Bi-Hamiltonian structure of spin Sutherland models from Poisson reduction

László Fehér, University of Szeged and Wigner RCP, Budapest

Calogero-Moser-Sutherland type integrable many-body models appear in several fields of physics, and still attract lot of attention due to their rich mathematical structure. A prime example is the trigonometric Sutherland model governed by the Hamiltonian

$$
H_{\text {Suth }}(q, p)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\frac{1}{8} \sum_{k \neq l} \frac{x}{\sin ^{2} \frac{q_{k}-q_{l}}{2}}, \quad \text { with real coupling constant } \quad x>0 .
$$

Due to Olshanetsky-Perelomov (1976) and Kazhdan-Kostant-Sternberg (1978), this model can be interpreted as a symplectic reduction of the 'free particle' moving on the unitary group $\mathrm{U}(n)$. The reduction uses the conjugation action of $\mathrm{U}(n)$ on $T^{*} \mathrm{U}(n)$, and relies on fixing the relevant moment map to a very specific value.

Allowing arbitrary moment map values, the reduction of $T^{*} \mathrm{U}(n)$ leads to the trigonometric spin Sutherland model having the 'main Hamiltonian'

$$
H_{\text {spin-Sutn }}(q, p, \phi)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\frac{1}{8} \sum_{k \neq l} \frac{\phi_{k l} \phi_{l k}}{\sin ^{2} \frac{q_{k}-q_{l}}{2}}, \quad \phi_{k l} \phi_{l k}=\left|\phi_{k l}\right|^{2},
$$

where the 'collective spin variable' $\phi \in \mathfrak{u}(n)^{*} \simeq \sqrt{-1} \mathfrak{u}(n)$ has zero diagonal part.

The holomorphic spin Sutherland model descends by Poisson reduction from the holomorphic cotangent bundle $T^{*} \mathrm{GL}(n, \mathbb{C})$, and its trigonometric and hyperbolic real forms descend from the real cotangent bundles $T^{*} \mathrm{U}(n)$ and $T^{*} P(n)$, respectively, where $P(n)$ is the symmetric space $\mathrm{GL}(n, \mathbb{C})_{\mathbb{R}} / \mathrm{U}(n)$ with $\mathrm{GL}(n, \mathbb{C})_{\mathbb{R}}$ denoting the realification of $\mathrm{GL}(n, \mathbb{C})$. My basic observation is that the cotangent bundles

$$
T^{*} \mathrm{GL}(n, \mathbb{C}), \quad T^{*} \cup(n), \quad T^{*} \mathrm{GL}(n, \mathbb{C})_{\mathbb{R}}
$$

are bi-Hamiltonian manifolds, and the 'free Hamiltonians' of these phase spaces form bi-Hamiltonian hierarchies. By taking Poisson quotient, bi-Hamiltonian spin Sutherland models result.

Application of the same idea to $T^{*} \mathrm{GL}(n, \mathbb{R})$ leads to the bi-Hamiltonian structure on the associative algebra $\mathfrak{g l}(n, \mathbb{R})$ that underlies the linear and quadratic Poisson structures of the open Toda lattice.

Plan of the talk

- The holomorphic cotangent bundle of $\mathrm{GL}(n, \mathbb{C})$ and its reduction
- Bi-hamiltonian structure on $\mathfrak{g l}(n, \mathbb{R})$ from reduction of $T^{*} \mathrm{GL}(n, \mathbb{R})$
- If time permits: Spin Sutherland models coupled to two spins from $T^{*} \mathrm{GL}(n, \mathbb{C})_{\mathbb{R}}$
- Concluding remarks

Denote $G:=\mathrm{GL}(n, \mathbb{C})$ and equip $\mathcal{G}:=\mathfrak{g l}(n, \mathbb{C})$ with the trace form $\langle X, Y\rangle:=\operatorname{tr}(X Y)$.
Consider $\quad T^{*} G \simeq G \times \mathcal{G}=\{(g, L) \mid g \in G, L \in \mathcal{G}\}=: \mathfrak{M}$,
and let $\operatorname{Hol}(\mathfrak{M})$ be the commutative algebra of holomorphic functions on \mathfrak{M}. For any $F \in \operatorname{Hol}(\mathfrak{M})$, define the \mathcal{G}-valued derivatives $\nabla_{1} F, \nabla_{1}^{\prime} F$ and $d_{2} F$ by

$$
\left\langle\nabla_{1} F(g, L), X\right\rangle=\left.\frac{d}{d z}\right|_{z=0} F\left(e^{z X} g, L\right), \quad\left\langle\nabla_{1}^{\prime} F(g, L), X\right\rangle=\left.\frac{d}{d z}\right|_{z=0} F\left(g e^{z X}, L\right), \quad \forall X \in \mathcal{G}
$$

and $\left\langle d_{2} F(g, L), X\right\rangle=\left.\frac{d}{d z}\right|_{z=0} F(g, L+z X)$. Introduce also

$$
\nabla_{2} F(g, L):=L d_{2} F(g, L), \quad \nabla_{2}^{\prime} F(g, L):=\left(d_{2} F(g, L)\right) L
$$

By the triangular decomposition, $\mathcal{G}=\mathcal{G}_{>}+\mathcal{G}_{0}+\mathcal{G}_{<}$, write $\forall X \in \mathcal{G}$ as $X=X_{>}+X_{0}+X_{<}$. Define the classical r-matrix $r \in \operatorname{End}(\mathcal{G})$ by $r(X):=\frac{1}{2}\left(X_{>}-X_{<}\right)$, and put $r_{ \pm}:=r \pm \frac{1}{2} \mathrm{id}$.

Theorem 1. For functions $F, H \in \operatorname{Hol}(\mathfrak{M})$, the following formulae define two Poisson brackets:

$$
\begin{equation*}
\{F, H\}_{1}(g, L)=\left\langle\nabla_{1} F, d_{2} H\right\rangle-\left\langle\nabla_{1} H, d_{2} F\right\rangle+\left\langle L,\left[d_{2} F, d_{2} H\right]\right\rangle \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
\{F, H\}_{2}(g, L)= & \left\langle r \nabla_{1} F, \nabla_{1} H\right\rangle-\left\langle r \nabla_{1}^{\prime} F, \nabla_{1}^{\prime} H\right\rangle \\
& +\left\langle\nabla_{2} F-\nabla_{2}^{\prime} F, r_{+} \nabla_{2}^{\prime} H-r_{-} \nabla_{2} H\right\rangle \\
& +\left\langle\nabla_{1} F, r_{+} \nabla_{2}^{\prime} H-r_{-} \nabla_{2} H\right\rangle-\left\langle\nabla_{1} H, r_{+} \nabla_{2}^{\prime} F-r_{-} \nabla_{2} F\right\rangle, \tag{2}
\end{align*}
$$

where the derivatives are evaluated at (g, L), and we put $r X$ for $r(X)$.

Theorem 2. The first Poisson bracket of Theorem 1 is the Lie derivative of the second Poisson bracket along the holomorphic vector field on \mathfrak{M} whose integral curve through the initial value (g, L) is

$$
\phi_{z}(g, L)=\left(g, L+z \mathbf{1}_{n}\right), \quad z \in \mathbb{C},
$$

where 1_{n} is the unit matrix. Consequently, the two Poisson brackets are compatible
Denote by $V_{H}^{i}(i=1,2)$ the Hamiltonian vector field associated with the holomorphic function H through the respective Poisson bracket $\{,\}_{i}$. For any holomorphic function, we have the derivatives $V_{H}^{i}[F]=\{F, H\}_{i}$. We are interested in the Hamiltonians

$$
\begin{equation*}
H_{m}(g, L):=\frac{1}{m} \operatorname{tr}\left(L^{m}\right), \quad \forall m \in \mathbb{N} . \tag{3}
\end{equation*}
$$

Proposition 3. The vector fields associated with the functions H_{m} are bi-Hamiltonian:

$$
\begin{equation*}
\left\{F, H_{m}\right\}_{2}=\left\{F, H_{m+1}\right\}_{1}, \quad \forall m \in \mathbb{N}, \quad \forall F \in \operatorname{Hol}(\mathfrak{M}) \tag{4}
\end{equation*}
$$

The derivatives of the matrix elements of $(g, L) \in \mathfrak{M}$ give

$$
\begin{equation*}
V_{H_{m}}^{2}[g]=V_{H_{m+1}}^{1}[g]=L^{m} g, \quad V_{H_{m}}^{2}[L]=V_{H_{m+1}}^{1}[L]=0, \quad \forall m \in \mathbb{N} \tag{5}
\end{equation*}
$$

and the flow of $V_{H_{m}}^{2}=V_{H_{m+1}}^{1}$ through the initial value $(g(0), L(0))$ is

$$
\begin{equation*}
(g(z), L(z))=\left(\exp \left(z L(0)^{m}\right) g(0), L(0)\right) \tag{6}
\end{equation*}
$$

Remark. The first bracket is linear in the matrix element variables and is just the canonical Poisson bracket of the cotangent bundle. The second one is quadratic, and is obtained from Semenov-Tian-Shanksy's Heisenberg double $G \times G$ of the standard Poisson-Lie group structure on G by a local change of variables and analytic continuation.

The essence of Hamiltonian symmetry reduction is that one keeps only the 'observables' that are invariant with respect to the pertinent group action. This is applicable if, and only if, the invariant functions form a Poisson subalgebra; which is identified with the Poisson algebra of functions on the quotient space.

We apply this principle to the adjoint action of G on \mathfrak{M}, for which $\eta \in G$ acts by the holomorphic diffeomorphism A_{η},

$$
\begin{equation*}
A_{\eta}:(g, L) \mapsto\left(\eta g \eta^{-1}, \eta L \eta^{-1}\right) \tag{7}
\end{equation*}
$$

Thus we keep only the G invariant holomorphic functions on \mathfrak{M}, whose set is denoted

$$
\begin{equation*}
\operatorname{Hol}(\mathfrak{M})^{G}:=\left\{F \in \operatorname{Hol}(\mathfrak{M}) \mid F(g, L)=F\left(\eta g \eta^{-1}, \eta L \eta^{-1}\right), \forall(g, L) \in \mathfrak{M}, \eta \in G\right\} \tag{8}
\end{equation*}
$$

Lemma 4. For $F, H \in \operatorname{Hol}(\mathfrak{M})^{G}$, the second Poisson bracket (2) simplifies to

$$
\begin{equation*}
2\{F, H\}_{2}=\left\langle\nabla_{1} F, \nabla_{2} H+\nabla_{2}^{\prime} H\right\rangle-\left\langle\nabla_{1} H, \nabla_{2} F+\nabla_{2}^{\prime} F\right\rangle+\left\langle\nabla_{2} F, \nabla_{2}^{\prime} H\right\rangle-\left\langle\nabla_{2} H, \nabla_{2}^{\prime} F\right\rangle \tag{9}
\end{equation*}
$$

Therefore, $\operatorname{Hol}(\mathfrak{M})^{G}$ is closed with respect to both Poisson brackets of Theorem 1.
This follows from (2) using the infinitesimal invariance, $\nabla_{1}^{\prime} H=\nabla_{1} H+\nabla_{2} H-\nabla_{2}^{\prime} H$, and similar for F.

We need to fix notations. First, define

$$
\begin{equation*}
G_{0}:=\left\{Q \mid Q=\operatorname{diag}\left(Q_{1}, \ldots, Q_{n}\right), Q_{i} \in \mathbb{C}^{*}\right\}<G \tag{10}
\end{equation*}
$$

and its regular part $G_{0}^{\text {reg }}$, where $Q_{i} \neq Q_{j}$ for all $i \neq j$. Let \mathcal{N} be normalizer of G_{0} in G, for which $\mathcal{N} / G_{0}=S_{n}$, and let $G^{\text {reg }} \subset G$ denote the dense open subset consisting of the conjugacy classes having representatives in $G_{0}^{\text {reg }}$. Next, define

$$
\begin{equation*}
\mathfrak{M}^{\mathrm{reg}}:=\left\{(g, L) \in \mathfrak{M} \mid g \in G^{\mathrm{reg}}\right\} \quad \text { and } \quad \mathfrak{M}_{0}^{\mathrm{reg}}:=\left\{(Q, L) \in \mathfrak{M} \mid Q \in G_{0}^{\mathrm{reg}}\right\} \tag{11}
\end{equation*}
$$

We introduce the chain of commutative algebras

$$
\begin{equation*}
\operatorname{Hol}(\mathfrak{M})_{\text {red }} \subset \operatorname{Hol}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{\mathcal{N}} \subset \operatorname{Hol}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{G_{0}} \tag{12}
\end{equation*}
$$

By definition, $\mathrm{Hol}(\mathfrak{M})_{\text {red }}$ contains the restrictions of the elements of $\mathrm{Hol}(\mathfrak{M})^{G}$ to $\mathfrak{M}_{0}^{\text {reg }}$, and the last two sets contain the respective invariant elements of $\mathrm{Hol}\left(\mathfrak{M}_{0}^{\text {reg }}\right)$.

Let $\iota: \mathfrak{M}_{0}^{\text {reg }} \rightarrow \mathfrak{M}$ be the tautological embedding. Then pull-back by ι provides an isomorphism between $\operatorname{Hol}(\mathfrak{M})^{G}$ and $\mathrm{Hol}(\mathfrak{M})_{\text {red }}$. Similarly, $\iota^{*}: \operatorname{Hol}\left(\mathfrak{M}^{r e g}\right)^{G} \rightarrow \operatorname{Hol}\left(\mathfrak{M}_{0}^{r e g}\right)^{\mathcal{N}}$ is an isomorphism.

Definition 5. Let $f, h \in \operatorname{Hol}(\mathfrak{M})_{\text {red }}$ be related to $F, H \in \operatorname{Hol}(\mathfrak{M})^{G}$ by $f=F \circ \iota$ and $h=H \circ \iota$. Then we can define $\{f, h\}_{i}^{\text {red }} \in \operatorname{Hol}(\mathfrak{M})_{\text {red }}$ by the relation

$$
\begin{equation*}
\{f, h\}_{i}^{\text {red }}:=\{F, H\}_{i} \circ \iota, \quad i=1,2 \tag{13}
\end{equation*}
$$

This gives rise to the reduced Poisson algebras $\left(\operatorname{Hol}(\mathfrak{M})_{\text {red }},\{,\}_{i}^{\text {red }}\right)$.

Any $f \in \operatorname{Hol}\left(\mathfrak{M}_{0}^{r e g}\right)$ has the \mathcal{G}_{0}-valued derivative $\nabla_{1} f$ and the \mathcal{G}-valued derivative $d_{2} f$, defined ($\forall X_{0} \in \mathcal{G}_{0}, X \in \mathcal{G}$) by

$$
\begin{equation*}
\left\langle\nabla_{1} f(Q, L), X_{0}\right\rangle=\left.\frac{d}{d z}\right|_{z=0} f\left(e^{z X_{0}} Q, L\right), \quad\left\langle d_{2} f(Q, L), X\right\rangle=\left.\frac{d}{d z}\right|_{z=0} f(Q, L+z X) . \tag{14}
\end{equation*}
$$

Theorem 6. For $f, h \in \operatorname{Hol}(\mathfrak{M})_{\text {red }}$, the reduced Poisson brackets defined by (13) can be described explicitly as follows:

$$
\begin{equation*}
\{f, h\}_{1}^{\text {red }}(Q, L)=\left\langle\nabla_{1} f, d_{2} h\right\rangle-\left\langle\nabla_{1} h, d_{2} f\right\rangle+\left\langle L,\left[d_{2} f, \mathcal{R}(Q) d_{2} h\right]+\left[\mathcal{R}(Q) d_{2} f, d_{2} h\right]\right\rangle \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\{f, h\}_{2}^{\text {red }}(Q, L)=\left\langle\nabla_{1} f, \nabla_{2} h\right\rangle-\left\langle\nabla_{1} h, \nabla_{2} f\right\rangle+\left\langle\nabla_{2} f, \mathcal{R}(Q)\left(\nabla_{2} h\right)\right\rangle-\left\langle\nabla_{2}^{\prime} f, \mathcal{R}(Q)\left(\nabla_{2}^{\prime} h\right)\right\rangle, \tag{16}
\end{equation*}
$$

where all derivatives are taken at $(Q, L) \in \mathfrak{M}_{0}^{r e g}$. By construction, these formulae give two compatible Poisson brackets on $\operatorname{Hol}(\mathfrak{M})_{\text {red }}$. The same formulae give Poisson algebra structures on $\mathrm{Hol}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{\mathcal{N}}$ and on $\mathrm{Hol}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{G_{0}}$ as well.
Here, $\mathcal{R}(Q) \in \operatorname{End}(\mathcal{G})$ is the standard trigonometric solution of the modified classical dynamical Yang-Baxter equation. By writing $Q=e^{q}$ with $q \in \mathcal{G}$, for any $X \in \mathcal{G}$ we have

$$
(\mathcal{R}(Q) X)_{i i}=0, \quad(\mathcal{R}(Q) X)_{i j}=\frac{1}{2} X_{i j} \operatorname{coth} \frac{q_{i}-q_{j}}{2}, \text { for } i \neq j .
$$

How the reduced Poisson bracket formulas were derived?

Basic Iemma. Consider $f \in \operatorname{Hol}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{\mathcal{N}}$ given by $f=F \circ \iota$, where $F \in \operatorname{Hol}\left(\mathfrak{M}^{\text {reg }}\right)^{G}$. Then the derivatives of f and F satisfy the following relations at any $(Q, L) \in \mathfrak{M}_{0}^{\text {reg }}$:

$$
\begin{gathered}
d_{2} F(Q, L)=d_{2} f(Q, L), \quad\left[L, d_{2} f(Q, L)\right]_{0}=0, \\
\nabla_{1} F(Q, L)=\nabla_{1} f(Q, L)-\left(\mathcal{R}(Q)+\frac{1}{2} \mathrm{id}\right)\left[L, d_{2} f(Q, L)\right]
\end{gathered}
$$

The first equalities hold since f is the restriction of F. In particular, it satisfies

$$
0=\left.\frac{d}{d z}\right|_{z=0} f\left(Q, e^{z X_{0}} L e^{-z X_{0}}\right)=\left\langle d_{2} f(Q, L),\left[X_{0}, L\right]\right\rangle=\left\langle\left[L, d_{2} f(Q, L)\right], X_{0}\right\rangle, \quad \forall X_{0} \in \mathcal{G}_{0}
$$

Next, use the orthogonal decomposition $\mathcal{G}=\mathcal{G}_{0}+\mathcal{G}_{\perp}$, and note that the equality of the \mathcal{G}_{0} parts, $\left(\nabla_{1} F(Q, L)\right)_{0}=\left(\nabla_{1} f(Q, L)\right)_{0}$, is obvious. Then, using any $X \in \mathcal{G}_{\perp}$, notice that

$$
0=\left.\frac{d}{d z}\right|_{z=0} F\left(e^{z X} Q e^{-z X}, e^{z X} L e^{-z X}\right)=\left\langle X,\left(\mathrm{id}-\operatorname{Ad}_{Q^{-1}}\right) \nabla_{1} F(Q, L)+\left[L, d_{2} F(Q, L)\right]\right\rangle
$$

with $\operatorname{Ad}_{Q}(Y):=Q Y Q^{-1}$. Therefore

$$
\left(\mathrm{Ad}_{Q^{-1}}-\mathrm{id}\right)\left(\nabla_{1} F(Q, L)\right)_{\perp}=\left[L, d_{2} F(Q, L)\right]_{\perp}=\left[L, d_{2} f(Q, L)\right]_{\perp}
$$

This implies the formula of $\left(\nabla_{1} F(Q, L)\right)_{\perp}$ by elementary identities. For any $X \in \mathcal{G}_{\perp}$, one has $\left(\mathcal{R}(Q)+\frac{1}{2} \mathrm{id}\right) X=\left(\mathrm{id}-\operatorname{Ad}_{Q^{-1}}\right)_{\mid \mathcal{G}_{\perp}}^{-1} X$; and $\left[L, d_{2} f(Q, L)\right] \equiv \nabla_{2} f(Q, L)-\nabla_{2}^{\prime} f(Q, L)$.

We associate vector fields to the elements of $\operatorname{Hol}(\mathfrak{M})_{\text {red }}$ using the reduced Poisson brackets. In particular, the reduced Hamiltonians

$$
h_{m}:=H_{m} \circ \iota \in \operatorname{Hol}(\mathfrak{M})_{\mathrm{red}}, \quad h_{m}(Q, L)=\frac{1}{m} \operatorname{tr}\left(L^{m}\right)
$$

give rise to the vector fields Y_{m}^{i} on $\mathfrak{M}_{0}^{\text {reg }}$ that satisfy

$$
Y_{m}^{i}[f]=\left\{f, h_{m}\right\}_{i}^{\text {red }}, \quad \forall f \in \operatorname{Hol}(\mathfrak{M})_{\text {red }}, \quad i=1,2
$$

These vector fields are not unique, since one may add any vector field to Y_{m}^{i} that is tangent to the orbits of the residual gauge transformations.

Proposition 7. For all $m \in \mathbb{N}$, the 'reduced Hamiltonian vector fields' Y_{m}^{i} can be specified by the formulae

$$
Y_{m+1}^{1}[Q]=Y_{m}^{2}[Q]=\left(L^{m}\right)_{0} Q, \quad Y_{m+1}^{1}[L]=Y_{m}^{2}[L]=\left[\mathcal{R}(Q) L^{m}, L\right]
$$

Thus, Poisson reduction led to the reduced bi-Hamiltonian evolution equations

$$
\dot{Q}=\left(L^{m}\right)_{0} Q, \quad \dot{L}=\left[\mathcal{R}(Q) L^{m}, L\right], \quad \text { up to residual gauge transformations. }
$$

The standard Lax matrix of the spin Sutherland model is $L=p+\left(\mathcal{R}(Q)+\frac{1}{2} \mathrm{id}\right)(\phi)$, where p is an arbitrary diagonal and ϕ is an arbitrary off-diagonal matrix. The reduced first Poisson bracket reproduces the standard spin Sutherland Poisson structure of the Q, p, ϕ variables. Indeed, the diagonal entries p_{j} of p and q_{j} in $Q_{j}=e^{q_{j}}$ form canonically conjugate pairs with respect to the reduced first Poisson bracket, and the vanishing of the diagonal part of ϕ represents a constraint on $\mathfrak{g l}(n, \mathbb{C})^{*}$ that is responsible for the gauge transformations by G_{0}. (Here, we refer to $\operatorname{Hol}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{G_{0}}$.) The Hamiltonians $\mathcal{H}_{m+1}(q, p, \phi)=\frac{1}{m+1} \operatorname{tr}\left(L^{m+1}\right)$ generate the above evolution equations.

One can obtain bi-Hamiltonian structures for the hyperbolic and trigonometric real forms by restricting L to be Hermitian and q in $Q=e^{q}$ to be real or purely imaginary, respectively. In the trigonometric case, by further restricting L to the open subset of positive matrices and using a different parametrization, the second Poisson structure becomes identified with that of a spin Ruijsenaars-Schneider model. The trigonometric real form also arises from reduction of $T^{*} \mathrm{U}(n)$, and the hyperbolic real form from $T^{*} \mathrm{GL}(n, \mathbb{C})_{\mathbb{R}}$.

References for the work reported so far

L.F.: Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone, Nonlinearity 32, 4377-4394 (2019)
L.F.: Reduction of a bi-Hamiltonian hierarchy on $T^{*} \mathrm{U}(n)$ to spin Ruijsenaars-Sutherland models, Lett. Math. Phys. 110, 1057-1079 (2020)
L.F. and I. Marshall: On the bi-Hamiltonian structure of the trigonometric spin Ruijsenaars-Sutherland hierarchy, pp. 75-87 in: Geometric Methods in Physics XXXVIII, eds. P. Kielanowski et al (Birkhauser, 2020)
L.F.: Bi-Hamiltonian structure of spin Sutherland models: the holomorphic case, Ann. Henri Poincaré 22, 4063-4085 (2021)

Let us equip $\mathcal{G}:=\mathfrak{g l}(n, \mathbb{R})$ with the trace form, and consider its vector space decomposition $\mathcal{G}=\mathcal{A}+\mathcal{B}$, where $\mathcal{A}:=\mathrm{o}(n, \mathbb{R})$ and \mathcal{B} is the upper-triangular subalgebra. Then

$$
R=\frac{1}{2}\left(\pi_{\mathcal{B}}-\pi_{\mathcal{A}}\right)
$$

is a solution of the modified classical Yang-Baxter equation. Its has the antisymmetric and symmetric parts R_{a} and R_{s}, and R_{a} solves the same equation as R. Actually, $R_{a} \equiv r=\frac{1}{2}\left(\pi_{>}-\pi_{<}\right)$is the real version of the r-matrix used before.

As an example of results of $\mathrm{Li}-P a r m e n t i e r ~ a n d ~ O e v e l-R a g n i s c o ~ f r o m ~ 1989, ~ t h e ~ f o l-~$ lowing formulas define compatible Poisson brackets on $\mathfrak{g l}(n, \mathbb{R})$:

$$
\begin{aligned}
\{f, h\}_{2} & :=\left\langle\nabla f, R_{a} \nabla h\right\rangle-\left\langle\nabla^{\prime} f, R_{a} \nabla^{\prime} h\right\rangle+\left\langle\nabla f, R_{s} \nabla^{\prime} h\right\rangle-\left\langle\nabla^{\prime} f, R_{s} \nabla h\right\rangle \\
& \{f, h\}_{1}(L)=\langle L,[R d f(L), d h(L)]+[d f(L), R d h(L)]\rangle
\end{aligned}
$$

Here $\nabla f(L):=L d f(L)$ and $\nabla^{\prime} f(L):=d f(L) L$. The Hamiltonians $h_{k}(L):=\frac{1}{k} \operatorname{tr}\left(L^{k}\right)$ ($k \in \mathbb{N}$) enjoy the relation

$$
\left\{f, h_{k}\right\}_{2}=\left\{f, h_{k+1}\right\}_{1}, \quad \forall f \in C^{\infty}(\mathcal{G})
$$

and their Hamiltonian vector fields engender bi-Hamiltonian Lax equations:

$$
\partial_{t_{k}}(L):=\left\{L, h_{k}\right\}_{2}=\left\{L, h_{k+1}\right\}_{1}=\left[R\left(L^{k}\right), L\right], \quad \forall k \in \mathbb{N}
$$

It is known that the symmetric matrices as well as the tri-diagonal symmetric matrices form Poisson submanifolds for both brackets. Taking the tri-diagonal Jacobi matrices, one recovers the bi-Hamiltonian structure of the open Toda lattice.

The linear r-matrix bracket given above is well known to descend by Poisson reduction from the cotangent bundle of $G=\operatorname{GL}(n, \mathbb{R})$:

$$
T^{*} G \simeq \mathfrak{M}:=G \times \mathcal{G}=\{(g, L) \mid g \in G, L \in \mathcal{G}\}
$$

Relatively recently, we have shown that the aforementioned quadratic bracket also descends from \mathfrak{M}. For this, we first equip \mathfrak{M} with the two compatible Poisson brackets defined as before, but taking everything real C^{∞} instead of complex holomorphic.

We consider those functions on \mathfrak{M} that are invariant with respect to the symmetry group $S:=A \times B$, where $A:=O(n, \mathbb{R})$ and B consists of the upper triangular elements of G having positive diagonal entries. The action of S on \mathfrak{M} is given by letting any $(a, b) \in A \times B$ act on $(g, L) \in \mathfrak{M}$ by the diffeomorphism $(g, L) \mapsto\left(a g b^{-1}, a L a^{-1}\right)$.

Thanks to the QU factorization (Gram-Schmidt) we may associate with any smooth, S-invariant functions F, H on \mathfrak{M} unique smooth functions f, h on \mathcal{G} according to the rule

$$
f(L):=F\left(1_{n}, L\right), \quad h(L):=H\left(1_{n}, L\right)
$$

The invariant functions turn out to close under both Poisson brackets on \mathfrak{M}, and thus we may define the reduced Poisson brackets on $C^{\infty}(\mathcal{G})$ by setting

$$
\{f, h\}_{i}^{\mathrm{red}}(L):=\{F, H\}_{i}\left(\mathbf{1}_{n}, L\right), \quad i=1,2
$$

These reduced Poisson brackets reproduce the ones displayed on the preceding slide.

For details, see L.F. and B. Juhász: A note on quadratic Poisson brackets on $\mathfrak{g l}(n, \mathbb{R})$ related to Toda lattices, Lett. Math. Phys. 112:45 (2022)

Finally, we outline the derivation of bi-Hamiltonian models, whose main Hamiltonian 'in physical variables’ reads

$$
\mathcal{H}_{\mathrm{spin}-2}=\frac{1}{2} \sum_{i=1}^{n}\left(p_{i}^{2}-\left|\xi_{i i}^{l}\right|^{2}\right)+\sum_{1 \leq i<j \leq n}\left(\frac{\left|\xi_{i j}^{l}\right|^{2}+\left|\xi_{i j}^{r}\right|^{2}-2 \Re\left(\xi_{i j}^{r} \xi_{j i}^{l}\right)}{\sinh ^{2}\left(q_{i}-q_{j}\right)}+\frac{\Re\left(\xi_{i j}^{r} \xi_{j i}^{l}\right)}{\sinh ^{2}\left(\left(q_{i}-q_{j}\right) / 2\right)}\right)
$$

The two spins $\xi^{l}, \xi^{r} \in \mathfrak{u}(n)^{*} \simeq \mathfrak{u}(n)$ are coupled by the constraint that the diagonal part of $\left(\xi^{l}+\xi^{r}\right)$ vanishes, and they matter up to \mathbb{T}^{n} gauge transformations that act on them by simultaneous conjugations. Here q and p are real, and upon setting $\xi^{l}=0$ we recover the hyperbolic spin Sutherland Hamiltonian.

Our starting point is the cotangent bundle of the real Lie group $G:=G L(n, \mathbb{C})_{\mathbb{R}}$, with Lie algebra $\mathcal{G}:=\mathfrak{g l}(n, \mathbb{C})_{\mathbb{R}}$, which we identify with

$$
\mathfrak{M}=G \times \mathcal{G}=\{(g, J) \mid g \in G, J \in \mathcal{G}\}
$$

where the real pairing $\langle X, Y\rangle=\Re \operatorname{tr}(X Y)$ is used on $\mathcal{G} \simeq \mathcal{G}^{*}$. Then the real manifold \mathfrak{M} carries a bi-Hamiltonian structure given by the same formulas as in the holomorphic case, but using this real-valued pairing. For $F, H \in C^{\infty}(\mathfrak{M}, \mathbb{R})$:

$$
\begin{aligned}
&\{F, H\}_{1}(g, J)=\left\langle\nabla_{1} F, d_{2} H\right\rangle-\left\langle\nabla_{1} H, d_{2} F\right\rangle+\left\langle J,\left[d_{2} F, d_{2} H\right]\right\rangle \\
&\{F, H\}_{2}(g, J)=\left\langle r \nabla_{1} F, \nabla_{1} H\right\rangle-\left\langle r \nabla_{1}^{\prime} F, \nabla_{1}^{\prime} H\right\rangle \\
&+\left\langle\nabla_{2} F-\nabla_{2}^{\prime} F, r_{+} \nabla_{2}^{\prime} H-r_{-} \nabla_{2} H\right\rangle \\
&+\left\langle\nabla_{1} F, r_{+} \nabla_{2}^{\prime} H-r_{-} \nabla_{2} H\right\rangle-\left\langle\nabla_{1} H, r_{+} \nabla_{2}^{\prime} F-r_{-} \nabla_{2} F\right\rangle
\end{aligned}
$$

For any $k \in \mathbb{N}$, we have the 'free Hamiltonians' H_{k} and \tilde{H}_{k} on \mathfrak{M} defined by

$$
H_{k}(g, J):=\frac{1}{k} \Re \operatorname{tr}\left(J^{k}\right), \quad \widetilde{H}_{k}(g, J):=\frac{1}{k} \Im \operatorname{tr}\left(J^{k}\right) .
$$

All these Hamiltonians are in involution, and they define bi-Hamiltonian systems according to the relations, and corresponding flows, listed as follows:

$$
\begin{gathered}
\left\{\cdot, H_{k}\right\}_{2}=\left\{\cdot, H_{k+1}\right\}_{1}, \\
\left\{\cdot, \tilde{H}_{k}\right\}_{2}=\left\{\cdot, \tilde{H}_{k+1}\right\}_{1}, \\
\left.(g(t), J(t))=\left(\exp \left(J(0)^{k} t\right)\right)=\left(\exp \left(-\mathrm{i} J(0)^{k} t\right) g(0), J(0)\right)\right)
\end{gathered}
$$

We consider the symmetry group $\mathrm{U}(n) \times \mathrm{U}(n)$ acting on \mathfrak{M} by the diffeomorphisms

$$
A_{\eta_{L}, \eta_{R}}:(g, J) \mapsto\left(\eta_{L} g \eta_{R}^{-1}, \eta_{L} J \eta_{L}^{-1}\right)
$$

The invariant functions close under both Poisson brackets, and thus we obtain a biHamiltonian structure on the quotient space $\mathfrak{M}_{\text {red }}=\mathfrak{M} /(\mathrm{U}(n) \times \mathrm{U}(n))$, whose space of smooth functions is $C^{\infty}(\mathfrak{M}) \cup(n) \times \cup(n)$.

We describe the reduced Poisson algebras by using the singular value decomposition, whereby every $g \in \mathrm{GL}(n, \mathbb{C})$ can be decomposed as

$$
g=\eta_{L} e^{q} \eta_{R}^{-1}, \quad \eta_{L}, \eta_{R} \in U(n), \quad q=\operatorname{diag}\left(q_{1}, q_{2}, \ldots, q_{n}\right), \quad q_{i} \in \mathbb{R}, \quad q_{1} \geq q_{2} \geq \cdots \geq q_{n}
$$

Every invariant function $F \in C^{\infty}(\mathfrak{M})^{\cup(n) \times \cup(n)}$ can be recovered from its restriction, f, to the following submanifold of \mathfrak{M} :

$$
\mathfrak{M}_{0}^{\text {reg }}:=\left\{\left(e^{q}, J\right) \mid J \in \mathcal{G}, q=\operatorname{diag}\left(q_{1}, q_{2}, \ldots, q_{n}\right), q_{1}>q_{2}>\cdots>q_{n}\right\}
$$

The $U(n) \times U(n)$ orbits through $\mathfrak{M}_{0}^{\text {reg }}$ fill the dense open submanifold $\mathfrak{M}^{\text {reg }}$, and we get

$$
C^{\infty}\left(\mathfrak{M}^{\text {reg }}\right)^{\cup(n) \times \cup(n)} \Longleftrightarrow C^{\infty}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{\mathbb{T}^{n}}
$$

The Poisson brackets on $C^{\infty}\left(\mathfrak{M}^{r e g}\right)^{U(n) \times \cup(n)}$ translate into the reduced $\operatorname{PBs}\{f, h\}_{i}^{\text {red }}$ on $C^{\infty}\left(\mathfrak{M}_{0}^{\text {reg }}\right)^{\mathbb{T}^{n}}$.

We derived the form of the compatible reduced Poisson brackets. Then we recovered the Sutherland model coupled to two spins by applying a suitable parametrization to the first reduced Poisson bracket.

For these results, see L.F.: Bi-Hamiltonian structure of Sutherland models coupled to two $u(n)^{*}$-valued spins from Poisson reduction, Nonlinearity 35, 2971-3003 (2022)
There one can find references to earlier papers (by L.F.-Pusztai, Kharchev-Levin-Olshanetsky-Zotov, Reshetikhin) devoted to similar models, but the bi-Hamiltonian aspects were not studied before our work.

Conclusion

We observed that the cotangent bundles

$$
T^{*} \mathrm{GL}(n, \mathbb{C}), \quad T^{*} \cup(n), \quad T^{*} \mathrm{GL}(n, \mathbb{C})_{\mathbb{R}}, \quad T^{*} \mathrm{GL}(n, \mathbb{R})
$$

carry natural bi-Hamiltonian structures.
Then we have shown that the Poisson reduction procedures that were studied before using the canonical Poisson bracket equip the reduced systems with bi-Hamiltonian structures. The interpretation of the reduced systems as spin Sutherland models relies on the reduced canonical Poisson bracket (and similar for the open Toda system).

All our reduced systems enjoy degenerate integrability (super- or noncommutative integrability) on generic symplectic leaves of the reduced phase space.

How to find bi-Hamiltonian structures for elliptic spin Sutherland models?

References

L.F.: Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone, Nonlinearity 32, 4377-4394 (2019)
L.F.: Reduction of a bi-Hamiltonian hierarchy on $T^{*} \mathrm{U}(n)$ to spin Ruijsenaars-Sutherland models, Lett. Math. Phys. 110, 1057-1079 (2020)
L.F. and I. Marshall: On the bi-Hamiltonian structure of the trigonometric spin Ruijsenaars-Sutherland hierarchy, pp. 75-87 in: Geometric Methods in Physics XXXVIII, eds. P. Kielanowski et al (Birkhauser, 2020)
L.F.: Bi-Hamiltonian structure of spin Sutherland models: the holomorphic case, Ann. Henri Poincaré 22, 4063-4085 (2021)
L.F. and B. Juhász: A note on quadratic Poisson brackets on $\mathfrak{g l}(n, \mathbb{R})$ related to Toda lattices, Lett. Math. Phys. 112:45 (2022)
L.F.: Bi-Hamiltonian structure of Sutherland models coupled to two $\mathfrak{u}(n)^{*}$-valued spins from Poisson reduction, Nonlinearity 35, 2971-3003 (2022)

