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Motivation

S.Ulam’s problem in flotation theory, problem 19 in the Scottish book:

Is a solid of uniform density which will float in water in every position a sphere?

In dim ≥ 3–recent progress by D. Ryabogin.

In dim = 2:

1. Auerbach, Zindler curves–solutions for density ρ = 1/2.

2. Bracho, Montejano, Oliveros first solutions for ρ 6= 1/2

3. Wegner curves:

Let γ(s) be arc-length parametrization of a closed curve. Wegner constructed
by means of elliptic functions the Explicit solutions to the floating condition:

|γ(s+ α)− γ(s)| = 2l = const

Wegner animations 1; and more complicated curves Wegner animations 2

Misha Bialy Tel Aviv University, Israel Self-Bäcklund curves

https://www.thphys.uni-heidelberg.de/~wegner/Fl2mvs/float.html
https://www.thphys.uni-heidelberg.de/~wegner/Fl2mvs/p1p5.html


Discovery by Franz Wegner

Wegner found on a physical level, not rigorously, a differential equation for γ,
treating α as infinitesimal. Then solved and analyzed the solutions in elliptic
functions, and then verified the floating property for the solution.

The solutions found by Wegner solve other interesting problems:

1. Motion of the electron in a radial magnetic field of the magnitude depending
quadratically on r.

2. Bicycle curves: Sherlock Holmes and Dr. Watson discuss in view of the two
tire tracks of a bicycle, which way the bicycle went. The problem is: Is it
possible that tire tracks other then circles or straight lines are created by
bicyclists going in both directions?

3. Buckled rings (pressurized elastica) (G. Bor, M. Levi, R. Perline, and S.
Tabachnikov) Variational problem of relative extrema of the bending energy∫
k2ds under the length and area constraints.

4. Magnetic Gutkin billiards (Bialy, Mironov, Shalom)

The goal today: to find an analog of Wegner curves in centro-affine geometry
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Centro-affine problem
Let γ(t) be a parametrized smooth curve in the affine plane with a fixed area
form. The curve is centro-affine if the Wronski determinant is constant:

[γ(t), γ′(t)] = 1

for all t ∈ R. We assume that the curves are π-anti-periodic: γ(t+ π) = −γ(t)
for all t. That is, the curve is closed, centrally symmetric and 2π-periodic. Then

γ′′(t) = p(t)γ(t),

where p(t) is π−periodic, called centro-affine curvature (for circle p = −1).
Pinkall’ (Hamiltonian) flow on the space of centro-affine curves (dot is time
derivative)

γ̇ = pγ′ − p′

2
γ.

Then p evolves according to Korteweg-de Vries equation:

ṗ = −1

2
p′′′ + 3p′p

Tabachnikov: the Bäcklund transformation of the KdV equation can be
interpreted as a geometric relation between centroaffine curves.
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c-related curves
Centro-affine curves γ, δ are called c-related if [γ(t), δ(t)] = c;
γ is called Self-Bäcklund if

[γ(t), γ(t+ α)] = c, α ∈ (0, π) is called rotation number.

Construct a new centroaffine curve δ(t) = f(t)γ(t) + g(t)γ′(t), where f(t) and
g(t) are π-periodic functions.

Figure: Area of the shaded triangle OAB remains constant.

One can immediately check that γ and δ are c-related iff g(t) = c and the
Riccatti eq. holds cf ′(t)− f2(t) + c2p(t) + 1 = 0. (R)
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Hill equation
The Riccati equation (R) is intimately related to the Hill equation
y′′ + (λ− p(t))y = 0. (H)

Proposition
The Riccati equation (R) with a π-periodic p(t) admits a π-periodic solution
f(t) for a parameter value c 6= 0 if and only if the Hill equation (H) admits a
positive π-quasi-periodic solution y(t) for λ = −1/c2 and f = −cy′/y.

Recall that a solution y(t) of (H) is called π-quasi-periodic if y(t+ π) = µ y(t)
for all t and some µ 6= 0, called the Floquet multiplier of y(t). If µ = 1 then
the solution is π-periodic and if µ = −1 it is π-anti-periodic.

Theorem 1 [Liapunoff, Haupt] (Spectrum of the Hill operator).
∃λk, µk → +∞, k = 0, 1, ...

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ4 < . . .

such that a non-trivial π-periodic solution exists iff λ = λk, and a
π-anti-periodic non-trivial solution if λ = µk, k = 0, 1, . . . . The number of
zeros on [0, π) for λ2k−1 or λ2k is 2k. In particular, no zeros means λ = λ0.
The number of zeros on [0, π) for µ2k or µ2k+1 is 2k + 1. Moreover, a solution
to equation is unstable (that is, unbounded) if and only if λ belongs to one of
the intervals (−∞, λ0), (µ0, µ1), (λ1, λ2), . . . (instability intervals, or ‘gaps’).
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Spectra

Graph of the function ∆(λ) := y1(λ, 2ω) + y′
2(λ, 2ω), where y1(λ, t), y2(λ, t)

are the basic solutions of equation with
y1(λ, 0) = y′

2(λ, 0) = 1, y′
1(λ, 0) = y2(λ, 0) = 0; the positions of the periodic

(λn), anti-periodic (µn), Dirichlet (Λn),
and Floquet (λn(µ) where µ = eiπn/k) eigenvalues are indicated.
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Range of c

Given a centroaffine closed π-anti-periodic curve γ(t), what is the range of the
parameter c for which γ admits a closed centroaffine c-related curve
(δ(t) = f(t)γ(t) + cγ′(t))?
Thus one needs to find a π-periodic solution f(t) to the Riccati equation (R)
cf ′ − f2 + c2p(t) + 1 = 0. By Proposition this happens if and only if the Hill
equation (H) admits a positive π-quasi-periodic solution y(t). We have:

Theorem 2 Let γ be a centroaffine π-anti-periodic curve. Then λ0 < 0.
Moreover γ admits a c-related closed curve if and only if |c| ≤ 1/

√
−λ0.

This is a centroaffine analog of Menzin’s conjecture for hatchet planimeters
(equivalently, bicycle monodromy) [Levi-Tabachnikov].

Moreover, λ0 ≤ −P := 1
π

∫ π

0
p(t)dt (Borg theorem). If γ is locally convex, so

that p(t) is strictly negative, then P > 0 and we have λ0 ≤ −P < 0. The
geometric meaning of P is the area bounded by the dual curve γ∗.

Corollary
Suppose P > 0 (for example γ is locally convex) and γ admits a c-related
π-anti-periodic closed curve. Then |c| ≤ 1/

√
P .
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Proof of Theorem 2.
Each component of γ is a non-trivial π-anti- periodic solution of equation (H)
for λ = 0. This implies that µk = 0, k ≥ 1, hence λ0 < 0.
We claim (H) admits a π-quasi-periodic positive solution ⇔ λ ≤ λ0.

(⇐.) If λ = λ0 then equation (H) has a positive periodic solution, hence
quasi-periodic. So we shall assume now that λ < λ0. In this case equation (H)
has no conjugate points, that is, a non-trivial solutions vanishing at two
distinct points t1, t2 because, by the Sturm Comparison Theorem, any solution
for every larger λ must have a zero between t1, t2. But for λ0 there is a
positive periodic solution. We complete the proof by the following
Lemma [after E. Hopf.] y′′ + q(t)y = 0, where q(t+ π) = q(t), has no
conjugate points if and only if it admits a positive π-quasi-periodic solution.

(⇐.) Let us show that (H) admits no positive π-quasi-periodic solution for
λ > λ0. Indeed if y(t), y(t+ π) = µ y(t), then µ > 0. Two possibilities:

1. If µ = 1 then y(t) is a positive periodic solution. But this is possible only
for λ = λ0, a contradiction.

2. If µ 6= 1 then the solution y(t) is unbounded, and hence λ belongs to one
of the instability zones. In particular, λ > µ0. Then, by the Sturm
Comparison Thm, y(t) cannot be positive since solutions for µ0 have
zeroes.
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Self Bäcklund infinitesimal deformations of conics

Centroaffine ellipse is Self Bäcklund for any α ∈ (0, π).
An infinitesimal deformation of γ is a formal expression γ̃ = γ(t) + ϵγ1(t),
satisfying self Bäcklund condition modulo ϵ2, for some α̃ = α+ ϵα1,
c̃ = c+ ϵc1.
Theorem 3 Let γ(t) = (cos t, sin t). Then
1. A non-trivial infinitesimal deformation of γ within the class of self-Bäcklund
π-anti-periodic centroaffine curves exists if and only if α̃ = α+ ϵα1 where
α = π/2, or α 6= π/2 and α satisfies for some integer k ≥ 4 the equation

tan(kα) = k tanα .

2. For k ≥ 2, there are exactly k − 2 solutions of equation in the interval
(0, π), counting also α = π/2 as a solution for k odd.

Remark Equation appeared in the context of bicycle kinematics in
[Tabachnikov06]; [Bor-Levi-Perline-Tabachnikov]; in the papers by Wegner,
summarized in [Wegner07]. It also appeared in [Gutkin] in the context of
billiards and flotation problems, and in [Bialy-Mironov-Shalom 20,21],
[Bialy-Mironov-Tabachnikov] for magnetic, outer and wire billiards. This
ubiquitous equation has a countable number of solutions but, except for π/2,
there are no π-rational solutions [Cyr].
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Values of π
3 ,

π
4

Theorem 4 Let γ(t) be a π-anti-periodic self-Bäcklund centroaffine curve, that
is, [γ(t), γ(t+ α)] = c 6= 0. If α = π/3 or α = π/4 then γ is a centroaffine
ellipse.
Proof.
For the case α = π

3
set γ(t) = γ0, γ

(
t+ π

3

)
= γ1, γ

(
t+ 2π

3

)
= γ2. Then

[γ0, γ1] = [γ1, γ2] = [γ2,−γ0] = c,

hence [γ0, γ2] = [γ0, γ1], and the vector γ1 − γ2 is collinear with γ0. Likewise,
γ2 + γ0 is collinear with γ1, and γ1 − γ0 with γ2. We write

γ1 − γ2 = k0γ0, γ2 + γ0 = k1γ1, γ1 − γ0 = k2γ2.

It is easy to see that k0 = k1 = k2 = 1. Thus γ2 = γ1 − γ0.
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It follows that γ′
2 = γ′

1 − γ′
0, and hence

1 = [γ2, γ
′
2] = [γ1 − γ0, γ

′
1 − γ′

0] = 2− [γ0, γ
′
1] + [γ′

0, γ1].

Since [γ0, γ1] = c, one has [γ′
0, γ1] + [γ0, γ

′
1] = 0. This implies that

[γ0, γ
′
1] =

1

2
, [γ′

0, γ1] = −1

2
,

and hence γ1 = (1/2)γ0 + cγ′
0.

It follows that in the Riccati equation (R) one has f = 1/2, and hence,
c2p = −3/4. That is, p is constant, which implies p = −1 and c =

√
3/2, and

therefore the curve is a centroaffine conic.

Remark An analogous result, rigidity for periods 3 and 4, holds for bicycle
curves, see [Tab06].
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Radon curves, α = π
2

There is a functional freedom for α = π
2

. For Ulam’s floating problem this is
analogous to the density 1/2 (was known to Auerbach and Zindler).

Let Γ be a smooth closed convex centrally symmetric curve. Let x, y ∈ Γ. One
says that x is Birkhoff orthogonal to y, (x ⊥B y), if y is parallel to the tangent
line to Γ at x. Γ is called a Radon curve, if this relation is symmetric. Radon
curves comprise a functional space, with ellipses providing a trivial example
(conjugate diameters), see [Martini-Swanepoel] for a modern treatment.

Let Γ be a Radon curve, x ∈ Γ be a point, and y ∈ Γ be its Birkhoff
orthogonal. Then the tangent lines at points x, y,−x,−y form a parallelogram
circumscribed about Γ. Area of the parallelogram is
constant–equiframe property. As x traverses Γ, the vertices of the
parallelogram describe a curve γ. Then γ is an invariant curve of the outer
billiard transformation about Γ.

The relation of self-Bäcklund curves with Radon curves is as follows. Let γ be
a self-Bäcklund curve with rotation number π/2, then the points
γ(t), γ(t+ π/2), γ(t+ π), γ(t+ 3π/2) form a parallelogram of constant area
2c. Therefore the middle curve Γ is a Radon curve.

Thus we have for α = π/2:
Self Backlund ⇒ Radon ⇔ Equiframe property.
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A Picture of Radon curve

- 1 1

- 1

1

Figure: A self-Bäcklund curve with rotation angle α = π/2 and c = 1.

We shall construct below analytic families of Radon curves.
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Pictures of Self Bäcklund curves

Self-Bäcklund curves
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Wegner ansatz

Emulating Wegner’s approach, fix a small ϵ and consider the curves
Γ± = γ ± ϵγ′. These curves are 2ϵ-related. We want them to be obtained from
the same curve, Γ, by rotating it through small angles ±δ. The assumption is
that δ is of order ϵ3; all the calculations are mod ϵ4...

O

'

A

G

Figure: r = |OA|, ρ = |OB−| = |OB| = |OB+|, φ = ∠AOB+, ψ = ∠OAB+, δ =
∠BOB+ = ∠B−OB. Curves γ and Γ are given in polar coordinates by r(α) and ρ(β).
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This ansatz gives...

Γ(t) = (R(t)1/2 cosα(t), R(t)1/2 sinα(t)) (1)
where:

R′2 = aR3 + bR2 + cR− 4. (2)
Thus R(t) = r2(t) is an elliptic function. The curve is given by a parametric
equation
with R as in equation (2) and α′ = R−1. (If the curve is a centroaffine ellipse,
one has a = 0 in equation (2).)

Lemma
One has p(t) = 1

2
aR(t) + 1

4
b. Renaming the constants again, we obtain from

equation (2)
p′2 = 2p3 + ap2 + bp+ c.

Usual curvature of the curve k = −8p(t)√
aR2+bR+c

3 = − 4aR+2b

(aR2+bR+c)
3
2
.

Thus the curvature is a function of the distance from the origin. This is a
special class of curves. One can think of these curves as the trajectories of a
charge in a rotationally symmetric magnetic field whose strength is a function
of the distance from the origin. Note that Wegner’s curves also have this
property: their curvature satisfies k = ar2 + b, where a, b are constants.
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Comparing the equation on p to the equation satisfied by the Weierstrass ℘
function,

(℘′)2 = 4℘3 − g2℘− g3, ℘(z) :=
1

z2
+

∑
λ∈Λ′

[
1

(z + λ)2
− 1

λ2

]
.

we conclude that p(t) is given in terms of ℘ by

p(t) = 2℘(t+ ω′) + C. (3)

Here ℘ is the Weierstrass function with half periods ω, ω′, where the first one is
real and the second one is pure imaginary. Since p(t) needs to be periodic, we
are in the case of three real roots e1 > e2 > e3. Write C = ℘(a) for some
a ∈ C. Thus

p(t) = 2℘(t+ ω′) + ℘(a). (4)
Write our curve in complex form X(t) = x(t) + iy(t), satisfying

X ′′ + (−℘(a)− 2℘(t+ ω′))X = 0, (5)

which is precisely the Lamé equation [Akhiezer] (more general case–n(n+ 1)
instead of 2).
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To construct a centroaffine π-anti-symmetric curve, we shall impose the
Requirements:

1. The Wronskian [X,X ′] = 1. This can be achieved by rescaling.
2. ω = π/2k for some integer k ≥ 2, so that p is π/k-periodic.
3. The solution X is rotated over the period 2ω by πn/k, where 0 < n < k is

odd and co-prime to k, so that after k periods we have X(t+π) = −X(t).
In other words, we require X(t) to be a complex 2ω-quasiperiodic solution
of equation (5), with Floquet multiplier µ = eiπn/k:

X(t+ 2ω) = X(t)eiπn/k.

A basis X+, X− for the solutions of the Lamé equation (5) can be written in
the following form (see [Akhiezer]):

X±(t) = e−tζ(±a) σ(±a+ t+ ω′)σ(ω′)

σ(±a+ ω′)σ(t+ ω′)
, (6)

here and below ζ, σ are the Weierstrass zeta and sigma functions.
ζ′(z) = −℘(z), ζ has simple poles at Λ,
ζ(z + 2ωi) = ζ(z) + 2ηi, quasi-periodic, where ηi := ζ(ωi), i = 1, 2, 3.
σ′

σ
= ζ, σ is entire quasi-periodic, σ(z + 2ωi) = −e2ηi(z+ωi)σ(z), where

ω1 = ω, ω2 = −(ω + ω′), ω3 = ω′, ηi = ζ(ωi).
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The construction of the self-Bäcklund curves is this section requires a careful
choice of the parameter a in equation (5).

Proposition For every a ∈ (0, ω′) ∪ (ω, ω + ω′),
1. ℘(a) is real, hence also the potential 2℘(t+ ω′) + ℘(a) in the Lamé eq.
2. X+(t) is regular: X ′

+(t) 6= 0; X+(0) = 1 and X ′
+(0) = ib, b ∈ R, b > 0.

3. X+(t) is locally star-shaped and positively oriented:

[X+(t), X
′
+(t)] = const > 0.

4. X+(t+ 2ω) = X+(t)e
2f(a), where

f(a) := aζ(ω)− ωζ(a).

So, X+(t) is a 2ω-quasiperiodic , with a Floquet multiplier µ = e2f(a).

5. The function f of the previous item satisfies the identities

f(−a) = −f(a), f(a+ 2ω) = f(a), f(a+ 2ω′) = f(a) + iπ.

Thus, due to requirement 3 and Proposition (item 4), we need to solve

2f(a) ≡ iπn/k (mod 2πi), or f(a) =
iπn

2k
+ iπm, for some m,n ∈ Z, where

n is odd, relatively prime to k, and 0 < n < k.
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Theorem 5 Consider the equation for fixed integers k, n, where k ≥ 2 and n is
odd, relative prime to k, and 0 < n < k. Then

1. For every m ≥ 0 there is a unique solution am of f(a) =
iπn

2k
+ iπm,

such that am ∈ (0, ω′) for m > 0, and a0 ∈ (ω, ω + ω′), for m = 0.
2. The sequence λm(µ) := −℘(am) is strictly monotone increasing and, in

particular, the value λ0(µ) = −℘(a0) is the smallest one.

Theorem 6 For each k,m, n as in above, consider the curve X+ determined by
the value am.

1. X+ is locally star-shaped π-antisymmetric curve, with winding number

w = 2k
⌈m
2

⌉
+ n.

2. X+ is embedded (simple) if and only if m = 0, n = 1.

3. The curve X+ satisfies the self-Bäcklund property
[X+(t), X+(t+ α)] = const for a value of the parameter α ∈ (0, π) if and
only if

σ(a+ α) = e2αζ(a)σ(a− α). (7)
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Proof of self-Bäcklund property
Set β = α/2. Then self-Bäcklund property reads

Im
(
X+(t+ β)X+(t− β)

)
= c,

where overline denotes the complex conjugation. We can rewrite this equation
as

X+(t+ β)X−(t− β)−X−(t+ β)X+(t− β) = 2c.

Next we substitute in the last equation the expressions for X± from equation
(6):

2c =e−(t+β)ζ(a) σ(a+ t+ β + ω′)σ(ω′)

σ(a+ ω′)σ(t+ β + ω′)
e(t−β)ζ(a) σ(−a+ t− β + ω′)σ(ω′)

σ(−a+ ω′)σ(t− β + ω′)
−

− e(t+β)ζ(a) σ(−a+ t+ β + ω′)σ(ω′)

σ(−a+ ω′)σ(t+ β + ω′)
e−(t−β)ζ(a) σ(a+ t− β + ω′)σ(ω′)

σ(a+ ω′)σ(t− β + ω′)
.

Using the addition theorem ℘(z)− ℘(w) = −σ(z−w)σ(z+w)

σ2(z)σ2(w)
we get

2c =e−2βζ(a) [℘(t+ ω′)− ℘(a+ β)]σ2(a+ β)σ2(ω′)

[℘(t+ ω′)− ℘(β)]σ2(β)σ(a+ ω′)σ(−a+ ω′)
−

− e2βζ(a)
(℘(t+ ω′)− ℘(a− β))σ2(a− β)σ2(ω′)

[℘(t+ ω′)− ℘(β)]σ2(β)σ(a+ ω′)σ(−a+ ω′)
.
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Multiplying by the common denominator and renaming the constant,

c̃ := 2cσ2(β)σ(a+ ω′)σ(−a+ ω′)/σ2(ω′),

we get

c̃
[
℘(t+ ω′)− ℘(β)

]
=e−2βζ(a) [℘(t+ ω′)− ℘(a+ β)

]
σ2(a+ β)−

− e2βζ(a)
[
℘(t+ ω′)− ℘(a− β)

]
σ2(a− β).

Thus we must have

c̃ = e−2βζ(a)σ2(a+ β)− e2βζ(a)σ2(a− β)

℘(β)c̃ = e−2βζ(a)℘(a+ β)σ2(a+ β)− e2βζ(a)℘(a− β)σ2(a− β).

Substituting c̃ from the first identity into the second and simplifying, we get

σ2(a+ β) [℘(a+ β)− ℘(β)] = e4βζ(a)σ2(a− β) [℘(a− β)− ℘(β)] .

Using equation addition formula again, we obtain σ(a+ α) = e2αζ(a)σ(a− α),
as needed. Moreover we have:
Theorem 7 For integers k,m, n, where k ≥ 2 and n is odd, relative prime to k,
and 0 < n < k, the associated curve X+ satisfies the self-Bäcklund property
[X+(t), X+(t+ α)] = const for k − 2 values of α ∈ (0, π) which are the
solutions of σ(a+ α) = e2αζ(a)σ(a− α) on (0, π).
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Important example
Important special case m = 0, n = 1, α = π/2. We have an infinite family of
self-Bäcklund simple closed curves with α = π/2, but now we have an analytic
examples.

Figure: Self-Bäcklund simple curves X+(t) (blue) with 2k-fold symmetry, k = 3, 5, 7,
α = π/2. The red curve is traced by the midpoint of the line segment
X+(t)X+(t+ π/2) and is tangent to it. For large ω′, the red curve is smooth and
convex (is a Radon curve); for smaller ω′– cusps appear
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Self-Bäcklund curves as deformations of conics

It turns out that the self-Bäcklund curves constructed above can be obtained
as a genuine non-trivial deformations of a central conic. Recall, for every
integer k ≥ 3 and ω′ ∈ iR+ one considers the Weierstrass ℘-function with half
periods ω = π/2k, ω′, the associated σ- and ζ-functions and the (unique)
solution a ∈ (ω, ω + ω′) to aζ(ω)− ωζ(a) = iω, then set

Y (t) := X(t)/N, X(t) :=
σ(a+ t+ ω′)σ(ω′)

σ(a+ ω′)σ(t+ ω′)
e−tζ(a), N :=

√
|X ′(0)|.

Remark
The normalization factor N =

√
|X ′(0)| =

√
℘′(a)

2i(℘(a)−e3)
, is introduced so as

to render the normalized curve Y centroaffine and π-anti-periodic (enclosing
area π).

The deformation of the unit circle is obtained by fixing k and letting ω′ → ∞
in the above construction. Namely we set ω = π/2k, ω′ = i/s, s ∈ (0, 1] ,
and use henceforth the subscript s to denote all associated objects
℘s, σs, ζs, as, Xs, Ns and Ys.
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Theorem 8
For each integer k ≥ 3,

1. The family of curves Ys(t), s ∈ (0, 1], for ω = π/2k, ω′ = i/s, extends
smoothly to s ∈ [0, 1] by setting Y0(t) := eit.

2. Each curve Ys(t) is a centroaffine π-anti-periodic simple curve with 2k-fold
symmetry, Ys(t+ π/k) = Ys(t)e

iπ/k, self-Bácklund for s > 0 with respect
to k − 2 rotation numbers α ∈ (0, π), varying smoothly in s ∈ [0, 1] and
converging as s → 0 to the k − 2 solutions of equation tan(kα) = k tanα.

3. The deformation Ys, s ∈ [0, 1], is analytic away from s = 0 but not at
s = 0. In fact, one has (∂s)

n|s=0 Ys(t) = 0, n ≥ 1, so the associated
infinitesimal deformation of the unit circle vanishes to all orders, yet the
deformation itself is non-trivial.

4. The change of parameter, ϵ :=

 e−2k/s, s > 0,

0, s = 0,
gives a deformation

Yϵ of the unit circle Y0, analytic in ϵ ∈ [0, e−2k].

5. The infinitesimal deformation associated with the analytic deformation Yϵ

is non-trivial. That is,

Yϵ(t) = eit + Y1(t)ϵ+O(ϵ2),

where Y1 is non-vanishing.
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k = 3 k = 4 k = 5

Figure: Three families of deformations of the circle (black) through a 1-parameter
family of centroaffine self-Bäcklund curves Ys (blue) with 2k-fold symmetry,
k = 3, 4, 5.

Main idea: functions Xs, s ∈ [0, 1], are suitably normalized Floquet
eigenfunctions of a Hill operator depending smoothly on s.
Then use a general argument of smooth dependence of the eigenfunctions of a
Hill operator depending on the smooth parameter. Similarly, when replacing s
with ϵ the Hill operator depends analytically on ϵ and so do its eigenfunctions.
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In more detail, we recall that Xs, s ∈ (0, 1], is precisely the eigenfunction
corresponding to the smallest eigenvalue λ0,s for the Floquet problem

X ′′ + (λ− 2qs(t))X = 0, X(t+ π/k) = µX(t), µ = eiπ/k, (8)

where qs(t) = ℘(i/s+ t) and Xs satisfy the normalization condition
Xs(0) = 1. Moreover, we showed that λ0,s = −℘s(as), where as ∈ (ω, ω + ω′)
is uniquely defined.

Lemma
The function qs(t) := ℘s(t+ i/s), s 6= 0, and q0(t) := −k2/3, depends
smoothly on (s, t) ∈ [0, 1]× R. Moreover, The change of parameter s 7→ ϵ of
equation (4) transforms the deformation qs to qϵ which is real analytic in
ϵ ∈ [0, e−2k], with Taylor series qϵ = − k2

3
− 8k2 cos(2kt)ϵ+O(ϵ2).

Lemma
The eigenfunctions Xs(t), s ∈ [0, 1], corresponding to the first eigenvalue λ0,s

of the Floquet problem (8), are uniquely determined by the condition Xs(0) = 1
and are smooth (analytic) in s if the potential qs is smooth (analytic) in s.
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Remarks

Lemma
For every s ∈ [0, 1] the curves Ys are self-Bäcklund for k − 2 values of
αs ∈ (0, π), satisfying

σs(as + αs)

σs(as − αs)
= e2αsζs(as). (9)

All k − 2 solutions αs depend smoothly on s ∈ [0, 1]. For s = 0 this equation
reduces to k tan(α) = tan(kα). Moreover, the k − 2 families αϵ are
analytic in ϵ ∈ [0, e−2k].

Lemma
Xϵ has a Taylor series in ϵ: Xϵ(t) = eit +X1(t)ϵ+O(ϵ2), where X1 is
non-vanishing.

Question

It would be interesting to construct self Bäcklund curves via other finite zone
potentials.

Thank you.

Misha Bialy Tel Aviv University, Israel Self-Bäcklund curves


