MKdV-Related Flows for Legendrian Curves in 53

joint work with

Tom Ivey (College of Charleston, USA)

Emilio Musso (Politecnico di Torino, Italy)

[check arxiv next week]

FDIS 2023, University of Antwerp, August 10, 2023

Preamble / Motivation

Integrable evolution equations

"Integrable" inducing integrable PDE

on their geometric invariants Integrable curve flows arise maturally: from physics, e.g. vortex filament equation from geometry: e.g. pseudo-spherical surfaces Pinuall's flow, invariant flows in different geometries lax pain, conservation laws, special solutions, Backlund transformation . . CUrves - geométric & topological features - construct examples

3-sphere and Hopf fibration

Consider C2 with the Hermitian inner product

$$\langle \mathcal{Z}, W \rangle := \mathcal{Z}_1 \overline{W}_1 + \mathcal{Z}_2 \overline{W}_2 = \langle W, \mathcal{Z} \rangle$$

Note: Rec, > is the Euclidean inner product identified with O = 1R4

$$S^{3} = \{ 2 \in \mathbb{C}^{2} \mid \langle 2, 2 \rangle = 1 \}$$

Complex projectification:
$$C^2 \stackrel{?}{3} \stackrel{?}{0} \stackrel{?}{4} \stackrel{T}{\longrightarrow} CP'$$
identify $(\stackrel{\checkmark}{2}, w) \sim (\lambda \stackrel{\checkmark}{2}, \lambda w) \quad \lambda \in C, \lambda \neq 0$

Restricting II to 53 gives the Hopf fibration $\pi_{\mathcal{H}}: S^3 \to CP^{1} \qquad 121=1$

Contact distribution on 53

Hopf map Ty: S3 -> CP1

- · pts on fiber differ by p reit (circles in S3)
- · define a contact distribution on S3: the contact planes are (Euclidean) orthogonal to the Hopf fibers
- · locatly, contact planes are defined as tangent vectors in the Kernel of a differential 1-form &, with and \$\pm 0\$ (& not unique, e.g. \$\pi(.)=Re<, v> v tangent to files)
 - The plane distribution has integral curve; (tangent to a plane at each point), but no integral surface: dAdd = 0

Integral curves are called

Legendrian curves
(L-curves)

Description of L-curves in S3

y: R -> S3 C2 regular, smooth parametrized curve y is Legendrian iff

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle = 0$

Why: $-\langle \chi, \chi \rangle = 1 \Rightarrow \text{Re}(\chi, \chi) = 0$. $-i\chi(x)$ // Hoff fider at $p = \chi(x) \in S^3$ $-\chi \text{ 1-curve iff } \chi_x \perp_{\text{Eucl.}} i\chi \iff \text{Re}(\chi_x, i\chi) = |m < \chi_x \chi > = 0$

Group of Symmetries: $U(2) = \{g \in GL(2, \mathbb{C}) \mid \overline{g}^T = \overline{g}^{-1}\}$ (metric - preserving)

1. U(2) preserves 53
2. U(2) preserves contact structure

Congruence of L-curves

Def. χ , $\tilde{\chi}$ param. L-curves are congruent if $\tilde{\chi}=g\chi$, $g\in U(z)$

How to test congruence:

(1)
$$|\tilde{x}| = \langle \tilde{x}, \tilde{x} \rangle^{\frac{1}{2}} = \langle g_{x}, g_{x} \rangle^{\frac{1}{2}} = |x|$$
 speeds must be the same

Construct a lift M of

The curve y into The group

$$y = y \cdot (\frac{1}{0}) \quad \text{[U(2)-value moving frame]}$$
 $R \xrightarrow{X} S^{3} \quad \text{Check:} \quad P(x) = (x \mid x) \in U(2)$

Test congruence of 8,8: do their lifts differ by lift-multipl.

Curvature of L-curve

=>
$$M_{x} = M(0-1)$$
 $K(x) := "curvature" of y$

Thm Two unit speed L-curves χ , χ are congruent iff $K(x) = \widetilde{K}(x) \ \forall x \ (equal \ curvature \ functions)$

A complete set of differential invariants for l-curves mot of unit speed are:

speed $\beta = |\chi|$

curvature
$$k = \frac{|m < \delta_{xx}, \delta_{x}|}{|\delta_{x}|^{3}}$$

Constructing examples of L-curver

Use the curvature K and Hopf map to reduce the reconstruction of & to computing an antiderivative

• Identify
$$S^3 \simeq SU(2) = \{g \in U(2) \mid det g = 1\}$$

$$S^{3} \iff SU(2)$$

$$Z = (Z_{1}, Z_{2}) \iff Z^{*} = \begin{pmatrix} Z_{1} & \overline{Z}_{2} \\ \overline{Z}_{2} & \overline{Z}_{1} \end{pmatrix}$$

- also identify $m(2) \simeq \mathbb{R}^3$ using the Adjoint repr. of SU(2)inner product on \mathbb{R}^3 , get and taking the standard

$$G: S^3 \stackrel{2:1}{\longrightarrow} SO(3)$$
 (spin covering)

Moreover
$$TT_{\mathcal{H}}(z) = 6(z^*)\vec{e}_i \in S^2$$
 $\vec{e}_i = \binom{1}{0} \in \mathbb{R}^3$
Hoff map factors through the double cover

$$G: S^3 \simeq SU(2) \xrightarrow{2:1} SO(3)$$

$$\gamma: \mathbb{R} \to S^3$$
 unit speed L-curve with curvature K

$$\eta = \pi_{\mathcal{H}} \circ \chi : \mathbb{R} \to S^2$$
Fact: η has curvature $X = \frac{K}{2}$

Now, if
$$F = (q, T, N) \in SO(3)$$
 is the Frenet frame of the spherical curve η and F its lift into $SU(2) \cong S^3$ (i.e. $G \circ F = F$)

$$\Rightarrow \gamma = e^{-\frac{1}{2}} \int_{X(x)}^{x} dx F$$
is a unit-speed L -curve (unique up to multipl.) by $e^{i\vartheta}$, ϑ const

The lifts of parallels at rational heights are torus knots in the 3-sphere

FIGURE 1. Left: the Heisenberg projection of the Legendrian knot $\gamma_{1,1}$, a topologically trivial knot with Maslov index 0 and Bennequin invariant -1. Right: the Heisenberg projection of the Legendrian knot $\gamma_{3,5}$, a torus knot of type (-3,5) with Maslov index 2 and Bennequin invariant -15. The tori are the Heisenberg projections of $\mathcal{T}_{m,n} \subset S^3$, m=n=1 (left) and m=3, n=5 (right).

FIGURE 2. Left: the Lagrangian projection $\alpha_{3,5}$ of $\mathbf{p}_H \circ \gamma_{3,5}$. Its turning number is 2, and there are fifteen ordinary double points, each with intersection index -1. Right: the epicycloid obtained inverting $\alpha_{3,5}$ with respect to the origin.

Geometry of Legendrian Loop Space

PL = {regular param. L-curves of feriod L} (may not be)

unit-speed

=>PL has the structure of a Fréchet manifold (e.g. Levario & Mondino 2019, Haller & Vizman 2022)

Tangent Space: $\chi \in P_L$, let $\hat{\chi}(\cdot, t)$ be a variation of χ : 1. $\hat{\chi}(\cdot, t) \in P_L$ $\forall t$, |t| small enough, $\hat{\chi}$ smooth

 $2. \quad \hat{\gamma}(x, 0) = \gamma(x)$

Variation $\frac{\partial x}{\partial t} = V = p_X + q(i_X) + r(i_X)$ Vector field $\frac{\partial x}{\partial t} = 0$ $\frac{\partial x}{\partial t} = 0$ $\frac{\partial x}{\partial t} = 0$ $\frac{\partial x}{\partial t} = 0$ Require $\frac{\partial x}{\partial t} = 0$ $\frac{\partial x}{\partial t} = 0$ $\frac{\partial x}{\partial t} = 0$

$$V = p \chi_x + g(i \chi_x) + r(i \chi)$$
 $r_x = 2g |\chi_x|^2$

Remark: Try, 53 is spanned by r, ix and ix ty to H-fiber span contact plane at r

$$p=q=0$$
, $r=1$ => $H=iy$ generator of constant
speed rotation along the fiber
 $q=r=0$, $p=f(x)=>R_p=f(x)y$ generator of reparam.
periodic x in x (fixed period)

Hand Ry form a group of transformations I

Form the quotient Q1 = Fif of equivalence classes [x]

Symplectic Structure on QL

for $V,W \in T_{1\chi 1}Q_L$ choose representatives $V,W \in T_{\chi}P_L$ and define the 2-form

$$\Omega_{[Y]}(Y, W) := - \int det_{R}(Y, Y, V, W) dx$$
of determinant in \mathbb{R}^{4}

- the value of IZ does not depend on the choice of representatives
- if $V = P_{V} \chi_{x} + q_{V} (i \chi_{x}) + r_{V} (i \chi)$, $W = P_{W} \chi_{x} + \cdots$ $- 2 \left[\chi_{1} (Y, W) = \frac{1}{2} \right] \left(r_{V} r_{W}^{2} - r_{W} r_{V}^{2} \right) dx = \int r_{V} r_{W}^{2} dx$

Symplectic Structure on Q_{L} $\mathcal{Q}_{L}(Y, W) = -\int \det_{R}(y, y_{x}, V, W) dx = \int r_{v} r_{w}^{2} dx$ (vector field: $p_{V_{x}} + q(i_{V_{x}}) + r(i_{V_{x}}), \quad r' = 2q |_{V_{x}}|^{2}$)

Thm I is a symplectic form on QL

If non-degeneracy $\Omega_{[\gamma]}(V,W) = 0 \quad \forall \quad V \Rightarrow r_{w}' = 0 \iff r_{w} = 0 \iff W = 0$

· closure Nice application of Cornelia Vizman's "hat calculus"

$$=> \quad \omega \cdot \alpha := \int ev^* \omega \wedge pr^* \alpha \qquad \left(\int_{S} denotes \text{ fiber integr.} \right)$$

$$delines \quad \alpha \quad (1 - \alpha + 1) \quad form \quad \alpha = \int_{S} (S - M) \cdot \int_{S} denotes \quad (1 - \alpha + 1) \cdot \int_{S} denotes \quad (2 - \alpha + 1) \cdot \int_{S} denotes \quad (3 - \alpha + 1) \cdot \int_{S} denotes \quad (4 - \alpha +$$

defines a
$$(p+q-k)$$
-form on $\mathcal{F}(S,M)=\{f:S\rightarrow M, smoots\}$
Here: $ev:S\times\mathcal{F}(S,M)\rightarrow M$ $pr:S\times\mathcal{F}(S,M)\rightarrow S$

Here:
$$ev: S \times \mathcal{F}(S, M) \rightarrow M$$
 $pr: S \times \mathcal{F}(S, M) \rightarrow S$ $(x, f) \rightsquigarrow x$

In our case
$$S=S^1$$
, $M=S^3$

Proof of Closure

volume form on
$$S^3$$
: pull-back of $n_E \mu$, where $\mu = standard$ volume form on \mathbb{R}^4 , $E = r \frac{\partial}{\partial r}$ (Euler vect. field)

If
$$\gamma: S' \to S^3$$
 is an embedding

(top form)

$$\hat{\mathcal{V}}(V,W) = \int \chi^*(z_w z_v v) = \int z_w z_v v = \int \nu(\chi, V, W) dx = -\int \det(\chi, \chi, V, W) dx$$

$$S' \qquad \qquad \delta$$
Use:
$$\frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2$$

Solver the correspondence
$$C(Q_L) \longrightarrow TQ_L$$
 $Hamiltonians$

(Hamiltonians)

 $C(Q_L) \longrightarrow JH_{[V]}(V) = \Omega_{[V]}(V) + M_{[V]}(V)$

Hamiltonian vector fields

Equiv., for
$$\hat{f}(o,t)$$
 a variation of f , $\frac{d\hat{f}}{dt}\Big|_{t=0} = V$

$$\frac{d}{dt}\Big|_{t=0} \mathcal{H}(\hat{f}(o,t)) = S_{t}^{2}(V,W_{H})$$

Prop. Given
$$A([x]) = \int_{-\infty}^{L} \langle x_{x}, x_{x} \rangle^{\frac{1}{2}} dx$$
 (total length)
$$W_{4A} = \frac{k_{x}}{|x_{x}|^{2}} (ix_{x}) + 2k(ix)$$

focusing mKdV Equation

Prop. If $V = p \gamma_x + q(i\gamma_x) + r(i\gamma)$, the induced curvature evolution is

$$K_{t} = \frac{(\beta g_{x})_{x}}{\beta^{2}} + \frac{9}{\beta} \left(\frac{\beta_{x}}{\beta}\right)_{x} + K_{x} + \beta \left(K_{+}^{2} 4\right) = 4$$

$$\beta = |\chi|$$

Rk: If $\beta=1$ and V preserves $\langle \chi, \chi_{\times} \rangle$, then (setting x=s) $p_s=kq$

$$\Rightarrow$$
 # gives $K_t = q_{rs} + (kp)_s + 49$

A representative of Wy is W= 1 K2 x + Ks (ix) + 2k (ix)

=>
$$K_t = K_{SSS} + \frac{1}{2}(K^3)_S + 4K_S$$
 (mkdV up to Galilean transform)

mkd V hierarchy

I so hierarchy of Hamiltonian vector field inducing the mKdV hierarchy at the level of the curvature

Key step curvature flow induced by $V=p\gamma_s+q(i\gamma_s)+r(i\gamma)\in \mathcal{TP}'$ (unit speed cose) has the form $R = J + J \times S u$ mKdV recursion

operator $k_t = (R+4)g$

Then build vector fields recursively.