

Branes in symplectic manifolds

Marco Zambon

in progress joint work with Charlotte Kirchhoff-Lukat input by Marco Gualtieri

August 2023

Branes

Let (M, ω_M) be symplectic.

Definition

A brane (Y, F) consists of

- Y a coisotropic submanifold (i.e. $TY^{\omega_M} \subset TY$)
- $F \in \Omega^2_{cl}(Y)$

such that

۲

$$\ker(F) = \ker(\omega) =: E$$

where $\omega := \iota^* \omega_M$

• on TY/E have: $I := \omega^{-1}F$ satisfies

$$I^2 = -1$$

Remark

If smooth, Y/\sim is a complex manifold. $F+i\omega$ induces a holomorphic symplectic form there. $\ \ \, \bullet$

Branes

Remark

a) The definition is natural in terms of the generalized complex structure [Gualtieri 2003]

$$\begin{pmatrix} 0 & -\omega_M^{-1} \\ \omega_M & 0 \end{pmatrix} : TM \oplus T^*M \to TM \oplus T^*M.$$

b) Branes arose in the study of the A-model [Kapustin-Orlov 2001]

Aim

Given a brane (Y, F), understand the space of nearby branes:

- To produce new examples
- Is this space smooth? Is the moduli space smooth?
- Are all nearby coisotropic submanifolds also branes?

Notation

Given a 2-form $\sigma,$ we denote the bundle map $TM\to T^*M, v\mapsto \iota_v\sigma$ by the same symbol.

Spacefilling branes: Y = M

Let (M, ω) be symplectic.

Remark

(M, F) is a brane $\Leftrightarrow F$ is symplectic and $I := \omega^{-1}F$ satisfies $I^2 = -1$ $\Leftrightarrow F + i\omega$ is holomorphic symplectic. (The imaginary part of fixed)

Example

Let $M = \mathbb{C}^2$ (or $M = \mathbb{T}^4$), with complex coordinates $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Take

$$\omega := Im(dz_1 \wedge dz_2) = dx_1 \wedge dy_2 + dy_1 \wedge dx_2$$
$$F := Re(dz_1 \wedge dz_2) = dx_1 \wedge dx_2 - dy_1 \wedge dy_2$$

Example

The K3 manifold is

$$M:=\{z_0^4+z_1^4+z_2^4+z_3^4=0\}\subset \mathbb{CP}^3.$$

It is a compact, simply connected, 4-dimensional smooth manifold. (M, I_{can}) carries a holomorphic symplectic form.

A pencil of Poisson structures

Remark

Let F be a space-filling brane on (M, ω) .

• The Poisson structures F^{-1} and ω^{-1} commute:

$$[F^{-1}, \omega^{-1}] = 0.$$

That is, $F^{-1} + t \omega^{-1}$ is a Poisson structure for all $t \in \mathbb{R}$. • (F^{-1}, I) is a Poisson-Nijenhuis structure.

Parametrizing nearby space-filling branes

Let *F* be a space-filling brane on (M, ω) .

Lemma

Let $\{F_t\} \subset \Omega^2(M)$ a curve with $F_0 = F$ and $(\omega^{-1}F_t)^2 = -1$. Then

$$\dot{F} := \frac{d}{dt}|_0 F_t \in \Omega^{1,1}(M,\mathbb{R}).$$

 $\textit{I.e.:} \ \dot{F}(Iv, Iw) = \dot{F}(v, w).$

Thus $\Omega^{1,1}(M,\mathbb{R})$ is the formal tangent space at F to \bullet

$$\{\widetilde{F}\in \Omega^2(M): (\omega^{-1}\widetilde{F})^2=-1\}.$$

Aim

Given a spacefilling brane F, find a good parametrization of nearby branes.

An idea from Dirac geometry

To parametrize space-filling branes near F:

• Encode F by

$$gr(F) := \{(v, \iota_v F) : v \in TM\}.$$

• Describe nearby branes \widetilde{F} as graphs of linear maps ~ -

 $\psi \colon gr(F) \to a \text{ complement of } gr(F)$

As complement take

$D \oplus D^{\circ}$

where $D \subset TM$ is an involutive distribution s.t.

- $\blacktriangleright~D$ is lagrangian for ω
- D is symplectic for F.

Proposition

There is a bijection between

- $\beta \in \Omega^{1,1}(M,\mathbb{R})$ s.t. $d\beta + \frac{1}{2}[\beta,\beta] = 0$
- space-filling branes $\widetilde{F} \in \Omega^2(M)$ (for which D is symplectic)

Here [,] is a Lie bracket on $\Gamma(T^*M)$ determined by D and F.

Remark The map $\beta \mapsto \widetilde{F}$ is non-linear: Write $\beta = A' - FA$ for some (A, A'): $TM \to D \oplus D^{\circ}$. Then $\widetilde{F} = (F + A')(Id + A)^{-1}$.

Remark

- a) There is a DGLA (differential graded Lie algebra) whose Maurer-Cartan elements are the β above.
- b) This is useful to answer questions like: Given $B \in \Omega^{1,1}(M, \mathbb{R})$ s.t. dB = 0, is there a path $\{F_t\}$ of branes with $\frac{d}{dt}|_0F_t = B$?

Moduli spaces in dimension $\boldsymbol{4}$

Claim

For any symplectic form on M = K3 (resp. $M = \mathbb{T}^4$),

```
{Spacefilling branes}/Sympl(M, \omega)_*
```

is smooth, of dimension 20 (resp. 4), non-compact.

Here $Sympl(M, \omega)_*$ denotes the symplectomorphisms inducing $Id_{H^{\bullet}(M,\mathbb{R})}$.

Remark

The argument relies on the Local Torelli Theorem.

An example of codimension 1 brane

Non-Example $S^5 \subset (\mathbb{R}^6, \omega_{can})$ does not admit a brane structure. Reason: $S^5/ \sim = \mathbb{CP}^2$ doesn't admit a holomorphic sympl form: $H^2(\mathbb{CP}^2) = \mathbb{R}$.

Example Let (N, ω_N) be symplectic. Then

$$Y := N \times S^1 \times \{0\}$$

is coisotropic in the symplectic manifold $(N \times S^1 \times \mathbb{R}, \omega_N \times \omega_{T^*S^1})$.

Let $F_N \in \Omega^2(N)$ symplectic s.t. $I := \omega_N^{-1} F_N$ satisfies $I^2 = -1$. Then

(Y, F)

is a brane, where F := trivial extension of F_N .

Branes nearby $Y = N \times S^1$

Question:

Let $f \in C^{\infty}(Y)$. When does $gr(f) := \{(y, f(y))\}$ admit a brane structure?

Proposition

There is a bijection between

a) brane structures on gr(f),

b) symplectic forms \widetilde{F}_N on N, preserved by Φ_f , so that $\omega_N^{-1}\widetilde{F}_N$ squares to $-Id_{TN}$.

Here:

 $\Phi_f := \text{time } 1 \text{ flow of the time-dependent vector field } \{X_{f|_{N \times \{q\}}}^{\omega_N}\}_{q \in [0,1]}.$

Using $gr(f) \cong Y$, the bijection reads

 $\widetilde{F} \mapsto \widetilde{F}|_{N \times \{0\}}$ $\widetilde{F}_N \mapsto$ the unique extension invariant along $\ker(i^*_{qr(f)}\omega_M)$

Stability of branes

Let (Y, F) be a brane in (M, ω_M) .

Question: Is the forgetful map

 $\{ \textbf{Branes} \} \rightarrow \{ \textbf{Coisotropic submanifolds} \} \\ (\widetilde{Y}, \widetilde{F}) \mapsto \widetilde{Y}$

surjective near Y?

Answer: No

As earlier, consider $(N, I, F_N + i\omega_N)$ holomorphic symplectic \rightsquigarrow

$$(\underbrace{N \times S^1 \times \{0\}}_{Y}, F)$$

brane in $(N \times S^1 \times \mathbb{R}, \omega_N \times \omega_{T^*S^1})$.

A) Answer by example

Proposition

For *N* the K3 manifold: Let $f \in C^{\infty}(Y)$ s.t.

 $\Phi_f \neq Id_N.$

Then gr(f) is not a brane.

Here:

$$\Phi_f := \text{time } 1 \text{ flow of } \{X_{f|_{N \times \{q\}}}^{\omega_N}\}_{q \in [0,1]}.$$

Proof: Suppose there is a brane structure F on gr(f).

Last $\operatorname{Prop} \Rightarrow \Phi_f$ preserves $F_N \Rightarrow \Phi_f$ preserves I.

The only automorphism of (N, I) inducing $Id_{H^2(N,\mathbb{R})}$ is Id_N . \notin

B) Answer by comparing first order deformations

Remark

Let Y be a codimension 1 submanifold. Then $\ {\ \bullet\ }$

```
{First order deformations of Y} = \Gamma(NY) \cong \Gamma(E^*).
```

Remark

Let (Y, F) be a codimension 1 brane. Choose *G* involutive s.t. $G \oplus E = TY$. The first order deformations of *Y* as a brane are

$$(r, B) \in \Gamma(E^*) \oplus \Omega^2(Y)$$

s.t.

• dB = 0

• for all $v \in E$, on TY/E we have

$$[\iota_v B] = -[\iota_v d\bar{r}] \circ I,$$

where $\bar{r} \in \Omega^1(Y)$ is the extension of r annihilating G

• $B|_G$ is of type (1,1).

Proposition

For a brane $Y = N \times S^1$ as above, consider

$$\begin{split} \Upsilon \colon \{\textit{First order def. of } Y \textit{ as a brane}\} & \to \Gamma(E^*), \\ (r,B) & \mapsto r. \end{split}$$

Its image consists of $r \in \Gamma(E^*)$ s.t.

$$d_N I^* d_N \left(\int_{S^1} r \right) = 0.$$

In particular, Υ in not surjective in general.

Here $\int_{S^1} r \in C^{\infty}(N)$ is obtained integrating r along the fibers of $Y \to N$.

TO DO

For an arbitrary brane (Y, F), parametrize its deformations as a brane. Is the moduli space smooth?

References

M. Gualtieri Generalized complex geometry *Ph.D. Thesis*, 2003

D. Huybrechts Geometries on K3 surfaces and their symmetries Notes of a Colloquium talk given in Berlin and Kyoto, around 2002

A. Kapustin, D. Orlov Remarks on A-branes, mirror symmetry, and the Fukaya category *J. Geom. Phys.* 48, pages 84-99, 2003

Thank you for your attention