MKdV-Related Flows for Legendrian Curves in S^{3} joint work with

Tom Ivey (College of Charleston, USA) and
Emilio Musso (Tolitecnico di Torino, Italy) [check arkiv next week]

FDI S 2023, University of Antwerp, August 10, 2023

Preamble/ Motivation
Integrable evolution equations
$"$ Integrable" \leftrightarrow inducing integrable PDE on their geometric invariants
Integrable curve flows arise naturally:
from physics, egg. vortex filament equation
from geometry: e.g. pseudo-spherical surface Pineal's flow, invariant flows in different geom aries
curves

- geometric a topological
features
- Construct examples
integrability

Lax pairs, conservation laws, special solution, Bäcklund Transformation

3-sphere and Hopf fibration
Consider \mathbb{C}^{2} with the Hermitian inner product

$$
\langle z, w\rangle:=z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}=\overline{\langle w, z\rangle}
$$

Note: $\operatorname{Re}<,>$ is the Euclidean inner product identified with $\mathbb{C}^{2} \simeq \mathbb{R}^{4}$

$$
S^{3}=\left\{z \in \mathbb{C}^{2} \mid\langle z, z\rangle=1\right\}
$$

Complex projectification: $\mathbb{C}^{2},\{0\} \xrightarrow{\longrightarrow} \mathbb{C}^{\prime}$

$$
\text { identify }(z, w) \sim(\lambda z, \lambda w) \quad \lambda \in \mathbb{C}, \lambda \neq 0
$$

Restricting π to S^{3} gives the Hoff fibration

$$
\pi_{H}: S^{3} \rightarrow \mathbb{C P}|\quad| 2 \mid=1
$$

Contact distribution on S^{3}
Hopf map $\pi_{H}: S^{3} \rightarrow \mathbb{C P I}$

- pts on fiber differ by $p \rightarrow e^{i \theta} p$ (circles in S^{3})
- define a contact distribution on S^{3} : the contact planes are (Euclidean) orthogonal to the Hop fibers
- locally, contact planes are defined as tangent vectors in the kernel of a differential 1 - form α, with $\alpha \Lambda d \alpha \neq 0$ (α not unique, egg. $\alpha(\cdot)=R_{e}\langle, v\rangle v$ tangent tofider)
- The plane distribution has integral curves (tangent to a plane at each point), but no integral surface : $\alpha \Lambda d \alpha \neq 0$ Integral curves are called

Legendrian curves (L-curves)

Description of L-curves in S^{3}
$\gamma: \mathbb{R} \rightarrow S^{3} \subseteq \mathbb{C}^{2} \quad$ regular, smooth parametrized curve
γ is Legendrian iff

$$
\left\langle\gamma_{x}, \gamma\right\rangle=0
$$

Why: $-\langle\gamma, \gamma\rangle=1 \Rightarrow \operatorname{Re}\left\langle\gamma_{x}, \gamma\right\rangle=0$.

- i $\gamma(x)$ II Hoff fiber at $p=\gamma(x) \in S^{3}$

Group of Symmetries: $U(2)=\left\{g \in G L(2, \mathbb{C}) \mid \bar{g}^{\top}=g^{-1}\right\}$ (metri c-preserving)

1. $U(2)$ preserves S^{3}
2. $U(2)$ preserves contact structure

Congruence of L-curves
Def. γ, γ param. L-curves ane congruent if $\tilde{\gamma}=g \gamma, g \in U(2)$ How to test congruence:
(1) $\left|\tilde{\gamma}_{x}\right|=\left\langle\tilde{\gamma}_{x}, \tilde{\gamma}_{x}\right\rangle^{\frac{1}{2}}=\left\langle g \gamma_{x}, g \gamma_{x}\right\rangle^{\frac{1}{2}}=\left|\gamma_{x}\right|$ speeds must
(2) Assume unit speed (for simplicity)

Construct a lift μ of The curve γ into the group [$U(2)$-value moving frame] Check: $\Gamma_{(x)}=\left(\gamma!\gamma_{x}\right) \in U(2)$

Test congruence of $\gamma, \tilde{\gamma}$: do their lifts differ by lft-multipl.

Curvature of L-curve
$\mu=\left(\gamma!\gamma_{x}\right) \quad U(2)$-valued moving frame
$\Rightarrow \quad \Gamma_{x}=\mu\left(\begin{array}{cc}0 & -1 \\ 1 & i k\end{array}\right) \quad K(x):=$ "curvature" of γ
The Two unit speed 1 -curves $\gamma, \tilde{\gamma}$ are congruent iff $k(x)=\tilde{k}(x) \quad \forall x$ (equal curvature functions)
(*) $\Rightarrow \gamma_{x x}=-\gamma+i k \gamma_{x} \Rightarrow k=\operatorname{Im}\left\langle\gamma_{x x}, \gamma_{x}\right\rangle$
A complete set of differential invariants for L-curves not of unit speed are:
speed $\beta=\left|\gamma_{x}\right|$
curvature $k=\frac{\left|m\left\langle\gamma_{x x}\right\rangle \gamma_{x}\right\rangle}{\left|\gamma_{x}\right|^{3}}$

Constructing examples of L-curves
Use the curvature K and Hoff map to reduce the reconstruction of γ to computing an antiderivative

- Identify $S^{3} \simeq S U(2)=\{g \in U(2) / \operatorname{det} g=1\}$

$$
\begin{aligned}
S^{3} & \longleftrightarrow S U(2) \\
z=\left(z_{1}, z_{2}\right) & \longleftrightarrow z^{*}=\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \\
z_{2} & z_{1}
\end{array}\right)
\end{aligned}
$$

- also identify $\operatorname{su}(2) \simeq \mathbb{R}^{3}$
- using the Adjoint rear. of $S U(2)$ and taking the standard inner product on \mathbb{R}^{3}, get
$\sigma: S^{3} \xrightarrow{2: 1} S O(3)$ (spin covering)
- Moreover $\pi_{\mathcal{H}}(z)=\sigma\left(z^{*}\right) \vec{e}_{1} \in S^{2} \quad \vec{e}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \in \mathbb{R}^{3}$

Hops map factors through the double cover

Reconstruction of L-curves

$$
\sigma: S^{3} \simeq S U(2) \xrightarrow{2: 1} S O(3)
$$

$\gamma: \mathbb{R} \rightarrow S^{3}$ unit speed L-curve with curvature K

$$
\eta=\pi_{H} \circ \gamma: \mathbb{R} \rightarrow S^{2}
$$

Fact: η has curvature $\lambda=\frac{k}{2}$

Now, if $F=(\eta, T, N) \in S O(3)$ is the Frenet frame of the spherical curve η and \tilde{F} its lift into $S U(2) \cong S^{3}$ (ie. $\sigma_{0} \tilde{F}=F$)

$$
\begin{aligned}
& F=F) \\
& \Rightarrow \quad \gamma=e^{i \int \not\left(x^{\prime}\right) d x^{\prime}} \tilde{F}
\end{aligned}
$$

is a unit-speed
L-curve

$$
\binom{\text { unique up to multiply }}{\text { by e civ, }, \theta \text { const }}
$$

The lifts of parallels at rational heights are torus knots in the 3-sphere

Figure 1. Left: the Heisenberg projection of the Legendrian knot $\gamma_{1,1}$, a topologically trivial knot with Maslov index 0 and Bennequin invariant -1 . Right: the Heisenberg projection of the Legendrian knot $\gamma_{3,5}$, a torus knot of type $(-3,5)$ with Maslov index 2 and Bennequin invariant -15 . The tori are the Heisenberg projections of $\mathcal{T}_{m, n} \subset S^{3}$, $m=n=1$ (left) and $m=3, n=5$ (right).

Figure 2. Left: the Lagrangian projection $\alpha_{3,5}$ of $\mathbf{p}_{H} \circ \gamma_{3,5}$. Its turning number is 2 , and there are fifteen ordinary double points, each with intersection index -1 . Right: the epicycloid obtained inverting $\alpha_{3,5}$ with respect to the origin.

Geometry of Legendrian Loop Space
$P_{L}=\{$ regular param. L-curves of period $L\}$ ((may not be) unit-speed
$\Rightarrow P$ has the structure of a Féchet manifold
(eeg. Lerariok Mondino 2019, Haller\&Vizman 2022)
Tangent Space: $\gamma \in P_{L}$, let $\hat{\gamma}(0, t)$ be a variation of γ :

1. $\hat{\gamma}(0, t) \in P_{L} \forall t,|t|$ small enough, $\hat{\gamma}$ smooth
2. $\hat{\gamma}(x, 0)=\gamma(x)$
$\left.\begin{aligned} & \text { Variation } \\ & \text { Vector field }\end{aligned} \quad \frac{\partial \hat{\gamma}}{\partial t}\right|_{t=0}:=V=p \gamma_{x}+q\left(i \gamma_{x}\right)+r(i \gamma)$
p, q, r periodic of period L
Require $\left.\frac{\partial}{\partial t}\right|_{t=0}\left\langle\gamma_{x}, \gamma\right\rangle=\left\langle V_{x}, \gamma\right\rangle+\left\langle\gamma_{x}, V\right\rangle=0 \Rightarrow r_{x}=2 q\left|\gamma_{x}\right|^{2}$

$$
V=p \gamma_{x}+q\left(i \gamma_{x}\right)+r(i \gamma) \quad r_{x}=2 q\left|\gamma_{x}\right|^{2}
$$

Remark: $T_{\gamma(x)} S^{3}$ is spanned by $\underbrace{\gamma_{x}, i \gamma_{x}}$ and io ty to H-fiber
$p=q=0, r=1 \Rightarrow H=i \gamma$ generator of constant speed rotation along the fiber $q=r=0, p=f(x) \Rightarrow R_{f}=f(x) \gamma_{x}$ generator of reparam. periodic f in x (fixed period)
H and R_{f} form a group of transformations φ Form the quotient $Q_{L}=P_{L} / \rho$ of equivalence classes $[\gamma]$

Symplectic Structure on Q_{L}
for $V, W \in T_{\left[\gamma^{7}\right.} Q_{L}$ choose representatives $V, W \in T_{\gamma} P_{L}$ and define the 2-form

$$
\Omega_{[\gamma]}(\nu, W):=-\int_{0}^{L} \operatorname{det}_{R}\left(\gamma, \gamma_{x}, V, W\right) d x
$$

- The value of Ω does not depend on the choice of representatives
- if $V=p_{v} \gamma_{x}+q_{v}\left(i \gamma_{x}\right)+r_{v}(i \gamma), \quad W=p_{w} \gamma_{x}+\cdots$

$$
\Omega_{[\gamma]}(\nu, w)=\frac{1}{2} \int_{0}^{L}\left(r_{v} r_{w}^{\prime}-r_{w} r_{v}^{\prime}\right) d x=\int_{0}^{L} r_{\nu} r_{w}^{\prime} d x
$$

Symplectic Structure on Q_{L}

$$
R_{[\gamma]}(\nu, w)=-\int_{0}^{L} \operatorname{det}_{R}\left(\gamma, \gamma_{x}, V, W\right) d x=\int_{0}^{L} r_{\nu} r_{w} d x
$$

(Vector field $\left.=p \gamma_{x}+q\left(i \gamma_{x}\right)+r(i j), \quad r^{2}=2 g / \sigma_{x} /^{2}\right)$

The Ω is a rymplectic form on Q_{L}

If. mon-degeneracy

$$
\Omega_{[\gamma]}(\nu, \nu \nu)=0 \quad \forall \nu \Rightarrow r_{w}^{\prime}=0 \Leftrightarrow r_{w}=0 \Leftrightarrow 2 \psi=0
$$

- closure

Nice application of Cornelia Vizman", "hat calculus"

Hat Calculus
Setting: S compact oriented K-manifold
M finite-dim manifold
ωp-form on M, α-form on S
$\Rightarrow \quad \widehat{\omega} \alpha,=f_{S} e^{*} \omega \Lambda p^{*} \alpha \quad$ (ffenotes fiber integr.)
defines a $(p+q-k)$-form on $F(S, M)=\{f: S \rightarrow M$, smooth $\}$
Here : eq: $S \times \mathcal{F}(S, M) \rightarrow M$

$$
(x, f) \leadsto f(x)
$$

pr: $S_{x} \mathcal{F}(S, M) \rightarrow S$
$(x, f) \leadsto x$
In our case $S=S^{\prime}, M=S^{3}$

Claim: $\frac{$| $\Omega=\hat{\nu}=\widehat{\nu} \cdot 1 \mid$ |
| :--- |
| 2 form |
| on |$| s^{\prime} s}{}$

ν standard volume form on S^{3} 1 constant $f n$ on S^{\prime}

$$
p+q-k=3+0-1=2
$$

Proof of Closure
volume form on S^{3} : pullback of ${ }^{2} \mu \mu$, where $\mu=$ standard volume form on $\mathbb{R}^{4}, E=r \frac{\partial}{\partial r}$ (Euler vect.fielf)
$4 \mathrm{f}: S^{\prime} \rightarrow S^{3}$ is an embedding

$$
\hat{\nu}(v, w)=\int_{s^{\prime}} \gamma^{*}\left(z_{w} v^{2} \nu\right)=\int_{\gamma} w_{w} v_{\nu} \nu=\int_{0}^{L} \nu\left(\gamma_{x}, V, w\right) d x=-\int_{0}^{L} \operatorname{det}\left(\gamma, \gamma_{x}, v, w\right) d x
$$

Use:
$\operatorname{Trm}\left(V_{\text {izman }}\right) \quad d(\omega \cdot \hat{\alpha})=(\hat{d \omega}) \cdot \alpha+(-1)^{p} \omega \cdot \hat{d} \alpha$

$$
d \hat{\nu}=\underset{(d \nu) \cdot \alpha-\nu \cdot d_{l}^{\prime \prime}}{0^{\prime \prime}}=0
$$

(top form)

Hamiltonian Vectorfields Ω gives the correspondence

$$
\begin{aligned}
& \bigoplus^{\infty}\left(Q_{L}\right) \quad T Q_{L} \\
& \mathcal{H}_{\text {(Hamiftonians) }} \sim d \mathcal{H}_{[\gamma]}(V)=\Omega_{[\gamma]}\left(\nu, W_{H}\right) \\
& \begin{array}{l}
\text { Hamiltonian } \\
\text { vector fields }
\end{array}
\end{aligned}
$$

Equiv., for $\hat{\gamma}(0, t)$ a variation of $\gamma,\left.\frac{d \gamma}{d t}\right|_{t=0}=V$

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{F}(\gamma(0, t))=\Omega_{[\gamma]}\left(\nu, W_{H t}\right)
$$

Pop. Given $A([\gamma])=\int_{0}^{L}\left\langle\gamma_{x}, \gamma_{x}\right\rangle^{\frac{1}{2}} d x$ (total length)

$$
W_{4 A}=\frac{k_{x}}{\left|\gamma_{x}\right|^{2}}\left(i \gamma_{x}\right)+2 k(i \gamma)
$$

focusing mod Equation
Prop. If $V=p \gamma_{x}+q\left(i \gamma_{x}\right)+r(i j)$, the induced curvature evolution is

$$
\begin{align*}
& K_{t}=\frac{\left(\beta q_{x}\right)_{x}}{\beta^{2}}+\frac{q}{\beta}\left(\frac{\left(\beta_{x}\right.}{\beta}\right)_{x}+k_{x} p+\beta\left(k^{2}+4\right) q \\
& \beta=\left|\gamma_{x}\right|
\end{align*}
$$

Rt: If $\beta=1$ and V preserves $\left\langle\gamma_{x}, \gamma_{x}\right\rangle$, then (setting $x=s$) $\quad p_{s}=k g$
$\Rightarrow *$ gives $\quad k_{t}=q_{s s}+(t p)_{s}+4 q$
A representative of $W_{4 A}$ is $W=\frac{1}{2} k^{2} \gamma_{s}+k_{s}\left(i_{j}\right)+2 k(i j)$

$$
\Rightarrow k_{t}=k_{s s s}+\frac{1}{2}\left(k^{3}\right)_{s}+4 k_{s} \quad\binom{m k d V}{\text { Galilean transform }}
$$

med hierarchy

- 7∞ hierarchy of Hamiltonian vectorfield inducing the mKdV hierarchy at the level of the curvature
Key step curvature flow induced by

$$
V=p \gamma_{s}+q\left(i \gamma_{s}\right)+r(i \gamma) \in J P^{\prime} \quad \text { (unit speed cave) }
$$

has the form

$$
k_{t}=(\pi+4) q
$$

$$
R=\delta^{2}+\delta k \delta^{-1} u
$$

$m K d V$ recursion operator
Then build vector fields recursively.

