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Abstract. In this paper, we provide tools to study the dynamics of point vor-
tex dynamics on CPn and the flag manifold F1,2(C3). These are the only Kähler
twistor spaces arising from 4-manifolds. We give an explicit expression for Green’s
function on CPn which enables us to determine the Hamiltonian H and the equa-
tions of motions for the point vortex problem on CPn. Moreover, we determine
the momentum map µ : F1,2(C3)→ su∗(3) on the flag manifold.
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1. Introduction

1.1. Point vortex dynamics. The problem of dynamics of interacting point vor-
tices goes back to the work of Helmoltz [Hel67] in the 19th century and can be formu-
lated intuitively in its simplest form as follows. Consider N points z1, . . . , zN (which
we shall refer to as ‘vortices’) in the plane C ' R2 with coordinates zk = xk + iyk.
Let Γ1, . . . ,ΓN ∈ R6=0 be real, non-zero numbers simulating the ‘vortex strength’ of
each point. The equations determining this dynamical system are given by the N
differential equations

żj =
1

2πi

N∑
k=1

Γk
zj − zk

for 1 ≤ j ≤ N.

The signs of the vortex strengths determine the sense of rotation of each vertex.
This system is in fact an example of a Hamiltonian system. Endow CN with the
symplectic form Ω :=

∑N
k=1 Γkτ

∗
kωst where ωst is the standard symplectic form on

C and τk : CN → C the projection on the kth component. Denote by r(zj, zk) :=
|zj − zk| the Euclidean distance between points zj, zk ∈ C ' R2 and set

DiagN(C) := {(z1, . . . , zN) ∈ CN | zj = zk for some 1 ≤ j, k ≤ N with j 6= k}.

Abbreviate z := (z1, . . . , zN) and consider the Hamiltonian function given by

H : CN \ DiagN(C)→ R, H(z) := − 1

4π

∑
k 6=j

ΓjΓk log(r(zj, zk)).

Identifying zk = xk + iyk ' (xk, yk), the Hamiltonian equations are then given by{
ẋj = − 1

Γj
∂yjH(x1, . . . , xN , y1, . . . , yN),

ẏj = 1
Γj
∂xjH(x1, . . . , xN , y1, . . . , yN),

for 1 ≤ j ≤ N.

Then one obtains the following three constants of motion (see for instance Galajinsky
[Gal22]) which reflect the invariance under translation and rotation of the system:

px(z) :=
N∑
j=1

Γj<(zj), py(z) :=
N∑
j=1

Γj=(zj), m(z) :=
1

2

N∑
j=1

Γj|zj|2

where < denotes the real part and = the imaginary part of a complex number.
More generally, Lin [Lin41] showed the following to be a fitting model for point
vortex dynamics: Let (M,ω) be a symplectic manifold and consider the spaceM :=
ΠN
k=1M \ DiagN(M) as phase space of N moving vortices z1, . . . , zN with vortex

strengths Γk ∈ R6=0 for 1 ≤ k ≤ N . Let G be the fundamental solution (also called
Green’s function) of the Laplace-Beltrami operator and set

R : M → R, R(z) := lim
s→z

(
G(s, z)− 1

2π
log r(s, z)

)
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which is often referred to as Robin function. The Hamiltonian of the system is then
given by

H :M→ R, H(z1, . . . , zN) :=
∑

1≤j<k≤N

ΓiΓjG(zj, zk) +
N∑
k=1

Γ2
kRg(zk).

Green’s function describes the interaction between pairs of distinct vortices and R
describes self-interactions of the vortices. On homogeneous manifolds, R is often
neglected due to symmetry reasons.

The equations of the point vortex problem are exactly the Euler equation arising
in the discretization of fluid equations in mathematical modeling problems, see Aref
[Are07], and Angrand [ADG85] for the corresponding numerics.

During the past years, quite some work has been done on generalizing this ap-
proach to other symplectic manifolds, for example:

(1) On the 2-spheres S2 with SO(3)-invariant symplectic form and Hamilton-
ian vector field, see Crowdy [Cro06], Laurent-Polz & Montaldi & Roberts
[LPMR11], Lim & Montaldi & Roberts [LMR01].

(2) There has also been some research done on the cylinder concerning periodic
motion, see Montaldi & Souliere & Tokieda [MST03], Dritschel & Boatto
[DB15].

(3) Point vortices on the cylinder, see Montaldi & Souliere & Tokieda [MST03].
(4) Point vortices on the hyperbolic plane, see Montaldi & Nava-Gaxiola [MNG14].
(5) Point vortices on CP2 with underlying symmetry group SU(3), see Montaldi

& Shaddad [MS19a, MS19b].

A natural question is if the examples from above can be generalised to higher di-
mension. This naturally yields larger and more complicated symmetry groups. For
example, in the case of the 2-sphere, the symmetry group is G = SO(3). But
since the spheres S2n for n > 1 do not admit a symplectic structure, generalizing
straightforward to higher dimensions with SO(m)-symmetry does not necessarily
make sense. Nevertheless, since CP1 ∼= S2 on can intuitively think of CPn as the
‘best symplectic approximation’ of the (n+ 1)-sphere, albeit with underlying higher
dimensional symmetry group SU(n).

1.2. Relation to twistor spaces. In the late seventies, Atiyah [AHS78] intro-
duced the twistor theory for a 4-dimensional Riemannian manifold, relating it to
3-dimensional complex analysis. A few years later, in a paper by Hitchin [Hit81],
the question arose which complex manifold could be obtained by using Atiyah’s
twistor construction on compact 4-manifolds. More precisely, the question was:
which 4-manifolds have a twistor space which is Kähler?

Surprisingly, there are not many, namely only the 4-sphere S4 and the projective
plane CP2 have Kähler twistor spaces. More specifically, the twistor space T (S4) is
the complex projective space CP3 and T (CP2) is the 6-dimensional flag manifold (or
Wallach space) F1,2(C3) = W6 = SU(3)/T2. In this paper, we will be in particular
interested in the spaces CPn and the 6-dimensional flag manifold F1,2(C3) in the
context of point vortex dynamics.
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1.3. Main results. One of the goals of this paper is to obtain an explicit expression
for the Hamiltonian of the point vortex problem on certain coadjoint orbits in order
to write down explicitly the equations of motion, look for conserved quantities, and
analyse the underlying algebraic structure.

We are interested in symplectic manifolds with canonical SU(n)-symmetry ob-
tained by the coadjoint action of SU(n) on its dual Lie algebra su(n)∗. Specifically,
we will focus on the case n = 3. There exist exactly two coadjoint orbits, namely
the six dimensional ‘generic’ orbit

OSU(3) =
SU(3)

U(1)× U(1)
∼= F1,2(C3)

and the four dimension ‘degenerate’ orbit (the meaning of this will become clear
later on)

OSU(3)
d =

SU(3)

SU(2)× SU(1)
∼= CP2

where the index d refers to degenerate.
The first main question that we address in this paper arose from the following

context: Montaldi & Shaddad [MS19a, MS19b] studied the point vortex dynamics

only on the degenerate orbit OSU(3)
d but not on the generic one. Thus a natural

question is to investigate the point vortex problem on the generic orbit OSU(3).
Before we start with the associated momentum map we need some notation. Let
B be the subgroup of upper triangular matrices of SL(3,C). Then we may identify
F1,2(C3) ' SL(3,C)/B (see Lemma 3.7 for details) of which the elements are of the
form  1 0 0

z1 1 0
z2 z3 1

 =: Z ∈ SL(3,C)/B

with z1, z2, z3 ∈ C. Define the functions K1, K2 : F1,2(C3)→ R by

K1(Z) := 1 + |z1|2+|z2|2 and K2(Z) = 1 + |z3|2+|z1z3 − z2|2.
Theorem 1.1. The momentum map of the left action of SU(3) on the generic coad-
joint orbit OSU(3) = F1,2(C3) ' SL(3,C)/B is explicitly given by

µ : SL(3,C)/B → su(3)∗,

 1 0 0
z1 1 0
z2 z3 1

 7→ (µij)1≤i,j≤3

where (µij)1≤i,j≤3 is the traceless, anti-Hermitian matrix with entries

µ11 =
1

3

(
x2

3 + y2
3 + 2

K2

− x2
2 + y2

2 − 1

K1

)
,

µ22 =
1

3

(
−2x2

2 + 2y2
2 + 1

K1

− x2
3 + y2

3 − 1

K2

)
,

µ33 = −(µ11 + µ22),

µ12 =
(iy1 − x1) (x3 − iy3)− iy2 + x2

K2

− x1 − iy1

K1

,



POINT VORTEX DYNAMICS ON KÄHLER TWISTOR SPACES 5

µ13 =
(iy1 − x1) (x3 − iy3)− iy2 + x2

K2

− x1 − iy1

K1

,

µ23 =
iy3 + x3

K2

− (x1 + iy1) (x2 − iy2)

K1

.

The remaining entries are determined by the fact that the matrix is anti-Hermitian.

Theorem 1.1 is restated as Theorem 4.3 and proven in Section 4. We do not
yet have an explicit formula for the Hamiltonian H on F1,2(C3) since this requires
an explicit expression of Green’s function on F1,2(C3) which turned out to be more
involved than expected and will be treated in a future work.

The second main question that we solved in this paper was motivated by the works
of Montaldi & Shaddad [MS19a, MS19b] about the dynamics of the generalised
vortex problem on CP2 on which they worked without an explicit expression for the
Hamiltonian. In fact, it is possible to compute the Hamiltonian of the point vortex
problem for general CPn explicitly. The answer involves first computing Green’s
function on CPn (stated and proven as Theorem 5.5 in Section 5):

Theorem 1.2. Consider CPn with the Fubini-Study metric. Then Green’s function
is given by G : (CPn × CPn) \ Diag2(CPn)→ R with

G(ξ, η) = − 1

2n · vol(CPn)

(
log(sin(r(ξ, η)))−

n−1∑
j=1

1

2j sin2j(r(ξ, η))

)

where r(ξ, η) = arccos
√
〈ξ,η〉H〈η,ξ〉H
〈ξ,ξ〉H〈η,η〉H

is the geodesic distance between two point in CPn

and 〈·, ·〉H is the Hermitian inner product.

The following theorem is stated and proven as Theorem 5.6 in Section 5.

Theorem 1.3. The Hamiltonian for the N point vortex dynamics on the projective
space CPn is explicitly given by

H : (CPn)N \ DiagN(CPn) → R,

H(ζ) = − 1

2(n− 1)!πn

N∑
α<β

ΓαΓβ

(
log(sin(r(ζα, ζβ)))−

n−1∑
j=1

1

2j sin2j(r(ζα, ζβ))

)
where ζ = (ζ1, . . . , ζN) and r(ζα, ζβ) is the geodesic distance on CPn between the two
points given by

r(ζα, ζβ) = arccos

√
〈ζα, ζβ〉H〈ζβ, ζα〉H
〈ζα, ζα〉H〈ζβ, ζβ〉H

,

where 〈·, ·〉H is the Hermitian inner product.

As already explained above, we do not yet have an explicit formula for the Hamil-
tonian H on F1,2(C3) since we do not yet have an explicit expression of Green’s
function on F1,2(C3). The hope (see Section 5.4) is to make use of the fibration

S2 −→ F1,2(C3) −→ CP2
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and to obtain Green’s function on F1,2(C3) from Green’s functions on S2 and CP2

and thus obtain the Hamiltonian on F1,2(C3). This is planned to be carried out in
a future work.

1.4. Organisation of the paper. We give a quick overview of this paper:

• In Section 2, we recall necessary notions and results from Lie algebras, rep-
resentation theory and differential geometry.
• In Section 3, we consider geometric and algebraic features and properties of

the two coadjoint orbits OSU(3)
d ' CP2 and OSU(3) ' F1,2(C3).

• In Section 4, we analyse the momentum map for various situations.
• In Section 5, we study Green’s function in various settings and compute

an explicit formula for it on CPn. After that, we compute the associated
Hamiltonian function.

Acknowledgments. The authors wish to thank Marine Fontaine for helpful dis-
cussions and useful comments. S. Hohloch was partially and G. Muarem was fully
supported by the FWO-EoS project ‘Symplectic Techniques in Differential Geome-
try’ G0H4518N.

2. Preliminaries

2.1. Notions and conventions from group actions and Lie theory. Let G be
a compact Lie group with Lie algebra Lie(G) = g and dual algebra g∗. The (left)
action of a Lie group G on a manifold M is denoted by the map Φ : G×M → M
which satisfies for all x ∈M

(1) Φ(e, x) = x,
(2) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G.

We usually write the action briefly as g · x or simply gx. Recall that Lie group
actions are smooth. Moreover, the isotropy subgroup or stabilizer of a point m is
given by the closed subgroup Gm := {g ∈ G | gm = m}. The orbit under G of a
point m ∈M is given by

Om := {gm ∈M | g ∈ G} ⊆M.

Lying in the same orbit gives rise to an equivalence relation on the manifold M
via x ∼ y ⇔ gx = y for x, y ∈ M and g ∈ G. The space consisting of all these
equivalence classes is called the orbit space and denoted by M/G. Now consider the
action of a Lie group G on itself by conjugation

cg : G→ G, h 7→ ghg−1.

Identifying the Lie algebra g with the tangent space TeG at the neutral element
e ∈ G and differentiating cg in e, we obtain for all g ∈ G

Adg : TeG ' g → TeG ' g, AdgX = gXg−1

with adjoint representation

Ad : G× g→ g, (g,X) 7→ Adg(X).
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As dual notation, we have the coadjoint representation

Ad∗ : G× g∗ → g∗, (g, α) 7→ Ad∗g−1α = gαg−1.

For every µ ∈ g∗, the set

Oµ := {Ad∗g µ | for all g ∈ G} ⊆ g∗

is the coadjoint orbit of G through µ.
Note that, in general, the adjoint and coadjoint representations (and thus the re-

sulting orbits) are not isomorphic, see for instance counterexamples given by groups
of Euclidean type (cf. Arathoon & Montaldi [AM18]).

In this paper, we are working with Lie algebras that consist of matrices. Here the
dual pairing between g and g∗ is given by the so-called Killing form κ(·, ·) which is
a multiple of the trace of the product of the two matrices. For example, for su(n),
the Killing form is given by

κsu(n)(X, Y ) = trace(XY ) for all X, Y ∈ su(n). (2.1.1)

We denote the pairing between g and g∗ by

〈·, ·〉 : g→ g∗, X 7→ κX where κX(Y ) := κ(X, Y ) for all X, Y ∈ g.

2.2. Exponential of a matrix. In the context of Lie groups and Lie algebras, the
exponential map is defined as

exp : g→ G, X 7→ γ(1)

where γ : R→ G is the unique one-parameter subgroup of G for which the tangent
vector at the identity is X. In the case of a matrix Lie group, the exponential map
is given by

exp(A) :=
∞∑
k=0

1

k!
Ak for all (n× n)-matrices A,

briefly called the exponential of the matrix A. If A = Diag(a11, . . . , ann) is a diagonal
matrix we obtain Ak = Diag(ak11, . . . , a

k
nn) and therefore

exp(A) =
∞∑
k=0

1

k!
Diag(ak11, . . . , a

k
nn) = Diag

(
∞∑
k=0

1

k!
ak11, . . . ,

∞∑
k=0

1

k!
aknn

)
= Diag (ea11 , . . . , eann) .

If A is diagonalisable with A = PDP−1, where P is the matrix of eigenvectors and
D is the diagonal matrix with the eigenvalues on the diagonal, then

Ak = (PDP−1)k = PDP−1 · · ·PDP−1 = PDkP−1

and therefore

exp(A) = P exp(D)P−1. (2.2.1)
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2.3. Symplectic manifolds, Hamiltonian dynamics, and momentum maps.
A symplectic manifold (M,ω) is a smooth manifold M equipped with a symplectic
form ω which is a closed non-degenerate differential 2-form, i.e. dω = 0 and whenever
ωx(u, v) = 0 for all u ∈ TxM then v = 0. This implies in particular that symplectic
manifolds are always even dimensional.

Given a symplectic manifold (M,ω), the map

TM → T ∗M, X → ιXω where ιXω(Y ) := ω(X, Y ) for all Y ∈ TM

is an isomorphism, often referred to as contraction of ω by a vector field. Symplectic
manifolds are the natural geometric background for Hamiltonian dynamics: Given
a smooth function H : M → R, its Hamiltonian vector field (also called symplectic
gradient) is defined via ιXHω = dH. In this situation, H is often referred to as
Hamiltonian function. Let G be a Lie group G with Lie algebra Lie(G) = g and
assume that the action G ×M → M is by symplectomorphisms, i.e, for all g ∈ G,
the map M → M , x 7→ g.x is a symplectomorphism. Denote by 〈·, ·〉 the dual
pairing 〈·, ·〉 : g∗ × g→ R. Every ξ ∈ g gives rise to a vector field Xξ via

Xξ(x) =
d

dt

∣∣∣∣
t=0

exp(tξ) · x

for all x ∈M . The momentum map for this G-action on (M,ω) is a map µ : M → g∗

such that

d(〈µ, ξ〉) = ιXξω

for all ξ ∈ g where

〈µ, ξ〉 : M → R, x 7→ 〈µ(x), ξ〉.

2.4. Weyl group and coadjoint orbits of SU(n). In this paper, we are in par-
ticular interested in the coadjoint orbits of the Lie group SU(3) since they are can
be chosen to be the setting for vortex dynamics on the projective plane CP2 and
the flag manifold F1,2(C3).

Let us start with fixing notation and recalling some properties of this Lie group
and its Lie algebra. The general linear group is defined as

GL(n,C) = {A ∈ Matn(C) | detA 6= 0}.

The maximal compact simply connected Lie subgroup of GL(n,C) is given by

SU(n) = {U ∈ Matn(C) | UUT
= 1, detU = 1}.

We have dimR SU(n) = n2 − 1. The Lie algebra su(n) of SU(n) can be identified
with

{U ∈ Matn(C) | UT
= −U, traceU = 0},

meaning all (n × n)-matrices which are skew-Hermitian matrices with trace zero.
Our convention for the Lie bracket is [A,B] = AB − BA for all A,B ∈ su(n). We
say that A,B ∈ su(n) commute if [A,B] = 0.

In what follows, we will often work with the following basis of su(3):
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Notation 2.1. The following eight traceless traceless (3×3)-matrices are known as
the Gell-Mann matrices.

λ̃1 =

0 1 0
1 0 0
0 0 0

 λ̃2 =

0 −i 0
i 0 0
0 0 0

 λ̃3 =

1 0 0
0 −1 0
0 0 0

 λ̃4 =

0 0 1
0 0 0
1 0 0


λ̃5 =

0 0 −i
0 0 0
i 0 0

 λ̃6 =

0 0 0
0 0 1
0 1 0

 λ̃7 =

0 0 0
0 0 −i
0 i 0

 λ̃8 =
1√
3

1 0 0
0 1 0
0 0 −2

.
We have [λ̃3, λ̃8] = 0 and no other of these matrices commute with both λ̃3 and λ̃8.
The set {

λk :=
i

2
λ̃k

∣∣∣∣ k = 1, . . . , 8

}
forms a (rescaled) basis for the Lie algebra su(3), often called Gell-Mann basis.

Remark 2.2. The fact that only λ3 and λ8 commute (see Notation 2.1) implies that
SU(3) has rank two so that there are two Casimirs denoted by C1, C2 ∈ su(3), i.e.,
[C1, λk] = [C2, λk] = 0 for all k = 1, . . . , 8. Explicitly, we have C1 =

∑8
k=1 λkλk and

C2 = 8
∑8

j,k,`=1 djk`λjλkλ` where I3 is the (3× 3) unit matrix and djk` the so-called

structure constants of su(3).

We will now recall the so-called Weyl group. Let E be a finite dimensional vector
space over R and let 〈·, ·〉E be an inner product on E. A roots system Φ ⊂ E is a
finite set of non-zero vectors, called roots such that:

(1) The set of roots Φ spans the space E.
(2) If α ∈ Φ and c ∈ R, then cα ∈ Φ if and only if c = ±1.

(3) σα(β) := β − 2 〈α,β〉E〈α,α〉E
α ∈ Φ for all α, β ∈ Φ, i.e. Φ is invariant under σα for

all α ∈ Φ which is the reflection about the hyperplane orthogonal to α.

(4) (α, β) := 2 〈α,β〉E〈α,α〉E
∈ Z for all α, β ∈ Φ, i.e. the projection of β onto the line

through α is an integer or half-integer multiple of α.

A subset Φ+ ⊂ Φ is called a positive root system if

(1) for all α ∈ Φ, either α ∈ Φ or −α ∈ Φ,
(2) for all α, β ∈ Φ+, we have α + β ∈ Φ+.

Denote by O(E) := {A ∈ GL(E) | 〈Av,Aw〉E = 〈v, w〉E, for all v, w ∈ E} the
orthogonal group consisting of all elements in E preserving the inner product. The
(finite) subgroupW ≤ O(E) generated by all reflections σα with α ∈ Φ is called the
Weyl group associated to Φ. Denote the hyperplane perpendicular to α ∈ Φ by Πα.
The closure of a connected component of E \{Πα | α ∈ Φ} is called a Weyl chamber.
We define the positive Weyl chamber (with respect to a fixed choice of Φ+) as the
closed set

C = {x ∈ E | 〈x, α〉E ≥ 0 for all α ∈ Φ+}.
Given a positive root system, there is only one positive Weyl chamber. Let G be a
Lie group and consider a maximal torus H ⊂ G (i.e. a compact, connected, abelian
Lie subgroup of G which is maximal with respect to these properties) and the Cartan
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algebra Lie(H) := h ⊂ g with dual h∗. Note that a maximal torus is unique up to
conjugation. In the case of SU(n) the situation is as follows:

Example 2.3. The maximal torus T of SU(n) is given by the diagonal matri-
ces Diag(eiθ1 , . . . , eiθn) such that

∏n
j=1 e

iθj = 1. The Lie algebra Lie(T ) =: t (i.e.

the Cartan algebra) is then given by the space of traceless diagonal matrices t ={
Diag(θ1, . . . , θn)

∣∣∣ ∑n
j=1 θj = 0

}
. Thus, the interior t0+ of the positive Weyl cham-

ber t+ is given by

t+ =
{

(x1, . . . , xn) ∈ Rn
∣∣∣ x1 > x2 > · · · > xn and

∑
xi = 0

}
and the closure t+ = t+ is given by replacing > by ≥ in the above set. Here the
Weyl group is the symmetric group Sym(3) generated by the positive roots α, β,
α + β sketched in Figure 1. It permutes in fact all roots.

α

β α + β

−α

−α− β −β

Figure 1. Root diagram of su(3) where the positive roots are given

by α = (1, 0), β =
(
−1

2
,
√

3
2

)
and α + β =

(
1
2
,
√

3
2

)
. The simple roots

are given by α and β. The blue shaded area is the positive Weyl
chamber.

The orbits of the Weyl group are described by Bott’s theorem:

Theorem 2.4 (Bott). Let G be a Lie group with Lie algebra g and Cartan subalgebra
h and dual h∗. Let Oµ be a coadjoint orbit of G. Then Oµ ∩ h∗ is an orbit of the
Weyl group.

This implies that each coadjoint orbit O of G is uniquely defined by a starting
point µ0 ∈ h∗ in the (closed) positive Weyl chamber (for more details, see for example
Bernatska & Holod et al. [BH08]).

Definition 2.5. Denote the interior of the positive Weyl chamber W by W ◦ and
its boundary by ∂W . The coadjoint orbit of a point µ0 ∈ W ◦ is said to be a generic
orbit. The coadjoint orbit of a point µ0 ∈ ∂W is called a degenerate orbit.
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Example 2.6. The group SU(3) has exactly two coadjoint orbits, a generic one of
dimension six and a degenerate one of dimension four. The generic orbit is denoted
by OSU(3) and can be identified with

OSU(3) =
SU(3)

U(1)× U(1)
.

The degenerate orbit is denoted by OSU(3)
d and can be identified with

OSU(3)
d =

SU(3)

SU(2)× SU(1)
∼= CP2.

3. Geometric structures of coadjoint orbits of SU(3)

In this section, we characterize coadjoint orbits of SU(3) by their algebraic and
geometric properties and, eventually, describe their Kähler structure.

3.1. Coadjoint orbits characterized by eigenvalues. Let (X, {·, ·}) be a Pois-
son manifold. A maximal connected submanifold Y ⊂ X for which the Poisson
structure descends to a symplectic structure is called a symplectic leaf. Moreover,
the Poisson manifold is foliated by its symplectic leaves. Let g be a Lie algebra with
dual g∗. Then there is a canonical Poisson structure on g∗ called the Lie-Poisson
structure. In this case, the symplectic leaves are the coadjoint orbits. A smooth
function C : g → R is called a Casimir function if C is constant on each coadjoint
orbit, or equivalently, if C is invariant under the coadjoint action of G on g∗. Recall
that level sets of Casimir functions C : g∗ → R are symplectic manifolds (see for
instance Arnaudon & De Castro & Holm [ADCH18]) and that coadjoint orbits lie on
level sets of Casimir functions (since they are invariant under the coadjoint action).

In the case of su(n), the Casimir functions are given by

Cj : su∗(n)→ R, A 7→ trace(Aj)

for j = 1, . . . , n − 1 where Aj := A ◦ . . . ◦ A is the j-fold composition. For n = 3,
we may therefore study the dynamics on the intersection of the Casimir level sets
C1 = c1 and C2 = c2 for some constants c1 and c2. The set {C1 = c1} ∩ {C2 = c2}
can be identified with the space

M := {A ∈ Mat3(C) | A = A
T
, trace(A) = 0, trace(A2) = c1, trace(A

3) = c2}

which can be seen as phase space of a SU(3)-invariant dynamical system. In the
generic case, we have dim(M) = 6 and, in the degenerate case, dim(M) = 4 which
corresponds to the dimensions of two coadjoint orbits of SU(3), see Example 2.6.

Lemma 3.1. The phase space M is isomorphic as vector space to the space

{A ∈ Mat3(C) | A = A
T
, A has eigenvalues λ1 ≥ λ2 ≥ λ3 with λ1 + λ2 + λ3 = 0}.

Proof. The characteristic polynomial χA for a traceless Hermitian matrix A can be
written non-factorized and factorized:

χA = det(A− λI3) = −λ3 − 1

2
trace(A2)λ+

1

3
trace(A3) = (λ1 − λ)(λ2 − λ)(λ3 − λ).
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In the non-factorized version, two coefficients are expressed by the trace and, in the
factorized version, the eigenvalues of the matrix appear. Comparing the coefficients
in the expression above with the definition of M and the claim in the statement
yields the bijection. �

Let Λ := Diag(λ1, λ2, λ3) with (λ1, λ2, λ3) ∈ R3 and set OΛ = {AΛA−1 | A ∈
SU(3)}. The spectral theorem for Hermitian matrices states that the eigenvalues of
a Hermitian matrix are real and that the eigenvectors corresponding to these eigen-
values are orthogonal. This allows to deduce the following bijective correspondence:{

coadjoint orbits
of SU(3)

}
←→

{
OΛ with λ1 + λ2 + λ3 = 0

and λ1 ≥ λ2 ≥ λ3

}
This leads to three types orbits (of which one is trivial):

(i) All three eigenvalues are distinct. Then the stabilizer is given by Diag(α, β, αβ)
with α, β ∈ C and the coadjoint orbit is

OSU(3) =
SU(3)

U(1)× U(1)
=

U(3)

U(1)× U(1)× U(1)
.

We will see in Section 3.2 that this orbit can be identified with a six dimensional
flag manifold.

(ii) Two eigenvalues are equal. The stabilizer is given by the block diagonal ma-
trix Diag(A, detA) where A ∈ U(2). In this case the coadjoint orbit can be
identified with

OSU(3)
d = SU(3)/U(2) ∼= CP2.

(iii) All eigenvalues are equal. In this case, the stabilizer is SU(3) so that the orbit
is trivial (since λ1 + λ2 + λ3 = 3λ = 0 implies λ = 0).

Remark 3.2. More generally, setting Λ := Diag(λ1, . . . , λn) with (λ1, . . . , λn) ∈ Rn

and λ1 ≥ · · · ≥ λn and
∑n

i=1 λi = 0, the coadjoint orbits of SU(n) are of the form
OΛ = {AΛA−1 | A ∈ SU(n)}.

3.2. Coadjoint orbits seen as flag manifolds. The four dimensional degenerate
orbit space has a nice geometrical interpretation as CP2. We will now see that
there is also a nice geometric characterisation of the generic orbit as a so-called flag
manifold (of which the degenerate orbit CP2 is a special case).

Definition 3.3. Consider Cn and let r ∈ {1, . . . , n}. A flag fk1,...,kr;n in Cn is a
nested sequence of vector subspaces Vk1 ( · · · ( Vkr in Cn such that dimC Vkj = kj
for all 1 ≤ j ≤ r. The space of all such flags is denoted by Fk1,...,kr(Cn).

Remark 3.4. Fk1,...,kr(Cn) is a compact, complex and smooth manifold and is usu-
ally referred to as the flag manifold. Note that all flag manifolds are in fact generali-
sations of projective spaces. The flag manifold F1(Cn) is precisely CPn−1. Moreover,
the flag manifold Fk(Cn) is the space of k-dimensional vector subspaces of Cn, i.e.,
the Grassmannian.

For n = 3, k1 = 1 and k2 = 2, we obtain the generic coadjoint orbit of SU(3)

OSU(3) = F1,2(C3) = {(L, P ) | L ⊂ P ⊂ C3 with dimC(L) = 1, dimC(P ) = 2}.
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This space also appears in the context of so-called Wallach manifolds introduced by
Wallach [Wal72] which we will describe now. Consider the linear map J : C2n → C2n

defined as

J(z1, . . . , zn, zn+1, . . . , z2n) = (z2n, . . . , zn+1,−zn, . . . ,−z1).

The group Sp(n) is defined as

Sp(n) = {A ∈ SU(2n) | AJ = JĀ}.
Let F(4) be the 52-dimensional exceptional simple Lie group. Moreover, recall that
the universal cover of the orthogonal group SO(8) is called the spin group and is
denoted by Spin(8). The Wallach manifolds W 6 of dimension six, W 12 of dimension
twelve, and W 24 of dimension twenty-four are given by

W 6 :=
SU(3)

U(1)× U(1)
, W 12 :=

Sp(3)

Sp(1)× Sp(1)× Sp(1)
and W 24 :=

F(4)

Spin(8)
.

These are all compact Riemannian manifolds of positive curvature. Moreover, these
manifolds can be thought of as the total space of the following homogeneous fibra-
tions:

S2 −→ W 6 −→ CP2,

S4 −→ W 12 −→ HP2,

S8 −→ W 24 −→ OP2.

For more details on these fibrations, we refer the reader to Dearricott & Galaz-Garciá
et al. [Dea14] and the references therein.

Remark 3.5. On each flag manifold there is a natural action of the isometry group
of CP2, resp. HP2, resp. OP2. When looking at these fibrations, one might ask if
it is possible to generalise the point vortex dynamics to HP2 and OP2. However,
neither HP2 nor OP2 admit a symplectic structure since HP2 is a quaternionic Kähler
manifold and these are not symplectic. Moreover, any symplectic manifold admits
compatible almost-complex structures, but OP2 does not admit one.

3.3. Examples of coadjoint orbits of SU(4). In this article, we mainly focus on
the two coadjoint orbits of SU(3) given by CP2 and F1,2(C3). Now we want to have
a brief glance at the situation for SU(4) (see Bernatska & Holod [BH08]).

coadjoint orbit type dimension name

SU(4)/U(1)3 generic 12 F1,2,3(C4) (‘full flag’)

SU(4)/SU(2)× U(1)× U(1) degenerate 10 F1,2(C4) (‘partial flag’)

SU(4)/S(U(2)× U(2)) degenerate 8 Gr2(C4) (Grassmannian)

SU(4)/SU(3)× U(1) degenerate 6 CP3 (projective space)

The ‘partial flag manifold’ F1,2(C4) consists of pairs (L, P ) where L is a one-
dimensional and P is a two-dimensional subspace of C4 such that L ⊂ P . There are
natural projections ϕ1(L, P ) = L and ϕ2(L, P ) = P .
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A fibre bundle over A with fibre B with map τ is denoted by E(A,B, τ). We have
in particular that the generic orbit is a fibre bundle over a degenerate orbit, more
precisely (see Bernatska & Holod [BH08])

SU(4)

U(1)3
= E(CP3,F1,2(C3), τ2) = E(Gr2(C4),CP1, τ2),

and the three degenerate spaces are in connection with each other by the following
double fibration:

F1,2(C4) CP3

Gr2(C4)

τ2

τ1

As a general remark, the partial flag manifold F1,2(C4) can also be described in
terms of algebraic geometry by using the Plücker embedding. In the case of the
Grassmannian this embeddings has an interesting interpretation:

Gr2(C4) ↪→ P
(∧2

C4
)
∼= CP5.

Thus, the image of the Grassmannian is a quadric in CP5, often called the Klein
quadric.

3.4. Bruhat decomposition and induced coordinates. So far, we described
the coadjoint orbits in terms of matrices and gave a geometrical interpretation in
terms of flag manifolds. Now we will focus on the analytical structure which will
allow us to determine the Laplace operator to the aim of finding the corresponding
Green’s function. For that, we need a bit of notation:

A closed subgroup P of a Lie group G is parabolic if the quotient variety G/P
satisfies the following property: for any variety Y , the projection map (G/P )×Y →
Y maps closed set to closed sets. Furthermore, a closed, connected and solvable
subgroup of G is called a Borel subgroup. Note that all Borel subgroups are mutually
conjugate.

Given a Lie algebra g over R, its complexification is defined by gC := g ⊗R C.
Moreover, recall that a real subalgebra f of a complex Lie algebra h is called a real
form of h if every h ∈ h can be uniquely written as h = h1 + ih2 with h1, h2 ∈ f.
The complexification of f yields again h, i.e., fC ∼= h. Note that not every complex
Lie algebra has a real form. Moreover, there are in general several non-isomorphic
real forms for a given complex Lie algebra:

Example 3.6. The Lie algebra sl(3,C) has the following (non-isomorphic) real
forms:

sl(3,R) =


a b c
d e f
g h −(a+ e)

∣∣∣∣∣∣ a, b, c, d, e, f, g, h ∈ R

 ,
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su(1, 2) =


a+ bi c+ di ei
f + gi −2bi −c+ di
hi −f + gi −a+ bi

∣∣∣∣∣∣ a, b, c, d, e, f, g, h ∈ R

 ,

su(3) =


 ai c+ di g + hi
−(c− di) ib e+ fi
−(g − hi) −(e− fi) −i(a+ b)

∣∣∣∣∣∣ a, b, c, d, e, f, g, h ∈ R

 .

The first one is called the split real form, the second one quasi-split form, and the
last one is referred to as compact form.

Let G be a compact and connected Lie group. The complexification of G is
defined as the complex Lie group GC that contains G as a closed subgroup and that
has the following (universal) property: every homomorphism f : G → L, for every
complex Lie group L, lifts to a homomorphism GC → L. Moreover, on the level of
Lie algebras, Lie(GC) = gC is the complexification of Lie(G) = g.

The following result was proven in more generality by Picken [Pic90], but we
sketch the proof here for the reader’s convenience.

Lemma 3.7. Denote by B the subgroup of upper triangular matrices of SL(3,C).
Then there is an isomorphism SU(3)/T2 ∼= SL(3,C)/B.

Proof. Take a matrix g ∈ SL(3,C) and denote its columns by g
k

for k = 1, 2, 3

so that the matrix can be written as g = (g
1
, g

2
, g

3
). Let 〈·, ·〉H be the Hermitian

inner product on C3 given by 〈x, y〉H = x1ȳ1 + x2ȳ2 + x3ȳ3 for x = (x1, x2, x3), y =
(y1, y2, y3) ∈ C3. A priori, the vectors g

k
are not orthonormal. Nevertheless, using

the Gramm-Schmidt procedure they can be made orthonormal:

g′
1

: = g
1

g′
2

: = g
2
−
〈g

2
, g′

1
〉

〈g′
1
, g′

1
〉
g′

1

g′
3

: = g
3
−
〈g

3
, g′

2
〉

〈g′
2
, g′

2
〉
g′

2
−
〈g

3
, g′

1
〉

〈g′
1
, g′

1
〉
g′

1

Normalising each of them via vk :=
g′
k

||g′
k
|| , the matrix given by U = (v1, v2, v3) is an

element of SU(3). Moreover, it satisfies U = gb′ for some upper triangular matrix
b′ ∈ B which performs the Gramm-Schmidt procedure on g. Thus g = U(b′)−1

lies in SL(3,C)/B. This means that we can write SL(3,C) = SU(3)B and that
SU(3) ∩ B = T2 (this intersection exactly result in the 2-torus). This induces
the wanted isomorphism in the following way: take an equivalence class [g]B ∈
SL(3,C)/B which can also be written as [Ub]B (see Gramm-Schmidt procedure). It
is then mapped to [U ]T2 ∈ SU(3)/T2. �

The power of this isomorphism lies in the fact that one can make the transition
from the geometrical picture of the coadjoint orbit (as being the flag manifold re-
alised as the homogeneous space SU(3)/T2) to the complex manifold SL(3,C)/B.
This is convenient as there exists a well-developed theory of so-called Bruhat coor-
dinates on the complex manifold, which will be useful for our approach.
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Definition 3.8. Let g be a semi-simple Lie algebra with Cartan algebra h and root
system Φ. The weight space decomposition of a Lie algebra g is given by the direct
sum decomposition g = h⊕

⊕
α∈Φ gα where gα = {X ∈ g | [H,X] = α(H) for H ∈

h}. All α ∈ h∗ that are non zero are called roots.

Recall that a Lie algebra is simple if g is not abelian and g has no non-trivial
ideals. For a simple Lie algebra g, we have the triangular decomposition

g = n− ⊕ h⊕ n+

where h is the Cartan subalgebra and n± :=
⊕

α∈Φ± gα are the so-called upper and
lower nilpotent subalgebras consisting of the positive (resp. negative) roots of g.
Moreover, set

b± := h⊕ n±

and call them the upper and lower Borel subalgebras. On the Lie group level, B±

and N± are called the Borel subgroups and unipotent subgroups of the Lie group G.
In particular, we say that N− is the opposite unipotent subgroup.

Let G be a semisimple Lie group with Lie algebra g. Consider a Borel subgroup
B ≤ G and the Weyl group W associated with G. Then the Bruhat decomposition
of G is given by G =

⋃
w∈W BwB. This decomposition gives rise to the cell decom-

position of the homogeneous space G/B =
⋃
w∈W BwB/B. Each of the BwB/B

corresponds to an affine space of dimension `(w) where `(w) is the length of the
Weyl group element w given by the minimal k such that w can be written as a
product of k generators of the Weyl group. Note that there is always an element in
the Weyl groupW which has maximal length, in this case the length of this element
equals the number of positive roots Φ+. This element in the Weyl group is denoted
by wo ∈ W . It has the property that w0(Φ+) = Φ−, i.e. it interchanges the positive
and negative roots. In the Bruhat decomposition

G/B =
⋃
w∈W

BwB/B,

the identity element e gives rise to an open subset BeB which is called the big cell
and is denoted by Xe. The flag manifold is identified with the space SL(3,C)/B
where B is the subgroup of upper triangular matrices. In this context, we have

N− =


 1 0 0
z1 1 0
z2 z3 1

∣∣∣∣∣∣ z1, z2, z3 ∈ C

 .

Proposition 3.9 ([BMHM94]). N− acts freely and transitively on the big cell Xe.
Thus we may identify Xe with N−.

Note that the translates g ·N− of the big cell (under the G-action) cover the whole
flag manifold.

The flag manifold F1,2(C3) can also be seen as

F1,2(C3) = {(V1, V2) ∈ CP2 × (CP2)∗ | V2(V1) = 0}. (3.4.1)

This means intuitively that the manifold F1,2(C3) consists of all pairs (V1, V2) where
V2 is a projective line in CP2 and V1 is a point on the line.
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Theorem 3.10 ([BMHM94]). Consider the group SL(3,C) and the Borel subgroup
B of upper triangular matrices. Let R1 := [0 : 0 : 1] ∈ CP2 and R2 := [0 : x : y] ∈
(CP2)∗. Then the (Bruhat) cell-decomposition of SL(3,C)/B consists of the following
six cells (where the indices in the Bruhat cell correspond to the group elements of
the symmetric group in three elements, see Table 1):

(1) The big cell, which has codimension zero, is given by

Xe := {(V1, V2) ∈ F1,2(C3) | R2(V1) 6= 0, V2(R1) 6= 0}.

(2) There are two Bruhat cells of codimension one given by

X(1,2) := {(V1, V2) ∈ F1,2(C3) | R2(V1) = 0, R1 6= V1, R2 6= V2},
X(2,3) := {(V1, V2) ∈ F1,2(C3) | V2(R1) = 0, R1 6= V1, R2 6= V2}.

(3) There are two Bruhat cells of codimension two given by

X(1,2,3) := {(V1, V2) ∈ F1,2(C3) | V1 = R1, R2 6= V2},
X(1,3,2) := {(V1, V2) ∈ F1,2(C3) | V2 = R2, R1 6= V1}.

(4) The 0-cell, which has codimension three, is given by

X(1,3) := {(V1, V2) ∈ F1,2(C3) | V1 = R1, R2 = V2}.

Moreover, the opposite unipotent subgroup N− acts transitively on the big cell X.

Recall that the Weyl group of SL(3,C) is isomorphic to Sym(3), the symmetric
group of order three. We now give an overview how the elements of Sym(3) corre-
spond to the elements of the Weyl group and their associated Bruhat decomposition
and Weyl length.

To work on the flag manifold F1,2(C3), we need explicit coordinates.

Corollary 3.11. The big cell of the flag manifold F1,2(C3) = SL(3,C)/B can be
identified with N−. This leads to the following coordinate chart for the big cell of
F1,2(C3):

N− → C3 ' R6,

 1 0 0
z1 1 0
z2 z3 1

 7→ (z1, z2, z3) ' (x1, x2, x3, y1, y2, y3). (3.4.2)

3.5. The Kähler structure of coadjoint orbits. Let M be a complex manifold
of complex dimension n with local coordinates (z1, . . . , zn) ∈ Cn. Then a Hermitian
metric h is of the form

h =
n∑

i,j=1

hijdzi ⊗ dzj

where (hij)1≤i,j≤n is a positive-definite Hermitian matrix. A complex manifold M
equipped with a Hermitian metric h is called a Hermitian manifold. A Hermitian
manifold (M,h) carries a natural symplectic form, more precisely, the (1, 1)-form
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Group element Bruhat expression Length Matrix representation

e empty word 0

1 0 0
0 1 0
0 0 1


(1, 2) s1 1

0 −1 0
1 0 0
0 0 1


(2, 3) s2 1

1 0 0
0 0 1
0 −1 0


(1, 2, 3) s1s2 2

0 0 −1
1 0 0
0 −1 0


(1, 3, 2) s2s1 2

 0 −1 0
0 0 1
−1 0 0


(1, 3) s1s2s1 3

 0 0 −1
0 −1 0
−1 0 0


Table 1. Bruhat expressions.

given by imaginary part of the Hermitian metric h is symplectic and has the explicit
expression

ω := −=(h) = − 1

2i
(h− h) =

i

2

∑
1≤i,j≤n

hijdzi ⊗ dzj − hjidzi ⊗ dzj

=
i

2

∑
1≤i,j≤n

hij(dzi ⊗ dzj − dzj ⊗ dzi) =
i

2

∑
1≤i,j≤n

hijdzi ∧ dzj.

This ω is often referred to as the fundamental form on (M,h).
An almost complex structure J on a smooth manifold M is an isomorphism

J : TM → TM with J2 = − Id. Such a J is integrable if the so-called Nijenhuis
tensor

NJ(X, Y ) := [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

vanishes for all vector fields X, Y on the manifold M .
A symplectic manifold (M,ω) is Kähler if there exists an integrable almost com-

plex structure J such that the bilinear form g(u, v) := ω(u, Jv) is symmetric and
positive definite for all u, v ∈ TM , i.e., g is a Riemannian metric.

A Hermitian manifold (M,h) resp. h is Kähler if the fundamental form −=(h)
is closed, i.e. −d=(h) = 0. Moreover, in this situation, −=(h) is in fact a (real)
symplectic form on (M,h).
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Lemma 3.12. Let (M,h) be a Kähler manifold. Then for all p ∈ M there exists a
open neighbourhood U of p and a function KU : U → R such that

hij = ∂zi∂z̄jKU(zi, z̄j) for all 1 ≤ i, j ≤ n

for local complex coordinates z on U . This locally defined function is usually called
the Kähler potential and denoted by KM .

Note that (hij)1≤i,j≤n is defined globally, whereas the potential is only defined
locally. Using the Dolbeault operators

∂ :=
n∑
k=1

∂zkdzk and ∂ :=
n∑
k=1

∂zkdzk,

the fundamental (1, 1)-form can be expressed as ω = i∂∂KM .

Example 3.13. On R2n ∼= Cn, consider the Euclidean metric gE, the standard
symplectic form ωst, and standard compatible complex structure Jst given in matrix
notation by

gE =

(
In 0
0 In

)
, ωst =

(
0 In
−In 0

)
, Jst =

(
0 −In
In 0

)
where In is the (n× n)-unit matrix. Then KCn : Cn → R given by KCn(z) := |z|

2
is

a Kähler potential since

i∂∂

(
|z|
2

)
=
i

2
∂∂

n∑
k=1

zkzk =
i

2

n∑
k=1

dzk ∧ dzk.

An important class of Kähler manifolds is given by coadjoint orbits:

Theorem 3.14 (Bott). Let G be a semi-simple compact Lie group. Each (co)adjoint
orbit has a G-equivariant Kähler structure.

Later on, we will study the point vortex dynamics modelled on the degenerate
orbit CP2 and the generic orbit given by flag manifold F1,2(C3). Therefore it is
useful to know their Kähler potentials.

Lemma 3.15 (Picken [Pic90]). The Kähler potentials on CPn and on the flag man-
ifold are given by the following logarithmic functions depending on local coordinates
(1 : z1 : z2 : · · · : zn) on CPn and the local coordinates from Corollary 3.11 for the
flag manifold F1,2(C3).

KCPn = log

(
1 +

n−1∑
k=1

|zk|2
)
, (3.5.1)

KF1,2(C3) = log
(
(1 + |z1|2+|z2|2)(1 + |z3|2+|z1z3 − z2|2)

)
=: log(K1K2). (3.5.2)

Moreover,

Lemma 3.16 (Muñoz & González-Prieto & Rojo [MGPR20]). In homogeneous co-
ordinates (1 : z1 : z2 : · · · : zn) ∈ CPn, the Hermitian metric h = (hij)1≤i,j≤n on CPn
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takes the following form:

hij =
(1 + |z1|2+|z2|2)δij − zizj

(1 + |z1|2+|z2|2)2
=

(1 + |z|2)δij − zizj
(1 + |z|2)2

where δij is the Kronecker symbol. Written as matrix, we have

(hij)ij =
1

(1 + |z|2)2


1 + |z|2−|z1|2 −z̄1z2 · · · −z̄1zn
−z̄2z1 1 + |z|2−|z2|2 · · · −z̄2zn

...
...

. . .
...

−z̄nz1 −z̄nz2 · · · 1 + |z|2−|zn|2

.
Its determinant is given by det(hij) = 1

(1+|z|2)n+1 .

Lemma 3.17. Recall from Lemma 3.15 the real valued functions

K1 = 1 + |z1|2+|z2|2 and K2 = 1 + |z3|2+|z1z3 − z2|2.

Then the Hermitian metric (hij)1≤i≤j≤3 on F1,2(C3) has the following matrix repre-
sentation:

(hij)1≤i,j≤n =


1+|z2|2
K2

1
+ |z3|2(1+|z3|2)

K2
2

− z1z2
K2

1
− z3(1+|z3|2)

K2
2

z3(z1+z2z3)

K2
2

− z1z2
K2

1
− z3(1+|z3|2)

K2
2

1+|z1|2
K2

1
+ 1+|z3|2

K2
2

− z1+z2z3
K2

2
z3(z1+z2z3)

K2
2

− z1+z2z3
K2

2

K1

K2
2

 .

Its determinant is given by det((hij)1≤i,j≤n) = 2
K2

1K
2
2
.

Proof. Recall from Lemma 3.15 the expression for the Kähler potential

log(1 + |z1|2+|z2|2)(1 + |z3|2+|z1z3 − z2|2) = logK1K2 = logK1 + logK2.

The entries of the matrix (hij)1≤i≤j≤3 are computed via hij = ∂zi∂z̄jKM(zi, z̄j).
Exemplarily we now compute the entry

h11 = ∂z1∂z1 log((1 + |z1|2+|z2|2)) + ∂z1∂z1 log(1 + |z3|2+|z1z3 − z2|2).

The first term in this expression becomes

∂z1
z1

1 + |z1|2+|z2|2
=

(1 + |z1|2+|z2|2)− z1z1

(1 + |z1|2+|z2|2)2
=

1 + |z2|2

K2
1

and the second one

∂z1
z3(z1z3 − z2)

1 + |z3|2+|z1z3 − z2|2
=
|z3|2(1 + |z3|2+|z1z3 − z2|2)− |z3|2|z1z3 − z2|2

(1 + |z3|2+|z1z3 − z2|2)2

=
|z3|2(1 + |z3|2)

K2
2

.

Altogether, we obtain

h11 =
1 + |z2|2

K2
1

+
|z3|2(1 + |z3|2)

K2
2

.

The other entries are computed analogously. �

A straightforward computation yields:
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Corollary 3.18. The inverse matrix ((hij)1≤i≤j≤3)−1 =: (hij)1≤i≤j≤3 is given by: K1

(
1 + |z1|2+K1

K2

)
K1

(
z1z2 + K1

K2
z3

)
(z1 + z3z2)(z1z2 − z3 − z3|z1|2)

K1

(
z1z2 + K1

K2
z3

)
K1

(
(1 + |z2|2) + K1

K2
|z3|2

)
(z1 + z2z3)

(
(1 + |z2|2)− z1z2z3

)
(z1 + z3z2)(z1z2 − z3 − z3|z1|2) (z1 + z2z3)

(
(1 + |z2|2)− z1z2z3

)
K1(1 + |z3|2) +

K2
2

K1


where K1 = 1 + |z1|2+|z2|2 and K2 = 1 + |z3|2+|z1z3 − z2|2.

3.6. Different symplectic structures. Important for us is the following result
due to Kirillov, Kostant and Souriau:

Theorem 3.19. Let G be a Lie group and g its Lie algebra with dual g∗ and µ ∈ g∗.
Then the coadjoint orbit Oµ carries the canonical symplectic form

ωKKSν (ad∗ξ ν, ad∗η ν) := 〈ν, [ξ, η]〉,

where ξ, η ∈ g and ν ∈ Oµ. This symplectic form is usually called the Kirillov-
Kostant-Souriau (KKS) symplectic form.

This implies that, considered as coadjoint orbit, the flag manifold F1,2(C3) =
SU(3)/T2 can be endowed with ωKKS as symplectic form. Note that there is an
additional way to consider F1,2(C3) as symplectic manifold: We consider the com-

plexification of SU(3)/T2 given by (SU(3)/T2)
C

= SL(3,C)/B. Using the coordinates
on the big cell given in (3.4.2) and the Hermitian metric from Lemma 3.17, Picken
& Duistermaat [Pic90] give the following formula for the symplectic form on (W 6)C:

ω(W 6)C :=
i

2

(
∂∂ log

(
1 +

2∑
k=1

|zk|2
)

+ ∂∂ log
(
1 + |z3|2+|z1z3 − z2|2

))
.

Note that, if ωCP2
denotes the Fubini-Study form on CP2 then the symplectic form

ω(W 6)C consists of the Fubini-Study form ωCP2
= i

2
∂∂ log

(
1 +

∑2
k=1|zk|2

)
on CP2

plus the correction term ω̃ = i
2
∂∂ log (1 + |z3|2+|z1z3 − z2|2) , i.e., ω(W 6)C = ωCP2

+ω̃.

Remark 3.20 (Picken & Duistermaat [Pic90], Bernatska & Holod et al. [BH08]).(
(W 6)C, ω(W 6)C

)
and

(
F1,2(C3) = SU(3)/T2, ωKKS

)
are symplectomorphic.

Summarized, we have the following types of coadjoint orbits of SU(3), each en-
dowed with its natural symplectic structure:

coadjoint orbit symplectic form (real) dimension

SU(3)
U(1)×U(1)

Kirillov-Kostant-Souriau 6

CP2 Fubini-Study 4

point trivial 0

Table 2. Coadjoint orbits of SU(3).
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4. The point vortex momentum map on CP2 and F1,2(C3)

In this section, we will study the Hamiltonian action of SU(3) on (products of)
coadjoint orbits. In the case of the degenerate orbit, the dynamics have been studied
before: for example, the Hamiltonian action of SU(3) on CP2×CP2 has been studied
by Beddulli & Gori [BG07]. Moreover, Montaldi & Shaddad [MS19a] considered a
similar problem but added a copy of the projective plane. To be more precise, they
considered the (diagonal) action of SU(3) on CP2 × CP2 × CP2 and the associated
properties of the (weighted) momentum map. We will focus on the generic orbit,
which is the six-dimensional flag manifold and construct a momentum map µ :
OSU(3) → su(3)∗ explicitly.

4.1. The momentum map for vortex dynamics. Let N ∈ N and, for 1 ≤ k ≤
N , let Γk ∈ R6=0 (‘weight’) and let (Mk, ωk) be a symplectic manifold. Let G be a
Lie group that acts on each (Mk, ωk) with momentum map µk : Mk → g∗. Now set

M := ΠN
k=1Mk and equip it with the weighted symplectic form ωM :=

∑N
k=1 Γkτ

∗
kωk

where τk : M → Mk is the projection on the kth factor. The diagonal action of G
on M is given by g.m := (g.m1, . . . , g.mN) for g ∈ G and m = (m1, . . . ,mN) ∈ M
and its momentum map is given by

µM : M → g∗, µM(m1, . . . ,mN) =
N∑
k=1

Γkµk(mk).

We are interested in the special situation when the symplectic manifolds Mk are
coadjoint orbits i.e. (Mk, ωk) = (O, ωO). In the next subsections, we study momen-
tum maps of vortex dynamics for the following two situations:

µOSU(3)
d

: OSU(3)
d ' CP2 → su(3)∗ and µOSU(3) : OSU(3) ' F1,2(C3)→ su(3)∗.

Recall that we identify su(3) with su(3)∗ using the Killing form. Thus, su(3) ∼=
su(3)∗ is identified with the space of complex skew-Hermitian matrices with trace
zero.

4.2. The momentum map of the degenerate orbit OSU(3)
d ' CP2. In this

subsection, we recall some facts from Montaldi & Shaddad [MS19b] concerning the

momentum map of the degenerate coadjoint orbit OSU(3)
d ' CP2 of SU(3).

Theorem 4.1 (Montaldi & Shaddad [MS19b]). The momentum map for the Fubini-
Study form on CP2 is given by

µ : CP2 → su(3)∗, [x : y : z] 7→

|x|2−1
3

xy xz
xy |y|2−1

3
yz

xz yz |z|2−1
3

 .

Furthermore, the map satisfies the following properties:

(i) µ is SU(3)-equivariant for the left action, i.e. µ(gZ) = gµ(Z) for all g ∈ SU(3)
and all Z ∈ CP2.

(ii) The image of µ consists of (3×3) Hermitian matrices with eigenvalues −1
3
,−1

3

and 2
3
.



POINT VORTEX DYNAMICS ON KÄHLER TWISTOR SPACES 23

Proof. We briefly sketch a part of the proof: the characteristic polynomial χ(u) of
the matrix µ(x, y, z) is given by

χ(u) = (|x|2+|y|2+|z|2)

(
u2 +

2

3
u+

1

9

)
− u3 − u2 − u

3
− 1

27
.

Solving the equation χ(u) = 0 and using the fact that |x|2+|y|2+|z|2= 1 gives the
three eigenvalues u1 = −1

3
, u2 = −1

3
and u3 = 2

3
. �

4.3. The momentum map of the generic orbit OSU(3) ' F1,2(C3). In order
to obtain the momentum map on the flag manifold F1,2(C3) ' OSU(3) we need to
have the infinitesimal generators of the Lie algebra su(3) at our disposal. They are
provided by the following statement:

Lemma 4.2. Let λ1, . . . , λ8 be the rescaled basis from Notation 2.1. Then the in-
finitesimal vector fields of the Lie algebra su(3) on the flag manifold are given by

Xλ1 =
i

2

(
(1− z2

1)∂z1 − z1z2∂z2 + (z1z3 − z2)∂z3
)
,

Xλ2 =
1

2

(
(−z2

1 − 1)∂z1 − z1z2∂z1 + (z1z3 − z2)∂z3
)
,

Xλ3 =
i

2
(−2z1∂z1 − z2∂z2 + z3∂z3) ,

Xλ4 =
i

2

(
−z1z2∂z1 + (1− z2

2)∂z2 − z3(z2 − z1z3)∂z3
)
,

Xλ5 =
1

2

(
−z1z2∂z1 − (1 + z2

2)∂z2 − z3(z2 − z1z3)∂z3
)
,

Xλ6 =
i

2

(
z2∂z1 + z1∂z2 + (1− z2

3)∂z3
)
,

Xλ7 =
1

2

(
z2∂z1 − z1∂z2 − (1− z2

3)∂z3
)
,

Xλ8 = −i
√

3

2
(z2∂z2 + z3∂z3) .

Proof. In order to obtain the fundamental vector fields associated to su(3) it is suffi-
cient to determine the vector fields associated to the basis λ1, . . . , λ8 from Notation
2.1. The vector fields are determined by the equation

Xλk =
d

dt

∣∣∣∣
t=0

exp(tλk) · Z

where Z ∈ F1,2(C3) ' OSU(3) (see local coordinates expression from Corollary 3.11)
and exp(tλk) · Z is defined as multiplication of the matrices exp(tλk) and Z and
corresponds to the left action of SU(3) on the flag manifold.

Without loss of generality, Z may lie in the big cell and thus is of the form

Z =
(

1 0 0
z1 1 0
z2 z3 1

)
. When exp(tλk) acts on Z, the result lies not necessarily again

in the big cell. But, due to the fact that the flag manifold is identified with the
(complexified) homogeneous space SL(3,C)/B where B is the Borel subgroup of



24 SONJA HOHLOCH AND GUNER MUAREM

upper triangular matrices, we can always multiply (from the right) with elements
from B to get again an element in the big cell. Using formula (2.2.1), we compute

exp(tλ1) =

 cos
(
t
2

)
i sin

(
t
2

)
0

i sin
(
t
2

)
cos
(
t
2

)
0

0 0 1

 , exp(tλ2) =

 cos
(
t
2

)
sin
(
t
2

)
0

− sin
(
t
2

)
cos
(
t
2

)
0

0 0 1

 ,

exp(tλ3) =

e it2 0 0

0 e−
it
2 0

0 0 1

 , exp(tλ4) =

 cos
(
t
2

)
0 i sin

(
t
2

)
0 1 0

i sin
(
t
2

)
0 cos

(
t
2

)
 ,

exp(tλ5) =

 cos
(
t
2

)
0 sin

(
t
2

)
0 1 0

− sin
(
t
2

)
0 cos

(
t
2

)
 , exp(tλ6) =

1 0 0
0 cos

(
t
2

)
i sin

(
t
2

)
0 i sin

(
t
2

)
cos
(
t
2

)
 ,

exp(tλ7) =

1 0 0
0 cos

(
t
2

)
sin
(
t
2

)
0 − sin

(
t
2

)
cos
(
t
2

)
 , exp(tλ8) =

e
it

2
√
3 0 0

0 e
it

2
√
3 0

0 0 e
− it√

3

 .

Now we need to compute exp(tλk) · Z. Note that, as mentioned above, the result
may not lie in the big cell. Thus we need to multiply in addition from the right with

an element b =
(
b1 b2 b3
0 b4 b5
0 0 b6

)
∈ B, i.e.,

exp(λkt)

 1 0 0
z1 1 0
z2 z3 1

b1 b2 b3

0 b4 b5

0 0 b6


in order to obtain as element of the big cell

Ak :=

 1 0 0
f1,k(z1, t) 1 0
f2,k(z2, t) f3,k(z3, t) 1


for some functions fj,k(zj, t) with j ∈ {1, 2, 3} and k ∈ {1, . . . , 8} depending on
the complex variables zj and the real variable t. Now, for k ∈ {1, . . . , 8}, we solve
exp(λkt)Zb = Ak for b ∈ B. The solutions are denoted by βk ∈ B and are given as
follows:

β1 =


1

cos( t2)+iz1 sin( t2)
−i sin

(
t
2

)
0

0 cos
(
t
2

)
+ iz1 sin

(
t
2

)
0

0 0 1

 ,

β2 =


1

z1 sin( t2)+cos( t2)
− sin

(
t
2

)
0

0 z1 sin
(
t
2

)
+ cos

(
t
2

)
0

0 0 1

 ,

β3 =

 e
it
2 0 0

0 e−
it
2 0

0 0 1

 ,
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β4 =


1

cos( t2)+iz2 sin( t2)
z3 sin( t2)

−z2 sin( t2)+z1z3 sin( t2)+i cos( t2)
−i sin

(
t
2

)
0 1− z1(z3 sin( t2))

−z2 sin( t2)+z1z3 sin( t2)+i cos( t2)
iz1 sin

(
t
2

)
0 0 cos

(
t
2

)
+ i (z2 − z1z3) sin

(
t
2

)
 ,

β5 =


1

z2 sin( t2)+cos( t2)
− z3 sin( t2)
z2 sin( t2)−z1z3 sin( t2)+cos( t2)

− sin
(
t
2

)
0

z2 sin( t2)+cos( t2)
z2 sin( t2)−z1z3 sin( t2)+cos( t2)

z1 sin
(
t
2

)
0 0 z2 sin

(
t
2

)
− z1z3 sin

(
t
2

)
+ cos

(
t
2

)
 ,

β6 =

 1 0 0
0 1

cos( t2)+iz3 sin( t2)
− i

sin( t2)+cos( t2) cot( t2)
0 0 cos

(
t
2

)
+ iz3 sin

(
t
2

)
 ,

β7 =

 1 0 0
0 1

z3 sin( t2)+cos( t2)
− 1

sin( t2)+cos( t2) cot( t2)
0 0 z3 sin

(
t
2

)
+ cos

(
t
2

)
 ,

β8 =

 e
− it

2
√
3 0 0

0 e
− it

2
√

3 0

0 0 e
it√
3

 .

In order to obtain the vector fields, we must compute the derivatives of Ak with
respect to t and evaluate in t = 0. This reduces to determining the derivatives of
the coordinate functions

d

dt
fj,k(zj, t)

in t = 0 for all j ∈ {1, 2, 3} and k ∈ {1, . . . , 8}. The corresponding vector fields are
then, for k ∈ {1, . . . , 8}, given by

Xλk =

(
d

dt

∣∣∣∣
t=0

f1,k(z1, t)

)
∂z1 +

(
d

dt

∣∣∣∣
t=0

f2,k(z2, t)

)
∂z2 +

(
d

dt

∣∣∣∣
t=0

f3,k(z3, t)

)
∂z3

which yields the claim. �

Now we compute the explicit formula for the momentum map onOSU(3) ' F1,2(C3) '
SL(3,C)/B associated with vortex dynamics.

Theorem 4.3. Let K1 = 1 + |z1|2+|z2|2 and K2 = 1 + |z3|2+|z1z3 − z2|2. The
momentum map for the left action of SU(3) on the generic coadjoint orbit SL(3,C)/B
is given by

µ : SL(3,C)/B → su(3)∗,

 1 0 0
z1 1 0
z2 z3 1

 7→ (µij)1≤i,j≤3

where (µij)1≤i,j≤3 is the traceless, anti-Hermitian matrix with entries

µ11 =
1

3

(
x2

3 + y2
3 + 2

K2

− x2
2 + y2

2 − 1

K1

)
,
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µ22 =
1

3

(
−2x2

2 + 2y2
2 + 1

K1

− x2
3 + y2

3 − 1

K2

)
,

µ33 = −(µ11 + µ22),

µ12 =
(iy1 − x1) (x3 − iy3)− iy2 + x2

K2

− x1 − iy1

K1

,

µ13 =
(iy1 − x1) (x3 − iy3)− iy2 + x2

K2

− x1 − iy1

K1

,

µ23 =
iy3 + x3

K2

− (x1 + iy1) (x2 − iy2)

K1

.

The remaining entries are determined by the fact that the matrix is anti-Hermitian.

Let us prepare for the proof of Theorem 4.3 by computing the momentum map of
an easy example:

Example 4.4. Let J = ( 0 −1
1 0 ). Consider the symplectic manifold (R2, ω0 := dx∧dy)

and the standard action of SO(2) ∼= U(1) ∼= T on R2 by rotations, i.e., exp(θJ) =(
cos θ − sin θ
sin θ cos θ

)
acts on ( xy ) by(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

The vector field associated with the element exp(θJ) is given by

JM =
d

dθ

∣∣∣∣
θ=0

exp(θJ) ·
(
x
y

)
= y∂x − x∂y.

The contraction of the symplectic form ω0 via the vector field JM is(
y −x

)( 0 1
−1 0

)(
dx
dy

)
= xdx+ ydy.

The map

µ : R2 → R, (x, y) 7→ µ(x, y) =
1

2
(x2 + y2)

is a moment map since it satisfies ιJMω = d〈µ, J〉.

Recall that a 1-form η is called exact if there exists a function F such that dF = η.
The following example illustrate a technique how to find such function F .

Example 4.5. Let dF = y2exy
2
dx + 2xyexy

2
dy be a 1-form on R2. Thus the (still

unknown) function F : R2 → R satisfies the following system of partial differential
equations:

∂xF (x, y) = y2exy
2

,

∂yF (x, y) = 2xyexy
2

.

Integrating the first equation gives

F (x, y) =

∫
y2exy

2

dx = exy
2

+ C(y),



POINT VORTEX DYNAMICS ON KÄHLER TWISTOR SPACES 27

where C(y) is a function depending on y. Using the second equation leads to

∂yF (x, y) = 2xyexy
2

+ C ′(y) = 2xyexy
2 ⇐⇒ C ′(y) = 0.

This means that C ≡ c is constant and therefore the wanted function F is given by
F (x, y) = exy

2
+ c.

Now we are ready for

Proof of Theorem 4.3: By definition of the moment map, we must have

d〈µ, λk〉 = ιXλkω,

for all λk ∈ g and induced vector fields Xλk from Lemma 4.2. Moreover, recall from
(2.1.1) that the dual pairing is given by the trace. Therefore we have

〈µ, λk〉 : SL(3,C)/B → R, x 7→ 〈µ(x), λk〉 = trace(µ(x)λk).

The dual pairing explicitly becomes

trace

 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 0 i
2

0
i
2

0 0
0 0 0

 =
iµ12

2
+
iµ21

2
,

trace

 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 0 1
2

0
−1

2
0 0

0 0 0

 =
µ21

2
− µ12

2
,

trace

 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 i
2

0 0
0 − i

2
0

0 0 0

 =
iµ11

2
− iµ22

2
,

trace

 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 0 0 i
2

0 0 0
i
2

0 0

 =
iµ13

2
+
iµ31

2
,

trace

 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 0 0 1
2

0 0 0
−1

2
0 0

 =
µ31

2
− µ13

2
,

trace

 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 0 0 0
0 0 i

2

0 i
2

0

 =
iµ23

2
+
iµ32

2
,

trace

 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 0 0 0
0 0 1

2
0 −1

2
0

 =
µ32

2
− µ23

2
,

trace


 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33




i
2
√

3
0 0

0 i
2
√

3
0

0 0 − i√
3


 =

i (µ11 + µ22 − 2µ33)

2
√

3
.

In Lemma 3.17, we obtained the Hermitian metric h = (hkl)1≤k,l≤n on the flag
manifold. Moreover, the (real) symplectic form is given by ω = i

2

∑n
k,l=1 hkldzk∧dzl.
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In terms of real coordinates (x1, x2, x3, y1, y2, y3) ∈ R6 the matrix representing the
symplectic form is given by

ω :=

(
=(h) −<(h)
<(h) =(h)

)
with

=(h) =


0 x2y1−x1y2

K2
1
− y3(x23+y23+1)

K2
2

−(x3(y1−2x2y3))−x23y2+y3(x1+y2y3)

K2
2

x1y2−x2y1
K2

1
+

y3(x23+y23+1)
K2

2
0 x3y2−x2y3+y1

K2
2

x23y2+x3(y1−2x2y3)−y3(x1+y2y3)

K2
2

−x3y2−x2y3+y1
K2

2
0


and

<(h) =


x22+y22+1

K2
1

+
x23(2y23+1)+x43+y43+y23

K2
2

−x1x2+y1y2
K2

1
− x3(x23+y23+1)

K2
2

y3(2x3y2+y1)+x2(x23−y23)+x1x3

K2
2

−x1x2+y1y2
K2

1
− x3(x23+y23+1)

K2
2

x21+y21+1

K2
1

+
x23+y23+1

K2
2

−x1+x2x3+y2y3
K2

2

y3(2x3y2+y1)+x2(x23−y23)+x1x3

K2
2

−x1+x2x3+y2y3
K2

2

K1

K2
2

 .

Evaluating d〈µ, λk〉 = ιXλkω using the matrix representing ω, we obtain the equa-
tions 

d
(
iµ12

2
+ iµ21

2

)
= ιXλ1ω,

d
(
µ21
2
− µ12

2

)
= ιXλ2ω,

d
(
iµ13

2
+ iµ31

2

)
= ιXλ4ω,

d
(
µ31
2
− µ13

2

)
= ιXλ5ω,

d
(
iµ23

2
+ iµ32

2

)
= ιXλ6ω,

d
(
µ32
2
− µ23

2

)
= ιXλ7ω,

d
(
iµ11

2
− iµ22

2

)
= ιXλ3ω,

d
(
i(µ11+µ22−2µ33)

2
√

3

)
= ιXλ8ω

(4.3.1)

where we need to solve for the components µij of the momentum map. The 1-forms

on the left hand side are exact and therefore of the general form dF =
∑3

k=1
∂F
∂xk

dxk+∑3
k=1

∂F
∂yk
dyk. The 1-forms on the right hand side are contractions and of the general

form
∑3

k=1Gkdxk +
∑3

k=1G3+kdyk. Thus we must solve ∂F
∂xk

= Gk and ∂F
∂yk

= Gk+3

for all k ∈ {1, 2, 3}. We now proceed as in Example 4.5. Considering the coordinate
x1, we find

F (x1, x2, x3, y1, y2, y3) =

∫
G1(x1, x2, x3, y1, y2, y3)dx1 + C(x2, x3, y1, y2, y3)

and obtain therefore an expression for F . Using ∂F
∂xk

= G2 we obtain

G2(x1, x2, x3, y1, y2, y3) =
∂F

∂x2

(x1, x2, x3, y1, y2, y3)

=
∂

∂x2

∫
G1(x1, x2, x3, y1, y2, y3)dx1 +

∂

∂x2

C(x2, x3, y1, y2, y3)
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and therefore
∂

∂x2

C = G2 −
∂

∂x2

∫
G1

which yields

C =

∫ (
G2 −

∂

∂x2

∫
G1

)
dx2 + C ′(x3, y1, y2, y3).

Iterating this procedure, we determine F in terms of G1, . . . , G6. Therefore, if
G1, . . . , G6 are explicitly given, we can find an explicit formula for F .

Now we will apply this procedure to the systems of equations given in (4.3.1). We
start with the coupled system{

d
(
iµ12

2
+ iµ21

2

)
= ιXλ1Ω,

d
(
µ21
2
− µ12

2

)
= ιXλ2Ω.

By integration we obtain the following expressions. Note that, in our situation, the
function C from above is constant and may be chosen to be zero.

i

2
(µ12 + µ21) =

1

2

(
−x1 (x2

3 + y2
3)− x2x3 − y2y3

K2

− x1

K1

)
=: α,

1

2
(µ21 − µ12) =

1

2

(
x3y2 − x2

3y1 − y3 (x2 + y1y3)

K2

− y1

K1

)
=: β.

We now can solve for µ21 via

iµ21 = α + iβ =
1

2

(
− (x1 + iy1) (x3 + iy3) + x2 + iy2

K2

− x1 + iy1

K1

)
=

1

2

(
− z1

K1

+
−z1z3 + z2

K2

)
and find

µ21 = − i
2

(
− z1

K1

+
−z1z3 + z2

K2

)
. (4.3.2)

The second pair of coupled equations is{
d
(
iµ13

2
+ iµ31

2

)
= ιXλ4Ω,

d
(
µ31
2
− µ13

2

)
= ιXλ5Ω

which can be integrated as

iµ13

2
+
iµ31

2
=

1

2

(
−x2 + x1x3 − y1y3

K2

− x2

K1

)
=: γ,

µ31

2
− µ13

2
=

1

2

(
x3y1 + x1y3 − y2

K2

− y2

K1

)
=: δ

We optain

iµ31 = γ + iδ = −x2 + iy2

2K1

− −x3y1 − x1 (x3 + y3) + x2 + y2 + y1y3

2K2
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and finally

µ31 =
−i
2

(
−x2 + iy2

K1

− − (x1 + iy1) (x3 + iy3) + x2 + iy2

K2

)
.

The next pair of equations is{
d
(
iµ23

2
+ iµ32

2

)
= ιXλ6Ω,

d
(
µ32
2
− µ23

2

)
= ιXλ7Ω.

We compute

iµ23

2
+
iµ32

2
=

1

2

(
x3

K2

− x1x2 + y1y2

K1

)
=: ζ,

µ32

2
− µ23

2
=

1

2

(
x2y1 − x1y2

K1

− y3

K2

)
=: η

and obtain ζ + iη = iµ32 and therefore

iµ32 =
1

2

(
x3

K2

− x1x2 + y1y2

K1

)
+ i

1

2

(
x2y1 − x1y2

K1

− y3

K2

)
=

1

2

(
−x1x2 − y1y2 + i(x2y1 − x1y2)

K1

+
x3 − iy3

K2

)
.

In order to determine µ33, we integrate the last equation in (4.3.1) and obtain

i (µ11 + µ22 − 2µ33)

2
√

3
=

√
3

4

(
x2

2 + y2
2

K1

− 1

K2

)
.

Using the fact that the matrix M is traceless, i.e. µ11 +µ22 +µ33 = 0, the left-hand
side reduces to

−3iµ33

2
√

3
=

√
3

4

(
x2

2 + y2
2

K1

− 1

K2

)
and therefore

µ33 =
i

2

(
x2

2 + y2
2

K1

− 1

K2

)
.

On the other hand, using 2(µ11 + µ22) = −2µ33, we have

i

2
√

3
(µ11 + µ22 − 2µ33) =

3i

2
√

3
(µ11 + µ22) =

√
3

4

(
x2

2 + y2
2

K1

− 1

K2

)
.

Moreover, integrating the remaining Cartan equation d
(
iµ11

2
− iµ22

2

)
= ιXλ3ω gives

i

2
(µ11 − µ22) = κ.

This yields the system of equations{
3i

2
√

3
(µ11 + µ22) = λ,

i
2

(µ11 − µ22) = κ
⇐⇒

{
3i

2
√

3
(µ11 + µ22) = λ,

3i
2
√

3
(µ11 − µ22) = 3√

3
κ.
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Adding (resp. subtracting) the equations gives

µ11 = −
√

3

3
i

(
α +

3√
3
β

)
= − i√

3

(
x2

2 + y2
2 − 1

2
√

3K1

− x2
3 + y2

3 + 2

2
√

3K2

)
,

µ22 = −
√

3

3
i

(
α− 3√

3
β

)
= − i√

3

(
2x2

2 + 2y2
2 + 1

2
√

3K1

+
x2

3 + y2
3 − 1

2
√

3K2

)
,

µ33 = −(µ11 + µ22).

Now as we are working over su∗(3) we have obtained all the entries of the matrix. �

5. Green’s function and the vortex Hamiltonian for CPn

In Section 4, we recalled the point vortex momentum map on CP2 and computed
the one on F1,2(C3), i.e., on the degenerate and generic orbits of the action of SU(3).
The aim of this section is to determine the Hamiltonian for the point vortex problem
on CP. An important ingredient here is the fundamental solution of the Laplace-
Beltrami operator.

5.1. The Laplace-Beltrami operator. Let (M, g) be a Riemannian manifold of
dimension n with local coordinates x = (x1, . . . , xn) in which we express the metric
by the symmetric (n × n)-matrix (gij) := (gij)1≤i,j≤n. The inverse of this matrix
is denoted by (gij)

−1 =: (gij). The Riemannian volume form on (M, g) is given in
local coordinates by √

|det(g)|dx1 ∧ · · · ∧ dxn =: dµ.

Let f : M → R a smooth function. Then the Laplace-Beltrami operator ∆ on M is
given in local coordinates (x1, . . . , xn) by

∆f = − 1√
|det(gij)|

n∑
i,j=1

∂xjg
ij
√
|det(gij)| ∂xif.

which, on Rn equipped with the Euclidean metric, yields ∆ =
∑n

j=1 ∂
2
xj

. The big

diagonal DiagN(M) of the N -fold product M × . . .×M is defined as

DiagN(M) := {(y1, . . . , yN) ∈MN | yj = yk for some j 6= k with 1 ≤ j, k ≤ N},
i.e., it consists of all N -tuple point on M for which at least two points coincide. If
(M, g) is compact, then, for the Laplace-Beltrami operator, there exists a function
G : (M×M)\Diag2(M)→ R, referred to as Green’s function, satisfying the following
properties (see for instance Section 2.3 in Aubin [Aub98]):

(1) For all functions φ ∈ C2(M,R), we have

φ(p) =
1

vol(M)

∫
M

φ(q) dµ(q) +

∫
M

G(p, q)∆φ(q) dµ(q). (5.1.1)

(2) G is smooth on (M ×M) \ Diag2(M).
(3) G is symmetric, i.e. G(p, q) = G(q, p) for all p, q ∈M .
(4) We have

∫
M
G(p, q) dµ(q) = constant for all p ∈M .

Green’s function is also called a fundamental solution of the Laplace-Beltrami oper-
ator.
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Examples 5.1.

(1) Green’s function on R2 equipped with the Euclidean metric is given by

G(x, y) = − 1

2π
ln|x− y|

where |x − y|:=
√

(x1 − y1)2 + (x2 − y2)2 is the Euclidean distance. Note
that |x − y| coincides with the geodesic distance r(x, y) of the Euclidean
metric.

(2) Consider the unit sphere S2 with x = (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2 and
y = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) ∈ S2. Then Green’s function G(x, y) for
the spherical Laplace operator is given by (see Dritschel [Dri88])

G(x, y) =
1

2π
log(1− cos Θ),

where Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′).

On the flag manifold F1,2(C3), we have

Proposition 5.2. The Laplace operator on the flag manifold is given by

∆F1,2(C3) = ∆CP2 + ∆R

where

∆CP2 =
2∑

j,k=1

(1 + δjkzkzj)∂zj∂zk

is the Laplace operator on CP2 and ∆R a correction term given by

∆R =
K2

1

K2

(
∂z1∂z1 + z3∂z1∂z2 + z3∂z2∂z1 + |z3|2∂z2∂z2

)
+

(
K1(1 + |z3|2) +

K2
2

K1

)
∂z3∂z3

+ (z1 + z3z2)(z1z2 − z3 − z3|z1|2)∂z1∂z3 + (z1 + z2z3)
(
(1 + |z2|2)− z1z2z3

)
∂z2∂z3

+ (z1 + z3z2)(z1z2 − z3 − z3|z1|2)∂z3∂z1 + (z1 + z2z3)
(
(1 + |z2|2)− z1z2z3

)
∂z3∂z2 .

where K1 and K2 are the functions from Lemma 3.15.

Proof. On an n-dimensional Kähler manifold (M,h) with Kähler potential KM , the
Laplace operator ∆ is given by

∆ = 2
n∑

i,j=1

hij∂i∂jKM .

Using the expression for the Kähler potential on the flag manifold from Lemma 3.15,
one obtains the expression in the proposition by direct calculations. �

5.2. The Hamiltonian for point vortex dynamics. Let (M,ω) be a symplectic
manifold and N ∈ N. For 1 ≤ k ≤ N , let τk : ΠN

k=1Mk →M be the projection on the
kth factor and let Γ1, . . . ,ΓN ∈ R6=0. Consider the spaceM := ΠN

k=1M \DiagN(M)

and endow it with the symplectic form Ω := Ω(Γ) :=
∑N

k=1 Γkτ
∗
kω. Recall Green’s
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function G : (M ×M)\DiagN(M)→ R defined by the expression (5.1.1) and define
the so-called Robin function (see also Dritschel & Boatto [DB15])

R : M → R, R(t) := lim
t̃→t

(
G(t̃, t)− 1

2π
log d(t̃, t)

)
.

The Hamiltonian H :M→ R,

H(s1, . . . , sN) :=
∑

1≤i<j≤N

ΓiΓjG(si, sj) +
N∑
k=1

Γ2
kRg(sk) (5.2.1)

describes the dynamics of N vortices with vortex strength Γk ∈ R6=0 for k = 1, . . . , N
on the phase space M. Green’s function G describes the interaction between pairs
of distinct vortices and the Robin function takes self-interactions into account (for
more details, see Lin [Lin41]).

To study the vortex dynamics on an explicitly given symplectic manifold, we need
explicit formulas for Green’s function. Unfortunately, Green’s functions are explic-
itly known only for certain classes of manifolds as for instance planes, hyperbolic
planes, and 2-spheres, see Galajinsky [Gal22], Lim & Montaldi & Roberts [LMR01],
Montaldi & Nava-Gaxiola [MNG14].

Motivated by the study of the generic and degenerate coadjoint orbits of SU(3),
we naturally are interested in the Green’s functions on these coadjoint orbits. The
degenerate coadjoint orbit is CP2 and, in the case of SU(n+1), one of the degenerate
coadjoint orbits is CPn.

5.3. Green’s function and the Hamiltonian on the coadjoint orbit CPn.
The aim of this subsection is to obtain an explicit formula for Green’s function on
CPn. This will allow us then to write down the Hamiltonian for the point vortex
dynamics on CPn explicitly.

Given an arbitrary compact Riemannian manifold, the explicit computation of
Green’s function is not obvious. However, there are certain homogeneous spaces
for which methods are available to obtain an explicit formula for Green’s function.
Among these spaces, there are compact rank one symmetric spaces, briefly CROSS
spaces. All CROSS spaces are given by the following list: the n-sphere Sn, the
projective spaces KPn for K ∈ {R,C,H}, and the octonionic plane OP2.

CROSS spaces are special examples of so-called locally harmonic Blaschke mani-
folds (see Besse [Bes78]) for which the following result was established.

Proposition 5.3 (Beltrán & Corral & Criado del Rey [BCdR19]). Let M be a locally
harmonic Blaschke manifold and denote the geodesic distance between two points
x, y ∈ M by r(x, y) =: r. Then, Green’s function on M is given by G(x, y) = ϕ(r)
where ϕ is determined by the differential equation

ϕ′(r) = − 1

rn−1VM(r) vol(M)

∫ inj(M)

r

tn−1VM(t)dt (5.3.1)

where VM is the so-called volume density and inj(M) is the injectivity radius of the
manifold.
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Recall that the diameter of a Riemannian manifold (M, g) is defined by

diam(M) := sup
x,y∈M

r(x, y)

where r(x, y) is the geodesic distance between x, y ∈ (M, g). We now focus on
the CROSS space M = CPn where, in fact, the injectivity radius is equal to the
diameter. The density function VCPn was explicitly determined by Kreyssig [Kre10]
as

VCPn(r) =
22n−1

rn−1
sin2n−1(r) cos(r). (5.3.2)

In order to solve the differential equation (5.3.1) for M = CPn we need the
following technical result.

Lemma 5.4. Let n ∈ N>0. Then∫
1− sin2n(x)

sin2n−1(x) cos(x)
dx = log(sin(x))−

n−1∑
j=1

1

2j sin2j(x)
.

Proof. We start with∫
1− sin2n(x)

sin2n−1(x) cos(x)
dx =

∫
1

sin2n−1(x) cos(x)
dx−

∫
tan(x) dx

=

∫
1

sin2n−1(x) cos(x)
dx+ log(cos(x)).

Using 1 + cot2(x) = csc2(x), we obtain∫
1

sin2n−1(x) cos(x)
dx =

∫
sec(x) csc2n−1(x) dx =

∫
sec(x) csc2n−2(x) csc(x) dx

=

∫
sec(x) csc(x)(1 + cot2(x))n−1 dx.

Using the binomial formula

(1 + cot2(x))n−1 =
n−1∑
k=0

(
n− 1

k

)
cot2k(x)

we obtain∫
sec(x) csc(x)

n−1∑
k=0

(
n− 1

k

)
cot2k(x) dx =

n−1∑
k=0

(
n− 1

k

)∫
sec(x) csc(x) cot2k(x) dx.

Since

sec(x) csc(x) cot`(x) =
1

sin(x) cos(x)

cos`(x)

sin`(x)
=

cos`−1(x)

sin`+1(x)
=

cot`−1(x)

sin2(x)

the integral becomes ∫
cot`−1 csc2(x) dx.
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By using the substitution v = cot(x) and dv = − csc2(x)dx we have

−
∫
v`−1 dv = −v

`

`
+ C = −cot`(x)

`
+ C

where C is the integration constant. Now, for ` = 2k, we can rewrite
n−1∑
k=0

(
n− 1

k

)∫
sec(x) csc(x) cot2k(x) dx =

∫
sec(x) csc(x) dx−

n−1∑
k=1

(
n− 1

k

)
cot2k(x)

2k
.

We compute ∫
sec(x) csc(x)dx = log(sin(x))− log(cos(x)).

This means for our original integral∫
1− sin2n(x)

sin2n−1(x) cos(x)
dx

= log(sin(x))− log(cos(x))−
n−1∑
k=1

(
n− 1

k

)
cot2k(x)

2k
+ log(cos(x))

= log(sin(x))−
n−1∑
k=1

(
n− 1

k

)
cot2k(x)

2k
.

By using repeatedly

cot2(x) =
1

sin2(x)
,

we finally obtain∫
1− sin2n(x)

sin2n−1(x) cos(x)
dx = log(sin(x))−

n−1∑
j=1

1

2j sin2j(x)
.

�

We now obtain

Theorem 5.5. Green’s function on CPn with the Fubini-Study metric is given by
G : CPn × CPn \ Diag2(CPn)→ R with

G(ξ, η) = − 1

2n · vol(CPn)

(
log(sin(r(ξ, η)))−

n−1∑
j=1

1

2j sin2j(r(ξ, η))

)

where r(ξ, η) = arccos
√
〈ξ,η〉〈η,ξ〉H
〈ξ,ξ〉〈η,η〉H

is the geodesic distance between the two point in

CPn and 〈·, ·〉H is the Hermitian inner product.

Proof. Recall from Equation (5.3.2) that the volume density of CPn is

VCPn(r) =
22n−1 sin2n−1(r) cos(r)

rn−1

and that

inj(CPn) = diam(CPn) =
π

2
and vol(CPn) =

πn

n!
.
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Therefore the ODE for ϕ(r) from (5.3.1) can be written as

ϕ′(r) = − 1

rn−1VCPn(r) vol(CPn)

∫ diam(CPn)

r

tn−1VCPn(t) dt

and gives rise to the following equation:

ϕ′(r) = − 1

vol(CPn) sin2n−1(r) cos(r)

∫ π
2

r

sin2n−1(t) cos(t)dt

= − 1

vol(CPn) sin2n−1(r) cos(r)

1

2n
(1− sin2n(r)).

Solving this ODE gives the following formula for the fundamental solution

ϕ(r) = − 1

2n · vol(CPn)

∫
1− sin2n(r)

sin2n−1(r) cos(r)
dr.

Using Lemma 5.4 now gives the result. �

Theorem 5.6. The Hamiltonian for the N point vortex dynamics on the projective
space CPn is explicitly given by

H : (CPn)N \ DiagN(CPn)→ R,

H(ζ) = − 1

2(n− 1)!πn

N∑
α<β

ΓαΓβ

(
log(sin(r(ζα, ζβ)))−

n−1∑
j=1

1

2j sin2j(r(ζα, ζβ))

)
where ζ = (ζ1, . . . , ζN) and r(ζα, ζβ) is the geodesic distance on CPn between the two
points given by

r(ζα, ζβ) = arccos

√
〈ζα, ζβ〉H〈ζβ, ζα〉H
〈ζα, ζα〉H〈ζβ, ζβ〉H

,

where 〈·, ·〉H is the Hermitian inner product.

Proof. Equation (5.2.1) gives the formal expression for the Hamiltonian of the N
point vortex problem on a manifold. Using the explicit expression for the Green
function on CPn from Theorem 5.5 yields the result. �

The Hamiltonian vector field XH (and then also the equations of motion) for the
Hamiltonian from Theorem 5.6 can be computed either by using the implicit formula
involving the symplectic form or by making use of an compatible almost complex
structure J for the Fubini-Study metric, i.e., via XH = J grad(H).

5.4. The Hamiltonian on the flag manifold F1,2(C3). As we saw in previous
subsections, the explicit knowledge of Green’s function is quite rare which makes it
complicated to obtain an explicit expression for the Hamiltonian of the point vortex
problem in many situations.

We do not yet have an explicit formula for Green’s function and the Laplacian
on the flag manifold F1,2(C3) so that we also do not yet have an explicit expression
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for the Hamiltonian of the point vortex problem. One idea to approach this open
question may be the fibration

S2 −→ W 6 ' F1,2(C3) −→ CP2

together with the hope to deduce Green’s function on W 6 ' F1,2(C3) from those on
S2 and CP2 and thus obtain the Hamiltonian on W 6 ' F1,2(C3).

In fact, this poses the more general question of the behaviour of Green’s function
with respect to fibrations in general. But this is beyond the scope of the present
paper.
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