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Introduction

Morse theory: topology of below level sets

Integrable manifolds: topology of level sets

Could help to understand global properties of the system.[McC23]
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Introduction

M: n-dim manifold
f : Morse function on M
(For now: f proper, to avoid compactification or issues at infinity)

We are interested in the topology of level sets f −1(α) ⊂ M

No critical points between regular levels ⇒ diffeomorphic

What happens when passing critical points?
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Introduction

What happens when passing critical points?
(Derive global implications from local properties?)

A. Knauf and N. Martynchuk [KM20]:
passing a critical point of index k ̸= n/2,
passing no other critical points of index k − 1, k + 1, or n − k ,
⇒ change in the homotopy type of the level set.

What happens when passing a single critical point
of index m = n/2?
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Introduction

- Examples

- Idea / statement

(- Proof)

- Theorem / result
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Basic examples

What happens when passing a critical point of index m = n/2?

On 2 dimensional surfaces: m = 1

L

L

+

-
L

M+

M-

Locally: saddle point S1 ∪ S1 → S1 S1 → S1

topology change no topology change
(on S2, orientable) (on RP2, non-orientable).
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Basic examples

What happens when passing a critical point of index m = n/2?

From m = 1-examples: possibilities determined by orientability?

Example on CP2 (orientable, m = 2):

f =
|α|2 − |β|2

|α|2 + |β|2 + |γ|2

Symmetry ⇒ no topology change.
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Basic examples

When passing a critical point of index m

m = 1: orientability of M guarantees topology change

m > 2: orientability is not enough,

...we need the absence of something in the middle homology group.
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Idea

Level set topology at L± = f −1(±ε)

... is determined by the critical level L = f −1(0),

... and f on a neighbourhood of the critical point (known).

Limited possibilities to extend L on this neighbourhood to all of L,

what are the implications for L±?
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Idea

In a neighbourhood D of the critical point (Morse lemma):

f = x21 + · · ·+ x2m − (x2m+1 + · · ·+ x22m)

D = Dm × Dm

L+ ∩ D : Sm−1 × Dm

L− ∩ D : Dm × Sm−1

∂(L ∩ D) =: S Sm−1 × Sm−1

What happens with this product of spheres outside D?
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Idea - example for m = 1

∂(L ∩ D) = S = S0 × S0

f = ε   L

f = -ε   L

+

-
f = 0   L

M+

M-

S xS+ -

Only two ways to “connect” those

S-

D-

D+

S+
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Idea - example for m = 2, homology coefficients in Z2

∂(L ∩ D) = S1 × S1

S

SS+
-

X0

Different things can happen in L̃ = L\(L ∩ D):
...
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Idea - example for m = 2, homology coefficients in Z2

∂(L ∩ D) = S1 × S1

Different things can happen in L̃ = L\(L ∩ D),
S1 × S1 has two independent cycles:

- both persist independently
impossible

- both vanish/become trivial/are a boundary
impossible

- one of them persists, the other becomes trivial
implies a change in homology

- there is a relation between them (...)
implies existence of nontrivial Hm(L,Z2)
s.t. this implies existence of nontrivial Hm(M,Z2)
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Theorem (Z2 version)

Let M be a 2m-dimensional manifold without boundary, with f a
proper Morse function on M. Let L = f −1(0) be a critical level set
of f with a single critical point x0 of index m, and let
L± = f −1(±ε) be the level sets slightly above and below such that
there are no other critical points in between.

Theorem

Empty middle homology: Hm(M,Z2) = 0

⇒
Topology change: Hm(L

−,Z2) ̸= Hm(L
+,Z2)

Change in Betti numbers: |bm(L+,Z2)− bm(L
−,Z2)| = 1
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Proof

Locally, the only difference between L+ and L− is given by which
one of the two spheres S+ and S− becomes a boundary in L± ∩D.
So for global differences in topology, we consider how cycles in L̃
are related to S+ and S−.

The implications can be described by the following
Mayer-Vietoris-like exact sequences

. . . → Hk(S ,G )
ik→ Hk(L

± ∩ D,G )⊕ Hk(L̃,G ) → Hk(L
±,G )

∂k→ Hk−1(S ,G ) → . . .

most of the terms vanish...
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Proof

For m ≥ 2
G free or a field (G = Z or Z2)

Hm(L
±,G ) ∼= Hm(L̃,G )/im(im)⊕ im(∂m),

Here, the only difference between L+ and L− can come from the
image of ∂m : Hm(L

±,G ) → Hm−1(S ,G ).

Which elements of < [S+], [S−] > are boundaries in Cm(L̃,G )?
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Proof

S-

D-

D+

S+

S-

D-

Suppose [g+S+] is trivial (a boundary) in Hm−1(L̃,G )
⇒ cycle in Cm−1(L

−,G )

If L− is G -orientable, then by Poincaré duality
∃ cocycle, nonzero on S−

⇒ [S−] nontrivial in Hm−1(L̃,G ).
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Proof

Suppose [g+S+] is never a boundary,
not in Hm−1(L̃,G ), but also not in Hm−1(L

+,G ),

⇒ ...similar type of argument, somewhat more efford... ⇒
(Via implications for integral coefficients, construction of a
homomorphism φ : Hm−1(L

+,Z) → G which is nonzero on S+,
and the universal coefficient theorem for cohomology, it is possible
to construct a m − 1-cohomology cycle which is nonzero on S+. If
L+ is G -orientable, then by Poincaré duality this implies existence
of an m-cycle which intersects S+ with nonzero intersection
number. Consider its intersection with S and remember that
[g+S+] is nontrivial in Hm−1(L

+,G ).)

⇒ some [g−S−] is trivial in Hm−1(L̃,G ).
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Proof

D+

Suppose [g+S+] is nontrivial in Hm−1(L̃,G ),
then it is possibile that some [g ′+S+] is still trivial in Hm−1(L

+,G ).

This then implies the existence of some chain in L̃ with boundary
g ′+S+ + g ′−S−.
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Lemma

Suppose both g+S+ and g−S− are not a boundary in Cm−1(L̃,G )
for any nonzero g+, g−, but there exists D̃ ∈ Cm(L̃,G ) with
∂D̃ = g ′+S+ + g ′−S− (g ′+, g ′− ∈ G , nonzero, and still m ≥ 2).

Then there is a nontrivial homology class of Hm(L,G ) which can
not be represented by a combination of cycles in Cm(L

+,G ) and
Cm(L

−,G ), and this homology class persists in Hm(M,G ).
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Proof (of Lemma)

Decompose L into L̃ and L ∩ D
in this sequence:
∂mCm(L

±,G ) = 0 while ∂m[D̃ − g ′+D− − g ′−D+] ̸= 0,

and decompose M into M+ ∪M− and a small neighbourhood of L,

[D̃ − g ′+D− − g ′−D+] is not in the image of
Hm(L

+ ∪ L−,G ) = Hm(L
+)⊕ Hm(L

−),

⇒ [D̃ − g ′+D− − g ′−D+] ∈ Mm(M,G ), nonzero.
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Theorem

Let M be a 2m-dimensional manifold without boundary, with f a
proper Morse function on M. Let L = f −1(0) be a critical level set
of f with a single critical point x0 of index m, and let
L± = f −1(±ε) be the level sets slightly above and below such that
there are no other critical points in between.

Theorem

Empty middle homology: Hm(M,Z2) = 0

⇒
Topology change: Hm(L

−,Z2) ̸= Hm(L
+,Z2)

Change in Betti numbers: |bm(L+,Z2)− bm(L
−,Z2)| = 1

If we additionally assume orientability of the level sets L+ and L−,
the theorem holds for homology with coefficients in Z,
(or in any field if m ≥ 2).
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Corollary

Let M be a 2m-dimensional manifold without boundary with
vanishing m-th homology group Hm(M,Z2).

The phenomenon of topology change at critical points
is generic for M

in the sense that if f is a proper Morse function on M such that its
critical points are contained on different critical levels, then the
topology (at least the homotopy type) of the regular level sets
f −1(h) changes at each of these critical points.
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Example
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Outlook

Multiple critical points

Non-compact level sets

A better description of what happens

Applications
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Thank you for listening
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