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1. Integrability

There are various notions of integrability. In this chapter, we will define and
study Frobenius and Liouville integrability. The first one is the version of
integrability mainly and mostly used in differential geometry. The latter one
is tailored for Hamiltonian systems, motivated by energy conservation, and
takes additional symmetries of the system into account.

1



2 1. INTEGRABILITY

1.1 Hamiltonian systems in R2n

Throughout this section, we will introduce Hamiltonian systems in local
coordinates inR2n in order to provide intuition and motivation without using
too many new notions. In the following section, we will remedy this by
defining Hamiltonian systems on symplectic manifolds and recovering the
local presentation from this section. The definition and basic properties of
a flow of an ordinary differential equation are recalled in Definition and
Proposition A.17.

Definition 1.1 (Hamiltonian system in standard coordinates). Con-
sider R2n with the coordinates z := (q, p) := (q1, . . . , qn, p1, . . . , pn) and
let H : R2n → R be a smooth function. The vector field given by

XH(q, p) :=
(
∂pH(q, p)
−∂qH(q, p)

)
:=



∂p1 H(q, p)
...

∂p1 H(q, p)
−∂q1 H(q, p)

...
−∂qn H(q, p)


is called Hamiltonian vector field of H. The associated ordinary dif-
ferential equation

z′ = XH(z),
reads in (q, p) coordinates{ q′i = ∂pi H(q, p),

p′i = −∂qi H(q, p),
∀ 1 ≤ i ≤ n, briefly

{ q′ = ∂pH(q, p),
p′ = −∂qH(q, p),

and is called Hamiltonian equation or Hamiltonian system and its
solutions Hamiltonian solutions. The associated flow is called Hamil-
tonian flow and usually denoted by ΦH. In this context, H is usually
called Hamiltonian function or briefly Hamiltonian.

In Section 1.2, we will define Hamiltonian systems in a coordinate free
definition via symplectic geometry.
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Example 1.2. The Hamiltonian vector field and Hamiltonian system of
H : R2 → R, H(q, p) := 1

2 (q2 + p2) are given by

XH(q, p) =

(
p
−q

)
and

{ q′ = p,

p′ = −q

which is in fact equivalent to q′′ = −q. The flow is given by

ΦH
t (q, p) =

(
cos(t) sin(t)
− sin(t) cos(t)

) (
q
p

)
,

i.e., the solutions live on concentric circles centered at the origin,
parametrised counterclockwise.

Hamiltonian systems have intrinsic geometric properties, which restrict the
possible whereabouts of solutions. We will now investigate these proper-
ties in detail. Let H : R2n → R be a Hamiltonian with usual coordinates
(q, p) ∈ R2n. The derivative DH = (∂qH, ∂pH) is dual to the gradient
gradeu H induced by the euclidean metric via〈

gradeu H,
(
Vq

Vp

)〉
eu

=
(
∂qH, ∂pH

) (Vq

Vp

)
which leads to the coordinate expression

grad H|(q,p) := gradeu H|(q,p) =

(
∂qH(q, p)
∂pH(q, p)

)
.

Therefore the Hamiltonian vector field can be considered as skewgradient
due to the identity

XH(q, p) =

(
∂pH(q, p)
−∂qH(q, p)

)
=

(
0 Id
− Id 0

) (
∂qH(q, p)
∂pH(q, p)

)
=

(
0 Id
− Id 0

)
grad H|(q,p)

where Id is the (n × n)-identity matrix and 0 the (n × n) zero matrix. In
particular, we find

〈grad H, XH〉 = 0

i.e., the gradient and the Hamiltonian vector field are perpendicular to each
other.

Definition 1.3. Let F : Rm → Rk be smooth with m ≥ k. A point z ∈ Rm

is called regular if DF|z has rank k (which is maximal). If rk(DF|z) < k
then z ∈ Rm is called singular or critical and rk(DF|z) is said to be the
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rank of the singular or critical point z. We denote the set of critical
points by

Crit(F) := {z ∈ Rm | z critical point of F}.
The set F(Crit(F)) is called bifurcation diagram of F. For r ∈ R,

F−1(r) := {z ∈ Rm | F(z) = r}

is called level set or fiber of r. We call r ∈ Rk a regular value of F and
its fiber a regular fiber if DF|z has maximal rank for all z ∈ F−1(r).
Otherwise r is said to be singular or critical and its fiber is referred to
as singular or critical.

Given a smooth function F : Rm → Rk with m ≥ k, Theorem A.28 (Im-
plicite function) implies that the level set F−1(r) of a regular value r has
dimension m − k. Moreover, Theorem A.29 (Sard) states that being a regu-
lar value is a generic property.

Definition 1.4. Given a Hamiltonian H, a Hamiltonian solution z is
regular if its tangent vector z′ = XH(z) does not vanish. Otherwise the
solution is called singular or stationary.

Hamiltonian solutions are singular if and only if they are constant. Now we
come to a crucial property of Hamiltonian solutions.

Lemma 1.5. Let H : R2n → R be smooth.
1) grad H is perpendicular to the level sets of H. In particular, if the

solutions of the gradient equation z′ = grad H|z cross the level sets
of H, then the intersection is perpendicular.

2) A Hamiltonian solution stays within one and the same level set for
all times. In particular, XH is tangent to the level sets of H.

Proof. 1) Let r ∈ R with ∅ , H−1(r) and let ρ : I → H−1(r) be a smooth
curve defined on some interval I. The concatenation H ◦ ρ ≡ r is constant
so that

(1.6) 0 = (H ◦ ρ)′ = DH|ρ.ρ′ = 〈grad H, ρ′〉.

Since ρ lies in H−1(r), its tangent vector ρ′ is tangent to H−1(r). According
to equation (1.6), grad H and ρ′ are perpendicular. grad H does not vanish
if and only if DH does not vanish, i.e., the gradient is nonzero along regular
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level sets and stands perpendicular on the level set, i.e., the gradient solu-
tions cross the level set perpendicularly. If grad H vanishes, the associated
solution is constant.
2) Consider a solution z : I → R2n of z′ = XH(z) defined on some interval I
and differentiate the concatenation H ◦ z. We obtain

(H ◦ z)′ = DH|z.z′ = DH|z.XH(z) = 〈grad H|z, XH(z)〉 = 0.

Therefore the function H ◦ z : I → R is constant, i.e., z(t) stays in the same
level set of H for all t ∈ I. This implies in particular that z′ = XH(z) lies in
the tangent space of the level set. �

Given a Hamiltonian H : R2n → R, Lemma 1.5 means in particular that a
Hamiltonian solution does not roam freely through R2n but is confined to a
level set of H, i.e., a subset of dimension ≤ 2n−1. Hamiltonian solutions are
therefore subject to ‘geometric’ restrictions purely by being a Hamiltonian
solution. This can be expressed in terms of physics as follows:

Corollary 1.7 (Energy conservation). Let H : R2n → R be smooth
and consider H as its own energy function, i.e., given r ∈ R, consider
H−1(r) as set of energy level r. Then Hamiltonian solutions are energy
conserving, i.e., they stay within one and the same energy level set.

Lemma 1.5 implies that the Hamiltonian solutions of H : R2 → R are up to
parametrization and position of singular points completely determined by
the level sets: The dimension of the trajectory of a non-constant solution is
one, which agrees with the dimension of regular level sets. Therefore, given
the graph of a Hamiltonian H : R2 → R, we can deduce the ‘location’ of all
solutions up to parametrization.

Question 1.8. Can we get even more control over the whereabouts of
Hamiltonian solutions beyond the fact that they are staying within en-
ergy level sets? If yes, are there necessary and/or sufficient conditions?

Since Hamiltonian solutions preserve level sets, the idea is to find other
Hamiltonian functions with ‘compatible’ level sets: given H : R2n → R,
set H =: h1 and look for a h2 : R2n → R such that the solutions of h1

also stay within the level sets of h2 and vice versa. If h1 and h2 satisfy this
property then the solutions of both systems live within the intersection of
level sets h−1

1 (r1) ∩ h−1
2 (r2) for some values r1, r2 ∈ R. If (r1, r2) is a regular

point of F := (h1, h2) : R2n → R2, i.e., DF has maximal rank (which is
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equivalent with Xh1 and Xh2 being linearly independent) then the implicite
function theorem implies

dim(h−1
1 (r1) ∩ h−1

2 (r2)) = 2n − 2.

Therefore the solutions of h1 and h2 may only roam within (2n − 2)-
dimensional sets, i.e., we just lowered the dimemsion of the set they may
roam in by one. Finding more such functions h1, . . . , hk leads intuitively to
solutions staying in level sets of dimension ≤ 2n − k. We will see later that
we will not gain any more information if we surpass n = k.

Question 1.9. How do we find such functions h2, h3, . . . , meaning, given
h1, what are natural candidates for h2, h3 etc.?

The idea hereby is to consider energy conservation as a ‘symmetry’ of the
system and to look for ‘more symmetries’, i.e., quantities that are preserved
by the system. Depending on the system, there may be rotational invariance,
preserved angles etc.

Example 1.10. The coupled angular momenta system lives on S2 × S2

and rotates both spheres at the same speed around their vertical axes.
Since the rotation on both spheres is equally fast, the angle between
rotating vectors in each of the two spheres compared to another is pre-
served during the rotation. This makes the angle a candidate for an
additional ‘symmetry’ of the system. We will see in Example 1.50 how
this idea is worked out and how the system is defined in detail.

Finding natural candidates is only the first step, the second one is

Question 1.11. Once we found a candidate, how do we verify that it
really has the desired properties?

If we require Hamiltonian functions h1, h2, . . . , hk to have ‘compatible’
level sets with regard to each other’s flow, an immediate question to ask
is how these flows interact with each other in h−1

1 (r1) ∩ · · · ∩ h−1
k (rk) for

r1, . . . , rk ∈ R. Intuition suggests that the flows itself should be ‘compatible’,
meaning they should commute. In Proposition 1.28, we will see that two
flows commute if and only if the Lie bracket (for a definition see Example
1.26) of their associated vector fields vanishes. But we lost information (for
example constant terms) when passing from functions to their Hamiltonian
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vector fields. Thus it is likely that having commuting Hamiltonian flows is
not enough to guarantee ‘compatible’ level sets. In fact, we have to come up
with some ‘Lie bracket for functions’. As we will see in Definition 1.45, this
role is filled by the so-called Poisson bracket for smooth functions described
in Example 1.34.

1.2 Hamiltonian systems on symplectic
manifolds

The natural framework for Hamiltonian systems is symplectic geometry. We
will see by means of Theorem 1.21 (Darboux) that Hamiltonian systems on
symplectic manifolds look locally precisely as described in Section 1.1.

The notions of (smooth) manifold and nondegenerate and closed forms used
in the following are recalled in Definition A.1, Definition A.10 and Defini-
tion A.14 in particular and Appendix A.1 and Appendix A.3 in general.

Definition 1.12. A differential form is symplectic if it is a smooth, non-
degenerate, closed 2-form. A smooth manifold is said to be symplectic
if it carries a symplectic form.

Lemma A.12 implies immediately

Corollary 1.13. Symplectic manifolds are even dimensional.

The seminal example of a symplectic manifold is

Example 1.14. Consider R2n = Rn × Rn with coordinates (q, p) =

(q1, . . . , qn, p1, . . . , pn) and endow it with the standard symplectic form

ωst := −
n∑

i=1

dqi ∧ dpi =

n∑
i=1

dpi ∧ dqi.
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This form is represented by the skewsymmetric (2n × 2n)-matrix(
0 − Id
Id 0

)
where Id is the (n × n)-identity matrix and 0 the (n × n) zero matrix.

Other important examples are

Example 1.15. 1) Cn with coordinates (z1, . . . , zn) and − i
2

∑n
k=1 dzk∧dz̄k

is a symplectic manifold. The identification Cn ' R2n via zk = qk +ipk

recovers Example 1.14.
2) The 2-sphere S2 with ωS2 given by

(ωS2)p(up, vp) := 〈p, up × vp〉eucl

for all p ∈ S2 and all up, vp ∈ TpS
2 is a symplectic manifold. ωS2 is

usually considered as standard symplectic form on S2.
3) Any volume form of a 2-dimensional manifold is a symplectic form,

i.e., all (orientable) 2-dimensional manifolds are symplectic.
4) Any cotangent bundle carries a natural symplectic form.
5) The 2n-torus T2n := R2n/Z2n ' (R/Z)2n with the symplectic form

induced by Example 1.14 is symplectic.

Proof. Left to the reader. �

Example 1.16. The complex projective space CPn is symplectic for all
n ∈ N. Its standard symplectic form ωFS is called Fubini-Study form.
If we identify CP1 ' S2 with ωS2 from Example 1.15, we obtain

ωFS = −
1
4
ωS2 .

Proof. Denote by C∗ the multiplicative group (C \ {0}, ·) and set

CPn := (Cn+1 \ {0})/C∗ ' S2n+1/S1

with quotient map q : Cn+1 \ {0} → CPn where q(z) =: [z] is the equiv-
alence class [z] = [z0, . . . , zn] arisen from the identification (z0, . . . , zn) ∼
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(λz0, . . . , λzn) where λ ∈ C∗. The 2-form

ω̃FS |z :=
i

2 |z|4

n∑
j=0

∑
k, j

|zk|
2 dz j ∧ dz̄ j − z̄kz j dzk ∧ z̄ j

on Cn+1 \{0} descends to a unique symplectic form ωFS on the quotient CPn,
satisfying ω̃FS = q∗ωFS . �

Attention: Whereas even dimensional tori and all complex projective spaces
can be endowed with a symplectic form, this is not true for 2n-spheres with
n > 1:

Proposition 1.17. Among all spheres Sk with k ∈ N0, only S2 is sym-
plectic, i.e., higher dimensional spheres of even dimension are not sym-
plectic.

Proof. Due to Lemma A.12, odd dimensional spheres cannot be symplec-
tic. Now consider the even dimensional spheres. Let n > 1 and assume that
S2n admits a symplectic form ω. Since ω is closed we can see it as coho-
mology class ω ∈ H2(S2n). Because of H2(S2n) = 0, ω is in fact exact, i.e.,
there is a 1-form α with ω = dα. We find 0 , ωn := ω∧ · · · ∧ω ∈ H2n(S2n),
i.e., ωn is a volume form on S2n. Moreover, using dω = 0, we compute
d(α ∧ (ωn−1)) = dα ∧ (ωn−1) = ωn. Using Stokes’ theorem, we find

0 , vol
(
S2n

)
=

∫
S 2n

ωn =

∫
S2n

d(α ∧ (ωn−1)) S tokes
=

∫
∂S2n

α ∧ (ωn−1) = 0

since the boundary ∂S2n of S2n is the empty set. This contradiction shows
that 2n-spheres with n > 1 cannot admit a symplectic form. �

This means in particular

Corollary 1.18.

even dimension
;
⇐

symplectic

Certain types of submanifolds are of particular interest in symplectic geom-
etry:

Definition 1.19. Let (M, ω) be a symplectic manifold and N ⊆ M a
submanifold.
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1) N is isotropic if ωp(up, vp) = 0 for all p ∈ N and all up, vp ∈ TpN,
i.e., ω vanishes along N.

2) N is Lagrangian if N is isotropic and dim N = 1
2 dim M.

For the definition of a pullback of a 2-form in the following see Definition
and Proposition A.16.

Definition 1.20. Let (M1, ω1) and (M2, ω2) be symplectic manifolds and
ψ : M1 → M2 a smooth map. ψ is said to be symplectic if ψ∗ω2 = ω1.
If ψ is a symplectic diffeomorphism then we call ψ a symplectomor-
phism. Symplectic manifolds between which exists a symplectomor-
phism are called symplectomorphic.

If ψ : (M1, ω1) → (M2, ω2) is symplectic then ψ∗ω2 = ω1 forces Dψ to
be injective since the symplectic forms are nondegenerate. In particular,
we have dim M1 ≤ dim M2. If dim M1 = dim M2 then a symplectic ψ is
a local diffeomorphism and thus a local symplectomorphism. In general,
symplectomorphisms are for symplectic geometry what isomorphisms are
for linear algebra and diffeomorphisms for differential geometry.

We will see now that locally all symplectic manifolds look the same:

Theorem 1.21 (Darboux). Let (M, ω) be a symplectic mani-
fold of dimension 2n. Endow R2n with coordinates (q, p) =

(q1, . . . , qn, p1, . . . , pn). Then, for all x ∈ M, there exists an open set
U with x ∈ U and a chart ψ : U → R2n such that ψ(x) = 0 and

(ψ−1)∗ω = −

n∑
i=1

dqi ∧ dpi

i.e., (U, ω|U) and (R2n,−
∑n

i=1 dqi ∧ dpi) are symplectomorphic.

Proof. See for example [Hofer & Zehnder]. �

In Section 1.1, we defined Hamiltonian systems on R2n using coordinates
(q, p) = (q1, . . . , qn, p1, . . . , pn). Now we give a coordinate free version:
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Definition 1.22. Let (M, ω) be a symplectic manifold and H : M → R
a smooth function. The equation

ω(XH, ·) = −dH(·)

defines a vector field XH, called the Hamiltonian vector field of H. The
associated ODE

z′ = XH(z)
is called Hamiltonian equation. Its flow is referred to as Hamilton-
ian flow and usually denoted by ΦH. In this context, the function H is
usually referred to as Hamiltonian function.

Note that the equation ω(XH, ·) = −dH(·) determines XH uniquely, namely
as the vector field dual to the 1-form dH under the isomorphism between
1-forms and vector fields induced by ω.

Lemma 1.23. The notions in Section 1.1 for Hamiltonian systems on R2n

are generalized by Definition 1.22 to Hamiltonian systems on symplec-
tic manifolds.

Proof. Theorem 1.21 (Darboux) says that every symplectic manifold looks
(locally) like Example 1.14. Thus it is sufficient to calculate the local ex-
pression of XH on (R2n,−

∑n
i=1 dqi ∧ dpi) using the formulation from Defi-

nition 1.22. To this aim, write XH with components (XH
q , X

H
p ) w.r.t. the co-

ordinate splitting (q, p). Then the equation ω(XH, ·) = −dH(·) transforms
into (

XH
q , XH

p

) ( 0 − Id
Id 0

) (
uq

up

)
= −

(
∂qH, ∂pH

) (uq

up

)
for all tangent vectors

(
uq

up

)
in the point (q, p). This implies the identity

XH =

(
XH

q
XH

p

)
=

(
∂pH
−∂qH

)
that we used in Definition 1.1 to define the Hamiltonian vector field. �

1.3 Frobenius integrability
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We now want to analyse what kind of ‘integrability’ commuting flows give
rise to. Remember that each vector field X gives, via the ordinary differential
equation x′ = X(x), rise to a flow ΦX

t and, vice versa, each flow Φt gives rise
to a vector field via XΦ := d

dt Φt. Let us therefore study the behaviour of the
span of vector fields.

Definition 1.24. Let M be a smooth m-dimensional manifold and let
n ∈ N with 1 ≤ n ≤ m.
1) An n-dimensional distribution D on M is given by D =

⋃
x∈M Dx

where Dx ⊆ TxM is an n-dimensional subspace of the tangent space
TxM for all x ∈ M.

2) A distribution D is smooth if, for each x ∈ M, there exists a neigh-
bourhood U of x and smooth, linearly independent vector fields
X1, . . . , Xn on U such that Dy = Span{X1|y, . . . , Xn|y} for all y ∈ U.

We now consider a map that produces in a very special way a new vector
field from two given ones.

Definition 1.25. A Lie bracket on an R-vector space V is a mapping

[·, ·] : V × V → V, (u, v) 7→ [u, v]

that satisfies
(i) [λu, v] = λ[u, v] and [u + ũ, v] = [u, v] + [ũ, v]

for all u, ũ, v ∈ V and for all λ ∈ R.
(ii) [u, v] = −[v, u]

for all u, v ∈ V (Skewsymmetry or anti-commutativity).
(iii) [u, [v,w]] + [v, [w, u]] + [w, [u, v]] = 0

for all u, v,w ∈ V (Jacobi identity).
(i) and (ii) together imply that the Lie bracket is bilinear. A vector space
equipped with a Lie bracket is said to be a Lie algebra.

In our context, we will work mainly with

Example 1.26 (Lie bracket for vector fields). Let e1, . . . , em be the
standard basis of Rm and A, B : Rm → Rm differentiable vector fields
given in coordinates by A =

∑m
k=1 Akek and B =

∑m
`=1 B`e` where
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Ak, B` : Rm → R are differentiable coefficient functions. Then

[A, B] :=
m∑

k=1

(
A(Bk) − B(Ak)

)
ek =

m∑
k,`=1

(
A`D`Bk − B`D`Ak

)
ek

is a vector field [A, B] : Rm → Rm, called Lie bracket of the vector
fields A and B.

Let us briefly recall some properties of this Lie bracket: If f : Rm → R is
smooth and A : Rm → Rm is a smooth vector field, then A( f ) := D f .A is the
derivative of f w.r.t. the vector field A. The Lie bracket of two vector fields
A and B satisfies

[A, B]( f ) = A(B( f )) − B(A( f ),

briefly [A, B] = AB − BA, and is therefore also called commutator of A
and B. On can see the commutator also as differentiating one vector field
along another. This motivates the notation [A, B] = LAB where LA is the
so-called Lie derivative. Moreover, one can show that

[A, B]|z = d
dt

∣∣∣
t=0

DΦA
−t|ΦA

t (z)B|ΦA
t (z) = d

dt

∣∣∣
t=0

(
(ΦA

t )∗B
)
|z,

i.e., there is a way to express the Lie bracket by means of the flows of A and
B, for details see for example [Hohloch2].

Note that the convention for the definition of the Lie bracket varies through-
out the literature by the choice of a sign, i.e., some authors define it as
AB − BA, others as BA − AB.

Definition 1.27. Let M be a smooth manifold.
1) A vector field X on M lies in the distribution D , briefly X ∈ D , if

X|x ∈ Dx for all x ∈ M.
2) A smooth distribution is involutive or completely integrable if

[X,Y] ∈ D for all vector fields X,Y ∈ D .

Before we give an example, let us recall

Proposition 1.28. Let A, B : Rm → Rm be differentiable vector fields
with associated flows ΦA and ΦB. Then

ΦA ◦ ΦB = ΦB ◦ ΦA ⇔ AB = BA ⇔ [A, B] = 0



14 1. INTEGRABILITY

See for intance [Hohloch2] for a proof. Therefore ΦA ◦ ΦB = ΦB ◦ ΦA can
be seen as ‘differentiated version’ of AB = BA. The seminal example for
involutive distributions is

Example 1.29. Let A, B : Rm → Rm be differentiable, nonvanishing
vector fields with commuting flows. Then the distribution given by

Dx := Span{Ax, Bx} ⊆ TxR
m ∀ x ∈ Rm

is involutive.

Proof. [Ax, Bx] = 0x ∈ Dx for all x ∈ Rm by Proposition 1.28. �

This example motivates

Definition 1.30. Let D be a distribution on a manifold M. A submani-
fold N ⊆ M is an integral manifold of the distribution D if TxN = Dx

for all x ∈ N. A maximal integral manifold of a distribution D on M
is a connected integral manifold of D that is not a proper subset of any
other connected integral manifold of D .

The relation between integral manifolds and involutive distributions is char-
acterized by

Theorem 1.31 (Frobenius). Let M be a smooth manifold with a smooth
distribution D . Then there are equivalent:

(i) D is involutive, i.e., [X,Y] ∈ D for all vector fields X,Y ∈ D .
(ii) Through each point of M, there passes a unique maximal integral

manifold of D .

Proof. See [Warner]. �

This version of Frobenius’ theorem illuminates the relation between vector
fields and integrability of distributions. There is also a ‘dual’ version based
on differential forms, see [Warner].

Remark 1.32. Integrability in the sense of Theorem 1.31 (Frobenius) is
usually referred to as Frobenius integrability. It is more general than
so-called Liouville integrability discussed in Remark 1.48.
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Frobenius integrability is a form of integrability tailored for vector fields
and their flows. Since Hamiltonian vector fields carry additional informa-
tion, namely being induced by a function, Frobenius integrability is not
‘fine’ enough to ‘keep track’ of this additional information: Frobenius inte-
grability does not ‘see’ the level sets of the underlying Hamiltonian func-
tions as shown later in Example 1.36.

1.4 Liouville integrability

In this section, we are looking for a notion of integrability particularly suited
for Hamiltonian systems. We begin with some kind of ‘Lie bracket for func-
tions’:

Definition 1.33. A Poisson algebra is a triple
(
P , �, {·, ·}

)
such that

1) (P , �) := (P , �,+) is an associative algebra over a field K w.r.t. the
(bilinear) multiplication �.

2) There exists a map, referred to as Poisson bracket,
{·, ·} : P ×P →P

satisfying
(i) { f + g, h} = { f , h} + {g, h} and {c f , h} = c { f , h}

for all f , g, h ∈ F and for all c ∈ K.
(ii) { f , g} = −{g, f }

for all f , g ∈ F (skewsymmetry or anti-commutativity).
(iii) { f , {g, h}} + {g, {h, f }} + {h, { f , g}} = 0

for all f , g, h ∈ F (Jacobi identity).
(iv) { f g, h} = { f , h} � g + f � {g, h}

for all f , g, h ∈ F (Leibniz rule).
(i) and (ii) together imply that the Poisson bracket is bilinear.

Thus Poisson brackets are Lie brackets that satisfy in addition the Leibniz
rule. The anti-commutativity implies {h, h} = 0 for all h ∈ F . We are in
particular interested in
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Example 1.34 (Poisson bracket for Hamiltonian functions). Let
(M, ω) be a symplectic manifold of dimension 2n. Then

{ f , g} := −ω(X f , Xg) : M → R

with f , g ∈ C∞(M,R) defines a Poisson bracket on C∞(M,R). In local
coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn) on (R2n,−

∑n
i=1 dqi ∧ dpi),

this yields for f , g ∈ C∞(R2n,R)

{ f , g} = ∂q f ∂pg − ∂p f ∂qg =

 n∑
k=1

∂qk f ∂pkg − ∂pk f ∂qkg

 : R2n → R.

It relates as follows to the Lie bracket of the Hamiltonian vector fields
X f and Xg:

[X f , Xg] = X−{ f ,g}.

In the literatur, the Poisson bracket is sometimes defined with the other sign,
i.e., as { f , g} = ω(X f , Xg) = ∂p f∂qg−∂q f∂pg = −(∂q f∂pg−∂p f∂qg). In this
case, we have [X f , Xg] = X{ f ,g} instead of [X f , Xg] = X−{ f ,g}. The algebraic
implication of the choice of sign is explained in the following statement.

Lemma 1.35. Let (M, ω) be a symplectic manifold and denote the set of
smooth vector fields on M by Vect(M). Then
1) (Vect(M), [·, ·]) is a Lie algebra.
2)

(
C∞(M,R), {·, ·}

)
is a Poisson algebra. Forgetting the Leibniz rule,

{·, ·} induces the structure of a Lie algebra on C∞(M,R).
3) The map h 7→ Xh is in our convention [X f , Xg] = X−{ f ,g} a Lie algebra

anti-homomorphism from
(
C∞(M,R), {·, ·}

)
to (Vect(M), [·, ·]). In the

convention [X f , Xg] = X{ f ,g}, it is a Lie algebra homomorphism. The
kernel consists in both cases of the set of constant functions.

Proof. Left to the reader. �

The set of pairs of Hamiltonian functions that have Hamiltonian vector
fields with vanishing Lie bracket does not coincide with the set of pairs
of Hamiltonian functions with vanishing Poisson bracket:

Example 1.36. Consider R2n with local coordinates (q, p) =

(q1, . . . , qn, p1, . . . , pn) and g, h ∈ C∞(R2n,R) given by

g(q, p) := q1 and h(q, p) := p1
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Then [Xg, Xh] = 0, but {g, h} = 1 , 0.

Proof. We compute {g, h} = 1 + 0 + · · · + 0 = 1 which implies immedi-
ately [Xg, Xh] = X−{g,h} = 0 since the Hamiltonian vector field of a constant
function always vanishes. �

Combining Example 1.36 and Proposition 1.28, we obtain

Corollary 1.37. Let f , g be Hamiltonian functions with Hamiltonian
flows Φ f , Φg. Then

Φ f ◦ Φg = Φ f ◦ Φg ⇔ [X f , Xg] = 0 ⇐
; { f , g} = 0.

The Poisson bracket is therefore a ‘finer comb’ than the Lie bracket. Now
we will answer the question why the Poisson bracket is the right tool to
measure the ‘compatibility’ of Hamiltonian flows with level sets of other
Hamiltonian functions.

Definition 1.38. Let (M, ω) be a symplectic manifold of dimension 2n,
let h ∈ C∞(M,R), and let γ : ]− ε, ε[→ M be a smooth curve. Then the
evolution of h along γ is given by t 7→ (h ◦ γ)′(t).

Consider R2n with local coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn) and h ∈
C∞(R2n,R). Let γ : ] − ε, ε[ → R2n be a smooth curve with components
γ = (γq, γp) = (γq1 , . . . , γqn , γp1 , . . . , γpn). In these coordinates, the evolution
of h along γ is given by

(h ◦ γ)′(t) = Dh|γ(t).γ
′(t) =

n∑
i=1

∂qih|γ(t)γ
′
qi

(t) + ∂pih|γ(t)γ
′
pi

(t)

= ∂qh|γ(t)γ
′
q(t) + ∂ph|γ(t)γ

′
p(t).

Lemma 1.39. Let (M, ω) be symplectic, h ∈ C∞(M,R), and γ :]−ε, ε[→
R2n be smooth. Then the evolution of h along γ vanishes if and only if γ
stays within a level set of h.
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Proof.

The evolution of h along γ vanishes⇔ (h ◦ γ)′ ≡ 0
⇔ (h ◦ γ) is constant
⇔ γ stays within a level set of h

�

For Hamiltonian solutions, Lemma 1.39 implies

Corollary 1.40. Let (M, ω) be symplectic, f , g ∈ C∞(M,R), and let
zg : ] − ε, ε[→ M a Hamiltonian solution of g. Then

zg stays within a level set of f ⇔ { f , g} = 0.

Proof. According to Lemma 1.39, zg stays within a level set of f precisely
when the evolution of f along zg vanishes. Thus we compute

0 = ( f ◦ zg)′ = D f . (zg)′ = D f .Xg = −ω(X f , Xg) = { f , g}.

�

Therefore we are interested in pairs of Hamiltonians f , g with { f , g} = 0 if
we want their flows to stay within each others level sets.

Definition 1.41. Let (M, ω) be symplectic and f ∈ C∞(M,R). A function
g ∈ C∞(M,R) satisfying { f , g} = 0 is said to be an integral of f . We set

I( f ) := {g ∈ C∞(M,R) | g integral of f }.

We note

Lemma 1.42. Let f and g be smooth functions. Then
1) f ∈ I(g) ⇔ g ∈ I( f ).
2) f ∈ I( f ), i.e., the ‘energy’ f is an integral of f .
3) (I( f ), {·, ·}) is a Lie algebra. In particular, the Poisson bracket of two

integrals is again an integral.

Proof. 1) The anti-commutativity of the Poisson bracket implies for all
smooth functions f and g that 0 = { f , g} = −{g, f }.
2) The anti-commutativity of the Poisson bracket implies { f , f } = 0 for all
smooth functions f .
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3) Let g, h ∈ I( f ), i.e., { f , g} = 0 = { f , h}. By adding zero and using the
Jacobi identity, we obtain

{ f , {g, h}} = { f , {g, h}} + {g, 0} + {h, 0}
= { f , {g, h}} + {g, {h, f }} + {h, { f , g}}
= 0.

�

Recall that the Hamiltonian vector field X f of a smooth real valued function
f transforms under a symplectomorphism ψ via

(1.43) X f◦ψ(x) = Dψ−1|ψ(x)X f (ψ(x)).

The Poisson bracket behaves under concatenation as follows.

Lemma 1.44. 1) Let ψ be a symplectomorphism and f and g smooth
real valued functions. Then { f ◦ ψ, g ◦ ψ} = { f , g} ◦ ψ.

2) Let h1, . . . , hn be smooth, real valued functions with {hi, h j} = 0 for
all 1 ≤ i, j ≤ n. Set h := (h1, . . . , hn) and let f : Rn → R be smooth.
Then

{ f ◦ h, hi} = 0, ∀ 1 ≤ i ≤ n,
i.e., f ◦ h ∈ I(hi) for all 1 ≤ i ≤ n.

Proof. 1) We calculate

{ f ◦ ψ, g ◦ ψ} = ω(X f◦ψ, Xg◦ψ) = −d( f ◦ ψ)(Xg◦ψ)
(1.44)
= −D f |ψ Dψ (Dψ)−1|ψ Xg|ψ = −D f |ψ Xg|ψ = (−D f Xg) ◦ ψ

= { f , g} ◦ ψ.

2) We calculate

{ f ◦ h, hi} = −d( f ◦ h)(Xhi) = D f |h Dh Xhi

= −D f |h

 ∂q1 h1 ... ∂qn h1 ∂p1 h1 ... ∂pn h1

...
...

...
...

∂q1 hn ... ∂qn hn ∂p1 hn ... ∂pn hn



∂p1 hi

...
∂pn hi
−∂q1 hi

...
−∂qn hi


= D f |h

 −dh1(Xhi )
...

−dhn(Xhi )

 = D f |h

 {h1,hi}

...
{hn,hi}

 = D f |h

( 0
...
0

)
= 0.

�
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Now we are ready for

Definition 1.45. Let (M, ω) be a 2n-dimensional symplectic manifold. A
smooth function h := (h1, . . . , hn) : M → Rn is said to be a (momentum
map of a) completely integrable (Hamiltonian) system if
1) Xh1 , . . . , Xhn are almost everywhere linearly independent.
2) {hi, h j} = 0 for all 1 ≤ i, j ≤ n (Poisson commutative).
A completely integrable system is often abbreviated by (M, ω, h).

Contrary to standard notions in physics, some mathematicians call the mo-
mentum map briefly moment map.

The measure theoretic notion ‘almost everywhere’ does not depend on the
choice of ωn := ω ∧ · · · ∧ ω, the natural n-dimensional volume on (M, ω),
or the Lebesgue measure since ωn coincides with the Lebesgue measure up
to scaling by a strictly positive function.

Remark 1.46. 1) Condition 1) in Definition 1.45 is equivalent to requir-
ing rk Dh = 2n almost everywhere.

2) Due to condition 2) in Definition 1.45, the Hamiltonian flows Φh1 ,
. . . , Φhn of a completely integrable system (M, ω, h) commute.

3) If the flows Φh1 , . . . , Φhn are defined on whole R, then we get a group
action

Rn × M → M,

(t, x) = (t1, . . . , tn, x) 7→ Φ
h1
t1 ◦ · · · ◦ Φ

hn
tn (x) =: Φh

t (x).

Since the flows commute, the definition of Φh
t does not depend on the

order of concatenation, i.e., for all permutations σ, we have

Φ
hσ(1)
tσ(1)
◦ · · · ◦ Φ

hσ(n)
tσ(n)

(x) = Φ
h1
t1 ◦ · · · ◦ Φ

hn
tn (x).

If one wants to emphasize the ‘additional symmetries aspect’ of a single
Hamiltonian function, Definition 1.45 can be reformulated as follows:

Definition 1.47. Let (M, ω) be a 2n-dimensional symplectic manifold.
A Hamiltonian H : M → R is completely integrable if H has n in-
tegrals h1, . . . , hn ∈ I(H) that form an integrable system (M, ω, h =

(h1, . . . , hn)).



1. LIOUVILLE INTEGRABILITY 21

In this situation, one often uses the ‘energy’ of H as integral h1 := H.

Remark 1.48. Integrability in the sense of Definition 1.45 or Definition
1.47 is usually referred to as Liouville integrability. Liouville integra-
bility implies Frobenius integrability but not the other way around, see
Corollary 1.37.

Let us have a look at some examples from physics.

Example 1.49 (Uncoupled harmonic oscillator). On R4 with coordi-
nates (q, p) = (q1, q2, p1, p2) and symplectic form −

∑2
k=1 dqi ∧ dpi con-

sider H : R4 → R given by

H(q, p) := h1(q, p) + h2(q, p) :=
ν1

2
(q2

1 + p2
1) +

ν2

2
(q2

2 + p2
2)

where ν1, ν2 ∈ R
>0. Then

1) h := (h1, h2) : R4 → R2 is a completely integrable system.
2) H is completely integrable.

Proof. Left as an exercise to the reader. �

Example 1.50 (Coupled angular momenta). Let ~R := (R1,R2) ∈ R2

with 0 < R1 < R2 < ∞ and t ∈ [0, 1]. Consider the product of 2-spheres
S2 × S2 ⊂ R3 × R3 with Cartesian coordinates (x1, y1, z1, x2, y2, z2) and
symplectic form −R1ωS2 ⊕ R2ωS2 where ωS2 is the standard symplectic
form on the 2-sphere, see Example 1.15. Then

h~R,t := (J~R,Ht) : S2 × S2 → R2

given by

J~R(x1, y1, z1, x2, y2, z2) := R1z1 + R2z2,

Ht(x1, y1, z1, x2, y2, z2) := (1 − t)z1 + t(x1x2 + y1y2 + z1z2)

describes the so-called coupled angular momenta system. It is a com-
pletely integrable system which describes the coupled rotation of vec-
tors on the two spheres with angle between the rotating vectors as pre-
served ‘symmetry’. The image h~R,t(S

2 × S2) ⊂ R2 of the momentum map
is displayed in Figure 1.1.
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Proof. This is a very special case of the system studied in
[Hohloch & Palmer]. See also the earlier references therein. �
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Figure 1.1. Image of the momentum map of the coupled an-
gular momenta system for ~R = (1, 2) and t passing from
t = 0 (at the very left) to t = 1 (at the very right). The sin-
gular points of rank 0 are marked as red points. When the
‘coupling parameter’ t changes, one of the rank zero points
transitions from being elliptic-elliptic to being focus-focus
and then back to elliptic-elliptic.



2. Behaviour of completely in-
tegrable systems due to regular
and singular points

When we want to describe the flow of a given smooth vector field X :
Rm → Rm, the theory of ordinary differential equations tell us to distin-
guish between the behaviour near regular points (= points where the vector
field is nonzero) and singular points (= points where the vector field van-
ishes): given a regular point, then Theorem A.19 (Flow box) states that the
flow nearby can be ‘straightened’ by a smooth change of coordinates to a
flow parallel to one of the coordinate axes. For singular points, the situation
is more complicated: If the singular point is hyperbolic then, by Theorem
A.21 (Hartman-Grobman), the flow is C0-conjugated to the flow of the lin-
earization at this point. If the singular point is not hyperbolic one either
has to require stronger properties (like linear systems conjugated by linear
changes of coordinates) or involve higher derivatives to analyse the local
dynamics.

Since a completely integrable system (M, ω, h = (h1, . . . , hn)) consists of n
vector fields Xh1 , . . . , Xhn we certainly may apply the above techniques to
study each of the n flows Φh1 , . . . , Φhn separately. The natural question is if
the Poisson commutativity of the flows allows us to combine the results for
each of the flows to a result of the integrable system h and its flow Φh. The
rough answer is yes as we will see in this chapter. In fact, we are even able to
obtain some ‘semilocal’ statements, i.e., statements that hold for (connected
compontens of) the whole preimage (= fiber) of a regular or singular value.

23
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2.1 The Arnold-Liouville theorem

In this section, we will see how Theorem A.19 (Flow box) extends to com-
pletely integrable systems.

Definition 2.1. Let (M, ω, h = (h1, . . . , hn)) be a completely integrable
system. The decomposition M =

⋃
r∈h(M) h−1(r) is called Liouville foli-

ation of (M, ω, h). A connected component of a fiber h−1(r) is said to be
a leaf. A fiber or leaf are called regular if all of its points are regular.
Otherwise the fiber or leaf are called singular.

The fibers and leaves of the Liouville foliation are invariant under the flow
of the momentum map. The set of points lying in singular leaves is a zero
set in the underlying symplectic manifold.

Example 2.2. The fibers of the Liouville foliation induced by the com-
pletely integrable system h := (h1, h2) : R4 → R2 with

h1(q, p) =
ν1

2
(q2

1 + p2
1) and h2(q, p) =

ν2

2
(q2

2 + p2
2)

associated to the uncoupled harmonic oscillator (see Example 1.49)
are given by

h−1(r1, r2) =

{
(q1, p1)

∣∣∣∣∣ q2
1 + p2

1 =
r1ν1

2

}
×

{
(q2, p2)

∣∣∣∣∣ q2
2 + p2

2 =
r2ν2

2

}
.

Depending on the value of r = (r1, r2), we find
• If r1, r2 > 0, then the fibers are 2-tori.
• If r1 = 0 and r2 > 0 or r1 > 0 and r2 = 0, then the fibers are

1-tori.
• If r1 = 0 = r2, then the fiber is a single point.
• If r1 < 0 or r2 < 0, then the fiber is the empty set.

Proof. Left as an exercise to the reader. �
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If the fibers of an integrable system (M, ω, h) are not connected, then the
leaf space (given by collapsing each connected component to a point), dif-
fers from the image of the momentum map h(M) which causes many dif-
ficulties. Therefore one often imposes conditions which insure the fibers
to be connected. For more details on the leaf space, see for example
[Hohloch & Sabatini & Sepe & Symington] and the references therein.

The Theorem A.28 (Implicite function) implies that a regular fiber or regu-
lar leaf is a submanifold whose dimension equals half of the dimension of
the underlying symplectic manifold.

Lemma 2.3. Let (M, ω, h) be a completely integrable system. Then the
fibers and leafs of the Liouville foliation are isotropic and, if regular,
Lagrangian submanifolds.

Proof. Let h = (h1, . . . , hn) and x ∈ h−1(r). The tangent space Tx
(
h−1(r)

)
coincides with SpanR{X

h1(x), . . . , Xhn(x)}. We compute

ωx
(
Xhi(x), Xh j(x)

)
= −{hi, h j} = 0 ∀ 1 ≤ i, j ≤ n

so that the result follows by linearity. �

For this reason, Liouville foliations can be seen as ‘singular Lagrangian
fibrations’. The following statement refines this to ‘Lagrangian 2-torus
fibrations’ for connected compact regular fibers. Although it is usu-
ally called Arnold-Liouville theorem, it contains in addition to the
works by [Liouville] and [Arnold & Avez] important contributions by
[Mineur 1936], [Mineur 1937], [Jost], and [Markus & Meyer].

Theorem 2.4 (Arnold-Liouville). Let (M, ω, h = (h1, . . . , hn)) be a com-
pletely integrable system and r ∈ Rn a regular value. If h−1(r) is compact
and connected, then
1) h−1(r) is an embedded n-torus.
2) There exists

• open sets D, E ⊆ Rn with 0 ∈ D and r ∈ E,
• an open neighbourhood U :=

⋃
ρ∈E h−1(ρ) ⊆ M of h−1(r),

• a diffeomorphism ψ : Tn × D→ U,
• a diffeomorphism µ : E → D with µ(r) = 0

such that
• ψ∗ω = −

∑n
i=1 dqi ∧ dpi, i.e., ψ is a symplectomorphism to the

standard model,
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• µ ◦ h ◦ ψ : Tn × D→ D satisfies (µ ◦ h ◦ ψ)(q, p) = p.

The requirement h−1(r) compact (and connected) is necessary since there
are completely integrable systems with regular noncompact fibers, like the
mathematical pendulum when defined overR2 instead of the cylinder. These
regular fibers are certainly no tori, so we have to exclude them. Theorem 2.4
(Arnold-Liouville) has important consequences:

Corollary 2.5 (Action-angle coordinates). 1) The symplectomor-
phism ψ in Theorem 2.4 (Arnold-Liouville) transforms (M, ω, h)
locally into H := (H1, . . . ,Hn) := h ◦ ψ : Tn × D → Rn

with H(p, q) = H(p) depending solely on the action variables
p = (p1, . . . , pn), i.e., being independent of the angle variables
q = (q1, . . . , qn).

2) The Hamiltonian vector field XHi(q, p) has ∂piHi(p) as ith entry with
all other entries equal to 0. ThusHi induces the Hamiltonian system

q′i = ∂piH(p), p′i = 0, q′j = 0, p′j = 0, ∀ j , i.

The components of a Hamiltonian solution (q(ti), p(ti)) ofHi are

ti 7→ pi(ti) = const,
ti 7→ qi(ti) = qi(0) + ti∂piH(pi(ti)),
ti 7→ q j(ti) = const, ∀ j , i
ti 7→ p j(ti) = const, ∀ j , i.

Hence the Hamiltonian flow ofHi is given by

Φ
Hi
ti (q, p) = (q + ti∂piHiei, p)

where ei is the ith standard basis vector of Tn = Rn/Zn. Thus the flow
is linear and leaves each torus Tn × {p} ⊂ Tn × D invariant.

3) By abuse of notation, we can write as XH (q, p) =
(
∂pH(p)

0

)
with

q′ = ∂pH(p) and p′ = 0

and

Φ
H1
t1 ◦ · · · ◦ Φ

Hn
tn (q, p) =: ΦHt (q, p) =: (q + t∂pH(p), p).

We note
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Remark 2.6. The ‘slope’ νi(p) := ∂piHi(p) of the flow ΦHi is called
frequency of the flow and depends only on p. We write briefly ν(p) =

∂pH(p) i.e., the frequency varies with the ‘foot point’ p but not within
a given torus Tn × {p}.

We will first prove Corollary 2.5 under the assumption that Theorem 2.4
(Arnold-Liouville) holds true.

Proof of Corollary 2.5. Since all hi are integrals of each other, Lemma
1.44 implies that all hi ◦ ψ are integrals of each other. Therefore their flows
preserve the fibers Tn × {p}.
According to Theorem 2.4 (Arnold-Liouville), we have µ ◦ h ◦ ψ(q, p) = p
so that the concatenation with the component function µi of µ = (µ1, . . . , µn)
yields the coordinate function µi ◦ h ◦ ψ(p, q) = pi. From Lemma 1.44, it
follows that, for all 1 ≤ i ≤ n, the coordinate function pi is an integral of
h j ◦ ψ for all 1 ≤ j ≤ n. This means that their mutual Poisson brackets
vanish. Hence we obtain for all 1 ≤ i, j ≤ n

0 = {h j ◦ ψ, pi} =

n∑
k=1

∂qk(h j ◦ ψ) ∂pk pi − ∂pk(h j ◦ ψ) ∂qk pi = ∂qi(h j ◦ ψ),

i.e., for all 1 ≤ j ≤ n, the function H j := h j ◦ ψ does not depend on
q = (q1, . . . , qn). The formulas of XH j and of ΦH j follow immediately. �

Before we approach the proof of Theorem 2.4 (Arnold-Liouville), let us
comment on the (lack of) uniqueness of action-angle coordinates.

Remark 2.7. The action-angle coordinates in Corollary 2.5 are not
unique. We may change the basis of the torus or apply certain trans-
lations and still have action-angle coordinates. More precisely, let
A ∈ GL(n,Z) with det A = ±1, c ∈ R and w : D → R a smooth
function. Then  q̃ := A(q + ∂pw(p)),

p̃ := (AT )−1 p + c

are also action-angle coordinates.

Let us get an intuition for the origine of the name action-angle coordinates.
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Remark 2.8. ω restricted to U = ψ(Tn × D) is the pullback of the stan-
dard symplectic form ωst := −

∑n
k=1 qk ∧dpk on Tn×D under ψ−1. Since

ωst = dσst is exact with primitive σst =
∑n

k=1 pkdqk its pullback

ω|U = (ψ−1)∗ωst = (ψ−1)∗dσst = d((ψ−1)∗σst) =: dσ

is exact, too. Choose a basis consisting of n loops (γ1, . . . , γn) of the first
homology class H1(h−1(r) ∩ U,Z) where µ(r) = p. Then the variables
(p1, . . . , pn) = p = µ ◦ h ◦ ψ can be seen as the ‘action integral’

pi =

∫
γi

σ,

hence the name ‘action variables’ for p. Since q = (q1, . . . , qn) de-
scribes ‘angles’ in the torus Tn = S1 × . . . × S1, they are referred to
as ‘angle variables’.

We will encounter obstructions to the global existence of action-angle vari-
ables in Section 3.5. For a detailed analysis ‘how global’ action-angle coor-
dinates can be defined, we refer the interested reader to [Duistermaat].

2.2 Generating functions and the maximal
number of independent integrals

Now we will provide some techniques used for the proof of Theorem 2.4
(Arnold-Liouville). We follow hereby closely [Hofer & Zehnder, Appen-
dix A.1] who use so-called ‘generating functions’ to characterize symplec-
tic maps locally.

Lemma 2.9 (Generating functions I). Let ψ : (R2n, ωst) → (R2n, ωst)
be a symplectomorphism and consider ψ as change of coordinates from
(ξ, η) ∈ Rn × Rn = R2n to

ψ(ξ, η) =:
(
a(ξ, η), b(ξ, η)

)
=: (x, y) ∈ Rn × Rn = R2n.
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1) If det(∂ξa) , 0 in (ξ̂, η̂) ∈ Rn × Rn then there exists an open neigh-
bourhood U of

(
a(ξ̂, η̂), η̂

)
=: (x̂, η̂) ∈ Rn ×Rn and a smooth function

W : U → R such that

ξ = ∂ηW(x, η) and y = ∂xW(x, η) ∀ (x, η) ∈ U

with det(∂x∂ηW) , 0 in U.
2) For all (x̂, η̂) ∈ Rn ×Rn and all open neighbourhoods U of (x̂, η̂) and

all smooth functions W : U → R with det(∂x∂ηW) , 0 in U, the map
defined on U given by

(x, η) 7→ (ξ, y) :=
(
∂ηW(x, η), ∂xW(x, η)

)
is a symplectomorphism.

Such a function W is usually referred to as generating function.

Before we prove this statement, let us discuss it a bit. Note that a sym-
plectic map consists therefore locally of the (n + n) dimensional ‘coupling’
(∂ηW, ∂xW), i.e., the 2n components of a symplectic map satisfy a functional
equation and therefore are not ‘independent’ from each other.

Example 2.10. The Euclidean scalar product is a generating function
for the identity Id : (R2n, ωst)→ (R2n, ωst).

Proof. Consider

W(x, η) = W(x1, . . . , xn, η1, . . . , ηn) := 〈x, η〉eu :=
n∑

k=1

xiηi

and calculate ∂xkW(x, η) = ηk and ∂ηkW(x, η) = xk. Given the coordinate
definition (ξ, η) = Id(ξ, η) =: (x, y), we get

ξ = x = ∂ηW(x, η) and y = η = ∂xW(x, η).

�

This implies also

Example 2.11. Function of the form W(x, η) = 〈x, η〉eu + w(x, η), where
w and its first and second derivatives Dw and D2w have sufficiently
small norm, are generating functions for symplectic mappings that are
sufficiently close to the identity. Conversely, all symplectic mappings
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close to the identity can locally be described by means of generating
functions of the form W(x, η) = 〈x, η〉eu + w(x, η).

Proof. Left as an exercise to the reader. �

Note that the rotation (ξ, η) 7→ (η,−ξ) =: (a(ξ, η), b(ξ, η)) is symplectic but
satisfies det(∂ξa) = 0 and det(∂ηa) , 0. In such situations, we may use

Lemma 2.12 (Generating functions II). Let ψ : (R2n, ωst) → (R2n, ωst)
be a symplectomorphism and consider ψ as change of coordinates from
(ξ, η) ∈ Rn × Rn = R2n to

ψ(ξ, η) =:
(
a(ξ, η), b(ξ, η)

)
=: (x, y) ∈ Rn × Rn = R2n.

1) If det(∂ηa) , 0 in (ξ̂, η̂) ∈ Rn × Rn then there exists an open neigh-
bourhood U of

(
ξ̂, a(ξ̂, η̂)

)
=: (ξ̂, x̂) ∈ Rn × Rn and a smooth function

V : U → R such that

η = −∂ξV(ξ, x) and y = ∂xV(ξ, x) ∀ (ξ, x) ∈ U

with det(∂x∂ξV) , 0 in U.
2) For all (ξ̂, x̂) ∈ Rn ×Rn and all open neighbourhoods U of (ξ̂, x̂) and

all smooth functions V : U → R with det(∂x∂ξV) , 0 in U, the map
defined on U given by

(ξ, x) 7→ (η, y) :=
(
−∂ξV(ξ, x), ∂xV(ξ, x)

)
is a symplectomorphism.

Such a function V is usually referred to as generating function.

Note that, for the identity, we only can apply Lemma 2.9 (Generating func-
tions I) but not Lemma 2.12 (Generating functions II). For the symplectic
rotation (ξ, η) 7→ (η,−ξ), it is percisely the other way around.

The analytic reason behind Lemma 2.9 (Generating functions I) is that
det(∂ξa) , 0 allows us to use the Theorem A.28 (Implicite function) and
solve the equation a(ξ, η) = x for ξ which can be written as ξ = α(x, η) for
a suitable function α. Now let us make this precise.

Proof of Lemma 2.9 (Generating functions I). Consider a given diffeo-
morphism ψ : (R2n, ωst)→ (R2n, ωst) as change of coordinates

(ξ, η) 7→ ψ(ξ, η) =: (a(ξ, η), b(ξ, η)) =: (x, y)



2. GENERATING FUNCTIONS AND THE MAXIMAL NUMBER OF INDEPENDENT INTEGRALS31

where det(∂ξa) , 0. Thus Theorem A.28 (Implicite function) guarantees the
existence of a local diffeomorphism ϕ of the form

ϕ(x, η) = (α(x, η), η)

solving x = a(ξ, η) locally for ξ via ξ = α(x, η) for a suitable mapping α.
Now consider R4n with coordinates (ξ, η, x, y) and embeddings

i, j : R2n → R4n,

i(x, η) :=
(
α(x, η), η, x, β(x, η)

)
,

j(ξ, η) :=
(
ξ, η, a(ξ, η), b(ξ, η)

)
=

(
ξ, η, ψ(ξ, η)

)
.

satisfying i = j ◦ ϕ, i.e., β(x, η) := b(α(x, η), η). The 1-form

σ := ydx + ξdη :=
n∑

k=1

ykdxk + ξkdηk

has differential

dσ = dy ∧ dx + dξ ∧ dη = dy ∧ dx − dη ∧ dξ.

We calculate

d(i∗σ) = i∗dσ = ϕ∗( j∗(dσ)) = ϕ∗(ψ∗ωst − ωst).

Therefore d(i∗σ) = 0 if and only if ψ is a symplectomorphism. Thus, for
symplectomorphisms ψ, Lemma A.15 (Poincaré) implies the local existence
of a 0-form (function) W such that i∗σ = dW. In coordinates, this reads

n∑
k=1

βk(x, η)dxk + αk(x, η)dηk

= i∗σ = dW =

n∑
k=1

∂xkW(x, η)dxk + ∂ηkW(x, η)dηk

and yields

ξ = α(x, η) = ∂ηW(x, η),
y = β(x, η) = ∂xW(x, η).

�

Moreover

Proof of Lemma 2.12 (Generating functions II). Consider the 1-form

σ =

n∑
k=1

ykdxk − ηkdξk = ydx − ηdξ

and proceed as in the proof of Lemma 2.9 (Generating functions I). �
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Let us have a look at the following special situation.

Example 2.13. Let ψ : (R2n, ωst) → (R2n, ωst) be symplectic and write
ψ(ξ, η) =

(
a(ξ, η), b(ξ, η)

)
=: (x, y). Let det(∂ξa) , 0 and assume that

a(ξ, η) = a(ξ) does not depend on η. Then ψ is in fact of the form

x = a(ξ),

y =
(
(∂ξa(ξ))T )−1(η + ∂ξu(ξ))

for a smooth function u : Rn → R. If a = Id then y = η + ∂ξu(ξ).

Proof. Write ψ by means of a generating function U as

a(ξ) = x = ∂yU(ξ, y),
b(ξ, η) = η = ∂ξU(ξ, y).

Integrating a(ξ) = ∂yU(ξ, y), we find U(ξ, η) = 〈a(ξ), y〉eu−u(ξ) for a smooth
function u : Rn → R and η = ∂ξU(ξ, y) = (∂ξa(ξ))T y − ∂ξu(ξ). Solving for y
yields the desired expression. �

Now recall from Lemma 1.44 that symplectomorphisms leave the Poisson
bracket invariant.

Lemma 2.14. Consider (R2n, ωst) with standard coordinates (q, p) =

(q1, . . . , qn, p1, . . . , pn) and Poisson bracket {·, ·} induced by ωst.
1) For the coordinate functions q1, . . . , qn, p1, . . . , pn given by (q, p) 7→

qi and (q, p) 7→ pi, we have

{qi, q j} = 0 = {pi, p j} ∀ 1 ≤ i, j ≤ n,
{qi, pi} = 1 ∀ 1 ≤ i ≤ n,
{qi, p j} = 0 ∀ i , j, 1 ≤ i, j ≤ n.

2) Let ψ : (R2n, ωst) → (R2n, ωst) be a symplectomorphism and write
ψ = (a, b) = (a1, . . . , an, b1, . . . , bn). Then

{ai, a j} = 0 = {bi, b j} ∀ 1 ≤ i, j ≤ n,
{ai, bi} = 1 ∀ 1 ≤ i ≤ n,
{ai, b j} = 0 ∀ i , j, 1 ≤ i, j ≤ n.

Proof. 1) Simple calculation.
2) Write ai = qi ◦ ψ and bi = pi ◦ ψ and use Lemma 1.44 and 1). �
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This means that, in standard coordinates, the first n components of a sym-
plectomorphism do Poisson commute with each other. The same holds for
the last n components. Now we want to investigate the converse, i.e., if
one can always extend n Poisson commuting functions to a symplectomor-
phism.

Theorem 2.15 (Liouville). Consider (R2n, ωst) with standard coor-
dinates (ξ, η) = (ξ1, . . . , ξn, η1, . . . , ηn) and let a = (a1, . . . , an) :
(R2n, ωst) → Rn be smooth with rk(Da) = n and {ai, a j} = 0 for all
1 ≤ i, j ≤ n. Then we can extend a locally to a symplectomorphism ψ
whose first n components coincide with a.

Proof. W.l.o.g. assume that det(∂ξa) , 0 and solve x = a(ξ, η) locally for
ξ = α(x, η) with a suitable function α. We want to show that α is locally
of the form α(x, η) = ∂ηW(x, η) for a smooth function W and that this W
has the properties of a generating function. If this is the case, then part 2)
in Lemma 2.9 (Generating functions I) describes how to extend α locally
to a symplectomorphism. Taking the inverse delivers a symplectomorphism
whose first n coordinate functions are given by x = a(ξ, η).
Since the second partial derivatives of a smooth function commute, the ma-
trix ∂ηa has to be symmetric to allow for the existence of any smooth W with
α(x, η) = ∂ηW(x, η). Writing Lemma A.15 (Poincaré) in local coordinates
shows that symmetry of ∂ηa is not only necessary but also sufficient for the
existence of such a W.
To investigate symmetry, we calculate

0 = {ai, a j} = ∂ξai (∂ηa j)T − ∂ηai (∂ξa j)T

⇔ ∂ξai (∂ηa j)T = ∂ηai (∂ξa j)T

⇔ (∂ηa j)T ((∂ξa j)T )−1 = (∂ξai)−1 ∂ηai

⇔ ((∂ξa j)−1 ∂ηa j)T = (∂ξai)−1 ∂ηai

and conclude that the matrix (∂ξa)−1 ∂ηa is symmetric. Moreover, differen-
tiating the equation

ξ = α(x, η) = α(a(ξ, η), η)
yields, on the one hand, Id = ∂ξξ = ∂xα ∂ξa, implying ∂xα = (∂ξa)−1. On
the other hand, we get 0 = ∂ηξ = ∂ηα(x, η) = ∂xα ∂ηa + ∂ηα. Altogether,
we get ∂ηα = −∂xα ∂ηa = −(∂ξa)−1 ∂ηa which we already showed to be
symmetric. �

Now we give an answer to the question how many ‘independent’ Poisson
commuting functions we may find at most on R2n.
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Corollary 2.16. Let a = (a1, . . . , an) : (R2n, ωst) → Rn and a0 :
(R2n, ωst) → R be smooth functions with rk(Da) = n and {ai, a j} = 0
for 0 ≤ i, j ≤ n. Then a0 can be expressed as a function of a1, . . . , an.
In particular, there are maximally n independent, Poisson commuting
functions on R2n.

Proof. Consider (R2n, ωst) with standard coordinates (ξ, η) and a =

(a1, . . . , an) : (R2n, ωst) → Rn with rk(Da) = n and Poisson commuting
components {ai, a j} = 0 for 0 ≤ i, j ≤ n. Theorem 2.15 (Liouville) implies
the existence of a local symplectomorphism ψ whose first n components are
given by a = (a1, . . . , an), i.e., ψ(ξ, η) = (a(ξ, η), b(ξ, η)) = (x, y). We rewrite
this as (a ◦ ψ−1)(x, y) = a(ξ, η) = x and set f := a0 ◦ ψ−1. Then we get

0 = {a0, ai} ◦ ψ
−1 1.44

= {a0 ◦ ψ
−1, ai ◦ ψ

−1} = { f , xi} = −∂yi f

for all 1 ≤ i ≤ n. Therefore f does not depend on (y1, . . . , yn) but is a
function solely depending on (x1, . . . , xn) = x = (a1, . . . , an). �

Now we strengthen Theorem 1.21 (Darboux).

Lemma 2.17 (Liouville coordinates). Let (M, ω) be a 2n-dimensional
symplectic manifold and a = (a1, . . . , an) : M → Rn be smooth with
rk(Da) = n and {ai, a j} = 0 for all 1 ≤ i, j ≤ n. Then, for all z ∈ M, there
exists an open neighbourhood U ⊆ M of z and an open neighbourhood
V ⊆ R2n of 0 ∈ R2n and a diffeomorphism ψ : V → U such that

(i) ψ(0) = z,
(ii) ψ∗ω = ωst,

(iii) (a ◦ ψ)(q, p) = p for all (q, p) ∈ V.

Proof. Start with local coordinates as given by Theorem 1.21 (Darboux)
and use Theorem 2.15 (Liouville) and Corollary 2.16 to tweak the change
of coordinates into the wished form. �

In Liouville coordinates, the flow turns out to be linear:

Corollary 2.18. In the setting of Lemma 2.17 (Liouville coordinates),
the flow Φat := Φ

a1
t1 ◦ · · · ◦ Φ

an
tn is given by Φat (ψ(q, p)) = ψ(q + t, p) for

all t = (t1, . . . , tn) as long as (q, p) and (q + t, p) lie in V.
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Proof. Let t = (t1, . . . , tn). The flow of Xai◦ψ is given by ψ−1 ◦ Φ
ai
ti ◦ ψ for

all 1 ≤ i ≤ n. Since (ai ◦ ψ)(q, p) = pi, we compute Xai◦ψ(q, p) = ei ∈ R
2n

where ei is the ith unit vector. Hence Φ
ai◦ψ
ti (q, p) = (q, p) + tiei and

Φat (q, p) := Φ
a1
t1 ◦ · · · ◦ Φ

an
tn (q, p) = (q + t, p)

with t = (t1, . . . , tn). �

2.3 The proof of Theorem 2.4 (Arnold-
Liouville)

Since Theorem 2.4 (Arnold-Liouville) is a central theorem within the theory
of integrable systems, it appears in almost every text book on integrable
systems. But since the details of the proof are quite tedious, many authors
shorten or even skip them. To our knowledge, the most precise, detailed and
nevertheless accessible proof is [Hofer & Zehnder, Appendix A.1, A.2]
which we will follow closely in this section. Other versions can be found for
example in [Arnold 1974], [Bolsinov & Fomenko], [Cushman & Bates],
[Duistermaat], [Fassò], [Sepe & Vũ Ngo. c] etc.

We spread the proof of Theorem 2.4 (Arnold-Liouville) over several suc-
cessive statements.

Proposition 2.19. Let (M, ω, h = (h1, . . . , hn)) be a completely inte-
grable system and r ∈ Rn a regular value. If h−1(r) is compact and
connected, then h−1(r) is an embedded n-torus.

Proof. Let r ∈ Rn be a regular value of h and h−1(r) compact and con-
nected. Since all component functions of h Poisson commute, we have a
welldefined local action of t ∈ Rn on M given by

(t = (t1, . . . , tn), z) 7→ Φh
t (z) := Φ

h1
t1 ◦ · · · ◦ Φ

hn
tn (z)

that preserves the fibers of h. Since h−1(r) is compact, we note that for all
z ∈ h−1(r), the flow lines ti 7→ Φ

hi
ti (z) are defined for all 1 ≤ i ≤ n and all

ti ∈ R, i.e., the flow is complete on the fiber and we get a welldefined action

Rn × h−1(r)→ h−1(r), (t = (t1, . . . , tn), z) 7→ Φh
t (z) := Φ

h1
t1 ◦ · · · ◦ Φ

hn
tn (z).
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Since for each 1 ≤ i ≤ n and ti ∈ R, the flow Φ
hi
ti : h−1(r) → h−1(r) is a

local diffeomorphism satisfying Φ
hi
ti ◦ Φ

hi
si = Φ

hi
ti+si

for all si ∈ R, we have
Φh

t ◦ Φh
s = Φh

t+s and Φh
t : h−1(r) → h−1(r) is a local diffeomorphism. This

implies that for all z ∈ h−1(r), the map

Fz : Rn → h−1(r), Fz(t) := Φh
t (z)

is a local diffeomorphism. Thus its image is open and closed at the same
time. Since the fiber h−1(r) is connected, we obtain Fz(Rn) = h−1(r). Since
Rn is open and h−1(r) is compact, Fz is surjective but not injective. Since

DFz|t = (∂t1Φ
h1
t1 (z), . . . , ∂tnΦ

hn
tn (z)) =

(
Xh1(Φh1

t1 (z)), . . . , Xhn(Φhn
tn (z))

)
has always full rank, Fz is an immersion. Lack of injectivity implies that the
isotropy group

Γ := {t ∈ Rn | Φh
t (z) = z}

of the Rn-action on the fiber is nontrivial. Γ does not depend on the chosen
point z ∈ h−1(r) since Rn acts transitively on h−1(r). Since DFz has full rank
for all z ∈ h−1(r) and all t ∈ Rn, the parameter values t ∈ Rn with Φh

t (z) = z
are isolated points in Rn. Therefore Γ ⊂ Rn is a discrete subgroup. Hence
there are linearly independent γ1, . . . , γk ∈ R

n with Γ = SpanZ{γ1, . . . , γk}.
For all γ ∈ Γ, we have Fz(t + γ) = Φh

t+γ(z) = Φh
t (z) = Fz(t) for all t ∈ Rn

and thus in particular Rn/Γ ' h−1(r). Since h−1(r) is compact, we must have
k = n. Therefore h−1(r) ' Rn/Γ ' Tn is an n-torus. �

We remark

Notation 2.20. Discrete subgroups of Rn are often called lattices. A set
of linearly independent vectors spanning a lattice is called a basis of
the lattice. The number of basis vectors is called the rank of the lattice.
If v1, . . . , vn is a basis of a lattice, then n∑

i=1

λ1vi

∣∣∣∣∣∣∣ λi ∈ [0, 1] for 1 ≤ i ≤ n


is called a fundamental domain of the lattice.

Let (M, ω) be a 2n-dimensional symplectic manifold and h = (h1, . . . , hn) :
M → Rn an integrable system with regular value r ∈ Rn whose fiber h−1(r)
is compact and connected.

W.l.o.g. assume within this section that r = 0 ∈ Rn.
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In the rest of this section, we will be busy extending Liouville coordinates
ψ : V ⊆ Rn × Rn → U ⊆ M associated to h to larger and larger neighbour-
hoods until they fulfill the claim of Theorem 2.4 (Arnold-Liouville). The
idea is similar to the proof of Theorem A.19 (Flow box) of ordinary dif-
ferential equations: Using the coordinates ψ from Lemma 2.17 (Liouville
coordinates), we consider

θ(x, y) := Φh
x(ψ(0, y))

which, by Corollary 2.18, satisfies θ(x, y) = Φh
x(ψ(0, y)) = ψ(x, y) on V . The

next few lemmas are dedicated to showing that θ is in fact welldefined on
domains of the form Rn×D where D ⊂ Rn is a sufficiently small neighbour-
hood of the origin and that it is invariant under shifts by certain lattices in
the first variable.

Lemma 2.21. Let ψ : V → U be Liouville coordinates associated to the
completely integrable system h : (M, ω)→ Rn and let z = ψ(0) ∈ h−1(0)
where r = 0 is a regular value of h. Then there exists a small open
neighbourhood E ⊆ Rn of the origin and a compact K ⊂ Rn containing
a fundamental domain of the rank n lattice Γ = {t ∈ Rn | Φh

t (z) = z} such
that

θ : K × E → M, θ(x, y) := Φh
x(ψ(0, y))

is welldefined. Moreover, θ(K×{y}) ⊆ h−1(y) for all y ∈ E. In particular,
θ(·, 0) is defined on all of Rn with θ(Rn × {0}) = h−1(0).

Proof. For y = 0, we find θ(x, 0) = Φh
x(ψ(0, 0)) = Φh

x(z) which, according
to (the proof of) Proposition 2.19, is defined for all x ∈ Rn and satisfies
h−1(0) = Φh

Rn(z) = θ(Rn×{0}). Since h is invariant under its flow, we compute

h(θ(x, y)) = h(Φh
x(ψ(0, y))) = h(ψ(0, y)) 2.17

= y

implying θ(K × {y}) ⊆ h−1(y) for all y where this expression is defined. Ac-
cording to Proposition 2.19, x 7→ Φh

x(z) = θ(x, 0) covers h−1(0) surjectively
and descends to the quotient Rn/Γ ' h−1(0) as a diffeomorphism. Smooth
dependence of the flow on initial conditions and 0 being a regular value
for h imply that θ must at least be defined on a domain of the form K × E
where E ⊆ Rn is a small open neighbourhood of the origin and K ⊂ Rn is a
compact set containing a fundamental domain of Γ. �

We want to extend the lattice Γ = Γ(0) associated with the Rn-action on
h−1(0) to a lattice Γ(y) associated with the Rn-action on h−1(y) where y ∈ E.
Let us first compute the ‘period shift’ of the transition from Γ = Γ(0) to
Γ(y).
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Lemma 2.22. Let ψ : V → U be Liouville coordinates associated
to the completely integrable system h : (M, ω) → Rn. Let Γ =:
SpanZ{γ1, . . . , γn} be the lattice associated with the Rn-action on the
regular fiber h−1(0). Then for all 1 ≤ i ≤ n, the concatenation
ψ−1 ◦ Φh

γi
◦ ψ defined on V is a local symplectic change of coordinates

(x, y) 7→ (ξ(x, y), η(x, y)) of the form{
ξ(x, y) = x − ∂yui(y),
η(x, y) = y

where ui : V → R is smooth and ∂yui(0) = 0. To simplify notation, we
abbreviate

∂yui(y) =: vi(y),
getting in particular vi(0) = 0.

Proof. Since ψ−1, Φh
γi

, ψ each are symplectic, so is their concatenation. By
definition, we have (Φh

γi
◦ ψ)(x, y) = ψ(ξ(x, y), η(x, y)) and the invariance of

h under its flow implies

y = (h ◦ ψ)(x, y) = (h ◦ Φh
γi
◦ ψ)(x, y) = (h ◦ ψ)(ξ(x, y), η(x, y)) = η(x, y).

Now we extend the relation y = η(x, y) by means of the generating function
in Example 2.13 locally to a symplectomorphism, i.e., there are smooth
functions ui such that

ξ(x, y) = x − ∂yui(y) =: x − vi(y).

We compute

(ξ, η)(0, 0) = (ψ−1 ◦ Φh
γi
◦ ψ)(0) = ψ−1(Φh

γi
(z)) = ψ−1(z) = (0, 0)

implying vi(0) = 0. �

Now we can give an explicit formula for the lattice Γ(y) that extends Γ.

Lemma 2.23. Let h : (M, ω) → Rn be a completely integrable system
and h−1(0) a regular, connected, compact fiber. Then the rank n lattice
Γ =: SpanZ{γ1, . . . , γn} associated with the Rn-action on h−1(0) extends
to rank n lattices

Γ(y) = {γ1 + v1(y), . . . , γn + vn(y)}

associated with theRn-action on h−1(y) with vi defined as in Lemma 2.22
and y ∈ Rn sufficiently close to 0 ∈ Rn. The lattice satisfies Γ(0) = Γ

and induces a diffeomorphism h−1(y) ' Rn/Γ(y).
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Proof. Let ψ be Liouville coordinates associated with h. Close to (0, 0) ∈
R2n, we compute

Φh
γi

(ψ(x, y)) = ψ(ξ, η) 2.22
= ψ(x − vi(y), y) = Φh

−vi(y)(ψ(x, y))

where the smooth functions vi stem from Lemma 2.22. This identity is
equivalent to Φh

γi+vi(y)(ψ(x, y)) = ψ(x, y) for all (x, y) sufficiently close to
(0, 0) ∈ R2n. Therefore we get as isotropy group

{t ∈ Rn | Φh
t (ψ(x, y)) = ψ(x, y)} = SpanZ{γi + vi(y) | 1 ≤ i ≤ n} =: Γ(y).

Because of vi(0) = 0 we recover Γ(0) = Γ. Since the γ1, . . . , γn are linearly
independent, the vectors γi(y) := γi + vi(y) with 1 ≤ i ≤ n are also linearly
independent for (x, y) sufficiently close to (0, 0). Thus Γ(y) is a rank n lattice.
Arguing as in Proposition 2.19, we obtain h−1(y) ' Rn/Γ(y). �

Now we are ready to extend θ.

Lemma 2.24. Let h : (M, ω) → Rn be a completely integrable system
with Liouville coordinates ψ and let h−1(0) be a regular, connected,
compact fiber. Then there exists a neighbourhood E ⊆ Rn of the ori-
gin such that

θ : (Rn × E, ωst)→ (M, ω), θ(x, y) := Φh
x(ψ(0, y))

is welldefined and satisfies
(i) θ∗ω = ωst,

(ii) θ(x + γ(y), y) = θ(x, y) for all γ(y) ∈ Γ(y).
Moreover, for all y ∈ E, the map θ induces diffeomorphisms

θ̄ : Rn/Γ(y)→ h−1(y), θ̄(x + Γ(y)) := θ(x, y).

Proof. Lemma 2.21 assures the existence of some open neighbourhood E ⊆
Rn of the origin and of some compact K ⊆ Rn containing a fundamental
domain of Γ(0) so that θ is welldefined on K × E. By definition of a basis
vector γi(y) ∈ Γ(y), we find

θ(x + γi(y), y) = Φh
x+γi(y)(ψ(0, y)) = (Φh

x ◦ Φh
γi(y) ◦ ψ)(0, y)

= (Φh
x ◦ ψ)(0, y) = θ(x, y).(2.25)

The flow lines are defined up to the boundary of K × E where they will be
patched together with flow lines defined on ‘shifted’ domains (K +γ(y))×E
for suitable γ(y) ∈ Γ(y) according to (2.25). Since h is smooth all ini-
tial value problems of the associated ordinary differential equations have
a unique maximal solution. Thus θ is in fact defined on Rn × E.
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In order to show θ∗ω = ωst, we will write θ as concatenation of suitable
symplectic maps. Let (x, y) ∈ Rn ×E and consider the Liouville coordinates
ψ : V → U. Choose x̃ ∈ Rn sufficiently close to x such that (x − x̃, y) ∈ V .

f : Rn × E → Rn × E, f (x, y) := (x − x̃, y),

satisfies f ∗ωst = ωst. We compute

θ(x, y) = Φh
x(ψ(0, y)) = Φh

x̃+(x−x̃)(ψ(0, y)) = (Φh
x̃ ◦ Φh

x−x̃ ◦ ψ)(0, y)

= (Φh
x̃ ◦ ψ)(x − x̃, y) = (Φh

x̃ ◦ ψ ◦ f )(x, y)

and get
θ∗ω = f ∗ ◦ ψ∗ ◦ (Φh

x̃)
∗ω = f ∗ ◦ ψ∗ω = f ∗ωst = ωst

by definition of Φh
x̃ and ψ. Since θ : Rn × {y} → h−1(y) is surjective, so is θ̄.

Moreover, the map θ̄ is injective since θ̄(u) = θ̄(v) implies θ(u, y) = θ(v, y)
which in turn implies (u − v) ∈ Γ(y). �

To conclude the proof of Theorem 2.4 (Arnold-Liouville), we now normal-
ize the lattices Γ(y) to the standard lattice Zn.

Lemma 2.26. Let h : (M, ω) → Rn be a completely integrable system
and let h−1(0) be a regular, connected, compact fiber. Then there exist

• open neighbourhoods D, E ⊆ Rn of the origin,
• an open neighbourhood U ⊆ M,
• a symplectomorphism ψ̄ : (Rn/Zn × D, ωst)→ U ⊆ (M, ω),
• a diffeomorphism µ : E → D

such that µ ◦ h ◦ ψ̄(x, y) = y and ψ̄∗ω = ωst, i.e., they satisfy the claim of
Theorem 2.4 (Arnold-Liouville).

Proof. The lattice Γ(y) = {γ1(y), . . . , γn(y)} was introduced in Lemma 2.22
by means of generating functions. Let us call them W1(y), . . . ,Wn(y) and set
V(ξ, y) :=

∑n
k=1 ξkWk(y). We obtain

η j := ∂ξ jV(ξ, y) = W j(y),

x j := ∂y jV(ξ, y) =

n∑
k=1

ξk∂y jWk(y).

By construction, the identity η = W(y) satisfies ∂yW(y) = (γ1(y), . . . , γn(y))
which has rank n. Thus η = W(y) is a local diffeomorphism near y = 0
which we denote by

µ : E → D, y 7→ µ(y) := η
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where D, E are suitable open neighbourhoods of the origin. Therefore
∂ξV = W has full rank and det(∂ξV) , 0. Now reverse the construction
of generating functions to get a symplectomorphism

ζ : Rn × D→ Rn × E, (ξ, η) 7→ (x, y)

with ζ(e j, η) = (γ j(y), y) where e1, . . . , en are the standard unit vectors of
Rn. Moreover, we find ζ : Zn × {η} → Γ(y) × {y} if η = µ(y). We define a
symplectomorphism ψ̃ by recalling θ from Lemma 2.24 and setting

ψ̃ := θ ◦ ζ : (Rn × D, ωst)→ U ⊆ (M, ω)

for a suitable open set U. The map ψ̃ satisfies ψ̃(ξ + e j, η) = ψ̃(ξ, η) for all
1 ≤ j ≤ n. Therefore we may pass to the quotient and define

ψ̄ : Rn/Zn × D→ U ⊆ M, ψ̄(ξ, η) := ψ̄(ξ + Zn, η) := ψ̃(ξ, η)

and we compute

(µ ◦ h ◦ ψ̄)(ξ, η) = (µ ◦ h ◦ θ ◦ ζ)(ξ, η) = (µ ◦ h ◦ θ(x, y) = µ(y) = η.

�

This finishes the proof of Theorem 2.4 (Arnold-Liouville).

2.4 Local normal form for nondegenerate
singular points

By Theorem A.29 (Sard), the set of critical points of a smooth function has
generically Lebesgue measure zero. Nevertheless, it is precisely the set of
critical points and fibers and their induced dynamical behaviour that distin-
guishes one dynamical system from another. The reason is that, concern-
ing local behaviour, regular fibers ‘all look the same’ due to Theorem 2.4
(Arnold-Liouville) whereas singular fibers offer more variety.

Remark 2.27. Note that the rank of a point stays invariant under the
flow, i.e., we may speak of the rank of an orbit or of a flow line. In
other words, apart from fixed points, singular points always come in a
family whose dimension equals the rank of these points.



422. BEHAVIOUR OF COMPLETELY INTEGRABLE SYSTEMS DUE TO REGULAR AND SINGULAR POINTS

Since the action induced by the flow ‘carries singularities around’, being
generic means being generic within the class of maps inducing a (maybe
local) Rn-action. The same goes for notions of degeneracy.

We will see in this section, that, under certain assumptions, the image of
the momentum map of a completely integrable system carries a lot of in-
formation about the system. Of particular interest is hereby the bifurcation
diagram: We will see that not all types of critical values can appear every-
where in the image of the momentum map. Usually vertices and edges are
critical values, but there can be also critical values in the interior of the im-
age of the momentum map, see the ‘switching’ of a vertex into a ‘critical
point in the interior’ and back in Figure 1.1.

Moreover, we will study how singular fibers look like and if all points in a
singular fiber are necessarily singular. Furthermore, we will consider a local
normal form for a whole neighbourhood of a singular point.

Lemma 2.28. Fixed points are precisely the rank 0 points.

Proof. In order to have rank 0, the Jacobian of the momentum map has
to vanish completely in this point in local Darboux coordinates. This is
equivalent with all Hamiltonian vector fields vanishing, i.e., the point is a
fixed point of the induced integrable system. �

Let us assume for the rest of this chapter that all fibres
are compact and connected.

Nondegeneracy of singular points on 2n-dimensional symplectic mani-
folds is defined and discussed for example in [Bolsinov & Fomenko, Sec-
tion 1.8.3]. To keep notation at a minimum, we will discuss nondegener-
acy of singular points only on four dimensional manifolds. Possible ref-
erences therefore are [Bolsinov & Fomenko, Sections 1.8.1 and 1.8.2] and
[Hohloch & Palmer]. Nondegeneracy is often defined via Lie group theory
using so-called Cartan subalgebras, but the reformulation in terms of linear
algebra is much more useful for explicit calculations of examples. So we
opted to present the linear algebra approach.

Definition 2.29. Let (M, ω) be a four dimensional symplectic manifold,
h = (h1, h2) : (M, ω) → R2 a completely integrable system, and z ∈
Fix(h). Choose a basis of TzM and let Ωz be the matrix of ωz and d2h1|z
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and d2h2|z the matrices representing the Hessians of h1 and h2 w.r.t. this
basis. z is said to be nondegenerate if
(a) d2h1|z and d2h2|z are linearly independent.
(b) There exist c1, c2 ∈ R such that the matrix

c1Ω
−1
z d2h1|z + c2Ω

−1
z d2h2|z

has four distinct eigenvalues.

Nondegeneracy for rank 1 singular points needs some preparations. Let
(M, ω) be a four dimensional symplectic manifold, h = (h1, h2) : (M, ω) →
R2 a completely integrable system, and z ∈ M a singular point of rank one,
i.e. 1 = rk(z) = rk(Dh|z) = rk(Dh1|z,Dh2|z), i.e., Dh1|z and Dh2|z are linearly
dependent. Thus there exist some c1, c2 ∈ R such that c1Dh1|z +c2Dh2|z = 0.
In particular, the orbit of z given by {Φh

t (z) | t ∈ R2} is 1-dimensional.
Denote by L := SpanR{X

h1(z), Xh2(z)} ∈ TzM the tangent line to the orbit
through z. The symplectic complement of L is defined as

Lω := {u ∈ TzM | ωz(u, v) = 0 ∀ v ∈ L}.

We remember 0 = {h1, h2} = ω(Xh1 , Xh2) which together with L =

SpanR{X
h1(z), Xh2(z)} yields L ⊆ Lω. Since h1 and h2 Poisson commute,

they are invariant under the flow of h. Thus the operator c1d2h1|z + c2d2h2|z
descends to the quotient Lω/L and we define

Definition 2.30. Let (M, ω) be a four dimensional symplectic mani-
fold and h = (h1, h2) : (M, ω) → R2 a completely integrable system.
Let z ∈ M be a singular point of rank one and c1, c2 ∈ R such that
c1Dh1|z+c2Dh2|z = 0. The point z is nondegenerate if c1d2h1|z+c2d2h2|z
is invertible on Lω/L.

An explicit example in dimension four with proofs for the nondegen-
eracy of fixed points and singular points of rank one can be found in
[Hohloch & Palmer].

The following theorem provides a local normal form for nondegenerate sin-
gular points of completely integrable systems. The definition of nondegen-
eracy of higher rank singular points in dimension greater than four can be
found in [Bolsinov & Fomenko, Section 1.8.3].
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Theorem 2.31 (Local normal form). Let (M, ω) be a symplectic man-
ifold of dimension 2n and h = (h1, . . . , hn) : (M, ω) → Rn a
completely integrable system and z ∈ M a nondegenerate singular
point. Then there exist local symplectic Darboux coordinates (x, y) :=
(x1, . . . , xn, y1, . . . , yn) in a neighbourhood U ⊂ M of z such that there
exists a function f := ( f1, . . . , fn) : U → Rn with {hk, fi j} = 0 for all
1 ≤ k, j ≤ n whose component functions fi stem from the following list:
1) elliptic component:

fi(x, y) = 1
2 (x2

i + y2
i ),

2) hyperbolic component:
fi(x, y) = xiyi,

3) focus-focus component, comes always as a pair ( fi, fi+1):{ fi(x, y) = xiyi+1 − xi+1yi,

fi+1(x, y) = xiyi + xi+1yi+1,
4) nonsingular component (also called regular component):

fi(x, y) = yi.

Proof. The proof of this theorem is spread throughout the literature and
there is, up to my knowledge, no comprehensive presentation of it. The local
normal form was announced by [Eliasson 1984], but the proof appears to
have some gaps. Altogether, there are at least the following contributions:

• The C∞ case in two dimensions is described by the Lemme de
Morse isochore in [Colin de Verdière & Vey].
• The two dimensional analytic case appears in [Rüssmann].
• The analytic case in dimension 2n was done by [Vey].
• C∞ for the elliptic case in dimension 2n was done by

[Eliasson 1990].
• Another proof for C∞ in the elliptic case in dimension 2n was pro-

vided by [Dufour & Molino].
• Low dimensional hyperbolic cases have been dealt with in

[Miranda].
• The focus-focus case in dimension four has been dealt with by

[Vũ Ngo. c & Wacheux] and [Chaperon].
• The infinitesimal case was proven by [Miranda & Vũ Ngo. c].
• A completely different approach was presented by [Wang].
• The equivariant case with an action of a compact group was treated

in [Miranda & Zung].

�
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Following [Bolsinov & Fomenko] or [Vũ Ngo. c 2006], there is an interpre-
tation of the components of Theorem 2.31 (Local normal form) in terms of
eigenvalues. On 4-dimensional manifolds, this boils down to

Remark 2.32. Let (M, ω) be a 4-dimensional manifold and h = (h1, h2) :
(M, ω) → R2 a completely integrable system with nondegenerate fixed
point z ∈ M. Pick c1, c2 ∈ R such that Ac1,c2 := c1Dh1|z + c2Dh2|z has
four distinct eigenvalues. Then

(i) An elliptic component corresponds to a pair of imaginary eigen-
values ±iβ of Ac1,c2 where β ∈ R,0.

(ii) A hyperbolic component corresponds to a pair of real eigenvalues
±α ∈ R,0 of Ac1,c2 .

(iii) A focus-focus component corresponds to a quadruple of complex
eigenvalues ±α ± iβ of Ac1,c2 where α, β ∈ R,0.

The type of eigenvalue does not depend on the chosen c1, c2 ∈ R.

Corollary 2.33. On a 4-dimensional manifold, the rank more or less
determines the type of a point of a completely integrable system:

(i) If rank = 2, we have a regular point.
(ii) If rank = 1, we have an elliptic-regular point.

(iii) If rank = 0, we have a fixed point of elliptic-elliptic or focus-focus
type.

Let us now get some geometric intuition for some of these types of singular
points.

Lemma 2.34. Let (M, ω) be 4-dimensional and h : (M, ω) → R2 a com-
pletely integrable system with a singular point z ∈ M. If z is elliptic-
elliptic then the system looks locally near z like the uncoupled oscillator
in Example 1.49 and its fibers near the origin.

Proof. Use Example 1.49 and Theorem 2.31 (Local normal form). �

Now let us have a look at focus-focus points.
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Lemma 2.35. A focus-focus point can be modelled as transverse inter-
section of complex planes.

Proof. Let us restrict ourselves to the four dimensional situation. By setting
ζ1 := x1 + ix2 and ζ2 := y1 + iy2, identify R2 ' C and consider the map

g : C × C→ C, g(ζ1, ζ2) := ζ1ζ2 = (x1y1 + x2y2) + i(x1y2 − x2y1).

With the notations of Theorem 2.31 (Local normal form), we obtain

g(ζ1, ζ2) = f2(x, y) + i f1(x, y).

Then g−1(0) = (C × {0}) ∪ ({0} × C) is the fiber above the singular value
0 ∈ R2, consisting of two transversely intersecting complex planes. The
nearby fibers g−1(c) with c ∈ C,0 are regular and can be seen as cylinders
or hyperboloids, see Example 3.36. �

Intuitively, a fiber over a focus-focus singular value can be seen as a (maybe
multiply) ‘pinched torus’, i.e., a torus where (at least) one circle has been
contracted to a point (which is precisely the focus-focus point). Note that a
focus-focus fiber with one focus-focus points consists of two orbits, namely
the singular focus-focus point and the rest which consists of regular points.
A focus-focus point can be seen as isolated fixed point with hyperbolic ex-
pansion and contraction behaviour while admitting a local S1-action, see for
instance [Chaperon] and [Vũ Ngo. c & Wacheux]. Intuitively, the flow on a
focus-focus fiber behaves as in Figure 2.1.

(a) (b)

Figure 2.1. (a) A fiber with one focus-focus fixed point. The
flow spirals away from the focus-focus points and is again
attracted to it. (b) A fiber with two focus-focus points and
flow lines on the regular parts in between.



3. Global properties of inte-
grable systems

So far, we studied the local behaviour of integrable systems. Hereby we en-
countered the local normal form around a regular point in terms of Theorem
2.4 (Arnold-Liouville) and the local normal form around nondegenerate sin-
gular points in terms of Theorem 2.31 (Local normal form).

Now we would like to ‘patch all local pictures together’ and classify global
behaviour of integrable systems. The problem is that, if we do not limit
ourselves to systems with certain properties, no classification is possible
since more or less anything could happen.

We restrict ourselves to classifications that take symplectic properties
into account. There are also classifications that consider purely topolog-
ical properties of integrable systems, see for example [Fomenko] and
[Bolsinov & Fomenko].

We will focus on two types of systems, namely toric integrable systems and
semitoric integrable systems:

Toric systems are (more or less) the ‘easiest possible’ type of integrable
systems and are usually introduced via so-called Hamiltonian torus actions.
Toric systems are distinguished by their flow having the property Φt = Φt+T

for all t ∈ Rn and a certain T = (T1, . . . ,Tn) ∈ Rn, i.e., the flow is periodic,
i.e., the flow parameter t lives in fact in the n-torus Rn/(T1Z⊕ · · · ⊕TnZ). To
have the same period in all coordinates, often the request T1 = · · · = Tn is
made. Nondegenerate singular points of toric systems will turn out to have
only components of elliptic and regular type.

47
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The moment we want to admit focus-focus components, the flow cannot be
periodic any more in all coordinates. At least in one coordinate, the action
on the focus-focus fibre is nonperiodic, i.e., an R-action, see for example
Figure 2.1 when the flow converges to and diverges from the focus-focus
point. Roughly, semitoric systems are systems that are almost toric in the
sense that they admit in addition to regular and elliptic components also
focus-focus components for nondegenerate singular points but, apart from
that, share most of the properties of toric systems.
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3.1 Group action on manifolds

This section recalls a few notions from the theory of group actions on man-
ifolds.

Definition 3.1. Let G be a group with neutral element e and M a mani-
fold. G acts on M if the map G × M → M, (g, z) 7→ g.z satisfies
1) e.z = z ∀ z ∈ M.
2) h.(g.z) = (hg).z ∀ g, h ∈ G, ∀ z ∈ M.

Note that

Lemma 3.2. Let M be a manifold and G a group and set

Aut(M) := {ϕ : M → M | ϕ bijective}.

Then G acting on M can be seen as map

ϕG : G → Aut(M), g 7→ ϕG
g with ϕG

g (z) := g.z

where the mapping g 7→ ϕG
g satisfies

ϕG
e = IdM and ϕG

h ◦ ϕ
G
g = ϕG

hg ∀ g, h ∈ G.

Proof. Left to the reader. �

Usually, not all points on a manifold are moved by a group action in the
same way:

Definition 3.3. Let G be a group acting on a manifold M and let z ∈ M.
1) The stabilizer or isotropy group of z ∈ M is defined as

Gz := {g ∈ G | g.z = z}.

2) z ∈ M is a fixed point of the action of G on M if Gz = G.
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Thus fixed points are indeed points that ‘do not move at all’ under the action.
Note that for g ∈ G and z ∈ M and z̃ := g.z, the stabilizers satisfy Gz̃ =

gGzg−1, i.e., stabilizers along an orbit are conjugate to each other.

Definition 3.4. Let G be a group acting on a manifold M and denote by
e the neutral element of G.
1) The action of G on M is faithful or effective if only e ∈ G acts

trivially, i.e., ϕG
g , IdM for all g ∈ G \ {e}, i.e., {e} =

⋂
z∈M Gz.

2) The action of G on M is transitive if, for all z, z̃ ∈ M, there exists
g ∈ G such that g.z = z̃.

3) The action of G on M is free if it has no fixed points, i.e., for all
z ∈ M, the only solution of the equation g.z = z is g = e.

Note that a free action on a nonempty set is faithful.

3.2 Hamiltonian torus actions and toric in-
tegrable systems

In this section, we are interested in groups G and their actions where g 7→ ϕG
g

can be seen as a Hamiltonian flow. The motivation is the following: If G is
a group acting on a manifold M via ϕG : G → Aut(M) then ϕG

e = IdM and
ϕG

h ◦ ϕ
G
g = ϕG

hg for all g, h ∈ G. If G = R, this property coincides with the
properties of a flow of an autonomous ODE.

Definition 3.5. An action of an m-torus Tm on a 2n-dimensional, sym-
plectic manifold (M, ω) is called a Hamiltonian m-torus action if there
exists a smooth function h = (h1, . . . , hm) : (M, ω)→ Rm whose flow Φh

satisfies Φh
t (z) = ϕT

n

t (z) for all t ∈ Tn and z ∈ M. Such a map h is often
called momentum map of the Hamiltonian torus action.

In particular, the flow induced by the momentum map of a Hamiltonian
torus action is periodic.

More details on (Hamiltonian) torus actions can be found for example in
[Cannas da Silva], [Audin 1991], and [McDuff & Salamon]. Before we
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consider examples of Hamiltonian torus actions, let us introduce the fol-
lowing notation.

Definition 3.6. The convex hull of m points x1, . . . , xm ∈ R
n is given by

Conv(x1, . . . , xm) :=

 n∑
k=1

skxx

∣∣∣∣∣∣∣ 0 ≤ s1, . . . , sm ≤ 1,
m∑

k=1

sk = 1

 ⊂ Rn.

Now we are ready to consider a few examples of Hamiltonian torus actions.

Example 3.7. Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} ⊂ R3 be
equipped with its standard symplectic formωS2 , see Example 1.15. Then
the rotation of S2 around the z-axis can be seen as S1 = T1-action with
momentum map

h : S2 → R, h(x, y, z) = z.

The north pole (1, 0, 0) ∈ S2 and south pole (0, 0, 1) ∈ S2 are the only
fixed points of the action. The image of the momentum map h(S2) =

[h(0, 0, 1), h(1, 0, 0)] ⊂ R can be seen as convex hull of the images of
the fixed points:

h(S2) = {s h(0, 0, 1) + (1 − s) h(1, 0, 0) | 0 ≤ s ≤ 1} ⊂ R.

Recall the construction of the complex projective space from Example 1.16.

Example 3.8. The Tn-action on CPn given by

(t1, . . . , tn).[z0, . . . , zn] := [zo, eit1z1, . . . , eitnzn]

is Hamiltonian with momentum map h = (h1, . . . , hn) : CPn → Rn,

h([z0, . . . , zn]) := −
1
2

 |z1|
2∑n

j=0

∣∣∣z j

∣∣∣2 , . . . , |zn|
2∑n

j=0

∣∣∣z j

∣∣∣2
 .
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There are precisely (n + 1) fixed points, namely [1, 0, . . . , 0], . . . ,
[0, . . . , 0, 1], i.e., points with stabilizer Tn. The image h(CPn) is an n-
simplex whose vertices are the images of the fixed points

h
(
[1, 0, . . . , 0]

)
= (0, . . . , 0),

h
(
[0, 1, 0 . . . , 0]

)
=

(
−

1
2
, 0, . . . , 0

)
,

h
(
[0, 0, 1, 0 . . . , 0]

)
=

(
0,−

1
2
, 0, . . . , 0

)
,

...
...

h
(
[0 . . . , 0, 1]

)
=

(
0, . . . , 0,−

1
2

)
.

This simplex is in fact the convex hull of the images of the fixed points:

h(CPn) =


(
−

1
2

s1, . . . ,−
1
2

sn

) ∣∣∣∣∣∣ 0 ≤ s1, . . . , sn ≤ 1,
n∑

k=1

sk = 1

 .
The strata of dimension k of this simplex are precisely the images of
points with stabilizer isomorphic to Tn−k.

Let us have a look at yet another torus action:

Example 3.9. The 2-torus action on CP1 × CP1 given by

T2 × (CP1 × CP1)→ CP1 × CP1,

(s, t).
(
[u0, u1], [v0, v1]

)
:=

(
[u0, eisu1], [v0, eitv1]

)
is Hamiltonian with momentum map h : CP1 × CP1 → R2,

h
(
[u0, u1], [v0, v1]

)
:= −

1
2

(
|u1|

2

|u0|
2 + |u1|

2 ,
|v1|

2

|v0|
2 + |v1|

2

)
.

This action has precisely four fixed points, namely(
[0, 1], [0, 1]

)
,
(
[1, 0], [0, 1]

)
,
(
[0, 1], [1, 0]

)
,
(
[1, 0], [1, 0]

)
whose images under h are(

−
1
2
,−

1
2

)
,

(
0,−

1
2

)
,

(
−

1
2
, 0

)
, (0, 0).

We find h(CP1 × CP1) =
[
−1

2 , 0
]
×

[
−1

2 , 0
]

which can be seen as the
convex hull of the images of the fixed points.
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In all the examples above, the image of the momentum map coincides with
the convex hull of the images of the fixed points. We will now see if this is
just a fluke or if there is more to it.

Theorem 3.10 (Convexity theorem of [Atiyah] and
[Guillemin & Sternberg]). Let (M, ω) be a compact, connected,
symplectic manifold of dimension 2n and let h : M → Rm be the
momentum map of a Hamiltonian Tm-action on M. Then
1) All level sets of h are connected.
2) h(M) is convex.
3) h(M) conincides in fact with the convex hull of the images under h

of the fixed points of the Tm-action. Therefore h(M) is also called the
momentum polytope of the Tm-action.

Proof. See [McDuff & Salamon]. Parts of the proof are also sketched in
[Cannas da Silva]. �

On compact, symplectic manifolds of dimension four, [Karshon]
classified all possible effective Hamiltonian S1-actions. In a se-
ries of papers, [Karshon & Tolman 2001], [Karshon & Tolman 2003],
[Karshon & Tolman 2014] characterized effective Hamiltonian Tn−1-
actions on 2n-dimensional compact symplectic manifolds.

Effectiveness of a Hamitonian m-torus action has the following geometric
consequences.

Lemma 3.11. Let (M, ω) be a symplectic manifold carrying an effective
Hamiltonian Tm-action with momentum map h = (h1, . . . , hm) : M →

Rm. Then there exists z ∈ M with rk(Dh|z) = m.

Proof. ...still to be written... �

This is crucial for

Proposition 3.12. Let (M, ω) be a compact, connected, symplectic man-
ifold of dimension 2n carrying an effective Hamiltonian Tm-action.
Then
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1) m ≤ n.
2) The T m-action has at least (m + 1) fixed points.

Proof. 1) According to Lemma 3.11, there exists z ∈ M with rk(Dh|z) = m.
In addition, Corollary 2.16 implies that there are maximally n independent
integrals. Since Dh|z is an (m × 2n)-matrix, this forces m ≤ n.
2) There exists, according to Lemma 3.11, a point z ∈ M with rk(Dh|z) = m.
This implies that h(z) lies in the m-dimensional interior of the momen-
tum polytope h(M). The momentum polytope is according to Theorem 3.10
(Convexity) the convex hull of the images of the fixed points. Since a con-
vex set that includes an open set of dimension m must be the convex hull of
at least (m + 1) distinct points, the claim follows. �

We note

Corollary 3.13. An effective Tn-action on a 2n-dimensional symplectic
manifold gives rise to a completely integrable Hamiltonian system.

Proof. ...still to be written... �

Theorem 3.10 (Convexity) states that a Hamiltonian Tm-action gives rise to
a convex polytope, namely its momentum polytope. Does there also exist
a converse, i.e., given a convex polytope, can we construct a torus action
that has this polytope as momentum polytope? With certain restrictions, the
answer will turn out to be affirmative.

Definition 3.14. Let 4 ⊂ Rn be a convex polytope.
1) 4 is simple if there are precisely n edges meeting at each vertex.
2) 4 is rational if the slope of every edge is rational, i.e., for all vertices

z of 4, every edge E(z) emanating from z can be parametrised by
z + s~E(z) for some ~E(z) ∈ Zn and s ≥ 0.

3) 4 is smooth if, for all vertices z of 4, the n edge vectors ~E1(z), . . . ,
~En(z) ∈ Zn can be chosen to be a basis of Zn.

4) 4 is called Delzant if 4 is simple, rational, and smooth.

These polytopes are named after the French mathematician Thomas Delzant
(currently working at the University of Strasbourg, France).
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Definition 3.15. Let G be a group acting on a manifold M. A diffeomor-
phism f : M → M is equivariant if f (g.z) = g.( f (z)) for all g ∈ G and
all z ∈ M.

There is the following classification:

Theorem 3.16 (Classification by [Delzant]). There exists a one to one
correspondence between compact connected 2n-dimensional symplec-
tic manifolds (M, ω) equipped with a Hamiltonian Tn-action (up to equi-
variant symplectomorphism) and Delzant polytopes. It is given by

(M, ω,Tn, h) 7→ h(M).

Proof. We will go through the construction behind the surjectivity of the
map (M, ω,Tn, h) 7→ h(M) for an explicitly given Delzant polytope in Ex-
ample ??. The general proof of Delzant’s classification is beyond the scope
of this course. We refer the interested reader to [Cannas da Silva] for the
surjectivity of the map (M, ω,Tn, h) 7→ h(M) and to [Kaufman] and par-
tially [Guillemin] for the rest. �

Thus a Hamiltonian Tn-action on an 2n-dimensional, compact, connected
symplectic manifold is completely characterized by its momentum poly-
tope.

Remark 3.17. The momentum polytopes h(M) in Theorem 3.16
(Delzant) are according to Theorem 3.10 (Convexity) the convex hull
of the images of the fixed points of the actions. Therefore the continu-
ous and smooth object (M, ω,Tn, h) in Theorem 3.16 (Delzant) is in fact
completely characterized by a finite set of discrete data.

If we drop the compactness condition, Theorem 3.16 (Delzant) is not true
any more. The situation becomes more complicated and was solved in 2015
by [Karshon & Lerman]. The question when an effective Hamiltonian S1-
action on a compact, symplectic 4-dimensional manifold can be extended
to an S1 × S1 = T2-action was answered in [Karshon].
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3.3 Lie group actions on manifolds

If we are not only interested in topological features of group actions on
manifolds but also want to involve the smooth structure of an underlying
smooth manifold, the following type of groups are natural candidates.

Definition 3.18. A group G is a Lie group if it is a finite dimensional
C2-manifold and if the following two group operations of G are C2-
mappings:

G ×G → G,
(g, h) 7→ gh

and
G → G,

g 7→ g−1.

Many of the ‘natural’ groups are Lie groups:

Example 3.19. The following groups are Lie groups:
U(n), S U(n), O(n), S O(n), GL(n), (R,+), S1 = U(1) = S O(2) seen as
rotations, (Rn,+), Tn = (S1)n.

Now we want to generalize Hamiltonian torus actions on manifolds to
Hamiltonian Lie group actions. Therefore we need the following notions.

Definition 3.20. Let G be a Lie group and g ∈ G. The left multiplica-
tion by g is the map

Lg : G → G, g̃ 7→ gg̃

and a vector field X on G is left-invariant if (Lg)∗X = X where
((Lg)∗X)|Lg(g̃) := D(Lg)|g̃.X|g̃.

One usually works with these left notions since they lead to ho-
momorphisms whereas the analogous right notions give rise to anti-
homomorphisms.
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Definition and Proposition 3.21. Let G be a Lie group and denote by

Lie(G) =: g

the vector space of left-invariant vector fields on G. Equipped with the
Lie bracket [·, ·] for vector fields, (g, [·, ·]) is a Lie algebra and is called
Lie algebra of the Lie group G. As a vector space, g is isomorphic to
the tangent space of G at the identity TeG via X 7→ X|e.

Proof. The Lie bracket is compatible with the pushforward of vector fields
such that [(Lg)∗X, (Lg)∗Y] = (Lg)∗[X,Y] for all g ∈ G and X,Y ∈ g. Therefore
g is closed under the Lie bracket such that the restriction of the Lie bracket
to g gives rise to a Lie subalgebra. The left-invariance allows to identify a
vector field X with its value X|e at the identity e ∈ G and vice versa. �

Definition 3.22. Let G be a Lie group acting on a smooth manifold M
via ϕG : G → Diff(M). Consider X ∈ g as (leftinvariant) vector field
and denote the flow of the ODE g′ = X(g) on G by ΦX

t . Then
d
dt

∣∣∣∣∣
t=0
ϕG

ΦX
t (g)(z) =: X#(z) ∈ TzM

defines a vector field X# on M, often called the infinitesimal generator
of the 1-parameter group of the action induced by X ∈ g.

There are several operations of Lie groups on itself that carry geometric and
algebraic meanings in various contexts.

Definition 3.23. 1) Let g ∈ G. The action by conjugation

ϕG
g : G → G, ϕG

g ( f ) := g f g−1

gives rise to the invertible linear map

Adg := D(ϕG
g )|e : TeG ' g→ TeG ' g

which in turn gives rise to the adjoint action or adjoint represen-
tation

Ad : G → GL(g), g 7→ Adg

where GL(g) is the group of linear isomorphisms of g.

Note that we have Ad f ◦Adg = Ad f g. Since the Lie algebra is a vector space,
we can pass to its dual:
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Definition 3.24. Let G be a Lie group with Lie algebra g and denote by

g
∗ := {α : g→ R | α linear and continuous}

its dual (as a vector space). The dual paring

〈·, ·〉 : g∗ × g→ R, 〈α, X〉 := α(X)

gives for each g ∈ G rise to the dual map Ad∗g : g∗ → g∗ via

〈Ad∗gα, X〉 = 〈α, Adg−1(X)〉

which in turn gives rise to the coadjoint action or coadjoint represen-
tation

Ad∗ : G → GL(g∗), g 7→ Ad∗g.

Note that we dualized with Adg−1 in order to get the homomorphism prop-
erty Ad∗f ◦Ad∗g = Ad∗f g. The dual g∗ of a Lie algebra g carries the structure of
a so-called Lie coalgebra, see for example [Michaelis]. If g is finite dimen-
sional then g ' g∗ are isomorphic. Now we are ready to define a Hamilton-
ian Lie group action.

Definition 3.25. Let G be a Lie group acting on a smooth manifold M.
The action is Hamiltonian if there exists a map

h : M → g∗

with
1) For all X ∈ g, we have

ω(X#, ·) = dhX

where the function hX : M → R, hX(p) := 〈h(p), X〉 is the ‘compo-
nent’ of h in direction of X.

2) We have for all g ∈ G

h ◦ ϕG
g = Ad∗g ◦ h,

i.e., h is equivariant w.r.t. the action ϕG of G on M and the coadjoint
action Ad∗ of G on g∗.

For G = Rn and G = Tn, we have Lie(Rn) ' Rn and tn := Lie(Tn) = Rn.
Therefore
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Corollary 3.26. In case of G = Rn and G = Tn, we recover the notion
of integrable Hamiltonian system and Hamiltonian Tn-action.

Proof. Let us first consider the case G = R and denote the action of the
Lie group R on a symplectic manifold (M, ω) by ϕR : R → Aut(M). Since
R is commutative, the action by conjugation is always the identity. Thus
Adg = IdLie(R) for all g ∈ R. We find Lie(R)∗ = R∗ ' R and

〈Ad∗gα, X〉 = 〈α, Adg−1(X)〉 = 〈α, X〉

for all g ∈ R, X ∈ Lie(R) = R and α ∈ Lie(R)∗ ' R which implies Ad∗g =

IdLie(R)∗ for all g ∈ R. Now let h : M → Lie(R)∗ ' R be a momentum map
of the Hamiltonian action of the Lie group R on (M, ω). We have Lie(R) =

R = SpanR{1} such that any X ∈ Lie(R) is of the form X = X1. Thus we
compute for h1 : M → R and hX : M → R

〈h1(p), 1〉 = h1(p) and 〈hX(p), X〉 = X〈hX(p), 1〉 = XhX(p)

We consider g′ = X(g) = Xg which has the solution g(t) = exp(Xt) and
therefore the flow ΦX

t (g) = exp(tX)g. We obtain for z ∈ M

X#(z) =
d
dt

∣∣∣∣∣
t=0
ϕG

ΦX
t (g)(z) =

d
dt

∣∣∣∣∣
t=0
ϕG

exp(tX)g.

The R-action induced by a Hamiltonian system h : (M, ω)→ R has the flow
falls h die klassische Ham fct sein soll, dann setze

einfach h(p) := h1(p), denn Xch = cXh fuer c ∈ R (??) das
sollte ok sein...?

Q?

�

We recall

Definition 3.27. The action of a Lie group G on a manifold M is said
to be proper if the map G × M → M × M given by (g, z) 7→ (g.z, z) is
proper.

Recall that the quotient of a manifold under a Lie group action is under
certain conditions again a manifold:
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Theorem 3.28 (Manifold quotient theorem). Let G be a Lie group
and M a Ck-manifold with k ≥ 1. Let the action of G on M be Ck-
smooth, free and proper. Then the quotient by the group action M/G
has a unique structure of a Ck-manifold of dimension dim M − dim G.

Proof. See [Duistermaat & Kolk, Theorem 1.11.4]. �

Given a symplectic manifold with a free and proper Lie group action, we
naturally would like the quotient to be symplectic and its symplectic struc-
ture to be compatible under the quotient map with the one on the original
manifold. But unfortunately a ‘symplectic version’ of Theorem 3.28 (Man-
ifold quotient theorem) cannot be true: the dimension of the quotient of
a 2n-dimensional symplectic manifold M under a Hamiltonian S1-action
is dim(M/S1) = 2n − 1 which is odd such that M/S1 certainly cannot be
symplectic. Nevertheless, [Marsden & Weinstein] and [Meyer] came up
with a welldefined notion, denoted by M //G. We formulate their result for
Hamiltonian torus actions.

Theorem 3.29 ([Marsden & Weinstein] and [Meyer]). Let
(M, ω,Tm, h) be a symplectic manifold of dimension 2n with a
Hamiltonian Tm-action with momentum map h : M → Rm. Let
j : h−1(0) ↪→ M be the inclusion and assume that Tm acts freely on
h−1(0). Then
1) Mred := M // Tm := h−1(0)/Tm is a manifold.
2) The quotient map q : h−1(0)→ h−1(0)/Tm is a principal Tm-bundle.
3) There exists a symplectic form ωred on Mred with j∗ω = q∗ωred.
The symplectic manifold (Mred, ωred) has various names in the lit-
erature, for instance reduction, symplectic reduction, reduced
space, symplectic quotient, Marsden-Weinstein quotient, Marsden-
Weinstein-Meyer quotient.

Proof. See [Cannas da Silva] or [McDuff & Salamon]. �

3.4 An explicit example for Delzant’s con-
struction
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First, we have to write polytopes in a way that is accessible to algebraic and
analytic methods.

Lemma 3.30. Let 4 ⊂ Rn be a convex polytope. Then 4 can be written
as intersection of n-dimensional halfspaces, i.e., there exists d ∈ N and
ν1, . . . , νd ∈ R

n and λ1, . . . , λd ∈ R such that

4 = {x ∈ Rn | 〈x, νk〉 ≤ λk ∀ 1 ≤ k ≤ d}

where 〈·, ·〉 is the Euclidean scalar product.

Proof. Denote by d the number of (n − 1)-dimensional strata of 4. Choose
ν1, . . . , νd ∈ R

n to be the outward pointing normal vectors to the d strata
S 1, . . . , S d of dimension (n−1). Then consider νk as vector with ‘foot point’
at the origine and define `k to satisfy `k ‖νk‖ = dist(S k, {0}). Then `kνk ∈ S k

and x − `kνk is perpendicular to νk for all x ∈ S k. Thus

S k ⊂ {x ∈ Rn | 〈x − `kνk, νk〉 = 0}

and we calculate 0 = 〈x− `kνk, νk〉 = 〈x, νk〉 − `k ‖νk‖
2. Set λk := `k ‖νk‖

2 and
conclude

4 = {x ∈ Rn | 〈x, νk〉 ≤ λk ∀ 1 ≤ k ≤ d}.
�

Since Delzant polytopes have rational slopes and other nice properties we
have to ‘fine tune’ the shape of the normal vectors.

Definition 3.31. A vector v ∈ Zn is called primitive if there exists no
l ∈ Z with |l| > 1 and no u ∈ Zn such that v = lu.

We conclude

Corollary 3.32. Let 4 ⊂ Rn be a Delzant polytope. Then there exists
d ∈ N and primitive vectors ν1, . . . , νd ∈ Z

n and λ1, . . . , λd ∈ R such
that

4 = {x ∈ Rn | 〈x, νk〉 ≤ λk ∀ 1 ≤ k ≤ d}.

For Delzant polytopes in Rn with d strata of dimension (n − 1), we always
have d ≥ n + 1 > n. We give the difference d− n now an algebraic meaning.
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Lemma 3.33. Let 4 = {x ∈ Rn | 〈x, νk〉 ≤ λk ∀ 1 ≤ k ≤ d} be a Delzant
polytope and e1, . . . , ed the standard basis of Rd. Then the definition of
τ(ek) := νk for all 1 ≤ k ≤ d extends by linearity to surjective maps

τ : Zd → Zn and τ : Rd → Rn.

Moreover, we obtain a welldefined map τ : Rd/Zd =: Td → Rn/Zn =: Tn

which is also surjective.

Proof. Let p be a vertex of 4 and let E1(p), . . . , En(p) ∈ Zn

be n vectors spanning the n edges emanating from p. Since p is
smooth, we have SpanZ{E1(p), . . . , En(p)} = Zn and therefore also
SpanR{E1(p), . . . , En(p)} = Rn.
Always (n − 1) of the edge vectors span the n strata of dimensional (n − 1)
meeting at p. Denote the primitive outer normal vector of the (n−1)-stratum
spanned by E1(p), . . . , Ek−1(p), Ek+1(p), . . . , En(p) by νk(p). By construction
and since νk(p) is primitive, we find

SpanZ{E1(p), . . . , Ek−1(p), Ek+1(p), . . . , En(p), νk(p)} = Zn.

Since these (n − 1)-strata always have n − 2 edge vectors in common, we
can successively replace the edge vectors by normal vectors and still span
the space Zn. �

Now we consider an explicit example for Delzant’s construction:

3.5 Focus-focus points and monodromy

Delzant’s classification for toric systems is ‘easy and simple’ in the sense
that there is precisely one invariant, namely the image of the momentum
map. A glance at Theorem 3.46 shows that this is not true any more once
we ‘leave the toric world’.

In this section, we investigate some phenomena that may happen in non-
toric integrable systems. To this end, first note:
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Lemma 3.34. Let (M, ω) be a symplectic manifold of dimension 2n and
h : (M, ω) → Rn a completely integrable system inducing an effective
Hamiltonian Tn-action. Then the only possible types of points are points
with k elliptic and (n − k) regular components with 0 ≤ k ≤ n. More
precisely, rank k points form the facets of dimension k of the momentum
polytope. Fixed points are thus automatically of purely elliptic type.

Proof. According to Theorem 3.16 (Delzant), completely integrable toric
systems are classified by the image of their momentum map which is a
Delzant polytope. By construction, these polygons are stratified in the sense
that points of rank k are mapped precisely to facets of dimension k of the
Delzant polytope. Given a point p in a facet of dimension k then, from the
point of view of Theorem 2.31 (Local normal form), the point is the image
of k regular and (n − k) elliptic component. This local neighbourhoods are
compatibel with each other whereever they overlap.
We show it for the case of an neighbourhood

containing ??? points: take explicit computation from

[Pelayo & Vũ Ngo.c 2011]... check also what daniele
said...

Q?

�

h−1(z)(M, ω)

z3

⊃

h

(h1, h2

⊃R2 h(M) h(M)

Figure 3.1. Example for the fibration of a toric integrable
system h : (M, ω) → R2 with dim M = 4. There are regu-
lar fibers (light blue), elliptic-regular fibers (dark blue), and
elliptic-elliptic fibers (red).

Intuitively, this means that we have action angle coordinates over the whole
interior of the momentum polytope of a toric system, but over action levels
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on the boundary of the momentum polytope we only ‘keep’ as many angle
coordinates as the dimension of the fiber over this action level.

[Duistermaat] described in detail under which conditions a Lagrangian fi-
bration admits global action angle coordinates. More precisely, he identi-
fied the topological obstructions (in terms of so-called monodromy and the
Chern class) preventing global existence of action angle coordinates:

Theorem 3.35 ([Duistermaat]). Let (M, ω) be a connected symplectic
manifold of dimension 2n and B a smooth manifold B of dimension n
and let π : M → B be a fibration such that the fibers π−1(b) ⊂ M are
compact, connected Lagrangian submanifolds for all b ∈ B.
Then the fibration is topologically trivial if and only if the monodromy
and the Chern class are trivial. Furthermore, the following two state-
ments are equivalent:
(1) There exists a smooth map (a, α) : M → Rn × (R/Z)n such that

• ω =
∑n

k=1 dαk ∧ dak,
• ak is constant on the fibers of π : M → B for all 1 ≤ k ≤ n.
• α is injective on each fibre of π : M → B.

(2) The fibration π : M → B is topologically trivial and ω is exact.

In the following, we want to gain some intuition about one of the obstruc-
tions to global action angle coordinates, namely monodromy. For the pre-
cise details, see for example [Duistermaat] or [Cushman & Bates]. More-
over, the monography [Martynchuk] gives an overview over the various
appearances of monodromy in geometry and dynamical systems. An more
geometric-algebraic approach via complex Morse functions and vanishing
cycles can be found in [Arnold 1990].

Now have a look at the fibration in Figure 3.2. Due to the existence of focus-
focus points, the system is not toric according to Lemma 3.34.
Now let us have once again a look at the local model of focus-focus points
described in Lemma 2.35: There we had set ζ1 := x1 + ix2 and ζ2 := y1 + iy2,
had identified R2 ' C, and eventually had considered the map

g : C × C→ C, g(ζ1, ζ2) := ζ1ζ2 = (x1y1 + x2y2) + i(x1y2 − x2y1).

Now we want to study this map in polar coordinates. Thus we set ζ1 =: r1eiϕ1

and ζ2 =: r2eiϕ2 and obtain

ĝ : (R≥0 × R/Z) × (R≥0 × R/Z)→ R≥0 × R/Z,

(r1, ϕ1, r2, ϕ2) 7→ (r1r2,−ϕ1 + ϕ2).
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h−1(z)(M, ω)

z3

ell.-ell. ell.-reg.reg. focus-focus

⊃

h

(h1, h2

⊃R2 h(M) h(M)

Figure 3.2. Example for the fibration of a non-toric in-
tegrable system h : (M, ω) → R2. There are regular
fibers (light blue), elliptic-regular fibers (dark blue), elliptic-
elliptic fibers (red) and two focus-focus fibers (green).

We are interested in the preimage nonsingular values ζ = reiϕ, i.e., we have
ζ , 0 and therefore r > 0 in polar coordinates. The solutions of the equation
g−1(ζ) with ζ , 0 are in polar coordinates given by

ĝ−1(r, ϕ) = {(r1, ϕ1, r2, ϕ2) | r = r1r2, ϕ = −ϕ1 + ϕ2}

and we can parametrise ĝ−1(r, ϕ) by the map

fr,ϕ : R>0 × R/Z→ ĝ−1(r, ϕ), (s, t) 7→
(
s, t,

r
s
, t + ϕ

)
.

Now consider the path that parametrises a small circle around the origin and
track the preimages of g along it. This means that we fix a small ρ ∈ R>0

and let ϕ travel once through R/Z:

ϕ 7→ fρ,ϕ.

Now look what happens to the image of s = 1 and t = 0 when ϕ changes:
We observe

ϕ 7→ fρ,ϕ(1, 0) = (1, 0, ρ, ϕ)
i.e., the point walks once around the image of the cylinder R>0 × R/Z.
This phenomenon is intuitively described in Figure 3.3. This local model
with the cylinders describes the ‘cylindrical part’ of a torus near the cycle
that gets pinched to a point when approaching the focus-focus fiber. On the
tori above the path around the focus-focus value, this phenomenon can be
described as follows: Still think of the focus-focus value as located at the
origin. Recall the lattice from Lemma 2.23 and denote the lattice above the
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path ϕ 7→ (ρ, ϕ) with ϕ ∈ [0, 1 − ε] ⊂ R/Z and ε > 0 small by Γ(ρ, ϕ). The
lattice is of the form

Γ(ρ, ϕ) = {γ1 + ν1(ρ, ϕ), . . . , γn + νn(ρ, ϕ)}

with Γ(ρ, 0) = {γ1, . . . , γn}. The phenomenon from Figure 3.3 looks in terms
of lattices as follows: The basis changes along the path ϕ 7→ (ρ, ϕ) and
differs at the points ϕ = 0 and ϕ = 1, but we have Γ(0) = γ(1), i.e., just
by looking at the lattice, we find nothing amiss, but we cannot define action
angle variables along the loop since we did a full jump in period such that
the loop of basis is not closing continuously, see Figure 3.4.This effect is
called monodromy and, in dimension two, is usually described by the so-
called monodromy matrix which is the matrix(

1 1
0 1

)
realising the transition from

{( 1
0
)
,
( 0

1
)}

to
{( 1

1
)
,
( 0

1
)}

Example 3.36. hier monodromy via polar coordinates on cyminder...

Definition 3.37. This twisting phenomenon in the fibers when travelling
once around a focus-focus fiber is called monodromy. When consid-
ered as a map of the associated lattices of the tori then the change in

basis after one loop is given by the matrix
(
1 1
0 1

)
.

Corollary 3.38. Monodromy prevents the existence of well-defined ac-
tion angle variables in neighbourhood of a focus-focus singular point
since the periods of the lattices are not closing continuously along a
closed path around the focus-focus point.

3.6 Semitoric systems and their classifica-
tion
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(b)(a)

?

Figure 3.3. Geometric interpretation of monodromy:
(a) A path (dotted) looping once around a focus-focus value.
(b) Observe in the local model the deformation of the verti-
cal (red) line in a regular fiber into a (purple) line wrapping
more and more around the cylinder when following the fibers
over the path in (a). After walking precisely once around the
singular fiber, the red line is transformed into the blue one
that wraps precisely once around the cylinder.

In order to leave the rigid ‘toric world’ within the set of integrable
systems while keeping enough structure to admit a ‘nice’ classification,
[Pelayo & Vũ Ngo. c 2009], [Pelayo & Vũ Ngo. c 2011] studied the follow-
ing class of completely integrable systems on (not necessarily compact)
4-dimensional manifolds.

Definition 3.39. Let (M, ω) be a connected symplectic 4-dimensional
manifold. A completely integrable Hamiltonian system h = (h1, h2) :
(M, ω)→ R2 is semitoric if
1) h1 is proper.
2) h1 induces an effective Hamiltonian S1-action,
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(a) (b) (c)

Figure 3.4. Geometric interpretation of monodromy via lat-
tices: The vectors γ1(τ) := (1, τ)T and γ2(τ) := (0, 1)T

and their spanned lattice Γ(τ) := SpanZ{γ1(τ), γ2(τ)} sat-
isfy τ = 0 in (a), τ = 1

2 in (b), and τ = 1 in (c). We have
Γ(0) = Γ(1) although their bases differ.

3) h has only nondegenerate singularities.
4) Focus-focus fibers (if any) of h contain at most one focus-focus point.
5) h admits no hyperbolic components in the sense of Theorem 2.31

(Local normal form).

This definition restricts the variety of singular points:

Lemma 3.40. Semitoric systems may only have points of the following
types:

• Rank 2: regular points.
• Rank 1: elliptic-regular points.
• Rank 0: fixed poinst of focus-focus or elliptic-elliptic type.

Proof. Since semitoric systems live on 4-dimensional manifolds, the differ-
ential of the momentum map can only have rank zero, one or two. Since two
is the maximal rank, these points are regular. By definition, semitoric sys-
tems only admit nondegenerate singular points. Moreover, singular points
may not have hyperbolic components. Thus Theorem 2.31 (Local normal
form) implies that the only possibility for rank one points is the combina-
tion of a regular and an elliptic component. Rank zero can only be attained
at fixed points with two elliptic components or one pair of focus-focus com-
ponents. �
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The system in Figure 3.2 displays all these types of points. Many physically
relevant systems are in fact semitoric:

Example 3.41. The coupled angular momenta system in Example 1.50
is semitoric.

Proof. Using numerics, the appearance of a focus-focus point was first no-
ticed by [Sadovskiı́ & Zĥilinskiı́]. The semitoric properties were proven in
[Le Floch & Pelayo] and [Alonso & Dullin & Hohloch 2018]. �

The coupled angular momenta system sometimes also goes by the name
Jaynes-Cummings model or Gaudin model.

Example 3.42. Consider (S2×R2, λωS2⊕µωR2) with λ, µ > 0. The system
(L,H) : S2 × R2 → R2 given by

L(x, y, z, u, v) := (z − 1) + µ
u2 + v2

2
,

H(x, y, z, u, v) :=
1
2

(xu + yv)

is semitoric and usually called coupled spin oscillator.

Proof. [Pelayo & Vũ Ngo. c 2012] and [Alonso & Dullin & Hohloch 2017].
�

The coupled angular momenta system depends on an ‘interpolating’ param-
eter. It is in fact a special case of much more general systems:

Example 3.43. Whole families of semitoric systems are studied in
[Hohloch & Palmer] and [Le Floch & Palmer].

If we want to study classifications of semitoric systems, we have to specify
which systems we consider to be isomorphic.

Definition 3.44. Two semitoric systems (M, ω, h) and (M̂, ω̂, ĥ) are iso-
morphic if there exists a pair (Ψ, ψ), where Ψ : (M, ω) → (M̂, ω̂)
is a symplectomorphism and ψ : h(M) ⊂ R2 → ĥ(M̂) ⊂ R2 is
a locally defined (orientation preserving) diffeomorphism of the form
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ψ(x, y) = (ψ1, ψ2)(x, y) = (x, ψ2(x, y)) making the following diagram
commute

(M, ω) Ψ //

h
��

(M̂, ω̂)

ĥ
��

R2
ψ

// R2.

h1

h2

h1

ψ

ψ2(h1, h2)

c c

Figure 3.5. Isomorphic systems: The ‘straightening proce-
dure’ turns a semitoric system into a toric system on the
whole manifold minus the preimage of the vertical cuts in-
cluding the focus-focus values.

A semitoric system gives rise to an S1 × R-action which places them ‘be-
tween’ general integrable systems (have an R×R-action) and toric systems
(admitting an S1 × S1-action). Semitoric systems differ from toric systems
in particular by the possible existence of focus-focus singularities.

Remark 3.45 ([Vũ Ngo. c 2007]). A semitoric system has (if at all) only
a finite number of focus-focus critical values.

[Pelayo & Vũ Ngo. c 2009] use the following five invariants to classify
semitoric systems. Let (M, ω,Φ = (J,H)) be a (not necessarily compact)
semitoric system. Its list of semitoric invariants consists of:

(1) The number mFF of focus-focus points c1, . . . , cmFF ∈ M.
(2) Taylor series S i := S i(ci) ∈ R[[X,Y]] for 1 ≤ i ≤ mFF associated to

the focus-focus points c1, . . . , cmFF ∈ M.
The Taylor series S i of the focus-focus point ci is a semilocal

invariant, i.e., it describes the whole focus-focus fiber. Roughly,
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[Vũ Ngo. c 2003] constructs a ‘generating function’ Si for the La-
grangian fibration near the focus-focus point ci which extends
smoothly over the focus-focus singularity. Its Taylor series is S i.
One can see these Taylor series also as some kind of ‘modified’
Birkhoff normal forms.

(3) The (equivalence class of a) polygon obtained by a straightening
procedure from the image of the momentum map (see Figure 3.5)
and equipped with (a choice of) vertical cuts to the focus-focus
points. These polygons are usually called semitoric polygons.

(4) The heights of the focus-focus points in the semitoric polygon.
(5) The twisting index is (roughly) a tuple (k1, . . . , kmFF ) of integers

where ki is the rotation vector of a certain periodic flow near the
ith focus-focus fiber measured w.r.t. the toric ‘background basis’
obtained from the straightening procedure.

An important observation is the fact that the underlying manifold is compact
if and only if the semitoric polygon is compact.

Theorem 3.46 ([Pelayo & Vũ Ngo. c 2009, Pelayo & Vũ Ngo. c 2011]).
Two semitoric integrable systems are isomorphic if and only if they have
the same semitoric invariants.

The semitoric invariants of the coupled spin oscillator are calculated in
[Pelayo & Vũ Ngo. c 2012] and [Alonso & Dullin & Hohloch 2017]. The
semitoric invariants of the coupled angular momenta are calculated in
[Le Floch & Pelayo] and [Alonso & Dullin & Hohloch 2018].

[Hohloch & Sabatini & Sepe] shows which minimal choice of semitoric
invariants is needed in order to recover the Karshon graph (see [Karshon])
of the underlying Hamiltonian S1-action of a semitoric system.





4. Infinite dimensional inte-
grable systems

So far, we studied integrability of Hamiltonian ODEs that live on 2n-
dimensional symplectic manifolds. In this chapter, we will investigate in-
tegrability notions for PDEs. Since, in this case, the underlying spaces are
usually infinite dimensional, not all results from finite dimensional inte-
grability theory hold true, for example, ‘at most n linearly independent in-
tegrals’ is not true any more. Furthermore, there are new phenomena un-
known to integrable Hamiltonian ODEs in finite dimensions.

The literature is vast and, when crossing over to physics, often lacks
mathematical rigor. Nevertheless, there are some accessible text books
and lecture notes like [Batlle], [Dunajski], and [Miwa & Jimbo & Date].
A short summary of the most important facts can be found in
[Abraham & Marsden, Section 5.5].

73



74 4. INFINITE DIMENSIONAL INTEGRABLE SYSTEMS

4.1 From the wave equation to the
Korteweg-de Vries (KdV) equation

The formulation and discovery of the so-called Korteweg-de Vries equation
was motivated by the following observation: In 1834, J. Scott Russell (1808
– 1882, Scottish civil engineer) noticed a ‘single wave not changing shape’
travelling down a narrow channel in front of a boat, see [Scott Russell, page
319]. Such waves are called solitons. A nice simulation of such a wave can
be found on YouTube, see

https://www.youtube.com/watch?v=D14QuUL8x60

Although [Boussinesq, Footnote on page 360] already mentioned briefly an
equation describing such travelling waves in 1877, the breakthrough came
in 1895 when Korteweg and de Vries gave an explicit solution of such a soli-
ton in their work [Korteweg & de Vries]. A historical overview over the re-
search around the Korteweg-de Vries equation can be found in [de Jager].

To explain the form of the Korteweg-de Vries equation, let us introduce it
as generalization of the 1-dimensional wave equation

utt = c2uxx

where u : R × R → R with coordinates (x, t) ∈ R × R, (constant) phase
velocity c ∈ R and partial derivatives ux := ∂xu and uxx := ∂xux and ut := ∂tu
and utt := ∂tut.

In 1750, the French mathematician Jean-Baptiste le Rond d’Alembert (1717
– 1783) solved the 1-dimensional wave equation:

Theorem 4.1 (D’Alembert). Let c ∈ R.
1) The general solution of the 1-dimensional wave equation utt = c2uxx

is of the form

u(x, t) = F(x − ct) + G(x + ct)

where F,G : R→ R are arbitrary smooth functions.
2) Given smooth functions f , g : R→ R, then the initial value problem

utt = c2uxx for (x, t) ∈ R × R,
u(x, 0) = f (x) for x ∈ R,
ut(x, 0) = g(x) for x ∈ R
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has the unique solution

u(x, t) =
1
2
(
f (x − ct) + f (x + ct)

)
+

1
2c

x+ct∫
x−ct

g(s) ds.

Proof. 1) We consider the change of coordinates

h : R2 → R2, h(x, t) :=
(
ξ(x, t), η(x, t)

)
:= (x + ct, x − ct)

and set ũ := u ◦ h−1. We calculate Dh =
(
ξx ξt
ηx ηt

)
=

( 1 c
1 −c

)
and compute

uxx = (ũ ◦ h)xx = (Dũ.hx)x = (ũξξx + ũηηx)x = (ũξ + ũη)x

= D(ũξ).hx + D(ũη).hx = ũξξξx + ũξηηx + ũηξξx + ũηηηx

= ũξξ + 2ũξη + ũηη

and

utt = (ũ ◦ h)tt = (Dũ.ht)t = (ũξξt + ũηηt)t = (cũξ − cũη)t = c(ũξ − ũη)t

= c(D(ũξ).ht − D(ũη).ht) = c(ũξξξt + ũξηηt − ũηξξt − ũηηηt)

= c2(ũξξ − 2ũξη + ũηη).

Putting this together, we obtain

0 = utt − c2uxx = c2(ũξξ − 2ũξη + ũηη) − c2(ũξξ + 2ũξη + ũηη) = −4c2ũξη.

Thus solving utt = c2uxx is equivalent to solving ũξη = 0 and transforming
back. Integrating ũξη = 0 w.r.t. ξ yields ũη(ξ, η) = H(η) with an arbitrary
smooth function H : R→ R. Integrating now w.r.t. η yields

ũ(ξ, η) = F(η) + G(ξ)

for an arbitrary smooth function G : R→ R and a function F : R→ R with
F′ = H. Therefore we get

u(x, t) = (ũ ◦ h)(x, t) = ũ(ξ(x, t), η(x, t)) = F(η(x, t)) + G(ξ(x, t))
= F(x − ct) + G(x + ct).

2) Left to the reader. �

The general solution u(x, t) = F(x − ct) + G(x + ct) from Theorem 4.1
(D’Alembert) consists, for c > 0 and t → ∞, of a ‘wave travelling to the
right’ with ‘shape’ x 7→ F(x − ct) and a ‘wave travelling to the left’ with
‘shape’ x 7→ G(x + ct).
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Example 4.2. Let c > 0 and let u(x, t) = F(x − ct) + G(x + ct) be the
general solution of the 1-dimensional wave equation utt = c2uxx from
Theorem 4.1 (D’Alembert).
1) For F(s) := e−s2

and G(s) := 0, the solution u(x, t) = e−(x−ct)2
consists

of one wave with the shape of the Gauss curve travelling to the right,
i.e., x 7→ u(x, 0) is the standard Gauss curve and x 7→ u(x, t0) for
t0 ∈ R is the Gauss curve with maximum at xmax = ct0, i.e., translated
to the right by ct0.

2) For F(s) := e−s2
=: G(s), the solution u(x, t) = e−(x−ct)2

+ e−(x+ct)2

consists of two ‘somewhat overlapping’ Gauss curve shaped waves.
At t = 0, the waves overlap completely, forming one big wave of
shape x 7→ u(x, 0) = 2e−x2

. The larger |t| becomes, the more the
two waves separate, making their two wave crests more and more
distinguishable.

The wave equation is formulated under several simplifying assumption like
for example

• No dissipation, i.e., the equation is invariant under ‘time reversal’
t 7→ −t.
• The amplitude of oscillations is small, i.e., there are no nonlinear

terms like for instance u2.
• No dispersion (dispersion means that waves with different wave

length travel with different phase velocity), i.e., the group velocity
(definition see below) is constant.

Now we follow [Dunajski], relaxing these assumptions by allowing for
dispersion and nonlinearity. To this end, consider the two waves v(x, t) :=
F(x−ct) and w(x, t) := G(x+ct) in the general solution of the 1-dimensional
wave equation and compute

vx(x, t) = F′(x − ct), vt(x, t) = −cF′(x − ct),
wx(x, t) = G′(x + ct), wt(x, t) = cG′(x + ct).

Thus the two waves satisfies the PDEs

vx +
1
c

vt = 0 and wx −
1
c

wt = 0.

Now consider the ‘complex’ wave given by z(x, t) := ei(kx−ω(k)t) where k ∈
Z and ω : R → R. The derivative ω′ of ω is called group velocity. We
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calculate

zx(x, t) = ikei(kx−ω(k)t) = ikz(x, t),

zxx(x, t) = (ik)2ei(kx−ω(k)t) = −k2z(x, t),

zt(x, t) = −iω(k)ei(kx−ω(k)t) = −iω(k)z(x, t),

ztt(x, t) = (−iω(k))2ei(kx−ω(k)t) = −ω2(k)z(x, t).

Thus z(x, t) = ei(kx−ω(k)t) satisfies the wave equation ztt = ϑ2zxx for ϑ =
ω(k)

k .
If we assume ω(k) = ck then ω′(k) = c, i.e., the group velocity equals the
phase velocity and ϑ = c. Then we obtain again the PDE

zx −
1
c

zt = 0.

But if we work for instance with ω(k) := c(k − βk3) with β ∈ R,0, we will
get dispersion, changing the underlying PDEs: We now get

zt = −iω(k)ei(kx−ω(k)t) = −ic(k − βk3)z(x, t)

and compute in addition

zxxx(x, t) = (ik)3ei(kx−ω(k)t) = −ikz(x, t).

Therefore we obtain the PDE

zx + βzxxx +
1
c

zt = 0.

Setting ρ(x, t) := 1
c z(x.t) and j(x, t) := z(x, t) + βzxx(x, t), this PDE becomes

jx + ρt = 0.

In this context, ρ is usually called density and j is said to be the current.
In physics, an identity of the form jx + ρt = 0 is often called conservation
law or continuity equation. If we modify the current by adding a nonlinear
term, i.e., if we consider

j(x, t) := z(x, t) + βzxx(x, t) +
α

2
z2(x, t)

with α ∈ R,0, we obtain a PDE of the form
1
c

zt + zx + βzxxx + αzzx = 0

Applying the variable change x 7→ x − ct and rescaling leads to

ut − 6uux + uxxx = 0.

This equation is called Korteweg-de Vries equation, short KdV, and is
named after the Dutch mathematicians Diederik Johannes Korteweg (1848
– 1941) and Gustav de Vries (1866 – 1934) who found in 1895 an explicit
solution describing a ‘soliton wave’.
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Theorem 4.3 ([Korteweg & de Vries]).

u(x, t) := −
2λ2

cosh2(λ(x − 4λ2t − τ0)
)

with parameter λ ∈ R and position shift τ0 ∈ R is an explicit soliton
solution of the KdV equation ut − 6uux + uxxx = 0.

Proof. Calculate the derivatives of u and verify the equation. A constructive
proof, i.e., how to come up with this formula, can be found in [Dunajski,
Section 2.3.1]. �

We really need all terms in ut − 6uux + uxxx = 0 to obtain solutions with
soliton behaviour:

Remark 4.4. 1) Solutions of ut − 6uux = 0 that form a ‘nice’ soliton at
time t = 0 will break (‘shock’) at some time t0 > 0 due to disconti-
nuities of the first derivatives.

2) ut + uxxx = 0 leads to dispersion, i.e., a ‘nice’ soliton at time t = 0
will dilute at some time t0 > 0 into a bigger wave with preceeding
and following smaller waves.

The next breakthrough came at the end of the 1960s when, in a series of
papers, [Miura], [Miura & Gardner & Kruskal], [Su & Gardner],
[Gardner], [Kruskal & Miura & Gardner & Zabusky],
[Gardner & Greene & Kruskal & Miura] found more soliton solu-
tions and conservation laws, in particular solitons of different size and
speed either passing through each other from opposite directions or over-
taking each other – without changing the shape except while ‘overlapping’.
There are several videos on YouTube demonstrating this phenomenon, see
for example

https://www.youtube.com/watch?v=v5MGNcCnuE4

https://www.youtube.com/watch?v=H4rN3Wr4ctw

There are also other PDEs that admit conservation laws and integrability
properties similar to the KdV equation:

Example 4.5. The Sine-Gordon equation
utt − uxx + sin(u) = 0
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is used when studying surfaces of constant negative curvature.

A YouTube video describing an ‘artistic’ soliton solution of the Sine-
Gordon equation can be found here:

https://www.youtube.com/watch?v=SAbQ4MvDqEE

Example 4.6. The nonlinear Schrödinger equation

iut = −
1
2

uxx + κ |u|2 u

describes propagation of light.

Moreover

Example 4.7. The Camassa-Holm equation
ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx

describes waves in shallow water.

PDEs defined over a discrete space are often called lattices. An important
example was found by the Japanese physicist Morikazu Toda (1917 – 2010)
in 1967:

Example 4.8. The Toda lattice is given by qt(n, t) = p(n, t),

pt(n, t) = e−(q(n,t)−q(n−1,t)) − e−(q(n+1,t)−q(n,t))

where n ∈ Z. It describes a discrete chain of particles, parametrized by
n ∈ Z, that interact with their adjacent left and right ‘neighbours’.

Videos of soliton solutions of the Toda lattice can be found on Gerald
Teschl’s webpage

https://www.mat.univie.ac.at/˜gerald/ftp/book-jac/toda.html

There are various techniques to study these equations. The most popular are
• Hamiltonian formalism,
• Integrals of motion as in the finite dimensional case,
• Hierarchies of equations,
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• Scattering,
• Lax pairs and Lax equation.

In the next section, we will get a taste of the first three items. For the
last two, we refer the reader to the literature, for example to [Batlle],
[Dunajski], and [Miwa & Jimbo & Date].

4.2 Hamiltonian formalism and first inte-
grals of the KdV equation

In this section, we follow [Abraham & Marsden, Example 5.5.7] and drop
almost all mathematical rigor and compute purely formally to get a quick
impression of the Hamiltonian formalism in infinite dimension. Let us just
remark that the underlying space of real-valued functions in one variable E
needs to admit at least three weak derivaties to accommodate for ut−6uux +

uxxx = 0. Moreover the boundary term when integrating by parts need to
vanish, i.e.,

∫
ux(x) v(x) dx =

∫
u(x) vx(x) dx should always hold true.

We refer to [Batlle], [Dunajski], and [Miwa & Jimbo & Date] for the nec-
essary theorie of (pseudo)differential operators and suitable Hilbert and/or
Banach spaces.

We equip the function space E with the symplectic form

ωg(u, v) :=
1
2

∞∫
−∞


x∫

−∞

v(x)u(y) − u(x)v(y) dy

 dx

where g ∈ E is a function g : R → R and u, v ∈ TgE, i.e., x 7→ u(x) ∈
Tg(x)R ' R and x 7→ v(x) ∈ Tg(x)R ' R are vector fields along x 7→ g(x).
Neglecting the foot point g, we consider u and v in the following as func-
tions u, v : R → R. Note that ω is a so-called weak symplectic form such
that we normally should be very careful when switching between the form
and Hamiltonian vector fields. Consider the function

(4.9) H : E → R, H(g) :=

∞∫
−∞

g3(x) +
1
2

(gx)2(x) dx
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whose Hamiltonian vector field XH is indirectly defined via (attention with
the sign convention!)

ω(XH, v) = dH(v).

Lemma 4.10. The Hamiltonian vector field XH of H : (E, ω) → R de-
fined in (4.9) is given by

XH(g) = ∂x(3g2 − gxx) = 6ggx − gxxx.

Proof. We calculate first

dH|g(v) =
d
ds

∣∣∣∣∣
s=0

H(g + sv)

=
d
ds

∣∣∣∣∣
s=0

∞∫
−∞

(g + sv)3(x) +
1
2

((g + sv)x)2(x) dx

This is a parameter depending integral where we – assuming the integrand
to be sufficiently well-behaved – may switch the order of integration and
differentiation:

=

∞∫
−∞

d
ds

∣∣∣∣∣
s=0

(
(g + sv)3(x) +

1
2

((g + sv)x)2(x)
)

dx

=

∞∫
−∞

d
ds

∣∣∣∣∣
s=0

(
g3(x) + 3g2(x)sv(x) + 3g(x)s2v2(x)

+
1
2

(gx)2(x) + gx(x)svx(x) +
1
2

s2(vx)2(x)
)

dx

=

∞∫
−∞

3g2(x)v(x) + gx(x)vx(x)

Finally conclude by means of integration by parts

=

∞∫
−∞

(
3g2(x) − gxx(x)

)
v(x) dx.
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Now abbreviate (XH(g))(z) =: XH(z) ∈ Tg(z)R ' R and consider

ωg(XH(g), v) =
1
2

∞∫
−∞

x∫
−∞

v(x)XH(y) − XH(x)v(y) dy dx

=
1
2

∞∫
−∞

v(x)


x∫

−∞

XH(y) dy

 − XH(x)


x∫

−∞

v(y) dy

 dx

and obtain with integration by parts

=
1
2
· 2

∞∫
−∞

v(x)


x∫

−∞

XH(y) dy

 dx

=

∞∫
−∞

v(x)


x∫

−∞

XH(y) dy

 dx.

Comparison of both sides of ωg(XH(g), v) = dH|g(v) yields
x∫

−∞

XH(y) dy = 3g2(x) − gxx(x)

such that we obtain

(XH(g))(x) = XH(x) = ∂x(3g2(x) − gxx(x)).

�

We conclude

Corollary 4.11. The function H in (4.9) gives rise to the Hamiltonian
equation

∂tu = XH(u) = 6uux − uxx

where u : R × R → R. This equation is equivalent to the standard
Korteweg-de Vries equation

ut − 6uux + uxxx = 0.

Proof. Since we want to observe the change in time we have to ‘move’
g ∈ E by means of a time variable t ∈ R. Therefore replace g : R → R by
u : R × R→ R seen as u(x, t) = (u(x))(t). We find

∂tu = XH(u) = 6uux − uxx
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which is equivalent to ut − 6uux + uxxx = 0, i.e., we regain the Korteweg-de
Vries equation. �

Moreover

Remark 4.12. For ρ(x, t) := u(x, t) and j(x, t) := −3u2(x, t) + uxx(x, t)
we obtain the conservation law

ρt + jx = 0.

More generally

Remark 4.13. Let f be a suitably differentiable function in several vari-
ables. The Hamiltonian H : (E, ω)→ R given by

H(g) :=

∞∫
−∞

f (g(x), gx(x), gxx(x), . . . ) dx

has as Hamiltonian vector field

XH(g) = ∂x

(
δ f
δg

)
where δ f

δg := ∂g f − ∂x

(
∂gx f

)
− ∂2

x

(
∂gxx f

)
− . . . .

Proof. Verify the identity

ωg(XH(g), v) =

∞∫
−∞

δ f
δg

(x) v(x) dx = dH|g(v).

�

Now we want to study integrability notions of the Korteweg-de Vries equa-
tion. Define the Poisson bracket of two functions K, L : E → R as

{K, L} := ω(XK , XL).

We will see that the KdV equation is in fact only one item within
a whole family of similarly generated partial differential equa-
tions. This was discovered and studied in a series of papers
by [Miura], [Miura & Gardner & Kruskal], [Su & Gardner],
[Gardner], [Kruskal & Miura & Gardner & Zabusky],
[Gardner & Greene & Kruskal & Miura] resulting in:
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Theorem 4.14. For g ∈ E, set X1(g) := gx and f1(g) := 1
2g2 and let

a, b ∈ R. Abbreviate D := ∂x which has (on a suitable Hilbert space)
an inverse integration operator denoted by D−1. For j ≥ 2, define

X j(g) :=
(
ag + aDgD−1 + bD2)X j−1

=
(
agD + aDg + bD2)δ f j−1

δg
,

i.e., we have X j(g) = ∂x

(
δ f j

δg

)
.

1) Then the family of equations

ut = X j(u), for j ≥ 1

is called KdV hierarchy or higher order KdV equations and com-
prises for a = 2, b = −1 and j = 2 the standard KdV equation
ut − 6uux + uxxx = 0.

2) The higher order KdV equations ut = X j(u) are Hamiltonian with
Hamiltonian functions F j(g) :=

∫ ∞
−∞

f j(g(x)) dx and Hamiltonian
vector fields XF j = X j.

3) The higher order KdV equations are integrable in the sense that
{F j, Fk} = 0 for all j, k ≥ 1.

4) The Hamiltonian H from the standard KdV equation satisfies H = F2

and therefore {H, Fk} = 0 holds true for all k ≥ 1. Thus all Fk are
integrals of the standard KdV equation.

Proof. 1) X1(u) := ux leads to ut = X1(u) = ux. Now keep in mind that
ux = Du and calculate with a = 2 and b = −1

ut = X2(u) = (2u + 2DuD−1 −D2)Du

= 2uDu + 2D(uD−1Du) −D3u

= 2uux + 2∂x(u2) − uxxx

= 2uux + 4uux − uxxx

= 6uux − uxxx

which is the standard KdV equation ut − 6uux + uxxx = 0.
2) Using the identity X j(g) = ∂x

(
δ f j

δg

)
and applying Remark 4.13 to the

Hamiltonian F j(g) =
∫ ∞
−∞

f j(g(x)) dx, we obtain XF j = X j.
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3) In order to show integrability we first prove a recurrence relation for the
Poisson bracket. We use the short notation X j(z) := X j(g)(z) and compute

{F j, Fk} = ω(XF j , XFk) = ω(X j, Xk)

=
1
2

∞∫
−∞

x∫
−∞

Xk(x)X j(y) − X j(x)Xk(y) dy dx

=
1
2

∞∫
−∞

Xk(x)


x∫

−∞

X j(y) dy

 − X j(x)


x∫

−∞

Xk(y) dy

 dx

=
1
2

∞∫
−∞

Xk(x)


x∫

−∞

∂x

(
δ f j

δg
(y)

)
dy

 − X j(x)


x∫

−∞

∂x

(
δ fk

δg
(y)

)
dy

 dx

=
1
2

∞∫
−∞

Xk(x)
(
δ f j

δg
(x)

)
− X j(x)

(
δ fk

δg
(x)

)
dx.

Integration by parts leads to

=

∞∫
−∞

Xk(x)
(
δ f j

δg
(x)

)
dx(4.15)

=

∞∫
−∞

((
agD + aDg + bD3)δ fk−1

δg

)
(x)

(
δ f j

δg
(x)

)
dx

and another integration by parts yields

= −

∞∫
−∞

(
δ fk−1

δg
(x)

) ((
aDg + agD + bD3)δ f j

δg

)
(x) dx

= −

∞∫
−∞

(
δ fk−1

δg
(x)

)
X j+1(x) dx(4.16)

Reversing the steps that lead to (4.15), we can turn (4.16) into

= −ω(Xk−1, X j+1) = ω(X j+1, Xk−1)
= {F j+1, Fk−1}

thus obtaining the relation

{F j, Fk} = {F j+1, Fk−1}.
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Now we show that in fact {F j, Fk} = 0 holds true for all j, k ≥ 1. First,
consider the case | j − k| even and assume w.l.o.g. that j < k. By increasing
j 7→ j + 1 and decreasing k 7→ k − 1 simultaneously | j−k|

2 times, we obtain

{F j, Fk} = {F j+1, Fk−1} = · · · =
{
F j+k

2
, F j+k

2

}
= 0.

Second, consider the case | j − k| odd and assume w.l.o.g. that j < k. By
increasing j 7→ j + 1 and decreasing k 7→ k− 1 simultaneously | j − k| times,
we obtain

{F j, Fk} = {F j+1, Fk−1} = · · · = {Fk−1, F j+1} = {Fk, F j}.

Since the Poisson bracket is skewsymmetric, we also have

{F j, Fk} = −{Fk, F j}.

Both identities together imply {F j, Fk} = 0.
4) This follows immediately from 3). �



A. Appendix

This appendix recalls various necessary or helpful notions from ODE theory
and differential geometry.

A.1 Manifolds and submanifolds

If one wants to work on, say, the sphere S2 one faces the problem that the
sphere is described implicitly by the equation

S2 =

(x1, x2, x3) ∈ R3

∣∣∣∣∣∣∣
k∑

i=1

x2
i = 1

 .
More precisely, this description of the sphere needs three coordinates al-
though the sphere itself is only 2-dimensional. Therefore two coordinates
should suffice to describe the sphere. Unfortunately, it is only possible to
parametrise – by means of two coordinates – subsets of the sphere but never
the whole sphere if one works with (open subsets of) R2 as domains of def-
inition for the parametrization. Working with (partially) closed domains is
not very practical since one then needs to define differentiability on the
boundary of these sets (which is possible but cumbersome).

Let us now find 2-dimensional ‘patches’ on the sphere that can easily be
parametrized by open sets of R2. Denote by D2 the open unit disk in R2.

87
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Consider the upper and lower halfspheres

S u := {(x1, x2, x3) ∈ S2 | x3 > 0} and S ` := {(x1, x2, x3) ∈ S2 | x3 < 0},

with the maps ψu : S u → D
2 and ψ` : S ` → D

2 given by

ψu(x1, x2, x3) = (x1, x2), ψ−1
u (y1, y2) =

(
y1, y2,

√
1 − y2

1 − y2
2

)
,

ψ`(x1, x2, x3) = (x1, x2), ψ−1
` (y1, y2) =

(
y1, y2,−

√
1 − y2

1 − y2
2

)
.

Moreover, there are the right and left halfspheres

S r := {(x1, x2, x3) ∈ S2 | x2 > 0} and S l := {(x1, x2, x3) ∈ S2 | x2 < 0},

with the maps ψr : S r → D
2 and ψl : S l → D

2 given by

ψr(x1, x2, x3) = (x1, x3), ψ−1
r (y1, y3) =

(
y1,

√
1 − y2

1 − y2
3 , y3

)
,

ψl(x1, x2, x3) = (x1, x3), ψ−1
l (y1, y3) =

(
y1,−

√
1 − y2

1 − y2
3 , y3

)
.

Analogously, we get the front and back halfspheres

S f := {(x1, x2, x3) ∈ S2 | x1 > 0} and S b := {(x1, x2, x3) ∈ S2 | x1 < 0}.

with the maps ψ f : S f → D
2 and ψb : S b → D

2 given by

ψ f (x1, x2, x3) = (x2, x3), ψ−1
f (y2, y3) =

(√
1 − y2

2 − y2
3 , y2, y3

)
,

ψb(x1, x2, x3) = (x2, x3), ψ−1
b (y2, y3) =

(
−

√
1 − y2

2 − y2
3 , y2, y3

)
.

The union
S u ∪ S ` ∪ S r ∪ S l ∪ S f ∪ S b = S2

covers the whole sphere and, on each ‘patch’ S i, the sphere is described by
the ‘2-dimensional coordinates’ ψ−1

i : D2 → S i for all i ∈ {u, `, r, l, f , b}.

Let us now generalize this concept. Recall that a homeomorphism is
a continuous, bijective map whose inverse is also continuous. A Ck-
diffeomorphism is a homeomorphism that is Ck-differentiable and whose
inverse is also Ck-differentiable.

Definition A.1. 1) An m-dimensional Ck-differentiable manifold is a
topological space M together with open subsets Ui ⊆ M and home-
omorphisms ψi : Ui → ψi(Ui) ⊆ Rm such that their composition

ψ j ◦ ψ
−1
i : ψi(Ui ∩ U j) ⊆ Rm → ψ j(Ui ∩ U j) ⊆ Rm

is a Ck-diffeomorphism for all i, j. In case of k = 0, we speak of
topological manifolds, in case of k = ∞ of smooth manifolds.
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2) The pair (Ui, ψi) is called a (coordinate) chart of M and ψ j ◦ ψ
−1
i

change of charts or change of coordinates. The union of all charts
(Ui, ψi) is called an atlas of M.

The suitable notion for ‘subset of manifolds’ is the following.

Definition A.2. Let M be an m-dimensional Ck-manifold and k ∈ N0

with k ≤ m. A subset N ⊆ M is an (embedded) k-dimensional sub-
manifold of M if, for all x ∈ N, there exists a chart (U, ψ) of M with
p ∈ U such that ψ(U ∩ M) = ψ(U) ∩ (Rk × {0}m−k) ⊆ Rm.

If (Ui, ψi)i∈I is an atlas of a manifold M and if N is a submanifold of M, then
the restrictions (N ∩ Ui, ψi|N∩Ui) form an atlas of N.

A.2 (Co)tangent bundle and differential
forms in Rm

If we want to measure the volume of an m-dimensional subset in Rm, we
may use the m-dimensional Lebesgue measure. But if the subset has dimen-
sion m̃ < m, the m-dimensional Lebesgue mesure of this set is zero. It is
a priori not clear how to use the m̃-dimensional Lebesgue measure in Rm

to measure the volume of m̃-dimensional subsets since the sets can lie in a
very complicated way in Rm.

The idea is to come up with a notion that can handle ‘intermediate’ vol-
umes. Let us see what kind of properties this notion must have. Given a
parallelogram Pu,v spanned by two vectors u = (u1, u2)T and v = (v1, v2)T in
R2, its volume is given by

vol(Pu,v) = det(u, v) = u1v2 − u2v1.

Shearing the parallelogram by means of the map (u, v) 7→ (u + λv, u) with
λ ∈ R does not change its volume, algebraically expressed by

det(u + λv, v) = det(u, v) + λ det(v, v) = det(u, v) + λ · 0 = det(u, v).
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Scaling a vectors of the parallelogram by a scalars λ ∈ R corresponds to the
volume transformation

vol(Pλu,v) = det(λu, v) = λ det(u, v) = λ vol(Pu,v).

This suggests that whatever notion we introduce should satisfy
• Multilinearity, i.e., linearity in each variable w.r.t. addition and

scalar multiplication of vectors.
• Skewsymmetry, i.e., the property corresponding to det(u, u) = 0

or, equivalently, det(u, v) = − det(v, u).
Moreover, recall that the infinitesimal change of volume in the transforma-
tion formula of integrals∫

V

f (y) dy =

∫
ψ−1(V)

( f ◦ ψ)(x) |det(Dψ|x)| dx.

is given by the determinant of the Jacobian of the transformation, i.e.,
watching the change of volume of the linearization is enough to describe
the change of volume under the (nonlinear) transformation. This suggests
that our new notion should work on the level of functions and derivatives
(and therefore tangent spaces).

A.2 Tangent bundle

We recall the definition of the tangent space for subsets of Rm. For V ⊆ Rm,
we define the tangent space of V in p ∈ V by

TpV := {p} ×
{

v ∈ Rn

∣∣∣∣∣∣∃ ε > 0, ∃ γ : ] − ε, ε [→ V differentiable,
γ(0) = p, γ′(0) = v

}
which is, by neglecting the foot point p, often seen as

TpV ' {v ∈ Rn | ∃ ε > 0, ∃ γ : ] − ε, ε [→ V diff., γ(0) = p, γ′(0) = v}.

Remark A.3. 1) Let V ⊆ Rm be open. Then TpV ' {p} × Rm for all
p ∈ V.

2) Let f : Rm → Rn be C1 and let r ∈ Rn be a regular value of f . Then
the level set f −1(r) has dimension m − n and Tp

(
f −1(r)

)
= ker D f |p

for all p ∈ f −1(r).
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The tangent space of V is given by

TV :=
⋃
p∈V

TpV

and comes with a natural projection

π : TV → V,

namely sending an element to its foot point. The tangent space TV together
with its projection π to the base space V is usually called tangent bundle.
A map σ : V → TV satisfying π(σ(p)) = p for all p ∈ V is called a section
of TV . It is a map that assigns to each p ∈ V precisely one vector in TpV ,
i.e., a map of the form

v : V → TV, p 7→ vp ∈ TpV.

Remark A.4. The sections of the tangent bundle TV → V are preciesely
the vector fields on V.

A.2 Cotangent bundle

Within this subsection, we assume that V ⊆ Rm is open. Let us use the
coordinates (x1, . . . , xm) on V and consider a point p ∈ V . The curves

t 7→ p + t
(
0, . . . , 0, 1, 0, . . . , 0

)
,

with the 1 at the ith position, all equal p at time t = 0 and have linearly
independent tangent vectors

∂xi |p := (0, . . . , 0, 1, 0, . . . , 0)T ∈ TpV.

Here we keep track of the foot point by writing |p (‘at the foot point p’).
Since dim(TpV) = m, the vectors ∂x1 |p, . . . , ∂xm |p form a basis of TpV . An
arbitrary vector vp ∈ TpV can thus be written as vp =

∑m
i=1 vi|p ∂xi |p. The

dual vector space

(TpV)∗ := {αp : TpV → R | αp linear}

also has dimension m and we endow it with the ‘dual’ basis dx1|p, . . . , dxm|p
by requiring

dxi|p
(
∂x j |p

)
=

{ 1, i = j,
0, i , j.
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A functional αp ∈ (TpV)∗ can thus be written as αp =
∑m

i=1 αi|p dxi|p. Eval-
uating αp on vp using linearity and duality gives

αp(vp) =

 m∑
i=1

αi|p dxi|p

  m∑
i=1

vi|p ∂xi |p

 =

m∑
i=1

αi|pvi|p ∈ R.

The union

(TV)∗ :=
⋃
p∈V

(TpV)∗

is the cotangent space and it also comes with a projection π : (TV)∗ → V
by sending all elements to their foot points. The cotangent space (TV)∗ to-
gether with its projection π to the base space V is usually called cotangent
bundle. Maps σ : V → (TV)∗ satisfying π(σ(p)) = p are called sections.
This are maps that assigns to each p ∈ V precisely one functional in TpV ,
i.e., maps of the form

α : V → (TV)∗, p 7→ αp ∈ (TpV)∗,

meaning αp : TpV → R is linear for all p ∈ V .

A.2 Differential forms in Rm

Now we construct maps from the kfold product of the tangent space to R
that are multilinear and skewsymmetric (often called alternating instead of
skewsymmetric).

Let V ⊆ Rm be open with coordinates (x1, . . . , xm) and, for all p ∈
V , endow TpV with the basis ∂x1 |p, . . . , ∂xm |p and (TpV)∗ with the basis
dx1|p, . . . , dxm|p.

Notation A.5. 1) Functions f : V → R are called 0-forms on V. Eval-
uated at a point p ∈ V, a 0-form is a scalar f (p) ∈ R.

2) Sections α : V → (TV)∗ are called 1-forms on V. Evaluated at a
point p ∈ V, a 1-form is a functional αp ∈ (TpV)∗, meaning, a linear
map αp : TpV → R.

Now we introduce an operation that will produce forms of higher order.
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Definition A.6. 1) The exterior product or wedge product of a 0-
form f and a 1-form α on V is given by the 1-form

f ∧ α := fα

defined by ( f ∧ α)p := ( fα)p := f (p)αp ∈ (TpV)∗ for all p ∈ V.
2) The exterior product or wedge product of two 1-forms α, β on V

is given by the 2-form α ∧ β on V that is defined via

(α ∧ β)p(up, vp) := αp(up)βp(vp) − αp(vp)βp(up)

for all p ∈ V and all up, vp ∈ TpV.

The wedge product for 0- and 1-forms satisfies the following properties:
• f ∧ α = α ∧ f for all 0-forms f and all 1-forms α.
• α ∧ ( fβ) = f (α ∧ β) for all 0-forms f and all 1-forms α and β.
• α ∧ (β + γ) = α ∧ β + α ∧ γ for all 1-forms α, β, γ.
• α ∧ β = −β ∧ α for all 1-forms α, β.

These properties lead to the representation of a 2-form ω as

ω =
∑

1≤i1<i2≤m

ωi1i2dxi1 ∧ dxi2

with ωp =
∑

1≤i1<i2≤m ωi1i2(p)
(
dxi1∧dxi2

)
|p for all p ∈ V , i.e., ωi1i2 : V → R is

a function for all indices 1 ≤ i1 < i2 ≤ m. In particular, we find (neglecting
the foot point notation for the moment)(

dxi ∧ dx j
)
(u, v) = uiv j − u jvi

which recovers the determinant of the vectors u = (u1, . . . , um)T and v =

(v1, . . . , vm)T in case i = 1, j = 2, and m = 2.

Iterating the wedge product with 0-, 1-, and 2-forms leads to arbitrary k-
forms. More precisely

Definition and Proposition A.7. Let k, ` ∈ N0. The exterior product
or wedge product of a k-form α and a `-form β on V is defined as the
(k + `)-form α ∧ β given by

(α ∧ β)p(up, vp) := αp(up)βp(vp) − αp(vp)βp(up)

for all p ∈ V and all up ∈ (TpM)k and all vp ∈ (TpV)`. We have
• f ∧ α = α ∧ f = fα for all 0-forms f and all k-forms α.
• α ∧ ( fβ) = f (α ∧ β) for all 0-forms f , all k-forms α, and all
`-forms β.
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• α ∧ (β + γ) = α ∧ β + α ∧ γ for all k-forms α and all `-forms
β, γ.
• α ∧ β = (−1)k`β ∧ α for all k-forms α and all `-forms β.

These properties lead to the representation of a k-form α as

α =
∑

1≤i1<···<ik≤m

αi1...i2dxi1 ∧ · · · ∧ dxik

with αp =
∑

1≤i1<···<ik≤m αi1...ik(p)
(
dxi1 ∧ · · · ∧ dxik

)
|p for all p ∈ V , meaning,

αi1...ik : V → R is a function for all indices 1 ≤ i1 < · · · < ik ≤ m.

Definition A.8. Let V ⊆ Rm be open, p ∈ V, let k ∈ N≥2, and let
µp :

(
TpV

)k
→ R be a map.

1) µp is multilinear if µp is linear in each variable.
2) µp alternates or is alternating if for all up, vp ∈ TpV

µp(. . . , up, vp, . . . ) = −µp(. . . , vp, up, . . . ).

We set

Λk((TpV)∗
)

:=
{
µp :

(
TpV

)k
→ R

∣∣∣∣ µp multilinear and alternating
}

and
Λk(V) := Λk((TV)∗

)
:=

⋃
p∈V

Λk((TpV)∗
)
.

This space also carries a projection π : Λk(V) → V by sending multilinear,
alternating maps µp to their footpoint p. Sections of the bundle Λk(V)→ V
are maps σ : V → Λk(V) satisfying π(σ(p)) = p.

Remark A.9. 1) k-forms can be seen as multilinear, alternating maps.
More precisely, a k-form α is a section

α : V → Λk(V), p 7→ αp ∈ Λk((TpV)∗
)
.

2) Alternating implies that, on spaces of dimension m, all k-forms with
k > m vanish.

We will need the following definition for the definition of symplectic forms.

Definition A.10. A 2-form ω on V ⊆ Rm is nondegenerate if, for all
p ∈ V, ωp(up, vp) = 0 for all vp ∈ TpV implies up = 0.
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In local coordinates, a 2-form ω on an open V ⊆ Rm can be represented by
a skewsymmetric (m × m)-matrix Ω defined by the equation

(A.11) ωp(up, vp) = (up)T Ωpvp ∀ p ∈ V, ∀ up, vp ∈ TpV.

Being nondegenerate means in terms of linear algebra that det(Ωp) , 0 for
all p ∈ V .

Lemma A.12. Nondegenerate 2-forms only exist on even dimensional
spaces.

Proof. Let ω be a nondegenerate 2-form on V ⊆ Rm and represent it,
for all p ∈ V , by its skewsymmetric (m × m)-matrix as in (A.11). Then
the skewsymmetry implies det(Ωp) = (−1)m det(Ωp) for all p ∈ V . Thus
det(Ωp) , 0 is only possible if m is even. �

The following map is of high importance in (co)homology theory since it
represents the boundary operator of De Rham cohomology.

Definition and Proposition A.13.
Let k ∈ N0. The operator d : Λk(V)→ Λk+1(V) given on 0-forms f by

(d f )p :=
m∑

i=1

∂xi f (p)dxi|p

for all p ∈ V and on k-forms α =
∑

1≤i1<···<ik≤m αi1...i2dxi1 ∧ · · · ∧ dxik by∑
1≤i1<···<ik≤m

(dαi1...i2) ∧ dxi1 ∧ · · · ∧ dxik

is called exterior derivative and satisfies d ◦ d = 0.

The following types of forms are the ‘building blocks’ of so-called chain
complexes in cohomology theory.

Definition A.14. A k-form α is closed if dα = 0. A k-form is exact if
there exists a (k − 1)-form β with dβ = α.

Note that d ◦ d = 0 implies that exact forms are closed.
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Lemma A.15 (Poincaré). Locally, all closed forms are exact.

Proof. See for example [Warner] or [Petersen] or [Bott & Tu]. �

Given a map, there is a way to construct new k-forms out of old ones. If the
map is a diffeomorphism, we can invert the construction.

Definition and Proposition A.16. Let U,V ⊆ Rm be open and ψ : U →
V surjective and differentiable. Let α be a k-form on V. The pullback
of α under ψ defines the k-form ψ∗α on U via(

ψ∗α
)

p
(
(u1)p, . . . , (uk)p

)
:= αψ(p)

(
Dψ|p.(u1)p, . . . ,Dψ|p.(uk)p

)
for all p ∈ U and all (u1)p, . . . , (uk)p ∈ TpU. The pullback satisfies the
following properties:

• ψ∗ f = f ◦ ψ for all 0-forms f : V → R.
• ψ∗(cα) = c(ψ∗α) for all constants c ∈ R and all k-forms α.
• ψ∗(α + β) = ψ∗α + ψ∗β for all k-forms α, β.
• d(ψ∗α) = ψ∗(dα) for all surjective, differentiable ψ : U → V

and all k-forms α on V.

A.3 Differential forms on manifolds

This section still needs to be written... Roughly we can already say that one
tries to ‘pull back’ all definitions from Rm to the manifold M by means of
the charts (Ui, ψi). Since there may be several charts covering one point in
the manifold, one has to show that this is welldefined... ...which is a bit
tedious...

A.4 Flows of autonomous ODEs
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Let M be an m-dimensional smooth manifold, ζ ∈ M and X a vector field
on M that is locally Lipschitz. Then the initial value problem

z′ = X(z), z(0) = ζ

has a unique maximal solution defined on an interval Iζ containing 0. We
denote this solution by zζ : Iζ → M. Instead of only tracking the ‘time
variable’ t ∈ Iζ , we can also consider the dependence of zζ on the ‘space
variable’ ζ, meaning, we may study the mapping (t, ζ) 7→ zζ(t). It satisfies
zζ(0) = ζ and ∂tzζ(t) = X(zζ(t)). This motivates

Definition and Proposition A.17. Let M be a smooth manifold and X a
Ck-vector field on M with k ≥ 1. Set V :=

⋃
ζ∈M Iζ × {ζ} ⊆ R × M. Then

V is open and the (local) flow of z′ = X(z) is given by the Ck-mapping

Φ : V → M, Φt(ζ) := Φ(t, ζ) := zζ(t).

It satisfies
(i) Φ0(ζ) = ζ ∀ ζ ∈ M,

(ii) Φt+s(ζ) = Φt(Φs(ζ)) ∀ ζ ∈ M, ∀ s, (t + s) ∈ Iζ .

Switching from the Φ(t, ζ) to the Φt(ζ) notation is motivated by the other-
wise rather cumbersome formulation of properties (i) and (ii). The property
Φt ◦ Φs = Φt+s is often called flow property. It means that flowing first for
time s and then additionally for time t is the same as flowing directly for
time (t + s). The property Φ0 = Id says that flowing for time t = 0 simply
means stay where you are.

Φt(ζ) = zζ(t) has the following geometric meaning: consider ζ ∈ M and
follow the solution zζ from ζ = zζ(0) for time t. The point reached by the
solution zζ at time t is Φt(ζ). We often use the following short notation for
properties (i) and (ii):

Φ0 = Id : M → M en Φt ◦ Φs = Φt+s.

Moreover, it is often useful to fix t and consider the induced map

Φt : M → M

that shows the ‘evolution’ of the differential equation when ‘jumping’ di-
rectly from time 0 to time t. In this notation, compare the meaning of the
(partial) derivatives:

DΦt|p = ∂pΦ|(t,p) en
d
dt

∣∣∣∣∣
t=0

Φt(p) = ∂tΦ|(t,p).
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The flow property implies

Corollary A.18. Φt : M → M is invertible and (Φt)−1 = Φ−t.

An autonomous differential equation or its flow is called complete if Iζ =

R for all ζ ∈ M. For example, flows on compact (sub)manifolds without
boundary like spheres or tori are always complete.

Around regular points, the flow can be ‘ironed’ into a nice normal form:

Theorem A.19 (Flow box theorem). Let x′ = f (x) be an autonomous
ODE with flow Φ on a smooth manifold M and let z ∈ M be a regular
point, i.e., f (z) , 0. Then there exists a neighbourhood U ⊆ M of z and
a neighbourhood Ũ ⊆ Rn of the origin and a coordinate transformation
ψ : U → Ũ such that ψ(z) = 0 and x′ = f (x) is transformed on Ũ into

y′1 = 1,
y′2 = 0,
...

y′n = 0,

which has flow Φ̃t(z̃) = z̃ + te1 where e1 = (1, 0, . . . , 0) ∈ Rn, i.e., the
transformed flow is parallel to the y1-axis.

Proof. See for example [Hohloch2] or [Teschl]. �

This means in particular that the flow of an ODE near regular points always
looks the same up to a coordinate transformation.

Definition A.20. A fixed point z of an ODE x′ = f (x) is hyperbolic if
D f |z has no eigenvalues of the form iσ with σ ∈ R.

Near hyperbolic fixed points, the ODE is C0-conjugate to its linearization:

Theorem A.21 (Hartman-Grobman). Let x′ = f (x) be an autonomous
ODE with flow Φ on a smooth, n-dimensional manifold M. Let z ∈ M
be a hyperbolic fixed point. Denote the flow of y′ = D f |z.y on TzM ' Rn
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by Ψ. Then there exist open neighbourhoods U ⊆ M of z and V ⊆ Rn of
the origin 0 ∈ Rn and a homeomorphism h : U → V such that

h(Φt(x)) = Ψt(h(x))

for all t ∈ R and x ∈ U with Φt(x) ∈ U.

Proof. See for example [Palis & de Melo]. �

A.5 Some results from (functional) analysis

We recall some useful notions from global and functional analysis. For more
details, see for example [Hohloch1] and the references therein.

Definition A.22. Let (X, ‖ ‖X) and (Y, ‖ ‖Y) be normed vector spaces
over a field F and T : X → Y a map.
1) T is a linear operator if

T (λx + x̃) = λT (x) + T (x̃) ∀ x, x̃ ∈ X, ∀ λ ∈ F.

2) A linear operator T is bounded if

∃ C > 0 : ‖T (x)‖Y ≤ C ‖x‖X ∀ x ∈ X.

3) The set of linear bounded operators from X to Y is denoted by
B(X,Y).

4) The operator norm of T ∈ B(X,Y) is given by

‖T‖ := sup{‖T (x)‖Y | x ∈ X, ‖x‖X ≤ 1}.

5) The space B(X,R) and B(X,C) are the real and complex dual space
of X. Sometimes they are denoted by X∗ or X′ in the literature.

Moreover

Definition A.23. Let (X, ‖ ‖X) and (Y, ‖ ‖Y) be Banach spaces and U ⊆ X
open. f : U → Y is (Fréchet) differentiable in x ∈ U if there exists
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Tx ∈ B(X,Y) such that

lim
h→0

‖ f (x + h) − f (x) − Tx(h)‖Y
‖h‖X

= 0.

If such a Tx exists it is usually denoted by D f |x or d f (x) and called the
(Fréchet) derivative of f in x ∈ U. The map f is (Fréchet) differen-
tiable if f is (Fréchet) differentiable in all x ∈ U.

Higher regularity is defined as follows.

Definition A.24. Let X,Y be Banach spaces, U ⊆ X open and f : U →
Y Fréchet differentiable. f is Ck for k ∈ N≥1 if the following map is
Ck−1 :

U → B(X,Y), x 7→ D f |x

The Inverse function theorem from the finite dimensional setting generalizes
verbatim to Banach spaces:

Theorem A.25 (Inverse function theorem). Let X,Y be Banach spaces
and U ⊆ X open, and f : U → Y a Ck-map with k ∈ N≥1. Let x0 ∈ U
with D f |x0 ∈ B(X,Y) bijective. Then there exists an open neighbour-
hood U0 ⊆ U of x0 such that the restriction f |U0 : U0 → Y is injective,
V0 := f (U0) is open in Y and(

f |U0

)−1 : V0 → U0 is Ck and (D f −1)|y =
(
D f | f −1(y)

)−1
∀ y ∈ V0.

Proof. Cf. appendix of [McDuff & Salamon]. �

When generalizing the Implicite function theorem from the finite dimen-
sional setting, things get more interesting. First we define

Definition A.26. Let X,Y be Banach spaces, U ⊆ X open and pathcon-
nected, and f : U → Y a Ck-map.
1) f is a Fredholm map if D f |x is a Fredholm operator for all x ∈ U.
2) If f is a Fredholm map we define its Fredholm index via

Ind( f ) := Ind(D f |x) ∀ x ∈ U.
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Moreover, we need

Definition A.27. Let X,Y be Banach spaces, U ⊆ X open and f :
U → Y a Ck-map. y ∈ Y is a regular value of f if D f |x ∈ B(X,Y)
is surjective for all x ∈ f −1(y) ⊆ U.

The following theorem displays the geometric implications Fredholm maps
have. Note that Rn with its usual norms is a Banach space and that linear
maps between finite dimensional vector spaces are always Banach. So the
finite dimensional version of the implicite function theorem is well included
in the following infinite dimensional version.

Theorem A.28 (Implicite function theorem). Let X,Y be Banach
spaces, U ⊆ X open, f : U → Y a Ck-map with k ∈ N≥1, and y ∈ Y
a regular value of f . Then M := f −1(y) ⊆ X is a Ck-Banach manifold
whose tangent space satisfies

TxM = ker D f |x ∀ x ∈ M.

If f is Fredholm then M is a finite dimensional manifold where the di-
mension of the connected component of M containing x is given by

dim(TxM) = dim(ker(D f |x)) < ∞.

Proof. Cf. appendix of [McDuff & Salamon]. �

It remains to inquire how ‘typical’ it is for a value y ∈ Y to be regular.

Theorem A.29 (Sard’s Theorem). Let X,Y be separable Banach
spaces, U ⊆ X open, f : U → Y a Ck-map with k ≥ max{1, Ind( f ) + 1}.
Then

Yreg( f ) := {y ∈ Y | y regular value of f }
is of second Baire category, i.e., it is a countable intersection of open
and dense sets.

Proof. Cf. appendix of [McDuff & Salamon]. �
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