Families of 4-dimensional integrable systems with S^1 -symmetries

Joseph Palmer University of Illinois at Urbana-Champaign University of Antwerp

joint with Y. Le Floch and S. Hohloch

FDIS 2023 - UAntwerpen

August 8, 2023

- Based on two papers with Yohann Le Floch:
 - Semitoric families, arXiv:1810.06915 (to appear in the Memoirs of the AMS)
 - Families of four-dimensional integrable systems with S¹-symmetries, arXiv:2307.10670

- Based on two papers with Yohann Le Floch:
 - Semitoric families, arXiv:1810.06915 (to appear in the Memoirs of the AMS)
 - Families of four-dimensional integrable systems with S¹-symmetries, arXiv:2307.10670
- Primary goal: Write down an explicit example of a semitoric integrable systems for a given semitoric polygon.

- Based on two papers with Yohann Le Floch:
 - Semitoric families, arXiv:1810.06915 (to appear in the Memoirs of the AMS)
 - Families of four-dimensional integrable systems with S¹-symmetries, arXiv:2307.10670
- Primary goal: Write down an explicit example of a semitoric integrable systems for a given semitoric polygon.

$$(M, \omega, F_t = (J, H_t))$$

- Based on two papers with Yohann Le Floch:
 - Semitoric families, arXiv:1810.06915 (to appear in the Memoirs of the AMS)
 - Families of four-dimensional integrable systems with S¹-symmetries, arXiv:2307.10670
- Primary goal: Write down an explicit example of a semitoric integrable systems for a given semitoric polygon.

$$(M, \omega, F_t = (J, H_t))$$

Along the way: bifurcations of integrable systems (nodal trade, Hamiltonian-Hopf), hypersemitoric systems, semitoric minimal models, etc...

- Based on two papers with Yohann Le Floch:
 - Semitoric families, arXiv:1810.06915 (to appear in the Memoirs of the AMS)
 - Families of four-dimensional integrable systems with S¹-symmetries, arXiv:2307.10670
- Primary goal: Write down an explicit example of a semitoric integrable systems for a given semitoric polygon.

$$(M, \omega, F_t = (J, H_t))$$

- Along the way: bifurcations of integrable systems (nodal trade, Hamiltonian-Hopf), hypersemitoric systems, semitoric minimal models, etc...
- (I will also mention two papers with Sonja)

Symplectic manifolds and integrable systems

- Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.
- Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

Symplectic manifolds and integrable systems

• Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.

• Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot) + \mathrm{d}f = 0.$$

Definition

An integrable system is a triple $(M, \omega, F = (f_1, \dots, f_n))$ where (M, ω) is a 2*n*-dimensional symplectic manifold and 1 $\{f_i, f_i\} = 0;$

2 df_1, \ldots, df_n are linearly independent almost everywhere;

Symplectic manifolds and integrable systems

• Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.

• Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot) + \mathrm{d}f = 0.$$

Definition

- **1** $\{f_i, f_j\} = 0;$
- **2** df_1, \ldots, df_n are linearly independent almost everywhere;

Flows of
$$\mathcal{X}_{f_1}, \ldots \mathcal{X}_{f_n}$$
 induce (local) \mathbb{R}^n -action.

Definition

A toric integrable system is a triple $(M, \omega, F = (f_1, ..., f_n))$ where (M, ω) is a 2*n*-dimensional symplectic manifold and 1 $\{f_i, f_j\} = 0;$

2 df_1, \ldots, df_n are linearly independent almost everywhere;

Definition

- 1 $\{f_i, f_j\} = 0;$
- **2** df_1, \ldots, df_n are linearly independent almost everywhere;
- 3 the flows of $\mathcal{X}_{f_1}, \ldots, \mathcal{X}_{f_n}$ are all periodic and generate an effective T^n action;
- **4** *M* is compact;

Definition

- **1** $\{f_i, f_j\} = 0;$
- **2** df_1, \ldots, df_n are linearly independent almost everywhere;
- 3 the flows of $\mathcal{X}_{f_1}, \ldots, \mathcal{X}_{f_n}$ are all periodic and generate an effective \mathcal{T}^n action;
- 4 M is compact;
- ▶ i.e. a global Hamiltonian *Tⁿ*-action.

Definition

- **1** $\{f_i, f_j\} = 0;$
- **2** df_1, \ldots, df_n are linearly independent almost everywhere;
- 3 the flows of $\mathcal{X}_{f_1}, \ldots, \mathcal{X}_{f_n}$ are all periodic and generate an effective \mathcal{T}^n action;
- 4 M is compact;
- ▶ i.e. a global Hamiltonian *Tⁿ*-action.
- ► $F: M \to \mathbb{R}^n$,

Definition

- **1** $\{f_i, f_j\} = 0;$
- **2** df_1, \ldots, df_n are linearly independent almost everywhere;
- 3 the flows of $\mathcal{X}_{f_1}, \ldots, \mathcal{X}_{f_n}$ are all periodic and generate an effective \mathcal{T}^n action;
- 4 M is compact;
- ▶ i.e. a global Hamiltonian *Tⁿ*-action.
- F: M → ℝⁿ, Atiyah, Guillemin-Sternberg (1982) showed that in this case the image F(M) ⊂ ℝⁿ is a convex polytope.

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^n$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M) = \Delta$.

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^n$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M) = \Delta$.

 $\{\text{toric systems}\} \stackrel{1-1}{\longleftrightarrow} \{\text{Delzant polytopes}\}$

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^n$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M) = \Delta$.

$$\begin{array}{rcl} \{ \text{toric systems} \} & \stackrel{1-1}{\longleftrightarrow} & \{ \text{Delzant polytopes} \} \\ & (M, \omega, F) & \longmapsto & F(M) \end{array}$$

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^n$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M) = \Delta$.

The toric system can be reconstructed from ∆ by symplectic reduction on C^d.

Example

- $\blacktriangleright M = S^2 \times S^2, \quad \omega = \omega_1 \oplus 2\omega_2$
- ► coordinates (x₁, y₁, z₁, x₂, y₂, z₂)

Example

- $\blacktriangleright \ M=S^2\times S^2, \quad \omega=\omega_1\oplus 2\omega_2$
- coordinates (x₁, y₁, z₁, x₂, y₂, z₂)
- ► *F* = (*J*, *H*)

$$\begin{cases} J = z_1 + 2z_2 \\ H = z_1 \end{cases}$$

Example

- $M = S^2 \times S^2$, $\omega = \omega_1 \oplus 2\omega_2$
- coordinates (x₁, y₁, z₁, x₂, y₂, z₂)
- $\blacktriangleright F = (J, H)$

$$\begin{cases} J = z_1 + 2z_2 \\ H = z_1 \end{cases}$$

Semitoric integrable systems: definition

Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple $(M, \omega, F = (J, H))$ where (M, ω) is a 4-dimensional symplectic manifold and 1 $\{J, H\} = 0;$

2 dJ and dH are linearly independent almost everywhere;

Semitoric integrable systems: definition

Definition (Vũ Ngọc, 2007)

- 1 $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of \mathcal{X}_J is periodic (i.e. generates an S^1 -action);
- 4 J is proper;
- all singularities of F are non-degenerate with no hyperbolic blocks.

Semitoric integrable systems: definition

Definition (Vũ Ngọc, 2007)

- 1 $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of \mathcal{X}_J is periodic (i.e. generates an S^1 -action);
- 4 J is proper;
- all singularities of F are non-degenerate with no hyperbolic blocks.
- ▶ In particular, (M, ω, J) is a Hamiltonian S^1 -space
 - studied by Karshon [1999].

Fibers in simple semitoric systems:

regular elliptic-regular elliptic-elliptic focus-focus

Fibers in simple semitoric systems:

regular elliptic-regular elliptic-elliptic focus-focus

appear in toric systems

Fibers in simple semitoric systems:

Fibers in simple semitoric systems:

A system is called *simple* if there is at most one focus-focus point per fiber of *J*.

- Five invariants of semitoric systems:
 - (1) number of focus-focus points;
 - (2) semitoric polygon (Vũ Ngọc, Symington);
 - (3) height invariant;
 - (4) Taylor series invariant (Vũ Ngọc);
 - (5) twisting index invariant (Pelayo, Vũ Ngọc);

- Five invariants of semitoric systems:
 - (1) number of focus-focus points;
 - (2) semitoric polygon (Vũ Ngọc, Symington);
 - (3) height invariant;
 - (4) Taylor series invariant (Vũ Ngọc);
 - (5) twisting index invariant (Pelayo, Vũ Ngọc);

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

Simple semitoric systems are classified by (1)-(5).

- Five invariants of semitoric systems:
 - (1) number of focus-focus points;
 - (2) semitoric polygon (Vũ Ngọc, Symington);
 - (3) height invariant;
 - (4) Taylor series invariant (Vũ Ngọc);
 - (5) twisting index invariant (Pelayo, Vũ Ngọc);

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

Simple semitoric systems are classified by (1)-(5).

 $\{\mathsf{simple semitoric systems}\} \xleftarrow{1-1} \{\mathsf{admissible invts} \ (1)-(5)\}.$

- Five invariants of semitoric systems:
 - (1) number of focus-focus points;
 - (2) semitoric polygon (Vũ Ngọc, Symington);
 - (3) height invariant;
 - (4) Taylor series invariant (Vũ Ngọc);
 - (5) twisting index invariant (Pelayo, Vũ Ngọc);

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

Simple semitoric systems are classified by (1)-(5).

 $\{\mathsf{simple semitoric systems}\} \xleftarrow{1-1} \{\mathsf{admissible invts} \ (1)-(5)\}.$
Semitoric invariants

- Five invariants of semitoric systems:
 - (1) number of focus-focus points;
 - (2) semitoric polygon (Vũ Ngọc, Symington);
 - (3) height invariant;
 - (4) Taylor series invariant (Vũ Ngọc);
 - (5) twisting index invariant (Pelayo, Vũ Ngọc);

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

Simple semitoric systems are classified by (1)-(5).

 $\{\mathsf{simple semitoric systems}\} \xleftarrow{1-1} \{\mathsf{admissible invts} \ (1)-(5)\}.$

Semitoric invariants

- Five invariants of semitoric systems:
 - (1) number of focus-focus points;
 - (2) semitoric polygon (Vũ Ngọc, Symington);
 - (3) height invariant;
 - (4) Taylor series invariant (Vũ Ngọc);
 - (5) twisting index invariant (Pelayo, Vũ Ngọc);

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

Simple semitoric systems are classified by (1)-(5).

 $\{\mathsf{simple semitoric systems}\} \xleftarrow{1-1} \{\mathsf{admissible invts} \ (1)-(5)\}.$

Complete semitoric invariant can be thought of as marked polygon with a label for each marked point.

 Classification extended to non-simple systems [P.-Pelayo-Tang, 2019] by making the labels more complicated.

- Classification extended to non-simple systems [P.-Pelayo-Tang, 2019] by making the labels more complicated.
- ► For this talk, we will be concerned with the marked polygon.

• $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration.

▶ $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration.

• $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration.

► Action coordinates → integral affine structure on regular values.

▶ $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration.

- ► Action coordinates → integral affine structure on regular values.
- ▶ NOT equal to integral affine structure of \mathbb{R}^2 .

 The integral affine structure may be "straightened out" [Vũ Ngọc (2007), Symington (2002)]

 Marked semitoric polygon: Family of polygons including marked points.

- Marked semitoric polygon: Family of polygons including marked points.
- Any marked polygon satisfying certain conditions (similar to the Delzant conditions) is the polygon for a semitoric system.

 $\{\text{semitoric systems}\} \xleftarrow{1-1} \{\text{marked labeled semitoric polygons}\}$

 $\{\mathsf{semitoric systems}\} \xleftarrow{1-1} \{\mathsf{marked labeled semitoric polygons}\}$

- ► Toric integrable systems can be explicitly constructed from the polytope by performing symplectic reductions on C^d by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.

 $\{\mathsf{semitoric systems}\} \xleftarrow{1-1} \{\mathsf{marked labeled semitoric polygons}\}$

- ► Toric integrable systems can be explicitly constructed from the polytope by performing symplectic reductions on C^d by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case!

 $\{\mathsf{semitoric systems}\} \xleftarrow{1-1} \{\mathsf{marked labeled semitoric polygons}\}$

- ► Toric integrable systems can be explicitly constructed from the polytope by performing symplectic reductions on C^d by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case!
 - in some sense unavoidable because semitoric systems are more complicated, but should still be able to find some examples.

 $\{\text{semitoric systems}\} \xleftarrow{1-1} \{\text{marked labeled semitoric polygons}\}$

- ► Toric integrable systems can be explicitly constructed from the polytope by performing symplectic reductions on C^d by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case!
 - in some sense unavoidable because semitoric systems are more complicated, but should still be able to find some examples.

Goal

Given specified (unlabeled) marked semitoric polygon invariant try to find an explicit system with that invariant.

[Sadovskií and Zĥilinskií, 1999]

•
$$M = S^2 \times S^2$$
, $\omega = \omega_1 \oplus 2\omega_2$

coordinates (x₁, y₁, z₁, x₂, y₂, z₂)

[Sadovskií and Zĥilinskií, 1999]

•
$$M = S^2 \times S^2$$
, $\omega = \omega_1 \oplus 2\omega_2$

• coordinates
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$

$$\begin{cases}
J = z_1 + 2z_2 \\
H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2)
\end{cases}$$
for $t \in [0, 1]$.

[Sadovskií and Zĥilinskií, 1999]

•
$$M=S^2 imes S^2$$
, $\omega=\omega_1\oplus 2\omega_2$

► coordinates
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$

$$\begin{cases}
J = z_1 + 2z_2 \\
H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2)
\end{cases}$$

for $t \in [0, 1]$.

• Notice (J, H_0) is toric system from before.

[Sadovskií and Zĥilinskií, 1999]

•
$$M = S^2 \times S^2$$
, $\omega = \omega_1 \oplus 2\omega_2$

• coordinates
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$

$$\begin{cases}
J = z_1 + 2z_2 \\
H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2)
\end{cases}$$

for $t \in [0, 1]$.

• Notice (J, H_0) is toric system from before.

• Let
$$NS = (0, 0, 1, 0, 0, -1)$$

[Sadovskií and Zĥilinskií, 1999]

•
$$M = S^2 \times S^2$$
, $\omega = \omega_1 \oplus 2\omega_2$

• coordinates
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$

$$\begin{cases}
J = z_1 + 2z_2 \\
H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2)
\end{cases}$$

for $t \in [0, 1]$.

• Notice (J, H_0) is toric system from before.

• Let
$$NS = (0, 0, 1, 0, 0, -1)$$

$$\begin{cases} J = z_1 + 2z_2 \\ H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2) \end{cases}$$

$$\begin{cases} J = z_1 + 2z_2 \\ H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2) \end{cases}$$

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018)) Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that (J, H_t) is:

1 semitoric with zero focus-focus points when $t < t^-$;

$$\begin{cases} J = z_1 + 2z_2 \\ H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2) \end{cases}$$

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that (J,H_t) is:

1 semitoric with zero focus-focus points when $t < t^-$;

2 degenerate at NS when $t = t^-$;

$$\begin{cases} J = z_1 + 2z_2 \\ H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2) \end{cases}$$

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

- Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that (J, H_t) is:
 - **1** semitoric with zero focus-focus points when $t < t^-$;
 - **2** degenerate at NS when $t = t^-$;
 - **3** semitoric with one focus-focus point at NS when $t^- < t < t^+$;

$$\begin{cases} J = z_1 + 2z_2 \\ H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2) \end{cases}$$

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that (J, H_t) is:

1 semitoric with zero focus-focus points when $t < t^-$;

3 semitoric with one focus-focus point at NS when $t^- < t < t^+$;

4 degenerate at NS when
$$t = t^+$$
;

$$\begin{cases} J = z_1 + 2z_2 \\ H_t = (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2) \end{cases}$$

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

- Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that (J, H_t) is:
 - **1** semitoric with zero focus-focus points when $t < t^-$;
 - **2** degenerate at NS when $t = t^-$;
 - 3 semitoric with one focus-focus point at NS when $t^- < t < t^+$;
 - 4 degenerate at NS when $t = t^+$;
 - **5** semitoric with zero focus-focus points when $t > t^+$.

Coupled angular momenta: moment map image

Coupled angular momenta: moment map image

Semitoric with zero focus-focus points (figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with one focus-focus point (figure made in Mathematica)
Coupled angular momenta: moment map image

Semitoric with one focus-focus point (figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with one focus-focus point (figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with zero focus-focus points (figure made in Mathematica)

The image of the momentum map for (J, H_t) :

The image of the momentum map for (J, H_t) :

The semitoric polygons for $(J, H_{1/2})$:

The image of the momentum map for (J, H_t) :

The semitoric polygons for $(J, H_{1/2})$:

The image of the momentum map for (J, H_t) :

The semitoric polygons for $(J, H_{1/2})$:

Idea

Given polygons, interpolate between systems "related to the semitoric polygons" to find desired semitoric system.

Semitoric families

Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems (M, ω, F_t) , $0 \le t \le 1$, where

- $\dim(M) = 4;$
- ► $F_t = (J, H_t);$
- ► J generates an S¹-action;
- $(t,p) \mapsto H_t(p)$ is smooth.
- it is semitoric for all but finitely many values of t

Semitoric families

Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems (M, ω, F_t) , $0 \le t \le 1$, where

- $\dim(M) = 4;$
- $\blacktriangleright F_t = (J, H_t);$
- ► J generates an S¹-action;
- $(t,p) \mapsto H_t(p)$ is smooth.
- it is semitoric for all but finitely many values of t

(arXiv:1810.06915, to appear in the Memoirs of the AMS)

Semitoric families

Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems (M, ω, F_t) , $0 \le t \le 1$, where

- $\dim(M) = 4;$
- $\blacktriangleright F_t = (J, H_t);$
- ► J generates an S¹-action;
- $(t,p) \mapsto H_t(p)$ is smooth.

it is semitoric for all but finitely many values of t

(arXiv:1810.06915, to appear in the Memoirs of the AMS)

Lemma (Invariance of polygons, Le Floch-P. 2018)

The (unmarked) semitoric polygon in a semitoric family can only change at the values of t for which the system is degenerate.

For example, can we construct a system with the above polygons? Integrable systems Semitoric families Beyond

Intro Example on W₁ 2 focus-focus example

The first Hirzebruch surface

Applying the Delzant construction we obtain the first Hirzebruch surface:

The first Hirzebruch surface

Applying the Delzant construction we obtain the first Hirzebruch surface: C⁴ reduced by the T²-action generated by

$${\sf N}=(1/2)\left(|u_1|^2+|u_2|^2+|u_3|^2,|u_3|^2+|u_4|^2
ight)-(2,1).$$

• Toric system: $J = 1/2|u_2|^2$, $H_0 = 1/2|u_3|^2$.

The first Hirzebruch surface

Applying the Delzant construction we obtain the first
 Hirzebruch surface: C⁴ reduced by the T²-action generated by

$$N = (1/2) \left(|u_1|^2 + |u_2|^2 + |u_3|^2, |u_3|^2 + |u_4|^2 \right) - (2, 1).$$

- Toric system: $J = 1/2|u_2|^2$, $H_0 = 1/2|u_3|^2$.
- Hope to transition between (J, H_0) and $(J, -H_0)$.

The first Hirzebruch surface

Applying the Delzant construction we obtain the first Hirzebruch surface: C⁴ reduced by the T²-action generated by

$$\mathsf{N} = (1/2) \left(|u_1|^2 + |u_2|^2 + |u_3|^2, |u_3|^2 + |u_4|^2
ight) - (2, 1).$$

- Toric system: $J = 1/2|u_2|^2$, $H_0 = 1/2|u_3|^2$.
- Hope to transition between (J, H_0) and $(J, -H_0)$.

Example on W_1 , the first Hirzebruch surface

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

Theorem (Le Floch-P., 2018)

 (J, H_t) is a semitoric family on W_1 with the desired polygons at t = 1/2.

Example on W_1 , the first Hirzebruch surface

Let $H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$

Theorem (Le Floch-P., 2018)

 (J, H_t) is a semitoric family on W_1 with the desired polygons at t = 1/2.

Example on W_1 , the first Hirzebruch surface

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

Theorem (Le Floch-P., 2018)

 (J, H_t) is a semitoric family on W_1 with the desired polygons at t = 1/2.

Another semitoric polygon:

Another semitoric polygon:

Another semitoric polygon:

Another semitoric polygon:

Another semitoric polygon:

Another semitoric polygon:

• Let
$$M = S^2 \times S^2$$
 with $\omega = \omega_1 \oplus 2\omega_2$.

• Let
$$M = S^2 \times S^2$$
 with $\omega = \omega_1 \oplus 2\omega_2$.

• Let
$$J = z_1 + 2z_2$$
.

• Let
$$M = S^2 \times S^2$$
 with $\omega = \omega_1 \oplus 2\omega_2$.

• Let
$$J = z_1 + 2z_2$$
.

Define:

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

• Let
$$M = S^2 \times S^2$$
 with $\omega = \omega_1 \oplus 2\omega_2$.

• Let
$$J = z_1 + 2z_2$$
.

Define:

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

$$H_{s_1,s_2} = (1-s_2)\Big((1-s_1)H_{0,0} + s_1H_{1,0}\Big) + s_2\Big((1-s_1)H_{0,1} + s_1H_{1,1}\Big)$$

for $s_1, s_2 \in [0, 1]$.

Image of (J, H_{s_1, s_2}) for $s_1, s_2 \in [0, 1]$

Image of (J, H_{s_1, s_2}) for $s_1, s_2 \in [0, 1]$

Image of (J, H_{s_1, s_2}) for $s_1, s_2 \in [0, 1]$

Theorem

Theorem (Hohloch-P., 2018)

The system $(J, H_{\frac{1}{2}, \frac{1}{2}})$ is a semitoric integrable system with exactly two focus-focus points which has the above polygons as its semitoric polygon invariant.

Start with semitoric polygon

- Start with semitoric polygon
- Erase the dotted lines

- Start with semitoric polygon
- Erase the dotted lines
- Hope that the result is Delzant...

- Start with semitoric polygon
- Erase the dotted lines
- Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.

- Start with semitoric polygon
- Erase the dotted lines
- Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.
 - ▶ Note: this gives us *preferred variables z*₁,...,*z*_d on *M*

- Start with semitoric polygon
- Erase the dotted lines
- Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.
 - ▶ Note: this gives us *preferred variables* z_1, \ldots, z_d on *M*
 - Idea is to write functions in terms of these variables (keeping invariant under *T*-action)

- Start with semitoric polygon
- Erase the dotted lines
- Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.
 - ▶ Note: this gives us *preferred variables* z_1, \ldots, z_d on *M*
 - Idea is to write functions in terms of these variables (keeping invariant under *T*-action)

• Make some choice of H_1 and let $H_t = (1 - t)H_0 + tH_1$.

- Start with semitoric polygon
- Erase the dotted lines
- Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.
 - ▶ Note: this gives us *preferred variables* z_1, \ldots, z_d on *M*
 - Idea is to write functions in terms of these variables (keeping invariant under *T*-action)
- Make some choice of H_1 and let $H_t = (1 t)H_0 + tH_1$.
- If we are lucky, now (M, ω, F_t = (J, H_t)) is a semitoric family with the desired polygon when t[−] < t < t⁺.

- Start with semitoric polygon
- Erase the dotted lines
- Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.
 - ▶ Note: this gives us *preferred variables z*₁,...,*z*_d on *M*
 - Idea is to write functions in terms of these variables (keeping invariant under *T*-action)
- Make some choice of H_1 and let $H_t = (1 t)H_0 + tH_1$.
- If we are lucky, now (M, ω, F_t = (J, H_t)) is a semitoric family with the desired polygon when t[−] < t < t⁺.

Warning

This strategy is far too hopeful to work in general!

- Start with semitoric polygon
- Erase the dotted lines
- ► Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.
 - ▶ Note: this gives us *preferred variables* z₁,..., z_d on M
 - Idea is to write functions in terms of these variables (keeping invariant under *T*-action)
- Make some choice of H_1 and let $H_t = (1 t)H_0 + tH_1$.
- ▶ If we are lucky, now $(M, \omega, F_t = (J, H_t))$ is a semitoric family with the desired polygon when $t^- < t < t^+$.

Warning

This strategy is far too hopeful to work in general!

- Start with semitoric polygon
- Erase the dotted lines
- ► Hope that the result is Delzant...
- Use Delzant construction to obtain toric system $(M, \omega, F_0 = (J, h_0))$ where $M = \mathbb{C}^d / / T$ for some torus T.
 - ▶ Note: this gives us *preferred variables z*₁,...,*z*_d on *M*
 - Idea is to write functions in terms of these variables (keeping invariant under *T*-action)
- Make some choice of H_1 and let $H_t = (1 t)H_0 + tH_1$.
- ▶ If we are lucky, now $(M, \omega, F_t = (J, H_t))$ is a semitoric family with the desired polygon when $t^- < t < t^+$.

Warning

This strategy is far too hopeful to work in general!

Choosing H_t

Proposition [Le Floch-P, 2023]

Let $J = \pm \left(\frac{1}{2}|z_1|^2 - \frac{1}{2}|z_2|^2\right)$. Then $H \in \mathcal{C}^{\infty}(\mathbb{C}^2, \mathbb{R})$ is a Hamiltonian such that $\{J, H\} = 0$, H(0) = 0 and dH(0) = 0 if and only if there exists $\mu_1, \mu_2, \mu_3, \psi \in \mathbb{R}$ such that

$$H(z_1, z_2) = \mu_1 \Re(e^{i\psi} z_1 z_2) + \mu_2 |z_1|^2 + \mu_3 |z_2|^2 + higher order.$$

Choosing H_t

Proposition [Le Floch-P, 2023]

Let $J = \pm \left(\frac{1}{2}|z_1|^2 - \frac{1}{2}|z_2|^2\right)$. Then $H \in \mathcal{C}^{\infty}(\mathbb{C}^2, \mathbb{R})$ is a Hamiltonian such that $\{J, H\} = 0$, H(0) = 0 and dH(0) = 0 if and only if there exists $\mu_1, \mu_2, \mu_3, \psi \in \mathbb{R}$ such that

$$H(z_1,z_2) = \mu_1 \Re(e^{i\psi} z_1 z_2) + \mu_2 |z_1|^2 + \mu_3 |z_2|^2 + ext{higher order}.$$

Moreover, such a (J, H) is integrable if and only if $(\mu_1, \mu_2 + \mu_3) \neq (0, 0)$ and in this case the singular point (0, 0) is

- of focus-focus type if $|\mu_2 + \mu_3| < |\mu_1|$;
- of elliptic-elliptic type if $|\mu_2 + \mu_3| > |\mu_1|$;
- degenerate if $|\mu_2 + \mu_3| = |\mu_1|$.

Choosing H_t

Proposition [Le Floch-P, 2023]

Let $J = \pm \left(\frac{1}{2}|z_1|^2 - \frac{1}{2}|z_2|^2\right)$. Then $H \in \mathcal{C}^{\infty}(\mathbb{C}^2, \mathbb{R})$ is a Hamiltonian such that $\{J, H\} = 0$, H(0) = 0 and dH(0) = 0 if and only if there exists $\mu_1, \mu_2, \mu_3, \psi \in \mathbb{R}$ such that

$$H(z_1,z_2) = \mu_1 \Re(e^{i\psi} z_1 z_2) + \mu_2 |z_1|^2 + \mu_3 |z_2|^2 + ext{higher order}$$

Moreover, such a (J, H) is integrable if and only if $(\mu_1, \mu_2 + \mu_3) \neq (0, 0)$ and in this case the singular point (0, 0) is

- of focus-focus type if $|\mu_2 + \mu_3| < |\mu_1|$;
- of elliptic-elliptic type if $|\mu_2 + \mu_3| > |\mu_1|$;

• degenerate if $|\mu_2 + \mu_3| = |\mu_1|$.

This tells us how to chose H_t

There are still some shortcomings to this technique that we need to overcome

- There are still some shortcomings to this technique that we need to overcome
- But first, let's consider which marked polygons are the most foundational

- There are still some shortcomings to this technique that we need to overcome
- But first, let's consider which marked polygons are the most foundational
- Semitoric systems naturally admit two types of blowups: toric type and semitoric type (Symington, Zung, Auroux).

- There are still some shortcomings to this technique that we need to overcome
- But first, let's consider which marked polygons are the most foundational
- Semitoric systems naturally admit two types of blowups: toric type and semitoric type (Symington, Zung, Auroux).

- There are still some shortcomings to this technique that we need to overcome
- But first, let's consider which marked polygons are the most foundational
- Semitoric systems naturally admit two types of blowups: toric type and semitoric type (Symington, Zung, Auroux).

A semitoric system is called minimal if it does not admit a toric type blowup, and strictly minimal if it does not admit either type.

Minimal semitoric systems were classified by Kane-P.-Pelayo (2016) in terms of an invariant called the *semitoric helix*

- Minimal semitoric systems were classified by Kane-P.-Pelayo (2016) in terms of an invariant called the *semitoric helix*
- The minimal helices came in 7 different types (and recovering the polygon from the helix can be complicated)

- Minimal semitoric systems were classified by Kane-P.-Pelayo (2016) in terms of an invariant called the *semitoric helix*
- The minimal helices came in 7 different types (and recovering the polygon from the helix can be complicated)
- It turns out that the only strictly minimal ones are type (1), type (2), and type (3), and luckily finding the corresponding polygons for these helices was tractable.

- Minimal semitoric systems were classified by Kane-P.-Pelayo (2016) in terms of an invariant called the *semitoric helix*
- The minimal helices came in 7 different types (and recovering the polygon from the helix can be complicated)
- It turns out that the only strictly minimal ones are type (1), type (2), and type (3), and luckily finding the corresponding polygons for these helices was tractable.

Proposition (P.-Le Floch, 2023):

A semitoric system is strictly minimal if and only if its marked polygon is one of the ones shown on the next slide.

The strictly minimal polygons

The strictly minimal polygons - progress so far

The strictly minimal polygons - progress so far

bstructions CP≤ t

Towards a system of type (1)

► Type (1) polygons:

► The preimage of this "line" has a special property with respect to the S¹-action generated by J (Z₂ isotropy).

Those points must be sent to the boundary in a semitoric system.

- respect to the S^1 -action generated by J (\mathbb{Z}_2 isotropy).
 - Those points must be sent to the boundary in a semitoric system.
- Hohloch-Sepe-Sabatini-Symington studied the relationship between semitoric systems and the S¹-space [2015-present]

ostructions \mathbb{CP}^2 type (3)

A type (1) system on \mathbb{CP}^2

• λ , δ , γ are parameters satisfying $0 < \gamma < \frac{1}{4\lambda}$ and $\delta > \frac{1}{2\gamma\lambda}$.

Integrable systems Semitoric families Beyond

bstructions \mathbb{CP}^2 type (3)

A type (1) system on \mathbb{CP}^2

- ▶ λ , δ , γ are parameters satisfying $0 < \gamma < \frac{1}{4\lambda}$ and $\delta > \frac{1}{2\gamma\lambda}$.
- Apply Delzant's construction to get M = N⁻¹(0)/S¹ where N: C³ → R is

$$N = \frac{1}{2} \left(|z_1|^2 + |z_2|^2 + |z_3|^2 \right) - \lambda$$
bstructions \mathbb{CP}^2 type (3

A type (1) system on \mathbb{CP}^2

- ▶ λ , δ , γ are parameters satisfying $0 < \gamma < \frac{1}{4\lambda}$ and $\delta > \frac{1}{2\gamma\lambda}$.
- Apply Delzant's construction to get M = N⁻¹(0)/S¹ where N: C³ → R is

$$N = \frac{1}{2} \left(|z_1|^2 + |z_2|^2 + |z_3|^2 \right) - \lambda$$

bstructions \mathbb{CP}^2 type (3)

A type (1) system on \mathbb{CP}^2

- ▶ λ , δ , γ are parameters satisfying $0 < \gamma < \frac{1}{4\lambda}$ and $\delta > \frac{1}{2\gamma\lambda}$.
- Apply Delzant's construction to get M = N⁻¹(0)/S¹ where N: C³ → ℝ is

$$N = \frac{1}{2} \left(|z_1|^2 + |z_2|^2 + |z_3|^2 \right) - \lambda$$

$$M = \mathbb{CP}^2.$$

$$Let$$

$$\begin{cases} J = \frac{1}{2}(|z_1|^2 - |z_2|^2) \\ \end{cases}$$

bstructions \mathbb{CP}^2 type (3

A type (1) system on \mathbb{CP}^2

~

- ▶ λ , δ , γ are parameters satisfying $0 < \gamma < \frac{1}{4\lambda}$ and $\delta > \frac{1}{2\gamma\lambda}$.
- Apply Delzant's construction to get M = N⁻¹(0)/S¹ where N: C³ → ℝ is

$$N = \frac{1}{2} \left(|z_1|^2 + |z_2|^2 + |z_3|^2 \right) - \lambda$$

•
$$M = \mathbb{CP}^2$$
.
• Let
 $\begin{cases} J = \frac{1}{2}(|z_1|^2 - |z_2|^2) \\ H_t = 2\gamma \delta t \lambda^2 + (1 - 2t) \frac{|z_3|^2}{2} + 2\gamma t \Big(Re(z_1 z_2 \overline{z}_3^2) \Big) \Big) \\ \end{cases}$

bstructions \mathbb{CP}^2 type (3)

A type (1) system on \mathbb{CP}^2

- ▶ λ , δ , γ are parameters satisfying $0 < \gamma < \frac{1}{4\lambda}$ and $\delta > \frac{1}{2\gamma\lambda}$.
- Apply Delzant's construction to get M = N⁻¹(0)/S¹ where N: C³ → ℝ is

$$N = \frac{1}{2} \left(|z_1|^2 + |z_2|^2 + |z_3|^2 \right) - \lambda$$

$$M = \mathbb{CP}^{2}.$$

$$Let$$

$$\begin{cases}
J = \frac{1}{2}(|z_{1}|^{2} - |z_{2}|^{2}) \\
H_{t} = 2\gamma\delta t\lambda^{2} + (1 - 2t)\frac{|z_{3}|^{2}}{2} + 2\gamma t \left(Re(z_{1}z_{2}\overline{z}_{3}^{2}) - \frac{\delta}{4}(|z_{1}|^{2} + |z_{2}|^{2})^{2}\right)
\end{cases}$$

bstructions C₽² type (3

A type (1) system on \mathbb{CP}^2

- λ , δ , γ are parameters satisfying $0 < \gamma < \frac{1}{4\lambda}$ and $\delta > \frac{1}{2\gamma\lambda}$.
- Apply Delzant's construction to get M = N⁻¹(0)/S¹ where N: C³ → ℝ is

$$N = \frac{1}{2} \left(|z_1|^2 + |z_2|^2 + |z_3|^2 \right) - \lambda$$

$$M = \mathbb{CP}^{2}.$$

$$Let$$

$$\begin{cases}
J = \frac{1}{2}(|z_{1}|^{2} - |z_{2}|^{2}) \\
H_{t} = 2\gamma\delta t\lambda^{2} + (1 - 2t)\frac{|z_{3}|^{2}}{2} + 2\gamma t \left(Re(z_{1}z_{2}\overline{z}_{3}^{2}) - \frac{\delta}{4}(|z_{1}|^{2} + |z_{2}|^{2})^{2}\right)
\end{cases}$$

▶ Last term is to keep the Z₂-sphere on the boundary.

A type (1) system on \mathbb{CP}^2

• The image of (J, H_t) for $0 \le t \le 1$:

A type (1) system on \mathbb{CP}^2

• The image of (J, H_t) for $0 \le t \le 1$:

bstructions C₽² type (3

A type (1) system on \mathbb{CP}^2

bstructions C₽² type (3

A type (1) system on \mathbb{CP}^2

For $t \approx \frac{1}{2}$ the system is semitoric with a focus-focus point!

bstructions \mathbb{CP}^2 type (3)

A type (1) system on \mathbb{CP}^2

For $t \approx \frac{1}{2}$ the system is semitoric with a focus-focus point!

bstructions C₽² type (3

A type (1) system on \mathbb{CP}^2

For t ≈ ¹/₂ the system is semitoric with a focus-focus point!
For large t the system becomes hypersemitoric.

A type (1) system on \mathbb{CP}^2

For $t \approx \frac{1}{2}$ the system is semitoric with a focus-focus point!

- ▶ For large *t* the system becomes hypersemitoric.
- Hypersemitoric systems were introduced in [Hohloch-P., 22] to study the integrable systems with prescribed S¹-actions.

A type (1) system on \mathbb{CP}^2

structions \mathbb{CP}^2 type (3)

A type (1) system on \mathbb{CP}^2

Theorem (Le Floch-P., 2023)

The family $F_t = (J, H_t)$ is

▶ semitoric with zero focus-focus points when $0 \le t < t^-$,

ostructions \mathbb{CP}^2 type (3)

A type (1) system on \mathbb{CP}^2

Theorem (Le Floch-P., 2023)

The family $F_t = (J, H_t)$ is

▶ semitoric with zero focus-focus points when $0 \le t < t^-$,

• degenerate when $t = t^-$,

A type (1) system on \mathbb{CP}^2

Theorem (Le Floch-P., 2023)

The family $F_t = (J, H_t)$ is

- ▶ semitoric with zero focus-focus points when $0 \le t < t^-$,
- degenerate when $t = t^-$,
- ▶ semitoric with one focus-focus point when t⁻ < t < t⁺,

A type (1) system on \mathbb{CP}^2

Theorem (Le Floch-P., 2023)

The family $F_t = (J, H_t)$ is

- ▶ semitoric with zero focus-focus points when $0 \le t < t^-$,
- degenerate when $t = t^-$,
- ▶ semitoric with one focus-focus point when t⁻ < t < t⁺,

A type (1) system on \mathbb{CP}^2

Theorem (Le Floch-P., 2023)

The family $F_t = (J, H_t)$ is

- ▶ semitoric with zero focus-focus points when $0 \le t < t^-$,
- degenerate when $t = t^-$,
- ▶ semitoric with one focus-focus point when t⁻ < t < t⁺,
- degenerate when $t = t^+$,

• hypersemitoric with one flap when $t^+ < t \le 1$.

A type (1) system on \mathbb{CP}^2

Theorem (Le Floch-P., 2023)

The family $F_t = (J, H_t)$ is

- ▶ semitoric with zero focus-focus points when $0 \le t < t^-$,
- degenerate when $t = t^-$,
- ▶ semitoric with one focus-focus point when t⁻ < t < t⁺,
- degenerate when $t = t^+$,
- hypersemitoric with one flap when $t^+ < t \le 1$.
- An example of type (1) was also studied by Chiscop-Dullin-Efstathiou-Waalkens (2019).

Strictly minimal systems of type (3)

► For the following slides, we consider the (n - 2)th Hirzebruch surface, obtained as the symplectic reduction of C⁴ by

$$N = \frac{1}{2} \left(|z_1|^2 + |z_3|^2 + (n-2)|z_4|^2, |z_2|^2 + |z_4|^2 \right)$$

Strictly minimal systems of type (3)

For the following slides, we consider the (n − 2)th Hirzebruch surface, obtained as the symplectic reduction of C⁴ by

$$N = \frac{1}{2} \left(|z_1|^2 + |z_3|^2 + (n-2)|z_4|^2, |z_2|^2 + |z_4|^2 \right)$$

• Let
$$\mathcal{X} = \Re(z_1 z_2 \overline{z}_3^{n-1} z_4)$$
 and $R = \frac{1}{2} \left(|z_1|^2 + (n-2)|z_4|^2 \right)$

Strictly minimal systems of type (3a)

Theorem (Le Floch-P., 2023)

For certain $\alpha, \beta, \gamma, \delta > 0$, the system

$$J = \frac{1}{2} (|z_1|^2 + |z_2|^2), \qquad H_t = \frac{(2t-1)}{2} |z_3|^2 + 2\gamma t (\mathcal{X} + \delta R^2) - 2\gamma \delta t ((n-1)\beta + \alpha)^2.$$

is semitoric of type (3a) when $t^- < t < t^+$.

Strictly minimal systems of type (3b)

Theorem (Le Floch-P., 2023)

For certain $\alpha, \beta, \gamma, \delta > 0$, the system

$$J = \frac{1}{2} (|z_1|^2 + |z_2|^2), \qquad H_t = \frac{(2t-1)}{2} |z_3|^2 + 2\gamma t (\mathcal{X} + \delta R^2) - 2\gamma \delta t (n-1)^2 \beta^2.$$

is semitoric of type (3b) when $t^- < t < t^+$.

Strictly minimal systems of type (3c)

Theorem (Le Floch-P., 2023)

For certain $\alpha, \beta, \gamma, \delta > 0$, the system

$$J = \frac{1}{2} (|z_1|^2 + |z_2|^2), \qquad H_t = \frac{(2t-1)}{2} |z_3|^2 + 2\gamma t (\mathcal{X} + \delta R^2) - 2\gamma \delta t ((n-1)\beta - \alpha)^2.$$

is semitoric of type (3c) when $t^- < t < t^+$.

Theorem

- ▶ type (1): Le Floch-P. (2023) (and CDEW)
- ▶ type (2a/b): Hohloch-P. (2018), Le Floch-P. (2022)
- **type (3a), n = 1:** Coupled angular momenta (SZ,1999)
- ▶ type (3abc), n = 2: Le Floch-P. (2022)
- ▶ type (3abc), n ≥ 3 Le Floch-P. (2023)

Theorem

- ▶ type (1): Le Floch-P. (2023) (and CDEW)
- ▶ type (2a/b): Hohloch-P. (2018), Le Floch-P. (2022)
- **type (3a), n = 1:** Coupled angular momenta (SZ,1999)
- ▶ type (3abc), n = 2: Le Floch-P. (2022)
- ▶ type (3abc), n ≥ 3 *Le Floch-P. (2023)*

Theorem

- ▶ type (1): Le Floch-P. (2023) (and CDEW)
- ▶ type (2a/b): Hohloch-P. (2018), Le Floch-P. (2022)
- **type (3a), n** = 1: Coupled angular momenta (SZ,1999)
- ▶ type (3abc), n = 2: Le Floch-P. (2022)
- ▶ type (3abc), n ≥ 3 *Le Floch-P. (2023)*
- Moreover, these examples each come from a family of systems (M, w, (J, H_t)), starting with a toric system at t = 0 and either becoming toric again or developing a flap by t = 1.

Theorem

- ▶ type (1): Le Floch-P. (2023) (and CDEW)
- ▶ type (2a/b): Hohloch-P. (2018), Le Floch-P. (2022)
- **type (3a), n = 1:** Coupled angular momenta (SZ,1999)
- ▶ type (3abc), n = 2: Le Floch-P. (2022)
- ▶ type (3abc), n ≥ 3 *Le Floch-P. (2023)*
- Moreover, these examples each come from a family of systems (M, ω, (J, H_t)), starting with a toric system at t = 0 and either becoming toric again or developing a flap by t = 1. Thanks for listening!