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Plan

1. Sklyanin algebras (SA) and generalized Sklyanin algebras (GSA)
2. Detour: Topology of intersections of real quadrics
3. Topology of Casimir levels of Sklyanin algebra
4. Jacobian Poisson Structures (JPS)
5. Compatibility problem for GSA and JPS
6. Poisson homology of JPS and singularity theory 
(Cf.: G.Kh. “On one class of exact Poisson structures”, Proceedings of A.Razmadze 
Mathematical Institute, Vol. 119, 1999. //Abstract. We introduce a class of Poisson 
structures defined by a simple explicit formula and establish basic properties of 
these structures. It is shown that this construction gives non-trivial examples of 
exact Poisson structures on affine algebraic varieties. For such a structure on 
hypersurface in 3d, the zero-dimensional Poisson homology is computed in terms 
of the Milnor number of Casimir polynomials. Some generalizations and open 
problems are also discussed)



Two papers on relations between GSA and JPS

• R.Prszybysz, On one class of exact Poisson structures, J. Math. Phys. 42, 2001.

Abstract. We discuss some properties of a natural class of Poisson structures on Euclidean spaces and abstract 
manifolds. In particular, it is proved that such structures may be reconstructed from their Casimir functions. 
The dimension of 0th Poisson homology of these structures is computed in terms of the Milnor number of their 
Casimir functions. We also analyze some concrete examples of such structures in low dimensions.

• G.Kh., R.Prszybysz, On Certain Super-Integrable Hamiltonian Systems, J. Dyn. Contr. Syst. 8, 2002. 

Abstract. We establish a natural connection between maximally super-integrable Hamiltonian systems with polynomial first 
integrals and algebraic Poisson structures of rank two. Basic properties of the both classes of objects are presented, with a 
special emphasis on related topological aspects. It is shown that the signature technique for computing topological invariants 
enables one to compute effectively the Euler characteristics of Casimir levels of arising Poisson structures and determine the 
combinatorial structure of the Liouville foliation. The crucial points of our approach are illustrated in the case of Sklyanin 
algebras, in particular, we present a complete computation of their Euler graphs and invariant polynomials.

Ad hoc comment: The mentioned connection between JPS and maximally super-integrable systems relies on a 
classical theorem on a global last multiplier proved by Ch.-J. de la Vallée Poussin (à propos: le premier 
président élu de la toute nouvelle Union mathématique internationale). - «Nothing new under the sun»

https://www.researchgate.net/publication/225905720_On_Certain_Super-Integrable_Hamiltonian_Systems
https://fr.wikipedia.org/wiki/Union_math%C3%A9matique_internationale
https://www.dictionary.com/browse/nothing-new-under-the-sun


Some further papers on GSA and JPS 
(caveat: “Post hoc non ergo propter hoc”) 

•  A.Odesskii, V.Rubtsov, Polynomial Poisson algebras with regular structure of symplectic 
leaves, arXiv:math/0110032v1, 2001.

• Ph.Monnier, Poisson cohomology in dimension two, Israel J. Math. 129, 2002.

• I. Cruz, H. Mena-Matos , Normal Forms for Two Classes of Exact Poisson Structures in 
Dimension Four, J. Lond. Math. Soc. 73, 2006.

• A.Pichereau, Poisson (co)homology and isolated singularities, J. Algebra 299, 2006.

• S.Pelap, Poisson (co)homology of polynomial Poisson algebras in dimension four: 
Sklyanin’s case, J. Algebra 322, 2009.

• P.Damianou, F.Petalidou, Poisson brackets with prescribed Casimirs, Can. J. Math. 64, 
2012.

• J.Ahn, S.Oh, S.Park, Poisson brackets determined by Jacobians, J. Chungcheong Math. 
Society 26, 2013.

• P. Damianou, Poisson brackets after Jacobi and Plücker, arXiv, 2019.



From Sklyanin algebras to n-Sklyanin algebras

• “In principio erat” Sklyanin Algebra (SA) in 4d (Funkts. Anal. Pril. 16, no.4, 1982):

(1) 𝑥𝑖 , 𝑥0 = 𝐽𝑗𝑘𝑥𝑗𝑥𝑘 , 𝑥𝑗 , 𝑥𝑘 = −2𝑥0𝑥𝑖; i,j,k ∈ 1, 2, 3 (cyclic), 𝐽𝑗𝑘 = 𝐽𝑗 - 𝐽𝑘 ∈ K (= R, C)

Casimirs: 𝐾0 = σ𝑖=1
3 𝑥𝑖

2, 𝐾1 = 𝑥0
2 + σ𝑖=1

3 𝐽𝑖𝑥𝑖
2 ; (quadratic generators of the center)

• Next: generalized Sklyanin algebra (GSA) in 4d (Vanhaecke ca.1999):

(2) 𝑥𝑖 , 𝑥𝑗 = 𝑐𝑘𝑚𝑥𝑘𝑥𝑚, i,j,k,m ∈ {1, 2, 3, 4}, 𝑐𝑘𝑚 ∈ K, 𝑐12𝑐34 - 𝑐13 𝑐24 + 𝑐14𝑐23= 0 (Plücker rel.)

Casimirs: 𝑓1 = 𝑐34𝑥2
2 - 𝑐24𝑥3

2 + 𝑐23𝑥4
2,  𝑓2 = 𝑐23𝑥1

2 - 𝑐13𝑥2
2 + 𝑐12𝑥3

2 ; (generators of the center)

 Pecularities: quadratic brackets, two quadratic Casimirs, 2d Casimir levels (rank = 2)

• Further generalization: n-Sklyanin algebra (Panov 2002, Damianou 2006):

(3) 𝑥𝑖 , 𝑥𝑗 = 𝑐𝑖𝑗𝑥1… ෝ𝑥𝑖 … ෝ𝑥𝑗 . . . 𝑥𝑛, 𝑐𝑖𝑗 ∈ K (= R, C); 𝑐𝑖𝑗𝑐𝑘𝑙 - 𝑐𝑖𝑘 𝑐𝑗𝑙 + 𝑐𝑗𝑘𝑐𝑖𝑙= 0, 1≤i<j<k<l≤n

Casimirs: 𝑓𝑖𝑗𝑘 = 𝑐𝑗𝑘𝑥𝑖
2 - 𝑐𝑖𝑘𝑥𝑗

2 + 𝑐𝑖𝑗𝑥𝑘
2;  (quadratic Casimirs, 2d Casimir levels)

Two important observations (G.Kh., 1998): (1) topology of Casimir levels of GSA can be 
effectively studied using the so-called signature formulae for topological invariants (see below)

(2) all the above brackets belong to the class of Jacobian Poisson Structures defined below.



Sklyanin algebra (SA) in more detail

• SA is a quadratic Poisson algebra S(J) on 𝐊4 (K= R, C) with coordinates 𝑥0, … , 𝑥3
defined by the relations:

• ൛𝑥1, ሽ𝑥0 = 𝐽23𝑥2𝑥3, ൛𝑥2, ሽ𝑥0 = 𝐽31𝑥1𝑥3, ൛𝑥3, ሽ𝑥0 = 𝐽12𝑥2𝑥3, ൛𝑥1, ሽ𝑥2 = -2𝑥0𝑥3, 
൛𝑥2, ሽ𝑥3 = -2𝑥0𝑥4, ൛𝑥3, ሽ𝑥1 = -2𝑥0𝑥2 , 𝐽𝑖𝑗 = 𝐽𝑖 - 𝐽𝑗, 𝐽𝑖 ∈ K (=R, C), i =1, 2, 3.

• It has two quadratic Casimirs 𝐾0 = σ𝑖=1
3 𝑥𝑖

2, 𝐾1 = 𝑥0
2 + σ𝑖=1

3 𝐽𝑖𝑥𝑖
2, which generate 

the whole center of S(J)

• This is a three-dimensional family of exact affine Poisson structures

• According to Sklyanin, the knowledge of topology of Casimir levels of SA was 
helpful for constructing representations of the quantized algebra. This suggested 
that it made sense to investigate the topology of quadratic mapping defined by 
Casimirs of GSA, which was a very well studied topic of nonlinear analysis

• NB: in GSA case it suffices to compute the Euler characteristics of Casimir levels  



Detour: Topology of intersections of real quadrics

• (Co)homology of “polyquadrics” (intersections of real quadrics): d'après
C.T.Wall, A.Agrachev-R.Gamkrelidze, J.Lopez de Medrano, A.Lerario, 
V.Krasnov (specifically, “Agrachev spectral sequence”, cf. A.Agrachev, 
“Quadratic cohomology” in Arnold Math. J. v.1, no.1, 2013)

• Criteria for properness, surjectivity and convexity of images of real 
quadratic mappings (mostly classical or folklore)

• Topological classification of low-dimensional biquadrics and triquadrics
(J.Lopez de Medrano, V.Krasnov), topology of fibers in the case of distance-
squared mappings in higher dimensions (S.Ichiki, T.Nishimura)

• NB: For GSA, the  signature formula for the Euler characteristic given below 
yields detailed results on the topology of Casimir levels (also for moduli 
spaces of planar pentagons and spider-linkages)



Signature formula for the Euler characteristic

• Let 𝑓1, … , 𝑓𝑚 be real polynomials in n variables of algebraic degree d such that 
the algebraic variety X = ൛𝑓𝑖 = 0, i=1,…,m} is compact. The Euler characteristic 
χ 𝑋 can be computed as follows.

• Put ℎ𝑖:= (𝑥𝑜
𝑑+1) 𝑓𝑖(𝑥1/𝑥0,…, 𝑥𝑛/𝑥0), F := σ𝑖=1

𝑚 ℎ𝑖
2 − σ𝑖=0

𝑛 𝑥𝑖
2𝑑+4. 

• Theorem. Polynomial F has an isolated critical point at the origin and

2χ 𝑋  = (−1)𝑛 - 𝑑𝑒𝑔0 grad F = (−1)𝑛 – sig 𝑄𝐹, where 𝑄𝐹  is the Gorenstein      
quadratic form on the Milnor algebra of F and sig denotes its signature. 

Details can be found in my monograph “Signature formulae for topological 
invariants” (Proc. A.Razmadze Math. Institute v. 125, 2001). For SA and GSA we 
have n=4, m=2, d=2, and the existing computer programs for the mapping degree 
easily yield the values of Euler characteristics of all Casimir levels.



Topology of Casimir levels of SA

• A simple example of application of the known results on intersections of real 
quadrics is concerned with the topology of Casimir levels of the original SA

• Consider the quadratic mapping Q: 𝑹𝟒 → 𝑹𝟐 , defined by the above two Casimirs
of SA. The discriminant is easily seen to consist of three parallel lines, the Euler 
characteristic of non-singular fiber over each chamber (component of the 
complement to discriminant) computed by the mentioned signature formula 
attains one of the three values: 0, 2, 4. It follows that the non-singular fibers are 
diffeomorphic either to a disjoint union of two spheres or to two-torus, while the 
bifurcation between these two types consists in pinching two meridians of a 
torus, which gives ”two bananas with common tips”. It seems remarkable that 
such a fairly simple “shift of paradigm” yielded a correction of an error in the 
original paper of Sklyanin (see a fragment of that paper in the next two slides).







Comments  to the previous two slides

• Unfortunately, I could not get the English translation of this paper but there seem 
to be many colleagues in the auditory who can hopefully confirm that the 
previous slide, in the sixth line from above, contains an erroneous statement that 
a regular fiber can be homeomorphic to the two-sphere, which is not the case as 
was shown in a joint paper with R.Przybysz in J. Dyn. Control Syst. v.8, 2002. In 
fact, we gave there a topological classification of Casimir fibers for the whole five-
dimensional family of generalized Sklyanin algebras given by formulas (2) above.

• For GSA of the form (2) these results can also be derived from the classification of 
real biquadrics given by L. de Medrano. However, to the best of my knowledge, 
such a classification is absent for intersections of more than three real quadrics. 
So for n-Sklyanin algebras and general JPS one has to use other approaches, in 
particular, the aforementioned signature formulae for the mapping degree and 
Euler characteristic developed in the papers of D.Eisenbud with H.Levine, G.Kh., 
J.Bruce, Z.Szafraniec and N.Dutertre (cf. my monograph indicated above)  



Jacobian Poisson structures

• Consider a simple formula defining the so-called Jacobian Poisson brackets (aka Nambu-
Poisson brackets):

(*)    {f, g} = J(f, g, ℎ1 , … , ℎ𝑛−2),
where f, g, ℎ𝑗 are assumed to be polynomials in n indeterminates over the field of real or 
complex numbers (ℎ𝑗 are fixed) and J stands for the usual Jacobian (one can extend this 
formula to convergent or formal power series, rational functions, smooth functions, 
manifolds with given volume form, quaternion coefficients etc.). 

The fact that such brackets satisfy Jacobi identity was known but (kind of) unattended. In 
particular, it was mentioned and proved in several papers on the Nambu-Poisson brackets 
(Nambu 1973, Grabowski-Marmo-Perelomov 1993, Takhtajan 1994, Marmo-Vilasi-
Vinogradov 1998), and n-ary Lie algebras (Filippov 1985, Panov 1996, 2002). In this way we 
obtain a class of Poisson structures on Euclidean spaces nowadays usually referred to as 
Jacobian Poisson structures. Polynomials ℎ𝑗 are Casimirs of the above brackets and may be 
considered as “Hamiltonians to be” in the Nambu approach to integrable systems. 



My encounter with Sklyanin algebras 

• My encounter with these concepts and results was caused by the necessity 
to suggest a topic for a Ph.D. thesis in mathematical physics, which was a 
“conditio sine qua non” for getting a temporary position at the University 
of Lodz in 1999. Having some background in real algebraic geometry and 
singularity theory I was attracted by the title of a book of Pol Vanhaecke 
“Integrable systems in the realm of algebraic geometry” (LNM, 1996). After 
browsing it I realized that SA, GSA and n-Sklyanin algebras can be defined 
by the Jacobian formula (*) and, moreover, some relevant topological 
results on Sklyanin algebras and certain other JPS can be obtained using 
the signature formula presented above. A simple instance of such kind is 
described in slides 9-12. Several further problems which naturally arised in 
the context of JPS have been studied in a series of papers of several 
authors some of which are mentioned in slides 2, 3. 



Further problems on GSA and JPS

There are several further problems in the context of JPS of which, in 
this talk, I will only touch upon the two largely unexplored ones:

• Compatibility problem for GSA and JPS;

• Poisson (co)homology of JPS and induced Poisson structures on the 
complete intersections with isolated singularities.



Compatibility criterion for two JPS

• As was proved in [Kh.-Prz. 2002] by direct computation, compatibility of 
two GSA of the form (2) in 4d is equivalent to the relation
𝑐12𝑐34

′ - 𝑐13𝑐24
′ + 𝑐14𝑐23

′ + 𝑐23𝑐14
′ - 𝑐24𝑐13

′ + 𝑐34𝑐12
′ = 0.

As was shown in a 2019 preprint of P.Damianou, this condition has a nice 
interpretation in terms of the Plücker embedding, which suggested several 
perspectives and open problems formulated in loc. cit.  
An appropriate set of analogous conditions yields a criterion of compatibility 
of two n-Sklyanin brackets (Ph.D. Thesis of R.Przybysz, Lodz University, 2002).
Up to my updated knowledge, no explicit criteria of compatibility have been 
given for two JPS in n dimensions for n>4. For n=4, a sufficient condition of 
compatibility was given by R.Prszybysz in terms of the functional 
dependence of the four Casimirs in question. 



Poisson (co)homology of JPS in qh case

Notice that each JPS yields a Poisson structure on the common zero-set Z of 
its Casimirs. So there arise two problems concerned with GSA and JPS:

(1) compute Poisson (co)homology of JPS on the underlying Euclidean space;

(2) compute Poisson (co)homology of the induced JPS on Z.

The second problem has an easy and instructive answer in 3d if the Casimir h 
is quasihomogenous (qh). From definitions follows that 𝑃𝐻𝑜 is isomorphic to 
the factor of the local algebra over the ideal {A, A} + (h). For a qh polynomial 
h, this ideal is known to coincide with the ideal (∇ℎ) generated by the partial 
derivatives of F. The dimension of the factor over (∇ℎ) is equal to the Milnor 
number of h and can be easily computed through the qh weights and qh
degree of h. Below is given a page from [G.Kh., 1999] containing this result.





Poisson homology and Tyurina number

• The latter two problems concerned with Poisson (co)homology of JPS 
have gained some attention in the last two decades. In particular, in 
qh case similar results in terms of the Milnor number were given in 
the mentioned papers of A.Pichereau (3d) and S.Pelap (for SA and 
some GSA in 4d).  

• At the same time no results seem to be available without assuming 
that Casimirs are qh with the same system of weights. This suggests 
further problems and conjectures. For example, in non-qh 3d case it is 
easy to see that the role of Minor number of Casimir h is played by 
the Tyurina number of h (equal to the dimension of the base of 
miniversal unfolding of h). A plausible conjecture is that the same 
holds true for a complete intersection with isolated singularity. 



Thank you for your attention!

გმადლობთ ყურადღებისთვის!
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