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Context: Nijenhuis operators in Riemannian geometry and
in finite and 1-dimensional integrable systems

Link 1 Levi-Civita, Sinjukov, BM, BKM (Nijenhuis Geometry 1,

Appl. of Nijenhuis Geometry 5)

Link 2 Magri, Lorenzoni, Fordy, Ferapontov, Mokhov, BKM (Appl. of

Nijenhuis Geometry 3, 4) + lots of papers on 1-dim Nijenhuis

recursion operators

Link 3 Levi-Civita, Eisenhardt, Stäckel, Benenti, Matveev-Topalov, BM,

Tabachnikov et al

Link 4 BKM (Appl. of Nijenhuis Geometry 2)

Link 5 BKM (applications of Appl. of Nijenhuis Geometry 3 to separating

coordinates for constant curvature metrics of arbitrary signeture)

Link 6 Dubrovin, Krichever, Novikov, Ferapontov, Fordy, Blaszak,

Marciniak, Sergyeyev, ... BKM (Nijenhuis Geometry 4,

Appl. of Nijenhuis Geometry 5)



Our goal and approach

We first study Nijenhuis operators on their own and then apply general

results so obtained wherever Nijenhuis operators appear in geometry and

mathematical physics.

In this talk:

I AB, A.Konyaev, V.Matveev Nijenhuis Geometry 4: conservation

laws, symmetries and integration of certain non-diagonalisable

systems of hydrodynamic type in quadratures, arXiv:2304.10626.

I AB, A.Konyaev, V.Matveev Applications of Nijenhuis Geometry V:

geodesically equivalent metrics and finite-dimensional reductions of

certain integrable quasilinear systems, arXiv:2306.13238.



Basic definitions (for this talk)

Definition (differential geometric)

A field of endomorphisms L = (Lij) is called a Nijenhuis operator, if

NL(⇠, ⌘)
def
= L2[⇠, ⌘]� L[L⇠, ⌘]� L[⇠, L⌘] + [L⇠, L⌘] = 0

for all vector fields ⇠, ⌘.

Definition (algebraic)

An operator L : V ! V , dimV = n, is called gl-regular, if either of the

following conditions holds:

I there is a vector ⇠ such that ⇠, L⇠, . . . , Ln�1⇠ are linearly

independent (such a vector is called cyclic);

I the operators Id, L, . . . , Ln�1
form a basis of the centraliser of L;

I for each eigenvalue of L there is only one eigenvector;

I L can be reduced to the first (or second) companion form.



Basic definitions (for this talk)

Let A = (Ai
j) be an operator (not necessarily Nijenhuis).

Definition

A function f is a conservation law for A, if the form A⇤d f is closed.

(Today all the constructions are local so that this condition is equivalent

to the existence of a function g such that d g = A⇤d f .)

Definition

An operator B = (B i
j ) is called a strong symmetry (resp. just symmetry)

for the operator A, if

I AB = BA
I (i) strong symmetry:

hA,Bi(⇠, ⌘) def
= A[B⇠, ⌘] + B[⇠,A⌘]� [A⇠,B⌘]� AB[⇠, ⌘] = 0,

(ii) symmetry:

hA,Bi(⇠, ⇠) = A[B⇠, ⇠] + B[⇠,A⇠]� [A⇠,B⇠] = 0.



Folklore: symmetries and conservation laws for a diagonal
Nijenhuis operator

If L = diag(u1, . . . un) or more generally

L = diag(�1(u1), . . .�n(un)),

where �i (·) are some functions (perhaps constant), satisfying

�i (ui ) 6= �j(uj) almost everywhere, then the conservation laws and

symmetries are very simple

f (u) = f1(u1) + f2(u2) + · · ·+ fn(un)

and

M(u) =

0

BBB@

m1(u1)
m2(u2)

. . .
mn(un)

1

CCCA

Natural question. What about other types of Nijenhuis operators, e.g.

gl-regular, which may admit Jordan blocks and collisions of eigenvalues?



Jordan block in dimension 3 (example)

Let Lnc =

 
u3 u2 u1
0 u3 u2
0 0 u3

!
and Lc =

 
0 1 0
0 0 1
0 0 0

!

Useful formula from Linear Algebra:

f (Lnc) =

0

@
f (u3) f 0(u3)u2 f 0(u3)u1 +

f 00(u3)
2 u22

0 f (u3) f 0(u3)u2
0 0 f (u3)

1

A =

0

@
f g h
0 f g
0 0 f

1

A ,

with f = f (u3), g = g(u2,u3) = f 0(u3)u2, h = h(u1,u2,u3) =

f 0(u3)u1 +
f 00(u3)

2 u22 .

Symmetry of general type:

M = f1(Lnc)L
2
c + f2(Lnc)Lc + f3(Lnc) =

 
f3 g3 + f2 h3 + g2 + f1
0 f3 g3 + f2
0 0 f3

!

Conservation law of general type:

f (u1, u2, u3) = h3 + g2 + f1 = f 03 (u3)u1 +
1
2 f

00
3 (u3)u

2
2 + f 02 (u3)u2 + f1(u3)



Summary of results related to gl-regular Nijenhuis operators
Symmetries and conservation laws of a gl-regular Nijenhuis operator L
possess several remarkable properties:

P1. Each symmetry of L is strong.

P3. Each symmetry of L is Nijenhuis.

P2. If M1 and M2 are symmetries of L, then their product M1M2 is a

symmetry also.

P4. Symmetries M1 and M2 commute is the algebraic sense, i.e.,

M1M2 = M2M1, and are symmetries of each other.

P5. Every conservation law f of the operator L is a conservation law for

each of its symmetry M, that is, d (M⇤d f ) = 0.

P6. Let f be a regular conservation law of L. Then any other

conservation law h can be obtained from d g = M⇤d f , where M is a

suitable symmetry of L.

P7. In the real analytic case, symmetries and conservation laws of L are

parametrised by n arbitrary real analytic functions of one variable.

We have also obtained complete explicit description of symmetries and

conservation laws at non-singular points and generic singular points.



gl-regularity is essential: Example

Consider the constant operator L =

0

@
0 1 0
0 0 0
0 0 0

1

A in R3(x , y , z), which

consists of two nilpotent Jordan blocks of size 2 and 1.

The symmetries of L have the following form

M =

0

@
f xfy + g xfz + a
0 f 0
0 b c

1

A ,

where the functions f , g , a, b, c depend on y and z only.

Strong symmetries have a similar form with the additional condition that

f = f (y) (i.e., f does not depend on z).

The conservation laws are xu(y) + v(y , z).

None of the properties P1 – P7 are met.
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Link 1: Nijenhuis geometry and geodesically equivalent
metrics

Definition (Beltrami, Levi-Civita, ...)

Two (pseudo)-Riemannian metrics g and ḡ are called geodesically

equivalent if they share the same geodesics viewed as unparameterized

curves.

A manifold endowed with a pair of such metrics carries a natural

Nijenhuis structure

L =

����
det ḡ

det g

����

1
n+1

ḡ�1g .

In terms of L, the geodesic equivalence condition is given by the PDE

equation

r⌘L =
1

2

�
⌘ ⌦ d tr L+ (⌘ ⌦ d tr L)⇤

�
, (1)

where ⌘ is an arbitrary vector field.

Definition

If (1) holds, then the metric g and Nijenhuis operator L are said to be

geodesically compatible.



Singularities in the context of geodesically equivalent metrics
Singular points are those at which the algebraic type of L changes, e.g.,

the eigenvalues of L collide.

Open problem. What kind of singular points can appear in the context

of geodesically equivalent metrics?

Riemannian case was understood by Matveev 2006 (dim 2:

B-Matveev-Fomenko 1998), pseudo-Riemannian is still open.

Example.

✓
2x y
y 0

◆
is allowed,

✓
x 0
0 y

◆
is not.

If L is a gl-regular operator, then its eigenvalues can still collide without

violating the gl-regularity condition. In the Nijenhuis geometry, scenarios

of such collisions can be very different. However, regardless of any

particular scenario, we have the following general local result.

Theorem

Let L be a gl-regular real analytic Nijenhuis operator. Then (locally)

there exists a pseudo-Riemannian metric g geodesically compatible with

L. Moreover, such a metric g can be defined explicitly in terms of the

second companion form of L.



Magic formula

Fix second companion coordinates u1, . . . , un of L so that

L = Lcomp2 =

0

BBB@

0 1
...

. . .
. . .

0 . . . 0 1
�n �n�1 . . . �1

1

CCCA
,

Let p1, . . . , pn, u1, . . . , un be the corresponding canonical coordinates on

the cotangent bundle and consider the following algebraic identity

h1L
n�1 + · · ·+ hn Id =

⇣
pnL

n�1 + · · ·+ p1 Id
⌘2

. (2)

Since L is gl-regular, the functions h1, . . . , hn are uniquely defined. They

are quadratic in p1, . . . , pn and their coefficients are polynomials in �i ’s.

Theorem

The function h1(u, p) =
P

h↵�1 (u)p↵p� defines a non-degenerate

(contravariant) metric which is geodesically compatible with L.



gl-regular Nijenhuis operators

Theorem (Real analytic case)

Let L be a gl-regular Nijenhuis operator. Then there exist local

coordinate systems u = (u1, . . . , un) and v = (v1, . . . , vn) in which L
reduces to the first and second companion forms:

L(u) =

0

BBB@

�1 1
... 0

. . .

�n�1

...
. . . 1

�n 0 . . . 0

1

CCCA
and L(v) =

0

BBB@

0 1
...

. . .
. . .

0 . . . 0 1
�n �n�1 . . . �1

1

CCCA
,

where �i are the coefficients of the characteristic polynomial of L in the

corresponding coordinate system.

Open problem. Does the statement of this theorem still hold in the

C1
-smooth case?



Magic formula

Fix second companion coordinates u1, . . . , un of L so that

L = Lcomp2 =

0

BBB@

0 1
...

. . .
. . .

0 . . . 0 1
�n �n�1 . . . �1

1

CCCA
,

Let p1, . . . , pn, u1, . . . , un be the corresponding canonical coordinates on

the cotangent bundle and consider the following algebraic identity

h1L
n�1 + · · ·+ hn Id =

⇣
pnL

n�1 + · · ·+ p1 Id
⌘2

. (3)

Since L is gl-regular, the functions h1, . . . , hn are uniquely defined. They

are quadratic in p1, . . . , pn and their coefficients are polynomials in �i ’s.

Theorem

The function h1(u, p) =
P

h↵�1 (u)p↵p� defines a non-degenerate

(contravariant) metric which is geodesically compatible with L.



How to describe all geodesically compatible partners for L?

Let L be an admissible Nijenhuis operator (in the context of geodesic

equivalence), i.e. there is at least one (pseudo)-Riemannian metric g
geodesically compatible with L.

Natural problem. Describe all geodesically compatible partners for L.

Theorem

Let L and g be geodesically compatible. Assume that M is g -symmetric

and is a strong symmetry of L, then L and gM := (gisMs
j ) are

geodesically compatible.

Moreover, if L is gl-regular, then every metric g̃ geodesically compatible

with L is of the form g̃ = gM, where M is a (strong) symmetry of L.

Conclusion. Since we have complete description of symmetries for

gl-regular operators and our magic formula, this problem is solved in

the gl-regular case.
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Link 2: Nijenhuis operators and integrable PDEs
For a given Nijenhuis operator L, we define the operator fields Ai by the

following recursion relations

A0 = Id, Ai+1 = LAi � �i Id, i = 0, . . . , n � 1, (4)

where functions �i are coefficients of the characteristic polynomial of L
numerated as below:

�L(�) = det(� Id� L) = �n � �1�
n�1 � · · ·� �n. (5)

Equivalently, the operators Ai can be defined from the matrix relation

det(� Id� L) · (� Id� L)�1 = �n�1A0 + �n�2A1 + · · ·+ �An�2 + An�1.

Consider the following system of quasilinear PDEs defined by these

operators

ut1 = A1 ux ,

. . .

utn�1 = An�1 ux ,

with ui = ui (x , t1, ..., tn�1) being unknown functions in n variables and

u = (u1, . . . , un)>.



Integrability and other known properties of this system

ut1 = A1 ux ,

. . .

utn�1 = An�1 ux ,

(6)

Here u = (u1, u2, . . . , un)> with ui = ui (x , t1, ..., tn�1) being n unknown

functions in n variables. In total, we have a system of n(n� 1) quasilinear

PDE equations. The system is compatible in the sense of Cartan-Kähler,

i.e., solutions exists for any initial curve �(x) = u(x , 0, . . . , 0).
Equivalently, we can say that evolutionary flows defined by individual

equations uti = Ai ux commute (Magri, Lorenzoni).

These equations are semi-hamiltonian in the sense of S. Tserev and hence

can be integrated by means of the generalised hodograph method. In the

diagonal case, each individual equation is weakly non-linear, leading to

separation of variables and integration in quadratures (Ferapontov,

Ferapontov-Fordy, Blaszak, Marciniak).

To extend these results to the non-diagonal case, one needs to describe

the common symmetries and conservation laws of these equations.



Symmetries and conservation laws of (6)

Theorem

If L is gl-regular, then

1. For any hierarchy of conservation laws f1, . . . , fn of L, the operator

B = f1An + · · ·+ fnA1

is a common symmetry for Ai . Moreover, every common symmetry

of Ai ’s can be written in this way.

2. For any symmetry M = g1Ln�1 + · · ·+ gn Id of L, the first function

g1 is a common conservation law of Ai .

Moreover, every common conservation law of Ai ’s can be obtained

in this way.

This theorem leads us (via procedure described in “Nijenhuis Geometry

4”) to Link 5 between Nijenhuis Geometry and integration in quadratures.
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Link 4: geodesically equivalent metrics and finite
dimensional reductions of integrable PDEs

Various types of finite-dimensional reductions of infinite-dimensional

nonlinear integrable systems have been investigated since the middle of

70s (Antonowicz, Fordy, Bogoyavlenskij, Novikov, Hone, Marciniak,

Blaszak, Veselov).

Informally, a finite-dimensional reduction of an integrable PDE system is

a subsystem of it, which is finite-dimensional and still integrable.

It appears that such a reduction of (6) can be naturally obtained by

fixing a metric g geodesically compatible with L.

Theorem

Consider any metric g geodesically compatible with L and take any

geodesic �(x) of this metric. Let u(x , t1, ..., tn�1) be the solution of (6)

with the initial condition u(x , 0, ..., 0) = �(x). Then for any (sufficiently

small) t1, ..., tn�1, the curve x 7! u(x , t1, ..., tn�1) is a geodesic of g .

In other words, the evolutionary system corresponding to any of the

equations from (6) sends geodesics of g to geodesics.



Explanation

The integrals of the geodesic flow of g are closely related to the

operators Ai (Matveev-Topalov, Tabachnikov 1997).

Namely, if g is geodesically compatible with L, then its geodesic flow

(as a Hamiltonian system on T ⇤M) admits n commuting first integrals

F0, . . . ,Fn�1 of the form

Fi (u, p) =
1
2 g

�1(A⇤
i p, p). (7)



Finite dimensional reductions (continued...)

Let us consider the space G of all g -geodesics (viewed as parameterised

curves). Then system (6) defines a local action of Rn
on G:

 t0,t1,...,tn�1 : G! G, (t0, t1, . . . , tn�1) 2 Rn.

More precisely, if � = �(x) 2 G is a g -geodesic, then we set

 t0,t1,...,tn�1(�) to be the geodesic �̃(x) = u(x + t0, t1, ..., tn�1), where

u(x , t1, ..., tn�1) is the solution of (6) with the initial condition

u(x , 0, ..., 0) = �(x).

Theorem

The action  is conjugate to the Hamiltonian action of Rn
on T ⇤M

generated by the flows of the integrals F0, . . . ,Fn�1 defined by (7). The

conjugacy is given by � 2 G 7! (�(0), gij �̇ i (0)) 2 T ⇤M.

Remark. Let L be a gl-regular real analytic Nijenhuis operator, then for

every curve � with a cyclic velocity vector there exists a metric g
geodesically compatible with L such that � is a g -geodesic. Thus, the

above finite-dimensional reductions of (6) ‘cover’ almost all (local)

solutions of the Cauchy problem.



Conclusion

I General properties of conservation laws and symmetries of gl-regular

Nijenhuis operators are understood

I Explicit description of conservation laws and symmetries for various

types of gl-regular Nijenhuis operators

I Each gl-regular Nijenhuis operator admits a geodesically equivalent

partner g (in other words, any kind of gl-regular collisions of

eigenvalues is allowed in the context of geodesically equivalent

metrics).

I Complete description of all geodesically equivalent partners of

gl-regular Nijenhuis operators (in terms of their symmetries).

I To each gl-regular Nijenhuis operator L, we assign an integrable

system of hydrodynamic type (previously studied in the diagonal

case by many authors). All the symmetries and conservation laws of

this system are explicitly described in terms of the symmetries of

conservation laws and symmetries of the Nijenhuis operator L,

leading to integration in quadratures.

I Finite-dimensional reductions of this system are naturally isomorphic

to integrable geodesic flows of metrics g geodesically compatible

with L.



Thank you for your attention


