ̂zσ̂+σ̂z

= cos
(θ
2

)2
σ̂+ + i sin

(θ
2

)
cos
(θ
2

)[
σ̂+σ̂z − σ̂zσ̂+

]
+ sin

(θ
2

)2
σ̂+

= sin (θ)σ̂+ + i cos (θ)σ̂+ = eiθσ̂+, (5.25)

where we used [σ̂+, σ̂z] = 2 σ̂+, see Appendix B.1, and by analogy

Û σ̂−Û
† = e−iθσ̂−. (5.26)
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Inserting the above in equation 5.24 results in

ÛĤLABÛ
† =

ℏω
2
σ̂z +

ℏω1

4

(
ei(ωpt+ϕp)eiωptσ̂+ + e−i(ωpt+ϕp)e−iωptσ̂−

)
+

ℏω1

4

(
e−i(ωpt+ϕp)eiωptσ̂+ + e−i(ωpt+ϕp)e−iωptσ̂−

)
=

ℏω
2

+
ℏω1

4

(
ei2ωpteiϕp σ̂+ + e−i2ωpte−iϕσ̂−

)
+

ℏω1

4

(
e−iϕp σ̂+ + eiϕσ̂−

)
∼=

ℏω
2
σ̂z +

ℏω1

4

(
cos (ϕp)σ̂x − sin (ϕp)σ̂y

)
. (5.27)

In the second last line, the terms ei2ωpt and e−i2ωpt are ignored according to the
Rotating Wave Approximation (RWA) [43, 47]. Assuming Ω << ωp, the contribution
of the terms in the integral in equation 5.9 would be small enough and oscillating
so that they can be neglected. Putting it all together:

Ĥrot = i ˆ̇UÛ † + ÛĤlabÛ
†

= −ℏωp
2
σ̂z +

ℏω
2
σ̂z +

ℏω1

4

(
cos (ϕp)σ̂x − sin (ϕp)σ̂y

)
. (5.28)

If we now consider the resonance condition ω = ωp the Hamiltonian becomes

Ĥrot =
ℏω1

4

(
cos (ϕp)σ̂x − sin (ϕp)σ̂y

)
(5.29)

When ω ̸= ωp, coherent driving of the qubit would cause a precession movement,
resulting in low-quality gates and, hence, a decrease in the fidelity of the quantum
channel. The Hamiltonian in the rotating frame can further decomposed into

Ĥrot =
ℏω1

4

(
cos (ϕp)σ̂x − sin (ϕp)σ̂y

)
=

ℏω1

4
n̂.σ̂, (5.30)

where n̂ =
[
cos
(
ϕp
)
,− sin

(
ϕp
)
, 0
]
. Equation 5.9 can further be rewritten in

terms of the unitary rotation operator Ûrot, see A.2, so that the evolution of a state
|Ψ(t)⟩ becomes

|Ψ(t)⟩ = Ûrot |Ψ(0)⟩ = e−i
α
4
n̂.σ̂ |0⟩rot . (5.31)

Remember that |Ψ(t)⟩ = Û |ΨLAB(t)⟩ = e−i
ωt
2
σ̂z |ΨLAB(t)⟩, the initial state in

the LAB frame is equal to the initial state in the rotating frame |0⟩rot = |0⟩ for t =
0. The above equation can be further rewritten as
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Table 5.1: Possible combinations of Θ(t) and ϕp values to apply X and Y pulses.

Pulse Θ(t) ϕp Ĥrot

Xπ/2 π/2 0 ℏα
4 σ̂x

Yπ/2 π/2 π/2 ℏα
4 σ̂y

Xπ π 0 ℏα
4 σ̂x

Yπ π π/2 ℏα
4 σ̂y

|Ψ(t)⟩ =
[
cos
(ω1

4
t
)
Î − i sin

(ω1

4
t
)
n̂.σ̂
]
|0⟩

=
[
cos
(ω1

4
t
)
Î − i sin

(ω1

4
t
)(

cos (ϕp)σ̂x − sin (ϕp)σ̂y
)]

|0⟩

=
[
cos
(ω1

4
t
)
Î − i sin

(ω1

4
t
)(
e−iϕp σ̂+ + eiϕp σ̂−

)]
|0⟩

= cos
(
Θ(t)

)
|0⟩ − i sin

(
Θ(t)

)
e−iϕp |1⟩ .

where σ̂+ |0⟩ = |1⟩, σ̂− |0⟩ = 0 and Θ(t) = ω1
4 t. The above equation provides a

detailed positioning of the qubit’s quantum state, in function of the polar angle Θ(t)
and azimuthal angle ϕp. So, coherent driving during a certain time brings the qubit
into superposition or induces a spin flip. And through equation 5.30, ϕp = 0, gives
a rotation around the x-axis while ϕp = π/2 results in a rotation around the y-axis.
Changing the phase of the RF source changes the qubit’s rotation axis. With this
information, quantum gates performing X- and Y-pulses are gathered in table 5.1.

Figure 5.6 shows an RF pulse to drive the qubit. The execution time of the RF
pulse results regulates the polar angle of the qubit quantum state. Changing the
phase of the RF pulse pushes the qubit to another rotation axis. When driving the
qubit, the probability of measuring the spin-up fraction will change according to the
polar angle Θ(t) in function of time. Calculating the spin-up probability gives

P
(
|1⟩
)
= | ⟨1| |Ψ(t)⟩ e−iϕp |2

= | − i sin
(
Θ(t)

)
|2

= sin
(
Θ(t)

)2
(5.32)

and is depicted in figure 5.32. The oscillating probability of the spin-up fraction
is also known as Rabi-oscillations.
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Figure 5.6: Above, a block wave voltage source (plunger voltage Vp) on the quantum
dot regulates the load and read steps. The manipulation occurs during the waiting
time when the RF pulse is applied. AWG stands for Arbitrary Wave Generator, the
voltage source. Under, a graphic representation of the RF pulse during the waiting
time and just before the qubit readout.

In an ideal world, the oscillation would continue for an infinite amount of time.
But due to the decoherence of the qubit, the Rabi-oscillations are damped according
to the Rabi decay time T2,Rabi:

P (|1⟩) = e
− t

T2,Rabi . (5.33)

The oscillation amplitude decreases exponentially. As mentioned earlier, an RB
experiment requires a proper decoherence time to execute the full quantum gate
sequence. Starting from a gate-controlled quantum dot, we now achieved coherence
driving of a qubit in the quantum dot. The following sections tend to apply quantum
gates on a working qubit to perform an RB experiment. But first, the qubit needs
to be calibrated.
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Figure 5.7: a) Bloch sphere representation of coherent driving of the qubit around the
x-axis. b) Rabi-oscillations (spin-up fraction vs pulse length), according to equation
5.32.

5.4 Calibration

The calibration is twofold: first, the qubit’s resonance frequency (ω from the previ-
ous section) needs to be calibrated. Coherent driving with a frequency other than
the resonant frequency results in a precession movement of the qubit in the Bloch
sphere, hence, a vast decrease in fidelity. Although the resonance frequency is not a
parameter needed for applying the gates or measuring the spin-up fraction, it is an
important parameter in the experimental setup. That will come in the next sections.
Measuring the spin-up fraction while stepping through the driving frequency results
in a Gaussian shape graph. The spin-up fraction can be fitted with Gaussian given
by

f(x) = A exp

(
−(x− µ)2

2σ2

)
, (5.34)

where µ is the position of the center of the peak (the average of the distribution),
σ the standard deviation, and A the amplitude. Hence, the resonance frequency is
denoted by µ the center of the peak. The deviation of the frequency (δω) is defined
through the full-width-at-half-maximum (FWHM)

δω = 2
√
2 ln 2σ. (5.35)

The resonance frequency is typically in the orders of 100 kHz - 10 MHz. Another
important parameter that determines the quality of the experimental setup is the
visibility, defined as the difference between the maximum and minimum measured
spin-up fraction. The visibility is limited by the read-out fidelity of the qubit and
the duration of the pulse Ttot compared with the T1 time: Ttot << T1. A qubit in a
performant experimental setup has a visibility in the range of [max, min] = [0.1, 0.8].
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The second calibration needs to be performed to extract the duration of the π
and π/2-pulses. Referring to Figure 5.7, the measurement of Rabi-oscillations pro-
vides the period (Tp) of the qubit to do exactly one full rotation around the Bloch
sphere. The π and π/2-pulses are evidently given through Tp/2 and, Tp/4 respec-
tively. The same resonance frequency applies to rotation around the x- and y-axis.

5.5 Practical implementation of the RB protocol

The practical implementation of an RB protocol consists of interleaving the so-
called computational gates and Pauli gates, the method was first described by E.
Knill [12] and later by [49] and [50]. First, the qubit is prepared in a known initial
quantum state ρ 1. Next, an alternating sequence of either π-pulses and π/2-pulses
or identity operators is executed on the qubit, followed by a reverse gate to bring
the qubit back into the initial state. At last, a measurement provides the spin-up
fraction. The single-qubit RB protocol is a randomization of the 48 operations which
can be parameterized as

SP = exp
(
±iπ

4
Q
)
exp

(
±iπ

2
V
)
,

Q ∈ {σx, σy, σz},V ∈ {1, σx, σy, σz} (5.36)

where S is are the computational gates and P the Pauli gates. A graphical rep-
resentation of the sequences is shown in Figure 5.8. The π/2-pulses are supposed to
advance computation and are therefore referred to as computational gates or pulses.
The π-pulses randomize the error, it can be seen as a change in the Pauli frame.
The randomization of the pulse sequence is important for the RB protocol, random-
ization ensures the outcome is not correlated with any individual pulse or proper
subsequence of pulses [12].

Figure 5.8: RB sequence, interleaved Pauli gates (π-pulses) and computational gates
(π/2-pulses). At the end, the reverse pulse and the measurement.
Source: Park, D. et al. [50]

1The initial quantum state is defined by one measure-read-out step. It can be done in two ways:
The first method is to Load and Read. If the measurement is 0, a spin down |0⟩ (ground state spin)
is in the quantum dot. If the measurement is not zero, the electron is replaced by an electron in
the ground state. The second method is to wait (relaxation time), so the spin particle is in the
spin-down ground state.
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The standard RB protocol is contained in the Python classOneQ SRB experiment.py
and can be consulted in Appendix D.3. The class generates the sequences and exe-
cutes them on a quantum system through a measurement file containing the specific
device parameters and commands. To initiate the standard RB protocol, the fol-
lowing parameters need to be specified:

• sequence lengths
A list of integers: sets the sequence lengths, e.g., [5, 10, 25, 50, 100].

• sample amount
Integer: sets the amount of sequences to be generated for each sequence length.

• seeds
A list of integers: to define a seed for each sequence individually. This param-
eter can be used to acquire the preferred randomization and each experiment
can be exactly repeated with the same seed list. The sampling method de-
scribed by [12] consists of random generation of computational gates sequences,
which are truncated in random lengths and interleaved by random generated
Pauli gate sequences of the same length. This method provides a generic
sampling of sequences which are all random and different from each other.
However, because we define a different seed for each sequence, all sequences
are randomly generated and different from each other, so the Monte-Carlo
simulation still holds.

• shots
Integer: defines the number of times each sequence needs to be executed, and
is the execution of the load-wait-read step. The default value is 100 times,
which repeats 100 times the load-wait-read step.

• pulses
Dictionary {“π pulse” : Tp/2, “π/2 pulse” : Tp/4}: contains the calibrated
Tp/2 and Tp/4 time for the respectively π and π/2 pulses, with rotation around
the x- and y-axis. The periods need to be specified in terms of the clock time,
e.g., Tp/2 = 1000 means the time needed to execute a π-pulse is 1000 times
the clock time.

• clock time
Sets the sample rate of the arbitrary wave generator. the clock time is the res-
olution at which the equipment can sample. The spin-up fraction can usually
be measured every nanosecond.

Analog to the Qiskit simulations, the function transpiler transpiled a given gate
into a pulse represented by a dictionary. The dictionary contains all the information
about the pulse needed to execute the standard RB protocol: the rotation axis, pulse
angle and pulse time. The pulse angle is the polar angle (in units of π), which keeps
track of the position of the qubit with respect to the z-axis. The pulse time is the
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Table 5.2: Preprogrammed gates in the transpiler. P stands for Pauli gates or π-
pulses. S stands for symplectic or computational gates (π/2-pulses). The -X and
-Y rotation axis is a rotation around the X/Y axis with a phase shift over π. Pulse
time is in units of the clock time.

Gate Rot. axis Pulse angle Pulse Time

P1 X π Tp/2

P2 Y π Tp/2

S1 X π/2 Tp/4

S2 -X 3π/2 Tp/4

S3 Y π/2 Tp/4

S4 -Y 3π/2 Tp/4

Tp/2 or Tp/4 time. The gates in the transpiler function are gathered in table 5.2.
We choose identity gates to be a combination of two computational gates (−π/2
and π/2), see figure 5.9. The I1 identity gate is a combination of the S2 and S1
gates (3π/2 + π/2 around X). And the I2 identity gate is a combination of the S4
and S3 gates. The transpiler contains also some combinations of pulses to generate
Hadamard gates according to the RB protocol depicted in [4, 7] for further research.

The function pulse sequence builds up the sequences according to Figure 5.8,
using the seeds to select gates randomly, and transpiles them. The reverse gate is
determined through the sum of the polar angles of the pulses θT , and the following
final angle θf estimation:

n = floor
(θT
2

)
(5.37)

θf = θT − 2n. (5.38)

If θf = 0, the I1 identity gate is returned. S1 if θf = 3π/2 and S1 for θf =
π/2. The P1 gate for θf = π. The most difficult part is knowing the phase shift
after each gate. The phase shifts are fundamental for the computational gates and
is essential for making quantum gates and make quantum computers think. The
function phase shift decides which phase shift needs to be assigned at each gate. If
the new axis is equal to the current axis, the current axis is returned and no phase
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Table 5.3: Phase shift ϕp for the new axis for each new gate. The top half is for a
polar angle θ < π and the bottom half is for a polar angle θ > π. The axes −X and
−Y indicates an extra phase over π for the S2,4 gates. The phase stays unchanged
if the new and current axis are the same.

current/new axis X Y -X -Y

X / π/2 π -π/2

Y 0 / π -π/2

X / -π/2 0 π/2

Y π / 0 π/2

shift is visible on the RF pulse. If the rotation axis changes or a 3π/2-pulse (-X, -Y)
is given, the function uses of the phase matrices in table 5.3, to obtain the correct
phase shift. For example, if the quantum state is in superposition, in the xy-plane
(with polar angle θ = π/2), and rotating around the Y axis. The phase shift needed
for an S2 gate on that moment is ϕp = π, so the quantum state ends up in the initial
|0⟩ state with a rotation around the x-axis. A last exception needs to be taken into
account when the new phase, given through the phase matrix, is the same as the
current phase and a S2,4 gate is given. In those special case an extra π phase shift
needs to be added.

Eventually, the functions sequence sampler and build randomized benchmarking
samples the sequences and build up the RB protocol. The result is a dictionary
containing all the generated sequences and a second dictionary containing some in-
formation about each sequence, total pulse time, total polar angle, and phase shift
and used seed. An example can be consulted in Appendix C.2.
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Figure 5.9: Decomposition of the identity gates in computational (S) gates. a) I1
is a sequence of the S2 and S1 gate around the x axis. b) I2 is a sequence of the S4
and S3 gate around the y axis. Figures adapted from: @ Konstantin Herb — ETH
Zurich (Bloch sphere visualizer)

5.6 Experimental set-up

To operate the qubit, the quantum dot needs to be conserved in a cryogenic envi-
ronment so that kBTe << ℏω, where Te is the electron temperature and ω the qubit
resonance frequency. An increase in thermal energy results in a loss of coherence
due to the spin-phonon coupling and, in general, loss of qubit control. Therefore, a
quantum computer can be seen as a fridge at cryogenic temperatures (∼ 10mk). A
picture of the inside of the fridge is shown in Figure 5.10. Liquid helium is inserted
at the top of the fridge. In the 4K region, liquid helium is a mixture of isotopes 4He
and 3He. When cooled below 0,87K [51] (almost at the bottom of the fridge), liquid
helium undergoes spontaneous phase separation, forming a layer 3He-rich phase 3He
(+ 4He) and underneath a more dense 3He-poor phase 4He (+ 3He) layer. The 3He
in the 3He-poor phase evaporates, causing heat to be extracted from the system. In
the 4K region, 3He vapor is compressed and condensates back into the liquid phase.
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A pump forces the liquid phase back down to complete the cycle. At the bottom of
the fridge, temperatures around 10mK can be reached, hence, the quantum dot is
mounted in the 10mK region.

Figure 5.10: Quantum computer (inside), the temperature regions are indicated with
a black dashed line.

Aside from a fridge at cryogenic temperatures, several devices, such as an Arbi-
trary Wave Generator (AWG) with a Performance Signal Generator (PSG), are
needed for qubit control and a digitizer for sampling the signal waveforms. A
schematic overview of the cryogenic measurement setup is depicted in Figure 5.11.
The first channel, applied to the qubit’s plunger gate Vp, is for the spin read-out.
The other two input channels of the AWG are kept for IQ modulation, and a fourth
for the digitizer. The execution of a pulse sequence can be summarized as follows:
during the load period of the quantum dot, a pulse drives the qubit, where several
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phase shifts are performed through IQ mixing. This is the step where the quantum
gates are executed on the qubit. After a short waiting time, as shown in Figure 5.11,
the trigger measures the current to obtain the spin-up fraction, the read step. If the
RB protocol measured each sequence k times (the number of shots), the load-read
sequence is repeated k times.

Figure 5.11: A) The initialization-manipulation-read sequence, the blue block curve,
forms a time window to execute the RF pulse during the spin manipulation. The
yellow curve reads the spin-up fraction in the dot. b) The first channel is for the
spin readout, and the second and third are for the IQ modulation. The equipment in
the red area is controlled at room temperature. The cryogenic temperatures apply
in the blue zone. Figure b) is adapted from Dumoulin Stuyck, N. (KUL) [41].

5.6.1 IQ-mixer

IQ-mixing allows us to create a phase shift during the pulse and is the key proce-
dure for generating quantum gates on a spin qubit system. IQ-mixers use quadrature
modulation to maximize the information transmission in a limited bandwidth and
are therefore widely used in telecommunications [52]. Quadrature modulation allows
precise control of the amplitude and phase of the output signal through modulating
both the in-phase and quadrature components of a signal. IQ modulation can be
understood by observing Figure 5.12. According to [52] and [53], an IQ mixer con-
sists of two regular mixers and a quadrature hybrid coupler in the local oscillator
(LO). The signal of the LO is split by the hybrid coupler with a 90◦ phase shift into
two output ports. We distinguish two cases: upconversion and downconversion. Up-
conversion means the outputs are mixed with the In-phase signal or the Quadrature
signal, and then both outputs are combined in the RF port. The inverse result is
achieved with downconversion. Both I and Q signals can be retrieved out of the RF
input signal. Only upconversion is used to generate the qubit pulse.
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Figure 5.12: Internal structure of an IQ mixer, with the I and Q channels on top
and bottom and the local oscillator in the middle. Source: Abadal, A. (ETH) [52]

More precisely, a single sideband upconversion generates the qubit pulse. Due
to the imperfections of the mixers, a certain leakage of the LO signal will go to
the RF port. Hence, there is still a certain drive at the qubit frequency even if no
voltage is applied to the I and Q ports. For this reason, most IQ mixers operate
with oscillating signals in the I and Q ports. The waveforms are given by [35]

sI(t) = I cos (ωIF t+ ϕ) (5.39)

sQ(t) = Q sin (ωIF t+ ϕ), (5.40)

where ϕ is the phase shift and ωIF is the intermediate frequency, i.e., the fre-
quency between the two peaks of the local oscillator and the upconversion in the
power spectrum. sI(t) and sQ(t) are voltage signals generated with the AWG (with a
sampling rate of 1/clock time). When performing single-sideband mixing, we assume
I = Q = A. The resulting radiofrequency pulse equals

A cos (ωIF t+ ϕ) cos (ωLOt)∓A sin (ωIF t+ ϕ) sin (ωLOt+ ϕ) = A cos
(
(ωIF ± ωLO) t+ ϕ

)
,

(5.41)

where ωLO is the local oscillator frequency. The RF signal is twofold, with
frequencies ωLO + ωIF for upconversion and ωLO − ωIF for downconversion. In
upconversion, if the qubit resonance frequency equals ω = ωLO + ωIF , the ESR
technique performs coherent driving on the qubit to apply quantum gates. The
rotation axis can be manipulated by changing the phase ϕ in the IQ mixer. The
Keysight AWG [54] has a built-in PSG signal generator to generate the LO signal.
The intermediate frequency must satisfy the following boundaries:

∆f < ωIF < BW, (5.42)
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where ∆f ∼ 1 MHz is the FMHW from the Gaussian fit in the calibration. BW
stands for the AWG’s bandwidth (BW ∼ 100 MHz) and the qubit resonance fre-
quency ωLO + ωIF ∼ 10 GHz.

In the ClassOneQ SRB experiment, the function build randomized benchmarking
(see Appendix D.3) generates all the sequences to execute an RB protocol. An ex-
ample of general results and sequences is given in Appendices C.2 and C.3. Next,
the function build arrays returns the time and phase list to build up the sine and
cosine signals in the AWG. Some examples of sequences executed through the AWG
on the digitizer are depicted in figures 5.13, 5.14, 5.15 and 5.16. The first two figures
show a sequence of three pulses. The first sequence contains the P2 (π), S3 (π/2),
and S1 (π/2) gate, with one phase shift to go from a rotation around the y-axis to a
rotation around the x-axis. The sequence in figure 5.14 starts with a y rotation over
π (P2 gate) to go to 3π/2 rotation around the x-axis. Followed by another 3π/2
rotation around the x-axis, which makes two phase shifts: the first one to change the
rotation axis (from y to x) and perform a π shift, the second one to perform again a
π shift. Because of the two 3π/2 pulses (S2 gates) in sequence 3. The same holds for
the other random generated sequences, the last two figures. Sequence 8, depicted
in figure 5.15, contains five gates and 6 pulses and performs a total polar angle of
4π. The last example, sequence 12, contains seven pulses and performs a total polar
angle of 6π. The pulse, as shown through the digitizer, contains four phase shifts so
that the qubit final state equals the initial state. The initial state is chosen to be the
spin-up state in block sphere representation. The code works for any initial state
and initial rotation axis since the final polar angle must satisfy an even number of π,
and the (ϕ=0)-axis is set at the beginning of each experiment. Although we cannot
execute a real RB experiment yet on the quantum device at Imec, these pulses gen-
erated by the AWG and sent to the digitizer proof that the protocol can be executed
on their experimental setup. When the staff in the research group deems it necessary.
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Figure 5.13: Pulse of sequence 1: ’rot axis’: [’Y’, ’Y’, ’X’], ’pulse time’: [10000, 5000,
5000], ’phase shift’: [0.5, 0.5, 1.0], ’gates’: [’P2’, ’S3’, ’S1’]

Figure 5.14: Pulse of sequence 3: ’rot axis’: [’Y’, ’-X’, ’-X’], ’pulse time’: [10000,
5000, 5000], ’phase shift’: [0.5, 0.0, 1.0], ’gates’: [’P2’, ’S2’, ’S2’]

68



Chapter 5 – Practical implementation of a Randomized Benchmarking protocol

Figure 5.15: Pulse of sequence 8: ’rot axis’: [’X’, ’-X’, ’-X’, ’X’, ’-Y’, ’-X’, ’X’, ’-X’,
’X’], ’pulse time’: [10000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000], ’phase
shift’: [0.0, 1.0, 0.0, 0.0, -0.5, 1.0, 1.0, 0.0, 0.0], ’gates’: [’P1’, ’S2’, ’I1’, ’S4’, ’I1’,
’S2’, ’S1’]

69



Chapter 5 – Practical implementation of a Randomized Benchmarking protocol

Figure 5.16: Pulse of sequence 12: ’rot axis’: [’-X’, ’X’, ’X’, ’Y’, ’-X’, ’X’, ’Y’, ’-X’],
’pulse time’: [5000, 5000, 5000, 10000, 5000, 10000, 5000, 5000], ’phase shift’: [1.0,
1.0, 1.0, 0.5, 0.0, 0.0, 0.5, 1.0], ’gates’: [’I1’, ’S1’, ’P2’, ’S2’, ’P1’, ’S3’, ’S2’]
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Conclusion

Randomized Benchmarking is an efficient and robust method that is widely used in
practice to estimate the average fidelity of a gate set implemented on a quantum
computing device. Benchmarking a quantum computer is a scalable process that is
robust to SPAM errors. The thesis discussed Standard Randomized Benchmarking,
the most hands-on method to extract the average fidelity of a quantum system, and
Interleaved Randomized Benchmarking to retrieve the characteristics of a single
gate on a quantum device. The advantage of using an RB protocol is the ability
to isolate SPAM errors and simultaneously characterize both SPAM errors and gate
errors. The price paid is that only the average gate fidelity can be extracted by
amplifying the gate errors in a depolarizing channel while leaving the SPAM errors
constant. Hence, the A0 and B0 parameters indicate the influence of SPAM errors or
the quality of the experimental setup, which is one of the major advantages of RB.
The mathematical insights to derive an RB protocol can be summarized as follows:

1. If a quantum channel behaves as a depolarizing channel, the average gate
fidelity can be extracted:

F g = p+
1− p

d
.

2. The twirled operation of a unitary 2-design, such as the Clifford group, is a
depolarizing channel:

1

K

∑
j

C†
jΛCj ≈ Λ(ρ) = pρ+ (1− p)

I

d
.

3. Gate and time-independent errors lead to an exponential decay of the fidelity:

F (0)
seq(m,ψ) = A0p

m +B0 (6.1)

where the depolarizing parameter p indicates the probability of staying in the
initial state. To gain some experience with RB experiments, the simulations in
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Chapter 4 form a good basis for ultimately moving to quantum computers in real
experimental setups. A physical qubit is obtained by isolating an electron in a quan-
tum dot and apply a magnetic field. The Zeeman splitting splits the degeneracy of
the energy of an isolated electron in a |0⟩- or |1⟩-state. Comparable with the 0 or 1
values in a classical bit. The electron spin resonance technique enables the coherent
manipulation of the spin state. The qubit starts to rotate from the spin-up state
to the spin-down state and back. The rotation axis can be shifted by changing the
phase of the applied radiofrequency pulse. IQ mixing can experimentally regulate
the phase shift where a sine and cosine wave are generated through an AWG per-
forming single-sideband upconversion. The output is a cosine radiofrequency pulse,
where the phase of the qubit can be changed through the phase of the cosine wave.
Eventually, a Python Class generates sequences to execute RB experiments on the
experimental set-up at Imec. We were able to generate the random sequences on the
digitizer, which proves that the experimental implementation of the RB protocol, as
described and executed in this thesis, can be used for further research purposes. Al-
though we cannot yet execute a real RB experiment on the quantum device at Imec,
with this preliminary research, the researchers at Imec are hopefully already a step
closer to developing high-performance quantum devices with acceptable accuracy.

6.1 outlook

So what’s next? The question arises of how the math changes when performing
an RB experiment on two-qubit devices or more. It seems that the mathematical
formulation of the averaging of the quantum channel (The twirl) changes in multi-
qubit devices [55]. Researchers from the Technical University of Delft (TU Delft)
merely use character randomized benchmarking for two-qubit devices [8, 7, 9], where
several RB experiments are executed. When the first or the second qubit is idle, and
when there are two-qubit gates on both qubits. Character randomized benchmarking
is already widely used for two-qubit systems, but what about three-qubit systems
and more? The coupling map of two qubits is always linear, but from three qubits or
higher, multiple coupling maps can be considered for the same multi-qubit device;
how will the Twirl change? And can we still average over coupling maps with
complex structures? Besides the coupling maps, the size of the Clifford scales with
2O(n2) [33]. So the gate set of Clifford gates becomes very large very quickly, so
it’s difficult to uniformly sample the gate set to average over the quantum channels.
Which is necessary for our Twirl and extracting the depolarizing parameter. There
are still many unanswered questions, which makes RB a very interesting topic in
the world of quantum computers. The future will show whether RB is the best
method to determine the accuracy of many qubit systems. In a world where the
increasing computational power of computers is becoming increasingly important,
good and scalable accuracy determination is important for the progress of many
scientific research.
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Common quantum gates

A.1 Single qubit Clifford gates

Type (symbol) Matrix Diagram

I
(
1 0
0 1

)

X
(
0 1
1 0

)

Y
(
0 −i
i 0

)
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Type (symbol) Matrix Diagram

Z
(
1 0
0 −1

)

H 1√
2

(
1 1
1 −1

)

S
(
1 0
0 i

)

Sdg
(
1 0
0 −i

)

SX 1
2

(
1 + i 1− i
1− i 1 + i

)

SXdg 1
2

(
1− i 1 + i
1 + i 1− i
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A.2 Single qubit rotation gates

General expression:

Rn̂(θ) = exp

{
−iθ

2
n̂.σ̂

}
= cos

(
θ/2
)
I − i sin

(
θ/2
)(
nxX + nyY + nzZ

)
(A.1)

Type (symbol) Exp. repr. Matrix Diagram

RX(θ) exp
{
−i θ2X

} (
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) )

RY(θ) exp
{
−i θ2Y

} (
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) )

RZ(θ) exp
{
−i θ2Z

} (
e−i

θ
2 0

0 ei
θ
2

)
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A.3 Unitary gates U

Type (symbol) Matrix Diagram

U1(0, 0, λ)
(
1 0
0 eiλ

)

U2(π/2, φ, λ) 1√
2

(
1 −eiλ
eiφ ei(φ+λ)

)

U3(θ, φ, λ)
(

cos (θ/2) −eiλ sin (θ/2)
eiφ sin (θ/2) ei(φ+λ) cos (θ/2)

)
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Ladder operators σ̂+ and σ̂−

B.1 single qubit ladder operators

The σ̂+ operator is defined as

σ̂+ =
σ̂x − iσ̂y

2
=

1

2

[(
0 1
1 0

)
− i

(
0 −i
i 0

)]
=

(
0 0
1 0

)
. (B.1)

The can be used to hop from the ground state to the excited state:

σ̂+|0⟩ =
(
0 0
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩. (B.2)

The σ̂− operator is defined as

σ̂− =
σ̂x + iσ̂y

2
=

1

2

[(
0 1
1 0

)
+ i

(
0 −i
i 0

)]
=

(
0 1
0 0

)
, (B.3)

and can be used to hop from the excited state to the ground state:

σ̂−|1⟩ =
(
0 1
0 0

)(
0
1

)
=

(
1
0

)
= |0⟩ (B.4)

.
The commutator of σ̂+ and σ̂z equals

[
σ̂+, σ̂z

]
= σ̂+σ̂z − σ̂zσ̂+ =

(
0 0
1 0

)(
1 0
0 −1

)
−
(
1 0
0 −1

)(
0 0
1 0

)
(B.5)

=

(
0 0
1 0

)
−
(

0 0
−1 0

)
= 2σ̂+. (B.6)
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Generated data

C.1 Simulation: Aer noise model

Parameters:
depolarizing parameter p = 0,01 on the U2 gate and a thermal relaxation error
depicted in appendix A.3 on the U3 gate.
lengths = [5, 10, 25, 50, 100, 150, 200, 250, 300, 350]
samples = 10
seeds = list(range(100))

asked length QC length TQC length used seed th fidelity state fidelity
5 11 11 0 0.9646 0.9615620560100206
5 11 11 1 0.9632 0.9615117096829614
5 11 11 2 0.9611 0.9615155971927111
5 11 11 3 0.9621 0.9615620560100211
5 11 11 4 0.988 0.989801387085105
5 11 11 5 0.9748 0.9755717692100837
5 11 11 6 0.9555 0.95691959144491
5 11 11 7 0.9759 0.9756191008655037
5 11 11 8 0.9859 0.985129253893006
5 11 11 9 0.9594 0.9615117096829614
10 21 21 10 0.9837 0.9848349097235088
10 21 21 11 0.9407 0.9431080528722993
10 21 21 12 0.9945 0.9941241384010402
10 21 21 13 0.9834 0.9849317947529997
10 21 21 14 0.9495 0.9473650825934744
10 21 21 15 0.9488 0.9521018690358476
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asked length QC length TQC length used seed th fidelity state fidelity
10 21 21 16 0.9842 0.98458983922714
10 21 21 17 0.9299 0.9303247431539801
10 21 21 18 0.9281 0.9260290032571851
10 21 21 19 0.9322 0.934372020970836
25 51 51 20 0.8604 0.8664107500290766
25 51 51 21 0.9231 0.925298139367773
25 51 51 22 0.9015 0.9006105532358781
25 51 51 23 0.8747 0.8728453268127124
25 51 51 24 0.8525 0.8518837635815769
25 51 51 25 0.8456 0.8487408831898845
25 51 51 26 0.8936 0.8921350739521197
25 51 51 27 0.8692 0.8659952756155664
25 51 51 28 0.9049 0.9012033940200237
25 51 51 29 0.8436 0.8517169834442525
50 101 101 30 0.7594 0.7650956659238395
50 101 101 31 0.8127 0.8174578453512142
50 101 101 32 0.7699 0.7660929945346199
50 101 101 33 0.7195 0.7177418797558541
50 101 101 34 0.7828 0.7818252602865665
50 101 101 35 0.7672 0.7704232497329444
50 101 101 36 0.7496 0.7499515326968702
50 101 101 37 0.8658 0.863262119315276
50 101 101 38 0.7646 0.7599319180921381
50 101 101 39 0.7856 0.7788689750779152
100 201 201 40 0.6323 0.626007712493456
100 201 201 41 0.6343 0.6386068998259388
100 201 201 42 0.645 0.6381588039139406
100 201 201 43 0.6342 0.6339671670429015
100 201 201 44 0.6442 0.6441291501144708
100 201 201 45 0.6619 0.6649255347506557
100 201 201 46 0.6281 0.624901933618588
100 201 201 47 0.7 0.6970382623773916
100 201 201 48 0.6358 0.6302673886098452
100 201 201 49 0.6717 0.6648042570966017
150 301 301 50 0.5698 0.5795573898347246
150 301 301 51 0.5804 0.5783285672481079
150 301 301 52 0.562 0.5576657263351378
150 301 301 53 0.5774 0.5758434374191632
150 301 301 54 0.5828 0.5818822565401064
150 301 301 55 0.5679 0.5741636523100568
150 301 301 56 0.5778 0.5792506863311178
150 301 301 57 0.5722 0.5666444141399334
150 301 301 58 0.5999 0.6028532900375981
150 301 301 59 0.5837 0.5851464838668375
200 401 401 60 0.5414 0.543132274889673980
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asked length QC length TQC length used seed th fidelity state fidelity
200 401 401 61 0.5317 0.5326902379362701
200 401 401 62 0.5647 0.5671915603424857
200 401 401 63 0.5544 0.547922688969658
200 401 401 64 0.543 0.5453706323225868
200 401 401 65 0.5536 0.5573682160304024
200 401 401 66 0.5488 0.5544066741935936
200 401 401 67 0.5444 0.5397073829990505
200 401 401 68 0.5231 0.5269801904887417
200 401 401 69 0.528 0.5375991650341947
250 501 501 70 0.5399 0.5238675834937228
250 501 501 71 0.5163 0.5183457651067128
250 501 501 72 0.5207 0.5229835836972893
250 501 501 73 0.5177 0.5185604943351337
250 501 501 74 0.5317 0.5363232478862205
250 501 501 75 0.5238 0.5260356604133025
250 501 501 76 0.5238 0.5274960397466724
250 501 501 77 0.5183 0.5238007485709629
250 501 501 78 0.5317 0.526912255367247
250 501 501 79 0.5204 0.5262395496081861
300 601 601 80 0.513 0.5140612847872711
300 601 601 81 0.5028 0.5068345384460351
300 601 601 82 0.5054 0.5114674440354897
300 601 601 83 0.5097 0.5105467343981657
300 601 601 84 0.5114 0.5137467523796663
300 601 601 85 0.5049 0.5086695714454083
300 601 601 86 0.5084 0.5095359414028308
300 601 601 87 0.5139 0.5118180663686079
300 601 601 88 0.5115 0.5107579246820435
300 601 601 89 0.5121 0.5072696713888472
350 701 701 90 0.5179 0.5052251309649654
350 701 701 91 0.5151 0.5059428913605653
350 701 701 92 0.5149 0.5084461905003222
350 701 701 93 0.4993 0.5053058466392901
350 701 701 94 0.5016 0.5076293431946162
350 701 701 95 0.5094 0.505930877906788
350 701 701 96 0.4978 0.5066014856343606
350 701 701 97 0.5048 0.5064007356882035
350 701 701 98 0.4985 0.506099872896128
350 701 701 99 0.5087 0.5094012999418392
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C.2 experimental implementation: RB results

The table below gives some general information about the generated sequences:

seq count pulse count total pulse time total angle total phase used seed

1 3 20000 2.0 2.0 0

2 4 20000 4.0 -0.5 1

3 3 20000 4.0 1.5 2

4 3 20000 2.0 2.5 3

5 6 40000 6.0 3.5 4

6 7 40000 8.0 4.0 5

7 6 40000 6.0 0.5 6

8 6 40000 6.0 3.5 7

9 9 50000 10.0 2.5 8

10 9 50000 10.0 2.5 9

11 8 50000 8.0 2.0 10

12 8 50000 8.0 5.0 11

C.3 Generated sequences

Generated sequences with Class parameters:
pulses = {”pi pulse”: 10000, ”pi/2 pulse”: 5000}
sequence lengths = [3, 5, 7]
sample amount = 4
seeds = list(range(12))

{

'seq_1': {

'rot_axis': ['Y', 'Y', 'X'],

'pulse_time': [10000, 5000, 5000],

'phase_shift': [0.5, 0.5, 1.0],

'gates': ['P2', 'S3', 'S1']

},

'seq_2': {

'rot_axis': ['-Y', 'Y', 'Y', '-X'],

'pulse_time': [5000, 5000, 5000, 5000],

'phase_shift': [-0.5, -0.5, -0.5, 1.0],

'gates': ['I2', 'S3', 'S2']

},

'seq_3': {

'rot_axis': ['Y', '-X', '-X'],
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'pulse_time': [10000, 5000, 5000],

'phase_shift': [0.5, 0.0, 1.0],

'gates': ['P2', 'S2', 'S2']

},

'seq_4': {

'rot_axis': ['Y', 'X', 'X'],

'pulse_time': [10000, 5000, 5000],

'phase_shift': [0.5, 1.0, 1.0],

'gates': ['P2', 'S1', 'S1']

},

'seq_5': {

'rot_axis': ['X', '-Y', 'Y', 'Y', '-X', 'X'],

'pulse_time': [10000, 5000, 10000, 5000, 5000, 5000],

'phase_shift': [0.0, 0.5, 0.5, 0.5, 1.0, 1.0],

'gates': ['P1', 'S4', 'P2', 'S3', 'I1']

},

'seq_6': {

'rot_axis': ['X', '-Y', '-X', 'X', '-Y', '-X', 'X'],

'pulse_time': [10000, 5000, 5000, 5000, 5000, 5000, 5000],

'phase_shift': [0.0, 0.5, 1.0, 1.0, -0.5, 1.0, 1.0],

'gates': ['P1', 'S4', 'I1', 'S4', 'I1']

},

'seq_7': {

'rot_axis': ['-Y', 'Y', 'Y', 'X', '-X', 'X'],

'pulse_time': [5000, 5000, 5000, 10000, 5000, 10000],

'phase_shift': [-0.5, -0.5, -0.5, 0.0, 1.0, 1.0],

'gates': ['I2', 'S3', 'P1', 'S2', 'P1']

},

'seq_8': {

'rot_axis': ['Y', 'Y', 'X', '-Y', '-X', 'X'],

'pulse_time': [10000, 5000, 10000, 5000, 5000, 5000],

'phase_shift': [0.5, 0.5, 1.0, -0.5, 1.0, 1.0],

'gates': ['P2', 'S3', 'P1', 'S4', 'I1']

},

'seq_9': {

'rot_axis': ['X', '-X', '-X', 'X', '-Y', '-X', 'X', '-X', 'X'],

'pulse_time': [10000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000],

'phase_shift': [0.0, 1.0, 0.0, 0.0, -0.5, 1.0, 1.0, 0.0, 0.0],

'gates': ['P1', 'S2', 'I1', 'S4', 'I1', 'S2', 'S1']

},

'seq_10': {

'rot_axis': ['-Y', 'Y', '-Y', 'Y', '-X', '-X', 'X', 'Y', '-X'],

'pulse_time': [5000, 5000, 5000, 10000, 5000, 5000, 5000, 5000, 5000],
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'phase_shift': [-0.5, -0.5, 0.5, 0.5, 1.0, 0.0, 0.0, 0.5, 1.0],

'gates': ['I2', 'S4', 'P2', 'S2', 'I1', 'S3', 'S2']

},

'seq_11': {

'rot_axis': ['Y', '-Y', '-Y', 'Y', 'X', 'Y', '-Y', 'X'],

'pulse_time': [10000, 5000, 5000, 5000, 5000, 10000, 5000, 5000],

'phase_shift': [0.5, -0.5, 0.5, 0.5, 0.0, -0.5, 0.5, 1.0],

'gates': ['P2', 'S4', 'I2', 'S1', 'P2', 'S4', 'S1']

},

'seq_12': {

'rot_axis': ['-X', 'X', 'X', 'Y', '-X', 'X', 'Y', '-X'],

'pulse_time': [5000, 5000, 5000, 10000, 5000, 10000, 5000, 5000],

'phase_shift': [1.0, 1.0, 1.0, 0.5, 0.0, 0.0, 0.5, 1.0],

'gates': ['I1', 'S1', 'P2', 'S2', 'P1', 'S3', 'S2']

}

}
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Python Code

D.1 Simulations: Noise model

1 from ONEQRBClass import ONEQ_RBClass

2 from qiskit_aer import AerSimulator

3 from qiskit_aer.noise import NoiseModel, thermal_relaxation_error, depolarizing_error

4

5 # Operational time for the u3 native gate

6 time_u3 = 100

7 # Set up thermal relaxation error

8 u3_error = thermal_relaxation_error(99e4, 10e3, time_u3)

9

10 # Depolarizing error

11 dp_error = depolarizing_error(0.05, 1)

12

13 # Set up Noise model object

14 noise_thermal = NoiseModel()

15 noise_thermal.add_all_qubit_quantum_error(dp_error, ["SX", "u1"])

16 noise_thermal.add_quantum_error(u3_error, ["u3"], [0])

17

18 # Add Noise model to backend

19 backend = AerSimulator(method='density_matrix', noise_model=noise_thermal)

20 backend.set_options(noise_model=noise_thermal)
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D.2 Simulations: ONEQ RBClass

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import pandas as pd

4 from IPython.display import display

5 from qiskit.circuit import QuantumCircuit

6 from qiskit import transpile

7 import qiskit.quantum_info as qi

8 from qiskit.providers.fake_provider import Fake1Q

9 from qiskit.circuit.library.standard_gates import (XGate, YGate, ZGate, HGate,

10 SGate, SdgGate, SXGate, SXdgGate)

11

12 pd.set_option('display.max_columns', None)

13 pd.set_option("display.max_rows", None)

14

15

16 class ONEQ_RBClass:

17

18 def __init__(self, circuit_lengths=None, sample_amount=10, shots=int(1e4), seeds=None,

19 initial_state=None, backend=None, interleaved=False,

20 interleaved_gate=None, state_fidelity=False):

21 """

22 Initialize the class parameters for a

23 one qubit class parameters Standard or Interleaved Randomized Benchmarking experiment.

24 :param circuit_lengths: number of gates for each circuit (list of integers)

25 (e.g.:[5, 10, 50, 100, 250])

26 :param sample_amount: amount of executed circuits

27 :param shots: amount of times a circuit will be executed (default: 1e4)

28 :param seeds: list of seeds for each sequence

29 :param initial_state: sets an initial state (dictionary)

30 e.g.: {'0': QuantumCircuit(1)}

31 :param backend: used backend

32 :param interleaved: Set True for an interleaved experiment

33 :param interleaved_gate: gate to be interleaved

34 :param state_fidelity: Set True to return the process fidelity

35 """

36

37 if circuit_lengths is None:

38 circuit_lengths = []

39

40 self._circuit_lengths = circuit_lengths

41 self._sample_amount = sample_amount

42 self._shots = shots

43 self._seeds = seeds

44

45 if initial_state is None:

46 initial_state = {'0': QuantumCircuit(1)}

47

48 self._initial_state = initial_state

49

50 if backend is None:

51 backend = Fake1Q()
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52

53 self._backend = backend

54

55 if interleaved is not None and interleaved_gate is None:

56 interleaved_gate = XGate

57

58 self._interleaved = interleaved

59 self._interleaved_gate = interleaved_gate

60 self._state_fidelity = state_fidelity

61 # Define dictionary to store circuit parameters and results

62 self._results = {"asked_length": [], "QC_length": [], "TQC_length": [], "used_seed": [],

63 "meas_fidelity": [], "state_fidelity": []}

64

65 @property

66 def circuit_lengths(self):

67 """ Returns the circuit lengths """

68 return self._circuit_lengths

69

70 @circuit_lengths.setter

71 def circuit_lengths(self, circuit_lengths):

72 """

73 sets the given circuit lengths

74 """

75 if isinstance(circuit_lengths, list) and all(isinstance(item, int) for item in circuit_lengths):

76 self._circuit_lengths = circuit_lengths

77 else:

78 raise TypeError("'circuit_lengths' needs to be a list of integers.")

79

80 @property

81 def sample_amount(self):

82 """ Returns the sample amount """

83 return self._sample_amount

84

85 @sample_amount.setter

86 def sample_amount(self, sample_amount):

87 """

88 sets the given sample amount

89 """

90 if isinstance(sample_amount, int):

91 self._sample_amount = sample_amount

92 else:

93 raise TypeError("'sample_amount' needs to be an integer.")

94

95 @property

96 def shots(self):

97 """ Returns the shots """

98 return self._shots

99

100 @shots.setter

101 def shots(self, shots):

102 """

103 sets the given shots

104 """
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105 if isinstance(shots, int):

106 self._shots = shots

107 else:

108 raise TypeError("'shots' needs to be an integer.")

109

110 @property

111 def seeds(self):

112 """ Returns the seed """

113 return self._seeds

114

115 @seeds.setter

116 def seeds(self, seeds):

117 """

118 sets the given seed

119 """

120 if seeds is None:

121 self._seeds = seeds

122 elif isinstance(seeds, list) and all(isinstance(item, int) for item in seeds) and \

123 len(seeds) == self.circuit_lengths * self.sample_amount:

124 self._seeds = seeds

125 else:

126 raise TypeError("'seeds' must be a list of integer "

127 "(length = circuit_lengths x sample_amount) or None.")

128

129 @property

130 def initial_state(self):

131 """ Returns the initial state """

132 return self._initial_state

133

134 @initial_state.setter

135 def initial_state(self, initial_state):

136 """

137 sets the given initial state

138 """

139 # Define initial string and circuit

140 init_string = list(initial_state.keys())[0]

141 ansatz = initial_state[init_string]

142

143 if isinstance(initial_state, dict) and isinstance(init_string, str) and \\

144 isinstance(ansatz, QuantumCircuit):

145 self._initial_state = initial_state

146 else:

147 raise TypeError('Initial state needs to be a circuit.QuantumCircuit

148 and equal amount of qubits')

149

150 @property

151 def backend(self):

152 """ Returns the given backend"""

153 return self._backend

154

155 @property

156 def interleaved(self):

157 """ Returns the given boolean for interleaved experiment"""
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158 return self._interleaved

159

160 @interleaved.setter

161 def interleaved(self, interleaved):

162 """

163 sets the given boolean for interleaved experiment:

164 """

165 if isinstance(interleaved, bool):

166 self._interleaved = interleaved

167 else:

168 raise TypeError('interleaved needs to be a boolean')

169

170 @property

171 def interleaved_gate(self):

172 """ Returns the given gate to be interleaved"""

173 return self._interleaved_gate

174

175 @interleaved_gate.setter

176 def interleaved_gate(self, interleaved_gate):

177 """

178 sets the given gate to be interleaved:

179 """

180 self._interleaved_gate = interleaved_gate

181

182 @property

183 def state_fidelity(self):

184 """ Returns the given boolean for state_fidelity measurements"""

185 return self._state_fidelity

186

187 @property

188 def results(self):

189 """ Returns the results """

190 return self._results

191

192 @staticmethod

193 def random_gate(rng):

194 """

195 Returns random gate

196 :param rng:random.default_rng object

197 :return: qiskit.circuit.library.standard_gates object

198 """

199 # List with one qubit gates

200 one_qubit_gates = [XGate, YGate, ZGate, HGate, SGate, SdgGate, SXGate, SXdgGate]

201 # Random gate choice

202 gate = rng.choice(one_qubit_gates)

203

204 return gate

205

206 def gate_sequences(self, length, seed):

207 """

208 standard gate sampling for a circuit with given length and seed.

209 :param seed: sequence seed

210 :param length: sequence length
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211 :return: quantum circuit (qc)

212 """

213 # Initialize one qubit quantum circuit

214 qc = QuantumCircuit(1, 1)

215 # Define random.default_rng object

216 rng = np.random.default_rng(seed)

217

218 if self.interleaved:

219 for i in range(length // 2):

220 gate = self.random_gate(rng)

221 qc.append(gate(None), [0])

222 qc.append(self.interleaved_gate(None), [0])

223

224 # Append another gate/interleaved gate if length is odd

225 if (length % 2) != 0:

226 gate = self.random_gate(rng)

227 qc.append(gate(None), [0])

228 qc.append(self.interleaved_gate(None), [0])

229

230 else:

231 for i in range(length):

232 gate = self.random_gate(rng)

233 qc.append(gate(None), [0])

234

235 return qc

236

237 def random_clifford_circuit(self, length, seed):

238 """

239 Returns transpiled and circuit with reversed circuit attached.

240 :param length: sequence length

241 :param seed: sequence seed

242 :return: transpiled quantum circuit (tqc)

243 """

244 # Random clifford circuit with given length and seed (interleaved if asked)

245 qc = self.gate_sequences(length, seed)

246

247 # Get the inverse circuit

248 inv_ansatz = qc.inverse()

249 # Append to circuit

250 qc = qc.compose(inv_ansatz)

251

252 # reverse to compose density matrix and initial state

253 qc = qc.reverse_ops()

254 if self.state_fidelity:

255 qc.save_density_matrix(label="rho1", conditional=True)

256

257 # Retrieve initial circuit from dictionary and compose to circuit

258 init_string = list(self.initial_state.keys())[0]

259 init_qc = self.initial_state[init_string]

260 qc = qc.compose(init_qc)

261 # reverse again

262 qc = qc.reverse_ops()

263 # transpile circuit
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264 tqc = transpile(qc, self.backend, optimization_level=0)

265

266 # Update results with circuit parameters

267 self.results["asked_length"].append(length)

268 self.results["QC_length"].append(len(qc))

269 self.results["TQC_length"].append(len(tqc))

270

271 return tqc

272

273 def measure_circuit(self, qc):

274 """

275 Function to measure the probability to obtain a certain state (initial state).

276 Calculates the 0th order fidelity of a given quantum circuit.

277 :param qc: The given quantum circuit.

278 :return: 0th order fidelity

279 """

280 qc.measure(0, 0)

281 # execute circuit and get results

282 job = self.backend.run(qc, shots=self.shots)

283 results = job.result()

284 # Get the initial state counts

285 # print(results.get_counts())

286 initial_state_counts = results.get_counts()['0']

287 # Calculate fidelity

288 fidelity = initial_state_counts / self.shots

289 print('measurement fidelity: ', fidelity)

290 # remove final measurements for density matrix state

291 qc.remove_final_measurements(inplace=True)

292 # update results

293 self.results["meas_fidelity"].append(fidelity)

294 return

295

296 def circuit_state_fidelity(self, qc):

297 """

298 Function calculates the circuit state fidelity

299 using two density matrices, the first after the initial state and

300 the second after the last gate.

301 :param qc: The given quantum circuit.

302 :return: circuit state fidelity

303 """

304

305 # set second density matrix

306 qc.save_density_matrix(label="rho2", conditional=True)

307 # execute circuit and get results

308 job = self.backend.run(qc)

309 results = job.result().data()

310 # Calculate state fidelity using the density matrices

311 state_fidelity = qi.state_fidelity(results['rho1'][''], results['rho2'][''])

312 print("state fidelity: ", state_fidelity)

313 # Update results

314 self.results["state_fidelity"].append(state_fidelity)

315 return

316
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317 def sequence_sampler(self, length, count):

318 """

319 Generates and measures according to the asked samples

320 :param length: length af each circuit

321 :param count: ......

322 :return: Update results

323 """

324

325 for sample in range(self.sample_amount):

326

327 # Update sequence count

328 count += 1

329

330 # Define a seed if given

331 if self.seeds is not None:

332 seed = self.seeds[count - 1]

333 else:

334 # Else define random seed for each circuit

335 seed = np.random.randint(0, np.iinfo(np.int32).max)

336

337 # update used sequence seed

338 self.results["used_seed"].append(seed)

339

340 # Create circuit

341 qc = self.random_clifford_circuit(length, seed)

342 # Measure circuit

343 self.measure_circuit(qc)

344 if self.state_fidelity:

345 self.circuit_state_fidelity(qc)

346

347 return count

348

349 def execute_randomized_benchmarking(self):

350 """

351 Execute randomized benchmarking experiment

352 :return: Update results

353 """

354 # Set count 0

355 count = 0

356

357 for length in self.circuit_lengths:

358 # Sample sequences with given length

359 count = self.sequence_sampler(length, count)

360

361 # Set up empty pandas dataframe for storing circuit parameters and fidelity results

362 results = pd.DataFrame(dict([(key, pd.Series(value)) for key, value in self.results.items()]))

363 display(results)

364

365 # Save the dataframe to a CSV file

366 results.to_csv('IRB_AER_dp1_S_run1.csv', index=False)

367

368 # Some plots

369 results.plot(kind='scatter', x='TQC_length', y='meas_fidelity', color='blue')
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370 plt.xlabel("Number of native gates")

371 plt.ylabel("Measurement fidelity")

372 plt.title('1-qubit StandardRB experiment')

373 plt.grid()

374 plt.show()

375 return
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D.3 Class ONEQ SRB experiment

1 import math

2 import numpy as np

3 import pandas as pd

4 from IPython.display import display

5 pd.set_option('display.max_columns', None)

6 pd.set_option("display.max_rows", None)

7

8

9 class ONEQ_SRB_experiment:

10

11 def __init__(self, sequence_lengths=None, seeds=None, pulses=None, sample_amount=10,

12 shots=int(1e2), clock_time=1.):

13 """

14 Initialize the class parameters for a

15 one qubit class parameters Standard Randomized Benchmarking experiment.

16 :param sequence_lengths: amount of gates for each circuit (list of integers)

17 (e.g.:[5, 10, 50, 100, 250])

18 :param sample_amount: amount of executed circuits (optional: with given seeds for each sample)

19 :param shots: amount of times a circuit will be executed (default: 1e4)

20 :param seeds: list of seeds for each sample

21 (e.g.:[5, 10, 50, 100, 250])

22 :param pulses: dictionary with all the pulses parameters

23 (e.g.) {"pi_pulse": 100, "pi/2_pulse": 50}

24 :param clock_time: time sampling resolution (default 1.0 ns)

25 """

26 if sequence_lengths is None:

27 sequence_lengths = []

28 if pulses is None:

29 pulses = {"pi_pulse": None, "pi/2_pulse": None}

30

31 self._sequence_lengths = sequence_lengths

32 self._sample_amount = sample_amount

33 self._shots = shots

34 self._seeds = seeds

35 self._clock_time = clock_time

36 self._pulses = pulses

37 self._sequences = {}

38 self._current_phase_angle = 0.0

39 self._results = {"seq_count": [], "pulse_count": [], "total_pulse_time": [], \\

40 "total_angle": [], "total_phase": [], "used_seed": []}

41

42 @property

43 def sequence_lengths(self):

44 """ Returns the sequence lengths """

45 return self._sequence_lengths

46

47 @sequence_lengths.setter

48 def sequence_lengths(self, sequence_lengths):

49 """

50 sets the sequence lengths

51 """
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52 # list of integers

53 if isinstance(sequence_lengths, list) and all(isinstance(item, int) \\

54 for item in sequence_lengths):

55 self._sequence_lengths = sequence_lengths

56 else:

57 raise TypeError("'sequence_lengths' needs to be a list of integers.")

58

59 @property

60 def sample_amount(self):

61 """ Returns the sample amount """

62 return self._sample_amount

63

64 @sample_amount.setter

65 def sample_amount(self, sample_amount):

66 """

67 sets the given sample amount

68 """

69 # integer

70 if isinstance(sample_amount, int):

71 self._sample_amount = sample_amount

72 else:

73 raise TypeError("'sample_amount' needs to be an integer.")

74

75 @property

76 def shots(self):

77 """ Returns the shots """

78 return self._shots

79

80 @shots.setter

81 def shots(self, shots):

82 """

83 sets the given shots

84 """

85 # integer

86 if isinstance(shots, int):

87 self._shots = shots

88 else:

89 raise TypeError("'shots' needs to be an integer.")

90

91 @property

92 def pulses(self):

93 """ Returns the pulse parameters """

94 return self._pulses

95

96 @pulses.setter

97 def pulses(self, pulses):

98 """

99 sets the x gates parameters

100 """

101 # dictionary without empty keys

102 if isinstance(pulses, dict) and None not in pulses.values():

103 self._pulses = pulses

104 else:
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105 raise TypeError("'pulses' needs to be a dictionary without None values.")

106

107 @property

108 def seeds(self):

109 """ Returns the seed """

110 return self._seeds

111

112 @seeds.setter

113 def seeds(self, seeds):

114 """

115 sets the given seed

116 """

117 # list of integers or None

118 if seeds is None:

119 self._seeds = seeds

120 elif isinstance(seeds, list) and all(isinstance(item, int) for item in seeds):

121 self._seeds = seeds

122 else:

123 raise TypeError("'seeds' must be a list of integer or None.")

124

125 @property

126 def clock_time(self):

127 """ Returns the sequence lengths """

128 return self._clock_time

129

130 @property

131 def current_phase_angle(self):

132 """ Returns the current phase angle """

133 return self._current_phase_angle

134

135 @current_phase_angle.setter

136 def current_phase_angle(self, value=0):

137 self._current_phase_angle = value

138

139 @property

140 def sequences(self):

141 """ Return the sequences """

142 return self._sequences

143

144 @property

145 def results(self):

146 """ Return the results """

147 return self._results

148

149 @staticmethod

150 def sine_wave(times, frequency, amp, phase_shift):

151 return amp*np.sin(2 * np.pi * frequency * times + phase_shift)

152

153 @staticmethod

154 def cosine_wave(timec, frequency, amp, phase_shift):

155 return amp*np.cos(2 * np.pi * frequency * timec + phase_shift)

156

157 @staticmethod
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158 def current_polar_angle(angle, phase=False):

159 n = math.floor(angle / 2)

160 final_angle = angle - 2 * n

161

162 if phase and final_angle > 1.:

163 return -0.5

164 else:

165 return final_angle

166

167 @staticmethod

168 def numeric_axis(axis):

169 """

170 Sets X axis to 0 and Y axis to 1

171 :param axis: X, Y, -X, -Y

172 :return: integer

173 """

174 if axis == 'X':

175 return 0

176 elif axis == 'Y':

177 return 1

178 elif axis == '-X':

179 return 2

180 elif axis == '-Y':

181 return 3

182 else:

183 raise NameError("Axis ", axis, " not recognised")

184

185 def phase_shift(self, current_axis, new_axis, pulse_angle):

186 """

187 'phase_shift' calculates the phase shift needed between two gates

188 (for X and Y gates)

189 :param current_axis: X, Y, -X or -Y

190 :param new_axis: X, Y, -X or -Y

191 :param pulse_angle: current polar angle

192 :return: phase shift

193 """

194 if new_axis == "X" and new_axis == current_axis:

195 return self.current_phase_angle

196 if new_axis == "Y" and new_axis == current_axis:

197 return self.current_phase_angle

198

199 current_axis = self.numeric_axis(current_axis)

200 new_axis = self.numeric_axis(new_axis)

201 current_angle = float(self.current_polar_angle(pulse_angle))

202

203 if current_angle < 1.:

204 phases = [[0., 0.5, 1., -0.5], [0., 0.5, 1., -0.5]]

205 else:

206 phases = [[1., -0.5, 0., 0.5], [1., -0.5, 0., 0.5]]

207

208 if self.current_phase_angle == phases[current_axis][new_axis]:

209 if new_axis == 2 or 3:

210 self.current_phase_angle = self.current_polar_angle(phases[current_axis][new_axis] + 1.,
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211 phase=True)

212 else:

213 self.current_phase_angle = phases[current_axis][new_axis]

214

215 return self.current_phase_angle

216

217 def reverse_pulse(self, angle):

218 """

219 'reverse_pulse' gives the reverse pulse for a given final angle.

220 Such that the qubit is back in the initial state.

221 :param angle: final angle

222 :return: pulse

223 """

224 # Inverse pulse

225 final_angle = self.current_polar_angle(angle)

226

227 if final_angle == 0:

228 return "I1"

229 elif final_angle == 0.5:

230 return "S2"

231 elif final_angle == 1:

232 return "P1"

233 elif final_angle == 1.5:

234 return "S1"

235 else:

236 raise ValueError("The final gate ", final_angle, " is not a multiple of pi/2.")

237

238 def transpiler(self, gate):

239 """

240 transpiler: Transpiles asked gate in the pulse sequences.

241 :param gate: Asked gate to transpile in pulses.

242 :return: pulse parameters (list of dictionaries)

243 gate = {"type": 0, "pulse_time": p1_time, "phase_shift": 0}

244 "type": 0 stands for X-gate, 1 stands for Y-gate

245 "pulse_time": time interval for a given pulse

246 "phase_shift": phase shift needed for given pulse, in units of pi (e.g. 1 = pi, 1/2 = pi/2)

247 """

248 ##################################

249 # Pauli pulses (Pauli operations):

250 ##################################

251 p1_time = self.pulses["pi_pulse"]

252 p1_gate = {"rot_axis": 'X', "pulse_angle": 1., "pulse_time": p1_time}

253

254 p2_time = self.pulses["pi_pulse"]

255 p2_gate = {"rot_axis": 'Y', "pulse_angle": 1., "pulse_time": p2_time}

256

257 #########################################

258 # pi/2 pulses (computational operations):

259 #########################################

260 s1_time = self.pulses["pi/2_pulse"]

261 s1_gate = {"rot_axis": 'X', "pulse_angle": 0.5, "pulse_time": s1_time}

262

263 s2_time = self.pulses["pi/2_pulse"]
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264 s2_gate = {"rot_axis": '-X', "pulse_angle": 1.5, "pulse_time": s2_time}

265

266 s3_time = self.pulses["pi/2_pulse"]

267 s3_gate = {"rot_axis": 'Y', "pulse_angle": 0.5, "pulse_time": s3_time}

268

269 s4_time = self.pulses["pi/2_pulse"]

270 s4_gate = {"rot_axis": '-Y', "pulse_angle": 1.5, "pulse_time": s4_time}

271

272 if gate == "P1":

273 return [p1_gate]

274 elif gate == "P2":

275 return [p2_gate]

276 elif gate == "P5":

277 return [p2_gate, p1_gate]

278

279 elif gate == "S1":

280 return [s1_gate]

281 elif gate == "S2":

282 return [s2_gate]

283 elif gate == "S3":

284 return [s3_gate]

285 elif gate == "S4":

286 return [s4_gate]

287

288 #################

289 # Identity gates:

290 #################

291 elif gate == "I1":

292 return [s2_gate, s1_gate]

293 elif gate == "I2":

294 return [s4_gate, s3_gate]

295

296 ##########################

297 # pi/2 pulse combinations:

298 ##########################

299 # -X, Y, X = R2, R3, R1

300 elif gate == "R5":

301 return [s2_gate, s3_gate, s1_gate]

302 # -X, -Y, X = R2, R4, R1

303 elif gate == "R6":

304 return [s2_gate, s4_gate, s1_gate]

305

306 #################

307 # Hadamard gates:

308 #################

309 # X^2, Y = P3, R3

310 elif gate == "H1":

311 return [p1_gate, s3_gate]

312 # X^2, -Y = P3, R4

313 elif gate == "H2":

314 return [p1_gate, s4_gate]

315 # Y^2, X = P4, R1

316 elif gate == "H3":
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317 return [p2_gate, s1_gate]

318 # Y^2, -X = P4, R2

319 elif gate == "H4":

320 return [p2_gate, s2_gate]

321 # X, Y, X = R1, R3, R1

322 elif gate == "H5":

323 return [s1_gate, s3_gate, s1_gate]

324 # -X, Y, -X = R2, R3, R2

325 elif gate == "H6":

326 return [s2_gate, s3_gate, s2_gate]

327

328 else:

329 raise NameError("the asked gate", gate, " is not known")

330

331 def pulse_sequence(self, length, seed):

332 """

333 Creates random pulse sequences

334 :return: pulse sequence

335 """

336 # Define pulse lists

337 pauli_list = ["I1", "I2", "P1", "P2"]

338 computational_list = ["S1", "S2", "S3", "S4"]

339

340 # Create a dictionary to gather the sequence information

341 sequence_info = {"rot_axis": [], "pulse_time": [], "phase_shift": [], "gates": []}

342

343 # Define random.default_rng object

344 rng = np.random.default_rng(seed)

345 # Set initial rot axis to X

346 current_rot_axis = 'X'

347 # Set total pulse time to zero

348 total_pulse_time = 0

349 # set pulse count to zero

350 pulse_count = 0

351 # set total angle to zero

352 total_angle = 0

353 # set total phase to zero

354 total_phase = 0

355 # Set current phase angle

356 self.current_phase_angle = 0.0

357

358 for gate in range(length):

359 # Last gate is the reversed gate

360 if gate == length-1:

361 pulse_string = self.reverse_pulse(total_angle)

362 elif gate % 2 == 0:

363 # Choose random (according to seed) gate

364 # Even gates -> paulis, odd gates -> computational

365 pulse_string = rng.choice(pauli_list)

366 else:

367 pulse_string = rng.choice(computational_list)

368

369 # Append gate to sequence info
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370 sequence_info["gates"].append(pulse_string)

371 # Transpile chosen gate to pulses

372 pulses = self.transpiler(pulse_string)

373

374 for pulse in pulses:

375 # Append the pulse count

376 pulse_count += 1

377 # Extract the pulse type

378 sequence_info["rot_axis"].append(pulse["rot_axis"])

379 # Extract the pulse time, update total pulse time

380 sequence_info["pulse_time"].append(pulse["pulse_time"])

381 # Extract the phase shift, update current pulse type

382 phase_shift = self.phase_shift(current_rot_axis, pulse["rot_axis"], total_angle)

383 total_pulse_time += pulse["pulse_time"]

384 total_phase += phase_shift

385 total_angle += pulse["pulse_angle"]

386 # print(total_angle)

387 sequence_info["phase_shift"].append(phase_shift)

388 # Update current rotation axis

389 if pulse["rot_axis"] == "-X":

390 current_rot_axis = "X"

391 elif pulse["rot_axis"] == "-Y":

392 current_rot_axis = "Y"

393 else:

394 current_rot_axis = pulse["rot_axis"]

395

396 # Update results

397 self.results["pulse_count"].append(pulse_count)

398 self.results["total_pulse_time"].append(total_pulse_time)

399 self.results["total_angle"].append(total_angle)

400 self.results["total_phase"].append(total_phase)

401

402 return sequence_info

403

404 def sequence_sampler(self, length, count):

405 """

406 Generates and measures according to the asked samples

407 :param length: length af each pulse sequence

408 :param count: sequence count

409 :return: Update results

410 """

411

412 for sample in range(self.sample_amount):

413 # Update sequence count

414 count += 1

415

416 # Define a seed if given

417 if self.seeds is not None:

418 seed = self.seeds[count-1]

419 else:

420 # Else define random seed for each sequence

421 seed = np.random.randint(0, np.iinfo(np.int32).max)

422
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423 # update circuit parameters

424 self.results["used_seed"].append(seed)

425 self.results["seq_count"].append(count)

426 # Create pulse

427 sequence = self.pulse_sequence(length, seed)

428 # Make key and store sequence

429 key = "seq_" + str(count)

430 self.sequences[key] = sequence

431

432 return count

433

434 def build_randomized_benchmarking(self, display_results=False):

435 """

436 Execute randomized benchmarking experiment

437 :return: Update results

438 """

439 # Set count 0

440 count = 0

441

442 for length in self.sequence_lengths:

443 # Sample circuits with given length

444 count = self.sequence_sampler(length, count)

445

446 if display_results:

447 # Set up empty pandas dataframe for storing circuit parameters and fidelity results

448 results = pd.DataFrame(dict([(key, pd.Series(value)) for key, value in self.results.items()]))

449 results.to_csv("name_file.csv", sep=',', index=False, encoding='utf-8')

450 display(results)

451

452 return

453

454 def build_arrays(self, seq_num):

455 """

456 Build sine and cosine waveforms for the I/Q channel

457 :param seq_num: sequence number

458 :return: sine/cosine custom pulse element

459 """

460 # Extract asked sequence

461 sequence = self.sequences[seq_num]

462 print(sequence)

463

464 # Extract pulse times and phase shifts

465 times = sequence['pulse_time']

466 phases = sequence['phase_shift']

467

468 # Total time

469 total_time = sum(times)*self.clock_time

470 # Set time numpy array

471 time_list = np.arange(0, total_time, self.clock_time)

472 # Define empty array

473 phase_list = np.array([])

474

475 # Set up phase numpy array
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476 for time, phase in zip(times, phases):

477 phase_slice = np.ones(time)*phase

478 phase_list = np.concatenate([phase_list, phase_slice])

479

480 phase_list = phase_list*np.pi

481

482 return time_list, phase_list, total_time

483

484 def build_sine_waveform(self, duration, sample_rate=0.0001, amp=1.,seq_num="seq_1",freq=0.01):

485 """

486 build_sine_waveform

487 :return: sine waveform for IQ mixing

488 """

489 time_list, phase_list, total_time = self.build_arrays("seq_2")

490 sample_data = self.sine_wave(time_list, freq, amp, phase_list)

491 nbr_samples =int(duration)#/sample_rate

492

493 if len(sample_data) < nbr_samples:

494 #pad the data out

495 sample_data = np.concatenate([sample_data, np.zeros(nbr_samples-len(sample_data))])

496 else:

497 #crash

498 raise Exception("Error")

499 return sample_data

500

501 def build_cosine_waveform(self, duration, sample_rate=0.0001, amp=1.,seq_num="seq_2",freq=0.01):

502 """

503 build_cosine_waveform

504 :return: cosine waveform for IQ mixing

505 """

506 time_list, phase_list, total_time = self.build_arrays("seq_2")

507 sample_data = self.cosine_wave(time_list, freq, amp, phase_list)

508 nbr_samples = int(duration)#/sample_rate

509

510 if len(sample_data) < nbr_samples:

511 #pad the data out

512 print(np.zeros(nbr_samples-len(sample_data)))

513 sample_data = np.concatenate([sample_data, np.zeros(nbr_samples-len(sample_data))])

514 else:

515 #crash

516 raise Exception("Error")

517

518 return sample_data
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